WO2006118204A1 - 炭素材料の製造方法およびアルカリ賦活装置 - Google Patents

炭素材料の製造方法およびアルカリ賦活装置 Download PDF

Info

Publication number
WO2006118204A1
WO2006118204A1 PCT/JP2006/308858 JP2006308858W WO2006118204A1 WO 2006118204 A1 WO2006118204 A1 WO 2006118204A1 JP 2006308858 W JP2006308858 W JP 2006308858W WO 2006118204 A1 WO2006118204 A1 WO 2006118204A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon
carbon dioxide
alkali activation
alkali
carbon material
Prior art date
Application number
PCT/JP2006/308858
Other languages
English (en)
French (fr)
Inventor
Takuo Ohshida
Koichi Kanno
Original Assignee
Mitsubishi Gas Chemical Company, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Company, Inc. filed Critical Mitsubishi Gas Chemical Company, Inc.
Priority to CN2006800143780A priority Critical patent/CN101166692B/zh
Priority to US11/912,777 priority patent/US8236275B2/en
Priority to JP2007514812A priority patent/JP5071106B2/ja
Publication of WO2006118204A1 publication Critical patent/WO2006118204A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/34Carbon-based characterised by carbonisation or activation of carbon
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • C01B32/312Preparation
    • C01B32/342Preparation characterised by non-gaseous activating agents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the present invention relates to a carbon material production method and an alkali activation device for producing an electric double layer capacitor electrode and the like.
  • activated carbon having a high specific surface area which is activated by steam, carbon dioxide, etc.
  • EDLC electric double layer capacitor
  • alkali activation an alkali metal compound from graphitizable carbon such as coatas, mesocarbon microbeads, and mesophase pitch-based carbon fibers.
  • Methods for obtaining activated carbon have been disclosed (see, for example, patent documents:! ⁇ 3).
  • an excellent activated carbon for EDLC can be obtained by heat treatment and activation treatment of a specific pitch raw material, and the selection of the starting raw material to be used for alkali activation and the selection of treatment conditions have a high capacitance. It has become clear that it is important to obtain activated carbon (see, for example, Patent Document 4).
  • an alkali metal for example, potassium
  • an alkali metal compound for example, potassium oxide
  • alkali metal or alkali metal compound described above is alkali metal carbonate (for example, potassium carbonate). It can be considered to make it safer by changing it.
  • alkali metal carbonate for example, potassium carbonate. It can be considered to make it safer by changing it.
  • the generated alkali metal or alkali metal compound grows gradually at a specific location where deposition is likely to occur in the reactor or the exhaust pipe, it adheres as a lump. It was found that there was a high risk of accidents, such as the reaction with carbon dioxide gas not reaching the lump within a predetermined time, and firing during the removal of the activated product.
  • Patent Document 1 Japanese Patent No. 2548546
  • Patent Document 2 Japanese Patent No. 2634658
  • Patent Document 3 Japanese Patent No. 3149504
  • Patent Document 4 Japanese Patent Laid-Open No. 2002-93667
  • Patent Document 5 Japanese Patent Application Laid-Open No. 2004-18292
  • An object of the present invention is to provide a method for industrially and safely producing a carbon material useful for producing an EDLC electrode having a high electrostatic capacity while performing an alkaline activation treatment safely and stably. .
  • the inventors of the present invention have the ability to activate a carbon precursor to which an activator selected from alkali metal compounds is added under an inert gas flow.
  • an activator selected from alkali metal compounds is added under an inert gas flow.
  • the present invention relates to an alkali activation reaction in which a mixture of a carbon precursor and an activator selected from alkali metal compounds is heated in an alkali activation region under an inert gas flow.
  • a method for producing a carbon material comprising a reaction step, wherein the alkali activation reaction is carried out while allowing carbon dioxide gas to flow through the downstream portion of the alkali activation reaction region under conditions that do not substantially contact the carbon precursor and the activator.
  • a method for producing a carbon material is provided.
  • the present invention further provides an alkali activation device that can be used in the above production method.
  • FIG. 1 is a schematic diagram showing an alkali activation device using a rotary kiln furnace.
  • FIG. 2 is a schematic diagram showing a baffle plate having a notch in the center.
  • a material that generates carbon by a heat treatment such as a thermosetting resin or pitch, coatas, coal, or the like can be used.
  • a synthetic pitch obtained by polymerizing a condensed polycyclic hydrocarbon or a substance containing the same in the presence of hydrogen fluoride and boron trifluoride is preferably used.
  • the synthetic pitch is considered to be a polymer obtained by polymerization via a cation generated by adding a proton to a condensed polycyclic hydrocarbon, and has higher structural uniformity than the conventional pitch. High purity. In addition, it is distinguished from conventional pitches in that it has many aliphatic hydrogens in the generated pitch and has characteristics such as low solubility in a solvent with a low softening point. Synthetic pitch force prepared carbon precursor with such a characteristic structure is highly pure and forms a uniform pore structure that is easily activated, resulting in a high capacitance carbon material. Therefore, it is very excellent as a raw material for carbon precursors.
  • the method for producing the synthetic pitch is not particularly limited.
  • pitch raw materials such as condensed polycyclic hydrocarbons and substances containing them are polymerized. You can get power S.
  • the condensed polycyclic hydrocarbon include naphthalene, monomethylnaphthalene, dimethylnaphthalene, anthracene, phenanthrene, acenaphthene, pyrene and the like, as shown in, for example, Patent No. 2931593, Patent No. 2621253, or Patent No.
  • Condensed polycyclic carbonization with these skeletons Hydrogen, a mixture of these condensed polycyclic hydrocarbons, and a substance containing these condensed polycyclic hydrocarbons can be used.
  • condensed polycyclic hydrocarbons selected from naphthalene, monomethylnaphthalene, dimethylnaphthalene, and anthracene, which are relatively inexpensive and easily available, and mixtures thereof are preferable.
  • the polymerization reaction is performed using 100 to 400 ° C of hydrogen fluoride as a polymerization catalyst in an amount of 0.0 :! to 20 mol and boron trifluoride: 0.05 to 1.0 mol per 1 mol of pitch raw material.
  • the reaction is carried out at a temperature for 5 to 300 minutes.
  • light boiling components may be removed by heating at a temperature of 250 to 400 ° C. under a nitrogen stream.
  • a mesophase pitch synthesized at a reaction temperature of 200 ° C or higher can produce a carbon material suitable for an electric double layer capacitor electrode, and it has a high carbonization yield.
  • the carbon precursor is a carbonization treatment in which the carbon precursor raw material is heat-treated with stirring or standing (in this specification, the carbonization treatment is performed by heat-treating the pitch or the like to obtain physical properties suitable for the carbon precursor. Or a powdery or fiber-like carbon precursor material obtained by powdering or melt spinning, and oxygenating to make it infusible and then carbonizing.
  • a carbon precursor raw material is supplied into the heat treatment apparatus and heat treated, and the granular materials are carbonized.
  • the carbon precursor production method for attaching the carbonized material of the raw material precursor is excellent in terms of the simplicity of the apparatus and the characteristics of the carbon material obtained.
  • the heat treatment apparatus is not particularly limited as long as it can be used at 400 ° C or higher and the granular material charged in the apparatus flows.
