WO2006109850A1 - 内燃機関の排気浄化装置 - Google Patents
内燃機関の排気浄化装置 Download PDFInfo
- Publication number
- WO2006109850A1 WO2006109850A1 PCT/JP2006/307801 JP2006307801W WO2006109850A1 WO 2006109850 A1 WO2006109850 A1 WO 2006109850A1 JP 2006307801 W JP2006307801 W JP 2006307801W WO 2006109850 A1 WO2006109850 A1 WO 2006109850A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- temperature
- addition
- amount
- valve
- exhaust
- Prior art date
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/021—Introducing corrections for particular conditions exterior to the engine
- F02D41/0235—Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
- F02D41/027—Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/92—Chemical or biological purification of waste gases of engine exhaust gases
- B01D53/94—Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
- B01D53/9404—Removing only nitrogen compounds
- B01D53/9409—Nitrogen oxides
- B01D53/9431—Processes characterised by a specific device
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N11/00—Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
- F01N11/002—Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity the diagnostic devices measuring or estimating temperature or pressure in, or downstream of the exhaust apparatus
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N13/00—Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
- F01N13/009—Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N13/00—Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
- F01N13/009—Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
- F01N13/0097—Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series the purifying devices are arranged in a single housing
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/0807—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
- F01N3/0814—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents combined with catalytic converters, e.g. NOx absorption/storage reduction catalysts
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/0807—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
- F01N3/0821—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents combined with particulate filters
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/0807—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
- F01N3/0828—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
- F01N3/0842—Nitrogen oxides
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/0807—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
- F01N3/0871—Regulation of absorbents or adsorbents, e.g. purging
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/10—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
- F01N3/105—General auxiliary catalysts, e.g. upstream or downstream of the main catalyst
- F01N3/106—Auxiliary oxidation catalysts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2251/00—Reactants
- B01D2251/20—Reductants
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2260/00—Exhaust treating devices having provisions not otherwise provided for
- F01N2260/02—Exhaust treating devices having provisions not otherwise provided for for cooling the device
- F01N2260/024—Exhaust treating devices having provisions not otherwise provided for for cooling the device using a liquid
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2510/00—Surface coverings
- F01N2510/06—Surface coverings for exhaust purification, e.g. catalytic reaction
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2560/00—Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
- F01N2560/06—Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being a temperature sensor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2560/00—Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
- F01N2560/08—Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being a pressure sensor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2560/00—Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
- F01N2560/14—Exhaust systems with means for detecting or measuring exhaust gas components or characteristics having more than one sensor of one kind
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2610/00—Adding substances to exhaust gases
- F01N2610/03—Adding substances to exhaust gases the substance being hydrocarbons, e.g. engine fuel
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2610/00—Adding substances to exhaust gases
- F01N2610/14—Arrangements for the supply of substances, e.g. conduits
- F01N2610/1493—Purging the reducing agent out of the conduits or nozzle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2900/00—Details of electrical control or of the monitoring of the exhaust gas treating apparatus
- F01N2900/06—Parameters used for exhaust control or diagnosing
- F01N2900/08—Parameters used for exhaust control or diagnosing said parameters being related to the engine
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2900/00—Details of electrical control or of the monitoring of the exhaust gas treating apparatus
- F01N2900/06—Parameters used for exhaust control or diagnosing
- F01N2900/18—Parameters used for exhaust control or diagnosing said parameters being related to the system for adding a substance into the exhaust
- F01N2900/1806—Properties of reducing agent or dosing system
- F01N2900/1811—Temperature
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/02—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
- F01N3/021—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
- F01N3/033—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices
- F01N3/035—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices with catalytic reactors, e.g. catalysed diesel particulate filters
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/021—Introducing corrections for particular conditions exterior to the engine
- F02D41/0235—Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
- F02D2041/0265—Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to decrease temperature of the exhaust gas treating apparatus
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/40—Engine management systems
Definitions
- the present invention provides an internal combustion engine in which a reducing agent is injected by providing an addition valve upstream of an exhaust purification catalyst in an exhaust passage in addition to a fuel injection valve for injecting fuel combusted in a combustion chamber of the internal combustion engine.
- the present invention relates to an exhaust purification device.
- an internal combustion engine such as a diesel engine that burns and operates an air-fuel mixture with a high air-fuel ratio (lean atmosphere) in a wide operating range is generally equipped with a NOX catalyst that has a function of purifying NOx in the exhaust gas.
- NOX catalysts include porous ceramic honeycomb structures (supports), NOX absorbents that have the ability to absorb NOx in the presence of oxygen, and noble metals that have the ability to acidify hydrocarbons HC.
- a catalyst that supports a catalyst is used.
- the NOX catalyst has a characteristic of absorbing nitrogen oxide NO X when the oxygen concentration in the exhaust is high and releasing nitrogen oxide NO X when the oxygen concentration in the exhaust is low.
- the precious metal catalyst will oxidize these hydrocarbon HC or carbon monoxide CO.
- an oxidation-reduction reaction between nitrogen oxide NOX as the oxidizing component and hydrocarbon HC and carbon monoxide CO as the reducing components occurs. That is, hydrocarbons HC and carbon monoxide CO is oxidation to carbon dioxide C_ ⁇ 2 and water H 2 0, the nitrogen oxides NOX is reduced to nitrogen N 2.
- the NOX catalyst absorbs a predetermined limit amount of nitrogen oxide NOX even when the oxygen concentration in the exhaust gas is high, the NOX catalyst no longer absorbs nitrogen oxide NOX. Therefore, in an internal combustion engine equipped with such an NOX catalyst in the exhaust passage, separately from the fuel injection valve that injects fuel for combustion in the combustion chamber, An addition valve is provided in the stream. And by supplying a reducing agent such as light oil from the addition valve,
- NOx NOx absorbed in the X catalyst is released and reduced and purified to restore the NOX absorption capacity of the NOX catalyst so that the NOX absorption amount of the NOX catalyst does not reach the limit (for example, Open 2 0 3-1 2 0 3 9 2).
- the volatile component in the reducing agent that passes through the addition valve evaporates, and the remaining deposit component is added to the injection hole and Adhering to the surrounding area.
- the nozzle hole is clogged with deposits, and the reducing agent may not be properly injected from the nozzle hole.
- the temperature of the addition valve becomes high, for example, when the temperature of the cooling water in the internal combustion engine is high or when the engine load is high, the amount of reducing agent applied from the addition valve is small. Increasing the amount is considered.
- the reducing agent having a low temperature passes through the addition valve a lot, and the heat of the addition valve is taken away by this reducing agent.
- the temperature of the tip of the addition valve including the nozzle hole is lowered, and the nozzle hole is blocked.
- the temperature of the NOx catalyst (catalyst bed temperature) rises due to the heat generated by the combustion. If the NOx catalyst is heated excessively, the catalyst bed temperature may exceed the upper limit of the temperature range (allowable range) at which the NOx catalyst functions properly. Disclosure of the invention
- the present invention has been made in view of such circumstances, and an object of the present invention is to provide an exhaust purification device for an internal combustion engine that can suppress overheating of the exhaust purification catalyst while suppressing clogging of the nozzle hole of the addition valve. Is to provide.
- the present invention is provided with an addition valve upstream of an exhaust purification catalyst in an exhaust passage connected to the combustion chamber.
- An exhaust emission control device for an internal combustion engine in which an addition amount of a reducing agent according to an engine operation state is injected from an addition valve. This device increases the amount of addition as the temperature of the addition valve and / or its phase-value increases, and the internal combustion engine
- a control unit is provided to control parameters that change with the operation of the engine and affect the catalyst temperature of the exhaust purification catalyst in addition to the addition amount so that the catalyst temperature does not exceed the upper limit of the allowable range.
- the control unit increases the addition amount as the temperature of the addition valve rises, and the increased reducing agent passes through the addition valve, thereby depriving the heat of the addition valve.
- the temperature of the addition valve decreases, evaporation of volatile components in the reducing agent is suppressed, and the nozzle hole in the addition valve is blocked.
- the increased amount of the reducing agent burns, and the temperature of the exhaust purification catalyst rises due to the heat accompanying the combustion.
- parameters that change with the operation of the internal combustion engine and affect the temperature of the exhaust purification catalyst in addition to the added amount are controlled by the control unit. Therefore, even if the temperature of the exhaust purification catalyst rises due to an increase in the amount of the reducing agent, the control of the above parameters can prevent the catalyst temperature of the exhaust purification catalyst from exceeding the upper limit of the allowable range. It becomes possible.
- control unit increases the increase degree of the addition amount when at least one of the temperature and the corresponding value of the addition valve is high than when it is low.
- the degree of increase in the amount of addition is greater than when it is low.
- the degree of increase in the addition amount can be changed according to the temperature of the addition valve. Therefore, when the temperature of the addition valve is relatively low, it is possible to suppress the addition amount from being excessively increased and the cooling of the addition valve.
- the temperature of the addition valve is high, the phenomenon that the addition amount is insufficient and the addition valve is not sufficiently cooled and the nozzle hole of the addition valve is clogged can be suppressed.
- the addition valve is disposed in the vicinity of the cooling water passage provided in the internal combustion engine, and the control unit uses the temperature of the cooling water flowing through the cooling water passage as an equivalent value.
- the addition valve is disposed in the vicinity of the cooling water passage provided in the internal combustion engine. Therefore, the temperature of the addition valve is easily affected by the heat of the cooling water flowing through the cooling water passage.
- the addition valve is cooled by taking heat away from the cooling water, and clogging at the nozzle hole is unlikely to occur.
- the temperature of the cooling water is high, such as during high-load operation of an internal combustion engine, the cooling efficiency of the addition valve decreases, and the temperature of the addition valve may exceed the temperature at which the volatile components in the reducing agent evaporate. Therefore, according to the present invention, the effect of the above-described invention can be surely obtained by using the temperature of the cooling water as a corresponding value of the temperature of the addition valve and increasing the addition amount based on this value.
- control unit limits the amount of fuel injected by the fuel injection valve as the parameter control.
- the exhaust temperature and the catalyst temperature decrease accordingly. Therefore, by limiting the injection amount as in the present invention, the injection amount becomes smaller than when it is not performed, and the exhaust temperature becomes lower. As a result, the catalyst temperature becomes lower, and it becomes difficult to exceed the upper limit of the allowable range. Thus, according to the present invention, the effects of the above-described invention can be reliably obtained.
- control unit limits the fuel injection amount to a large amount even when the temperature of the addition valve and / or the corresponding value is low.
- the greater the amount of injection that is subject to restriction the greater the amount of reduction in the exhaust temperature and catalyst temperature due to the restriction.
- the injection amount when at least one of the temperature of the addition valve and its equivalent value is high (when the increase amount of the addition amount is large and the catalyst temperature rises much), the injection amount is limited more than when it is low. Is done.
- the degree of restriction of the injection amount according to at least one of the temperature of the addition valve and its equivalent value, when at least one of the temperature of the addition valve and its equivalent value is relatively low, the injection amount It is possible to prevent the engine output from being unnecessarily reduced due to the excessive amount restriction.
- the injection amount when at least one of the temperature of the addition valve and its equivalent value is high, the injection amount is insufficiently limited (the injection amount is large), which causes the catalyst temperature to exceed the allowable upper limit. Can be suppressed.
- control unit controls the fuel by the fuel injection valve as the parameter control. Reduce the amount of fuel injection.
- the exhaust temperature and the catalyst temperature also decrease accordingly. Therefore, by reducing the injection amount as in the present invention, the exhaust temperature becomes lower than when it is not performed. Along with this, the catalyst temperature is lowered and it is difficult to exceed the upper limit of the allowable range. Thus, according to the present invention, the effects of the above-described invention can be obtained with certainty.
- control unit reduces the fuel injection amount by a large amount even when it is low when at least one of the temperature of the addition valve and the corresponding value is high.
- the injection amount when at least one of the temperature of the addition valve and its equivalent value is high (when the increase amount of the addition amount is large and the catalyst temperature is increased), the injection amount is larger than when it is low. Reduced weight.
- the injection amount is reduced. It is possible to prevent the engine output from being reduced unnecessarily due to excessive reduction.
- at least one of the addition valve temperature and its equivalent value is high, it is possible to suppress the decrease in the injection amount (the injection amount is large) and to prevent the catalyst temperature from exceeding the upper limit of the allowable range.
- FIG. 1 is a block diagram of a first embodiment embodying the present invention. .
- FIG. 2 is a schematic plan view showing the addition valve and its peripheral portion in the engine.
- FIG. 3 is a timing chart for explaining the addition period and addition interval of the reducing agent.
- FIG. 4A is a flowchart showing a procedure of fistula clogging suppression processing.
- FIG. 4B is a flowchart showing the procedure of the injection amount restriction process.
- FIG. 5 is a characteristic diagram showing the relationship between the engine water temperature, the catalyst bed temperature, the addition amount, and the injection amount upper limit value.
- FIG. 6 is a flowchart showing the procedure of the injection amount reduction process in the second embodiment of the present invention. It is a chart.
- FIG. 7 is a characteristic diagram showing the relationship between the engine water temperature and the correction amount.
- FIG. 8 is a characteristic diagram showing the relationship between the engine water temperature, the catalyst bed temperature, the addition amount, and the correction amount.
- FIG. 1 shows a configuration of a multi-cylinder diesel engine (hereinafter simply referred to as an engine) 11 as an internal combustion engine to which the present embodiment is applied and an exhaust purification device 12 thereof.
- FIG. 2 is a schematic plan view of the engine 11.
- the engine 11 is roughly configured to include an intake passage 13, a combustion chamber 14 for each cylinder 10, and an exhaust passage 15.
- An air cleaner 16 for purifying the air sucked into the intake passage 13 is provided at the most upstream portion of the intake passage 13.
- air flow meter 1 7, turbocharger 1 8 compressor 1 8 A, intercooler 1 9 detects air flow in intake passage 1 3 in order from air cleaner 1 6 toward the downstream side of intake air.
