WO2006111465A1 - Elektrostatischer generator für mehrfrequente vibrationsquellen - Google Patents

Elektrostatischer generator für mehrfrequente vibrationsquellen Download PDF

Info

Publication number
WO2006111465A1
WO2006111465A1 PCT/EP2006/061280 EP2006061280W WO2006111465A1 WO 2006111465 A1 WO2006111465 A1 WO 2006111465A1 EP 2006061280 W EP2006061280 W EP 2006061280W WO 2006111465 A1 WO2006111465 A1 WO 2006111465A1
Authority
WO
WIPO (PCT)
Prior art keywords
capacitor
capacitor arrangement
energy
energy conversion
spring
Prior art date
Application number
PCT/EP2006/061280
Other languages
English (en)
French (fr)
Inventor
Gerald Eckstein
Ingo KÜHNE
Robert Weinke
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Publication of WO2006111465A1 publication Critical patent/WO2006111465A1/de

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N1/00Electrostatic generators or motors using a solid moving electrostatic charge carrier
    • H02N1/002Electrostatic motors
    • H02N1/006Electrostatic motors of the gap-closing type
    • H02N1/008Laterally driven motors, e.g. of the comb-drive type

Definitions

  • the present invention relates to a device according to the preamble of the main claim.
  • microsystems in the areas of sensor technology, actuators and in data communication. Such microsystems must be powered by energy for operation.
  • the microsystems should be as independent as possible, i. be self-sufficient.
  • the invention is based on the object for a Vorrich ⁇ tion, especially for a microsystem to provide energy conversion in a simple, effective and cost-effective manner.
  • the device should be able to be integrated into conventional semiconductor technologies and be substantially maintenance-free. Other requirements include wireless operation and optimal miniaturization of the device.
  • the device should in particular be usable as a sensor, as an actuator and / or for data transmission and / or as an energy source or generator and / or as a signal generator.
  • the object is achieved by a device according to the main claim and a use according to the independent claim. Further advantageous embodiments can be found in the subclaims.
  • the solution for the energy conversion is to convert electrical energy and / or conversely electrical energy into mechanical energy from vibrations that are present in the environment of the device, in particular the microsystem. Mechanical energy can be vibrations and / or pressure fluctuations. Energy conversion may occur from a plurality of frequency bands of vibration by means of parallel variable capacitor arrays.
  • a capacitor arrangement is provided as a spring-mass system with a resonance frequency such that an associated Spektralli ⁇ never a frequency band of a vibration is effectively used.
  • This spectral line is determined by the frequency of the vibration corresponding to the resonant frequency of the associated capacitor array. This resonates with it.
  • a plurality of capacitor arrangements are provided as spring-mass systems, each having a resonant frequency such that at least one associated spectral line ei ⁇ nes vibration spectrum is effectively used.
  • several or all capacitor arrangements have the same resonant frequency, so that the apparatus is / are particularly sensitive to this resonant frequency (s).
  • all the capacitor arrangements have different resonance frequencies, so that in this way a multiplicity of vibration frequencies can be utilized.
  • the device is more versatile or multi-frequency usable in terms of their sensitivity.
  • the capacitor arrangement (s) for adjusting the resonant frequency (s) is / are variable, in particular with regard to mass and / or spring rigidity.
  • Kondensatoranord ⁇ are calculations replaceable as a whole by other capacitor arrangements with other resonant frequencies so that in this way the resonance frequencies can be changed and adapted to the respective vibration frequencies.
  • a modular design is advantageous.
  • the adaptation or the change in the resonant frequency can be generated directly on a capacitor arrangement by changing its effective mass and / or spring rigidity.
  • the con ⁇ can densatoranowskilichanowski discrete mass portions have the fi xed ⁇ be, so that only the unfixed mass oscillates.
  • a capacitor arrangement can have regions with different spring stiffnesses, which can be selected and activated in a targeted manner to provide different resonance frequencies.
  • At least one capacitor arrangement has a comb structure.
  • each electrode forms a comb, wherein the combs mesh with each other in such a way that parallel switched Kondensatorbe ⁇ rich are generated.
  • a plurality of capacitor arrangements are connected in parallel to one another electrically in parallel with one another and / or arranged parallel to one another.