  • a vertical stirring mechanism or a horizontal stirring mechanism that has a stirring blade, a spiral, or the like is not a problem, but a rotary kiln type heat treatment apparatus that has a simple structure and is easy to industrialize is particularly preferably used.
  • the granular material is used as a heat medium and Z or a moving medium, and has a true density of 2 gZcm 3 or more. If the granular material does not exist, the carbonized material inside the heat treatment device near the heat transfer surface becomes inhomogeneous, and a strong carbonized product lump is easily formed on the heat transfer surface. It becomes. For granular materials with a true density of less than 2 g / cm 3 , carbonization An expensive stirring mechanism is required to maintain a fluid state in which a lump of material is easily formed.
  • the shape of the granular material is not particularly limited as long as it does not have a sharp pointed portion, but a sphere or an elliptical sphere is preferably used.
  • the material of the granular material is corrosion resistant to the generated inorganic gas and carbon precursor material, and is not particularly limited if it is difficult to be crushed when flowing. Absent. Usually, relatively inexpensive and high-hardness stainless steel, and ceramics such as Anolemina and Zircoyu are preferably used.
  • the size of the granular material is not particularly limited because the optimum size changes depending on the size of the device, operating conditions, material of the granular material, etc. However, from the viewpoint of handling properties, for example, in the case of a spherical shape, the radius is 1 ⁇ : 100mm is preferable 5-80mm force S is more preferable, 10-50mm is more preferable.
  • a carbon precursor raw material is supplied to a surface of the granular material by supplying the carbon precursor raw material while maintaining the temperature within a certain range in a heat treatment apparatus in which a plurality of the granular materials are flowing. Adhere to.
  • the carbonization treatment is a continuous method in which the carbon precursor raw material and the particulate matter are simultaneously supplied and the particulate matter to which the carbonized material is adhered is simultaneously used, and the particulate matter is heated and fluidized in advance, and a certain amount of the carbon precursor is obtained.
  • Either a semi-batch method may be used in which the granular material to which the carbonized material adheres is extracted after the raw material is continuously supplied.
  • the carbon precursor raw material may be supplied continuously or intermittently.
  • the amount of the granular material charged in the heat treatment apparatus varies depending on the type of the heat treatment apparatus and the type of the granular material, but the range of 1 to 50% by volume with respect to the internal volume of the heat treatment apparatus is preferable.
  • the range is preferably 1 to 40% by volume, more preferably 5 to 30% by volume.
  • the heat treatment temperature depends on the properties of the carbon precursor raw material and the supply rate, but the range of 400 to 800 ° C is preferred, and the range of 500 to 600 ° C is preferred for the synthetic mesophase pitch described above.
  • the rotational speed of the kiln and the stirring speed of the stirring blade are determined according to the size of the apparatus, the properties of the carbon precursor raw material, the supply speed of the carbon precursor raw material, etc., and are not particularly limited.
  • a laboratory experiment level internal volume 1 to: in the range of 5 to 100 rpm for a heat treatment device with a 10 L stirring blade, etc., and 0.5 to 10 rpm for a rotary kiln with an internal volume of 10 to 50 L In a rotary kiln of 50L or more, it is preferably less than 2 rpm.
  • the carbonized material is easily separated from the granular material by heating the granular material to which the carbonized material is adhered to an appropriate temperature equal to or higher than the heat treatment temperature. After the carbonized product is separated, the granular material is recycled and reused.
  • a carbon precursor separated from the granular material is adjusted to an appropriate particle size, and a carbon precursor to be subjected to an alkali activation treatment is obtained.
  • potassium hydroxide and / or hydroxide can be used among the powers of using one or more alkali metal compounds such as lithium hydroxide, sodium hydroxide, potassium hydroxide, potassium carbonate, and potassium chloride. Sodium is most preferred.
  • the amount of the activator used is 0.5 to 10 times the weight of the carbon precursor in a weight ratio, more preferably 0.5 to 4.0 times, and even more preferably 1.5 to 2.5. Is double. If the weight ratio of the activator is less than 0.5 times, sufficient pores are not formed in the obtained carbon material, and the capacitance tends to decrease. On the other hand, the weight ratio is more than 10 times and added. However, the increase in the capacitance is not obtained, and the cost of the post-treatment process such as neutralization is increased, which is not preferable from the viewpoint of safety.
  • the alkali activation is performed by uniformly mixing the carbon precursor and the activator at the above weight ratio, and then increasing the temperature from room temperature to preferably 400 to 1000 ° C under an inert gas flow such as nitrogen or argon. It is carried out by heating and holding at a temperature in this range, preferably for 0.5 to 20 hours. Activation If the reaction temperature is lower than 400 ° C, the reaction does not proceed easily and the degree of activation does not increase. If the reaction temperature is higher than 1000 ° C, erosion of the reactor due to precipitation or scattering of alkali metals, especially metal potassium, becomes severe.
  • the activation reaction temperature is more preferably 500 to 950 ° C. 600 to 900 ° C force S is more preferable.
  • alkali activation as described above is performed by introducing a mixture of a carbon precursor and an activator into a nickel-made reactor that has high heat resistance and is not easily corroded by an alkali metal, and thus a nitrogen gas.
  • the reactor is heated and heated in a reaction furnace under an inert gas such as argon.
  • the reactor used for alkali activation is not particularly limited as long as it includes a gas introduction part for introducing an inert gas and a gas discharge part for discharging the gas.
  • a gas introduction part for introducing an inert gas
  • a gas discharge part for discharging the gas.
  • a box furnace, a belt furnace, a pressure furnace, a rotary kiln furnace, or the like which may be either a batch type or a continuous type, can be used.
  • the carbon precursor and the activator are flown and mixed by the rotation of the reactor, and the activation is performed uniformly.
  • the carbon dioxide gas is circulated during cooling to remain in the activation reaction region. It is preferably used because the contact efficiency is good when converting an alkali metal or the like to a safe substance (carbonate).
  • the alkali metal or alkali metal compound generated during the alkali activation treatment is scattered and deposited in the reactor or the exhaust line, and this reacts with moisture in the air when the activation product is taken out. There is a danger of ignition and explosion.
  • carbon dioxide gas is used during the alkali activation treatment. It introduce
  • the generated alkali metal or alkali metal compound that has flowed into the downstream portion of the alkali activation region comes into contact with the carbon dioxide gas and is converted into a safe compound (carbonate).
  • carbon dioxide gas does not substantially contact the activator and the carbon precursor, it is possible to solve the problems of the prior art such as the aforementioned decrease in capacitance.
  • FIG. 1 is a schematic diagram showing an example of an alkali activation device using a rotary kiln furnace.
  • the alkali activation device is composed of a reactor 2 and a heater 4.
