WO2006108405A2 - Nanopartikel-wirkstoff-konjugate - Google Patents

Nanopartikel-wirkstoff-konjugate Download PDF

Info

Publication number
WO2006108405A2
WO2006108405A2 PCT/DE2006/000653 DE2006000653W WO2006108405A2 WO 2006108405 A2 WO2006108405 A2 WO 2006108405A2 DE 2006000653 W DE2006000653 W DE 2006000653W WO 2006108405 A2 WO2006108405 A2 WO 2006108405A2
Authority
WO
WIPO (PCT)
Prior art keywords
nanoparticles
nanoparticle
therapeutically active
nanoparticles according
active substance
Prior art date
Application number
PCT/DE2006/000653
Other languages
English (en)
French (fr)
Other versions
WO2006108405B1 (de
WO2006108405A3 (de
Inventor
Andreas Jordan
Norbert Waldoefner
Klaus Decken
Regina Scholz
Original Assignee
Magforce Nanotechnologies Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US11/911,196 priority Critical patent/US9345768B2/en
Priority to DK06742238.6T priority patent/DK1871423T3/da
Application filed by Magforce Nanotechnologies Ag filed Critical Magforce Nanotechnologies Ag
Priority to MX2007012670A priority patent/MX2007012670A/es
Priority to RU2007141588/15A priority patent/RU2490027C9/ru
Priority to JP2008505731A priority patent/JP5037490B2/ja
Priority to BRPI0610220-4A priority patent/BRPI0610220A2/pt
Priority to EP06742238.6A priority patent/EP1871423B9/de
Priority to AU2006233483A priority patent/AU2006233483B2/en
Priority to KR1020137021157A priority patent/KR20130098441A/ko
Priority to NZ561928A priority patent/NZ561928A/en
Priority to DE112006001565T priority patent/DE112006001565A5/de
Priority to CA2603734A priority patent/CA2603734C/en
Priority to CN2006800196148A priority patent/CN101247836B/zh
Priority to ES06742238T priority patent/ES2392346T3/es
Publication of WO2006108405A2 publication Critical patent/WO2006108405A2/de
Publication of WO2006108405A3 publication Critical patent/WO2006108405A3/de
Publication of WO2006108405B1 publication Critical patent/WO2006108405B1/de
Priority to IL186521A priority patent/IL186521A/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K41/00Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
    • A61K41/0052Thermotherapy; Hyperthermia; Magnetic induction; Induction heating therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K41/00Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/54Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound
    • A61K47/549Sugars, nucleosides, nucleotides or nucleic acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/54Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound
    • A61K47/55Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound the modifying agent being also a pharmacologically or therapeutically active agent, i.e. the entire conjugate being a codrug, i.e. a dimer, oligomer or polymer of pharmacologically or therapeutically active compounds
    • A61K47/551Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound the modifying agent being also a pharmacologically or therapeutically active agent, i.e. the entire conjugate being a codrug, i.e. a dimer, oligomer or polymer of pharmacologically or therapeutically active compounds one of the codrug's components being a vitamin, e.g. niacinamide, vitamin B3, cobalamin, vitamin B12, folate, vitamin A or retinoic acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/62Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/69Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
    • A61K47/6921Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere
    • A61K47/6923Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being an inorganic particle, e.g. ceramic particles, silica particles, ferrite or synsorb
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/69Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
    • A61K47/6921Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere
    • A61K47/6927Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores
    • A61K47/6929Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores the form being a nanoparticle, e.g. an immuno-nanoparticle
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0002Galenical forms characterised by the drug release technique; Application systems commanded by energy
    • A61K9/0009Galenical forms characterised by the drug release technique; Application systems commanded by energy involving or responsive to electricity, magnetism or acoustic waves; Galenical aspects of sonophoresis, iontophoresis, electroporation or electroosmosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/167Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction with an outer layer or coating comprising drug; with chemically bound drugs or non-active substances on their surface
    • A61K9/1676Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction with an outer layer or coating comprising drug; with chemically bound drugs or non-active substances on their surface having a drug-free core with discrete complete coating layer containing drug
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/04Antineoplastic agents specific for metastasis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y5/00Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery

Definitions

  • the present invention relates to nanoparticles to which therapeutically active substances are bound, the release of the therapeutically active substances being effected, initiated or substantially increased by an alternating magnetic field.
  • superparamagnetic nanoparticles can be used as drug carriers for the treatment of diseases.
  • Different approaches are followed.
  • a known strategy is based e.g. on the so-called “magnetic drug targeting", in which it is attempted to achieve a local concentration increase of the active ingredients by means of a magnetic field (DE 10059151 A, Alexiou).
  • an attempt is made to impart targeting properties to the particles by chemical means in order to achieve enrichment in certain body regions (DE 4428851 A1, EP 0516252 A2).
  • Multishell particles for introducing particle-drug conjugates into tumor cells are described in the patent WO 98/58673 (INM).
  • the object of the present invention is to load nanoparticles with therapeutically active substances in such a way that no appreciable release of the therapeutically active substances takes place in the healthy tissue and a controlled release of the therapeutically active substances can take place after the nanoparticles have entered the tumor tissue and the tumor cells ,
  • the object is achieved by the nanoparticles according to claim 1 and the pharmaceutical composition according to claim 11 and the use of the nanoparticles according to claim 12.
  • the present invention relates to nanoparticles wherein therapeutically active substances are bound to the nanoparticles and wherein the detachment of the therapeutically active substances from the nanoparticles is effected, initiated or substantially increased by an alternating magnetic field.
  • MFH-P01452WO04draft04 d ⁇ c at least one therapeutically active substance is released by the direct influence of the alternating magnetic field or by the local heating due to the alternating magnetic field.
  • the release preferably takes place in that a thermally labile linker is thermally cleaved between the active substance, ie the therapeutically active substance and the nanoparticle, and / or a linker which is labile to an alternating magnetic field is used.
  • the present invention thus consists in binding a therapeutically active substance, in particular a cytostatic agent, to a nanoparticle via a linker which can be cleaved thermally and / or by a magnetic field.
  • nanoparticles according to the invention are characterized in that the nanoparticle is bound at least one therapeutically active substance and wherein the detachment of the at least one therapeutically active substance from the nanoparticle is effected or initiated or substantially increased by an alternating magnetic field.
  • the present invention relates to nanoparticles in which at least one therapeutically active substance is bound to the nanoparticle covalently or ionically or via hydrogen bonds or via complex compound or via intercalation or via lipophilic interactions by means of a linker and the linker is thermally initiated and / or initiated by an electromagnetic or magnetic field can be split.
  • Thermally initiated cleavage means that a local heating to above 45 ° C preferably above 50 0 C under physiological conditions sufficient to cleave the linker.
  • a cleavage initiated by an electromagnetic or magnetic field means that under physiological conditions the application of an electromagnetic or magnetic field triggers a cleavage of the linker, be it only by the electromagnetic or magnetic field and / or by a local pH decrease , which is caused by the electromagnetic or magnetic field.
  • the attachment of the at least one therapeutically active substance i.
  • the molecules of at least one therapeutically active substance class or of a specific active substance are preferably covalently or by a predominantly covalent bond and / or by a sufficiently strong ionic bond, insertion compound or complex bond, or an arrangement of a sufficient number of hydrogen bonds or hydrophobic
  • An uncontrolled release is understood to mean the detachment of therapeutically active substance in healthy tissue, in particular detachment without the action of an alternating magnetic field.
  • the therapeutically active substances thus remain firmly bound to the nanoparticles and are transported together with the nanoparticles into the cancer cells. On the way of the nanoparticles in the cancer cells only a small amount is released up to an insignificant amount of the therapeutically active substances. Arrived in the cancer cells then the release of the therapeutically active substances by means of an alternating magnetic field, in particular an external or externally applied alternating magnetic field (pulse).
  • an alternating magnetic field in particular an external or externally applied alternating magnetic field (pulse).
  • alternating magnetic field means that the alternating magnetic field or the impulses cause the release directly or indirectly, for example via the activation or induction of the gene expression of enzymes or the generation of heat.
  • the nanoparticles themselves consist of a magnetic material, preferably a ferromagnetic, antiferromagnetic, ferrimagnetic, antiferromagnetic or superparamagnetic material, more preferably iron oxides, in particular superparamagnetic iron oxides or pure iron, which is provided with an oxide layer.
  • a magnetic material preferably a ferromagnetic, antiferromagnetic, ferrimagnetic, antiferromagnetic or superparamagnetic material, more preferably iron oxides, in particular superparamagnetic iron oxides or pure iron, which is provided with an oxide layer.
  • Such nanoparticles can be heated by an alternating magnetic field. Heating of the tissue containing the nanoparticles to about 5O 0 C is possible. Such high temperatures can be achieved as up to 800 pg and more iron in the form of nanoparticles per tumor cell can be recorded.
  • the nanoparticles preferably consist of iron oxides and in particular of magnetite (Fe 3 O 4 ), maghemite ( ⁇ -Fe 2 O 3 ) or mixtures of these two oxides.
  • the preferred nanoparticles can be represented by the formula FeOx wherein X is an integer from 1 to 2.
  • the nanoparticles preferably have a diameter of less than 500 nm.
  • the nanoparticles preferably have an average diameter of 15 nm or are preferably in the size range from 1 to 100 nm and particularly preferably in the range from 10 to 20 nm.
  • magnétique materials of the formula FeO x wherein X is a number in the range of 1, 0 to 2.0
  • materials of the general formula MFe 2 O 4 with M Co, Ni, Mn, Zn, Cd, Ba or other ferrites.
  • silica or polymer particles incorporating and / or attached to magnetic materials such as the magnetic materials referred to herein.
  • Therapeutically active substances are bound to these nanoparticles, in particular superparamagnetic nanoparticles, a covalent bond being preferred.
  • anti-proliferative, anti-migratory, anti-angiogenic, anti-thrombotic, anti-inflammatory, anti-inflammatory, cytostatic, cytotoxic, anti-coagulative, anti-bacterial, antiviral and / or anti-mycotic agents can be selected, with anti -proliferative, anti-migratory, anti-angiogenic, cytostatic and / or cytotoxic agents and nucleic acids, amino acids, peptides, proteins, carbohydrates, lipids, glycoproteins, glycans or lipoproteins with anti-proliferative, anti-migrative, anti-angiogenic, anti- thrombotic, anti-inflammatory, anti-inflammatory, cytostatic, cytotoxic, anti-coagulative, anti-bacterial, anti-viral and / or anti-mycotic properties are preferred.
  • these substances may also be radiosensit
  • cytotoxic and / or cytostatic compounds ie chemical compounds with cytotoxic and / or cytostatic properties can include alkylating agents, antibiotics with cytostatic properties, antimetabolites, microtubule inhibitors and topoisomerase inhibitors, platinum-containing compounds and other cytotoxic agents such as asparaginase, tretinoin , Alkaloids, podophyllotoxins, taxanes and Miltefosin ® , hormones, immunomodulators, monoclonal antibodies, signal transducers (signal transduction molecules) and cytokines.
  • alkylating agents examples include chloroethamine, cyclophosphamide, trofosfamide, ifosfamide, melphalan, chlorambucil, busulfan,
  • antibiotics with cytostatic properties are daunorubicin, doxorubicin (adriamycin), dactinomycin, mitomycin C, bleomycin, epirubicin (4-epi- adriamycin), idarubicin, dactinomycin, mitoxantrone, amsacrine and actinomycin D.
  • Methotrexate, 5-fluorouracil, 6-thioguanine, 6-mercaptopurine, fludarabine, cladribine, pentostatin, gemcitabine, cytarabine, azathioprine, raltitrexed, capecitabine, cytosine arabinoside, tioguanine and mercaptopurine may be cited as examples of antimetabolites (antimetabolic agents).
  • the class of alkaloids and podophyllotoxins include, but are not limited to, vincristine, vinblastine, vindesine, etoposide, and teniposide.
  • platinum-containing compounds can be used according to the invention. Examples of platinum-containing compounds are cisplatin, carboplatin and oxaliplatin.
  • To the microtubule inhibitors include, for example alkaloids, such as vinca alkaloids (vincristine, vinblastine, vindesine, Venorelbin) and paclitaxel (Taxol ®), as well as derivatives of paclitaxel.
  • Examples of topoisomerase inhibitors include etoposide, teniposide, camptothecin, topotecan and irinotecan.
  • Paclitaxel and docetaxel are examples of the compound class of taxanes and among the other cytostatic agents (other cytostatics) include, for example hydroxycarbamide (hydroxyurea), imatinib, miltefosine ®, amsacrine, topotecan (topoisomerase I inhibitor), pentostatin, bexarotene, Biolimus A9, Rapamycin (sirolimus), rhodomycin D, ametantrone, bendamustine, oxazaphosphorines, 5'-deoxy-5-fluorouridine, 9-aminocamptothecin, podophyllotoxin derivatives, mitopodocide, vinca alkaloids, calicheamicins, maytansinoids, tretinoin and asparaginase.
  • cytostatic agents include, for example hydroxycarbamide (hydroxyurea), imatinib, miltefosine ®, amsacrine, topote
  • trastuzumab also known as Herceptin ®
  • alemtuzumab also known as MabCampath ®
  • rituximab also known as MabThera ®
  • Hormones such as, for example, glucocorticoids (prednisone), estrogens (Fosfestrol, estramustine), LHRH (buserelin, goserelin, leuprorelin, triptorelin), flutamide, cyproterone acetate, tamoxifen, toremifene, aminoglutethimide, formestan, exemestane, letrozole and anastrozole can also be used according to the invention.
  • the classes of immunomodulators, cytokines, antibodies and signal transducers include interleukin-2, interferon- ⁇ , erythropoietin, G-CSF,
  • MFH-P014S2WO04draft04 doc Trastuzumab (Herceptin ®), rituximab (Mabthera ®), Efitinib (Iressa ®), Ibritumomab (Zevalin ®), levamisole, as well as retinoids.
  • the aforementioned active ingredients are preferably covalently bound to the nanoparticles.
  • the connection of the active ingredients can, for example, via
  • Active substance carries.
  • doxorubicin may have its primary
  • Hydroxy group is bound as an ester
  • platinum derivatives cisplatin, carboplatin, oxaliplatin ect.
  • nucleophilic substitution on platinum to an amino group or paclitaxel be bound via an imine bond.
  • Hydroxy groups are preferably bound as ester, acetal or ketal, thio groups preferably as thioester, thioacetal or thioketal, amino groups preferably as amides and partly also as imines (Schiff bases) or by reaction with an isocyanate group as urethane, carboxyl groups preferably as esters or amides and carbonyl groups, preferably as acetals or ketals.
  • nanoparticles but without active ingredient and also without coating is described in detail in DE 4428851 A. Furthermore, the functionalization of the surface of the nanoparticles is known, so that amino groups, hydroxyl groups, carboxyl groups or carbonyl groups can be produced on the surface of the nanoparticles by known methods.
  • the present invention therefore relates to nanoparticles which have a multiplicity of amino groups, hydroxyl groups, carboxyl groups or carbonyl groups on the surface, and wherein linkers are bound to at least a part of these functional groups by means of an imine bond, amine bond, ester bond, amide bond or ketal bond and further these Linker the therapeutic substance covalently, ionically, complexed, lipophilic or bind by hydrogen bonds.
  • a particular feature of a preferred embodiment of the nanoparticles according to the invention is that the active compounds are coupled to the magnetic nanoparticles via specific types of bonds. These bonds are designed so that release of the drugs can be stimulated by an external magnetic field (pulse).
  • alternating magnetic field acts as an external excitation, which in the case of superparamagnetic particles initiates various relaxation processes of the particles. These processes lead to a warming of the particles and their environment.
  • These processes set in motion by the alternating magnetic field are used according to the invention to cleave the bond between the nanoparticle and the therapeutically active substance or to strongly accelerate the cleavage.
  • the rate of cleavage by biological processes can be greatly increased by the pulse, so that only after the pulse is activated a sustained increase in concentration of the drug can be achieved at the destination.
  • the bond can be designed so that a cleavage by chemical reactions (eg hydrolysis) started or noticeably accelerated.
  • chemical reactions eg hydrolysis
  • melting of a nucleic acid or polypeptide molecule used as a linker can take place.
  • the therapeutically active substances are bound directly or via a linker molecule.
  • the linker molecule is preferably bound to the nanoparticles or to the respective nanoparticles by means of an amide bond or ester bond.
  • linkers it is also possible to use nucleic acids (deoxyribonucleic acids (DNA), ribonucleic acid (RNA) or peptide nucleic acids (PNA)) or polypeptides of various lengths.
  • the required molecules can optionally be produced genetically or synthetically.
  • the linkers can be thermally induced, magnetically induced or acid-cleaved under physiological conditions.
  • Cleavage of the linker means that the linker contains at least one bond within the linker which is generated by the action of heat, the action of a magnetic field, i. magnetic pulse or by acid action under physiological conditions can be cleaved.
  • the cleavage of this bond should be at least twice as fast by the action of heat (preferably at least 45 ° C) and / or the magnetic field and / or acid under physiological conditions as without this action.
  • the formation of acid and the lowering of the local pH may be e.g. caused by already killed cells.
  • binding within the linker also encompasses the binding of the linker to the nanoparticle and the binding of the linker to the therapeutically active substance.
  • the linker can also be composed of two or three linker molecules.
  • linkers have at least one of the following functional groups:
  • Suitable linkers have, for example, the following form:
  • the zig-zag line indicates the binding between active ingredient and linker or linker and nanoparticles.
  • Preferred nucleic acids are those - preferably double-stranded - constructs which have a melting point in the range of 40-60 0 C.
  • one strand has a group capable of coupling to the particles (eg, an amino or carboxy group coupled via a phosphoramidate group).
  • the complementary strand may carry the drug that is also coupled via a covalent bond.
  • a release of the drug can now be done by the melting of the double helix in heat development in the alternating magnetic field.
  • the individual strands separate and the active substance is decoupled from the particle.
  • polypeptides used are preferably those molecules which tend to form defined homo- or hetero-dimers, in particular via hydrogen atoms.
  • pairs are employed with a melting point in the range of 40- 6O 0 C have targeted which are present so at physiological predominantly in paired state, but decompose at therapeutically achievable temperatures in their monomers.
  • one binding partner is covalently coupled to the nanoparticles, the other is covalently coupled to a therapeutically active substance.
  • the melting of the bond between the two peptide strands leads to a decoupling of nanoparticles and therapeutically active substances, which are subsequently present in freely diffusible form, if appropriate after, for example, enzymatic cleavage.
  • nucleic acid-binding polypeptides are coupled to the nanoparticles, which non-covalently interact with nucleic acids. These interactions can also be melted by heat, so that the bound nucleic acid is released along with coupled effector molecule.
  • the liberated nucleic acid itself can act as effector molecule (for example, siRNA, antisense DNA, etc.).
  • Suitable nucleic acid-binding polypeptides are, in particular, zinc fingers with a length of between 20 and 50 amino acids, but also the frequent helix-turn-helix motif of DNA-binding domains is suitable or the so-called “single-strand binding protein" (US Pat. SSB) for DNA binding (a small protein with a DNA-binding domain of about 100 amino acids) or the "RNA recognition motif" (RRM or RNP-1) single-stranded RNA-binding proteins (to a volume of approx 90 amino acids) or the double-stranded RNA binding motif (DRBM) of double-stranded RNA-binding proteins (approximately 65 amino acids).
  • SUBSB single-strand binding protein
  • RRM or RNP-1 single-stranded RNA-binding proteins
  • DRBM double-stranded RNA binding motif
  • nucleic acids aptamers
  • proteins in a linker system.
  • all molecules can be used, for example, by generating antibodies against such a so-called "hapten" (frequently used are, for example, antibodies to dinitrophenol, trinitrophenol, digoxigenin, digoxin, biotin).
  • binding pockets of biomolecules for example for coenzymes (such as coenzyme A, ATP, GTP, FAD, NADH, NADPH, biotin, folic acid, pyridoxal phosphate, etc.), substrates (such as the glutathione binding site of glutathione, which contains 73 amino acids).
  • coenzymes such as coenzyme A, ATP, GTP, FAD, NADH, NADPH, biotin, folic acid, pyridoxal phosphate, etc.
  • substrates such as the glutathione binding site of glutathione, which contains 73 amino acids.
  • hormones such as the hormone binding
  • Coupling methods in this preferred embodiment are therefore only those which produce a bond between the nanoparticle and the active substance which has sufficient stability under "normal” physiological conditions but which is considerably less stable under the conditions (momentum) used according to the invention.
  • the actual mechanism of release and thus the type of binding depend on the target site (e.g., cancer tumor) and must be adjustable by common chemical coupling methods.
  • release may be intracellular (e.g., in tumor cells) or extracellular.
  • the particles produced according to the invention thus differ from already known active substance carriers in that only by activation in the alternating magnetic field can an activity be achieved while the active substance without this impulse is largely inactive.
  • the activatable nanoparticle-drug conjugates are preferably based on magnetic iron-containing cores surrounded by one or more colloidal sheaths or coatings which offer a possibility for coupling the active compounds via functional groups.
  • the core preferably consists of magnetite or maghemite.
  • the primary function of the shells is to achieve a colloidal distribution in the aqueous medium and to protect the nanoparticles from agglomeration.
  • Multishally coated particles, as described in WO 98/58673, are suitable in principle as the basis for the activatable nanoparticle-active substance conjugates, since the biological behavior of such particles by overcoating with polymers adjustable and coupling of the active ingredients to functional groups of the primary shell possible is.
  • the active ingredients can be coupled to the primary casings by different methods. In case of stabilization of the particle cores by
  • MFH-P01452WO04draft04 doc Aminosilanes or an amino group-bearing shell or coating can be a coupling of the active ingredients, for example, to near-surface amino groups.
  • coupling can be effected, for example, via succinimidyl esters, sulfosuccinimidyl esters, isothiocyanates, triazinyl chlorides, sulfonyl chlorides, tetrafluorophenyl esters or else via aldehyde groups.
  • the prerequisite is that the active ingredient can be chemically provided with such groups. If a direct coupling of the drug via these methods is not possible, the use of a "linker molecule" is possible.
  • linker combines the active ingredient with the functional groups of the protective sheath and thus offers an increased variability of the coupling possibilities.
  • the linker molecule contains a thermolabile, electro-magneto-labile, photolabile, acid-labile, intercalatable, intercalated or enzymatically cleavable group.
  • the release mechanism can also be controlled via the linker.
  • the linker can also introduce groups that allow cleavage of the active ingredients. Suitable examples are pH-cleavable acetal, ester, hydrazone or imine groups.
  • peptide sequences are suitable as linkers in which only an enzymatic cleavage or melting of a non-covalent bond releases the drug.
  • DNA, RNA and PNA molecules are preferably used as double-stranded linkers, wherein the release is effected by a thermally induced melting of the double strands.
  • linkers may be used which, under normal physiological conditions, cause no or only slow release rates.
