CN104377041B - 一种柔性超级电容器用复合棉织物电极的制备方法 - Google Patents

一种柔性超级电容器用复合棉织物电极的制备方法 Download PDF

Info

Publication number
CN104377041B
CN104377041B CN201410620974.XA CN201410620974A CN104377041B CN 104377041 B CN104377041 B CN 104377041B CN 201410620974 A CN201410620974 A CN 201410620974A CN 104377041 B CN104377041 B CN 104377041B
Authority
CN
China
Prior art keywords
solution
cotton fabric
composite cotton
super capacitor
anion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201410620974.XA
Other languages
English (en)
Other versions
CN104377041A (zh
Inventor
赵亚萍
朱航悦
蔡再生
刘彩虹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Donghua University
Original Assignee
Donghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Donghua University filed Critical Donghua University
Priority to CN201410620974.XA priority Critical patent/CN104377041B/zh
Publication of CN104377041A publication Critical patent/CN104377041A/zh
Application granted granted Critical
Publication of CN104377041B publication Critical patent/CN104377041B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/48Conductive polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

本发明涉及一种柔性超级电容器用复合棉织物电极的制备方法,将棉织物浸渍在含有阴阳离子复配表面活性剂、碳纳米管和有机单体的分散溶液中,超声处理后滴加氧化剂溶液并同时搅拌,然后混合液置于冰水浴中反应。本发明采用一步一浴法,以表面活性剂为软模板与碳纳米管为硬模板,原位构筑了具有三维网状结构的复合棉织物电极。该制备方法工艺简单,可直接应用在天然纤维上,制得的复合材料具有较高比电容和较稳定的循环特性,在便携式可折叠的柔性电子与能源器件方面具有良好的应用发展前景。