  • the same electrical voltage is always applied to the capacitor arrangements in a simple manner.
  • the capacitor arrangements oscillate in the same directions, so that the oscillations of the capacitor arrangements do not interfere with each other. Accelerations of the capacitor arrangements take place in the oscillation directions.
  • the capacitor arrangements are formed in surface or volume micromechanics.
  • the Kondensatoranord ⁇ voltages are horizontal - plane in-- feroberflache in a plane on one Wa or vertically - out-of-plane - in a Volume determination men Kunststoff a wafer disposed or produced.
  • the capacitor arrangement (s) are compatible with the surrounding vibrations. additionally mechanically coupled via a further mechanical resonance body.
  • a further mechanical resonance body This can for example be a protective body or a protective cap for the device. In this way, the vibration energy is effectively coupled to the capacitor array (s).
  • an electrical voltage for the electrical charge of a capacitor arrangement is produced by means of different materials with different work functions.
  • an electrical voltage for the electrical charge of a capacitor arrangement is generated by means of a dielectric and / or by means of a voltage source.
  • the device for energy conversion can advantageously be used as a sensor, as an actuator, for data communication and / or as an energy source or generator and / or as a signal generator.
  • FIG. 1 shows an embodiment of various capacitor arrangements on a wafer.
  • a Wafe- electrode has, for example, silicon or SOI.
  • ⁇ counter electrode have, for example passivated silicon having, for example, platinum, titanium, platinum, titanium or palladium coated on.
  • Fig. 1 shows a device for energy conversion, which is used as a capacitive micro-power generator with integrated bias, which it is possible to convert vibration energy at four different frequency bands.
  • the technical parameters such as mass and spring stiffness must be selected individually. Due to the spring-mass system, the device for e- nergieumwandlung instead of as a generator can also be used as a sensor and / or also as an actuator. Use in data communication and / or as a signal generator is also possible.
  • the comb structure facilitates easy and efficient generation of a large capacitor area.
  • the capacitive micro-power generator for multi-frequency Vibra ⁇ tion sources shown in-plane in Fig. 1, allows the power supply of self-sufficient microsystems taking advantage of vibrations that are present in the environment of the system.
  • the advantage of the generator lies in the fact that it can convert energy from several frequency bands of the vibration spectrum.
  • the generator essentially represents a plurality of spring-mass systems, which are able to convert mechanical energy into electrical energy.
  • the generator receives the mechanical energy to be converted by connecting it to the surrounding vibrations that it wants to use. This electrical change corresponds to a gain in electrical energy.
  • the individual Kondenstoran glovesen must be loaded. This can be done both by the exploitation of different work functions of different materials, as well as by an electret (dielectric) and / or by a voltage source or the like.
  • a particularly effective energy conversion is possible when the spring-mass system is operated in resonance. It follows that one can exploit only a typical frequency band or rather a typi ⁇ cal spectral line of the vibration.
  • this micro-power generator is composed of a plurality of variable capacitor arrays which are designed for a respective frequency band of the vibration. Thus, it is possible mechanical energy especially to be able to transform effectively.
  • the capacitive micro-power generator for multi-frequency vibration sources can be realized in buick-micromechanics or surface micromechanics. Both in-plane and out-of-plane capacitor arrangements can be implemented.
  • Preferred vibration or resonance frequencies are in the range between 1000 Hz to 5000 Hz. Other ranges are also possible.
  • a power in the range of about 50 ⁇ W to about 200 ⁇ W is necessary. Other areas are also possible.

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)
  • Micromachines (AREA)

Abstract

Die vorliegende Erfindung betrifft eine Vorrichtung, insbesondere ein Mikrosystem, mit einer Einrichtung zur Energieumwandlung. Die Vorrichtung zeichnet sich dadurch aus, dass die Einrichtung zur Energieumwandlung mindestens eine elektrisch geladene, mechanisch schwingfähige Kondensatoranordnung zur Umwandlung von mechanischer Vibrationsenergie in elektrische Energie und/oder umgekehrt aufweist.