  • the linker molecules may e.g. may be designed to permit release to the target area (e.g., enzymatically in the tumor cell), but under normal conditions it is so slow that no therapeutic concentration of the drug can be achieved. Only by the external impulse of the alternating magnetic field does the cleavage of the linker molecule or the cleavage of the linker molecule at a sufficient rate and leads to an activation of the active ingredient.
  • linkers used assume a conformation which allows enzymatic cleavage only after a thermally induced melting of nucleic acid double strands or multiple strands or alternatively of peptide dimers or peptide oligomers.
  • Coupling method is chosen so that a release only under the o.g.
  • activatable nanoparticle-drug conjugates e.g., by polymers
  • further molecules can be coupled which confer target-finding properties to the overall construct (eg polyclonal, antibodies, monoclonal antibodies, humanized antibodies, human antibodies, chimeric antibodies, recombinant antibodies, bispecific antibodies, antibody fragments, aptamers, Fab fragments, Fc fragments, peptides, Peptidomimetics, gap mers, ribozymes, CpG oligomers, DNA zyme, riboswitches, or lipids).
  • the prerequisite is that all further modifications do not hinder the activatable release of the active substance at the destination.
  • the linker can thus serve various molecules having up to 500 carbon atoms or 10 to 30 base pairs, preferably 15 to 25 base pairs or 10 to 30 amino acids, preferably 15 to 25 amino acids, provided that the linker contains a thermally, photochemically or enzymatically cleavable group, acid-labile Group or otherwise easily removable group.
  • a binding in the linker molecule and / or the binding of the linker to the active ingredient and / or the binding of the linker to the surface of the nanoparticle must therefore be directly or indirectly cleavable either by the action of the alternating magnetic field. Indirect cleavage occurs when, for example, by the alternating magnetic field, enzymes such as e.g.
  • Peptidases, esterases or hydrolases at the target site e.g. stimulated in the cancer cell or their activity or expression is increased and these enzymes can cause the aforementioned cleavage.
  • an indirect cleavage can occur when using magnetic nanoparticles, if they are heated by the alternating magnetic field and thereby a thermally labile bond is cleaved. It is also conceivable to increase the pH at the target site by the action of the alternating magnetic field and the subsequent cleavage of acid-labile bonds in the linker molecule.
  • the enzymatically cleavable group in or on the linker molecule is the ester group and the amide or peptide group. Thermally or by acid
  • doc cleavable groups include, for example, phosphate groups, thiophosphate groups, sulfate groups, phosphamide groups, carbamate groups or imine groups.
  • the drug does not necessarily have to be covalently bound to the linker, but may also be ionic or hydrogen bonded or intercalated or complexed.
  • the nanoparticles according to the invention are surrounded or coated with one or more sheaths or coatings.
  • These sheaths or coatings may perform one or more functions and may serve as a protective sheath, barrier layer, or cell-selective coating.
  • a protective coating or barrier coating can be used therapeutically Prevent active substances until the nanoparticles have reached their destination.
  • an outer layer which carries cell-specific functionalities can be applied.
  • This cell-specific coating increases the affinity of the nanoparticles for certain cells, for example to specific bacterial cells or to specific tumor cells and thus serves for cell discrimination.
  • Such cell-specific nanoparticles preferentially accumulate in such cells to which they have an increased affinity on their surface due to the functionality and are thus tumor-specific.
  • this technology allows the development of tumor-specific nanoparticles for certain cancers.
  • the nanoparticles can be stabilized by a colloidal protective sheath, which protect the nanoparticles from agglomeration. It is
  • biological, synthetic or semisynthetic polymers can be used.
  • a barrier layer preferably biostable, ie largely resistant to biodegradation polymers are used.
  • biodegradable polymers are preferably used.
  • biostable polymers may be used: polyacrylic acid and polyacrylates such as polymethyl methacrylate, polybutyl methacrylate, polyacrylamide, polyacrylonitriles, polyamides, polyether amides, polyethyleneamine, polyimides, polycarbonates, polycarbourethanes, polyvinyl ketones, polyvinyl halides, polyvinylidene halides, polyvinyl ethers, polyisobutylenes, polyvinylaromatics, polyvinyl esters,
  • Polyvinyl pyrollidones polyoxymethylenes, polytetramethylene oxide, polyethylene, polypropylene, polytetrafluoroethylene, polyurethanes, polyether urethanes, silicone polyether urethanes, silicone polyurethanes, silicone-polycarbonate urethanes, polyolefin elastomers, polyisobutylenes, EPDM rubbers, fluorosilicones,
  • Carboxymethylchitosans polyaryletheretherketones, polyetheretherketones, polyethylene terephthalate, polyvalerates, carboxymethylcellulose, cellulose, rayon, rayontriacetates, cellulose nitrates, cellulose acetates, hydroxyethylcellulose, cellulose butyrates, cellulose acetate butyrates, ethylvinylacetate copolymers, polysulphones, epoxy resins, ABS resins, EPDM rubbers, silicones such as polysiloxanes, polydimethylsiloxanes, Polyvinyl halides and copolymers, cellulose ethers, cellulose triacetates. Chitosans and copolymers and / or mixtures of these substances.
  • biodegradable polymers may be used: polyvalerolactones, poly- ⁇ -decalactones, polylactic acid, polyglycolic acid polylactides, polyglycolides, copolymers of polylactides and polyglycolides, poly- ⁇ -caprolactone, polyhydroxybutyric acid, polyhydroxybutyrates, polyhydroxyvalerates,
  • Polyhydroxybutyrate-co-valerates poly (1,4-dioxane-2,3-diones), poly (1,3-dioxan-2-ones), poly-para-dioxanones, polyanhydrides such as polymaleic anhydrides,
  • MFH-P01452WO04draft04 doc carbonates polytrimethylcarbonates polyiminocarbonates, poly (N-vinyl) pyrrolidone, polyvinyl alcohols, polyester amides, glycolated polyesters, polyphosphoesters, polyphosphazenes, poly [(p-carboxyphenoxy) propane] polyhydroxypentanoic acid, polyanhydrides, polyethylene oxide-propylene oxide, soft polyurethanes, polyurethanes with amino acid residues in the backbone, polyether esters such as the polyethylene oxide, polyalkene oxalates, polyorthoesters and their copolymers, lipids, carrageenans, fibrinogen, starch, collagen, protein-based polymers, polyamino acids, synthetic polyamino acids, zein, modified zein, polyhydroxyalkanoates, pectinic acid, actinic acid, modified and unmodified fibrin and casein, carboxymethylsulfate , Albumin
  • monoclonal antibodies and / or aptamers can be coupled on the surface of the nanoparticles or on the outer layer or shell of the nanoparticles.
  • the monoclonal antibodies and aptamers are designed in such a way that they recognize certain cells, for example tumor cells, and further increase the cell discrimination of the nanoparticles.
  • the cores of the magnetic nanoparticles consist of magnetite (Fe 3 O 4 ), maghemite ( ⁇ -Fe 2 O 3 ) or mixtures of these two oxides and are preferably superparamagnetic.
  • the cores are stabilized by colloidal protective sheaths, which enable a connection of the therapeutically active substances.
  • the conjugates of magnetic nanoparticles and therapeutically active substances are designed by the nature of the binding so that a targeted release of the therapeutically active substance in the human body by means of an external magnetic alternating field (pulse) is possible.
  • the present invention relates to pharmaceutical compositions containing the nanoparticles according to the invention and to the use of the nanoparticles according to the invention for the preparation of such pharmaceutical compositions.
  • compositions are, in particular, infusion or injection solutions.
  • solutions of the nanoparticles in, for example, physiological saline solution are suitable for interstitial or intratumoral application.
  • Intra-arterial or intravenous administration also allows a systemic, whole-body therapeutic option for non-solid and / or metastatic tumor types.
  • the nanoparticles and pharmaceutical compositions according to the invention are used for the treatment and also for the prophylaxis of diseases which are distinguished by degenerate cell species or foreign bodies and in which the properties of the nanoparticles according to the invention can be exploited, between foreign cells or degenerated cells and healthy endogenous cells to discriminate.
  • Degenerate cells are in particular cancer cells or in their proliferation disordered cells as well as stenotic or restenotic tissue. In particular bacteria can be mentioned as foreign cells.
  • nanoparticles according to the invention and the pharmaceutical compositions containing nanoparticles are used for the prophylaxis and treatment of tumors, carcinomas and cancers.
  • cancer and tumor types where the nanoparticles according to the invention can be used are: adenocarcinomas, choroidal melanoma, acute leukemia, acoustic neuroma, ampoule carcinoma, anal carcinoma, astrocytomas, basalioma, pancreatic cancer, connective tissue tumor, bladder cancer, bronchial carcinoma, non-small cell lung carcinoma, Breast cancer, Burkitt's lymphoma, corpus carcinoma, CUP syndrome, colon cancer, small bowel cancer, small intestine tumors, ovarian cancer, endometrial carcinoma, ependymoma, epithelial cancers, Ewing tumors, gastrointestinal tumors, gall bladder cancer, bile carcinomas, uterine cancer, cervical cancer, glioblastomas, gynecological tumors, cervical cancer , Nasal and Ear Tumors, Hematologic Neoplasia, Hairy Cell Leukemia, Urethral Cancer, Skin Cancer, Brain Tumors (Gliomas,
  • MFH-P01452WO04draft04 MFH-P01452WO04draft04.doc Breast cancer, rectal cancer, medulloblastoma, melanoma, meningioma, Hodgkin's disease, mycosis fungoides, nasal cancer, neuroma, neuroblastoma, kidney cancer, renal cell carcinoma, non-Hodgkin's lymphoma, oligodendroglioma, esophageal carcinoma, osteolytic carcinoma, and the like.
  • osteoplastic carcinoma osteosarcoma, ovarian carcinoma, pancreatic carcinoma, penile cancer, plasmocytoma, squamous cell carcinoma of the head and neck, prostate cancer, pharyngeal cancer, rectal carcinoma, retinoblastoma, vaginal cancer, thyroid carcinoma, Schneeberger disease, esophageal cancer, spinal, T-cell lymphoma (Mycosis fungoides), Thymoma, tubal carcinoma, tumors of the eye, urethral cancer, urological tumors, urothelial carcinoma, vulvar cancer, wart involvement, soft tissue tumors, soft tissue sarcoma, Wilms tumor, cervical carcinoma and tongue cancer.
  • Especially solid tumors are preferred. Also preferred are prostate cancers, cerebral tumors, sarcomas, cervical carcinomas, ovarian cancers, breast cancers, bronchial carcinomas, melanomas, head and neck tumors, esophageal carcinomas, rectal cancers, pancreatic, bladder and renal carcinomas, metastases of the liver, brain, and lymph nodes.
  • cytostatic mitomycin to aminosilane-stabilized iron oxide nanoparticles
  • a conjugate of mitomycin and triethoxysilylbutyraldehyde is first synthesized.
  • mitomycin and triethoxysilylbutyraldehyde are dissolved in a molar ratio of 1: 1 and stirred for 2 hours. In this way, the active ingredient is coupled via an imine bond to the silane.
  • This conjugate is then used for the coating of iron oxide nanoparticles as follows: A suspension of uncoated iron oxide nanoparticles (prepared from iron (II) chloride and iron (III) chloride by precipitation with sodium hydroxide) is adjusted to a pH of 5 with acetic acid , Then, with constant stirring, a mixture of the mitomycin-silane conjugate and aminopropyltriethoxysilane is added. The molar ratio of mitomycin to aminopropyltriethoxysilane is previously set at 1:50. After 24 hours, ethylene glycol is added so that the volume of the suspension doubles. Thereafter, the water is removed by distillation. As a result, the silanes are firmly coupled to the iron oxide particles. The suspension is purified by dialysis against ultrapure water and concentrated to an iron concentration of 1 mol / l (by distillation).
  • Aminosilane-stabilized nanoparticles are prepared by precipitation of iron (II) chloride and iron (III) chloride with sodium hydroxide and coated by adding Aminpropyltriethoxysilan (according to WO 97/38058).
  • the suspension is concentrated to an iron concentration of 2 mol / l.
  • 5% glutaraldehyde solution (6 ml) is added and stirred for 2 hours.
  • the thus activated particles are washed and resuspended in 800 ⁇ l of PIPES buffer.
  • 0.3 ⁇ mol of the amino-modified oligonucleotide (amino end-modification) are dissolved in water
  • nanoparticles with glutaraldehyde linkers and oligonucleotide immobilized thereon according to Example 2 are freeze-dried and spray-treated with an ethanolic solution containing polyglycol. After removal of the solvent, nanoparticles provided with a biodegradable polyglycol coating are obtained. Such coatings are used to bind, for example, aptamers and tumor cell-specific antibodies.
  • oligonucleotides today are largely automated using an established group of protecting groups.
  • a short oligonucleotide consisting of 15 nucleotides is covalently coupled to the nanoparticles via a final modification (see Example 2).
  • a second, complementary to the first oligonucleotide is coupled via a final modification with the active ingredient doxorubicin. Both components are brought together and heated briefly to 95 ° C to denature the oligonucleotides. Subsequent incubation at a temperature just below the melting point of the oligonucleotide mate both strands into a double strand.
  • the sequence of the oligonucleotides is selected so that under physiological conditions, a melting point of about 48 ° C results, so no melting of the double strand is possible.
  • a melting point of about 48 ° C results, so no melting of the double strand is possible.
  • the resulting DNA double strand is quantitatively melted and the active ingredient is released together with the attached oligonucleotide.
  • the single-stranded DNA when it enters the interior of a cell, degrades rapidly, so that then the drug is completely free.
  • Double-stranded RNA can be used therapeutically as so-called siRNA (for small interfering RNA) to specifically switch off genes. If such an RNA is to be released externally controlled by the nanoparticles used as a transporter, the binding via a specific triple helix is the method of choice.
  • a double-strand-binding oligonucleotide suitable for the siRNA used is covalently bound to the nanoparticles via a final modification of the oligonucleotide (according to Example 2). (This allows for the later formation of a triplet-forming oligonucleotide (TFO)).
  • oligonucleotides are used in which the sugar-phosphate backbone of the nucleic acids is replaced by a synthetic peptide-like backbone, which is structurally analogous to the nucleic acids; These are so-called peptide nucleic acids (PNAs).
  • PNAs peptide nucleic acids
  • TNFalpha tumor necrosis factor
  • a heterodimerizing so-called leucine zipper is used. The binding is stabilized and at the same time specified by the ionic interactions of charged groups (arginine / lysine versus glutamate / aspartate).
  • a synthetic oligopeptide of 22 amino acids of the max-leucine zipper is covalently bound via a terminal modification of the oligopeptide.
  • MFH-P01452WO04draft04 MFH-P01452WO04draft04.doc Tumor necrosis factor quantitatively bound to the nanoparticles.
  • the melting temperature of the leucine zipper is exceeded, so that the tumor necrosis factor (which is not impaired in its function) is released locally.
  • thermolabile interactions of nucleic acids with nucleic acids and of proteins with proteins there are also specific (as well as unspecific) biological interactions of proteins or polypeptides with nucleic acids. Since such interactions are based precisely on the same non-covalent bonds, they are basically just as thermolabile as those mentioned above and can therefore be used just as well as a thermolabile linker system for the thermal release of active ingredients. Proteins are used which either nonspecifically (e.g., histones, or the single-strand binding SSB protein of the DNA replication fork) or highly specifically interact with nucleic acids (e.g., repressors, transcription factors).
  • DNA-binding polypeptides also the so-called "helix-turn-helix” motifs of repressor proteins and the so-called “zinc finger” motifs of the nuclear receptor proteins are used. Both typically comprise around 60 amino acids.
  • Zinc-finger motifs consist of two loops of equal size with two pairs of cysteines each, or a pair of cysteines and a pair of histidines, which are held together by a complexed zinc atom). This results in two finger-like structures that reach into the major furrows of the DNA. Between the two structures is a 15 to 20 amino acids comprehensive linker, which contains an amino acid sequence at the steroid hormone receptors, which specifically recognizes a palindromic DNA sequence.
  • a synthetic oligopeptide of 60 amino acids is covalently coupled, which comprises the complete zinc-finger motif of the glucocorticoid receptor.
  • the drug molecule doxorubicin is covalently coupled to a double-stranded oligonucleotide of 15 base pairs, which comprises the recognition sequence of the glucocorticoid receptor (the so-called "glucocorticoid response element" GRE). Both components are coupled to a complex that is stable under physiological conditions. If the nanoparticles are heated by coupling an alternating magnetic field, the
  • Example 8 Coupling of active substances via hapten-antibody bridges
  • the spontaneous binding of a hapten as a therapeutic agent to the body's own proteins can lead to an immune reaction.
  • the binding of antibodies can also lead to a neutralization of the effect effect. This effect is used to achieve local activation by thermal decomposition of hapten-antibody complexes.
  • Fv fragments the smallest possible antigen-binding cleavage pieces of antibodies
  • doxorubicin-directed antibody Biochemically (or optionally genetically engineered) so-called Fv fragments (the smallest possible antigen-binding cleavage pieces of antibodies) of a doxorubicin-directed antibody are covalently bound to the surface of nanoparticles. Addition of an excess of doxorubicin saturates the antigen binding sites. By magnetic separation or centrifugation, the doxorubicin-saturated nanoparticles are freed of unspecifically bound active ingredient and optionally additionally washed.
  • the doxorubicin-saturated nanoparticles After intravenous administration of the doxorubicin-saturated nanoparticles, these circulate as far as possible free from the usual side effects of the cytostatic agent.
  • An unspecific enrichment of the nanoparticles in the area of tumors is achieved because the nanoparticles can leave the vessels there through the constantly newly formed, still permeable vessel walls.
  • intracellular uptake into tumor cells due to the frequency of mitosis), but not benign cells, can be effected by a special surface coating.
  • external magnetic fields can be used to heat the nanoparticles;
  • the hapten-antibody (fragment) complex is melted by the heating. Due to its autonomic cytotoxic as well as the radiation-sensitizing effect of doxorubicin, the tissue damaging effect of hyperthermia is potentiated. Thus, a true synergy of tumor control is achieved.
  • the non-covalent bond between the vitamin biotin and the binding protein avidin from chicken egg white (or its bacterial analog streptavidin) is the
  • Iminobiotin is coupled via its ⁇ -amino group with the amino group of doxorubicin; the bond is produced via glutaric dialdehyde.
  • the nanoparticles are loaded with doxorubicin.
  • These doxorubicin-loaded nanoparticles are passively enriched in vivo due to the permeability of the endothelia in the tumor area and are also actively enriched by endocytosis in the tumor cells.
  • the magnetically induced hyperthermia is also synergistically enhanced by the thermal release of the sensitizer doxorubicin.
  • the nanoparticles described in Example 1 are first derivatized by means of aminopropyltriethoxysilane.
  • a suspension of uncoated iron oxide nanoparticles (prepared from iron (II) chloride and iron (III) chloride by precipitation with sodium hydroxide) is adjusted to a pH of 5 with acetic acid.
  • Aminopropyltriethoxysilane is added dropwise in a molar ratio based on the theoretical maximum number of hydroxyl groups, stirred for one hour at room temperature and then treated with an equimolar amount of cisplatin, which undergoes a nucleophilic substitution reaction with the amino group of the silane.
  • the obtained derivatized nanoparticles have the following structure:
  • Example 11 Effect of Cisplatin Nanoparticles According to Example 10 on Glioblastoma Cells
  • the in vitro studies were performed with the glioblastoma human cell line RUSIRS1 (brain tumor).
  • the glioblastoma cells were removed from the tumor tissue of a patient as described in DE 199 12 798 C1 and cultured.
  • 2 ⁇ 10 6 RUSI RS1 cells in each case were placed in a 75 cm 3 cell culture flask containing 25 ml cell culture medium (D-MEM + 20% FBS + 1.2 ml pyruvate). The cell suspension was evenly distributed on 4 culture dishes.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Nanotechnology (AREA)
  • Molecular Biology (AREA)
  • Immunology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Medical Informatics (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Biochemistry (AREA)
  • Oncology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Mycology (AREA)
  • Communicable Diseases (AREA)
  • Microbiology (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicinal Preparation (AREA)