  • Reactor 2 consists of a gas introduction part 1 for introducing an inert gas, an alkali activation area 3, a carbon dioxide distribution area 5, and a double line comprising an exhaust line 7 and an introduction line 6 for carbon dioxide supply.
  • a baffle plate 8 is provided in the carbon dioxide distribution region 5, for adjusting the flow rate of the carbon dioxide gas and preventing the carbon dioxide from flowing into the alkali activation region 3.
  • the baffle plate may be provided in the introduction line 6 in addition to the carbon dioxide distribution region 5 or only in the introduction line 6.
  • the introduction line 6 and the exhaust line 7 have a double pipe structure as shown in FIG.
  • the outer pipe of the double pipe may be an exhaust line and the inner pipe may be an introduction line, or the exhaust line and the introduction line may be two independent pipes.
  • the position of the introduction line 6 is not limited to the illustrated position.
  • baffle plate In place of the baffle plate, it is possible to use a filler such as a carbon fiber non-woven fabric for the purpose of preventing backflow. In this case, however, the pressure loss increases, and the scattered alkali metal and alkali metal compound and carbonic acid are mixed. Since there is a high possibility that the carbonate deposited by the reaction of the gas locally adheres and closes, it is preferable to use a baffle plate.
  • alkali metal compounds such as alkali metals and alkali metal oxides are generated and scattered.
  • the scattered alkali metal and alkali metal compound are moved from the alkali activation region 3 to the downstream carbon dioxide flow region 5 by the inert gas from the gas introduction unit 1 and react with the carbon dioxide gas from the introduction line 6 to form carbonates. Is generated.
  • the introduction of carbon dioxide gas from the introduction line 6 to the carbon dioxide circulation region 5 is usually a force that starts at or above the temperature (for example, 400 ° C) at which the alkali metal or alkali metal compound starts to scatter. It doesn't matter.
  • the flow rate of the inert gas from the gas introduction unit 1 varies depending on the size, structure, shape, and the like of the apparatus.
  • the gas introduced from the introduction line 6 may be carbon dioxide alone or carbon dioxide diluted with an inert gas such as nitrogen or argon.
  • the flow rate of the introduced gas from the introduction line 6 and the carbon dioxide gas concentration are in a range where the carbon dioxide gas does not flow into the alkali activation region 3 according to the inert gas flow rate from the gas introduction part 1 and the structure of the baffle plate 8. In other words, the range is set such that the activator and the carbon precursor do not substantially contact carbon dioxide during the alkali activation reaction.
  • the gas flow rate from the introduction line 6 is the gas flow rate from the gas introduction part 1 (for example, in the case of the apparatus used in Example 1, 0.5 to 5 L / min at 25 ° C) of 0.0:! To 200 % Is preferable, more preferably 0.1 to 150%, and still more preferably:! To 100%. If the gas flow rate is less than 01%, the reaction with carbon dioxide does not keep up with the deposition rate of the scattered alkali metal or alkali metal compound, and safety may not be achieved. On the other hand, if the gas flow rate exceeds 200%, the activator and carbon precursor may come into contact with carbon dioxide. It becomes high and is not preferable. It is preferable to introduce carbon dioxide without diluting it in order to sufficiently react the alkali metal or alkali metal compound scattered without increasing the gas flow rate with carbon dioxide.
  • the activated product thus obtained is cooled to room temperature and then washed with, for example, distilled water and / or aqueous hydrochloric acid solution to remove the unreacted and reacted with the carbon dioxide gas and dried sufficiently.
  • a carbon material can be obtained.
  • Conventional methods can be used for washing with water and subsequent steps.
  • the average particle size of the carbon material is preferably in the range of 1 to 50/1 111, more preferably 5 to 30 / im by powder treatment and classification treatment. Adjust to.
  • the pulverization treatment can be performed at any stage before the activation treatment (carbon precursor) and after the activation treatment (carbon material).
  • the pulverizer is appropriately selected from an impact pulverizer, a jet mill, a micro atomizer, and the like, and the classifier is appropriately selected from a mechanical classifier, a wind classifier, and the like.
  • Naphthalene was polymerized in the presence of hydrogen fluoride and boron trifluoride to synthesize mesophase pitch (Mettler softening point: 280 ° C).
  • a batch rotary kiln furnace equipped with an electric heater was charged with 50 kg of Zircoyu balls (true density: 6 gZcm 3 ) with a diameter of 25 mm in an inner cylinder (internal volume 150 L, diameter: 580 mm). While rotating the kiln at 6 rpm, the internal temperature was kept at 550 ° C-constant, and the mesophase pitch was supplied for 3 hours at lkgZ time. Following the bow I, the rotary kiln was heated to 700 ° C at 5 ° CZ for 1 hour. After cooling, it was separated from the ball to obtain 2.4 kg of mesophase pitch carbonized product. The carbonized product was pulverized with an impact pulverizer to an average particle size of 10 ⁇ m to obtain a carbon precursor.
  • FIG. 1 shows the schematic diagram.
  • FIG. 2 shows a semicircular baffle plate 8 with an outer diameter of 160 mm, in which a semicircular cutout portion with a radius of 10 mm is provided at the center in the carbon dioxide flow region 5 located downstream of the inner cylinder. As shown in the figure, 5 pieces were attached at intervals of 50 mm.
  • the alkali activated product taken out was stirred in distilled water, washed with water, acid washed with 0.5N hydrochloric acid, further washed with water three times, and dried at 150 ° C. to obtain a carbon material.
  • Obtained carbon material conductive filler (Ketjen black): binder (registered trademark: Tef mouth)
  • the electrode was prepared using a 90: 5: 5 mixture.
  • a paper separator was sandwiched between a pair of electrodes and housed in an aluminum bipolar cell.
  • As an electrolytic solution triethylmethylammonium tetrafluoroborate ((CH) CH NBF) dissolved in 1.8 mol / liter
  • the capacitance per weight Cw (FZg) was calculated based on the weight of the carbon material in both the positive and negative electrodes.
  • the capacitance per volume (F / cc) was calculated by multiplying the capacitance per weight Cw (F / g) by the electrode density. As a result, the capacitance per unit weight was 34.8 F / g, the capacitance per unit volume was 32.7 F / CC, and the electrode density was 0 ⁇ 94 g / cc.
  • Example 2 The same operation as in Example 1 was performed except that carbon dioxide gas was not introduced from the outer pipe (introduction line 6) of the double pipe at 390 ° C or higher. There is a spark due to the reaction between the deposited metal potassium or residual potassium oxide and moisture in the air.
  • the capacitance per weight was 33.6 F / g
  • the capacitance per volume was 32.9 F / cc
  • the electrode density was 0.98 gZcc.
  • Capacitance by weight was 28. OFZg, capacitance per volume, although no sparks were found due to the reaction between metal potassium or residual potassium oxide deposited downstream of alkali activation region 3 during extraction and moisture in the air. The performance decreased to 26.6FZcc and the electrode density 0.95gZcc.
  • Example 1 The results of Example 1 and Comparative Examples 1 and 2 are summarized in Table 1.
  • the alkali activation reaction can be performed without substantially bringing the activator and the carbon precursor into contact with carbon dioxide gas, the activation reaction proceeds sufficiently. Further, the produced alkali metal and alkali metal compound can be efficiently converted into a safe carbonate.
  • the present invention can be applied to stable and safe industrial production of carbon materials suitable for the production of EDLC electrodes having high capacitance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Description

