CN106710887A - 一种沥青掺杂的石墨烯基气凝胶电极材料及其制备方法 - Google Patents

一种沥青掺杂的石墨烯基气凝胶电极材料及其制备方法 Download PDF

Info

Publication number
CN106710887A
CN106710887A CN201611201794.3A CN201611201794A CN106710887A CN 106710887 A CN106710887 A CN 106710887A CN 201611201794 A CN201611201794 A CN 201611201794A CN 106710887 A CN106710887 A CN 106710887A
Authority
CN
China
Prior art keywords
parts
electrode material
pitch
graphene
asphalt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201611201794.3A
Other languages
English (en)
Inventor
林海
张和平
洪术茂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anhui Jiangwei Precision Manufacturing Co Ltd
Original Assignee
Anhui Jiangwei Precision Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anhui Jiangwei Precision Manufacturing Co Ltd filed Critical Anhui Jiangwei Precision Manufacturing Co Ltd
Priority to CN201611201794.3A priority Critical patent/CN106710887A/zh
Publication of CN106710887A publication Critical patent/CN106710887A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/40Fibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/46Metal oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/48Conductive polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

本发明公开了一种沥青掺杂的石墨烯基气凝胶电极材料及其制备方法,其特征在于,是由以下原料制成:沥青3‑7,氧化石墨烯12‑22,葡萄糖10‑20,氟化硼0.2‑0.6,ZnCl2溶液20‑30,KMnO4 30‑40,乙醇80‑100,硅烷偶联剂KH560 3‑5,吡咯20‑30,单质硫1‑2,对甲苯磺酸35‑45,过硫酸铵溶液35‑40,蒸馏水500‑1000;用ZnCl2对气凝胶进行活化后,有利于二氧化锰在其表面附着,同时附着二氧化锰能够将双电层电容与法拉第电容结合,既可提高超级电容器的比电容,又可改善二氧化锰的导电性和与电解液的浸渍能力,提高其循环性能;通过添加沥青,增加了电极材料的稳定性,安全性能高。