Description

Beschreibung
ELEKTROSTATISCHER GENERATOR FÜR MEHRFREQUENTE VIBRATIONSQUELLEN
Die vorliegende Erfindung betrifft eine Vorrichtung gemäß dem Oberbegriff des Hauptanspruchs.
Es besteht zunehmender Bedarf an MikroSystemen in den Berei- chen Sensorik, Aktorik sowie in der Datenkommunikation. Derartige Mikrosysteme müssen mit Energie zum Betrieb versorgt werden. Dabei sollen die Mikrosysteme möglichst unabhängig, d.h. autark, sein.
Es sind herkömmliche autarke Systeme bekannt, die lediglich mittels solarer Energiewandlung betrieben werden. Nachteilig ist dabei, dass alle Anwendungsgebiete, bei denen keine Son¬ nenenergie nutzbar gemacht werden kann, ausgeschlossen sind. Des Weiteren ergeben sich bei der Nutzung von Sonnenenergie mittels Solarzellen Schwierigkeiten bei der Miniaturisierung und Integrierung in CMOS-Technologie .
Der Erfindung liegt die Aufgabe zugrunde für eine Vorrich¬ tung, insbesondere für ein Mikrosystem, eine Energieumwand- lung auf einfache, wirksame und kostengünstige Weise bereit zu stellen. Die Vorrichtung soll in herkömmliche Halbleitertechnologien integrierbar und im Wesentlichen wartungsfrei sein. Weitere Forderungen sind ein kabelloser Betrieb sowie eine optimale Miniaturisierung der Vorrichtung. Die Vorrich- tung soll insbesondere als Sensor, als Aktuator und/oder zur Datenübertragung und/oder als Energiequelle bzw. Generator und/oder als Signalgeber verwendbar sein.
Die Aufgabe wird durch eine Vorrichtung gemäß dem Hauptan- spruch und eine Verwendung gemäß dem Nebenanspruch gelöst. Weitere vorteilhafte Ausgestaltungen finden sich in den Unteransprüchen . Die Lösung für die Energieumwandlung liegt darin, aus Vibrationen, welche in der Umgebung der Vorrichtung, insbesondere des Mikrosystems, vorhanden sind, elektrische Energie und/oder umgekehrt elektrische Energie in mechanische Energie zu wandeln. Mechanische Energie können Vibrationen und/oder Druckschwankungen sein. Eine Energieumwandlung kann aus/in mehreren Frequenzbändern der Vibration mittels parallel angeordneten variablen Kondensatoranordnungen erfolgen.
Gemäß einer vorteilhaften Ausgestaltung ist eine Kondensatoranordnung als Feder-Masse-System mit einer Resonanzfrequenz derart bereit gestellt, so dass eine dazugehörige Spektralli¬ nie eines Frequenzbandes einer Vibration wirksam nutzbar ist. Diese Spektrallinie ist durch die Frequenz der Vibration be- stimmt, die der Resonanzfrequenz der dazugehörigen Kondensatoranordnung entspricht. Diese schwingt damit in Resonanz.
Gemäß einer weiteren vorteilhaften Ausgestaltung kann eine Mehrzahl von Kondensatoranordnungen als Feder-Masse-Systeme mit jeweils einer Resonanzfrequenz derart bereit gestellt sind, so dass mindestens eine dazugehörige Spektrallinie ei¬ nes Vibrationsspektrums wirksam nutzbar ist. Gemäß einer Aus¬ führungsform weisen mehrere oder alle Kondensatoranordnungen dieselbe Resonanzfrequenz auf, so dass die Vorrichtung beson- ders empfindlich für diese Resonanzfrequenz (en) ist/sind. Gemäß einer anderen Ausführungsform weisen alle Kondensatoranordnungen verschiedene Resonanzfrequenzen auf, so dass auf diese Weise eine Vielzahl von Vibrationsfrequenzen genutzt werden kann. Damit ist die Vorrichtung hinsichtlich deren Empfindlichkeit vielseitiger beziehungsweise mehrfrequent nutzbar.