- an intake throttle valve 21 are provided.
- the intake passage 13 is branched at an intake manifold 2.2 provided on the intake downstream side of the intake throttle valve 21 and is connected to the combustion chamber 14 of each cylinder 10 through this branched portion. ing.
- the cylinder head 23 of the engine 11 is provided with a fuel injection valve 24 for each cylinder 10 for injecting fuel to be used for combustion in the combustion chamber 14.
- Each fuel injection valve 24 is supplied with fuel from a fuel tank 26 through a fuel supply passage 25.
- the fuel supply path 25 is provided with a fuel pump 27 that sucks and pressurizes fuel from the fuel tank 26 and a common rail 28 that is a high-pressure fuel pipe that accumulates the discharged high-pressure fuel. .
- the fuel injection valves 24 of each cylinder 10 are connected to the common rail 28, respectively.
- an exhaust port 29 is connected to each combustion chamber 14 in the exhaust passage 15.
- the exhaust discharged from each combustion chamber 14 through the exhaust port 29 is provided.
- An exhaust manifold 31 for collecting air and a turbine bin 18 B for a turbocharger 18 are provided.
- the engine 11 employs an exhaust gas recirculation (hereinafter referred to as “EGR”) device 3 2 that recirculates part of the exhaust gas into the intake air.
- the £ 0 1 device 3 2 includes an EGR passage 33 connecting the intake passage 13 and the exhaust passage 15.
- the upstream side of the EGR passage 3 3 is connected between the exhaust manifold 3 1 and the turbine 18 B of the exhaust passage 15.
- the EGR cooler catalyst 3 4 that purifies the recirculated exhaust gas
- the EGR cooler 3 5 that cools the recirculated exhaust gas
- the flow rate of the recirculated exhaust gas EGR valve 3 6 to be adjusted is installed.
- the downstream side of the EGR passage 33 is connected between the intake throttle valve 21 and the intake manifold 2 2 in the intake passage 13.
- the air taken into the intake passage 13 is purified by the air talina 16 and then introduced into the compressor 18 A of the turbocharger 18.
- the compressor 1 8 A the introduced air is compressed and discharged to the intercooler 1 9.
- the air that has become hot due to compression is cooled by the intercooler 19, and then distributed and supplied to the combustion chamber 14 of each cylinder 10 through the intake throttle valve 21 and the intake manifold 22.
- the flow rate of the air in the intake passage 13 is adjusted through the opening degree control of the intake throttle valve 2 1.
- the air flow rate, that is, the intake air amount is detected by the air flow meter 17.
- Exhaust gas generated by combustion in the combustion chamber 14 of each cylinder 10 is introduced into the turbine 18 B of the turbocharger 18 through the exhaust manifold 31.
- the turbine 18 B is driven by the flow of the introduced exhaust, it is provided in the intake passage 13.
- the compressor 18 A is driven in conjunction with the above air to compress it.
- part of the exhaust gas generated by the combustion is introduced into the EGR passage 33.
- the exhaust gas introduced into the EGR passage 33 is purified by the EGR cooler catalyst 34, cooled by the EGR cooler 35, and then recirculated into the air downstream of the intake throttle valve 21 in the intake passage 13.
- the flow rate of the exhaust gas thus recirculated is adjusted through the opening control of the EGR valve 36.
- the engine 1 1 is configured as described above.
- the exhaust gas purification device 12 for purifying the exhaust gas discharged from the engine 11 1 power will be described.
- the exhaust purification device 12 includes an addition valve 41 and a plurality of (three) catalyst converters (first catalytic converter 42, second catalytic converter 43, and third catalytic converter 44) as exhaust purification catalysts. Configured.
- the most upstream first catalytic converter 42 is disposed on the exhaust downstream side of the turbine 18 ⁇ .
- the first catalytic converter 42 contains an NOx storage reduction catalyst.
- the NO X catalyst uses, for example, a honeycomb-shaped structure as a support, and its surface has a NO X absorbent that has the ability to absorb nitrogen oxide NO X in the presence of oxygen, and the ability to oxidize hydrocarbon HC. It is constituted by supporting a noble metal catalyst (noble metal) having
- the NO X absorbent absorbs nitrogen oxide NO X when the oxygen concentration in the exhaust gas is high, and releases nitrogen oxide NO X when the oxygen concentration is low.
- the noble metal catalyst will convert these hydrocarbon HC and carbon monoxide C
- an oxidation-reduction reaction occurs in which nitrogen oxide NOx is the oxidizing component, and hydrocarbon HC and carbon monoxide CO are the reducing components. That is, hydrocarbon HC and carbon monoxide CO are oxidized to carbon dioxide C 0 2 and water H 2 0, and nitrous acid NOx is reduced to nitrogen N 2 .
- the second catalytic converter 43 is disposed on the exhaust downstream side of the first catalytic converter 42.
- An NOx storage reduction catalyst is accommodated in the second catalytic converter 43.
- This NOx catalyst is provided with a porous material that allows passage of gas components in the exhaust and prevents passage of particulate matter PM in the exhaust. And with NOx catalyst This porous material is used as a carrier, and this carrier carries a NOX absorbent and a noble metal catalyst.
- the third catalytic converter 44 is disposed on the exhaust downstream side of the second catalytic converter 43.
- the third catalytic converter 44 carries an oxidation catalyst for purifying exhaust gas through the hydrocarbons HC and carbon monoxide CO in the exhaust gas.
- the addition valve 41 is disposed upstream of the first catalytic converter 4 2 in the air passage 15.
- a portion in the vicinity of the exhaust port 29 in the cylinder head 23 is set as a place where the addition valve 41 is attached.
- the addition valve 41 is attached to the cylinder head 23 with the nozzle hole 41 A at the tip thereof facing the exhaust port 29. As shown in FIG. 2, this position is close to a water jacket 45 as a cooling water passage provided in the cylinder head 23. The reason why the addition valve 41 is attached to such a place is to cool the addition valve 41 using the engine cooling water flowing through the water jacket 45.
- the addition valve 41 is connected to the fuel pump 27 through a fuel passage 46, and the fuel supplied from the fuel pump 27 is injected into the exhaust as a reducing agent and added. To do. With this added fuel, the exhaust gas is temporarily reduced to a reducing atmosphere, and the nitrogen oxides N O x stored in the first catalytic converter 42 and the second catalytic converter 43 are reduced and purified. Further, the second catalytic converter 43 also performs the purification of the particulate matter PM at the same time.
- the cylinder head 23 is provided with a water temperature sensor 47 for detecting the temperature of engine cooling water flowing through the water jacket 45 (engine water temperature T HW). Further, in the exhaust passage 15, the temperature between the first catalytic converter 4 2 and the second catalytic converter 4 3 flows into the temperature of the exhaust gas passing through the space (exhaust temperature), that is, the second catalytic converter 4 3. An exhaust temperature sensor 48 for detecting the temperature of the exhaust gas before the exhaust is provided. In addition, in the exhaust passage 15, a space downstream of the second catalytic converter 4 3 is located in the space downstream of the second catalytic converter 4 3, that is, an exhaust temperature for detecting the temperature of the exhaust immediately after passing through the second catalytic converter 4 3. An air temperature sensor 4 9 is provided.
- the exhaust passage 15 is provided with a differential pressure sensor 51 that detects a differential pressure between the exhaust pressure on the exhaust upstream side of the second catalytic converter 43 and the exhaust pressure on the exhaust downstream side. Further, the exhaust upstream side of the first catalytic converter 4 2 in the exhaust passage 15 and the second Between the catalytic converter 4 3 and the third catalytic converter 44, oxygen sensors 5 2 and 5 3 for detecting the oxygen concentration in the exhaust gas are respectively disposed.
- the control of the engine 11 and the exhaust purification device 12 described above is performed by the electronic control device 61 as a control means.
- the electronic control unit 61 includes a CPU that executes various processes related to the control of the engine 11, a ROM that stores programs and data necessary for the control, a RAM that stores CPU processing results, and the like. It has an input / output port for exchanging information with the outside.
- the input port of the electronic controller 6 1 includes an accelerator sensor 5 4 that detects the amount of accelerator depression by the driver, a common rail sensor 5 5 that detects the internal pressure of the common rail 2 8 (Lenore pressure), A throttle valve sensor 5 6 or the like that detects the opening of the intake throttle valve 21 is connected.
- an accelerator sensor 5 4 that detects the amount of accelerator depression by the driver
- a common rail sensor 5 5 that detects the internal pressure of the common rail 2 8 (Lenore pressure)
- a throttle valve sensor 5 6 or the like that detects the opening of the intake throttle valve 21 is connected.
- the intake throttle valve 21, the fuel injection valve 24, the fuel pump 27, the addition valve 41, the EGR valve 36 and the like are connected to the output port of the electronic control device 61.
- the electronic control device 61 performs control related to the operation of the engine 11, control related to exhaust gas purification, and the like by controlling the devices connected to the output ports based on the detection results of the respective sensors. To do.
- the electronic control device 61 performs fuel injection control as one of the controls related to the operation of the engine 11.
- the electronic control unit 6 1 determines the optimum basic injection amount for the operating state of the engine 11 to the accelerator depression amount by the accelerator sensor 54 and the engine speed NE by the NE sensor 39. Calculate based on In addition, the maximum injection amount is determined by adding corrections based on signals from various sensors to the basic maximum injection amount (the amount that can be theoretically injected) determined by the engine speed NE. Compare the basic injection quantity and the maximum injection quantity, and set the smaller injection quantity as the target injection quantity.
- the basic target injection timing is calculated based on the above-mentioned acceleration stepping amount and engine rotational speed NE, and this is corrected by signals from various sensors, and the optimal target injection timing for the operating state of the engine 11 at that time is calculated. To do.
- the energization of the fuel injection valve 24 is controlled based on the target injection amount and the target injection timing, and the fuel injection valve 24 is opened and closed.
- the electronic control unit 61 is an exhaust purification catalyst as one of the controls related to exhaust purification. Control the medium. In this control, four catalyst control modes are set: catalyst regeneration control mode, sulfur poisoning recovery control mode, NOX reduction control mode, and normal control mode. Select and execute the catalyst control mode according to the condition.
- the catalyst regeneration control mode is the mode for controlling to discharge the carbon dioxide C_ ⁇ 2 and water H 2 0 by burning fine particles matter PM are particularly deposited on the second catalytic converter 4 3 .
- the sulfur poisoning recovery control mode is when NOX catalyst in the first catalytic converter 4 2 and the second catalytic converter 4 3 is poisoned by sulfur oxide SOX and the storage capacity of nitrogen oxide NOX decreases. This mode controls the release of sulfur oxide SOX.
- the NO x reduction control mode means that before the NO x absorption amount of NOx absorbent in the Nx catalyst reaches the limit amount, the reducing agent is added upstream of the first catalytic converter 4 2 in the exhaust passage 1 5 through the addition valve 4 1. In this mode, NOx absorbed by the NOx catalyst is released and reduced and purified, and the NOX absorption capacity of the NOX absorbent is restored.
- an open / close cycle consisting of opening and closing of the addition valve 41 is repeated.
- the reducing agent is added to the addition valve 41.
- the addition is stopped.
- the amount of reducing agent added is adjusted by changing the period during which the addition valve 41 is open (addition period) and the time from the start of the valve opening to the start of the next valve opening (addition interval). The That is, as the addition period becomes longer and the addition interval becomes shorter, the addition amount increases.
- the addition amount is adjusted by changing the addition interval.
- the state other than the above is the normal control mode. In this mode, the reducing agent is not added from the addition valve 41.
- the tip of the addition valve 41 including the periphery of the injection hole 41 is exposed to the exhaust and exposed to high temperature. It is easy to become. Also, when the temperature of the engine coolant flowing through the water jacket 45 is high (engine water temperature T HW) during high load operation of the engine 11 or the like, the cooling efficiency of the addition valve 41 due to the engine coolant decreases. The addition valve 4 1 is hot. It is easy to become. As the temperature rises, the volatile components contained in the reducing agent evaporate, and the remaining deposit components adhere to and accumulate on the nozzle hole 41A of the addition valve 41 and its surroundings.
- the fume hole 41A is clogged by deposits, and the reducing agent is not properly injected from the nozzle hole 41A, which may cause deterioration of the spray state. In order to eliminate these problems, it is effective to cool the tip of the addition valve 41, particularly around the nozzle hole 41A.
- FIG. 4A is a flowchart showing a specific procedure for clogging suppression processing. A series of processing shown in this flowchart is executed by the electronic control device 61 as processing at predetermined time intervals.
- the electronic control device 61 first calculates a target addition period of the reducing agent, that is, a target valve opening period of the addition valve 41 based on the engine speed NE in step 110.
- the target addition interval of the reducing agent is calculated.
- a map in which the relationship between the engine speed NE and the target injection amount and the target addition interval is defined in advance is referred to. This map stipulates that the addition interval decreases as the engine speed NE increases and as the target injection amount increases.
- the target addition interval corresponding to the engine speed NE and the target injection amount at that time is calculated from the map.
- the target injection amount here, an amount separately calculated in the fuel injection control described above is used.
- step 1 30 the target addition interval calculated in step 1 20 is corrected by the temperature of the addition valve 41 or an equivalent value thereof.
- the engine water temperature T HW by the water temperature sensor 47 is used as a direct measure of the temperature of the addition valve 4 1.
- the addition valve 4 1 is arranged in the vicinity of the water jacket 4 5 provided in the cylinder head 2 3 as described above, so that the temperature of the addition valve 4 1 flows through the water jacket 4 5. This is because it is susceptible to the heat of engine cooling water.
- step 1 2 0 above the target addition interval becomes smaller when the engine water temperature T HW is high than when it is low, that is, the addition amount increases as the number of additions per unit time increases. Correct the target addition interval.