Abstract

Die vorliegende Erfindung betrifft Nanopartikel, wobei an den Nanopartikel mindestens eine therapeutisch wirksame Substanz gebunden ist und wobei die Ablösung der therapeutisch wirksamen Substanz von dem Nanopartikel durch ein magnetisches Wechselfeld bewirkt oder initiiert wird. Ferner betrifft die vorliegende Erfindung pharmazeutische Zusammensetzungen, insbesondere Injektionslösungen enthaltend die Nanopartikel sowie deren Verwendung zur Behandlung von Krebs.

Description

Nanopartikel-Wirkstoff-Konjugate
Beschreibung
Die vorliegende Erfindung betrifft Nanopartikel, an die therapeutisch wirksame Substanzen gebunden sind, wobei die Freisetzung der therapeutisch wirksamen Substanzen durch ein magnetisches Wechselfeld bewirkt, initiiert oder wesentlich gesteigert wird.
Es ist bekannt, dass superparamagnetische Nanopartikel als Wirkstoffträger zur Behandlung von Krankheiten eingesetzt werden können. Dabei werden verschiedene Ansätze verfolgt. Eine bekannte Strategie basiert z.B. auf dem so genannten "Magnetic Drug-Targeting", bei dem versucht wird, eine lokale Konzentrationserhöhung der Wirkstoffe mittels eines Magnetfeldes zu erreichen (DE 10059151 A, Alexiou). Ebenso wird versucht, den Partikeln auf chemischem Wege Zielfindungseigenschaften zu verleihen, um so eine Anreicherung in bestimmten Körperregionen zu erreichen (DE 4428851 A1 , EP 0516252 A2). Mehrschalige Teilchen zur Einschleusung von Partikel-Wirkstoff-Konjugaten in Tumorzellen werden in der Patentschrift WO 98/58673 (INM) beschrieben.
Aufgabe der vorliegenden Erfindung ist es, Nanopartikel derart mit therapeutisch wirksamen Substanzen zu beladen, dass im gesunden Gewebe keine nennenswerte Freisetzung der therapeutisch wirksamen Substanzen stattfindet und nach dem Eintreten der Nanopartikel in das Tumorgewebe und in die Tumorzellen eine gesteuerte Freisetzung der therapeutisch wirksamen Substanzen erfolgen kann.
Die Aufgabe wird durch die Nanopartikel gemäß Anspruch 1 sowie die pharmazeutische Zusammensetzung gemäß Anspruch 11 und die Verwendung der Nanopartikel gemäß Anspruch 12 gelöst.
Weitere vorteilhafte Ausgestaltungen ergeben sich aus den abhängigen Ansprüchen, den Beispielen und der Beschreibung.
Die vorliegende Erfindung betrifft Nanopartikel, wobei an die Nanopartikel therapeutisch wirksame Substanzen gebunden sind und wobei die Ablösung der therapeutisch wirksamen Substanzen von den Nanopartikeln durch ein magnetisches Wechselfeld bewirkt, initiiert oder wesentlich gesteigert wird. Dabei wird die
MFH-P01452WO04draft04 dαc mindestens eine therapeutisch wirksame Substanz durch den direkten Einfluß des alternierenden magnetischen Feldes oder durch die lokale Erwärmung aufgrund des alternierenden magnetischen Feldes freigesetzt. Die Freisetzung geschieht bevorzugt dadurch, dass ein thermisch labiler Linker zwischen dem Wirkstoff, d.h. der therapeutisch wirksamen Substanz und dem Nanopartikel thermisch gespalten wird und/oder ein Linker verwendet wird, der gegenüber einem alternierenden magnetischen Feld labil ist. Die vorliegende Erfindung besteht also darin, eine therapeutisch wirksame Substanz, insbesondere ein Cytostatikum über einen thermisch und/oder durch ein magnetisches Feld spaltbaren Linker an ein Nanopatikel zu binden.
Die erfindungsgemäßen Nanopartikel sind dadurch charakterisiert, dass das Nanopartikel mindestens eine therapeutisch wirksame Substanz gebunden ist und wobei die Ablösung der mindestens einen therapeutisch wirksamen Substanz von dem Nanopartikel durch ein magnetisches Wechselfeld bewirkt oder initiiert oder wesentlich gesteigert wird.
Anders gesagt betrifft die vorliegende Erfindung Nanopartikel, wobei an das Nanopartikel mindestens eine therapeutisch wirksame Substanz kovalent oder ionisch oder über Wasserstoffbrücken oder über Komplexverbindung oder über Interkalation oder über lipophile Wechselwirkungen mittels eines Linkers gebunden ist und der Linker thermisch initiiert und/oder initiiert durch ein elektromagnetisches bzw. magnetisches Feld gespalten werden kann.
Thermisch initiierte Spaltung bedeutet, dass eine lokale Erwärmung auf über 45°C bevorzugt über 500C unter physiologischen Bedingungen ausreicht, um den Linker zu spalten. Eine Spaltung initiiert durch ein elektromagnetisches bzw. magnetisches Feld bedeutet, dass unter physiologischen Bedingungen das Anlegen eines elektromagnetischen bzw. magnetischen Feldes eine Spaltung des Linkers auslöst, sei es nur durch das elektromagnetische bzw. magnetische Feld und/oder durch eine lokale pH-Wert Erniedrigung, welche durch das elektromagnetische bzw. magnetische Feld hervorgerufen wird.
Die Anbindung der mindestens einen therapeutisch wirksamen Substanz, d.h. der Moleküle mindestens einer therapeutisch wirksamen Substanzklasse oder eines bestimmten Wirkstoffs erfolgt vorzugsweise kovalent oder durch eine überwiegend kovalente Bindung und/oder durch eine ausreichend starke ionische Bindung, Einlagerungsverbindung oder Komplexbindung, bzw. eine Anordnung einer ausreichenden Anzahl von Wasserstoffbrückenbindungen oder hydrophober
MFH-P01452WO04draft04 doc Wechselwirkungen, so dass eine unkontrollierte Freisetzung von therapeutisch wirksamer Substanz weitgehend unterbleibt. Als unkontrollierte Freisetzung wird die Ablösung von therapeutisch wirksamer Substanz im gesunden Gewebe verstanden, insbesondere die Ablösung ohne die Einwirkung eines magnetischen Wechselfeldes.
Eine solche unkontrollierte Freisetzung führt dazu, dass therapeutisch wirksame Substanzen dort freigesetzt werden, wo sie eher schädliche Nebenwirkungen als therapeutische Effekte bewirken, nämlich außerhalb des kanzerogenen Gewebes bzw. der Tumorzellen.
Die therapeutisch wirksamen Substanzen bleiben somit fest an die Nanopartikel gebunden und werden samt der Nanopartikel in die Krebszellen transportiert. Auf dem Weg der Nanopartikel in die Krebszellen wird nur eine geringe Menge bis hin zu einer unwesentlichen Menge der therapeutisch wirksamen Substanzen freigesetzt. Angekommen in den Krebszellen erfolgt dann die Freisetzung der therapeutisch wirksamen Substanzen mittels eines magnetischen Wechselfeldes, insbesondere eines äußeren bzw. von außen angelegten magnetischen Wechselfeldes (Impuls).
In diesem Zusammenhang bedeutet "durch ein magnetisches Wechselfeld bewirkt oder initiiert", dass zum einen das magnetische Wechselfeld bzw. die Impulse direkt die Freisetzung bzw. Ablösung bewirken oder indirekt beispielsweise über die Aktivierung bzw. Induktion der Genexpression von Enzymen oder die Erzeugung von Wärme.
Die Nanopartikel selbst bestehen aus einem magnetischen Material, vorzugsweise einem ferromagnetischen, antiferromagnetischen, ferrimagnetischen, antiferri- magnetischen oder superparamagnetischen Material, weiter bevorzugt aus Eisenoxiden, insbesondere superparamagnetischen Eisenoxiden oder aus reinem Eisen, welches mit einer Oxidschicht versehen ist. Derartige Nanopartikel können durch ein magnetisches Wechselfeld erwärmt werden. Eine Erwärmung des die Nanopartikel enthaltenden Gewebes auf über 5O0C ist möglich. Derartig hohe Temperaturen können erreicht werden, da bis zu 800 pg und mehr Eisen in Form der Nanopartikel pro Tumorzelle aufgenommen werden können.
Die Nanopartikel bestehen vorzugsweise aus Eisenoxiden und insbesondere aus Magnetit (Fe3O4), Maghemit (γ-Fe2O3) oder Mischungen dieser beiden Oxide. Allgemein können die bevorzugten Nanopartikel durch die Formel FeOx wiedergegeben werden, worin X eine Zahl von 1 bis 2 bedeutet. Die Nanopartikel weisen vorzugsweise einen Durchmesser von weniger als 500 nm auf.
MFH-P01452WO04draft04 doc Vorzugsweise besitzen die Nanopartikel einen durchschnittlichen Durchmesser von 15 nm oder liegen vorzugsweise in dem Größenbereich von 1 - 100 nm und insbesondere bevorzugt im Bereich von 10 - 20 nm.
Neben den magnetischen Materialien der Formel FeOx, worin X eine Zahl im Bereich von 1 ,0 bis 2,0 ist, sind erfindungsgemäß auch Materialien der allgemeinen Formel MFe2O4 mit M = Co, Ni, Mn, Zn, Cd, Ba oder andere Ferrite einsetzbar. Ferner eignen sich auch Silica- oder Polymerpartikel, in die magnetische Materialien wie beispielsweise die hierin genannten magnetischen Materialien eingelagert und/oder angebunden sind.
An diese Nanopartikel, insbesondere superparamagnetische Nanopartikel werden nun therapeutisch wirksame Substanzen gebunden, wobei eine kovalente Bindung bevorzugt ist. Als therapeutisch wirksame Substanzen können anti-proliferative, anti-migrative, anti-angiogene, anti-thrombotische, antiinflammatorische, antiphlogistische, zytostatische, zytotoxische, anti-koagulative, anti-bakterielle, antivirale und/oder anti-mykotische Wirkstoffe gewählt werden, wobei anti-proliferative, anti-migrative, anti-angiogene, zytostatische und/oder zytotoxische Wirkstoffe sowie Nukleinsäuren, Aminosäuren, Peptide, Proteine, Kohlenhydrate, Lipide, Glycoproteine, Glycane oder Lipoproteins mit anti-proliferativen, anti-migrativen, anti- angiogenen, anti-thrombotischen, antiinflammatorischen, antiphlogistischen, zytostatischen, zytotoxischen, anti-koagulativen, anti-bakteriellen, anti-viralen und/oder anti-mykotischen Eigenschaften bevorzugt sind. Darüberhinaus können diese Substanzen auch Radiosensitizer oder Sensitizer oder Verstärker anderer auch kombinierter konventioneller Krebsbehandlungsmethoden sein oder solche Sensitizer enthalten.
Als zytotoxische und/oder zytostatische Verbindungen, d.h. chemische Verbindungen mit zytotoxischen und/oder zytostatischen Eigenschaften können unter anderem Alkylierungsmittel, Antibiotika mit zytostatischen Eigenschaften, Antimetabolite, Mikrotubuli-Inhibitoren und Topoisomerase-Inhibitoren, Platin-enthaltende Verbindungen und andere Zytostatika wie beispielsweise Asparaginase, Tretinoin, Alkaloide, Podophyllotoxine, Taxane und Miltefosin®, Hormone, Immunmodulatoren, monoklonale Antikörper, Signaltransduktoren (Signaltransduktionsmoleküle) und Zytokine eingesetzt werden.
Als Beispiele für Alkylierungsmittel können unter anderem Chlorethamin, Cyclophosphamid, Trofosfamide, Ifosfamid, Melphalan, Chlorambucil, Busulfan,
MFH-P01452WO04draft04.doc Thiotepa, Carmustin, Lomustin, Dacarbazin, Procarbazin, Temozolomid, Treosulfan, Estramustin und Nimustin genannt werden.
Beispiele für Antibiotika mit zytostatischen Eigenschaften sind Daunorubicin, Doxorubicin (Adriamycin), Dactinomycin, Mitomycin C, Bleomycin, Epirubicin (4-Epi- Adriamycin), Idarubicin, Dactinomycin, Mitoxantron, Amsacrin und Actinomycin D.
Methotrexat, 5-Fluorouracil, 6-Thioguanin, 6-Mercaptopurin, Fludarabin, Cladribin, Pentostatin, Gemcitabin, Cytarabin, Azathioprin, Raltitrexed, Capecitabin, Cytosinarabinosid, Tioguanin und Mercaptopurin können als Beispiele für Antimetabolite (antimetabolische Wirkstoffe) angeführt werden.
Zu der Klasse der Alkaloide und Podophyllotoxine gehören unter anderem Vincristin, Vinblastin, Vindesin, Etoposid als auch Teniposid. Des weiteren können Platin- enthaltende Verbindungen erfindungsgemäß eingesetzt werden. Als Platinenthaltende Verbindungen seien beispielsweise Cisplatin, Carboplatin und Oxaliplatin genannt. Zu den Mikrotubuli-Inhibitoren zählen beispielsweise Alkaloide wie beispielsweise Vinca-Alkaloide (Vincristin, Vinbiastin, Vindesin, Venorelbin) und Paclitaxel (Taxol®) sowie Derivate des Paclitaxel. Als Topoisomerase-Inhibitoren können beispielsweise Etoposid, Teniposid, Camptothecin, Topotecan und Irinotecan genannt werden.
Paclitaxel und Docetaxel sind Beispiele für die Verbindungsklasse der Taxane und zu den anderen zytostatischen Wirkstoffen (anderen Zytostatika) zählen beispielsweise Hydroxycarbamide (Hydroxyurea), Imatinib, Miltefosin®, Amsacrin, Topotecan (Topoisomerase-I-Inhibitor), Pentostatin, Bexaroten, Biolimus A9, Rapamycin (Sirolimus) , Rhodomycin D, Ametantron, Bendamustin, Oxazaphosphorine, 5'-Deoxy-5-fluorouridin, 9-Aminocamptothecin, Podophyllotoxin- Derivate, Mitopodozid, Vinca-Alkaloide, Calicheamicine, Maytansinoide, Tretinoin und Asparaginase. Vertreter der Verbindungsklasse der monoklonalen Antikörper sind unter anderem Trastuzumab (auch bekannt als Herceptin®), Alemtuzumab (auch bekannt als MabCampath®) und Rituximab (auch bekannt als MabThera®).
Erfindungsgemäß können auch Hormone wie beispielsweise Glucocorticoide (Prednison), Oestrogene (Fosfestrol, Estramustin), LHRH (Buserelin, Goserelin, Leuprorelin, Triptorelin), Flutamid, Cyproteronacetat, Tamoxifen, Toremifen, Aminoglutethimid, Formestan, Exemestan, Letrozol und Anastrozol eingesetzt werden. Zu den Klassen der Immunmodulatoren, Zytokine, Antikörper und Signaltransduktoren zählen lnterleukin-2, Interferon-α, Erythropoietin, G-CSF,
MFH-P014S2WO04draft04.doc Trastuzumab (Herceptin®), Rituximab (MabThera®), Efitinib (Iressa®), Ibritumomab (Zevalin®), Levamisol sowie Retinoide.
Die vorgenannten Wirkstoffe werden vorzugsweise kovalent an die Nanopartikel gebunden. Die Anbindung der Wirkstoffe kann beispielsweise über
Hydroxygruppen, Aminogruppen, Carbonylgruppen, Thiolgruppen oder
Carboxylgruppen erfolgen, je nachdem, welche funktionellen Gruppen der jeweilige
Wirkstoff trägt. So kann beispielsweise Doxorubicin über seine primäre
Hydroxygruppe als Ester gebunden werde, Platin-Derivate (Cisplatin, Carboplatin, Oxaliplatin ect.) mittels nukleophiler Substitution am Platin an eine Aminogruppe gekoppelt werden, oder Paclitaxel über eine Iminbindung gebunden werden.
Hydroxygruppen werden vorzugsweise als Ester, Acetal oder Ketal gebunden, Thiogruppen vorzugsweise als Thioester, Thioacetal oder Thioketal, Aminogruppen vorzugsweise als Amide und teilweise auch als Imine (Schiffsche Basen) oder durch Reaktion mit einer Isocyanat-Gruppe als Urethan, Carboxylgruppen vorzugsweise als Ester oder Amide und Carbonylgruppen vorzugsweise als Acetale bzw. Ketale.
Die Herstellung von Nanopartikeln, jedoch ohne Wirkstoff und auch ohne Beschichtung ist ausführlich in DE 4428851 A beschrieben. Ferner ist die Funktionalisierung der Oberfläche der Nanopartikel bekannt, so dass nach bekannten Verfahren Aminogruppen, Hydroxygruppen, Carboxylgruppen oder Carbonylgruppen auf der Oberfläche der Nanopartikel erzeugt werden können.
Die vorliegende Erfindung betrifft daher Nanopartikel, welche über eine Vielzahl von Aminogruppen, Hydroxygruppen, Carboxylgruppen oder Carbonylgruppen auf der Oberfläche verfügen, und wobei an zumindest einen Teil dieser funktionellen Gruppen Linker mittels einer Iminbindung, Aminbindung, Esterbindung, Amidbindung oder Ketalbindung gebunden sind und ferner diese Linker die therapeutische wirksame Substanz kovalent, ionisch, komplexiert, lipophhil oder über Wasserstoffbrücken binden.
Ein besonderes Merkmal einer bevorzugten Ausführungsform der erfindungsgemäßen Nanopartikel ist, dass die Wirkstoffe über spezielle Bindungstypen an die magnetischen Nanopartikel gekoppelt sind. Diese Bindungen sind so konstruiert, dass eine Freisetzung der Wirkstoffe durch ein äußeres magnetisches Wechselfeld (Impuls) stimuliert werden kann.
MFH-P01452WO04draft04.doc Ein wechselndes Magnetfeld wirkt als externe Anregung, die im Falle von superparamagnetischen Partikeln verschiedene Relaxationsprozesse der Partikel in Gang setzt. Diese Prozesse führen u.A. zu einer Erwärmung der Partikel und ihrer Umgebung. Diese durch das magnetische Wechselfeld in Gang gesetzten Prozesse werden erfindungsgemäß dazu benutzt, die Bindung zwischen Nanopartikel und therapeutisch wirksamer Substanz zu spalten oder die Spaltung stark zu beschleunigen. Dabei kann z.B. die Geschwindigkeit der Abspaltung durch biologische Prozesse (z.B. enzymatisch) durch den Impuls stark erhöht werden, so dass erst nach eingeschaltetem Impuls eine nachhaltige Konzentrationserhöhung des Wirkstoffs am Zielort erreicht werden kann. Ebenso kann die Bindung so konstruiert sein, dass eine Abspaltung durch chemische Reaktionen (z.B. Hydrolyse) in Gang gesetzt oder merklich beschleunigt wird. Darüber hinaus kann durch die Magnetfeld-induzierte Erwärmung ein Aufschmelzen eines als Linker eingesetzten Nukleinsäure- oder Polypeptid-Moleküls erfolgen.
Die therapeutisch wirksamen Substanzen werden direkt oder über ein Linker-Molekül Das Linker-Molekül wird vorzugsweise mittels einer Amidbindung oder Esterbindung an die Nanopartikel bzw. an das jeweilige Nanopartikel gebunden. Als Linker können erfindungsgemäß auch Nukleinsäuren (Desoxyribonukleinsäuren (DNA), Ribonukleinsäure (RNA) oder Peptid-Nukleinsäuren (PNA)) oder Polypeptide verschiedener Länge eingesetzt werden. Die erforderlichen Moleküle können wahlweise gentechnisch oder synthetisch hergestellt werden. Die Linker können thermisch induziert, magnetisch induziert oder säureinduziert unter physiologischen Bedingungen gespalten werden.
Spaltung des Linkers bedeutet, dass der Linker zumindest eine Bindung innerhalb des Linkers enthält, welche durch Wärmeeinwirkung, Einwirkung eines magnetischen Feldes, d.h. magnetischen Impulses oder durch Säureeinwirkung unter physiologischen Bedingungen gespalten werden kann. Die Spaltung dieser Bindung sollte durch die Einwirkung von Wärme (bevorzugt mindestes 45°C) und/oder des magnetischen Feldes und/oder von Säure unter physiologischen Bedingungen mindestens doppelt so schnell verlaufen als ohne diese Einwirkung. Die Bildung von Säure und die Absenkung des lokalen pH-Wertes kann z.B. durch bereits abgetötete Zellen verursacht werden. Der Begriff "Bindung innerhalb des Linkers" umfasst auch die Bindung des Linkers zum Nanopartikel sowie die Bindung des Linkers zur therapeutisch wirksamen Substanz. Zudem kann der Linker auch aus zwei oder drei Linkermolekülen zusammengesetzt sein.
MFH-P01452WO04draft04.doc Um die erforderliche Spaltbarkeit zu gewährleisten, weisen die Linker mindestens eine der folgenden funktionellen Gruppen auf:
-S-S-, -O-P(=O)(O-)-O-, -CO-CO-, -NH-CO-CO-NH-, -C=N-C, Ketale, -CO-NH-N=C-, Trioxysilane (-O-)(-O-)(-O-)Si-C oder Acetale.
Geeignete Linker haben beispielsweise folgende Form:
Figure imgf000009_0001
Figure imgf000009_0002
Figure imgf000009_0003
Figure imgf000009_0004
Figure imgf000009_0005
MFH-P01452WO04draft04.doc
Figure imgf000010_0001
Die Zick-Zack-Linie gibt die Bindung zwischen Wirkstoff und Linker bzw. Linker und Nanopartikel an.
Als Nukleinsäuren werden solche - vorzugsweise doppelsträngigen - Konstrukte bevorzugt, die einen Schmelzpunkt im Bereich von 40-600C besitzen. Beim Einsatz doppelsträngiger DNA , RNA oder PNA verfügt ein Strang über eine zur Kopplung an die Partikel befähigte Gruppe (z.B. eine Amino- oder Carboxy-Gruppe, die über eine Phosphoramidat-Gruppe angekoppelt wurde). Der komplementäre Strang kann z.B. den Wirkstoff tragen, der ebenfalls über eine kovalente Bindung gekoppelt ist. Durch die Basenpaarung zwischen den Strängen wird so auch der Wirkstoff an die Partikel gekoppelt. Eine Freisetzung des Wirkstoffs kann nun durch das Aufschmelzen der Doppelhelix bei Wärmeentwicklung im magnetischen Wechselfeld erfolgen. Dabei trennen sich die Einzelstränge und die Wirksubstanz wird vom Partikel entkoppelt. Über die Auswahl entsprechender Homo- oder Hetero-Hybride aus DNA-DNA, DNA- RNA, DNA-PNA, RNA-RNA1 RNA-PNA oder PNA-PNA lässt sich sowohl der Schmelzpunkt als auch das Abbauverhalten der Linker steuern.