Gemäß einer weiteren vorteilhaften Ausgestaltung ist/sind die Kondensatoranordnung (en) zur Einstellung der Resonanzfre- quenz (en) , insbesondere hinsichtlich Masse und/oder Federsteifigkeit, variabel. Einerseits sind die Kondensatoranord¬ nungen als Ganzes durch andere Kondensatoranordnungen mit anderen Resonanzfrequenzen ersetzbar, so dass auf diese Weise die Resonanzfrequenzen verändert und den jeweiligen Vibrationsfrequenzen angepasst werden können. Eine Modulbauweise ist vorteilhaft. Andererseits kann die Anpassung beziehungsweise die Veränderung der Resonanzfrequenz direkt an einer Konden- satoranordnung durch Veränderung deren wirksamen Masse und/oder Federsteifigkeit erzeugt werden. Dazu kann die Kon¬ densatoranordnung diskrete Massebereiche aufweisen, die fi¬ xiert werden, so dass lediglich die unfixierte Masse schwingt. Ebenso kann eine Kondensatoranordnung Bereiche mit unterschiedlichen Federsteifigkeiten aufweisen, die gezielt zur Bereitstellung unterschiedlicher Resonanzfrequenzen ausgewählt und aktiviert werden können.
Gemäß einer weiteren vorteilhaften Ausgestaltung weist min- destens eine Kondensatoranordnung eine Kammstruktur auf. Dabei bildet jede Elektrode einen Kamm, wobei die Kämme derart ineinander greifen, dass parallel geschaltete Kondensatorbe¬ reiche erzeugt werden.
Gemäß einer weiteren vorteilhaften Ausgestaltung sind mehrere Kondensatoranordnungen zueinander elektrisch parallel geschaltet und/oder zueinander parallel angeordnet. Im ersten Fall liegt auf einfache Weise immer dieselbe elektrische Spannung an den Kondensatoranordnungen an. Im zweiten Fall schwingen die Kondensatoranordnungen in denselben Richtungen, so dass sich die Schwingungen der Kondensatoranordnungen nicht gegenseitig stören. In den Schwingungsrichtungen erfolgen Beschleunigungen der Kondensatoranordnungen.
Gemäß einer weiteren vorteilhaften Ausgestaltung sind die Kondensatoranordnungen in Oberflächen- oder Volumen- Mikromechanik ausgebildet. Dabei sind die Kondensatoranord¬ nungen horizontal - in-plane - in einer Ebene auf einer Wa- feroberflache oder vertikal - out-of-plane - in einem VoIu- menbereich eines Wafers angeordnet beziehungsweise erzeugt.
Gemäß einer weiteren vorteilhaften Ausgestaltung sind die Kondensatoranordnung (en) an die umgebenden Vibrationen zu- sätzlich über einen weiteren mechanischen Resonanzkörper mechanisch angekoppelt. Dieser kann beispielsweise ein Schutzkörper bzw. eine Schutzkappe für die Vorrichtung sein. Auf diese Weise ist die Vibrationsenergie wirksam mit den Konden- satoranordnung (en) gekoppelt.
Gemäß einer weiteren vorteilhaften Ausgestaltung wird eine elektrische Spannung zur elektrischen Ladung einer Kondensatoranordnung mittels unterschiedlichen Materialien mit unter- schiedlichen Austrittsarbeiten erzeugt.
Gemäß einer weiteren vorteilhaften Ausgestaltung wird eine elektrische Spannung zur elektrischen Ladung einer Kondensatoranordnung mittels eines Dielektrikums und/oder mittels ei- ner Spannungsquelle erzeugt.
Der Einrichtung zur Energiewandlung kann bei einer Vorrichtung, insbesondere einem Mikrosystem, vorteilhaft als Sensor, als Aktuator, für die Datenkommunikation und/oder als Ener- giequelle beziehungsweise Generator und/oder als Signalgeber verwendet werden.
Die Erfindung wird anhand eines Ausführungsbeispiels in Ver¬ bindung mit der Fig. 1 näher beschrieben. Dabei zeigt