- step 140 the energization to the addition valve 41 is controlled based on the target addition period in step 110 and the corrected target addition interval in step 130. This energization (from this the addition valve 41 is driven to open and close, and the reducing agent is injected from the nozzle hole 41 A to the exhaust port 29. After the processing of step 140, the series of clogging suppression processing is completed.
- the degree of increase in the addition amount can be changed according to the engine water temperature T HW correlated with the temperature of the addition valve 41. Therefore, when the temperature of the addition valve 41 (engine water temperature T HW) is relatively low, the degree of increase of the addition amount is small, and the amount of heat taken from the addition valve 41 by the increased reducing agent is relatively small. Therefore, it is unlikely that the addition valve 41 is supercooled by the increased reducing agent. Further, when the temperature of the addition valve 41 (engine water temperature T HW) is high, the increase amount of the addition amount is large, and the amount of heat taken from the addition valve 41 by the increased reducing agent increases. For this reason, it is difficult for the phenomenon that the increase in the addition amount is insufficient and the addition valve 41 is not sufficiently cooled.
- the reducing agent increased in quantity as described above burns, and the temperature of the NOx catalyst (catalyst bed temperature) in the first and second catalytic converters 4 2 and 4 3 rises due to the heat generated by the combustion. If the NOx catalyst is excessively heated, the upper limit of the temperature range (allowable range) at which the NOx catalyst functions properly may be exceeded.
- the amount of fuel injected from the fuel injection valve 24 is limited as control that prevents the catalyst bed temperature from exceeding the allowable value P by increasing the amount of reducing agent added. I am trying to control it.
- Figure 4B shows the specific procedure for the injection amount restriction process. It is a flowchart to show. A series of processing shown in this flowchart is executed by the electronic control device 61 as processing at predetermined time intervals.
- the electronic control device 61 first reads the engine water temperature T HW at that time by the water temperature sensor 47 in step 2 10. Next, in Step 2 2 0, it is determined whether or not the engine coolant temperature T HW in Step 2 1 0 is higher than a preset threshold value ⁇ .
- the threshold value is that the engine water temperature T HW is set on the condition that the catalyst bed temperature does not exceed the upper limit of the allowable range when the reducing agent increased in proportion to the increase in the engine water temperature ⁇ HW is added. It is the upper limit of the temperature range that can be taken or a value close to it.
- step 220 If the judgment condition in step 220 above is satisfied (if T HW> o, if the fuel is injected according to the target injection amount, the heat of the exhaust, the heat generated by the combustion of the reducing agent, etc. Therefore, the exhaust gas temperature should be lowered so that the catalyst bed temperature does not exceed the upper limit value.
- T HW> o if the fuel is injected according to the target injection amount, the heat of the exhaust, the heat generated by the combustion of the reducing agent, etc. Therefore, the exhaust gas temperature should be lowered so that the catalyst bed temperature does not exceed the upper limit value. 2
- T HW the injection amount upper limit value according to the engine water temperature T HW at 0. This upper limit value of the injection amount is lower when the engine water temperature T HW is higher than when it is lower, that is, the engine water temperature T HW When the degree of deviation from the threshold value ⁇ is large, it is set to a lower value than when it is small.
- step 2 40 it is determined whether or not the target injection amount separately calculated in the fuel injection control described above is larger than the injection amount upper limit value in step 2 30. If this judgment condition is satisfied (target injection amount> injection amount upper limit value), the injection amount upper limit value is set as the final target injection amount commanded to the addition valve 4 1 in step 2500. . That is, the target injection amount is limited by the injection amount upper limit value. After the processing in step 2 5 0, the series of injection amount restriction processing is completed.
- step 2 20 if the judgment condition of step 2 20 is not satisfied (T HW ⁇ ) and the judgment condition of step 2 40 is not satisfied (target injection amount ⁇ injection amount upper limit value) In either case, the catalyst bed temperature is considered not to exceed the upper limit of the allowable range. Therefore, in the former case, a series of injection amount limiting processes are terminated without going through the processes in steps 2 30 to 25 50 and in the latter case without going through the processes in step 2 5 0. . In these cases, the target injection amount is limited. The final target injection amount is used as it is without being performed.
- the injection amount upper limit value is set based on the engine water temperature THW. The target injection amount is limited so as not to exceed the injection amount upper limit value, that is, when the target injection amount exceeds the injection amount upper limit value, the target injection amount is substantially reduced.
- the target injection amount becomes smaller than when the target injection amount is not performed, and the amount of fuel corresponding to the target injection amount is injected and burned, thereby lowering the exhaust temperature.
- the increase in the catalyst bed temperature due to exhaust becomes smaller, it becomes difficult for the catalyst bed temperature to exceed the upper limit of the allowable range.
- the upper limit value of the injection amount is set to a lower value when the engine water temperature T HW is high than when it is low, and the target injection amount is restricted to a large amount.
- the degree of restriction of the target injection amount is changed according to the engine coolant temperature THW used for correcting the target addition interval (increasing the addition amount). Therefore, when the engine water temperature T H W is relatively low, that is, when the increase amount of the addition amount is relatively small and the increase amount of the catalyst bed temperature due to the increase is small, the restriction degree of the target injection amount is small. For this reason, it is difficult for the target injection amount to be excessively limited and the output of the engine 11 to drop unnecessarily.
- the degree of restriction on the target injection amount is large.
- the target injection amount is not sufficiently limited (the target injection amount is greater than the appropriate value), and the phenomenon that the catalyst bed temperature exceeds the upper limit of the allowable range is unlikely to occur.
- Figure 5 shows the relationship between the engine water temperature THW, the catalyst bed temperature, the amount of reducing agent added, and the upper limit of the injection amount.
- the target injection amount is not limited by the injection amount upper limit value.
- the amount of reducing agent added is increased when the engine water temperature THW is high than when it is low.
- the catalyst bed temperature increases as the engine water temperature T HW increases. At the same time, it approaches the upper limit of the allowable range.
- the injection amount upper limit value corresponding to the engine water temperature T HW is set. If the target injection amount exceeds the injection amount upper limit value, the injection amount upper limit value is set as the target injection amount, so that the target injection amount decreases, the exhaust temperature decreases, and the catalyst bed temperature decreases accordingly. . This decrease prevents the catalyst bed temperature from exceeding the upper limit of the allowable range. The degree of deviation from the upper limit of the allowable range of the catalyst bed temperature is increased, and the amount added can be further increased.
- the increase in the engine water temperature T HW tends to cause clogging at the nozzle hole 41 mm. Therefore, when the engine water temperature T HW becomes equal to or higher than the predetermined value / 3 (> H) and the amount of added calories increases, the clogging of the nozzle hole 41 A is suppressed.
- the catalyst bed temperature rises and approaches the upper limit of the allowable range.
- the upper limit of the injection amount is set to a lower value as the engine water temperature THW increases. By limiting by the upper limit value of the injection amount, the target injection amount is reduced, and the exhaust temperature and the catalyst bed temperature are lowered.
- the target injection amount is controlled. Therefore, it is possible to suppress overheating of the NOx catalyst by controlling the target injection amount while suppressing clogging in the fistula 41 A by increasing the addition amount.
- the engine water temperature T HW is used as the equivalent value of the temperature of the addition valve 41.
- the degree of increase in the addition amount is greater than when it is low.
- the degree of increase of the addition amount is greater than when it is low.
- the temperature of the addition valve 41 is relatively low, the addition amount is excessively increased and the addition valve 41 is supercooled. Can be suppressed.
- the temperature of the addition valve 41 is high, it is possible to suppress the injection hole 41 from being clogged because the addition amount is insufficient and the addition valve 41 is not sufficiently cooled.
- An injection amount upper limit value is set according to the engine water temperature T HW.
- the upper limit value of the injection amount is set as the final target injection amount.
- the target injection amount can be reduced only when the catalyst bed temperature is likely to exceed the upper limit of the allowable range, that is, only when necessary. Therefore, unnecessary reduction of the target injection amount can be reduced as compared with the case where the target injection amount is always reduced when the engine water temperature T HW exceeds the threshold value ⁇ .
- the target injection amount limit is increased by setting the injection amount upper limit value to a lower value than when it is low. In this way, by changing the degree of restriction of the target injection amount according to the engine water temperature T HW, when the engine water temperature ⁇ HW is relatively low, the target injection amount is excessively limited and the output of the engine 11 becomes unnecessary. It can suppress that it falls.
- the target injection amount is not sufficiently limited (the target injection amount is large), and the catalyst bed temperature can be suppressed from exceeding the upper limit ⁇ (directly).
- the temperature of the addition valve 4 1 is affected by the exhaust heat as well as the engine water temperature T HW.
- the exhaust temperature changes according to the fuel injection amount, and tends to decrease as the fuel injection amount decreases.
- the target injection amount is limited and decreased as the engine water temperature THW increases. Therefore, by reducing the target injection amount in addition to increasing the addition amount, the temperature of the addition valve 41 can be lowered and the phenomenon of clogging the nozzle hole 41 can be more effectively suppressed.
- a second embodiment embodying the present invention will be described with reference to FIGS.
- the difference between the second embodiment and the first embodiment is that the control of the target injection amount is limited as the control for preventing the catalyst bed temperature from exceeding the upper limit of the allowable range: Instead, the target injection amount is corrected to decrease.
- the configurations of engine 11 and exhaust purification device 12 are the same as those in the first embodiment, and therefore description thereof will not be repeated here.
- FIG. 6 is a flowchart showing a specific procedure of the injection amount reduction process. This A series of processing shown in the flowchart is executed by the electronic control device 61 as processing every predetermined time.
- the electronic control device 61 first reads the current engine water temperature T HW by the water temperature sensor 47 in step 3 10. Next, at step 3 20, it is determined whether or not the engine coolant temperature THW at step 3 10 is higher than a threshold value.
- the threshold value is the same as that described in the first embodiment.
- step 3 20 If the judgment condition in step 3 20 above is satisfied (T HW> Q!), If fuel is injected according to the target injection amount as it is, it will occur due to the heat of the exhaust and the combustion of the reducing agent It is considered that the catalyst bed temperature may exceed the upper limit of the allowable range due to heat or the like. For this reason, the exhaust gas temperature is reduced so that the catalyst bed temperature does not exceed the upper limit.
- a correction amount (> 0) for correcting the target injection amount to be reduced is calculated based on the engine water temperature THW in step 3 10. For example, as shown in FIG.
- the correction amount is small when the engine coolant temperature T HW is low, but as the engine coolant temperature T HW increases, that is, the degree of deviation from the threshold value ⁇ of the engine coolant temperature T HW is increased. It can be set to increase as the size increases.
- step 3 40 the correction amount in step 3 30 is subtracted from the target injection amount calculated in another routine in the fuel injection control described above, and the subtraction result is obtained as fuel injection valve 2.
- the series of injection amount reduction processing is completed.
- step 3 20 determines whether the catalyst bed temperature is allowed even if the addition amount is increased according to the increase in the engine water temperature T HW. There is no risk of exceeding the upper limit of the range. Therefore, in this case, the series of injection amount reduction processing is terminated without passing through the processing of the above steps 3 30 and 3 40. In these cases, the target injection amount is used as it is as the final target injection amount without being corrected.
- the amount of reducing agent added from the addition valve 41 is increased in order to suppress the clogging of the nozzle hole 41 by the clogging suppression process described above, Moreover, when the engine water temperature T HW is high, the degree of increase is greater than when the engine water temperature is low, and the catalyst bed temperature becomes high. However, if the engine coolant temperature THW exceeds the threshold ⁇ and the catalyst bed temperature is likely to exceed the upper limit of the allowable range, the correction amount is calculated based on the engine coolant temperature THW. The target injection amount is reduced by correction using this correction amount. The amount of fuel corresponding to the target injection amount after this reduction correction is injected and burned, so that the exhaust temperature is lowered. As the increase in the catalyst bed temperature due to exhaust becomes smaller, it becomes difficult for the catalyst bed temperature to exceed the upper limit of the allowable range.
- the correction amount is set to a larger value when the engine coolant temperature THW is high than when it is low, and the target injection amount is corrected to a smaller amount.
- the amount of reduction in the target injection amount is changed according to the engine water temperature T HW used for the correction of the target addition interval (correction of increase of the addition amount). Accordingly, when the engine water temperature THW is relatively low, that is, when the increase amount of the addition amount is relatively small and the increase amount of the catalyst bed temperature due to the increase is small, the decrease amount of the target injection amount is small. Therefore, it is difficult for the target injection amount to be reduced excessively and the output of the engine 11 to be unnecessarily reduced.
- the target injection amount is not sufficiently reduced (the target injection amount is greater than the appropriate value), and the phenomenon that the catalyst bed temperature exceeds the upper limit of the allowable range is less likely to occur.
- Fig. 8 shows the relationship between the engine coolant temperature THW, the catalyst bed temperature, the reducing agent addition amount, and the correction amount for the target injection amount.
- the target injection amount is not corrected for reduction.
- the degree of increase is greater than when it is low, and the amount of reducing agent added increases.
- the additive amount increases, that is, the catalyst bed temperature increases as the engine water temperature T HW rises, it approaches the upper limit of the allowable range.
- the engine water temperature T HW rises, and clogging at the fistula 41A is likely to occur. Therefore, if the amount of addition is increased when the engine water temperature T HW is the predetermined value i3 (> a), the clogging of the nozzle hole 41A is suppressed, but the catalyst bed temperature rises as the amount increases, and the above Approaches the upper limit of the allowable range. For this, a large value is set as the correction amount, and the target injection amount is greatly reduced by using this large correction amount. When an amount of fuel corresponding to the target injection amount corrected for this reduction is injected from the fuel injection valve 24 and burned, the exhaust temperature and the catalyst bed temperature decrease.
- the following effects can be obtained by obtaining the same effects as the above-described (1), (2), (5).
- a correction amount corresponding to the engine water temperature T HW is set, and the target injection amount is reduced by the correction amount.
- the reduced target injection amount of fuel is injected and burned to lower the exhaust temperature. Therefore, the catalyst bed temperature can be lowered to reliably suppress exceeding the upper limit of the allowable range.