Als Polypeptide werden vorzugsweise solche Moleküle eingesetzt, die zur Bildung definierter Homo- oder Hetero-Dimere neigen, insbesondere über Wasserstoff-
MFH-P01452WO04draft04.doc brückenbindungen (wie z.B. zwischen Immunglobulin-Domänen) oder hydrophobe Wechselwirkungen (wie z.B. in den so genannten Leucin-Zippem). Auch hier werden gezielt solche Paare eingesetzt mit einem Schmelzpunkt im Bereich von 40- 6O0C besitzen, die also bei physiologischen überwiegend im gepaarten Zustand vorliegen, aber bei therapeutisch erzielbaren Temperaturen in ihre Monomere zerfallen. Dazu wird der eine Bindungspartner kovalent an die Nanopartikel gekoppelt, der andere kovalent mit einer therapeutisch wirksamen Substanz gekoppelt. Das Aufschmelzen der Bindung zwischen den beiden Peptidsträngen führt zu einer Entkopplung von Nanopartikeln und therapeutisch wirksamen Substanzen, die anschließend - ggf. erst nach beispielsweise enzymatischer Abspaltung - in frei diffundierbarer Form vorliegen.
Desgleichen können auch Polypeptid-Nukleinsäure-Wechselwirkungen in einem entsprechenden Linker genutzt werden. Dazu werden beispielsweise an die Nano- partikel Nukleinsäure-bindende Polypeptide gekoppelt, welche nicht-kovalent mit Nukleinsäuren wechselwirken. Diese Wechselwirkungen können ebenfalls durch Wärmeeinwirkung aufgeschmolzen werden, so dass die gebundene Nukleinsäure nebst angekoppeltem Effektormolekül freigesetzt wird. Gegebenenfalls kann auch die freigesetzte Nukleinsäure selbst als Effektormolekül wirken (beispielsweise siRNA, antisense DNA etc.). Als Nukleinsäure bindende Polypeptide kommen insbesondere Zink-Finger mit einer Länge zwischen 20 und 50 Aminosäuren in Betracht, aber auch das häufige Helix-Turn-Helix-Motiv DNA-bindender Domänen kommt in Frage oder das so genannte "single-strand binding protein" (SSB) zur DNA- Bindung (ein kleines Protein mit einer DNA-bindenden Domäne von ca. 100 Aminosäuren) bzw. das "RNA recognition motif" (RRM bzw. RNP-1 ) einzelstrang- RNA-bindender Proteine (in einem Umfang von ca. 90 Aminosäuren) oder das "double-stranded RNA binding motif" (DRBM) Doppelstrang-RNA-bindender Proteine (im Umfang von ca. 65 Aminosäuren).
Als weitere Möglichkeit kann schließlich auch die Bindung niedermolekularer Liganden durch Nukleinsäuren (Aptamere) bzw. Proteine in einem Linker-System genutzt werden. Grundsätzlich können alle Moleküle zum Einsatz kommen, indem beispielsweise Antikörper gegen ein solches so genanntes "Hapten" generiert werden (häufig eingesetzt werden beispielsweise Antikörper gegen Dinitrophenol, Trinitrophenol, Digoxigenin., Digoxin, Biotin). Praktikabel sind besonders auch Bindungstaschen von Biomolekülen, beispielsweise für Coenzyme (wie Coenzym A, ATP, GTP, FAD, NADH, NADPH, Biotin, Folsäure, Pyridoxalphosphat, etc.), Substrate (wie z.B. die 73 Aminosäuren umfassende Glutathion-Bindungsstelle der Glutathion-S-Transferase GST) oder Hormone (wie z.B. die Hormonbindungs-
MFH-P01452WO04draft04.doc doimäne der nuklearen Hormonrezeptoren für Androgene, Östrogene, Retinsäure, Thyroxin, Vitamin D3 im Umfang von 218 bis 252 Aminosäuren). Eine der am häufigsten genutzten Wechselwirkungen und gleichzeitig die stärkste bekannte nicht- kovalente Bindung ist die des Biotins an das Avidin bzw. Streptavidin. Wegen der hohen Bindungsavidität ist hier möglicherweise auf modifiziertes Avidin bzw. auf Biotin-Analoga (etwa Desthiobiotin oder Iminobiotin) mit einer schwächeren Bindung auszuweichen, um ein Aufschmelzen im technisch erreichbaren Temperaturbereich zu erzielen. In allen Fällen ist es sinnvoll, den mikromolekularen Liganden an das Effektormolekül zu koppeln und den makromolekularen Liganden an die Nanopartikel; je nach Wahl des Liganden kann aber auch die umgekehrte Anordnung vorteilhaft sein.
Als Kopplungsmethoden kommen bei dieser bevorzugten Ausführungsform also nur solche in Frage, die eine Bindung zwischen Nanopartikel und Wirkstoff erzeugen, die unter "normalen" physiologischen Bedingungen eine ausreichende Stabilität aufweist, die aber unter den erfindungsgemäß angewandten Bedingungen (Impuls) wesentlich instabiler ist. Der eigentliche Mechanismus der Freisetzung und somit auch der Bindungstyp sind vom Zielort (z.B. Tumor bei Krebserkrankung) abhängig und muss durch die gängigen chemischen Kopplungsmethoden einstellbar sein. Ebenso kann die Freisetzung intrazellulär (z.B. in Tumorzellen) oder extrazellulär erfolgen. Die erfindungsgemäß hergestellten Teilchen unterscheiden sich also von bereits bekannten Wirkstoffträgern dadurch, dass erst durch Aktivierung im magnetischen Wechselfeld eine Wirksamkeit erreicht werden kann, während der Wirkstoff ohne diesen Impuls weitgehend inaktiv ist.
Erfindungsgemäß basieren die aktivierbaren Nanopartikel-Wirkstoff-Konjugate bevorzugt auf magnetischen eisenhaltigen Kernen, die von einer oder mehreren kolloidalen Hüllen oder Beschichtungen umgeben sind, welche eine Möglichkeit zur Ankopplung der Wirkstoffe über funktionelle Gruppen bieten. Der Kern besteht dabei vorzugsweise aus Magnetit oder Maghemit. Die primäre Funktion der Hüllen ist es, eine kolloidale Verteilung im wässrigen Medium zu erreichen und die Nanopartikel vor Agglomerationen zu schützen. Mehrschalig umhüllte Partikel, wie sie in WO 98/58673 beschrieben werden, sind prinzipiell als Basis für die aktivierbare Nanopartikel-Wirkstoff-Konjugate geeignet, da das biologische Verhalten solcher Partikel durch Überbeschichtungen mit Polymeren einstellbar und eine Ankopplung der Wirkstoffe an funktionelle Gruppen der Primärhülle möglich ist.
Die Wirkstoffe können durch unterschiedliche Methoden an die Primärhüllen angekoppelt werden. Im Falle einer Stabilisierung der Partikel-Kerne durch
MFH-P01452WO04draft04 doc Aminosilane oder eine Aminogruppen-tragende Hülle bzw. Beschichtung kann eine Ankopplung der Wirkstoffe z.B. an oberflächennahe Aminogruppen erfolgen. Hierbei kann eine Ankopplung z.B. über Succinimidyl-Ester, Sulfosuccinimidyl-Ester, Isothiocyanate, Triazinyl-Chloride, Sulfonyl-Chloride Tetrafluorphenyl-Ester oder auch über Aldehyd-Gruppen erfolgen. Voraussetzung ist, dass der Wirkstoff auf chemischem Wege mit solchen Gruppen versehen werden kann. Sollte eine direkte Ankopplung des Wirkstoffs über diese Methoden nicht möglich sein, ist der Einsatz eines "Linker-Moleküls" möglich. Dieser "Linker" verbindet den Wirkstoff mit den funktionellen Gruppen der Schutzhülle und bietet somit eine erhöhte Variabilität der Kopplungsmöglichkeiten. Bevorzugt ist somit, wenn das Linker-Molekül eine thermolabile, elektro-magneto-labile, photolabile, säurelabile, interkalierbare, interkalierte oder enzymatisch spaltbare Gruppe enthält. Darüber hinaus kann auch der Freisetzungsmechanismus über den Linker gesteuert werden. So kann der Linker auch Gruppen einführen, die eine Abspaltung der Wirkstoffe ermöglichen. In Frage kommen z.B. pH-spaltbare Acetal-, Ester-, Hydrazon- oder Imin-Gruppen. Ebenso sind Peptid-Sequenzen als Linker geeignet, bei denen erst eine enzymatische Abspaltung oder ein Aufschmelzen einer nicht-kovalenten Bindung den Wirkstoff freisetzt. Darüber hinaus kommen DNA, RNA und PNA-Moleküle als vorzugsweise doppelsträngige Linker in Frage, wobei die Freisetzung durch eine thermisch induzierte Aufschmelzung der Doppelstränge erfolgt.
Erfindungsgemäß dürfen aber nur Linker eingesetzt werden, die unter normalen physiologischen Bedingungen keine, oder nur langsame Abspaltungsraten bewirken. Die Linker-Moleküle können z.B. so konstruiert sein, dass eine Freisetzung im Zielgebiet (z.B. enzymatisch in der Tumorzelle) zwar möglich ist, dieser unter normalen Bedingungen aber so langsam ist, dass keine therapeutische Konzentration des Wirkstoffs erreicht werden kann. Erst durch den äußeren Impuls des magnetischen Wechselfeldes setzt die Abspaltung des Linker-Moleküls bzw. die Spaltung des Linker-Moleküls in ausreichender Geschwindigkeit ein und führt zu einer Aktivierung des Wirkstoffs. Das wird vorzugsweise dadurch erreicht, dass die verwendeten Linker erst nach einem thermisch induzierten Aufschmelzen von Nukleinsäure-Doppelsträngen bzw. Mehrfachsträngen oder alternativ von Peptid- Dimeren bzw. Peptid-Oligomeren eine Konformation einnehmen, die eine enzymatische Spaltung ermöglicht.
Ebenso wie im Falle von Aminosilan-stabilisierten Partikeln kann mit anderen, durch verschiedenartige funktionelle Gruppen (z.B. Carboxy, Epoxy, Aldehyd) stabilisierte magnetische Partikel verfahren werden. Entscheidend ist, dass die
Kopplungsmethode so gewählt wird, dass eine Freisetzung nur unter den o.g.
MFH-P01452WO04draft04.doc Bedingungen erfolgt. Ebenso ist es möglich, einen Wirkstoff an ein mit o.g. Gruppen funktionalisiertes Alkoxysilan zu koppeln (siehe Beispiel 1 ), wobei in einem nachfolgenden Schritt dieses Konjugat an die Schutzhülle von bereits durch Silane stabilisierten Partikeln gekoppelt wird. Dabei ist die Kopplung nicht auf kovalente Bindungen beschränkt. Erfindungsgemäß können auch ionische Wechselwirkungen ausreichender Stabilität erzeugt werden.
Eine weitere Beschichtung der aktivierbaren Nanopartikel-Wirkstoff-Konjugate (z.B. durch Polymere), wie sie in Patentschrift WO 98/58673 beschrieben wird, ist ebenfalls möglich, und kann genutzt werden, um die biologischen Eigenschaften der Partikel-Wirkstoff-Konjugate zu verbessern. Ebenso können weitere Moleküle angekoppelt werden, die dem Gesamtkonstrukt Zielfindungseigenschaften verleihen (z.B. polyklonale, Antikörper, monoklonale Antikörper, humanifizierte Antikörper, humana Antikörper, chimere Antikörper, rekombinante Antikörper, bispezifische Antikörper, Antikörperfragmente, Aptamere, Fab-Fragmente, Fc-Fragmente, Peptide, Peptidomimetika, gap-Mere, Ribozymes, CpG-Oligomere, DNA-Zyme, Riboswitches, oder Lipide). Voraussetzung ist, dass alle weiteren Modifizierungen die aktivierbare Freisetzung des Wirkstoffes am Zielort nicht behindern.
Als Linker können somit diverse Moleküle mit bis zu 500 Kohlenstoffatomen oder 10 bis 30 Basenpaaren, vorzugsweise 15 - 25 Basenpaaren oder 10 - 30 Aminosäuren, vorzugsweise 15 - 25 Aminosäuren dienen, vorausgesetzt, der Linker enthält eine thermisch, photochemisch oder enzymatisch spaltbare Gruppe, säurelabile Gruppe oder anders leicht ablösbare Gruppe. Eine Bindung im Linker-Molekül und/oder die Bindung des Linkers zum Wirkstoff und/oder die Bindung des Linkers zur Oberfläche des Nanopartikels müssen somit entweder durch die Einwirkung des magnetischen Wechselfeldes direkt oder indirekt spaltbar sein. Eine indirekte Spaltung ist dann gegeben, wenn beispielsweise durch das magnetische Wechselfeld Enzyme wie z.B. Peptidasen, Esterasen oder Hydrolasen am Zielort, z.B. in der Krebszelle angeregt oder deren Aktivität oder Expression gesteigert wird und diese Enzyme die vorgenannte Spaltung bewirken können. Zudem kann eine indirekte Spaltung bei der Verwendung von magnetischen Nanopartikeln erfolgen, wenn diese durch das magnetische Wechselfeld erwärmt werden und dadurch eine thermisch labile Bindung gespalten wird. Denkbar ist auch die Erhöhung des pH-Werte am Zielort durch Einwirkung des magnetischen Wechselfeldes und die nachfolgende Spaltung von säurelabilen Bindungen im Linker-Molekül.
Als enzymatisch spaltbare Gruppe im oder am Linker-Molekül sind die Estergruppe und die Amid- bzw. bzw. Peptidgruppe zu nennen. Thermisch oder mittels Säure
MFH-P01452WO04draft04.doc spaltbare Gruppen umfassen z.B. Phosphatgruppen, Thiophosphatgruppen, Sulfatgruppen, Phosphamidgruppen, Carbamatgruppen oder Imingruppen.
Der Wirkstoff muss nicht notwendigerweise kovalent an den Linker gebunden werden, sondern kann auch ionisch oder über Wasserstoffbrücken gebunden oder interkaliert oder komplexiert vorliegen.
Ferner besteht auch die Möglichkeit, die Wirkstoffe adsorptiv an die Oberfläche der Nanopartikel zu binden und mit einer Barriereschicht zu überziehen, welche die Freisetzung des Wirkstoffs weitgehend verhindert bis die Barriereschicht durch Einwirkung eines magnetischen Wechselfeldes derart verändert insbesondere abgebaut wird, dass die Freisetzung des Wirkstoffs erfolgen kann.
In weiteren bevorzugten Ausführungsformen werden die erfindungsgemäßen Nanopartikel mit einer oder mehreren Hüllen oder Beschichtungen umgeben bzw. überzogen. Diese Hüllen oder Beschichtungen können eine oder mehrere Funktionen erfüllen und können als Schutzhülle, Barriereschicht oder zellselektive Beschichtung dienen.
Für den Fall einen nur schwachen Bindung der therapeutisch aktiven Substanzen an die Nanopartikel, beispielsweise bei einer nicht-kovalenten, ionischen, adsorptiven, lipophilen und/oder Van der Waalschen Bindung und/oder einen Anbindung über Wasserstoffbrücken kann eine Schutzhülle oder Barrierebeschichtung die Freisetzung der therapeutisch aktiven Substanzen unterbinden, bis die Nanopartikel ihren Bestimmungsort erreicht haben. Anstelle dieser Schutzhülle oder Barrierebeschichtung oder als weitere Schicht auf dieser Schutzhülle oder Barrierebeschichtung kann eine äußere Schicht aufgebracht werden, welche zellspezifische Funktionalitäten trägt.
Diese zellspezifische Beschichtung erhöht die Affinität der Nanopartikel zu bestimmten Zellen, beispielsweise zu bestimmten Bakterienzellen oder zu bestimmten Tumorzellen und dient somit der Zelldiskriminierung. Solche zellspezifischen Nanopartikel reichern sich bevorzugt in solchen Zellen an, zu denen sie aufgrund der Funktionalität auf ihrer Oberfläche eine erhöhte Affinität haben und sind somit tumorspezifisch. Mit dieser Technologie lassen sich beispielsweise tumorspezifische Nanopartikel für bestimmte Krebsarten entwickeln.
Ferner können auch die Nanopartikel durch eine kolloidale Schutzhülle stabilisiert werden, welche die Nanopartikel vor einer Agglomeration schützen. Es ist
MFH-P01452WO04draft04.doc bevorzugt, wenn derartige Schutzhüllen oder Beschichtungen Aminogruppen oder Carboxygruppen aufweisen. Für die der Schutzhüllen bzw. Beschichtungen können biologische, synthetische oder semisynthetische Polymere eingesetzt werden. Für die Erzeugung einer Barriereschicht werden vorzugsweise biostabile, d.h. gegen biologischen Abbau weitgehend resistente Polymere eingesetzt. Zur Erzeugung von zellspezifischen Hüllen bzw. Beschichtungen werden vorzugsweise biologisch abbaubare Polymere verwendet.
Als biostabile Polymere können eingesetzt werden: Polyacrylsäure und Polyacrylate wie Polymethylmethacrylat, Polybutylmethacrylat, Polyacrylamid, Polyacrylonitrile, Polyamide, Polyetheramide, Polyethylenamin, Polyimide, Polycarbonate, Polycarbourethane, Polyvinylketone, Polyvinylhalogenide, Polyvinylidenhalogenide, Polyvinylether, Polyisobutylene, Polyvinylaromaten, Polyvinylester,
Polyvinylpyrollidone, Polyoxymethylene, Polytetramethylenoxid, Polyethylen, Polypropylen, Polytetrafluorethylen, Polyurethane, Polyetherurethane Silicon- Polyetherurethane, Silicon-Polyurethane, Silicon-Polycarbonat-Urethane, Polyolefin- Elastomere, Polyisobutylene, EPDM-Gummis, Fluorosilicone,
Carboxymethylchitosane, Polyaryletheretherketone, Polyetheretherketone, Polyethylenterephtalat, Polyvalerate, Carboxymethylcellulose, Cellulose, Rayon, Rayontriacetate, Cellulosenitrate, Celluloseacetate, Hydroxyethylcellulose, Cellulosebutyrate, Celluloseacetatbutyrate, Ethylvinylacetat-copolymere, Polysulfone, Epoxyharze, ABS-Harze, EPDM-Gummis, Silicone wie Polysiloxane, Polydimethylsiloxane, Polyvinylhalogene und Copolymere, Celluloseether, Cellulosetriacetate. Chitosane und Copolymere und/oder Mischungen dieser Substanzen.
Als bioabbaubare Polymere können verwendet werden: Polyvalerolactone, Poly-ε- Decalactone, Polylactonsäure, Polyglycolsäure Polylactide, Polyglycolide, Copolymere der Polylactide und Polyglycolide, Poly-ε-caprolacton, Polyhydroxybuttersäure, Polyhydroxybutyrate, Polyhydroxyvalerate,
Polyhydroxybutyrate-co-valerate, PoIy(1 ,4-dioxan-2,3-dione), PoIy(1 ,3-dioxan-2-one), Poly-para-dioxanone, Polyanhydride wie Polymaleinsäureanhydride,
Polyhydroxymethacrylate, Fibrin, Polycyanoacrylate, Polycaprolacton- dimethylacrylate, Poly-ß-Maleinsäure Polycaprolactonbutylacrylate, Multiblockpolymere wie z.B. aus Oligocaprolactondiole und Oligodioxanondiole, Polyetherestermultiblockpolymere wie z.B. PEG und Poly(butylenterephtalat), Polypivotolactone, Polyglycolsäuretrimethylcarbonate Polycaprolacton-glycolide, Poly(γ-ethylglutamat), Poly(DTH-iminocarbonat), Poly(DTE-co-DT-carbonat), Poly(bisphenol A-iminocarbonat), Polyorthoester, Polyglycolsäuretrimethyl-
MFH-P01452WO04draft04 doc carbonate, Polytrimethylcarbonate Polyiminocarbonate, Poly(N-vinyl)-pyrrolidon, Polyvinylalkohole, Polyesteramide, glycolierte Polyester, Polyphosphoester, Polyphosphazene, Poly[(p-carboxyphenoxy)propan] Polyhydroxypentansäure, Polyanhydride, Polyethylenoxidpropylenoxid, weiche Polyurethane, Polyurethane mit Aminosäurereste im Backbone, Polyetherester wie das Polyethylenoxid, Polyalkenoxalate, Polyorthoester sowie deren Copolymere, Lipide, Carrageenane, Fibrinogen, Stärke, Kollagen, protein-basierende Polymere, Polyaminosäuren, synthetische Polyaminosäuren, Zein, modifiziertes Zein, Polyhydroxyalkanoate, Pectinsäure, Actinsäure, modifiziertes und unmodifiziertes Fibrin und Casein, Carboxymethylsulfat, Albumin, Hyaluronsäure, Chitosan und seine Derivate, Heparansulfate und seine Derivate, Heparine, Chondroitinsulfat, Dextran, ß- Cyclodextrine, Alginate, Glycosaminoglycane, Saccharide, Polysaccharide, Proteoglykane, Glycoproteine, Copolymere mit PEG und Polypropylenglycol, Gummi arabicum, Guar, Gelatine, Collagen Collagen-N-Hydroxysuccinimid, Lipide, Phospholipide, Modifikationen und Copolymere und/oder Mischungen der vorgenannten Substanzen.
Zur weiteren Affinitätssteigerung bezüglich bestimmter Zellen können auf der Oberfläche der Nanopartikel bzw. auf der äußeren Schicht oder Hülle der Nanopartikel monoklonale Antikörper und/oder Aptamere gekoppelt werden. Die monoklonalen Antikörper und Aptamere sind derart ausgestaltet, dass sie bestimmte Zellen beispielsweise Tumorzellen erkennen und die Zelldiskriminierung der Nanopartikel weiter steigern.
In einer bevorzugten Ausführungsform der vorliegenden Erfindung bestehen die Kerne der magnetischen Nanopartikel aus Magnetit (Fe3O4), Maghemit (γ-Fe2θ3) oder Mischungen dieser beiden Oxide und sind vorzugsweise superparamagnetisch. Die Kerne sind darüber hinaus durch kolloidale Schutzhüllen stabilisiert, die eine Anbindung der therapeutisch wirksamen Substanzen ermöglichen. Die Konjugate aus magnetischen Nanopartikeln und therapeutisch wirksamen Substanzen sind durch die Art der Bindung so konstruiert, dass eine gezielte Freisetzung der therapeutisch wirksamen Substanz im menschlichen Körper mittels eines externen Magnetwechselfeldes (Impuls) möglich ist.
Des Weiteren betrifft die vorliegende Erfindung pharmazeutische Zusammensetzungen, welche die erfindungsgemäßen Nanopartikel enthalten sowie die Verwendung der erfindungsgemäßen Nanopartikel zur Herstellung derartiger pharmazeutischer Zusammensetzungen.