明 細 書
炭素材料の製造方法およびアルカリ賦活装置
技術分野
[0001] 本発明は電気二重層キャパシタ電極などを製造するための炭素材料の製造方法 およびアルカリ賦活装置に関する。
背景技術
[0002] 現在、電気二重層キャパシタ (EDLC)の分極性電極材料としては、ヤシ殼、コーク ス、フエノール樹脂等を水蒸気や二酸化炭素等によって賦活した高比表面積を有す る活性炭が使われている。し力しながら、これらの原料から高い静電容量を可能にす る高比表面積の活性炭を得るために賦活度を上げていくと、電極材の嵩密度が低く なり、 EDLCのエネルギー密度を高くできないという問題があった。
[0003] そこで、コータス、メソカーボンマイクロビーズ、メソフェーズピッチ系炭素繊維などの 易黒鉛化性炭素からアルカリ金属化合物を用いた賦活(以下、アルカリ賦活)によつ て高い静電容量を可能にする活性炭を得る方法が開示されている (例えば、特許文 献:!〜 3参照)。また、特定のピッチ原料を熱処理、賦活処理することで優れた EDLC 用活性炭が得られることが開示されており、アルカリ賦活に供する出発原料の選択お よび処理条件の選択が、高い静電容量を可能にする活性炭を得るために重要であ ることが明らかになつている(例えば、特許文献 4参照)。
[0004] 一方、上述のアルカリ賦活を工業的に実施する際、賦活反応 (賦活処理)中に生成 するアルカリ金属(例えば、カリウム)やアルカリ金属化合物(例えば、酸化カリウム)が 反応器内や排気ラインに飛散、堆積し、これが賦活化物の取り出し時などに空気中 の水分と反応して発火'爆発する危険性が大きいとレ、う問題を抱えてレ、る。
[0005] このような問題を解決する手段として、賦活処理終了後の冷却工程で炭酸ガスを系 内に流通させて、上述したアルカリ金属やアルカリ金属化合物をアルカリ金属炭酸塩 (例えば、炭酸カリウム)に変化させて安全化を図るという方法が考えられる。しかしな がら、この方法では、生成したアルカリ金属やアルカリ金属化合物が、反応器や排気 側配管内の堆積が起こりやすい特定箇所で徐々に成長して塊として付着した場合に は、所定時間内に塊の中まで炭酸ガスとの反応がいきわたらず、賦活化物の取り出 し作業時に発火するなどの事故が起こる危険性が高いことがわかった。
[0006] この問題の解決方法として、賦活反応中に賦活反応系内に炭酸ガスを特定の濃度 で導入し流通させることで、発火 ·爆発する危険性を回避することが可能であることが 開示されている(例えば、特許文献 5参照)。
[0007] し力 ながら、我々の検討によれば、賦活反応系に存在または生成したアルカリ金 属ゃアルカリ金属化合物と炭酸ガスは、炭酸ガスの濃度によらず反応し、得られた炭 素材料を用いたキャパシタの静電容量が低下するため、賦活反応中に賦活反応系 に炭酸ガスを存在させることは好ましくないことが明らかになった。
特許文献 1:特許 2548546号公報
特許文献 2:特許 2634658号公報
特許文献 3:特許 3149504号公報
特許文献 4 :特開 2002— 93667号公報
特許文献 5:特開 2004— 18292号公報
発明の開示
[0008] 上述したように、従来のアルカリ賦活処理による製造方法では、高い静電容量の炭 素材料が工業的に安全に製造できないという問題点があった。本発明の目的は、了 ルカリ賦活処理を安全かつ安定的に行なうとともに高い静電容量を有する EDLC電 極などの製造に有用な炭素材料を工業的に安全に製造する方法を提供することに ある。
[0009] 本発明者らは、上記課題を解決すべく鋭意努力を重ねた結果、アルカリ金属化合 物より選ばれる賦活剤を添加した炭素前駆体を不活性ガス流通下で加熱するアル力 リ賦活反応を、該炭素前駆体および該賦活剤がアルカリ賦活反応中に炭酸ガスと実 質的に接触しない条件下で該炭酸ガスをアルカリ賦活反応領域の下流部に流通さ せながら行うことにより、体積当り及び重量当たりの静電容量が高い炭素材料が安全 かつ安定的に得られることを見出し、本発明に到達した。
すなわち本発明は、炭素前駆体とアルカリ金属化合物から選ばれる賦活剤との混 合物を、アルカリ賦活領域にぉレ、て不活性ガスの流通下で加熱するアルカリ賦活反 応工程を含む炭素材料の製造方法であって、炭酸ガスを該炭素前駆体と該賦活剤 に実質的に接触しない条件で該アルカリ賦活反応領域の下流部に流通させながら、 該アルカリ賦活反応を行うことを特徴とする炭素材料の製造方法を提供する。本発明 はさらに、上記製造方法に用いることができるアルカリ賦活装置を提供する。
図面の簡単な説明
[0010] [図 1]ロータリーキルン炉を用いたアルカリ賦活装置を表す模式図。
[図 2]中央に切り欠き部分を設けた邪魔板を表す模式図。
発明を実施するための最良の形態
[0011] 以下に、本発明の詳細について記述するが、本発明は以下の記述だけに限定され るものではない。
(1)炭素前駆体の原料
本発明で用レ、られる炭素前駆体の原料としては、熱硬化性樹脂、ピッチ等の熱処 理によって炭素を生成する物質、コータス、石炭などが使用できる。なかでも、縮合多 環式炭化水素またはこれを含有する物質を弗化水素および三弗化硼素の存在下で 重合させて得られた合成ピッチが好適に使用される。
[0012] 前記合成ピッチは、プロトンが縮合多環式炭化水素に付加して生成したカチオンを 経由する重合により得られる重合体と考えられており、従来のピッチに比べて構造的 均一性が高ぐ高純度である。また、生成したピッチ中に多くの脂肪族水素を有する ので軟化点が低ぐ溶媒への溶解性が高レ、などの特徴を有する点で従来のピッチと 区別される。このような特徴的な構造を有する合成ピッチ力 調製された炭素前駆体 は、高純度であり、賦活され易ぐ均一な細孔構造を形成し、その結果、高静電容量 の炭素材料になるので、炭素前駆体の原料として大変優れてレ、る。
[0013] 合成ピッチの製造法は特に制限されるものではないが、例えば弗化水素および三 弗化硼素の存在下で、縮合多環炭化水素、これらを含有する物質などのピッチ原料 を重合させることによって得ること力 Sできる。縮合多環炭化水素としては、例えば特許 第 2931593号公報、特許第 2621253号公報、または特許第 2526585号公報に 示されるように、ナフタレン、モノメチルナフタレン、ジメチルナフタレン、アントラセン、 フエナントレン、ァセナフテン、ピレン等ならびにこれらの骨格を有する縮合多環炭化 水素、これらの縮合多環炭化水素の混合物、およびこれらの縮合多環炭化水素を含 有する物質を用いることができる。このうち、比較的安価で入手が容易なナフタレン、 モノメチルナフタレン、ジメチルナフタレン、アントラセンから選ばれる縮合多環炭化 水素、およびそれらの混合物が好ましい。
[0014] 重合反応はピッチ原料 1モルに対し、重合触媒として弗化水素 0.:!〜 20モル、三 弗化硼素 0. 05〜: 1. 0モルを使用し、 100〜400°Cの温度で 5〜300分間反応させ ることにより行なわれる。次いで窒素気流下で 250〜400°Cの温度で加熱することに より、軽沸分を除去してもよい。特に、反応温度 200°C以上で合成されるメソフェーズ ピッチが電気二重層キャパシタ電極に適した炭素材料を製造することができ、また、 炭素化収率が高レ、ので好ましレ、。
[0015] (2)炭素前駆体の製造
炭素前駆体は、前記炭素前駆体原料を、攪拌下または静置のまま熱処理する炭素 化処理 (本明細書では、ピッチ等を熱処理して炭素前駆体に適した物性とすることを 炭素化処理と称する)、または、粉碎処理や溶融紡糸により得られる粉末状または繊 維状の炭素前駆体原料を酸素付加して不融化した後に炭素化処理する方法によつ て製造される。
[0016] なかでも、熱処理装置内に真密度 2g/cm3以上の粒状物を複数個仕込んで流動 させながら、該熱処理装置内に炭素前駆体原料を供給して熱処理し、該粒状物に炭 素前駆体原料の炭素化物を付着させる炭素前駆体の製造方法が、装置の簡便性や 得られる炭素材料の特性面で優れてレ、る。
[0017] 前記熱処理装置は、 400°C以上で使用可能で、装置内部に仕込んだ粒状物が流動 するものであれば特に限定されるものではなレ、。縦型でも横型でも良ぐ撹拌機構と して撹拌羽根やスパイラル等を有するものでも問題ないが、構造がシンプノレで工業 化が容易なロータリーキルン型の熱処理装置が特に好適に用いられる。