- the correction amount is increased compared to when it is low.
- the correction amount used to reduce the target injection amount according to the engine water temperature T HW when the engine water temperature T HW is relatively low, the target injection amount is excessively reduced and the output of the engine 11 is increased. Unnecessary reduction can be suppressed.
- the engine coolant temperature T HW when the engine coolant temperature T HW is high, it is possible to suppress the decrease in the target injection amount (the target injection amount is large) and the catalyst bed temperature from exceeding the upper limit of the allowable range.
- the present invention can be embodied in another embodiment shown below.
- Substances other than the above fuel may be injected from the addition valve 41 as a reducing agent.
- the addition amount of the reducing agent from the addition valve 41 may be adjusted by changing the addition period instead of the addition interval.
- the temperature of the addition valve 41 is affected by the engine coolant, so the amount of addition can be reduced by correcting the target addition interval based on the engine water temperature THW. I corrected it.
- the addition amount (addition interval, addition period) may be corrected based on parameters that affect the temperature of the addition valve 41 other than the engine water temperature THW.
- the exhaust temperature and engine load may be used as the above parameters. In this case, the addition amount is increased as the exhaust temperature increases and as the engine load increases.
- the temperature of the addition valve 41 itself may be detected, and the addition amount (addition interval, addition period) may be corrected based on the temperature.
- the boost pressure, injection timing, rail pressure, etc. are listed as parameters that change with the operation of the engine 11 and affect the catalyst bed temperature. Therefore, any of these (including the target injection amount) or a combination thereof may be used so that the catalyst bed temperature does not exceed the upper limit of the allowable range as the addition amount increases. For example, by increasing the supercharging pressure, it is possible to increase the amount of air supplied to the combustion chamber 14 to lower the exhaust gas temperature and thus the catalyst bed temperature. In addition, it is possible to lower the exhaust temperature (catalyst bed temperature) by advancing (advancing) the injection timing so that exhaust is performed with the combustion pressure lowered. Also, by increasing the rail pressure, the end of the injection period can be advanced and the exhaust temperature (catalyst bed temperature) can be lowered.
- the exhaust emission control device 1 2 of the present invention is also applicable to an engine where the addition valve 4 1 is located away from the water jacket 4 5 of the cylinder head 2 3, for example, the exhaust downstream of the exhaust port 29 Is possible.
- the addition valve 4 1 since the addition valve 4 1 is not easily affected by the heat of the engine cooling water, the temperature of the addition valve 4 1 evaporates due to the parameters other than the engine water temperature T HW and the volatile components in the reducing agent evaporate. Whether or not the temperature is exceeded is monitored, and the amount of reducing agent added is increased according to the monitoring result. Examples of such parameters include the exhaust temperature and engine load described above.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Materials Engineering (AREA)
- Biomedical Technology (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- General Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Environmental & Geological Engineering (AREA)
- Toxicology (AREA)
- Exhaust Gas After Treatment (AREA)
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
- Combined Controls Of Internal Combustion Engines (AREA)
Abstract
燃焼室での燃焼に供される燃料を噴射する燃料噴射弁に加え、排気通路の排気浄化触媒(NOx触媒)よりも上流側であって、シリンダヘッドにおけるウォータジャケットの近傍に添加弁を設ける。エンジンの運転状態に応じた添加量の還元剤を添加弁から噴射させる。添加弁の温度に相関のあるエンジン水温を用い、エンジン水温の上昇に伴い添加弁の目標添加間隔を小さくして添加量を増量させる(ステップ130)。この添加量の増量により排気浄化触媒の温度(触媒床温)が上昇するが、同触媒床温が許容範囲の上限値を越えないように、添加量以外に触媒床温に影響を及ぼすパラメータの1つである燃料の目標噴射量を、噴射量上限値により制限する(ステップ240,250)。
Description
明細書 内燃機関の排気浄化装置 技術分野
本発明は、 内燃機関の燃焼室で燃焼される燃料を噴射する燃料噴射弁に加え、 排気通路の排気浄化触媒よりも上流側に添加弁を設けて還元剤を噴射させるよう にした内燃機関の排気浄化装置に関する。 背景技術
例えば、 ディーゼル機関のように、 広い運転領域において高い空燃比 (リーン 雰囲気) の混合気を燃焼して運転する内燃機関では、 一般に、 排気中の窒素酸化 物 N O Xを浄化する機能を備えた N O X触媒がその排気通路に備えられる。 N O X触媒としては、 例えば多孔質セラミックのハニカム構造体 (担体) に、 酸素の 存在下で窒素酸化物 N O Xを吸収する能力を有する N O X吸収剤と、 炭化水素 H Cを酸ィヒさせる能力を有する貴金属触媒 (貴金属) とを併せて担持したものが採 用される。
N O X触媒は、 排気中の酸素濃度が高い状態では窒素酸化物 N O Xを吸収し、 排気中の酸素濃度が低い状態では窒素酸化物 N O Xを放出する特性を有する。 ま た、 排気中に窒素酸化物 N O Xが放出されたとき、 その排気中に炭化水素 H Cや 一酸化炭素 C Oが存在していれば、 貴金属触媒がこれら炭化水素 H Cや一酸化炭 素 C Oの酸化反応を促すことで、 窒素酸化物 N O Xを酸化成分とし、 かつ炭化水 素 H Cおよび一酸化炭素 C Oを還元成分とする酸化還元反応が両者間で起こる。 すなわち、 炭化水素 H Cおよび一酸化炭素 C Oは二酸化炭素 C〇2や水 H20に酸 化され、 窒素酸化物 N O Xは窒素 N2に還元される。
ところで、 N O X触媒は排気中の酸素濃度が高い状態にあるときでも所定の限 界量の窒素酸化物 N O Xを吸収すると、 それ以上窒素酸化物 N O Xを吸収しなく なる。 そこで、 こうした N O X触媒を排気通路に備えた内燃機関では、 燃焼室で の燃焼に供される燃料を噴射する燃料噴射弁とは別に、 排気通路の N O X触媒上
流に添加弁を設けている。 そして、 添加弁から軽油等の還元剤を供給することで、
N〇 X触媒に吸収された窒素酸化物 N O Xを放出および還元浄化し、 N O X触媒 の N O X吸収能力を回復させ、 N O X触媒の N O X吸収量が限界量に達しないよ うにしている (例えば、 特開 2 0 0 3— 1 2 0 3 9 2号公報参照) 。
ところが、 添加弁の温度が高くなると、 その添加弁を通過する還元剤中の揮宪 しゃすい成分 (以下、 揮努成分という) が蒸発し、 残ったデポジット成分が添力 Π 弁の噴孔およびその周辺に付着'堆積する。 そして、 堆積物により噴孔が詰まつ た状態となり、 同噴孔から還元剤が適正に噴射されなくなるおそれがある。 これ に対しては、 添加弁が高温となるような状況下、 例えば、 内燃機関の冷却水の温 度が高いとき、 機関負荷の高いとき等に、 添加弁からの還元剤の添力卩量を増量す ることが考えられている。
上記のように還元剤の添加量が増量されると、 温度の低い還元剤が添加弁を多 く通過し、 この還元剤により添加弁の熱が奪われる。 噴孔を含む添加弁の先端部 分の温度が低下し、 上記噴孔の詰まりが抑制される。 反面、 増量された還元剤が 添加弁よりも排気下流側で燃焼すると、 その燃焼に伴い発生する熱により N O X 触媒の温度 (触媒床温) が上昇する。 そして、 N O X触媒が過度に加熱されると、 触媒床温は、 N O X触媒が適正に機能する温度範囲 (許容範囲) の上限値を越え るおそれがある。 発明の開示
本発明はこのような実情に鑑みてなされたものであって、 その目的は、 添加弁 の噴孔の詰まり-を抑制しつつ排気浄化触媒の過熱を抑制することのできる内燃機 関の排気浄化装置を提供することにある。
以下、 上記目的を達成するための構成およびその作用効果について記載する。 この発明は、 内燃機関の燃焼室での燃焼に供される燃料を噴射する燃料噴射弁 に加え、 同燃焼室に接続された排気通路の排気浄化触媒よりも上流側に添加弁を 設け、 内燃機関の運聿云状態に応じた添加量の還元剤を添加弁から噴射させるよう にした内燃機関の排気浄化装置である。 この装置は、 添加弁の温度およびその相 - 当値の少なくともいずれかの上昇に伴い添加量を増量させるとともに、 内燃機関
の運転に伴い変化し、 かつ添加量以外に排気浄化触媒の触媒温度に影響を及ぼす パラメータを、 触媒温度が許容範囲の上限値を越えないように制御する制御部を 備 る。
この構成によれば、 制御部により、 添加弁の温度上昇に伴い添加量が増量され、 この増量された還元剤が添加弁を通過することで、 その添加弁の熱が奪われる。 添加弁の温度が低下し、 還元剤中の揮発成分の蒸発が抑制され、 添加弁における 噴孔の詰まりが抑制される。 反面、 上記増量された還元剤が燃焼し、 その燃焼に 伴う熱により排気浄化触媒の温度が上昇する。 これに対し、 内燃機関の運転に伴 い変化し、 かつ上記添加量以外に排気浄化触媒の温度に影響を及ぼすパラメータ が制御部によって制御される。 従って、 上記還元剤の増量により排気浄ィヒ触媒の 温度が上昇しても、 上記パラメータの制御により、 排気浄化触媒の触媒温度が、 その許容範囲の上限ィ直を越えるのを抑制することが可能となる。
このように、 この発明によれば、 添加量の増量により添加弁の噴孔の詰まりを 抑制しつつ、 上記パラメータの制御により排気浄化触媒の過熱を抑制することが 可能となる。
好ましくは、 制御部は、 添加弁の温度および相当値の少なくともいずれかが高 いときには低いときよりも添加量の増量度合いを大きくする。
ここで、 添加弁から噴射される還元剤の添加量が多くなるに従い、 その還元剤 によって添加弁から奪われる熱量が多くなり、 添加弁の温度の低下度合いが大き くなる。 この点、 この発明では、 添加弁の温度およびその相当値の少なくともい ずれかが高いときには低いときよりも添カ卩量の増量度合いが大きくされる。 この ように、 添加弁の温度に応じて添加量の増量度合いが変えられる。 従って、 添加 弁の温度が比較的低いときには、 過剰に添加量が増量されて添加弁が過冷却され るのを抑制することができる。 また、 添加弁の温度が高いときには、 添加量が不 足して添加弁が十分に冷却されずに添加弁の噴孔が詰まる現象を抑制することが できる。