MFH-P01452WO04draft04 doc Bei diesen pharmazeutischen Zusammensetzungen handelt es sich insbesondere um Infusione- oder Injektionslösungen. Derartige Lösungen der Nanopartikel in beispielsweise physiologischer Kochsalzlösung sind für die interstitielle bzw. intratumorale Applikation geeignet. Eine intraarterielle oder intravenöse Applikation ermöglicht ferner eine systemische, den ganzen Körper betreffende Therapiemöglichkeit für nicht solide und/oder metastasenbildende Tumorarten.
Die erfindungsgemäßen Nanopartikel und pharmazeutischen Zusammensetzungen werden für die Behandlung als auch zur Prophylaxe von Krankheiten eingesetzt, welche sich durch entartete Zellspezies oder körperfremde Zellen auszeichnen und bei denen die Eigenschaften der erfindungsgemäßen Nanopartikel ausgenutzt werden können, zwischen fremden Zellen bzw. entarteten Zellen und gesunden körpereigenen Zellen zu diskriminieren. Als entartete Zellen gelten insbesondere Krebszellen bzw. in ihrer Proliferation gestörte Zellen als auch stenotisches oder restenotisches Gewebe. Als körperfremde Zellen könne insbesondere Bakterien genannt werden.
Demzufolge werden die erfindungsgemäßen Nanopartikel und die Nanopartikel enthaltenden pharmazeutischen Zusammensetzungen zur Prophylaxe und Behandlung von Tumoren, Karzinomen und Krebs eingesetzt.
Als Beispiele für Krebs- und Tumorarten, wo die erfindungsgemäßen Nanopartikel eingesetzt werden können, sind zu nennen: Adenokarzinome, Aderhautmelanom, Akute Leukämie, Akustikusneurinom, Ampullenkarzinom, Analkarzinom, Astrozytome, Basaliom, Bauchspeicheldrüsenkrebs, Bindegewebstumor, Blasenkrebs, Bronchialkarzinom, Nicht-kleinzelliges Bronchialkarzinom, Brustkrebs, Burkitt-Lymphom, Corpuskarzinom, CUP-Syndrom, Dickdarmkrebs, Dünndarmkrebs, Dünndarmtumore, Eierstockkrebs, Endometriumkarzinom, Ependymom, Epithel-Krebsarten, Ewing-Tumoren, Gastrointestinale Tumoren, Gallenblasenkrebs, Gallenkarzinome, Gebärmutterkrebs, Gebärmutterhalskrebs, Glioblastome, Gynäkologische Tumoren, Hals-, Nasen- und Ohrentumoren, Hämatologische Neoplasien, Haarzell-Leukämie, Harnröhrenkrebs, Hautkrebs, Hirntumoren (Gliome), Hirnmetastasen, Hodenkrebs, Hypophysentumor, Karzinoide, Kaposi-Sarkom, Kehlkopfkrebs, Keimzellentumor, Knochenkrebs, kolorektales Karzinom, Kopf-Hals-Tumore (Tumore des Hals- Nasen- und Ohrenbereichs), Kolonkarzinom, Kraniopharyngeome, Krebs im Mundbereich und auf der Lippe, Leberkrebs, Lebermetastasen, Leukämie, Lidtumor, Lungenkrebs, Lymphdrüsenkrebs (Hodgkin/Non-Hodgkin), Lymphome, Magenkrebs, Malignes Melanom, malignes Neoplasma, Malignome des Magen-Darm-Traktes,
MFH-P01452WO04draft04.doc Mammakarzinom, Mastdarmkrebs, Medulloblastome, Melanom, Meningeome, Morbus Hodgkin, Mycosis fungoides, Nasenkrebs, Neurinom, Neuroblastom, Nierenkrebs, Nierenzellkarzinome, Non-Hodgkin-Lymphome, Oligodendrogliom, Ösophaguskarzinom, osteolytische Karzinome, u. osteoplastische Karzinome, Osteosarkom, Ovarial-Karzinom, Pankreaskarziom, Peniskrebs, Plasmozytom, Plattenepithelkarzinome des Kopfes und Halses, Prostatakrebs, Rachenkrebs, Rektumkarzinom, Retinoblastom, Scheidenkrebs, Schilddrüsenkarzinom, Schneeberger Krankheit, Speiseröhrenkrebs, Spinaliom, T-Zell-Lymphom (Mycosis fungoides), Thymom, Tubenkarzinom, Tumoren des Auges, Urethrakrebs, Urologische Tumoren, Urothelkarzinom, Vulvakrebs, Warzenbeteiligung, Weichteiltumoren, Weichteilsarkom, Wilms Tumor, Zervixkarzinom und Zungenkrebs.
Bevorzugt sind insbesondere solide Tumoren. Femer sind bevorzugt Prostatakarzinome, Gehimtumore, Sarkome, Zervix-Karzinome, Ovarialkarzinome, Mammakarzinome, Bronchialkarzinome, Melanome, Kopf-Hals Tumore, Ösophaguskarzinome, Rektumkarzinome, Pankreas-, Blasen- und Nierenkarzinome, Metastasen der Leber, des Gehirns und in Lymphknoten.
Insbesondere bevorzugt ist ferner die Anwendung und der Einsatz der erfindungsgemäßen Nanopartikel zusammen mit der konventionellen Hyperthermie, Strahlentherapie und/oder zusammen mit der herkömmlichen Chemotherapie.
MFH-P01452WO04draft04.doc Beispiele
Beispiel 1 :
Herstellung von Nanopartikeln mit angekoppeltem Mitomycin zur Freisetzung:
Zur Ankopplung des Zytostatikums Mitomycin an Aminosilan-stabilisierte Eisenoxid- Nanopartikel wird zunächst ein Konjugat aus Mitomycin und Triethoxysilylbutyraldehyd synthetisiert. Dazu werden Mitomycin und Triethoxysilylbutyraldehyd im molaren Verhältnis von 1 :1 gelöst und für 2 Stunden gerührt. Auf diese Weise wird der Wirkstoff über eine Imin-Bindung an das Silan gekoppelt. Dieses Konjugat wird dann folgendermaßen für die Beschichtung von Eisenoxid-Nanopartikeln eingesetzt: Eine Suspension unbeschichteter Eisenoxid- Nanopartikel (hergestellt aus Eisen(ll)Chlorid und Eisen(lll)Chlorid durch Fällung mit Natriumhydroxid) wird mit Essigsäure auf einen pH-Wert von 5 eingestellt. Dann wird unter ständigem Rühren eine Mischung aus dem Mitomycin-Silan-Konjugat und Aminopropyltriethoxysilan zugegeben. Das molare Verhältnis von Mitomycin zu Aminopropyltriethoxysilan wird vorher auf 1 :50 eingestellt. Nach 24 Stunden wird Ethylenglykol zugegeben, so dass sich das Volumen der Suspension verdoppelt. Danach wird das Wasser destillativ entfernt. Dadurch werden die Silane fest an die Eisenoxid-Partikel gekoppelt. Die Suspension wird durch Dialyse gegen Reinstwasser gereinigt und auf eine Eisenkonzentration von 1 mol/l aufkonzentriert (destillativ).
Beispiel 2:
Ankopplung eines Amino-modifizierten Oligonukleotids an Eisenoxid-Nanopartikel über Glutaraldehyd als Linker
Aminosilan-stabilisierte Nanopartikel werden durch Fällung von Eisen(ll)Chlorid und Eisen(lll)Chlorid mit Natriumhydroxid hergesellt und durch Zugabe von Aminpropyltriethoxysilan beschichtet (gemäß WO 97/38058). Die Suspension wird auf eine Eisenkonzentration von 2 mol/l aufkonzentriert. 500μl der Suspension werden mit 10ml PIPES-Puffer (Piperazin-N,N'-bis-2- ethansulfonsäure; pH = 7,4) gewaschen. Dann wird 5-prozentige Glutaraldehyd- Lösung (6ml) zugegeben und für 2 Stunden gerührt. Die so aktivierten Partikel werden gewaschen und in 800μl PIPES-Puffer resuspendiert. 0,3 μmol des Amino- modifizierten Oligonukleotids (Amino-Endmodifizierung) werden in Wasser gelöst
MFH-P01452WO04draft04.doc und zugegeben. Die Suspension wird für 12 Stunden gerührt. Danach werden die Partikel mit Reinstwasser gewaschen und in 500μl Reinstwasser resuspendiert.
Beispiel 3:
Aufbringung einer biologisch abbaubaren Schicht
Die Nanopartikel mit Glutardialdehyd-Linkem und daran immobilisiertem Oligonukleotid hergestellt gemäß Beispiel 2 werden gefriergetrocknet und im Sprühverfahren mit einer ethanolischen Lösung enthaltend Polyglycol behandelt. Nach der Entfernung des Lösungsmittels werden mit einer biologisch abbaubaren Polyglycolbeschichtung versehene Nanopartikel erhalten. Derartige Beschichtungen dienen zur Anbindung von beispielsweise Aptameren und tumorzellspezifischen Antikörpern.
Beispiel 4:
Kopplung von Wirksubstanzen über Oligonukleotide
Die Synthese von Oligonukleotiden erfolgt heute weitestgehend automatisiert unter Anwendung einer etablierten Schutzgruppenchemie. Ein kurzes Oligonukleotid bestehend aus 15 Nukleotiden wird über eine Endmodifizierung kovalent an die Nanopartikel gekoppelt (siehe Beispiel 2). Ein zweites, zum ersten komplementäres Oligonukleotid ist über eine Endmodifizierung mit dem Wirkstoff Doxorubicin gekoppelt. Beide Komponenten werden zusammengebracht und kurz auf 95°C erhitzt, um die Oligonukleotide zu denaturieren. Durch anschließende Inkubation bei einer Temperatur knapp unter dem Schmelzpunkt des Oligonukleotids paaren sich beide Stränge zu einem Doppelstrang. Die Sequenz der Oligonukleotide ist dabei so ausgewählt, dass sich unter physiologischen Bedingungen ein Schmelzpunkt von ca. 48°C ergibt, also kein Aufschmelzen des Doppelstranges möglich ist. Durch eine Erwärmung auf über 500C wird der entstandene DNA-Doppelstrang quantitatitv aufgeschmolzen und der Wirkstoff wird zusammen mit dem anhängenden Oligonukleotid freigesetzt. Die einzelsträngige DNA wird, wenn sie ins Innere einer Zelle gelangt, schnell abgebaut, so dass dann der Wirkstoff gänzlich frei ist.
Beispiel 5:
MFH-P01452WO04draft04.doc Kopplung von Wirksubstanzen über Nukleinsäure-Tripelhelices
Doppelsträngige RNA kann als so genannte siRNA (für small interfering RNA) therapeutisch eingesetzt werden, um spezifisch Gene abzuschalten. Soll eine solche RNA von dem als Transporter eingesetzten Nanopartikel extern gesteuert freigesetzt werden, ist die Bindung über eine spezifische Tripel-Helix die Methode der Wahl. Ein zur eingesetzten siRNA passendes Doppelstrang-bindendes Oligonukleotid wird über eine Endmodifizierung des Oligonukleotids kovalent an die Nanopartikel gebunden (gemäß Beispiel 2). (Dadurch wird die spätere Bildung eines so genannten "triplet forming oligonucleotide" (TFO) ermöglicht). Um eine erhöhte Stabilität gegenüber hydrolytischen Enzymen zu erzielen, werden dabei Oligonukleotide eingesetzt, bei denen das Zucker-Phosphat-Rückgrat der Nukleinsäuren durch ein synthetisches peptidartiges Rückgrat ersetzt ist, das den Nukleinsäuren strukturanalog ist; es handelt sich hierbei um so genannte Peptid-Nukleinsäuren (PNAs). Durch Hybridisierung knapp unter dem Schmelzpunkt der angestrebten Tripelhelix, (der gleichzeitig niedriger ist als der Schmelzpunkt der doppelsträngigen RNA), wird das kovalent gebundene Oligonukleotid die doppelsträngige RNA in der breiten Furche binden. Weil der Schmelzpunkt von hier 45°C nicht erreicht wird, findet unter physiologischen Bedingungen keine nennenswerte Freisetzung statt. Erst durch die therapeutische Überschreitung des Schmelzpunktes der Tripelhelix schmilzt diese unter Freisetzung der doppelsträngigen siRNA auf.
Beispiel 6:
Kopplung von Wirksubstanzen über ein Oligopeptid-Molekül
Besonders zum Targeting von gentechnisch hergestellten Polypeptid-Effektoren wie etwa dem Tumor-Nekrose-Faktor (TNFalpha) eignet sich die temperatursensitive Kopplung über eine temperatursensitive Oligopeptid-Domäne. Hierbei wird ein heterodimerisierender so genannter Leucin-Zipper eingesetzt. Die Bindung wird stabilisiert und gleichzeitig spezifiziert durch die ionischen Wechselwirkungen geladener Gruppen (Arginin/Lysin versus Glutamat/Aspartat).
An den Nanopartikeln wird ein synthetisches Oligopeptid aus 22 Aminosäuren des max-Leucin-Zippers über eine terminale Modifikation des Oligopeptids kovalent gebunden. Bei Zugabe einer gentechnisch hergestellten TNF-Präparation, die terminal die entsprechenden 22 Aminosäuren des myc-Leucin-Zippers trägt, wird der
MFH-P01452WO04draft04.doc Tumornekrosefaktor quantitativ an die Nanopartikel gebunden. Während einer Thermotherapie wird die Schmelztemperatur der Leucin-Zipper überschritten, so dass der (in seiner Funktion nicht beeinträchtigte) Tumornekrosefaktor lokal freigesetzt wird.
Beispiel 7:
Kopplung von Wirksubstanzen über Oligonukleotid-Peptid-Brücken
Neben den spezifischen thermolabilen Wechselwirkungen von Nukleinsäuren mit Nukleinsäuren und von Proteinen mit Proteinen (bzw. Polypeptiden mit Polypeptiden) gibt es ebenso spezifische (wie auch unspezifische) biologische Wechselwirkungen von Proteinen bzw. Polypeptiden mit Nukleinsäuren. Da solche Wechselwirkungen genau auf den selben nicht-kovalenten Bindungen beruhen, sind sie grundsätzlich genau so thermolabil, wie die vorgenannten und lassen sich daher genau so als thermolabiles Linkersystem zur thermischen Freisetzung von Wirkstoffen nutzen. Es werden Proteine eingesetzt, die entweder unspezifisch (z.B. Histone, oder das einzelstrangbindende SSB-Protein der DNA-Replikationsgabel) oder hochspezifisch mit Nukleinsäuren wechselwirken (z.B. Repressoren, Transkriptionsfaktoren). Als spezifische DNA-bindende Polypeptide werden auch die so genannten "Helix-Turn- Helix"-Motive von Repressor-Proteinen sowie die so genannten "Zink-Finger"~Motive der nuklearen Rezeptorproteine eingesetzt. Beide umfassen typischerweise um 60 Aminosäuren. (Zink-Finger-Motive bestehen aus zwei gleich großen Schleifen mit je zwei Paaren von Cysteinen, bzw. einem Paar Cysteine und einem Paar Histidine, welche über je ein komplexiertes Zink-Atom zusammengehalten werden). Dadurch entstehen zwei fingerartige Strukturen, die in die großen Furchen der DNA greifen. Zwischen den beiden Strukturen liegt ein 15 bis 20 Aminosäuren umfassender Linker, welcher bei den Steroidhormonrezeptoren eine Aminosäuresequenz enthält, die spezifisch eine palindromische DNA-Sequenz erkennt.
An die Oberfläche der Nanopartikel wird ein synthetisches Oligopeptid aus 60 Aminosäuren kovalent angekoppelt, welches das vollständige Zink-Finger-Motiv des Glucocorticoid-Rezeptors umfasst. Das Wirkstoffmolekül Doxorubicin wird kovalent an ein doppelsträngiges Oligonukleotid aus 15 Basenpaaren angekoppelt, welches die Erkennungssequenz des Glucocorticoid-Rezeptors umfasst (das so genannte "glucocorticoid response element" GRE). Beide Komponenten werden zu einem Komplex gekoppelt der unter physiologischen Bedingungen stabil ist. Werden die Nanopartikel durch Einkoppeln eines magnetischen Wechselfeldes erwärmt, wird die
MFH-P01452WO04draft04.doc Schmelztemperatur des Komplexes überschritten. Durch den Zerfall des Komplexes wird das Oligonukleotid-Wirkstoff-Konjugat freigesetzt.
Beispiel 8: Kopplung von Wirksubstanzen über Hapten-Antikörper-Brücken
Die spontane Bindung eines Haptens als Therapeutikum an körpereigene Eiweiße kann zu einer Immunreaktion führen. Die Anbindung von Antikörpern kann auch zu einer Neutralisierung des Wirkeffektes führen. Dieser Effekt wird genutzt, um durch eine thermische Zersetzung von Hapten-Antikörer-Komplexen eine lokale Aktivierung zu erreichen.
Biochemisch (oder wahlweise gentechnisch) erzeugte so genannte Fv-Fragmente (die kleinstmöglichen antigenbindenden Spaltstücke von Antikörpern) eines gegen Doxorubicin gerichteten Antikörpers werden kovalent an die Oberfläche von Nanopartikeln gebunden. Durch Zugabe eines Überschusses an Doxorubicin werden die Antigenbindungsstellen gesättigt. Durch magnetische Separation oder Zentrifugation werden die Doxorubicin-gesättigten Nanopartikel von unspezifisch gebundenem Wirkstoff befreit und ggf. zusätzlich gewaschen.
Nach intravenöser Gabe der Doxorubicin-gesättigten Nanopartikel zirkulieren diese weitestgehend frei von den üblichen Nebenwirkungen des Zytostatikums. Es wird eine unspezifische Anreicherung der Nanopartikel im Bereich von Tumoren erreicht, weil die Nanopartikel dort durch die ständig neugebildeten, noch durchlässigen Gefäßwände die Gefäße verlassen können. Zusätzlich kann durch eine spezielle Oberflächenbeschichtung die intrazelluläre Aufnahme in Tumorzellen (bedingt durch die Häufigkeit der Mitose), aber nicht in gutartigen Zellen, bewirkt werden. Nach einer angemessenen Zeit der intratumoralen Anreicherung kann über externe Magnetfelder eine Erwärmung der Nanopartikel bewirkt werden; neben der dadurch erreichbaren Gewebeschädigung durch Hyperthermie wird der Hapten-Antikörper(- fragment)-Komplex durch die Erwärmung aufgeschmolzen. Auf Grund seiner autonomen zytotoxischen sowie der strahlungssensitivierenden Wirkung des Doxorubicins wird die gewebeschädigende Wirkung der Hyperthermie potenziert. Es wird somit eine echte Synergie der Tumorbekämpfung erzielt.
Beispiel 9: Kopplung von Wirksubstanzen über Biotin-Avidin-Brücken
Die nicht-kovalente Bindung zwischen dem Vitamin Biotin und dem Bindungsprotein Avidin aus Hühner-Eiklar (bzw. seinem bakteriellen Analogon Streptavidin) ist die
MFH-P01452WO04draft04.doc stärkste bekannte nicht-kovalente Wechselwirkung überhaupt. Wegen der hohen Bindungsenergie ist diese Bindung allerdings nicht im zur Verfügung stehenden Temperaturintervall aufschmelzbar. Um dennoch diese hochspezifische Bindung nutzen zu können, muss auf Derivate des Biotins mit verringerter Bindungsstärke zurückgegriffen werden, etwa das Desthiobiotin (mit einer Dissoziationskonstante von 5 x 1013 gegenüber 1 x 1015 beim Biotin) oder das Iminobiotin (Dissoziationskonstante 3,5 x 1011), deren Bindung an (Strept-)Avidin bei therapeutisch erreichbaren Temperaturen physiologisch aufschmilzt.
Iminobiotin wird über seine ε-Aminogruppe mit der Aminogruppe des Doxorubicins gekoppelt; die Bindung wird dabei über Glutardialdehyd hergestellt. Die Kopplung der Nanopartikel mit handelsüblichem Streptavidin erfolgt über eine Aminofunktion der Oberflächenbeschichtung ebenfalls mittels Glutardialdehyd. Durch Zugabe eines Überschusses an Iminobiotinyl-Doxorubicin werden die Nanopartikel mit Doxorubicin beladen. Diese Doxorubicin-beladenen Nanopartikel werden in vivo auf Grund der Durchlässigkeit der Endothelien im Tumorbereich passiv angereichert und zusätzlich durch Endozytose in den Tumorzellen auch aktiv angereichert. Die magnetisch induzierte Hyperthermie wird auch hier durch die thermische Freisetzung des Sensitizers Doxorubicin synergistisch verstärkt.
Beispiel 10:
Herstellung von Nanopartikeln mit angekoppeltem Cisplatin zur Freisetzung:
Zur Ankopplung des Zytostatikums Cisplatin an Aminosilan-stabilisierte Eisenoxid- Nanopartikel werden die in Beispiel 1 bezeichneten Nanopartikel zuerst mittels Aminopropyltriethoxysilan derivatisiert. Dazu wird eine Suspension unbeschichteter Eisenoxid-Nanopartikel (hergestellt aus Eisen(ll)Chlorid und Eisen(lll)Chlorid durch Fällung mit Natriumhydroxid) wird mit Essigsäure auf einen pH-Wert von 5 eingestellt. Aminopropyltriethoxysilan wird im molaren Verhältnis bezogen auf die theoretisch maximale Anzahl an Hydroxygruppen tropfenweise zugesetzt, eine Stunde bei Raumtemperatur gerührt und anschließend mit einer equimolaren Menge an Cisplatin versetzt, welche eine nukleophile Substitutionsreaktion mit der Aminogruppe des Silans eingeht.
Die erhaltenen derivatisierten Nanopartikel haben folgende Struktur:
MFH-P01452WO04draft04.doc
Figure imgf000026_0001
Beispiel 11 : Wirkung der Cisplatin-Nanopartikel gemäß Beispiel 10 auf Glioblastom- Zellen
Eine wäßrige Lösung dieser Cisplatin-Nanopartikel wurde im Vergleich zu nicht derivatisierten Nanopartikeln bei Glioblastom-Zellen untersucht.
Die in-vitro Untersuchungen wurden mit der Glioblastom-Human-Zelllinie RUSIRS1 (Hirntumor) durchgeführt. Die Glioblastomzellen wurden wie in DE 199 12 798 C1 beschrieben aus dem Tumorgewebe eines Patienten entnommen und kultiviert. Zur Testung der Wirksamkeit der Cisplatin-Nanopartikel wurden jeweils 2x106 RUSI RS1 Zellen in einer 75 cm3 Zellkulturflasche mit 25 ml Zellkulturmedium (D-MEM + 20% FBS + 1 ,2 ml Pyruvat) angesetzt. Die Zellsuspension wurde gleichmäßig auf 4 Kulturgefäße verteilt. Zu zweien dieser Zellsuspensionen wurden jeweils 153 μl wäßrige Lösung dieser Cisplatin-Nanopartikel (CFΘ = 2 mol/l) gegeben. Die anderen beiden Kulturflaschen dienten als Referenz und es wurden dort 153 μl wäßrige Lösung nicht derivatisierter Nanopartikel (CFΘ = 2 mol/l) zugesetzt. Die Proben der Nanopartikel wurden vor der Zugabe zu den Zellen für 15 Minuten auf 37°C erwärmt und 10 Minuten bei RT stehen gelassen. Nach der Zugabe der Nanopartikel wurden die Proben 1 h stehen gelassen und danach einer 30 minütigen Behandlung durch ein magnetisches Wechselfeld ausgesetzt. Diese Behandlung wurde nach 24 Stunden wiederholt. Nach bereits 48 Stunden Inkubationszeit bei 370C zeigten sich bei den beiden Proben mit Cisplatin-Nanopartikeln bereits deutlich ausgeprägtere Schädigungen als bei den beiden Proben mit nicht derivatisierten Nanopartikeln.
MFH-P01452WO04draft04.doc