[0018] 前記粒状物は、熱媒体および Zまたは移動媒体として用いられ、 2gZcm3以上の 真密度を有する。該粒状物が存在しない場合は、伝熱面付近の熱処理装置内部の 炭素化物が不均質なものとなりやすぐ伝熱面に強固な炭素化物の塊が生成しやす レ、ため運転上トラブルの原因となる。真密度が 2g/cm3未満の粒状物では、炭素化 物の塊ができ易ぐ流動状態を保っためには高価な撹拌機構が必要になる。また粒 状物の形状は、鋭利に尖った部分のないものであれば特に制限はなレ、が、球体や 楕円球が好適に用いられる。より好ましくは、通常工業的に製造されるボールミルや ベアリング用途等に使用される球状の物体である。また粒状物の材質は、反応器の 材質と同様に、発生する無機ガスや炭素前駆体原料に対して耐蝕性であり、流動す る際に破砕され難レ、ものであれば、特に制限はない。通常は比較的安価で高硬度の ステンレススチールや、ァノレミナ、ジルコユア等のセラミックスが好適に用いられる。粒 状物の大きさは、装置の大きさ、運転条件、粒状物の材質等により最適サイズが変化 するため特に制限はなレ、が、ハンドリング性の点から、例えば球形の場合は、半径 1 〜: 100mmが好ましぐ 5〜80mm力 Sより好ましく、 10〜50mmがさらに好ましい。
[0019] 複数個の上記粒状物が流動している熱処理装置中に、温度を一定範囲に保ちな がら炭素前駆体原料を供給することにより、炭素前駆体原料の炭素化物を該粒状物 の表面に付着させる。炭素化処理は、炭素前駆体原料と粒状物の供給と、炭素化物 の付着した粒状物の抜き出しとを同時に行う連続方式、および、予め粒状物を加熱 流動させておき、一定量の炭素前駆体原料を連続的に供給した後に、炭素化物が 付着した粒状物を取り出すセミバッチ方式のどちらの方法で行ってもよい。また炭素 前駆体原料は、連続的に供給しても間欠的に供給してもどちらでもよい。
[0020] 熱処理装置内に仕込む粒状物の量は、熱処理装置の形式や、粒状物の種類によ つて異なるが、熱処理装置の内容積に対して 1〜50容量%の範囲が好ましぐより好 ましくは 1〜40容量%の範囲、さらに好ましくは 5〜30容量%の範囲である。炭素化 物を粒状物に付着させることにより、ハンドリング性に優れ、均一な性状の炭素化物 を得ることができる。
[0021] 熱処理温度は、炭素前駆体原料の性状や供給速度によるが、 400〜800°Cの範 囲が好ましぐ上述の合成メソフェーズピッチでは 500〜600°Cの範囲が好ましレ、。ま た、キルンの回転速度や攪拌羽根の攪拌速度は、装置の大きさ、炭素前駆体原料の 性状、炭素前駆体原料の供給速度等に応じて決められるため、特に制限されるもの ではなレ、が、例えばラボ実験レベルの内容積 1〜: 10Lの撹拌羽根付の熱処理装置 等では 5〜100rpmの範囲、内容積 10〜50Lのロータリーキルンでは 0. 5~10rpm 、 50L以上のロータリーキルンでは 2rpm未満であるのが好ましい。
[0022] 炭素化処理終了後、炭素化物を付着した粒状物を熱処理温度以上の適当な温度 に加熱することにより、炭素化物が粒状物から容易に分離する。炭素化物が分離した 後の粒状物は、循環再使用する。
[0023] 粒状物から分離した炭素化物を適切な粒度に調整して、アルカリ賦活処理に供す る炭素前駆体が得られる。
[0024] (3)炭素前駆体のアルカリ賦活
アルカリ賦活に用いる賦活剤としては、水酸化リチウム、水酸化ナトリウム、水酸化 カリウム、炭酸カリウム、塩化カリウム等のアルカリ金属化合物の 1種以上が用いられ る力 なかでも水酸化カリウム及び/又は水酸化ナトリウムが最も好ましい。
[0025] 賦活剤の使用量は、重量比で炭素前駆体の 0. 5〜: 10倍が好ましぐより好ましくは 0. 5〜4. 0倍、さらに好ましくは 1. 5〜2. 5倍である。賦活剤の重量比が 0. 5倍未 満では得られる炭素材料に細孔が十分に形成されず、静電容量が低下する傾向が あり、一方、重量比が 10倍を超えて添加しても静電容量の増加が得られないばかり 、中和などの後処理工程のコストが高くなり、安全性の面からも好ましくない。
[0026] アルカリ賦活は、炭素前駆体と賦活剤とを上記重量比で均一に混合した後、窒素、 アルゴンなどの不活性ガス流通下で室温から好ましくは 400〜: 1000°Cまで昇温加 熱して、この範囲の温度に好ましくは 0. 5〜20時間保持することで行なわれる。賦活 反応温度が 400°Cより低いと反応が進行し難く賦活度が上がらず、 1000°Cより高い とアルカリ金属、特に金属カリウムの析出、飛散等による反応装置の侵食が激しくな る。賦活反応温度は、 500〜950°Cがより好ましぐ 600〜900°C力 Sさらに好ましレ、。
[0027] 通常、上記のようなアルカリ賦活は、耐熱性が高ぐかつアルカリ金属による腐食を 受けにくいニッケル製等の反応器に、炭素前駆体と賦活剤との混合物を導入し、窒 素ガス、アルゴンなどの不活性ガス流通下で該反応器を反応炉にて加熱 ·昇温する ことにより行なわれる。
[0028] アルカリ賦活に用いる反応器は、不活性ガスを導入するためのガス導入部、および ガスを排出するガス排出部を備えていればよぐ特に限定されるものではないが、例 えばニッケル製トレーや容器などに炭素前駆体と賦活剤との混合物を仕込み、加熱 できる反応器が用レ、られる。
[0029] 反応器を加熱するための反応炉はバッチ式および連続式のいずれでもよぐボック ス炉、ベルト炉、プレッシャー炉、ロータリーキルン炉などを使用することが可能である 。その中でも、ロータリーキルン炉が、反応器の回転によって炭素前駆体及び賦活剤 が流動、混合し賦活が均一に行なわれること、さらに後述するように、冷却時に炭酸 ガスを流通させて賦活反応領域に残留するアルカリ金属などを安全な物質 (炭酸塩) に変換する際にも接触効率が良いため、好適に使用される。
[0030] 上述したように、アルカリ賦活処理中に生成するアルカリ金属やアルカリ金属化合 物が反応器内や排気ラインに飛散、堆積し、これが賦活化物の取り出し時などに空 気中の水分と反応して発火'爆発する危険がある。
[0031] そこで、本発明においては、炭素材料の静電容量を低下させることなぐ生成した アルカリ金属やアルカリ金属化合物の発火'爆発の危険を低減するために、アルカリ 賦活処理中に、炭酸ガスをアルカリ賦活領域に存在する賦活剤及び炭素前駆体に 実質的に接触しない条件でアルカリ賦活領域の下流部に導入する。これにより、アル カリ賦活領域の下流部に流入した生成したアルカリ金属やアルカリ金属化合物が炭 酸ガスと接触し安全な化合物 (炭酸塩)に変換される。また、炭酸ガスが賦活剤及び 炭素前駆体に実質的に接触しないので、前述した静電容量の低下などの従来技術 の問題を解決することができる。
[0032] 以下に、本発明のアルカリ賦活方法について図面を参照してさらに詳細に述べる。
図 1はロータリーキルン炉を用いたアルカリ賦活装置の一例を示す模式図である。 アルカリ賦活装置は、反応器 2とヒーター 4から構成されている。反応器 2は、不活性 ガスを導入するためのガス導入部 1、アルカリ賦活領域 3、炭酸ガス流通領域 5、およ び、排気ライン 7と炭酸ガス供給のための導入ライン 6からなる二重管を有する。炭酸 ガス流通領域 5には、炭酸ガスの流量を調節し、炭酸ガスがアルカリ賦活領域 3に流 入するのを防止するための邪魔板 8が設けられている。邪魔板は、炭酸ガス流通領 域 5に加えて導入ライン 6にも、または、導入ライン 6にのみ設けてもよい。
[0033] ロータリーキルン炉においては、オイルシール部を有するロータリージョイントなどに より回転部と非回転部が分離されている。オイルシール部に粉体、反応性ガスなどが 混入しないようにするため、導入ライン 6と排気ライン 7は図 1に示すように二重管構造 にするのが好ましい。なお、二重管の外管を排気ライン、内管を導入ラインにしてもよ いし、排気ラインと導入ラインは独立した 2個の管であってもよい。アルカリ賦活領域 3 に流入させることなく炭酸ガスを炭酸ガス流通領域 5に流通させることができる限り、 導入ライン 6の位置は図示した位置に限られなレ、。
[0034] 邪魔板の代わりに、炭素繊維不織布などの充填材を逆流防止の目的に使用するこ とも可能ではあるが、その場合は圧力損失が大きくなり、飛散したアルカリ金属及び アルカリ金属化合物と炭酸ガスの反応により析出した炭酸塩が局所的に付着して閉 塞する可能性が高いため、邪魔板を使用する方が好ましい。
[0035] アルカリ賦活反応が開始すると、アルカリ金属及びアルカリ金属酸化物などのアル カリ金属化合物が生成し飛散する。飛散したアルカリ金属及びアルカリ金属化合物 は、ガス導入部 1からの不活性ガスによりアルカリ賦活領域 3から下流の炭酸ガス流 通領域 5に移動し、導入ライン 6からの炭酸ガスと反応して炭酸塩を生成する。導入ラ イン 6から炭酸ガス流通領域 5への炭酸ガスの導入は、通常、アルカリ金属やアル力 リ金属化合物の飛散が起こり始める温度(例えば、 400°C)以上で開始する力 室温 力 開始しても構わない。