さらに好ましくは、 添加弁は、 内燃機関に設けられた冷却水通路の近傍に配置 され、 制御部は、 冷却水通路を流れる冷却水の温度を相当値として用いる。
この構成によれば、 添加弁が、 内燃機関に設けられた冷却水通路の近傍に配置
されていることから、 添加弁の温度は、 同冷却水通路を流れる冷却水の熱の影響 を受けやすい。 内燃機関の低 '中負荷運転時等、 冷却水の温度がさほど高くない ときには、 添加弁は冷却水によって熱を奪われて冷却され、 噴孔での詰まりが起 こりにくい。 内燃機関の高負荷運転時等、 冷却水の温度が高いときには、 添加弁 の冷却効率が低下し、 添加弁の温度が、 還元剤中の揮発成分の蒸発する温度を越 えるおそれがある。 従って、 この発明によると、 冷却水の温度を添加弁の温度の 相当値として用い、 これに基づいて添加量を増量することで、 上述した発明の効 果が確実に得られる。
さらに好ましくは、 制御部は、 パラメータの制御として、 燃料噴射弁による燃 料の噴射量を制限する。
内燃機関および排気浄化装置では、 燃料噴射弁からの燃料の噴射量が減少する と、 それに応じて排気温度および触媒温度が低下する。 従って、 この発明による ように噴射量の制限が行われることにより、 行われない場合よりも噴射量が少な くなり、 排気温度が低くなる。 これに伴い触媒温度が低くなつて、 許容範囲の上 限値を上回りにくくなる。 このように、 この発明によれば、 上述した発明の効果 が確実に得られる。
さらに好ましくは、 制御部は、 添加弁の温度および相当値の少なくともいずれ かが高いときには低いときょりも燃料の噴射量を多く制限する。
ここで、 制限を受ける噴射量が多いほど、 その制限による排気温度および触媒 温度の低下量 (代) が多くなる。 この点、 この発明では、 添加弁の温度およびそ の相当値の少なくとも一方が高いとき (添加量の増量度合いが大きく触媒温度の 上昇量が多いとき) には低いときよりも噴射量が多く制限される。 このように、 . 添加弁の温度およびその相当値の少なくとも一方に応じて噴射量の制限度合いを 変えることで、 添加弁の温度およびその相当値の少なくとも一方が比較的低いと きには、 噴射量が過剰に制限されて機関出力が不要に低下するのを抑制すること ができる。 また、 添加弁の温度およびその相当値の少なくとも一方が高いときに は、 噴射量の制限が不足し (噴射量が多く) 、 そのことが原因で触媒温度が許容 範囲の上限値を越えるのを抑制することができる。
さらに好ましくは、 制御部は、 パラメータの制御として、.燃料噴射弁による燃
料の噴射量を減量する。
内燃機関および排気浄化装置では、 燃料噴射弁からの燃料の噴射量が減少する と、 それに応じて排気温度および触媒温度も低下する。 従って、 この発明による ように噴射量の減量が行われることにより、 行われない場合よりも排気温度が低 くなる。 これに伴い触媒温度が低くなって許容範囲の上限値を上回りにくくなる。 このようにこの発明によれば、 上述した発明の効果が確実に得られる。
さらに好ましくは、 制御部は、 添加弁の温度および相当値の少なくともいずれ かが高いときには低いときょりも燃料の噴射量を多く減量する。
ここで、 燃料の噴射量が多く減量される (P貴射量が少なくなる) ほど、 その減 量による排気温度および触媒温度の低下量 (代) が多くなる。 この点、 この発明 では、 添加弁の温度およびその相当値の少なくとも一方が高いとき (添加量の増 量度合いが大きく触媒温度の上昇量が多いとき) には低いときよりも噴射量が多 く減量される。 このように、 添加弁の温度およびその相当値の少なくとも一方に 応じて噴射量の減量度合いを変えることで、 添加弁の温度およびその相当値の少 なくとも一方が比較的低いときには、 噴射量が過剰に減量されて機関出力が不要 に低下するのを抑制することができる。 また、 添加弁の温度おょぴその相当値の 少なくとも一方が高いときには、 噴射量の減量が不足して (噴射量が多く) 触媒 温度が許容範囲の上限値を越えるのを抑制することができる。 図面の簡単な説明
図 1は、 本発明を具体化した第 1の実施例の構成図である。 。
図 2は、 エンジンにおける添加弁およびその周辺箇所を示す概略平面図である。 図 3は、 還元剤の添加期間および添加間隔を説明するタイミングチャートであ る。
図 4 Aは、 嘖孔の詰まり抑制処理の手順を示すフローチャートである。
図 4 Bは、 噴射量制限処理の手順を示すフローチャートである。
図 5は、 エンジン水温と、 触媒床温、 添加量および噴射量上限値との関係を示 す特性図である。
図 6は、 本発明の第 2の実施例において、 噴射量減量処理の手順を示すフ口一
チャートである。
図 7は、 エンジン水温と補正量との関係を示す特性図である。
図 8は、 エンジン水温と、 触媒床温、 添加量および補正量との関係を示す特性 図である。 発明を実施するための最良の形態
第 1の実施例
以下、 本発明を具体化した第 1の実施例について図 1〜図 5を参照して説明す る。 図 1は、 本実施例が適用される内燃機関としての多気筒ディーゼルエンジン (以下、 単にエンジンという) 1 1およびその排気浄ィ匕装置 1 2の構成を示して いる。 また、 図 2はエンジン 1 1の概略平面図を示している。
エンジン 1 1は、 大きくは、 吸気通路 1 3、 気筒 1 0毎の燃焼室 1 4、 および 排気通路 1 5を備えて構成されている。 吸気通路 1 3の最上流部には、 同吸気通 路 1 3に吸入された空気を浄化するエアクリーナ 1 6が設けられている。 ェンジ ン 1 1においては、 エアクリーナ 1 6から吸気下流側に向けて順に、 吸気通路 1 3内の空気の流量を検出するェアフロメータ 1 7、 ターボチャージャ 1 8のコン プレッサ 1 8 A、 インタークーラ 1 9、 および吸気絞り弁 2 1が配設されている。 そして、 吸気通路 1 3は、 吸気絞り弁 2 1の吸気下流側に設けられた吸気マニホ 一ルド 2 .2において分岐されており、 この分岐部分を通じて各気筒 1 0の燃焼室 1 4に接続されている。
エンジン 1 1のシリンダへッド 2 3には、 燃焼室 1 4内での燃焼に供される燃 料を噴射する燃料噴射弁 2 4が気筒 1 0毎に設けられている。 各燃料噴射弁 2 4 には、 燃料供給路 2 5を通じて燃料タンク 2 6から燃料が供給される。 燃料供給 路 2 5には、 燃料タンク 2 6から燃料を吸引して加圧吐出する燃料ポンプ 2 7、 およびその吐出された高圧燃料を蓄圧する高圧燃料配管であるコモンレール 2 8 が設けられている。 そして、 各気筒 1 0の燃料噴射弁 2 4はコモンレール 2 8に それぞれ接続されている。
一方、 排気通路 1 5の各燃焼室 1 4との接続部分は排気ポート 2 9となってい る。 排気通路 1 5には、 各燃焼室 1 4から排気ポート 2 9を通じて排出された排
気を集合させるための排気マ二ホールド 3 1、 およびターボチャージャ 1 8のタ 一ビン 1 8 Bが設けられている。
さらに、 エンジン 1 1には、 排気の一部を吸気中に再循環させる排気再循環 (以下、 「E G R」 という) 装置 3 2が採用されている。 £ 0 1装置3 2は、 吸 気通路 1 3と排気通路 1 5とを連通させる E G R通路 3 3を備えて構成されてい る。 E G R通路 3 3の上流側は、 排気通路 1 5の排気マ二ホールド 3 1とタービ ン 1 8 Bとの間に接続されている。 E G R通路 3 3の途中には、 その上流側から 順に、 再循環される排気を浄化する E G Rクーラ触媒 3 4、 再循環される排気を 冷却する E G Rクーラ 3 5、 再循環される排気の流量を調整する E G R弁 3 6が 配設されている。 そして E G R通路 3 3の下流側は、 吸気通路 1 3の吸気絞り弁 2 1と吸気マ二ホールド 2 2との間に接続されている。
こうしたエンジン 1 1では、 吸気通路 1 3に吸入された空気が、 エアタリーナ 1 6で浄化された後、 ターボチャージャ 1 8のコンプレッサ 1 8 Aに導入される。 コンプレッサ 1 8 Aでは、 導入された空気が圧縮され、 インターク—ラ 1 9に吐 出される。 圧縮によって高温となった空気は、 インタークーラ 1 9にて冷却され た後、 吸気絞り弁 2 1および吸気マユホールド 2 2を通って各気筒 1 0の燃焼室 1 4に分配供給される。 こうした吸気通路 1 3内の空気の流量は吸気絞り弁 2 1 の開度制御を通じて調整される。 また、 その空気の流量、 すなわち吸入空気量は ェアフロメータ 1 7により検出される。
空気の導入された燃焼室 1 4では、 各気筒 1 0の圧縮行程において燃料噴射弁 2 4から燃料が噴射される。 そして、 吸気通路 1 3を通じて導入された空気と燃 料噴射弁 2 4から噴射された燃料との混合気が燃焼室 1 4内で燃焼される。 この ときに生じた高温高圧の 焼ガスによりビストン 3 7が往復動され、 出力軸であ るクランクシャフト 3 8が回転されて、 エンジン 1 1の駆動力 (出力トルク) が 得られる。 エンジン 1 1には、 クランクシャフト 3 8の回転速度であるエンジン 回転速度 N Eを検出する N Eセンサ 3 9が設けられている。
各気筒 1 0の燃焼室 1 4での燃焼により生じた排気は、 排気マユホールド 3 1 を通じてターボチャージャ 1 8のタービン 1 8 Bに導入される。 この導入された 排気の流勢によってタービン 1 8 Bが駆動されると、 吸気通路 1 3に設けられた
コンプレッサ 18 Aが連動して駆動され、 上記空気の圧縮が行われる。
一方、 上記燃焼により生じた排気の一部は EGR通路 33に導入される。 EG R通路 33に導入された排気は、 EGRクーラ触媒 34で浄化され、 EGRクー ラ 35で冷却された後、 吸気通路 13の吸気絞り弁 21の吸気下流側の空気中に 再循環される。 こうして再循環される排気の流量は、 EGR弁 36の開度制御を 通じて調整される。
上記のようにしてエンジン 1 1が構成されている。 次に、 このエンジン 1 1力 ら排出される排気を浄ィヒするための排気浄化装置 12について説明する。 排気浄 化装置 12は、 添加弁 ·41を備えるほか、 排気浄化触媒として複数 (3つ) の触 媒コンバータ (第 1触媒コンバータ 42、 第 2触媒コンバータ 43、 および第 3 触媒コンバータ 44) を備えて構成されている。
最上流の第 1触媒コンバータ 42はタービン 18 Βの排気下流側に配設されて いる。 第 1触媒コンバータ 42の内部には吸蔵還元型の NO X触媒が収容されて いる。 NO X触媒は、 例えばハニカム形状の構造体を担体とし、 その表面に、 酸 素の存在下で窒素酸化物 NO Xを吸収する能力を有する NO X吸収剤と、 炭化水 素 HCを酸化させる能力を有する貴金属触媒 (貴金属) とを担持させることによ り構成されている。
NO X吸収剤は、 排気中の酸素濃度が高い状態では窒素酸化物 NO Xを吸収し、 同酸素濃度が低い状態では窒素酸化物 NO Xを放出する特性を有する。 また、 排 気中に窒素酸化物 NOxが放出されたとき、 排気中に炭化水素 HC、 一酸化炭素 C〇等が存在してレ、れば、 貴金属触媒がこれら炭化水素 H Cや一酸化炭素 C〇の 酸化反応を促すことで、 窒素酸化物 NOxを酸化成分とし、 かつ炭化水素 HCお よび一酸化炭素 C Oを還元成分とする酸化還元反応が両者間で起こる。 すなわち、 炭化水素 H Cおよび一酸化炭素 C Oは二酸化炭素 C 02や水 H20に酸化され、 窒 素酸ィヒ物 NOxは窒素 N2に還元される。
第 2触媒コンバータ 43は第 1触媒コンバータ 42の排気下流側に配設されて いる。 第 2触媒コンバータ 43の内部には、 吸蔵還元型の NOx触媒が収容され ている。 この NOx触媒は、 排気中のガス成分の通過を許容し、 かつ同排気中の 微粒子物質 PMの通過を阻止する多孔質材を備えている。 そして、 NOx触媒で
は、 この多孔質材が担体とされ、 この担体に N O X吸収剤と貴金属触媒とが担持 されている。 第 3触媒コンバータ 4 4は第 2触媒コンバータ 4 3の排気下流側に 配設されている。 第 3触媒コンバータ 4 4には、 排気中の炭化水素 H Cおよび一 酸化炭素 C〇の酸ィ匕を通じて排気の浄化を行う酸化触媒が担持されている。
添加弁 4 1は、 お気通路 1 5の第 1触媒コンバータ 4 2よりも上流側に配置さ れている。 本実施例では、 この条件を満たす箇所として、 シリンダヘッド 2 3に おける排気ポート 2 9の近傍部分が添加弁 4 1の取付箇所とされている。 そして、 添加弁 4 1は、 その先端の噴孔 4 1 Aを排気ポート 2 9に臨ませた状態でシリン ダへッド 2 3に取付けられている。 この位置は、 図 2に示すように、 シリンダへ ッド 2 3内に設けられた冷却水通路としてのウォータジャケット 4 5の近くであ る。 こうした箇所に添加弁 4 1を取付けるのは、 ゥォ一タジャケット 4 5を流れ るエンジン冷却水を利用して添加弁 4 1を冷却するためである。
図 1に示すように、 添加弁 4 1は燃料通路 4 6を通じて前記燃料ポンプ 2 7に 接続されており、 同燃料ポンプ 2 7から供された燃料を還元剤として排気中に噴 射して添加する。 この添加された燃料により排気を一時的に還元雰囲気として、 第 1触媒コンバータ 4 2および第 2触媒コンバータ 4 3に吸蔵されている窒素酸 化物 N O xを還元浄化する。 さらに、 第 2触媒コンバータ 4 3では微粒子物質 P Mの浄化も同時に実行する。
なお、 シリンダへッド 2 3には、 ウォータジャケット 4 5を流れるエンジン冷 却水の温度 (エンジン水温 T HW) を検出する水温センサ 4 7が取付けられてい る。 また、 排気通路 1 5において第 1触媒コンバータ 4 2と第 2触媒コンバータ 4 3との間の空間には、 同空間を通過する排気の温度 (排気温度) 、 すなわち第 2触媒コンバータ 4 3に流入する前の排気の温度を検出する排気温センサ 4 8が 配設されている。 また、 排気通路 1 5において第 2触媒コンバータ 4 3よりも下 流の空間には、 同空間を通過する排気の温度、 すなわち第 2触媒コンバータ 4 3 を通過した直後の排気の温度を検出する排気温センサ 4 9が配設されている。 ま た排気通路 1 5には、 第 2触媒コンバータ 4 3の排気上流側における排気圧力と 排気下流側における排気圧力との差圧を検出する差圧センサ 5 1が配設されてい る。 さらに、 排気通路 1 5の第 1触媒コンバータ 4 2の排気上流側、 および第 2
触媒コンバータ 4 3と第 3触媒コンバータ 4 4との間には、 排気中の酸素濃度を 検出する酸素センサ 5 2 , 5 3がそれぞれ配設されている。
以上説明したエンジン 1 1および排気浄化装置 1 2の制御は、 制御手段として の電子制御装置 6 1に 'よって行われる。 電子制御装置 6 1は、 エンジン 1 1の制 御に係る各種処理を実行する C P U、 その制御に必要なプログラムやデータが記 憶された R OM、 C P Uの処理結果等が記憶される R AM、 外部との情報のやり 取りを行うための入 '出力ポート等を備えて構成されている。
電子制御装置 6 1の入力ポートには、 上述した各センサに加え、 運転者による アクセル踏込量を検出するアクセルセンサ 5 4、 コモンレール 2 8の内圧 (レー ノレ圧) を検出するコモンレールセンサ 5 5、 吸気絞り弁 2 1の開度を検出する絞 り弁センサ 5 6等が接続されている。