Description

一种柔性超级电容器用复合棉织物电极的制备方法
技术领域
本发明属于柔性电极材料的制备领域,特别涉及一种柔性超级电容器用复合棉织物电极的制备方法。
背景技术
超级电容器是一种介于传统电容器和电池之间的新型储能器件,兼有普通电容器和电池的特性,其中电极材料是决定超级电容器性能的关键因素。目前超级电容器研究主要集中于高性能多孔电极材料的研制及其结构与性能调变,以具有多孔结构的材料为载体制备电极是提高电极材料比容量的重要捷径之一。精心设计的支持骨架在实际应用时成本过高。因此,寻找成本相对较低骨架也成为研究对象,如纸张,纺织品和海绵,在其上沉积或涂敷导电层,从而进一步作为支撑电极活性物质的基板材料。纺织品由柔性和多孔的天然或合成纤维组成。不同织造工艺下织物表现出不同的力学性能。除了柔性轻质,纺织品也可以伸缩,可以应用在可穿戴的能源设备的衬底。此外,与纸张相比纺织品更像是一个具有孔隙结构的三维结构,电极活性物质可以附着在整个纺织品的网络,包括外层和内层纤维,单位面积上活性材料的质量更多,因此也有了高的功率和能量密度。因此,纺织纤维材料可作为超级电容器电极的柔性基体,制备具有储能性能的纤维复合材料,在绿色能源、军事、交通、工业和消费电子等领域具有广泛的应用前景。另一方面,纺织纤维基柔性电极材料的开发与应用研究为提升纺织品科技含量,提高其附加值提供了一种重要途径。
导电聚合物因其具有质量轻、柔韧性好等优点而适合作为柔性电极的活性物质。然而该材料具有寿命短、循环稳定性差等问题,通常将导电聚合物与其他无机纳米粒子(如碳材料、过渡金属氧化物)的复合在一起使用,这样制备的复合材料电容大、能量密度高、输出功率大。传统方法是在无机纳米粒子和导电聚合物混合物中加入聚合物粘合剂中涂覆在织物表面,聚合物粘合剂的加入造成电极整体电阻增加,载体的多孔结构易损失,多孔材料在溶液中的浸润性能减小,甚至使电极材料的聚集态结构变得更加复杂,不确定因素增多。
最近提出的一种方法是通过两步法,将碳纳米粒子如碳纳米管(CNT)等与有机溶剂(如NMP等)、表面活性剂混合形成“墨水”,模仿染色过程浸渍-烘干步骤形成纤维骨架导电基体后通过化学或电化学等方法沉积导电聚合物而形成多孔导电织物构筑三维储能系统。2011年Kai Wang等设计并制成了柔性超级电容器布基单壁碳纳米管(SWCNTs)和导电聚苯胺(PANI)纳米线阵列组成的电极,采用先将碳纳米管沉积在织物基体表面再原位聚合PANI的方式[Wang K,Zhao P,Zhou X M,et al.Flexible supercapacitors based oncloth-supported electrodes of conducting polymer nanowire array/SWCNTcomposites[J].Journal of Materials Chemistry,2011,21(41):16373-16378.]。
发明内容
本发明所要解决的技术问题是提供一种柔性超级电容器用复合棉织物电极的制备方法,本发明制备方法简单,直接将棉织物浸渍在含有阴阳离子复配表面活性剂、碳纳米管和有机单体的分散溶液中,滴加氧化剂溶液原位聚合沉积,通过选择合适的阴阳离子复配表面活性剂以及浓度比例,单体与氧化剂浓度等反应影响因素调节复合电极的表观结构与导电性能,反应溶液组成简单,安全环保,成本低,对设备要求性能低。
本发明的一种柔性超级电容器用复合棉织物电极的制备方法,包括:
(1)将碳纳米管加入阴/阳离子复配表面活性剂的水溶液中,超声分散,得到碳纳米管的分散液A;
(2)将上述碳纳米管的分散液A中加入含有阳离子表面活性剂的导电聚合物有机单体水溶液中,超声振荡,得到溶液B;
(3)将棉织物在室温下浸渍于溶液B中,浴比为1:40~1:60;然后边搅拌边滴加氧化剂溶液C,滴加完毕后,置于冰水浴中反应90~150min,浸泡,洗涤,得到柔性超级电容器用复合棉织物电极。
所述步骤(1)中碳纳米管为单壁碳纳米管或多壁碳纳米管。
所述步骤(1)中阴/阳离子复配表面活性剂的水溶液中,阴离子表面活性剂和阳离子表面活性剂的摩尔比为1~1.5:1;阴/阳离子复配表面活性剂总含量为0.008~0.012mol/L。
所述步骤(1)中阴/阳离子复配表面活性剂中,阴离子表面活性剂为十二烷基磺酸根溶液、十二烷基苯磺酸根溶液、甲基苯磺酸根溶液中的一种,阳离子为钠离子或钾离子;阳离子表面活性剂为十六或十二烷基三甲基铵盐,阴离子为氯离子或溴离子。
所述步骤(1)中超声分散时间为30-90min;碳纳米管的分散液的浓度为0.1~0.2wt%。
所述步骤(2)中导电聚合物有机单体水溶液中含有阳离子表面活性剂的浓度为0.001~0.002mol/L。
所述步骤(2)中阳离子表面活性剂为十六或十二烷基三甲基铵盐,阴离子为氯离子或溴离子;有机单体为吡咯、吡咯衍生物、苯胺、苯胺衍生物中的一种,浓度为0.2~0.5mol/L。
所述步骤(2)中超声振荡时间为10~30min。
所述步骤(3)中氧化剂溶液为三氯化铁溶液、过硫酸铵溶液或高锰酸钾溶液;浓度为0.3~0.7mol/L。
所述步骤(3)中浸渍时间为20-40min;浸泡为分别用乙醇浸泡10min、0.1mol/L盐酸浸泡30min;洗涤为去离子水洗涤3-5次。
本发明采用一步一浴法,以表面活性剂为软模板与碳纳米管为硬模板,原位构筑了具有三维网状结构的复合棉织物电极。
有益效果