Description

一种沥青掺杂的石墨烯基气凝胶电极材料及其制备方法
技术领域
本发明涉及一种超级电容器的电极材料,具体涉及一种沥青掺杂的石墨烯基气凝胶电极材料及其制备方法。
背景技术
MnO2由于储量丰富、价格低廉、环境友好、以及在很宽的工作窗口下表现出良好的电容性质使其成为超级电容器领域中非常理想的电极材料之一。然而,目前 MnO2材料实际所能达到的电容值仅仅只有理论电容值的 30%甚至更低,为了进一步提高 MnO2电极材料的性能,对 MnO2材料的电荷存储机理的研究是非常必要的。三维石墨烯基气凝胶是近年来开发的一种具有微米结构的新型自组装三维多孔碳材料,由于其独特的结构,因而具有特殊性质:1)超高的表面积;2)超高的电导率(空间上石墨烯相互连接)。这两个特性是储能电极材料所追求的关键性质,被认为是超级电容器的理想电极材料之一,然而,目前对石墨烯基气凝胶材料的微观结构的可控合成仍然面临着科学以及技术上的挑战,正如其他的高分子或无机材料那样,石墨烯基材料的性能主要是由石墨烯片层的堆积方式决定的。另外,已有的研究表明,对于 MnO2材料,由于其晶格结构致密,不利于电解液的侵润,造成其实际比电容较低,同时 MnO2材料的电导率也较低,循环性能较差。为了提高 MnO2和石墨烯基材料的电化学性能,石墨烯基气凝胶可以作为非常好的基底材料与 MnO2进行复合。
季辰辰在其硕士学位论文《MnO2与石墨烯基气凝胶的制备、改性与电化学电容性能的研究》中,制备了一种MnO2包覆的石墨烯基气凝胶材料,但是还存在着气凝胶与MnO2结合不够紧密,其活化性不佳等问题。
发明内容
基于以上思考,本发明旨在提供一种石墨烯基气凝胶电极材料,已解决存在的气凝胶与MnO2结合不够紧密,其活化性不佳等问题。
本发明所要解决的技术问题采用以下的技术方案实现:
一种沥青掺杂的石墨烯基气凝胶电极材料,其特征在于,是由以下重量份的原料制成:
沥青3-7,氧化石墨烯12-22,葡萄糖10-20,氟化硼0.2-0.6,ZnCl2溶液20-30,KMnO4 30-40,乙醇80-100,硅烷偶联剂KH560 3-5,吡咯20-30,单质硫1-2,对甲苯磺酸35-45,过硫酸铵溶液35-40,蒸馏水500-1000;
所述ZnCl2溶液浓度为2-5 mol/L,过硫酸铵溶液浓度为3-6 mol/L。
所述的一种沥青掺杂的石墨烯基气凝胶电极材料的制备方法,其特征在于,是由以下步骤制成:
a. 将氧化石墨烯超声分散于100-150份蒸馏水中,得到分散液;将葡萄糖溶于100-150份蒸馏水中,加入到上述分散液中,超声处理5-20min,得到均一悬浮液;然后将上述悬浊液加入到水热釜中,于160-200℃下保温30-40h,冷却至室温后,经冷冻干燥,得到葡萄糖/石墨烯气凝胶;
b. 将步骤a所得气凝胶浸渍于ZnCl2溶液中,在70-120℃烘箱中放置8-15h,之后转移到管式炉中,氩气气氛、700-900℃下活化1-2h,结束后冷却至室温;之后将其超声分散于100-200份蒸馏水中,加入KMnO4,磁力搅拌10-30min后,于60-70℃下,回流磁力搅拌10-30min,过滤、洗涤、干燥,得到MnO2包覆石墨烯基气凝胶材料;
c. 将沥青在90-120℃下融化搅拌,加入氟化硼,反应20-30min后,通过静电纺丝的方法制得沥青短纤维;
d. 将步骤b所得产物、步骤c所得沥青短纤维分散在乙醇中,加入硅烷偶联剂KH560、单质硫、吡咯、对甲苯磺酸,在真空中搅拌40-70min后,逐滴加入过硫酸铵溶液,冰浴搅拌8-15h;过滤、洗涤、干燥后得到复合电极材料。
所述的一种沥青掺杂的石墨烯基气凝胶电极材料的制备方法,其特征在于,步骤b中干燥条件为:在 60-70℃下干燥 10-15h。
本发明的有益效果是:葡萄糖分子链上的官能团和氧化石墨烯表面的含氧基团通过氢键的相互作用,交联在一起,形成了3D网络结构,而水分子则填充至网络结构的间隙,经冷冻干燥,水分子被除去,从而得到多孔结构的气凝胶;用ZnCl2对气凝胶进行活化后,有利于二氧化锰在其表面附着,同时附着二氧化锰能够将双电层电容与法拉第电容结合,既可提高超级电容器的比电容,又可改善 二氧化锰的导电性和与电解液的浸渍能力,提高其循环性能;用聚吡咯对其进行进一步的包裹,不仅可以加强二氧化锰和气凝胶的结合,又可以使材料表现出更好的电学性能;通过添加沥青,增加了电极材料的稳定性,安全性能高。
具体实施方式
下面结合实施例对本发明的具体实施方式作进一步描述。
实施例
一种沥青掺杂的石墨烯基气凝胶电极材料,其特征在于,是由以下重量份的原料制成:
沥青7,氧化石墨烯22,葡萄糖20,氟化硼0.6,ZnCl2溶液30,KMnO4 40,乙醇100,硅烷偶联剂KH560 5,吡咯30,单质硫2,对甲苯磺酸45,过硫酸铵溶液40,蒸馏水1000;
所述ZnCl2溶液浓度为2-5 mol/L,过硫酸铵溶液浓度为3-6 mol/L。
所述的一种沥青掺杂的石墨烯基气凝胶电极材料的制备方法,其特征在于,是由以下步骤制成:
a. 将氧化石墨烯超声分散于100-150份蒸馏水中,得到分散液;将葡萄糖溶于100-150份蒸馏水中,加入到上述分散液中,超声处理5-20min,得到均一悬浮液;然后将上述悬浊液加入到水热釜中,于160-200℃下保温30-40h,冷却至室温后,经冷冻干燥,得到葡萄糖/石墨烯气凝胶;
b. 将步骤a所得气凝胶浸渍于ZnCl2溶液中,在70-120℃烘箱中放置8-15h,之后转移到管式炉中,氩气气氛、700-900℃下活化1-2h,结束后冷却至室温;之后将其超声分散于100-200份蒸馏水中,加入KMnO4,磁力搅拌10-30min后,于60-70℃下,回流磁力搅拌10-30min,过滤、洗涤、干燥,得到MnO2包覆石墨烯基气凝胶材料;
c. 将沥青在90-120℃下融化搅拌,加入氟化硼,反应20-30min后,通过静电纺丝的方法制得沥青短纤维;
d. 将步骤b所得产物、步骤c所得沥青短纤维分散在乙醇中,加入硅烷偶联剂KH560、单质硫、吡咯、对甲苯磺酸,在真空中搅拌40-70min后,逐滴加入过硫酸铵溶液,冰浴搅拌8-15h;过滤、洗涤、干燥后得到复合电极材料。
所述的一种沥青掺杂的石墨烯基气凝胶电极材料的制备方法,其特征在于,步骤b中干燥条件为:在 60-70℃下干燥 10-15h。
本发明的产品性能测试数据为:经过 1000 圈的循环,电极容量仍≥99%的初始容量。