また、 電子制御装置 6 1の出力ポートには、 上記吸気絞り弁 2 1、 燃料噴射弁 2 4、 燃料ポンプ 2 7、 添加弁 4 1、 E G R弁 3 6等が接続されている。 そして 電子制御装置 6 1は、 上記各センサの検出結果に基づき、 それら出力ポートに接 続された機器類を制御する とで、 エンジン 1 1の運転に係る制御、 排気浄化に 係る制御等を実施する。
電子制御装置 6 1は、 エンジン 1 1の運転に係る制御の 1つとして燃料噴射制 御を実行する。 この燃料噴射制御では、 電子制御装置 6 1は、 エンジン 1 1の運 転状態に最適な基本噴射量を、 アクセルセンサ 5 4によるアクセル踏込量、 およ び N Eセンサ 3 9によるエンジン回転速度 N Eに基づき算出する。 また、 そのェ ンジン回転速度 N Eにより決定される基本最大噴射量 (理論上噴射可能な量) に、 各種センサからの信号による補正を加え最大噴射量を決定する。 上記基本噴射量 および最大噴射量を比較し、 噴射量の少ない方を目標噴射量として設定する。 ま た、 上記ァクセノレ踏込量およびエンジン回転速度 N Eに基づき基本目標噴射時期 を算出し、 これを各種センサからの信号によって補正し、 そのときのエンジン 1 1の運転状態に最適な目標噴射時期を算出する。 そして、 これらの目標噴射量お よび目標噴射時期に基づき燃料噴射弁 2 4に対する通電を制御して、 同燃料噴射 弁 2 4を開閉させる。
また、 電子制御装置 6 1は、 排気の浄化に係る制御の 1つとして、 排気浄化触
媒に対する制御を実行する。 この制御には、 触媒再生制御モード、 硫黄被毒回復 制御モード、 N O X還元制御モードおよび通常制御モードという 4つの触媒制御 モードが設定されており、 電子制御装置 6 1は触媒コンバータ 4 2〜 4 4の状態 に応じた触媒制御モードを選択して実行する。
触媒再生制御モードとは、 特に第 2触媒コンバータ 4 3内に堆積している微粒 子物質 P Mを燃焼させて二酸化炭素 C〇2と水 H20にして排出する制御を行うモ ードである。 硫黄被毒回復制御モードとは、 第 1触媒コンバータ 4 2および第 2 触媒コンバータ 4 3内の N O X触媒が硫黄酸化物 S O Xによつて被毒されて窒素 酸化物 N O Xの吸蔵能力が低下した場合に硫黄酸化物 S O Xを放出させる制御を 行うモードである。
N O x還元制御モードとは、 N〇 X触媒における N O X吸収剤の N O x吸収量 が限界量に達する前に、 添加弁 4 1を通じて排気通路 1 5の第 1触媒コンバータ 4 2上流に還元剤を添加供給することで、 N O x触媒に吸収された窒素酸化物 N O Xを放出および還元浄ィ匕し、 N O X吸収剤の N O X吸収能力を回復させるモー ドである。
このモードでは、 例えば図 3に示すように、 添加弁 4 1の開弁および閉弁から なる開閉サイクルが繰り返される。 開弁により還元剤が添加弁 4 1かち添加され、 閉弁により添加が停止される。 そして、 添加弁 4 1が開弁している期間 (添加期 間) 、 および開弁開始から次回の開弁開始までの時間 (添加間隔) を変化させる ことにより、 還元剤の添加量が調節される。 すなわち、 添加期間が長くなるほど、 また添加間隔が短くなるほど添加量が多くなる。 なお、 本実施例では、 添加間隔 を変更することで添加量の調整を行うようにしている。
上記以外の状態が通常制御モードとなり、 このモードでは添加弁 4 1からの還 元剤添加はなされない。
ところで、 上記添加弁 4 1の噴孔 4 1 Aは排気ポート 2 9に臨ませられている ことから、 噴孔 4 1 Aの周辺を含む添加弁 4 1の先端部分は排気に晒されて高温 になりやすい。 また、 エンジン 1 1の高負荷運転時等において、 ウォータジャケ ット 4 5を流れるエンジン冷却水の温度 (エンジン水温 T HW) が高いときには、 そのエンジン冷却水による添加弁 4 1の冷却効率が低下し、 同添加弁 4 1が高温
となりやすい。 こうした高温化に伴い還元剤中に含まれる揮発成分が蒸発し、 残 つたデポジット成分が添加弁 4 1の噴孔 4 1 Aやその周辺に付着 .堆積する。 そ して、 堆積物により嘖孔 4 1 Aが詰まった状態となり、 噴孔 4 1 Aから還元剤が 適正に噴射されず、 噴霧状態の悪化等を引起こすおそれがある。 こうした不具合 を解消するためには、 添加弁 4 1の先端部分、 特に噴孔 4 1 Aの周辺を適度に冷 却することが有効である。
そこで、 本実施例では、 上記 N O X還元制御に際し添加弁 4 1の噴孔 4 1 Aが 詰まるのを抑制する制御を行うようにしている。 図 4 Aは、 詰まり抑制処理の具 体的な手順を示すフローチャートである。 このフローチャートに示される一連の 処理は、 所定時間毎の処理として電子制御装置 6 1により実行される。
この詰まり抑制処理では電子制御装置 6 1は、 まずステップ 1 1 0において、 エンジン回転速度 N Eに基づき還元剤の目標添加期間、 すなわち添加弁 4 1の目 標開弁期間を算出する。 また、 ステップ 1 2 0において還元剤の目標添加間隔を 算出する。 この算出に際しては、 例えばエンジン回転速度 N Eおよび目標噴射量 と、 目標添加間隔との関係を予め規定したマップを参照する。 このマップでは、 エンジン回転速度 N Eが高くなるに従い、 また目標噴射量が多くなるに従い添加 間隔が短くなるよう規定されている。 そして、 上記マップからそのときのェンジ ン回転速度 N Eおよび目標噴射量に対応する目標添加間隔を割り出す。 ここでの 目標噴射量としては、 上述した燃料噴射制御に際し別途に算出されたものが用い られる。
続いて、 ステップ 1 3 0において、 上記ステップ 1 2 0で算出した目標添加間 隔を、 添加弁 4 1の温度又はその相当値により補正する。 ここでは、 添加弁 4 1 の温度の相当ィ直として、 水温センサ 4 7によるエンジン水温 T HWを用いている。 これは、 添加弁 4 1が、 上述したようにシリンダヘッド 2 3に設けられたウォー タジャケット 4 5の近傍に配置されていることから、 添加弁 4 1の温度がウォー タジャケット 4 5を流れるエンジン冷却水の熱の影響を受けやすいためである。 補正に際しては、 エンジン水温 T HWが高いときには低いときよりも目標添加間 隔が小さくなるように、 すなわち単位時間当たりの添加回数が多くなって添加量 が増量するように、 上記ステップ 1 2 0での目標添加間隔を補正する。
そして、 ステップ 1 4 0において、 上記ステップ 1 1 0での目標添加期間と、 ステップ 1 3 0での補正後の目標添カ卩間隔とに基づき添加弁 4 1に対する通電を 制御する。 この通電 (こより添加弁 4 1が開閉駆動され、 噴孔 4 1 Aから還元剤が 排気ポート 2 9に噴射される。 ステップ 1 4 0の処理を経た後に、 一連の詰まり 抑制処理を終了する。
このように、 エンジン水温 T HWが高くなると、 エンジン冷却水による添加矛 4 1の冷却効率が低下して同添加弁 4 1の温度が高くなるが、 添加量の増量によ り、 排気の熱の影響をあまり受けておらず温度の低い多くの還元剤が添加弁 4 1 を多く通過する。 その通過する還元剤により添加弁 4 1の熱が多く奪われ、 添加 弁 4 1の温度が、 還元剤中の揮宪成分が蒸発する温度よりも低くなる。 その結果、 同成分の蒸発に起因する嘖孔 4 1 Aおよび嘖孔周りでのデポジットの形成が抑制 される。
また、 上記添加量の増量に際しては、 エンジン水温 T HWが高いときには低い ときよりも増量度合いが大きくされる。 換言すると、 添加弁 4 1の温度に相関の あるエンジン水温 T HWに応じて添加量の増量度合いが変えられる。 従って、 添 加弁 4 1の温度 (エンジン水温 T HW) が比較的低いときには、 添加量の増量度 合いが小さく、 増量された還元剤によって添加弁 4 1から奪われる熱量は比較的 少ない。 そのため、 増量された還元剤によって添加弁 4 1が過冷却されることが 起こりにくい。 また、 添加弁 4 1の温度 (エンジン水温 T HW) が高いときには、 添加量の増量度合いが大きく、 この増量された還元剤によって添加弁 4 1から奪 われる熱量が多くなる。 そのため、 添加量の増量が不足して添 ¾1弁 4 1が十分に 冷却されないといった現象が起こりにくい。
反面、 上記のように増量された還元剤が燃焼し、 その燃焼に伴い発生する熱に より第 1および第 2触媒コンバータ 4 2, 4 3における N O X触媒の温度 (触媒 床温) が上昇する。 そして、 N O X触媒が過度に 口熱されると、 同 N O X触媒が 適正に機能する温度範囲 (許容範囲) の上限値を越えるおそれがある。
そこで、 本実施例では、 還元剤の添加量の増量に伴い触媒床温が許容範囲の上 P艮値を越えないようにする制御として、 燃料噴射弁 2 4からの燃料の噴射量を制 限する制御を行うようにしている。 図 4 Bは、 噴射量制限処理の具体的な手順を
示すフローチャートである。 このフローチャートに示される一連の処理は、 所定 時間毎の処理として電子制御装置 6 1により実行される。
この噴射量制限処理では電子制御装置 6 1は、 まずステップ 2 1 0において、 水温センサ 4 7によるそのときのエンジン水温 T HWを読み込む。 次に、 ステツ プ 2 2 0において、 上記ステップ 2 1 0でのエンジン水温 T HWが、 予め設定さ れたしきい値 αよりも高いかどうかを判定する。 しきい値 は、 エンジン水温 Τ HWの上昇に応じて増量された還元剤の添加が行われた場合に、 触媒床温が許容 範囲の上限値を越えないことを条件に、 エンジン水温 T HWが採り得る温度範囲 の上限値又はそれに近い値である。
上記ステップ 2 2 0の判定条件が満たされている (T HW> o 場合には、 こ のまま目標噴射量に従って燃料が噴射されると、 排気の熱、 還元剤の燃焼に伴い 発生する熱等によつて触媒床温が許容範囲の上限値を越えるおそれがある。 その ため、 触媒床温が上記上限値を越えないように排気温度を低下させるベく、 ステ ップ 2 3 0において上記ステップ 2 1 0でのエンジン水温 T HWに応じた噴射量 上限値を設定する。 この嘖射量上限値は、 エンジン水温 T HWが高いときには低 いときよりも低い値に、 すなわち、 エンジン水温 T HWのしきい値 αからの乖離 度合いが大きいときには小さいときよりも低い値に設定される。
続いて、 ステップ 2 4 0において、 上述した燃料噴射制御に際し別途に算出さ れた目標噴射量が、 上記ステップ 2 3 0での噴射量上限値よりも多いか否かを判 定する。 この判定条件が満たされていると (目標噴射量 >噴射量上限値) 、 ステ ップ 2 5 0において噴射量上限値を、 添加弁 4 1に指令される最終的な目標噴射 量として設定する。 すなわち、 目標噴射量を噴射量上限値によって制限する。 ス テツプ 2 5 0の処理を経た後、 一連の噴射量制限処理を終了する。
これに対し、 上記ステップ 2 2 0の判定条件が満たされていない (T HW α ) 場合、 およびステップ 2 4 0の判定条件が満たされていない (目標噴射量≤ 噴射量上限値) 場合には、 いずれも触媒床温が許容範囲の上限値を越えるおそれ がないと考えられる。 そのため、 前者の場合には上記ステップ 2 3 0〜 2 5 0の 処理を経ることなく、 また後者の場合には上記ステップ 2 5 0の処理を経ること なく、 一連の噴射量制限処理を終了する。 これらの場合には、 目標噴射量が制限
されることなくそのまま最終的な目標噴射量として用いられる。
従って、 エンジン水温 T HWが高くなると、 上述した詰まり抑制処理により噴 孔 4 1 Aの詰まりを抑制するために添加弁 4 1からの還元剤の添加量が増量され、 しかもエンジン水温 T HWが高いときには低いときよりも増量度合いが大きくさ れて、 触媒床温が高くなる。 し力 し、 エンジン水温 T HWがしきぃィ直 ο;を越えて 触媒床温が許容範囲の上限値を越えそうになると、 そのエンジン水温 T HWに基 づき噴射量上限値が設定される。 目標噴射量が噴射量上限値を越えないように制 限、 すなわち、 目標噴射量が噴射量上限値を上回る場合にはその目標噴射量が実 質的に減量される。 目標噴射量の制限が行われることにより、 行われない場合よ りも目標噴射量が少なくなり、 それに応じた量の燃料が噴射■燃焼されることで 排気温度が低くなる。 排気による触媒床温の上昇分が小さくなつて、 触媒床温が 許容範囲の上限値を上回りにくくなる。
また、 上記目標噴射量の制限に際しては、 エンジン水温 T HWが高いときには 低いときよりも噴射量上限値が低い値に設定され、 目標噴射量が多く制限される。 換言すると、 目標添加間隔の補正 (添加量の増量) に用いられるエンジン水温 T HWに応じて目標噴射量の制限度合いが変えられる。 従って、 エンジン水温 T H Wが比較的低いとき、 すなわち添加量の増量度合いが比較的小さくて増量による 触媒床温の上昇量が少ないときには、 目標噴射量の制限度合いが小さい。 そのた め、 目標噴射量が過剰に制限されてエンジン 1 1の出力が不要に低下する現象が 起こりにくレ、。 また、 エンジン水温 T HWが高いとき、 すなわち添カ卩量の増量度 合いが大きくて増量による触媒床温の上昇量が多いときには、 目標噴射量の制限 度合いが大きい。 そのため、 目標噴射量の制限が不足して (目標噴射量が適正値 よりも多くて) 触媒床温が許容範囲の上限値を越える現象が起こりにくい。
図 5は、 エンジン水温 T HWと、.触媒床温、 還元剤の添加量および噴射量上限 値との関係を示している。 ここでは、 エンジン水温 T HWがしきい値 より も低 い温度領域では、 噴射量上限値による目標噴射量の制限が行われない。 また、 同 温度領域では、 添加弁 4 1における噴孔 4 1 Aの詰まりを抑制するために、 ェン ジン水温 T HWが高いときには低いときよりも還元剤の添加量が増量される。 上 記添加量の増量に伴い、 すなわちエンジン水温 T HWの上昇に伴い触媒床温も高
くなつて、 許容範囲の上限値に近づく。
ェンジン水温 T HWがしきい値 α以上になると、 ェンジン水温 T HWに応じた 噴射量上限値が設定される。 目標噴射量がこの噴射量上限値を上回ると、 その噴 射量上限値が目標噴射量とされることで、 目標噴射量が少なくなり排気温度が低 下し、 それに伴い触媒床温が低下する。 この低下により、 触媒床温が許容範囲の 上限値を越えることが抑制される。 触媒床温の許容範囲の上限値からの乖離度合 いが大きくなり、 添加量のさらなる増量が可能となる。
一方で、 上記エンジン水温 T HWの上昇により噴孔 4 1 Αでの詰まりが発生し やすくなる。 そこで、 エンジン水温 T HWが所定値 /3 ( >ひ) 以上になって添カロ 量が増量されると、 噴孔 4 1 Aの詰まりが抑制される。 反面、 添加量の増量に伴 い触媒床温が上昇して上記許容範囲の上限値に近づく。 これに対しては、 ェンジ ン水温 T HWの上昇に応じて噴射量上限値が低い値に設定される。 この噴 量上 限値による制限が行われることで、 目標噴射量が少なくなって、 排気温度および 触媒床温が低下する。
以上詳述した本実施例によ ば、 次の効果が得られる。
( 1 ) 添加弁 4 1の温度上昇に伴い還元剤の添加量を増量するとともに、 触媒 床温が許容範囲の上限値を越えないように、 添加量以外に触媒床温に影響を及ぼ すパラメータである目標噴射量を制御するようにしている。 そのため、 添加量の 増量により嘖孔 4 1 Aでの詰まりを抑制しつつ、 上記目標噴射量の制御により N O X触媒の過熱を抑制することができる。