(1)本发明的制备方法简单,采用一步一浴法,将碳纳米管和导电聚合物同时原位沉积在纺织纤维表面,反应液组成简单,安全环保,原材料成本低,对设备要求性能低;可直接应用于天然纤维;
(2)本发明制得的复合电极材料柔软轻质,可折叠,电极表面呈三维多孔状,导电聚合物在碳纳米管、纤维表面同步沉积,形成纤维、碳纳米管、导电聚合物相互交错的立体网状结构,复合织物电极性能稳定且电导率较高,满足开发智能纺织品的需要;
(3)本发明通过选择合适的阴阳离子复配表面活性剂以及浓度比例,单体与氧化剂浓度等反应影响因素调节复合电极的表观结构与导电性能,使电极获得较高比电容和较稳定的循环特性,可应用于柔性超级电容器的组装,在便携式电子产品与能源器领域具有广阔的应用前景。
附图说明
图1为聚吡咯与碳纳米管复合材料的电镜图,其中(a)为聚吡咯包覆碳纳米管生长;(b)为聚吡咯沿着碳纳米管骨架生长;
图2为不同扫描速度下的聚吡咯与碳纳米管复合材料的循环伏安图;其中(a)为1mv/s,(b)为100mv/s;
图3为不同扫描速度下的聚吡咯的循环伏安图,其中(a)为1mv/s,(b)为100mv/s。
具体实施方式
下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。此外应理解,在阅读了本发明讲授的内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。
实施例1
将多壁碳纳米管加入由0.005mol/L十二烷基苯磺酸钠和0.005mol/L十六烷基三甲基溴化铵组成的水溶液中,超声分散60min,形成碳纳米管0.1wt%的分散液A;向分散液A中加入含有0.002mol/L十六烷基三甲基溴化铵和0.4mol/L吡咯的水溶液中,超声振荡20min后制得溶液B;将棉织物在室温下浸渍于溶液B中30min,浴比1:50;然后一边搅拌一边滴加与溶液B相同体积的0.6mol/L三氯化铁溶液C;滴加完毕,将混合液置于冰水浴(0℃)中反应120min,结束后分别用乙醇浸泡10min和0.1mol/L盐酸浸泡30min,最后用去离子水清洗。
实施例2
将单壁碳纳米管加入由0.006mol/L十二烷基磺酸钠和0.004mol/L十六烷基三甲基溴化铵组成的水溶液中,超声分散60min,形成碳纳米管0.1wt%的分散液A;向分散液A中加入含有0.002mol/L十二烷基三甲基溴化铵和0.5mol/L苯胺的水溶液中,超声振荡30min后制得溶液B;将棉织物在室温下浸渍于溶液B中40min,浴比1:60;然后一边搅拌一边滴加与溶液B相同体积的0.6mol/L过硫酸铵溶液C;滴加完毕,将混合液置于冰水浴(0℃)中反应150min,结束后分别用乙醇浸泡10min和0.1mol/L盐酸浸泡30min,最后用去离子水清洗。
实施例3
将单壁碳纳米管加入由0.005mol/L十二烷基磺酸钠和0.003mol/L十六烷基三甲基溴化铵组成的水溶液中,超声分散60min,形成碳纳米管0.1wt%的分散液A;向分散液A中加入含有0.002mol/L十二烷基三甲基溴化铵和0.4mol/L苯胺的水溶液中,超声振荡20min后制得溶液B;将棉织物在室温下浸渍于溶液B中30min,浴比1:50;然后一边搅拌一边滴加与溶液B相同体积的0.5mol/L过硫酸铵溶液C;滴加完毕,将混合液置于冰水浴(0℃)中反应120min,结束后分别用乙醇浸泡10min和0.1mol/L盐酸浸泡30min,最后用去离子水清洗。
实施例4
将单壁碳纳米管加入由0.006mol/L十二烷基苯磺酸钠和0.005mol/L十六烷基三甲基氯化铵组成的水溶液中,超声分散70min,形成碳纳米管0.1wt%的分散液A;向分散液A中加入含有0.003mol/L十二烷基三甲基溴化铵和0.5mol/L吡咯的水溶液中,超声振荡30min后制得溶液B;将棉织物在室温下浸渍于溶液B中30min,浴比1:40;然后一边搅拌一边滴加与溶液B相同体积的0.8mol/L过硫酸铵溶液C;滴加完毕,将混合液置于冰水浴(0℃)中反应150min,结束后分别用乙醇浸泡10min和0.1mol/L盐酸浸泡30min,最后用去离子水清洗。
参考图1,(图1为实施例1)从图1(a)中可以看出碳纳米管被聚吡咯包覆,图1(b)中可以看出聚吡咯沿着碳纳米管骨架生长形成三维网络状结构,并且可以把大面积的聚吡咯连在一起,这样可以有效的增加复合物的电子导电性。在该复合材料中,碳纳米管不仅可以贡献双电层电容量,提高复合物的导电性,同时作为聚吡咯的生长骨架和模板,有利于聚吡咯的生长和三维多孔结构的形成,并且其中空的多孔结构可以吸收高分子充放电时引起的体积收缩和膨胀,因此复合物具有较快的充放电特性。
参见图2,(图2为实施例1)从图2(a)可以看出,当扫描速率为1mv/s时,聚吡咯膜电极表现出较理想的超级电容器循环伏安曲线(接近)矩形,但随着扫面速率的增加,聚吡咯膜就逐渐表现出类似电阻的循环伏安曲线,然而,聚吡咯/碳纳米管的复合物在扫描速率为100mv/s时仍表现出较理想的超级电容器的循环伏安曲线,如图2(b)所示。在扫描速率为1mv/s时,聚吡咯/碳纳米管的复合物比容量超过400F/g,在扫描速率为100mv/s时,比容量仍有扫描速率为1mv/s的70.2%,而单纯聚吡咯膜在扫描速率为100mv/s时,比容量仅有扫描速率为100mv/s的6.06%,如图3(图3为实施例1)所示。
因此,制得的导电高分子/碳纳米管电极材料具有高导电性,高比容量和超快速充放电能力,并具有较好的稳定性,因此该复合材料可以制得高比能量,高比功率和长寿命的超级电容器。