[0036] ガス導入部 1からの不活性ガス流量は、装置の大きさ、構造、形状などによって変 化する。導入ライン 6から導入するガスは、炭酸ガス単独であってもいいし、窒素、ァ ルゴンなどの不活性ガスで希釈した炭酸ガスであってもレ、レ、。導入ライン 6からの導 入ガスの流量および炭酸ガス濃度は、ガス導入部 1からの不活性ガス流量および邪 魔板 8の構造に応じて、炭酸ガスがアルカリ賦活領域 3に流入しないような範囲、す なわち、アルカリ賦活反応中に賦活剤及び炭素前駆体が実質的に炭酸ガスに接触 しないような範囲に設定される。導入ライン 6からのガス流量は、ガス導入部 1からの ガス流量 (例えば、実施例 1で使用した装置の場合、 25°Cで 0. 5〜5L/分)の 0. 0 :!〜 200%カ好ましく、より好ましくは 0. 1〜: 150%、さらに好ましくは:!〜 100%であ る。 0. 01%未満のガス流量では飛散したアルカリ金属やアルカリ金属化合物の堆積 速度に炭酸ガスとの反応が間に合わず、安全ィ匕が達成できないことがある。一方、 2 00%を越えるガス流量では賦活剤及び炭素前駆体が炭酸ガスに接触する可能性が 高くなり、好ましくない。ガス流量を上げずに飛散したアルカリ金属やアルカリ金属化 合物を炭酸ガスと十分に反応させるために、炭酸ガスを希釈することなく導入するの が好ましい。
[0037] アルカリ賦活反応終了後、ガス導入部 1からの不活性ガス供給および導入ライン 6 力 の炭酸ガス供給を継続しながら冷却を開始する。アルカリ賦活領域 3に残存する 飛散したアルカリ金属及びアルカリ金属化合物を炭酸塩に変換するため、反応器 2 の内温力 400〜200°Cに低下した後、ガス導入部 1からの不活性ガスを炭酸ガスに 切り替えるのが好ましい。内温が 100°C以下になった後に賦活化物を取り出す。以 上のような操作を行なうことで、アルカリ金属及びアルカリ金属化合物の残存による発 火等の危険性は回避される。
[0038] このようにして得られた賦活化物は、常温に冷却した後、例えば、蒸留水および/ または塩酸水溶液により洗浄して未反応及び炭酸ガスと反応した賦活剤を除去し、 十分に乾燥し、炭素材料を得ることができる。水洗及びそれ以後の工程については、 従来の方法を用いることができる。
[0039] EDLC電極用の炭素材料の場合は、粉碎処理および分級処理して炭素材料の平 均粒径を好ましくは1〜50 /1 111、より好ましくは 5〜30 /i mの範囲になるように調整す る。粉砕処理は賦活処理前 (炭素前駆体)、賦活処理後(炭素材料)のどちらの段階 においても行なうことができる。粉砕機は、衝撃式粉砕機、ジェットミル、マイクロアトマ ィザ一等から適宜選択され、分級機は、機械式分級機、風力式分級機等から適宜選 択される。
[0040] このようにして得られた炭素材料は体積当りの静電容量が高ぐ該炭素材料から作 製した電極を用いると、エネルギー密度が高ぐ信頼性の高い EDLCが得られる。 実施例
[0041] 次に実施例により本発明を更に具体的に説明する。但し本発明は以下の実施例に より制限されるものではない。
[0042] 実施例 1
弗化水素および三弗化硼素の共存下でナフタレンを重合してメソフェーズピッチ (メト ラー法軟化点: 280°C)を合成した。 電気ヒーターを具備したバッチ式ロータリーキルン炉の内筒(内容積 150L、直径: 580mm)に、直径 25mmのジルコユア製ボール(真密度: 6gZcm3)を 50kg仕込ん だ。キルンを 6rpmで回転しながら、内部温度を 550°C—定に保ち、該メソフェーズピ ツチを lkgZ時間で 3時間供給した。弓 Iき続いて、 5°CZ分でロータリーキルンを 700 °Cまで昇温して 1時間保持した。放冷後、ボールから分離して 2. 4kgのメソフェーズ ピッチの炭素化物を得た。該炭素化物を衝撃式粉砕器により平均粒径 10 μ mに粉 砕して、炭素前駆体を得た。
アルカリ賦活装置として、上流側にガス導入部 1、下流側に二重管構造 6, 7を有す るロータリージョイントを備えた内径 165mm、長さ 1650mmの円筒状の反応器 2と、 長さ 1000mmの加熱装置 4を有する外熱式ロータリーキルン型電気炉を使用した。 図 1にその模式図を示した。
炭素前駆体 300gと水酸化カリウム 540gの混合物を、両側に直径 30mmの穴が開 いた内径 160mm、長さ 500mmの内筒に入れ、該内筒をロータリーキルンの反応器 の中央部(アルカリ賦活領域 3)に設置した。さらに、内筒の下流側に位置する炭酸 ガス流通領域 5に、中心部に半径 10mmの半円状切り欠き部分を設けた外径 160m mの半円状邪魔板 8を、図 2に示したように 50mm間隔に 5枚取り付けた。
2L/分の窒素をガス導入部 1から導入し、 2/3i"pmでロータリーキルンを回転させ た。室温から 3. 3°CZ分の速度で 390°Cまで昇温し、その温度で 3時間保持して脱 水を行なった。その後、二重管の外側の管(導入ライン 6)から炭酸ガス (濃度: 100容 量%)を 1L/分の流量で炭酸ガス流通領域 5に導入し、 390°Cから 3. 3°C/分の速 度で 700°Cまで昇温して 3時間保持した。
その後、窒素および炭酸ガスの導入を維持しながら 200°Cまで冷却し、その後はガ ス導入部 1から窒素に代えて 2L/分の炭酸ガス (濃度: 100容量%)を導入した。 10 0°C以下まで冷却した後、賦活化物を取り出した。この時、残存金属カリウムもしくは 残存酸化カリウムと空気中の水分との反応による火花等は見られなかった。
取り出したアルカリ賦活化物を蒸留水中で撹拌して水洗し、 0. 5N塩酸で酸洗浄し 、更に水洗浄を 3回行なった後、 150°Cで乾燥して炭素材料を得た。
得られた炭素材料:導電性フィラー (ケッチェンブラック):結着剤(登録商標:テフ口 ン)の重量比 90: 5: 5混合物を用いて電極を作製した。一対の電極の間に紙製セパ レータを挟み、アルミ製 2極式セルに収容した。電解液として、トリェチルメチルアンモ 二ゥムテトラフルォロボレート((C H ) CH NBF )を 1. 8モル/リットル溶解したプロ
2 5 3 3 4
ピレンカーボネートを用いた。
アルゴン雰囲気中、室温下、 100mA/gの定電流で電圧 2. 7Vまで充電し、さらに 2. 7Vで 2時間充電を行なった後、 lOOmAZgの定電流で 0Vまで放電し、放電され たエネルギー量から静電容量を算出した。重量当たりの静電容量 Cw(FZg)は正負 極両極中の炭素材料重量を基準として算出した。また、体積当たりの静電容量 (F/ cc)は重量当たりの静電容量 Cw (F/g)に電極の密度を乗ずることにより算出した。 その結果、重量当り静電容量 34. 8F/g、体積当り静電容量 32. 7F/CC ,電極密 度 0· 94g/ccと優れた値を示した。
[0043] 比較例 1
390°C以上で、二重管の外側の管(導入ライン 6)から炭酸ガスを導入しなかった以 外は、実施例 1と同様の操作を実施したところ、アルカリ賦活領域 3の下流部に堆積 した金属カリウムまたは残存酸化カリウムと空気中の水分との反応による火花が見ら れ /こ
重量当り静電容量は 33. 6F/g、体積当り静電容量は 32. 9F/cc、電極密度は 0 . 98gZccであった。
[0044] 比較例 2
390°C以上で、ガス導入部 1より、窒素 2LZ分と炭酸ガス(濃度: 100容量%) 1L Z分を同時に導入し、炭酸ガスをアルカリ賦活領域 3内に流通させた以外は、実施 例 1と同様の操作を実施した。
取り出し時にアルカリ賦活領域 3の下流部に堆積した金属カリウムまたは残存酸化 カリウムと空気中の水分との反応による火花は見られなかったものの、重量当り静電 容量は 28. OFZg、体積当り静電容量は 26. 6FZcc、電極密度は 0. 95gZccと性 能が低下した。
実施例 1、比較例 1および 2の結果を第 1表にまとめた。
[0045] [表 1] 第 1表
Figure imgf000014_0001
産業上の利用可能性
本発明によれば、賦活剤および炭素前駆体を実質的に炭酸ガスと接触させること なくアルカリ賦活反応を行うことができるので賦活反応が十分に進行する。また、生成 するアルカリ金属及びアルカリ金属化合物を効率よく安全な炭酸塩に変換することが 出来る。本発明は、高静電容量の EDLC電極などの製造に好適な炭素材料の安定 力つ安全な工業的製造に適用できる。