( 2 ) 添加弁 4 1の温度の相当値としてエンジン水温 T HWを用い、 このェン ジン水温 T HWが高いときには低いときよりも添加量の増量度合いを大きくして いる。 このように、 エンジン水温 T HWに応じて添加量の増量度合いを変えるこ とで、 添加弁 4 1の温度が比較的低いときには、 過剰に添加量が増量されて添カロ 弁 4 1が過冷却されるのを抑制することができる。 また、 添加弁 4 1の温度が高 いときには、 添加量が不足して添加弁 4 1が十分に冷却されずに噴孔 4 1 Aが詰 まるのを抑制することができる。
( 3 ) エンジン水温 T HWに応じた噴射量上限値を設定し、 目標噴射量がこの 噴射量上限値を越える場合に、 同噴射量上限値を最終的な目標噴射量としている。
こうした噴射量上限値を用いた制限を行うことにより、 行わない場合よりも目標 噴射量が少なくなつて排気温度が低くなる。 これに伴い触媒床温が低くなって、 許容範囲の上限値を上回りにくくなる。 従って、 上述した (1 ) の効果が確実に 得られる。
また、 上記制限により、 触媒床温が許容範囲の上限値を越えそうな場合にのみ、 すなわち必要な場合にのみ目標噴射量を減量することができる。 そのため、 ェン ジン水温 T HWがしきい値 αを越えた場合に必ず目標噴射量を減量する場合に比 ベ、 不要な目標噴射量の減量を少なくすることができる。
( 4 ) エンジン水温 T HWが高いときには低いときよりも噴射量上限値を低い 値に設定することで、 目標噴射量の制限量を多くしている。 このように、 ェンジ ン水温 T HWに応じて目標噴射量の制限度合いを変えることで、 エンジン水温 Τ HWが比較的低いときには、 目標噴射量が過剰に制限されてエンジン 1 1の出力 が不要に低下するのを抑制することができる。 また、 エンジン水温 T HWが高い ときには、 目標噴射量の制限が不足して (目標噴射量が多く) 触媒床温が許容範 囲の上限 ^(直を越えるのを抑制することができる。
( 5 ) 添加弁 4 1の温度は、 エンジン水温 T HWのほかにも排気の熱の影響を 受ける。 排気温度は燃料噴射量に応じて変化し、 燃料噴射量が少ないほど低くな る傾向にある。 この点、 第 1の実施例では、 エンジン水温 T HWの上昇に応じて 目標噴射量を制限して少なくしている。 そのため、 添加量の増量に加え、 目標噴 射量の減量を行うことで、 添加弁 4 1の温度を下げて、 噴孔 4 1 Αが詰まる現象 を一層効果的に抑制することができる。
第 2の実施例
次に、 本発明を具体化した第 2の実施例について、 図.6〜図 8を参照して説明 する。 第 2の実施例の第 1の実施例との相違点は、 還元剤の添加量の増量に伴い 触媒床温が許容範囲の上限 :を越えないようにする制御として、 上記目標噴射量 の制限に代えて、 目標噴射量を減量補正するようにしている点である。 なお、 ェ ンジン 1 1および排気浄化装置 1 2の構成は第 1の実施例と同様であるため、 こ こでは説明を繰り返さない。
図 6は、 噴射量減量処理の具体的な手順を示すフローチャートである。 このフ
ローチャートに示される一連の処理は、 所定時間毎の処理として電子制御装置 6 1により実行される。
この噴射量減量処理では電子制御装置 6 1は、 まずステップ 3 1 0において、 水温センサ 4 7によるそのときのエンジン水温 T HWを読み込む。 次に、 ステツ プ 3 2 0において、 上記ステップ 3 1 0でのエンジン水温 T HWがしきい値 よ りも高いかどうかを判定する。 しきい値ひは、 第 1の実施例で説明したものと同 じである。
上記ステップ 3 2 0の判定条件が満たされている (T HW> Q! ) 場合には、 こ のまま目標噴射量に従って燃料が噴射されると、 排気の熱、 還元剤の燃焼に伴い 発生する熱等によって触媒床温が許容範囲の上限値を越えるおそれがあると考え られる。 そのため、 触媒床温が上記上限値を越えないように排気温度を低下させ る処理を行う。 詳しくは、 ステップ 3 3 0において、 上記ステップ 3 1 0でのェ ンジン水温 T HWに基づき、 目標噴射量を減量補正するための補正量 (> 0 ) を 算出する。 この補正量としては、 例えば図 7に示すように、 エンジン水温 T HW が低いときには少ないが、 エンジン水温 T HWが高くなるに従い、 すなわち、 ェ ンジン水温 T HWのしきい値 αからの乖離度合いが大きくなるほど多くなるよう に設定することができる。
続いて、 ステップ 3 4 0において、 上述した燃料噴射制御に際し別のルーチン にて算出された目標噴射量から上記ステップ 3 3 0での補正量を減算し、 その減 算結果を、 燃料噴射弁 2 4に指令される最終の目標噴射量として設定する。 この ステップ 3 4 0の処理を経た後に、 一連の噴射量減量処理を終了する。
これに対し、 上記ステップ 3 2 0の判定条件が満たされていない (T HW a ) 場合には、 エンジン水温 T HWの上昇に応じた添加量の増量が行われても触 媒床温が許容範囲の上限値を越えるおそれがないと考えられる。 そのため、 この 場合には上記ステップ 3 3 0 , 3 4 0の処理を経ることなく、 一連の噴射量減量 処理を終了する。 これらの場合には、 目標噴射量が補正されることなくそのまま 最終的な目標噴射量として用いられることとなる。
従って、 エンジン水温 T HWが高くなると、 上述した詰まり抑制処理により噴 孔 4 1 Aの詰まりを抑制するために添加弁 4 1からの還元剤の添加量が増量され、
しかもエンジン水温 T HWが高いときには低いときよりも增量度合いが大きくさ れて、 触媒床温が高くなる。 しかし、 エンジン水温 T HWがしきい ίίϊ αを越えて 触媒床温が許容範囲の上限値を越えそうになると、 そのエンジン水温 T HWに基 づき補正量が算出される。 この補正量を用いた補正により目標噴射量が減量され る。 この減量補正後の目標噴射量に応じた量の燃料が噴射'燃焼されることで排 気温度が低くなる。 排気による触媒床温の上昇分が小さくなつて、 触媒床温が許 容範囲の上限値を上回りにくくなる。
また、 上記目標噴射量の減量に際しては、 エンジン水温 T HWが高いときには 低いときよりも補正量が大きな値に設定され、 目標噴射量が少ない量に補正され る。 換言すると、 目標添加間隔の補正 (添加量の増量補正) に用いられるェンジ ン水温 T HWに応じて目標噴射量の減量合いが変えられる。 従って、 エンジン水 温 T HWが比較的低いとき、 すなわち添加量の増量度合いが比較的小さくて増量 による触媒床温の上昇量が少ないときには、 目標噴射量の減量度合いが小さい。 そのため、 目標噴射量が過剰に減量されてエンジン 1 1の出力が不要に低下する 現象が起こりにくレ、。 また、 エンジン水温 T HWが高いとき、 すなわち添加量の 増量度合いが大きくて増量による触媒床温の上昇量が多いときには、 目標噴射量 の減量度合いが大きい。 そのため、 目標噴射量の減量が不足して (目標噴射量が 適正値よりも多くて) 触媒床温が許容範囲の上限値を越える現象が起こりにくく なる。
図 8は、 エンジン水温 T HWと、 触媒床温、 還元剤の添加量および目標噴射量 に対する補正量との関係を示している。 エンジン水温 T HWがしきい値 αよりも 低い温度領域では、 目標噴射量は減量補正されない。 また、 同温度領域では添加 弁 4 1における噴孔 4 1 Αの詰まりを抑制するために、 エンジン水温 T HWが高 いときには低いときよりも増量度合いが大きくされて還元剤の添加量が多くなる。 上記添加量の増量に伴い、 すなわちエンジン水温 T HWの上昇に伴い触媒床温も 高くなつて、 許容範囲の上限値に近づく。
エンジン水温 T HWがしきい値 α以上になると、 そのエンジン水温 T HWに応 じた補正量 (> 0 ) が算出され、 目標噴射量がこの補正量分減量される。 この減 量された後の目標噴射量に応じた量の燃料が燃料噴射弁 2 4から噴射 ·燃焼され
ると排気温度が低下し、 それに伴い触媒床温が低下する。 この低下により、 触媒 床温が許容範囲の上限値を越えることが抑制される。 触媒床温と許容範囲の上限 値との偏差が大きくなり、 添加量のさらなる増量が可能となる。
一方で、 上記エンジン水温 T HWの上昇により嘖孔 4 1 Aでの詰まりが発生し やすくなる。 そこで、 エンジン水温 T HWが所定値 i3 ( > a ) のときに添加量が 増量されると、 噴孔 4 1 Aの詰まりが抑制される反面、 その増量に伴い触媒床温 が上昇して上記許容範囲の上限値に近づく。 これに対しては、 補正量として大き な値が設定され、 この大きな補正量を用いて目標噴射量が大きく減量される。 こ の減量補正された目標噴射量に応じた量の燃料が燃料噴射弁 2 4から噴射■燃焼 されると、 排気温度および触媒床温が低下する。
従って、 第 2の実施例によっても、 第 1の実施例と同様、 上述した (1 ) , ( 2 ) , ( 5 ) と'同様の効果が得られるほ力 次の効果が得られる。
( 6 ) エンジン水温 T HWに応じた補正量を設定し、 目標噴射量を同補正量に よって減量するようにしている。 この減量された目標噴射量の燃料が噴射■燃焼 されることで排気温度が低くなる。 従って、 触媒床温を低くして、 許容範囲の上 限値を上回るのを確実に抑制することができる。
( 7 ) エンジン水温 T HWが高いときには低いときよりも補正量を多くしてい る。 このように、 目標噴射量の減量に用いる補正量をエンジン水温 T HWに応じ て変えることで、 エンジン水温 T HWが比較的低いときには、 目標噴射量が過剰 に減量されてエンジン 1 1の出力が不要に低下するのを抑制することができる。 また、 エンジン水温 T HWが高いときには、 目標噴射量の減量が不足して (目標 噴射量が多く) 触媒床温が許容範囲の上限値を越えるのを抑制することができる。 なお、 本発明は次に示す別の実施例に具体化することができる。
■上記燃料以外の物質を還元剤として添加弁 4 1から噴射させるようにしても よい。
-添加弁 4 1からの還元剤の添加量を、 上記添加間隔に代え、 又は加え添加期 間を変化させることによって調整するようにしてもよい。
'上記両実施例では、 添加弁 4 1の温度がエンジン冷却水から影響を受けるこ とから、 エンジン水温 T HWに基づき目標添加間隔を補正することで、 添加量を
補正するようにした。 これに代え、 又はカ卩え、 エンジン水温 T HW以外に添加弁 4 1の温度に影響を及ぼすパラメータに基づいて添加量 (添加間隔、 添加期間) を補正するようにしてもよい。 例えば、 排気温度やエンジン負荷を上記パラメ一 タとしてもよい。 この場合、 排気温度が高くなるに従い、 またエンジン負荷が高 くなるに従い添加量を増量する。 また、 添加弁 4 1自体の温度を検出し、 その温 度に基づいて添加量 (添加間隔、 添加期間) を補正するようにしてもよい。
•エンジン 1 1の運転に伴い変化し、 かつ触媒床温に影響を及ぼすパラメータ としては、 上述した燃料噴射量以外にも過給圧、 噴射時期、 レール圧等が挙げち れる。 従って、 これら (目標噴射量を含む) のいずれか、 又は組み合わせたもの を用い、 添加量の増量に伴い触媒床温が許容範囲の上限値を越えないように制御 してもよい。 例えば、 過給圧を上昇させることにより、 燃焼室 1 4に供給される 空気量を増やして排気温度、 ひいては触媒床温を下げることが可能である。 また、 噴射時期を早める (進角させる) ことで、 燃焼圧が下がった状態で排気を行わせ て排気温度 (触媒床温) を下げることが可能である。 また、 レール圧を高めるこ とで噴射期間の終期を早め、 排気温度 (触媒床温) を下げることが可能である。
■本発明の排気浄化装置 1 2は、 添加弁 4 1がシリンダへッド 2 3のウォータ ジャケット 4 5から離れた箇所、 例えば排気ポート 2 9よりも排気下流側に配置 されたエンジンにも適用可能である。 この場合には、 添加弁 4 1がエンジン冷却 水の熱の影響を受けにくいことから、 そのェンジン水温 T HW以外のパラメータ によって、 添加弁 4 1の温度が、 還元剤中の揮発成分の蒸発する温度を超えるか どうかを監視し、 その監視結果に応じて還元剤の添加量.を増量させることとなる。 こうしたパラメータとしては、 例えば上述した排気温度、 エンジン負荷等が挙げ られる。
今回開示された実施例はすべての点で例示であって制限的なものではないと考 えられるべきである。 本発明の範囲は上記した説明ではなくて請求の範囲によつ て示され、 請求の範囲と均等の意味および範囲内でのすべての変更が含まれるこ と力 S意図される。
Claims
1 . 内燃機関の燃焼室での燃焼に供される燃料を噴射する燃料噴射弁に加え、 前記燃焼室に接続された排気.通路の排気浄化触媒よりも上流側に添加弁を設け、 前記内燃機関の運転状態に応じた添加量の還元剤を前記添加弁から噴射させるよ うにした内燃機関の排気浄化装置であって、
前記添加弁の温度およびその相当値の少なくともいずれかの上昇に伴い前記添 加量を増量させるとともに、 前記内燃機関の運転に伴い変化し、 かつ前記添加量 以外に前記排気浄ィヒ触媒の触媒温度に影響を及ぼすパラメータを、 前記触媒温度 が許容範囲の上限値を越えないように制御する制御部を備える、 内燃機関の排気 浄化装置。
2 . 前記制御部は、 前記添加弁の温度および前記相当値の少なくともいずれ かが高いときには低いときょりも前記添加量の増量度合いを大きくする、 請求の 範囲 1に記載の内燃機関の排気浄化装置。
3 . 前記添加弁は、 前記内燃機関に設けられた冷却水通路の近傍に配置され、 前記制御部は、 前記冷却水通路を流れる冷却水の温度を前記相当螭として用いる、 請求の範囲 2に記載の内燃機関の排気浄化装置。
4 . 前記制御部は、 前記パラメータの制御として、 前記燃料噴射弁による燃 料の噴射量を制限する、 請求の範囲 1に記載の内燃機関の排気浄化装置。
5 . 前記制御部は、 前記添加弁の温度および前記相当値の少なくとも 、ずれ 力が高いときには低いときよりも前記燃料の噴射量を多く制限する、 請求の範囲
4に記載の内燃機関の排気浄化装置。
6 . 前記制御部は、 前記パラメータの制御として、 前記燃料噴射弁による燃 料の噴射量を減量する請求の範囲 1に記載の内燃機関の排気浄化装置。
7 . 前記制御部は、 前記添加弁の温度および前記相当値の少なくともいずれ 力が高いときには低いときよりも前記燃料の噴射量を多く減量する、 請求の範囲
6に記載の内燃機関の排気浄ィヒ装置。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/816,280 US20090007545A1 (en) | 2005-04-08 | 2006-04-06 | Exhaust Purifier for Internal Combustion Engine |
DE602006014115T DE602006014115D1 (de) | 2005-04-08 | 2006-04-06 | Abgasreiniger für einen verbrennungsmotor |
EP06731737A EP1867854B1 (en) | 2005-04-08 | 2006-04-06 | Exhaust purifier for internal combustion engine |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005-112847 | 2005-04-08 | ||