Claims (9)

1.一种柔性超级电容器用复合棉织物电极的制备方法,包括:
(1)将碳纳米管加入阴/阳离子复配表面活性剂的水溶液中,超声分散,得到碳纳米管的分散液A;其中阴/阳离子复配表面活性剂的水溶液中,阴离子表面活性剂和阳离子表面活性剂的摩尔比为1~1.5:1;碳纳米管的分散液的浓度为0.1~0.2wt%;
(2)将上述碳纳米管的分散液A中加入含有阳离子表面活性剂的导电聚合物有机单体水溶液中,超声振荡,得到溶液B;其中导电聚合物有机单体水溶液中含有阳离子表面活性剂的浓度为0.001~0.002mol/L;
(3)将棉织物在室温下浸渍于溶液B中,浴比为1:40~1:60;然后边搅拌边滴加氧化剂溶液C,滴加完毕后,置于冰水浴中反应90~150min,浸泡,洗涤,得到柔性超级电容器用复合棉织物电极。
2.根据权利要求1所述的一种柔性超级电容器用复合棉织物电极的制备方法,其特征在于:所述步骤(1)中碳纳米管为单壁碳纳米管或多壁碳纳米管。
3.根据权利要求1所述的一种柔性超级电容器用复合棉织物电极的制备方法,其特征在于:所述步骤(1)中阴/阳离子复配表面活性剂的水溶液中,阴/阳离子复配表面活性剂总含量为0.008~0.012mol/L。
4.根据权利要求1所述的一种柔性超级电容器用复合棉织物电极的制备方法,其特征在于:所述步骤(1)中阴/阳离子复配表面活性剂中,阴离子表面活性剂为十二烷基磺酸根溶液、十二烷基苯磺酸根溶液、甲基苯磺酸根溶液中的一种,阳离子为钠离子或钾离子;阳离子表面活性剂为十六或十二烷基三甲基铵盐,阴离子为氯离子或溴离子。
5.根据权利要求1所述的一种柔性超级电容器用复合棉织物电极的制备方法,其特征在于:所述步骤(1)中超声分散时间为30-90min。
6.根据权利要求1所述的一种柔性超级电容器用复合棉织物电极的制备方法,其特征在于:所述步骤(2)中阳离子表面活性剂为十六或十二烷基三甲基铵盐,阴离子为氯离子或溴离子;有机单体为吡咯、吡咯衍生物、苯胺、苯胺衍生物中的一种,浓度为0.2~0.5mol/L。
7.根据权利要求1所述的一种柔性超级电容器用复合棉织物电极的制备方法,其特征在于:所述步骤(2)中超声振荡时间为10~30min。
8.根据权利要求1所述的一种柔性超级电容器用复合棉织物电极的制备方法,其特征在于:所述步骤(3)中氧化剂溶液为三氯化铁溶液、过硫酸铵溶液或高锰酸钾溶液;浓度为0.3~0.7mol/L。
9.根据权利要求1所述的一种柔性超级电容器用复合棉织物电极的制备方法,其特征在于:所述步骤(3)中浸渍时间为20-40min;浸泡为分别用乙醇浸泡10min、0.1mol/L盐酸浸泡30min;洗涤为去离子水洗涤3-5次。
CN201410620974.XA 2014-11-06 2014-11-06 一种柔性超级电容器用复合棉织物电极的制备方法 Expired - Fee Related CN104377041B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410620974.XA CN104377041B (zh) 2014-11-06 2014-11-06 一种柔性超级电容器用复合棉织物电极的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410620974.XA CN104377041B (zh) 2014-11-06 2014-11-06 一种柔性超级电容器用复合棉织物电极的制备方法