Claims

請求の範囲
[1] 炭素前駆体とアルカリ金属化合物から選ばれる賦活剤との混合物を、アルカリ賦活 領域において不活性ガスの流通下で加熱するアルカリ賦活反応工程を含む炭素材 料の製造方法であって、炭酸ガスを該炭素前駆体と該賦活剤に実質的に接触しな レ、条件で該アルカリ賦活反応領域の下流部に流通させながら、該アルカリ賦活反応 を行うことを特徴とする炭素材料の製造方法。
[2] 前記炭酸ガスの流量が、前記不活性ガスの流量に対して 0. 01〜200%であること を特徴とする請求項 1記載の炭素材料の製造方法。
[3] 炭酸ガスを二重管の外側の管または内側の管のいずれかより前記アルカリ賦活反 応領域の下流部に導入し、二重管の他方の管から前記不活性ガス及び炭酸ガスを 排気することを特徴とする請求項 1または 2記載の炭素材料の製造方法。
[4] 炭酸ガスを導入する前記二重管の一方の管内及び/又は前記アルカリ賦活反応 領域の下流部に邪魔板を配置し、炭酸ガスが前記炭素前駆体と前記賦活剤に実質 的に接触しないようその流量を制御することを特徴とする請求項 1〜3のいずれかに 記載の炭素材料の製造方法。
[5] 前記炭素前駆体と前記賦活剤の混合物をロータリーキルン炉に配置し、該ロータリ 一キルン炉をロータリージョイント構造の前記二重管を軸として回転させながら前記ァ ルカリ賦活反応を行うことを特徴とする請求項 3または 4記載の炭素材料の製造方法
[6] 前記炭素前駆体が、縮合多環式炭化水素またはこれを含有する物質を弗化水素 および三弗化硼素の存在下で重合して得られたピッチを熱処理して製造されたもの であることを特徴とする請求項 1〜5のいずれかに記載の炭素材料の製造方法。
[7] 前記炭素前駆体が、真密度 2g/cm3以上の複数個の媒体が流動している熱処理 装置内に該炭素前駆体の原料を供給し、該原料を 400〜800°Cの温度で熱処理し て炭素化物にし、該炭素化物を該媒体に付着させる工程を含む方法により製造され たものであることを特徴とする請求項 1〜5のいずれかに記載の炭素材料の製造方法
[8] 請求項 3〜5のいずれかに記載の方法に用いられる、反応器と該反応器を加熱す るための加熱手段とを有するアルカリ賦活装置であって、該反応器は、前記炭素前 駆体と前記賦活剤との混合物を不活性ガスの流通下で加熱して該炭素前駆体をァ ルカリ賦活するためのアルカリ賦活反応領域、該アルカリ賦活反応領域の上流側に 配置された該不活性ガス供給のためのガス導入口、該アルカリ賦活反応領域の下流 側に配置された炭酸ガス流通領域、該炭酸ガス流通領域に炭酸ガスを供給するため の導入ライン、および、該不活性ガスおよび炭酸ガスを排出するためのラインであつ て、該導入ラインと二重管構造を形成している排出ラインを有し、該炭酸ガス流通領 域及び/又は該導入ラインに少なくとも 1枚の邪魔板が設置されていることを特徴と するアルカリ賦活装置。
[9] 請求項 1〜7のいずれかに記載の方法によって得られる炭素材料。
[10] 電気二重層キャパシタ電極を形成していることを特徴とする請求項 9に記載の炭素 材料。
PCT/JP2006/308858 2005-04-28 2006-04-27 炭素材料の製造方法およびアルカリ賦活装置 WO2006118204A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2006800143780A CN101166692B (zh) 2005-04-28 2006-04-27 碳材料的制备方法以及碱活化装置
US11/912,777 US8236275B2 (en) 2005-04-28 2006-04-27 Process for producing carbon material and alkali activation apparatus
JP2007514812A JP5071106B2 (ja) 2005-04-28 2006-04-27 炭素材料の製造方法およびアルカリ賦活装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005131932 2005-04-28
JP2005-131932 2005-04-28