Claims (3)

1.一种沥青掺杂的石墨烯基气凝胶电极材料,其特征在于,是由以下重量份的原料制成:
沥青3-7,氧化石墨烯12-22,葡萄糖10-20,氟化硼0.2-0.6,ZnCl2溶液20-30,KMnO4 30-40,乙醇80-100,硅烷偶联剂KH560 3-5,吡咯20-30,单质硫1-2,对甲苯磺酸35-45,过硫酸铵溶液35-40,蒸馏水500-1000;
所述ZnCl2溶液浓度为2-5 mol/L,过硫酸铵溶液浓度为3-6 mol/L。
2.根据权利要求1所述的一种沥青掺杂的石墨烯基气凝胶电极材料的制备方法,其特征在于,是由以下步骤制成:
a. 将氧化石墨烯超声分散于100-150份蒸馏水中,得到分散液;将葡萄糖溶于100-150份蒸馏水中,加入到上述分散液中,超声处理5-20min,得到均一悬浮液;然后将上述悬浊液加入到水热釜中,于160-200℃下保温30-40h,冷却至室温后,经冷冻干燥,得到葡萄糖/石墨烯气凝胶;
b. 将步骤a所得气凝胶浸渍于ZnCl2溶液中,在70-120℃烘箱中放置8-15h,之后转移到管式炉中,氩气气氛、700-900℃下活化1-2h,结束后冷却至室温;之后将其超声分散于100-200份蒸馏水中,加入KMnO4,磁力搅拌10-30min后,于60-70℃下,回流磁力搅拌10-30min,过滤、洗涤、干燥,得到MnO2包覆石墨烯基气凝胶材料;
c. 将沥青在90-120℃下融化搅拌,加入氟化硼,反应20-30min后,通过静电纺丝的方法制得沥青短纤维;
d. 将步骤b所得产物、步骤c所得沥青短纤维分散在乙醇中,加入硅烷偶联剂KH560、单质硫、吡咯、对甲苯磺酸,在真空中搅拌40-70min后,逐滴加入过硫酸铵溶液,冰浴搅拌8-15h;过滤、洗涤、干燥后得到复合电极材料。
3.根据权利要求书2所述的一种沥青掺杂的石墨烯基气凝胶电极材料的制备方法,其特征在于,步骤b中干燥条件为:在 60-70℃下干燥 10-15h。
CN201611201794.3A 2016-12-23 2016-12-23 一种沥青掺杂的石墨烯基气凝胶电极材料及其制备方法 Pending CN106710887A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611201794.3A CN106710887A (zh) 2016-12-23 2016-12-23 一种沥青掺杂的石墨烯基气凝胶电极材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611201794.3A CN106710887A (zh) 2016-12-23 2016-12-23 一种沥青掺杂的石墨烯基气凝胶电极材料及其制备方法

Publications (1)