Fig. 1 ein Ausführungsbeispiel verschiedener Kondensatoranordnungen auf einem Wafer.
Fig. 1 zeigt schematisch ein Ausführungsbeispiel mit ver- schiedenen Kondensatoranordnungen auf einem Wafer. Eine Wafe- relektrode weist beispielsweise Silizium oder SOI auf. Gegen¬ elektroden weisen beispielsweise passiviertes Silizium mit beispielsweise Platin, Titan, Platintitan oder Paladium beschichtet auf. Die Fig. 1 zeigt eine Einrichtung zur Energie- Umwandlung, die als kapazitiver Mikro-Power-Generator mit integrierter Vorspannung verwendet wird, dem es möglich ist Vibrationsenergie bei vier verschiedenen Frequenzbändern zu wandeln. Um jedes Feder-Masse-System auf die gewünschte Fre- quenz einzustellen, müssen jeweils die technischen Parameter wie Masse und Federsteifigkeit individuell gewählt werden. Aufgrund des Feder-Masse-Systems kann die Einrichtung zur E- nergieumwandlung statt als Generator ebenso als Sensor und/oder ebenso als Aktuator eingesetzt werden. Eine Verwendung in der Datenkommunikation und/oder als Signalgeber ist ebenso möglich. Die Kammstruktur erleichtert die einfache und wirksame Erzeugung einer großen Kondensatorfläche.
Der kapazitive Mikro-Power-Generator für mehrfrequente Vibra¬ tionsquellen, in Fig. 1 in-plane dargestellt, ermöglicht die Energieversorgung von autarken MikroSystemen unter Ausnutzung von Vibrationen, welche in der Umgebung des Systems vorhanden sind. Der Vorteil des Generators liegt darin begründet, dass er aus mehreren Frequenzbändern des Vibrationsspektrums Energie wandeln kann.
Der Generator stellt im Wesentlichen mehrere Feder-Masse- Systeme dar, welche in der Lage sind, mechanische Energie in elektrische Energie zu wandeln. Die zu wandelnde mechanische Energie erhält der Generator, indem er an die umgebenden Vibrationen, die man nutzen möchte, angekoppelt wird. Diese e- lektrische Änderung entspricht einem Gewinn an elektrischer Energie. Hierzu müssen die einzelnen Kondenstoranordnungen geladen werden. Dies kann sowohl durch das Ausnutzen unterschiedlicher Austrittsarbeiten verschiedener Materialien, als auch durch ein Elektret (Dielektrikum) und/oder durch eine Spannungsquelle oder ähnliches geschehen. Eine besonders wirksame Energiewandlung ist möglich, wenn das Feder-Masse- System in Resonanz betrieben wird. Daraus folgt, dass man lediglich ein typisches Frequenzband oder vielmehr eine typi¬ sche Spektrallinie der Vibration ausnutzen kann. Da typische Vibrationen mehrere dieser Frequenzbänder enthalten, kann zwar lediglich ein kleiner Teil der mechanischen Vibrationen tatsächlich gewandelt werden. Dieser Mikro-Power-Generator besteht jedoch aus mehreren variablen Kondensatoranordnungen, die auf ein jeweiliges Frequenzband der Vibration ausgelegt sind. Somit ist es möglich mechanische Energie besonders wirksam wandeln zu können. Der kapazitive Mikro-Power- Generator für mehrfrequente Vibrationsquellen kann in BuIk- Mikromechanik oder Oberflächen-Mikromechanik realisiert werden. Sowohl in-plane als auch out-of-plane Kondensatoranord- nungen sind umsetzbar.
Bevorzugte Vibrations- bzw. Resonanzfrequenzen liegen im Bereich zwischen 1000 Hz bis 5000 Hz. Andere Bereiche sind e- benso möglich. Für die Erzeugung eines elektrischen Impulses ist insbesondere eine Leistung im Bereich von ca. 50 μW bis ca. 200 μW notwendig. Andere Bereiche sind ebenso möglich.