Publications (2)

Publication Number Publication Date
CN104377041A CN104377041A (zh) 2015-02-25
CN104377041B true CN104377041B (zh) 2017-04-12

Family

ID=52555892

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410620974.XA Expired - Fee Related CN104377041B (zh) 2014-11-06 2014-11-06 一种柔性超级电容器用复合棉织物电极的制备方法

Country Status (1)

Country Link
CN (1) CN104377041B (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104766943B (zh) * 2015-03-27 2017-08-11 中国科学院金属研究所 一种高能量密度的锂硫电池电极的制备方法及应用
CN105001420B (zh) * 2015-07-24 2017-10-20 佛山市维晨科技有限公司 一种聚吡咯纳米纤维导电电极材料的制备方法
CN105679555B (zh) * 2016-01-12 2018-02-23 东华大学 一种三维氨基化碳纳米管阵列/可拉伸纺织纤维电极材料的制备方法
CN108364797B (zh) * 2018-02-11 2020-01-14 哈尔滨工业大学 一种碳纳米管织物电极及纱线电极的制备方法及电极的应用
CN108360262A (zh) * 2018-03-21 2018-08-03 江苏华洋尼龙有限公司 超声浸润法制备聚酰胺导电纤维的方法
CN108978189B (zh) * 2018-07-13 2021-04-23 武汉纺织大学 碳纳米管/聚吡咯复合纤维与制备方法及其在晶体管传感器中的应用
CN109056309B (zh) * 2018-08-09 2021-03-02 苏州涵轩信息科技有限公司 柔性电极材料及其制备方法
CN110060885B (zh) * 2019-04-23 2020-09-22 华南理工大学 一种柔性织物电极及其制备方法与应用
CN110136982B (zh) * 2019-05-17 2021-03-19 东华大学 一种柔性超级电容器用复合织物电极及其制备和应用
CN111403185A (zh) * 2020-03-09 2020-07-10 西南大学 一种高性能柔性蚕丝织物电极材料的制备方法及其产品
CN111432560B (zh) * 2020-03-31 2022-12-09 西安工程大学 一种超低阻柔性导电线路的制造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102568644A (zh) * 2011-12-30 2012-07-11 中国科学院长春应用化学研究所 一种超级电容器电极材料及其制备方法
CN102737851A (zh) * 2011-04-15 2012-10-17 国家纳米科学中心 一种柔性超级电容器及其制备方法
CN103066314A (zh) * 2012-12-25 2013-04-24 武汉纺织大学 一种织物形态的聚合物电池及其制备方法
CN103366972A (zh) * 2013-07-10 2013-10-23 合肥工业大学 一种多壁碳纳米管/聚苯胺纳米纤维复合材料超级电容器电极的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102737851A (zh) * 2011-04-15 2012-10-17 国家纳米科学中心 一种柔性超级电容器及其制备方法
CN102568644A (zh) * 2011-12-30 2012-07-11 中国科学院长春应用化学研究所 一种超级电容器电极材料及其制备方法
CN103066314A (zh) * 2012-12-25 2013-04-24 武汉纺织大学 一种织物形态的聚合物电池及其制备方法
CN103366972A (zh) * 2013-07-10 2013-10-23 合肥工业大学 一种多壁碳纳米管/聚苯胺纳米纤维复合材料超级电容器电极的制备方法