Publication Number Publication Date
CN106710887A true CN106710887A (zh) 2017-05-24

Family

ID=58895744

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611201794.3A Pending CN106710887A (zh) 2016-12-23 2016-12-23 一种沥青掺杂的石墨烯基气凝胶电极材料及其制备方法

Country Status (1)

Country Link
CN (1) CN106710887A (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101166692A (zh) * 2005-04-28 2008-04-23 三菱瓦斯化学株式会社 碳材料的制备方法以及碱活化装置
CN103117175A (zh) * 2013-02-25 2013-05-22 中国科学院过程工程研究所 一种多元复合纳米材料、其制备方法及其用途

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101166692A (zh) * 2005-04-28 2008-04-23 三菱瓦斯化学株式会社 碳材料的制备方法以及碱活化装置
CN103117175A (zh) * 2013-02-25 2013-05-22 中国科学院过程工程研究所 一种多元复合纳米材料、其制备方法及其用途

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
刘宁: ""氯化锌活化对炭气凝胶微球的结构与电化学性能的影响"", 《无机化学学报》 *
季辰辰: ""MnO2与石墨烯基气凝胶的制备,改性与电化学电容性能的研究"", 《中国优秀硕士学位论文全文数据库-工程科技II辑》 *

Similar Documents

Publication Publication Date Title
Ma et al. Freestanding conductive film based on polypyrrole/bacterial cellulose/graphene paper for flexible supercapacitor: large areal mass exhibits excellent areal capacitance
Yao et al. Fabrication of hierarchical porous carbon nanoflakes for high-performance supercapacitors
CN106517136B (zh) 一种铁/氮共掺杂有序介孔碳材料的制备方法
Xu et al. Construction of extensible and flexible supercapacitors from covalent organic framework composite membrane electrode
CN101527202B (zh) 氧化石墨烯/聚苯胺超级电容器复合电极材料及其制备方法
Yang et al. In situ preparation of caterpillar-like polyaniline/carbon nanotube hybrids with core shell structure for high performance supercapacitors
CN104377041B (zh) 一种柔性超级电容器用复合棉织物电极的制备方法
CN105140042B (zh) 一种细菌纤维素/活性碳纤维/碳纳米管膜材料的制备方法及其应用
CN105111507A (zh) 一种细菌纤维素/聚苯胺/碳纳米管导电膜材料的制备方法及其应用
CN1821182A (zh) 一种介孔碳材料的制备方法
CN105175761A (zh) 一种细菌纤维素/聚苯胺/石墨烯膜材料的制备方法及其应用
CN107275116B (zh) 一种氮掺杂有序多孔高导电石墨烯纤维及其制备方法与应用
CN105948038B (zh) 一种活性炭微球及其制备方法
CN104867702B (zh) 一种蒽醌分子非共价修饰石墨烯/导电聚合物复合材料的制备方法
Mao et al. High-stable, outstanding heat resistance ionogel electrolyte and the poly (3, 4-ethylenedioxythiophene) electrodes with excellent long-term stability for all-solid-state supercapacitor
CN106971860A (zh) 一种MnO2@石墨烯纤维超级电容器电极材料的制备方法
CN108172420A (zh) 碳纳米球纤维杂化气凝胶超级电容器电极材料及其制备方法和用途
CN109003826A (zh) N和s双掺杂石墨烯-石墨烯纳米带气凝胶的制备方法
CN108039283B (zh) 一种基于原位聚合的富氮掺杂多级孔碳材料及其制备方法与应用
Wang et al. Interface engineering of calligraphic ink mediated conformal polymer fibers for advanced flexible supercapacitors
CN106653380A (zh) 一种含海泡石防腐的石墨烯基气凝胶电极材料及其制备方法
CN109065367A (zh) 一种石墨烯/二氧化锰基非对称同轴纤维超级电容器及其制备和应用
CN106653381A (zh) 一种改性碳纤维掺杂的石墨烯基气凝胶电极材料及其制备方法
CN106601493A (zh) 一种含碳微米管的石墨烯基气凝胶电极材料及其制备方法
CN106067385A (zh) 用作超级电容器的二氧化锰/导电聚合物纳米网络结构电极材料的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20170524