Publications (1)

Publication Number Publication Date
WO2006118204A1 true WO2006118204A1 (ja) 2006-11-09

Family

ID=37308002

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/308858 WO2006118204A1 (ja) 2005-04-28 2006-04-27 炭素材料の製造方法およびアルカリ賦活装置

Country Status (5)

Country Link
US (1) US8236275B2 (ja)
JP (1) JP5071106B2 (ja)
KR (1) KR20080012269A (ja)
CN (1) CN101166692B (ja)
WO (1) WO2006118204A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007186383A (ja) * 2006-01-13 2007-07-26 Jfe Chemical Corp 活性炭の製造装置および製造方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8809231B2 (en) 2011-09-28 2014-08-19 Corning Incorporated Method for making alkali activated carbon
CN103540172B (zh) * 2013-10-31 2015-07-01 王兢 废橡胶塑料制品热解炭除灰改性制再生炭黑的方法及系统
KR20180064258A (ko) 2016-12-05 2018-06-14 이효범 복합수정테이프
CN106710887A (zh) * 2016-12-23 2017-05-24 安徽江威精密制造有限公司 一种沥青掺杂的石墨烯基气凝胶电极材料及其制备方法
CN114367247A (zh) * 2021-12-10 2022-04-19 中氢新能(北京)新能源技术研究院有限公司 一种隔片及列管式反应装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000128518A (ja) * 1998-10-19 2000-05-09 Petoca Ltd 活性炭等の製造方法及びそれからの電気二重層キャパシタ
JP2001019415A (ja) * 1999-07-09 2001-01-23 Petoca Ltd 炭素材のアルカリリサイクル賦活方法及びその装置
JP2002093667A (ja) * 2000-09-13 2002-03-29 Mitsubishi Gas Chem Co Inc 電気二重層キャパシタ電極用炭素材料
JP2004018292A (ja) * 2002-06-13 2004-01-22 Kashima Oil Co Ltd 活性炭の製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4131418A (en) * 1977-05-23 1978-12-26 Fuller Company Tube coolers for rotary kilns
KR20040108755A (ko) * 2002-04-22 2004-12-24 구라레 케미칼 가부시키가이샤 활성탄의 제조방법, 분극성 전극 및 전기 이중층 캐패시터

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000128518A (ja) * 1998-10-19 2000-05-09 Petoca Ltd 活性炭等の製造方法及びそれからの電気二重層キャパシタ
JP2001019415A (ja) * 1999-07-09 2001-01-23 Petoca Ltd 炭素材のアルカリリサイクル賦活方法及びその装置
JP2002093667A (ja) * 2000-09-13 2002-03-29 Mitsubishi Gas Chem Co Inc 電気二重層キャパシタ電極用炭素材料
JP2004018292A (ja) * 2002-06-13 2004-01-22 Kashima Oil Co Ltd 活性炭の製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007186383A (ja) * 2006-01-13 2007-07-26 Jfe Chemical Corp 活性炭の製造装置および製造方法

Also Published As

Publication number Publication date
KR20080012269A (ko) 2008-02-11
CN101166692A (zh) 2008-04-23
JPWO2006118204A1 (ja) 2008-12-18
CN101166692B (zh) 2012-07-04
US20090214412A1 (en) 2009-08-27
US8236275B2 (en) 2012-08-07
JP5071106B2 (ja) 2012-11-14

Similar Documents

Publication Publication Date Title
US11063249B2 (en) Method for producing Si/C composite particles
US20210017025A1 (en) Systems and methods for particle generation
CN112106239B (zh) 非水电解质二次电池负极用碳质材料的制造方法以及制造装置
JP5071106B2 (ja) 炭素材料の製造方法およびアルカリ賦活装置
JP5947585B2 (ja) 球状フェノール樹脂造粒物の製造方法、並びに、炭素材料の製造方法及び活性炭素材料の製造方法
US20160200583A1 (en) Chemical activation of carbon using rf and dc plasma
JP2002093667A (ja) 電気二重層キャパシタ電極用炭素材料
US7625543B2 (en) Production process for carbonized product and carbonized product obtained by the same process
CN102633245A (zh) 一种中间相炭微球d50的控制方法及生产中间相炭微球的装置
JP5573404B2 (ja) 電気二重層キャパシタ電極用活性炭の製造方法
JP2023548928A (ja) シリコン酸素材料、負極材料及びその製造方法、並びに、リチウムイオン電池
JP7496000B2 (ja) 炭素前駆体粒子及び二次電池負極用炭素質材料の製造方法
JP2008308360A (ja) 電気二重層キャパシタ電極用炭素材料の製造方法
JP4892838B2 (ja) 炭素化物の製造方法および該方法によって得られる炭素化物
CN113636559A (zh) 一种硅基电极材料的制备装置和制备方法
WO2022196802A1 (ja) 非水電解質二次電池用炭素前駆体の製造方法及び非水電解質二次電池用炭素質材料の製造方法
WO2022131361A1 (ja) 炭素前駆体粒子及び二次電池負極用炭素質材料の製造方法
JP2007305446A (ja) リチウム二次電池用負極材
JP2004182503A (ja) 電気二重層キャパシタ電極用炭素材料の製造方法
WO2023194754A1 (en) Continuous process for the preparation of silicon-containing composite particles
WO2024057991A1 (ja) 硫黄含有材料の製造方法
WO2024040048A1 (en) Method for producing a battery active material and product thereof
JP2004182508A (ja) 電気二重層キャパシタ電極用炭素材料の製造方法
JP2004182504A (ja) キャパシタ電極用活性炭およびその製造方法
CN115335466A (zh) 含碳粒子的制造

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680014378.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007514812

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020077024371

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06732414

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 11912777

Country of ref document: US