JP2005112847A JP4485400B2 (ja) | 2005-04-08 | 2005-04-08 | 内燃機関の排気浄化装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2006109850A1 true WO2006109850A1 (ja) | 2006-10-19 |
Family
ID=37087114
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2006/307801 WO2006109850A1 (ja) | 2005-04-08 | 2006-04-06 | 内燃機関の排気浄化装置 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20090007545A1 (ja) |
EP (1) | EP1867854B1 (ja) |
JP (1) | JP4485400B2 (ja) |
DE (1) | DE602006014115D1 (ja) |
WO (1) | WO2006109850A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009082035A1 (ja) * | 2007-12-26 | 2009-07-02 | Toyota Jidosha Kabushiki Kaisha | 内燃機関の排気浄化装置 |
JP2009156167A (ja) * | 2007-12-26 | 2009-07-16 | Toyota Motor Corp | 内燃機関の排気浄化装置 |
CN104246157A (zh) * | 2013-04-19 | 2014-12-24 | 丰田自动车株式会社 | 内燃机的排气净化装置 |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102006053485A1 (de) * | 2006-11-14 | 2008-05-15 | Robert Bosch Gmbh | Verfahren zum Betreiben eines Reagenzmittel-Dosierventils und Vorrichtung zur Durchführung des Verfahrens |
JP4798019B2 (ja) * | 2007-02-23 | 2011-10-19 | トヨタ自動車株式会社 | ディーゼルエンジン制御装置 |
JP4349423B2 (ja) | 2007-03-01 | 2009-10-21 | トヨタ自動車株式会社 | 内燃機関の排気浄化システム |
JP5142048B2 (ja) * | 2008-04-08 | 2013-02-13 | 株式会社デンソー | 内燃機関の排気浄化装置 |
JP5310166B2 (ja) * | 2009-03-23 | 2013-10-09 | マツダ株式会社 | エンジンの排気浄化装置 |
SE535931C2 (sv) * | 2010-06-21 | 2013-02-26 | Scania Cv Ab | Förfarande och anordning för undvikande av överhettning hos en doseringsenhet vid ett HC-doseringssystem |
JP5150702B2 (ja) * | 2010-10-15 | 2013-02-27 | 株式会社豊田自動織機 | 内燃機関の排気浄化装置 |
JP2013007305A (ja) * | 2011-06-23 | 2013-01-10 | Toyota Motor Corp | 内燃機関 |
EP2905439B1 (en) * | 2012-09-07 | 2017-12-06 | Toyota Jidosha Kabushiki Kaisha | Exhaust gas purification system for internal combustion engine |
US9255550B2 (en) * | 2013-03-08 | 2016-02-09 | GM Global Technology Operations LLC | Emission system and method of selectively directing exhaust gas and air within an internal combustion engine |
JP5880514B2 (ja) * | 2013-10-02 | 2016-03-09 | 株式会社デンソー | エンジンの排気浄化システム |
JP6805021B2 (ja) * | 2017-02-21 | 2020-12-23 | 株式会社Soken | 燃料添加装置 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0839996A2 (en) | 1996-11-01 | 1998-05-06 | Toyota Jidosha Kabushiki Kaisha | Exhaust gas purifying device for engine |
JPH11270329A (ja) * | 1998-03-24 | 1999-10-05 | Toyota Motor Corp | 内燃機関の還元剤供給装置 |
JP2003201836A (ja) | 2001-12-28 | 2003-07-18 | Nippon Soken Inc | 排気用触媒の燃料供給装置 |
JP2003278530A (ja) * | 2002-03-20 | 2003-10-02 | Nippon Soken Inc | 還元剤供給装置 |
JP2003328744A (ja) * | 2002-05-17 | 2003-11-19 | Toyota Motor Corp | 内燃機関の排気浄化装置 |
JP2005083196A (ja) * | 2003-09-04 | 2005-03-31 | Toyota Motor Corp | 内燃機関の排気浄化装置 |
JP2005106047A (ja) * | 2003-09-08 | 2005-04-21 | Toyota Motor Corp | 排気浄化装置 |
JP2005248761A (ja) * | 2004-03-02 | 2005-09-15 | Nippon Soken Inc | 内燃機関の排気浄化装置 |
JP2005344682A (ja) * | 2004-06-07 | 2005-12-15 | Toyota Motor Corp | 排気浄化装置 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0913955A (ja) * | 1995-06-27 | 1997-01-14 | Komatsu Ltd | ディーゼルエンジンの排気ガス浄化装置 |
DE19856366C1 (de) * | 1998-12-07 | 2000-04-20 | Siemens Ag | Vorrichtung und Verfahren zum Nachbehandeln von Abgasen einer mit Luftüberschuß arbeitenden Brennkraftmaschine |
JP3642273B2 (ja) * | 1999-10-21 | 2005-04-27 | 日産自動車株式会社 | 排気ガス浄化システム |
JP2005127318A (ja) * | 2003-09-19 | 2005-05-19 | Nissan Diesel Motor Co Ltd | エンジンの排気浄化装置 |
DE602004022346D1 (de) * | 2003-09-30 | 2009-09-10 | Nissan Diesel Motor Co | Abgasreinigungsvorrichtung für einen Verbrennungsmotor |
JP3945526B2 (ja) * | 2005-09-09 | 2007-07-18 | トヨタ自動車株式会社 | 燃料添加装置 |
-
2005
- 2005-04-08 JP JP2005112847A patent/JP4485400B2/ja not_active Expired - Fee Related
-
2006
- 2006-04-06 DE DE602006014115T patent/DE602006014115D1/de active Active
- 2006-04-06 EP EP06731737A patent/EP1867854B1/en not_active Not-in-force
- 2006-04-06 WO PCT/JP2006/307801 patent/WO2006109850A1/ja active Application Filing
- 2006-04-06 US US11/816,280 patent/US20090007545A1/en not_active Abandoned
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0839996A2 (en) | 1996-11-01 | 1998-05-06 | Toyota Jidosha Kabushiki Kaisha | Exhaust gas purifying device for engine |
JPH11270329A (ja) * | 1998-03-24 | 1999-10-05 | Toyota Motor Corp | 内燃機関の還元剤供給装置 |
JP2003201836A (ja) | 2001-12-28 | 2003-07-18 | Nippon Soken Inc | 排気用触媒の燃料供給装置 |
JP2003278530A (ja) * | 2002-03-20 | 2003-10-02 | Nippon Soken Inc | 還元剤供給装置 |
JP2003328744A (ja) * | 2002-05-17 | 2003-11-19 | Toyota Motor Corp | 内燃機関の排気浄化装置 |
JP2005083196A (ja) * | 2003-09-04 | 2005-03-31 | Toyota Motor Corp | 内燃機関の排気浄化装置 |
JP2005106047A (ja) * | 2003-09-08 | 2005-04-21 | Toyota Motor Corp | 排気浄化装置 |
JP2005248761A (ja) * | 2004-03-02 | 2005-09-15 | Nippon Soken Inc | 内燃機関の排気浄化装置 |
JP2005344682A (ja) * | 2004-06-07 | 2005-12-15 | Toyota Motor Corp | 排気浄化装置 |
Non-Patent Citations (1)
Title |
---|
See also references of EP1867854A4 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009082035A1 (ja) * | 2007-12-26 | 2009-07-02 | Toyota Jidosha Kabushiki Kaisha | 内燃機関の排気浄化装置 |
JP2009156167A (ja) * | 2007-12-26 | 2009-07-16 | Toyota Motor Corp | 内燃機関の排気浄化装置 |
US8534051B2 (en) | 2007-12-26 | 2013-09-17 | Toyota Jidosha Kabushiki Kaisha | Exhaust purification device of internal combustion engine |
CN104246157A (zh) * | 2013-04-19 | 2014-12-24 | 丰田自动车株式会社 | 内燃机的排气净化装置 |
Also Published As
Publication number | Publication date |
---|---|
EP1867854A1 (en) | 2007-12-19 |
EP1867854A4 (en) | 2009-04-15 |
JP2006291821A (ja) | 2006-10-26 |
EP1867854B1 (en) | 2010-05-05 |
JP4485400B2 (ja) | 2010-06-23 |
DE602006014115D1 (de) | 2010-06-17 |
US20090007545A1 (en) | 2009-01-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4485400B2 (ja) | 内燃機関の排気浄化装置 | |
JP5859638B2 (ja) | 自動車用ディーゼルエンジンの運転方法 | |
US7533523B2 (en) | Optimized desulfation trigger control for an adsorber | |
JP4270155B2 (ja) | 排気浄化触媒の熱劣化状態検出装置 | |
JP2007270705A (ja) | エンジンのegr装置 | |
JP5708806B2 (ja) | 内燃機関の排気浄化装置 | |
JP2010261331A (ja) | 排気浄化装置 | |
JP2008157188A (ja) | 排気浄化装置 | |
JP2008138619A (ja) | 内燃機関の排気浄化装置 | |
JP4379314B2 (ja) | 内燃機関の排気浄化装置 | |
JP4613787B2 (ja) | 内燃機関の排気浄化装置 | |
JP5716687B2 (ja) | 内燃機関の排気浄化装置 | |
WO2013149782A1 (en) | Lean nox trap desulfation process | |
JP7163585B2 (ja) | エンジンの制御装置 | |
US20190232225A1 (en) | Exhaust emission control device, method and computer program product for an engine | |
JP3870673B2 (ja) | 内燃機関の排気浄化装置 | |
JP5516888B2 (ja) | 内燃機関の排気浄化装置 | |
JP4357241B2 (ja) | 排気浄化装置 | |
JP2007239469A (ja) | エンジンの排気浄化装置 | |
JP2006266221A (ja) | 後処理装置の昇温制御装置 | |
JP2004176636A (ja) | 内燃機関の排気浄化装置 | |
JP4893493B2 (ja) | 内燃機関の排気浄化装置 | |
JP2010196569A (ja) | 排気ガス浄化システム及び排気ガス浄化方法 | |
JP2006274985A (ja) | 排気後処理装置 | |
JP5151959B2 (ja) | 排気ガス浄化システム及び排気ガス浄化方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2006731737 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 11816280 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
NENP | Non-entry into the national phase |
Ref country code: RU |
|
WWP | Wipo information: published in national office |
Ref document number: 2006731737 Country of ref document: EP |