Claims

Patentansprüche
1. Vorrichtung, insbesondere ein Mikrosystem, mit einer Einrichtung zur Energieumwandlung, dadurch gekennzeichnet, dass die Einrichtung zur Energieumwandlung mindestens eine elektrisch geladene, mechanisch schwingfähige Kondensatoranordnung zur Umwandlung von mechanischer Energie in elektrische Energie und/oder umgekehrt aufweist.
2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass eine Kondensatoranordnung als Feder-Masse-System mit einer Resonanzfrequenz derart bereit gestellt ist, so dass eine da- zugehörige Spektrallinie eines Frequenzbandes einer Vibration wirksam nutzbar ist.
3. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass mehrere Kondensatoranordnungen als Feder-Masse-Systeme mit jeweils einer Resonanzfrequenz derart bereit gestellt sind, so dass mindestens eine dazugehörige Spektrallinie eines Vib¬ rationsspektrums wirksam nutzbar ist.
4. Vorrichtung nach Anspruch 2 oder 3, dadurch gekennzeichnet, dass die Kondensatoranordnung (en) zur Einstellung der Resonanzfrequenz (en) , insbesondere hinsichtlich Masse und/oder Feder- steifigkeit, variabel ist/sind.
5. Vorrichtung nach einem oder mehreren der Ansprüche 1 bis
4. dadurch gekennzeichnet, dass mindestens eine Kondensatoranordnung eine Kammstruktur aufweist .
6. Vorrichtung nach einem oder mehreren der Ansprüche 1 bis
5. dadurch gekennzeichnet, dass mehrere Kondensatoranordnungen zueinander elektrisch parallel geschaltet und/oder zueinander parallel angeordnet sind.
7. Vorrichtung nach einem oder mehreren der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Kondensatoranordnungen in Oberflächen- oder Volumen- Mikromechanik ausgebildet sind.
8. Vorrichtung nach einem oder mehreren der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Kondensatoranordnung (en) an die umgebenden Vibrationen zusätzlich über einen weiteren mechanischen Resonanzkörper mechanisch angekoppelt sind.
9. Vorrichtung nach einem oder mehreren der Ansprüche 1 bis
8, dadurch gekennzeichnet, dass eine elektrische Spannung zur elektrischen Ladung einer Kondensatoranordnung mittels unterschiedlichen Materialien mit unterschiedlichen Austrittsarbeiten erzeugt wird.
10. Vorrichtung nach einem oder mehreren der Ansprüche 1 bis
9, dadurch gekennzeichnet, dass eine elektrische Spannung zur elektrischen Ladung einer Kondensatoranordnung mittels eines Dielektrikums und/oder mit- tels einer Spannungsquelle erzeugt wird.
11. Vorrichtung nach einem oder mehreren der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass die Einrichtung zur Energieumwandlung als Sensor, als Aktua- tor, für die Datenkommunikation und/oder als Energiequelle und/oder als Signalgeber ausgebildet ist.
PCT/EP2006/061280 2005-04-20 2006-04-03 Elektrostatischer generator für mehrfrequente vibrationsquellen WO2006111465A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005018321.2 2005-04-20
DE200510018321 DE102005018321A1 (de) 2005-04-20 2005-04-20 Kapazitiver Mikropower-Generator für mehrfrequente Vibrationsquellen

Publications (1)

Publication Number Publication Date
WO2006111465A1 true WO2006111465A1 (de) 2006-10-26

Family

ID=36570543

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2006/061280 WO2006111465A1 (de) 2005-04-20 2006-04-03 Elektrostatischer generator für mehrfrequente vibrationsquellen

Country Status (2)

Country Link
DE (1) DE102005018321A1 (de)
WO (1) WO2006111465A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITTO20090247A1 (it) * 2009-03-31 2010-10-01 Torino Politecnico Gruppo wireless di misura e trasmissione per sollecitazioni dinamiche, carrello ferroviario comprendente tale gruppo e relativo metodo di controllo
CZ303335B6 (cs) * 2011-07-22 2012-08-01 Ceské vysoké ucení technické v Praze Fakulta elektrotechnická Struktura MEMS kondenzátoru elektrostatického generátoru

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010035247A1 (de) * 2010-08-24 2012-03-01 Siemens Aktiengesellschaft Dielektrischer kapazitiver MEMS Energiewandler
DE102012215600B4 (de) * 2012-09-03 2019-10-31 Institut für Mikroelektronik- und Mechatronik-Systeme gGmbH Kapazitiver Energiewandler und Verfahren zum Betreiben eines kapazitiven Energiewandlers

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002012117A1 (de) * 2000-08-09 2002-02-14 Fraunhofer Gesellschaft Zur Förderung Der Angewandten Forschung E. V. Anordnung mit variabler kapazität
WO2003105167A2 (en) * 2002-06-07 2003-12-18 California Institute Of Technology Electret generator apparatus and method
US20050040654A1 (en) * 2003-08-20 2005-02-24 Hitachi, Ltd. Vibrational power generation device vibrator
JP2005099760A (ja) * 2003-09-05 2005-04-14 Seiko Epson Corp アクチュエータ

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5610335A (en) * 1993-05-26 1997-03-11 Cornell Research Foundation Microelectromechanical lateral accelerometer
KR100363247B1 (ko) * 1995-10-28 2003-02-14 삼성전자 주식회사 진동구조물및그것의고유진동수제어방법
DE29617410U1 (de) * 1996-10-07 1996-12-19 Institut für Mikro- und Informationstechnik Hahn-Schickard-Gesellschaft, 78052 Villingen-Schwenningen Drehratensensor mit entkoppelten orthogonalen Primär- und Sekundärschwingungen
KR100393183B1 (ko) * 1996-10-31 2003-10-17 삼성전자주식회사 마이크로액츄에이터의상보형정전구동장치
US6787969B2 (en) * 2000-06-06 2004-09-07 Iolon, Inc. Damped micromechanical device
DE10318733A1 (de) * 2003-04-25 2004-11-11 Robert Bosch Gmbh Verfahren und Vorrichtung zur Energieversorgung von Sensoren