Claims

Patentansprüche
1. Nanopartikel, wobei an das Nanopartikel mindestens eine therapeutisch wirksame Substanz gebunden ist und wobei die Ablösung der mindestens einen therapeutisch wirksamen Substanz von dem Nanopartikel durch ein magnetisches Wechselfeld bewirkt oder initiiert oder wesentlich gesteigert wird.
2. Nanopartikel nach Anspruch 1 , wobei die mindestens eine therapeutisch wirksame Substanz kovalent an den Nanopartikel gebunden ist.
3. Nanopartikel nach Anspruch 1 oder 2, wobei die mindestens eine therapeutisch wirksame Substanz über ein Linker-Molekül an den Nanopartikel gebunden ist.
4. Nanopartikel nach Anspruch 3, wobei das Linker-Molekül eine thermolabile, elektro-magneto-labile, photolabile, säurelabile, interkalierbare oder enzymatisch spaltbare Gruppe enthält.
5. Nanopartikel nach einem der vorherigen Ansprüche, wobei der Nanopartikel mit einer Schutzhülle oder einer Beschichtung versehen ist.
6. Nanopartikei nach Anspruch 5, wobei die Schutzhülle oder Beschichtung Aminogruppen oder Carboxygruppen aufweist.
7. Nanopartikel nach einem der vorherigen Ansprüche, wobei die mindestens eine therapeutisch wirksame Substanz ausgewählt wird aus der Gruppe umfassend anti-proliferative, anti-migrative, anti-angiogene, anti-thrombotische, antiinflammatorische, antiphlogistische, zytostatische, zytotoxische, anti- koagulative, anti-bakterielle, anti-virale und/oder anti-mykotische Wirkstoffe.
8. Nanopartikel nach Anspruch 7, wobei die mindestens eine therapeutisch wirksame Substanz ausgewählt wird aus der Gruppe umfassend Actinomycin D, Ametantron, 9-Aminocamptothecin, Aminoglutethimid, Amsacrin, Anastrozol, Antagonisten von Purin- und Pyrimidin-Basen, Anthracycline, Aromatasehemmer, Asparaginase, AntiÖstrogene, Bendamustin, Bexaroten, Biolimus A9, Bleomycin, Buselerin, Busulfan, Calicheamicine, Camptothecin,
Camptothecin-Derivate, Capecitabin, Carboplatin, Carmustin, Chlorambucil, Cisplatin, Cladribin, Cyclophosphamid, Cytarabin, Cytosinarabinosid, alkylierende Cytostatika, Dacarbazin, Dactinomycin, Daunorubicin, 5'-Deoxy-5- fluorouridin, Docetaxel, Doxorubicin (Adriamycin), Doxorubicin lipo, Epirubicin,
MFH-P01452WO04draft04.doc Estramustin, Etoposid, Exemestan, Fludarabin, Fluorouracil, Folsäureantagonisten, Formestan, Gemcitabin, Glucocorticoide, Goselerin, Hormone und Hormonantagonisten, Hycamtin, Hydroxyhamstoff, Idarubicin, Ifosfamid, Imatinib, Irinotecan, Letrozol, Leuprorelin, Lomustin, Maytansinoide, Melphalan, Mercaptopurin, Methotrexat, Miltefosin, Mitomycine, Mitopodozid,
Mitosehemmstoffe, Mitoxantron, Nimustin, Oxaliplatin, Oxazaphosphorine, Paclitaxel, Pentostatin, Podophyllotoxin-Derivate, Procarbazin, Rapamycin, Rhodomycin D, Tamoxifen, Temozolomid, Teniposid, Testolacton, Thiotepa, Thioguanin, Topoisomerase-Inhibitoren, Topotecan, Treosulfan, Tretinoin, Triptorelin, Trofosfamide, Vinca-Alkaloide, Vinblastin, Vincristin, Vindesin,
Vinoreibin, zytostatisch wirksame Antibiotika.
9. Nanopartikel nach Anspruch 7, wobei die mindestens eine therapeutisch wirksame Substanz ausgewählt wird aus der Gruppe umfassend Nukleinsäuren, Aminosäuren, Peptide, Proteine, Kohlenhydrate, Lipide, Glycoproteine, Glycane oder Lipoproteine, wobei die vorgenannten Stoffe anti-proliferative, anti- migrative, anti-angiogene, anti-thrombotische, antiinflammatorische, antiphlogistische, zytostatische, zytotoxische, anti-koagulative, anti-bakterielle, anti-virale und/oder anti-mykotische Eigenschaften besitzen.
10. Nanopartikel nach einem der vorherigen Ansprüche, wobei der Nanopartikel aus superparamagnetischen Eisenoxiden oder aus reinem Eisen mit einer Oxidschicht besteht.
11. Nanopartikel nach einem der vorherigen Ansprüche, wobei an den Nanopartikel ein Sensitizer, Radiosensitizer und/oder Verstärker zur Unterstützung der konventionellen Krebsbehandlungsmethoden gebunden ist.
12. Nanopartikel nach einem der vorherigen Ansprüche, wobei an die Oberfläche des Nanopartikels monoklonale Antikörper bzw. Antikörperfragmente und/oder
Aptamere gekoppelt sind.
13. Infusionslösung enthaltend Nanopartikel gemäß eines der Patentansprüche 1 - 12.
14. Verwendung der Nanopartikel gemäß eines der Patentansprüche 1 - 12 zur Herstellung einer pharmazeutischen Zusammensetzung zur Behandlung und/oder Prophylaxe von proliferativen Erkrankungen, Krebs und bakteriellen Infektionen.
MFH-P01452WO04draft04.doc
PCT/DE2006/000653 2005-04-12 2006-04-12 Nanopartikel-wirkstoff-konjugate WO2006108405A2 (de)

Priority Applications (15)

Application Number Priority Date Filing Date Title
CN2006800196148A CN101247836B (zh) 2005-04-12 2006-04-12 纳米颗粒-活性成分结合物
AU2006233483A AU2006233483B2 (en) 2005-04-12 2006-04-12 Nanoparticle/active ingredient conjugate
MX2007012670A MX2007012670A (es) 2005-04-12 2006-04-12 Conjugado de nanoparticula y agente activo.
RU2007141588/15A RU2490027C9 (ru) 2005-04-12 2006-04-12 Магнитная наночастица для лечения и/или профилактики рака, на ее основе инфузионный раствор и фармацевтическая композиция
JP2008505731A JP5037490B2 (ja) 2005-04-12 2006-04-12 ナノ粒子/活性成分結合体
BRPI0610220-4A BRPI0610220A2 (pt) 2005-04-12 2006-04-12 nanopartìcula, solução de infusão, uso de nanopartìculas
EP06742238.6A EP1871423B9 (de) 2005-04-12 2006-04-12 Nanopartikel-wirkstoff-konjugate
US11/911,196 US9345768B2 (en) 2005-04-12 2006-04-12 Nanoparticle/active ingredient conjugates
KR1020137021157A KR20130098441A (ko) 2005-04-12 2006-04-12 나노입자 활성성분 결합물
DE112006001565T DE112006001565A5 (de) 2005-04-12 2006-04-12 Nanopartikel-Wirkstoff-Konjugate
NZ561928A NZ561928A (en) 2005-04-12 2006-04-12 Nanoparticle - active ingredient conjugates joined by a linker molecule
CA2603734A CA2603734C (en) 2005-04-12 2006-04-12 Nanoparticle-active ingredient conjugates
DK06742238.6T DK1871423T3 (da) 2005-04-12 2006-04-12 Konjugat af nanopartikler og aktive stof
ES06742238T ES2392346T3 (es) 2005-04-12 2006-04-12 Conjugados de nanopartículas-principios activos
IL186521A IL186521A (en) 2005-04-12 2007-10-09 Nanoparticles with linker-bounded therapeutically active substances

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE102005016873.6 2005-04-12
DE102005016873A DE102005016873A1 (de) 2005-04-12 2005-04-12 Nanopartikel-Wirstoff-Konjugate
US67510005P 2005-04-27 2005-04-27
US60/675,100 2005-04-27

Publications (3)

Publication Number Publication Date
WO2006108405A2 true WO2006108405A2 (de) 2006-10-19
WO2006108405A3 WO2006108405A3 (de) 2007-02-01
WO2006108405B1 WO2006108405B1 (de) 2007-04-05

Family

ID=37055300

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2006/000653 WO2006108405A2 (de) 2005-04-12 2006-04-12 Nanopartikel-wirkstoff-konjugate

Country Status (17)

Country Link
US (1) US9345768B2 (de)
EP (1) EP1871423B9 (de)
JP (1) JP5037490B2 (de)
KR (3) KR20120101727A (de)
CN (1) CN101247836B (de)
AU (1) AU2006233483B2 (de)
BR (1) BRPI0610220A2 (de)
CA (1) CA2603734C (de)
DE (2) DE102005016873A1 (de)
DK (1) DK1871423T3 (de)
ES (1) ES2392346T3 (de)
IL (1) IL186521A (de)
MX (1) MX2007012670A (de)
NZ (1) NZ561928A (de)
RU (1) RU2490027C9 (de)
WO (1) WO2006108405A2 (de)
ZA (1) ZA200708692B (de)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007015105A2 (en) * 2005-08-04 2007-02-08 Thomas William Rademacher Nanoparticles comprising antibacterial ligands
WO2008070350A2 (en) * 2006-10-27 2008-06-12 The Board Of Regents Of The University Of Texas System Methods and compositions related to wrapping of dehydrons
WO2008073851A2 (en) * 2006-12-08 2008-06-19 Massachusetts Institute Of Technology Remotely triggered release from heatable surfaces
DE102007011702A1 (de) * 2007-03-08 2008-09-11 Rheinische Friedrich-Wilhelms Universität Aptamer-basierte Reagenzien
EP2018173A1 (de) * 2006-05-17 2009-01-28 Board of Regents of the Nevada System of Higher Education, on behalf of The University of Nevada, Reno Magnetorheologische fluide und therapeutische anwendungen davon
US20090093551A1 (en) * 2006-12-08 2009-04-09 Bhatia Sangeeta N Remotely triggered release from heatable surfaces
DE102008003615A1 (de) 2008-01-09 2009-07-16 Magforce Nanotechnologies Ag Magnetische Transducer
DE102008008522A1 (de) 2008-02-11 2009-08-13 Magforce Nanotechnologies Ag Implantierbare Nanopartikel-enthaltende Produkte
JP2010024147A (ja) * 2008-07-15 2010-02-04 National Institute For Materials Science 光応答性薬物輸送体及び薬物付き光応答性薬物輸送体
KR101010100B1 (ko) 2007-06-28 2011-01-24 (주)미래생명공학연구소 나노 입자를 이용한 유전자도입 배아 줄기세포의 제조 방법
EP2322142A1 (de) * 2009-11-12 2011-05-18 Helmholtz-Zentrum Geesthacht Zentrum für Material- und Küstenforschung GmbH Biokompatible, magnetische Nanopartikel zur Behandlung von Glioblastomen
DE102009058769A1 (de) 2009-12-16 2011-06-22 MagForce Nanotechnologies AG, 10589 Temperaturabhängige Aktivierung von katalytischen Nukleinsäuren zur kontrollierten Wirkstofffreisetzung
RU2550955C1 (ru) * 2013-12-11 2015-05-20 Общество с ограниченной ответственностью "Уральский центр биофармацевтических технологий Способ электрохимического иммуноанализа для определения вирусов/антигенов вирусов
US9408912B2 (en) 2011-08-10 2016-08-09 Magforce Ag Agglomerating magnetic alkoxysilane-coated nanoparticles
US9849193B2 (en) 2013-02-08 2017-12-26 University Of Louisville Research Foundation, Inc. Nanoparticles for drug delivery
DE102020116859A1 (de) 2020-06-26 2021-12-30 Pharma Development Holding Gmbh Liposomen
US11364304B2 (en) 2016-08-25 2022-06-21 Northwestern University Crosslinked micellar spherical nucleic acids
US11633503B2 (en) 2009-01-08 2023-04-25 Northwestern University Delivery of oligonucleotide-functionalized nanoparticles
US11957788B2 (en) 2014-06-04 2024-04-16 Exicure Operating Company Multivalent delivery of immune modulators by liposomal spherical nucleic acids for prophylactic or therapeutic applications