Also Published As

Publication number Publication date
CN104377041A (zh) 2015-02-25

Similar Documents

Publication Publication Date Title
CN104377041B (zh) 一种柔性超级电容器用复合棉织物电极的制备方法
Zhang et al. Recent advances and challenges of electrode materials for flexible supercapacitors
Liu et al. A high performance all-solid-state flexible supercapacitor based on carbon nanotube fiber/carbon nanotubes/polyaniline with a double core-sheathed structure
Devadas et al. Effect of carbon dots on conducting polymers for energy storage applications
Park et al. Hollow activated carbon nanofibers prepared by electrospinning as counter electrodes for dye-sensitized solar cells
Xie et al. Supercapacitor application of nickel oxide–titania nanocomposites
Yu et al. A stretchable high performance all-in-one fiber supercapacitor
Mohan et al. Polyaniline nanotube/reduced graphene oxide aerogel as efficient counter electrode for quasi solid state dye sensitized solar cell
Lv et al. High-performance polypyrrole coated knitted cotton fabric electrodes for wearable energy storage
Dong et al. Matching electrode lengths enables the practical use of asymmetric fiber supercapacitors with a high energy density
CN104392844A (zh) 一种纤维基导电聚吡咯/碳纳米管复合电极材料的原位界面聚合方法
Zhao et al. Utilizing human hair for solid-state flexible fiber-based asymmetric supercapacitors
Fang et al. One-step synthesis of Ni/Ni (OH) 2@ multiwalled carbon nanotube coaxial nanocable film for high performance supercapacitors
CN108520830A (zh) 一种皮芯型多孔石墨烯纤维与超级电容器的制备方法
Li et al. Three-dimensional stretchable fabric-based electrode for supercapacitors prepared by electrostatic flocking
CN104465121B (zh) 具有三维结构的氧化石墨烯—聚苯胺复合电极材料及其制备方法
CN103123870A (zh) 用于超级电容器的纳米复合薄膜电极材料及其制备方法
Luo et al. MnO2-decorated 3D porous carbon skeleton derived from mollusc shell for high-performance supercapacitor
CN106971860A (zh) 一种MnO2@石墨烯纤维超级电容器电极材料的制备方法
Wang et al. A wearable supercapacitor engaged with gold leaf gilding cloth toward enhanced practicability
CN104036970A (zh) 一种柔性石墨烯纤维基非对称超级电容器的制备方法
CN109003840A (zh) 一种复合纸基柔性电极材料的制备方法
CN105070511A (zh) 一种纤维状超级电容器及其制备方法
Han et al. Influence of monomer concentration during polymerization on performance and catalytic mechanism of resultant poly (3, 4-ethylenedioxythiophene) counter electrodes for dye-sensitized solar cells
CN109065367A (zh) 一种石墨烯/二氧化锰基非对称同轴纤维超级电容器及其制备和应用

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20170412

Termination date: 20201106