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002012117A1 (de) * 2000-08-09 2002-02-14 Fraunhofer Gesellschaft Zur Förderung Der Angewandten Forschung E. V. Anordnung mit variabler kapazität
WO2003105167A2 (en) * 2002-06-07 2003-12-18 California Institute Of Technology Electret generator apparatus and method
US20050040654A1 (en) * 2003-08-20 2005-02-24 Hitachi, Ltd. Vibrational power generation device vibrator
JP2005099760A (ja) * 2003-09-05 2005-04-14 Seiko Epson Corp アクチュエータ
US20050088715A1 (en) * 2003-09-05 2005-04-28 Mitsuhiro Yoda Actuator

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 2003, no. 12 5 December 2003 (2003-12-05) *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITTO20090247A1 (it) * 2009-03-31 2010-10-01 Torino Politecnico Gruppo wireless di misura e trasmissione per sollecitazioni dinamiche, carrello ferroviario comprendente tale gruppo e relativo metodo di controllo
EP2237004A1 (de) * 2009-03-31 2010-10-06 Politecnico di Torino Drahlose Einheit zur Messung und Übertragung von dynamischen Belastungen, Güterwagen mit dieser Einheit, und entsprechende Kontrollmethode
CZ303335B6 (cs) * 2011-07-22 2012-08-01 Ceské vysoké ucení technické v Praze Fakulta elektrotechnická Struktura MEMS kondenzátoru elektrostatického generátoru

Also Published As

Publication number Publication date
DE102005018321A1 (de) 2006-11-02

Similar Documents

Publication Publication Date Title
EP1504519B1 (de) Vorrichtung zur umwandlung mechanischer energie in elektrische energie
DE102007017480B4 (de) Vibrationssensor und Verfahren zur Vibrationserkennung
DE102007049418A1 (de) Piezoelektrischer Mikrogenerator
DE19621700C2 (de) Aktiver Schwingungsminderer
DE102008028885A1 (de) Verfahren zur Abstimmung einer Resonanzfrequenz eines piezoelektrischen Bauelementes
WO2006111465A1 (de) Elektrostatischer generator für mehrfrequente vibrationsquellen
DE102011075350A1 (de) Energiefilteranordnung für Ionenimplantationsanlagen
DE112016000199T5 (de) Stromerzeuger
DE2712341A1 (de) Ultraschallwandler mit variablem brennpunkt
DE19834672C1 (de) Elektromagnetischer Spannungsgenerator
DE69911526T2 (de) Verbesserungen an Vibrationswellenmotoren
DE3135096A1 (de) Schallgeber mit piezowandler
DE102004045528B4 (de) Vibrationssensor
DE102011005249B4 (de) Vorrichtung zur Wandlung mechanischer Energie in elektrische Energie und Verfahren zu ihrer Herstellung
DE102019109311B3 (de) Anordnung und Verfahren zur Kalibrierung und Betrieb von kapazitiven Aktoren
DE112010005588B4 (de) Vorrichtung und Verfahren zur Erfassung von Schwingungen
DE102010035247A1 (de) Dielektrischer kapazitiver MEMS Energiewandler
DE102013204101A1 (de) Energieerzeugungseinrichtung mit freischwingenden piezoelektrischen Biegewandlern
DE102012215600B4 (de) Kapazitiver Energiewandler und Verfahren zum Betreiben eines kapazitiven Energiewandlers
DE4436812B4 (de) Antriebsvorrichtung
WO2006111507A1 (de) Piezoelektrischer mikro-power wandler
DE3703022C2 (de)
DE102013203836B4 (de) Piezoelektrisches Ultraschall-Vibrationselement und seine Verwendung
DE10047379B4 (de) Bauelement mit akustisch aktivem Material
EP2076689A1 (de) Vorrichtung zur reduktion von schwingungen einer struktur

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

NENP Non-entry into the national phase

Ref country code: RU

WWW Wipo information: withdrawn in national office

Country of ref document: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06725522

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 6725522

Country of ref document: EP