Families Citing this family (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITRM20030376A1 (it) 2003-07-31 2005-02-01 Univ Roma Procedimento per l'isolamento e l'espansione di cellule staminali cardiache da biopsia.
US11660317B2 (en) 2004-11-08 2023-05-30 The Johns Hopkins University Compositions comprising cardiosphere-derived cells for use in cell therapy
DE102005039579B4 (de) * 2005-08-19 2022-06-30 Magforce Ag Verfahren zur Einschleusung von therapeutischen Substanzen in Zellen
JP2010520289A (ja) * 2007-03-07 2010-06-10 アブラクシス バイオサイエンス, エルエルシー 抗癌剤としてラパマイシンおよびアルブミンを含むナノ粒子
US8236284B1 (en) 2008-04-02 2012-08-07 University Of Central Florida Research Foundation, Inc. Multimodal, multifunctional polymer coated nanoparticles
US8697098B2 (en) 2011-02-25 2014-04-15 South Dakota State University Polymer conjugated protein micelles
US20110165255A1 (en) * 2008-09-04 2011-07-07 Takeshi Kobayashi Malignant tumor heat therapy kit comprising anti-regulatory t cell antibody and magnetic fine particles and heat therapy method thereof
KR101455446B1 (ko) * 2008-09-19 2014-10-27 액티버스 파마 컴퍼니 리미티드 의료용 복합 유기 화합물 분체, 그 제조 방법 및 현탁액
ATE523603T1 (de) * 2008-11-21 2011-09-15 Chimera Biotec Gmbh Konjugatkomplexe zum analytnachweis
ATE544472T1 (de) * 2008-12-19 2012-02-15 Biolitec Ag Kalziumphosphat-nanopartikel als farbstoffträger für die photodynamische therapie
EP2373292A1 (de) * 2008-12-23 2011-10-12 Board of Regents of the University of Texas System Teilchen mit entzündungstarget
US20100294952A1 (en) * 2009-01-15 2010-11-25 Northwestern University Controlled agent release and sequestration
US8840868B2 (en) * 2009-02-04 2014-09-23 The Regents Of The University Of Colorado, A Body Corporate Non-invasive detection of complement-mediated inflammation using CR2-targeted nanoparticles
US8911766B2 (en) * 2009-06-26 2014-12-16 Abbott Cardiovascular Systems Inc. Drug delivery compositions including nanoshells for triggered drug release
US20120302516A1 (en) * 2009-10-19 2012-11-29 University Of Louisville Research Foundation, Inc. Nanoparticles for drug delivery
US10238886B2 (en) 2009-11-18 2019-03-26 Nanobacterie Treatment of cancer or tumors induced by the release of heat generated by various chains of magnetosomes extracted from magnetotactic bacteria and submitted to an alternating magnetic field
US8226985B2 (en) * 2010-01-28 2012-07-24 International Business Machines Corporation Surface modified nanoparticles, methods of their preparation, and uses thereof for gene and drug delivery
US20110206611A1 (en) * 2010-02-24 2011-08-25 Genisphere, Llc DNA Dendrimers as Thermal Ablation Devices
US9845457B2 (en) 2010-04-30 2017-12-19 Cedars-Sinai Medical Center Maintenance of genomic stability in cultured stem cells
US9249392B2 (en) 2010-04-30 2016-02-02 Cedars-Sinai Medical Center Methods and compositions for maintaining genomic stability in cultured stem cells
WO2012061402A2 (en) 2010-11-01 2012-05-10 Syracuse University System and method for delivery of dna-binding chemotherapy drugs using nanoparticles
WO2012075087A2 (en) * 2010-11-30 2012-06-07 Board Of Trustees Of The University Of Illinois Silica nanoparticle agent conjugates
AU2012222142B2 (en) 2011-02-25 2017-01-12 South Dakota State University Polymer conjugated protein micelles
CA2828255A1 (en) 2011-02-25 2012-08-30 South Dakota State University Protein nanocarriers for topical delivery
RU2568344C2 (ru) 2011-03-10 2015-11-20 Магфорс Аг Компьютеризованное средство имитационного моделирования для предоставления помощи в планировании термотерапии
FR2974815B1 (fr) 2011-05-06 2014-01-10 Univ Paris Curie Utilisation d'au moins un agent chelatant introduit dans le milieu de culture de bacteries magnetotactiques pour stimuler la croissance de ces bacteries
DE102011112898A1 (de) * 2011-09-08 2013-03-14 Charité - Universitätsmedizin Berlin Nanopartikuläres Phosphatadsorbens basierend auf Maghämit oder Maghämit/Magnetit, dessen Herstellung und Verwendungen
KR101337684B1 (ko) * 2011-10-17 2013-12-30 성균관대학교산학협력단 표적지향 및 치료가 가능한 다기능성 핵산 기반 항암제, 이의 제조 방법 및 이를 포함하는 항암제 조성물
CN102539760A (zh) * 2012-02-11 2012-07-04 刘�东 具有体外肿瘤靶向作用的经叶酸配体修饰的氧化铁纳米颗粒与其制备方法及体外评价方法
WO2013163321A1 (en) 2012-04-24 2013-10-31 You Youngjae Singlet oxygen-labile linkers and methods of production and use thereof
EP2861238A4 (de) 2012-06-05 2016-03-16 Capricor Inc Optimierte verfahren zur erzeugung von herzstammzellen aus herzgewebe und deren verwendung in der herztherapie
EP2882445B1 (de) 2012-08-13 2019-04-24 Cedars-Sinai Medical Center Exosomen und mikroribonukleinsäuren zur geweberegeneration
WO2014107419A1 (en) * 2013-01-02 2014-07-10 The Johns Hopkins University Use of oscillating gradients of high magnetic field for specific destruction of cells labeled with magnetic nanoparticles
CN105307608A (zh) * 2013-03-15 2016-02-03 佐治亚州立大学研究基金会公司 用于将治疗剂和显像剂递送至窦和中耳的组合物和方法
KR101465626B1 (ko) * 2013-05-23 2014-12-10 고려대학교 산학협력단 바이오틴을 포함하는 표적 특이적 항암 약물 전구체
US10464955B2 (en) * 2014-02-28 2019-11-05 Hangzhou Dac Biotech Co., Ltd. Charged linkers and their uses for conjugation
RU2563369C1 (ru) * 2014-02-28 2015-09-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Московский государственный университет имени М.В. Ломоносова" (МГУ) Способ ферримагнито-термохимиотерапии злокачественных опухолей комбинациями магнитоуправляемых нанопрепаратов с визуализацией онкогенеза, определением терапии, предпочтительной в режиме реального времени, и мониторингом результатов лечения в эксперименте
RU2561294C1 (ru) * 2014-05-08 2015-08-27 Федеральное государственное бюджетное учреждение "Ростовский научно-исследовательский онкологический институт" Министерства здравоохранения Российской Федерации Способ торможения роста лимфосаркомы плисса в эксперименте
RU2581946C2 (ru) * 2014-07-10 2016-04-20 Федеральное государственное бюджетное учреждение "Ростовский научно-исследовательский онкологический институт" Министерства здравоохранения Российской Федерации Способ лечения рака мочевого пузыря
US11357799B2 (en) 2014-10-03 2022-06-14 Cedars-Sinai Medical Center Cardiosphere-derived cells and exosomes secreted by such cells in the treatment of muscular dystrophy
CA2989795C (en) * 2015-06-16 2023-12-12 The Trustees Of The University Of Pennsylvania Inorganic controlled release particles with fast drug loading
WO2017019214A1 (en) 2015-07-29 2017-02-02 Musc Foundation For Research Development Donor organ pre-treatment formulation
US11173154B2 (en) * 2015-12-15 2021-11-16 Icahn School Of Medicine At Mount Sinai Methods of treating exacerbated inflammatory response with topoisomerase I inhibitors
US10765881B2 (en) 2016-01-08 2020-09-08 University Of Florida Research Foundation, Inc. Magnetic particle conjugates and methods of activating cell signaling
EP3402543B1 (de) 2016-01-11 2021-09-08 Cedars-Sinai Medical Center Aus kardiosphäre stammende zellen und durch solche zellen sekretierte exosomen in der behandlung von herzversagen mit konservierter auswurffraktion
US11351200B2 (en) 2016-06-03 2022-06-07 Cedars-Sinai Medical Center CDC-derived exosomes for treatment of ventricular tachyarrythmias
WO2018057542A1 (en) 2016-09-20 2018-03-29 Cedars-Sinai Medical Center Cardiosphere-derived cells and their extracellular vesicles to retard or reverse aging and age-related disorders
EP3612191A4 (de) 2017-04-19 2020-12-30 Cedars-Sinai Medical Center Verfahren und zusammensetzungen zur behandlung von skelettmuskeldystrophie
RU2657545C1 (ru) * 2017-08-17 2018-06-14 Максим Артемович Абакумов Лекарственный препарат для лечения рака молочной железы
KR102141220B1 (ko) * 2017-11-30 2020-08-05 한국생산기술연구원 친수성 또는 소수성 약물을 제어하는 다공성 나노입자의 콜로이드화
US11660355B2 (en) 2017-12-20 2023-05-30 Cedars-Sinai Medical Center Engineered extracellular vesicles for enhanced tissue delivery
CN109374558A (zh) * 2018-12-11 2019-02-22 山东吉威医疗制品有限公司 一种无聚合物药物涂层洗脱支架体外释放度的测定方法
CN110623942B (zh) * 2019-09-30 2020-09-22 武汉大学 一种全反式维甲酸纳米药物制剂、其制备方法及应用
WO2021081251A1 (en) * 2019-10-22 2021-04-29 Otomagnetics, Inc. Lipid coated iron oxide nanoparticles for otitis media
EP4096624A1 (de) 2020-01-31 2022-12-07 MagForce AG Paste mit magnetischen alkoxysilanbeschichteten metallhaltigen nanopartikeln
CN111554501A (zh) * 2020-04-28 2020-08-18 天津大学 磁性吸附细菌和孢子的超顺磁性镍纳米颗粒的制备方法

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2662539B1 (fr) * 1990-05-23 1994-09-30 Centre Nat Rech Scient Procede d'obtention de supports magnetiques finement divises par modification controlee de la surface de particules precurseurs magnetiques chargees et produits obtenus.
DE4117782C2 (de) 1991-05-28 1997-07-17 Diagnostikforschung Inst Nanokristalline magnetische Eisenoxid-Partikel, Verfahren zu ihrer Herstellung sowie diagnostische und/oder therapeutische Mittel
US5411730A (en) * 1993-07-20 1995-05-02 Research Corporation Technologies, Inc. Magnetic microparticles
DE4428851C2 (de) * 1994-08-04 2000-05-04 Diagnostikforschung Inst Eisen enthaltende Nanopartikel, ihre Herstellung und Anwendung in der Diagnostik und Therapie
US6147205A (en) * 1995-12-15 2000-11-14 Affymetrix, Inc. Photocleavable protecting groups and methods for their use
DE19614136A1 (de) 1996-04-10 1997-10-16 Inst Neue Mat Gemein Gmbh Verfahren zur Herstellung agglomeratfreier nanoskaliger Eisenoxidteilchen mit hydrolysebeständigem Überzug
DE19624426A1 (de) * 1996-06-19 1998-01-02 Christian Bergemann Magnetische Flüssigkeiten für den Transport von diagnostisch oder therapeutisch wirksamen Substanzen
DE19726282A1 (de) 1997-06-20 1998-12-24 Inst Neue Mat Gemein Gmbh Nanoskalige Teilchen mit einem von mindestens zwei Schalen umgebenen eisenoxid-haltigen Kern
WO1998058873A1 (en) * 1997-06-25 1998-12-30 Burke Earl P Jr Easy mount stirrup
WO2000006244A2 (en) * 1998-07-30 2000-02-10 Hainfeld James F Loading metal particles into cell membrane vesicles and metal particle use for imaging and therapy
CN1379687A (zh) 1999-09-14 2002-11-13 生物医学阿佩则系统有限公司 具有生化活性的磁性毫微粒、其制备方法和应用
JP2002010471A (ja) * 2000-06-19 2002-01-11 Yazaki Corp 過電流遮断装置
JP2002090366A (ja) * 2000-09-14 2002-03-27 Rikogaku Shinkokai フェライトを固定した生体特異的親和性キャリヤとその製造方法
DE10059151C2 (de) * 2000-11-29 2003-10-16 Christoph Alexiou Magnetische Partikel zur zielgerichteten regionalen Therapie und Verwendung derselben
US7332586B2 (en) * 2001-07-10 2008-02-19 North Carolina State University Nanoparticle delivery vehicle
US7074175B2 (en) * 2001-07-25 2006-07-11 Erik Schroeder Handy Thermotherapy via targeted delivery of nanoscale magnetic particles
CA2481020A1 (en) * 2001-09-28 2003-04-03 Saoirse Corporation Localized non-invasive biological modulation system
CA2476888A1 (en) 2002-02-01 2003-08-14 Vanderbilt University Targeted drug delivery methods
KR20040083095A (ko) 2002-02-04 2004-09-30 자이단호진 리코가쿠신코카이 페라이트 결합 유기 물질 및 이의 제조 방법
JP2004305055A (ja) * 2003-04-04 2004-11-04 Hitachi Maxell Ltd 磁性複合粒子およびその製造方法
KR100612734B1 (ko) 2003-04-30 2006-08-18 함승주 자기성 물질 및 치료제를 생분해성 고분자로 캡슐화한자기성 나노입자를 함유하는 조성물
JP2005060221A (ja) * 2003-07-31 2005-03-10 Rikogaku Shinkokai 有機物質とフェライトとの複合材料とその製造方法
DE10350248A1 (de) * 2003-10-28 2005-06-16 Magnamedics Gmbh Thermosensitive, biokompatible Polymerträger mit veränderbarer physikalischer Struktur für die Therapie, Diagnostik und Analytik
WO2005065282A2 (en) * 2003-12-31 2005-07-21 The Regents Of The University Of California Remote magnetically induced treatment of cancer
WO2005070471A2 (en) 2004-01-20 2005-08-04 Alnis Biosciences, Inc. Articles comprising magnetic material and bioactive agents
KR100604976B1 (ko) * 2004-09-03 2006-07-28 학교법인연세대학교 다작용기 리간드로 안정화된 수용성 나노입자
US8338366B2 (en) * 2005-03-14 2012-12-25 The Board of Regents of the University of the Texas System Bioactive FUS1 peptides and nanoparticle-polypeptide complexes

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007015105A3 (en) * 2005-08-04 2007-11-01 Thomas William Rademacher Nanoparticles comprising antibacterial ligands
WO2007015105A2 (en) * 2005-08-04 2007-02-08 Thomas William Rademacher Nanoparticles comprising antibacterial ligands
EP2018173A1 (de) * 2006-05-17 2009-01-28 Board of Regents of the Nevada System of Higher Education, on behalf of The University of Nevada, Reno Magnetorheologische fluide und therapeutische anwendungen davon
EP2018173A4 (de) * 2006-05-17 2009-09-23 Univ Nevada Magnetorheologische fluide und therapeutische anwendungen davon
WO2008070350A2 (en) * 2006-10-27 2008-06-12 The Board Of Regents Of The University Of Texas System Methods and compositions related to wrapping of dehydrons
WO2008070350A3 (en) * 2006-10-27 2008-12-04 Univ Texas Methods and compositions related to wrapping of dehydrons
US8466154B2 (en) 2006-10-27 2013-06-18 The Board Of Regents Of The University Of Texas System Methods and compositions related to wrapping of dehydrons
WO2008073851A2 (en) * 2006-12-08 2008-06-19 Massachusetts Institute Of Technology Remotely triggered release from heatable surfaces
US20090093551A1 (en) * 2006-12-08 2009-04-09 Bhatia Sangeeta N Remotely triggered release from heatable surfaces
WO2008073851A3 (en) * 2006-12-08 2009-05-22 Massachusetts Inst Technology Remotely triggered release from heatable surfaces
DE102007011702A1 (de) * 2007-03-08 2008-09-11 Rheinische Friedrich-Wilhelms Universität Aptamer-basierte Reagenzien
KR101010100B1 (ko) 2007-06-28 2011-01-24 (주)미래생명공학연구소 나노 입자를 이용한 유전자도입 배아 줄기세포의 제조 방법
US9814677B2 (en) 2008-01-09 2017-11-14 Magforce Ag Magnetic transducers
US8771699B2 (en) 2008-01-09 2014-07-08 Magforce Ag Magnetic transducers
DE102008003615A1 (de) 2008-01-09 2009-07-16 Magforce Nanotechnologies Ag Magnetische Transducer
DE102008008522A1 (de) 2008-02-11 2009-08-13 Magforce Nanotechnologies Ag Implantierbare Nanopartikel-enthaltende Produkte
JP2010024147A (ja) * 2008-07-15 2010-02-04 National Institute For Materials Science 光応答性薬物輸送体及び薬物付き光応答性薬物輸送体
US11633503B2 (en) 2009-01-08 2023-04-25 Northwestern University Delivery of oligonucleotide-functionalized nanoparticles
EP2322142A1 (de) * 2009-11-12 2011-05-18 Helmholtz-Zentrum Geesthacht Zentrum für Material- und Küstenforschung GmbH Biokompatible, magnetische Nanopartikel zur Behandlung von Glioblastomen
WO2011058018A3 (de) * 2009-11-12 2011-11-24 Helmholtz-Zentrum Geesthacht Zentrum Für Material- Und Kuestenforschung Gmbh Biokompatible, magnetische nanopartikel zur behandlung von glioblastomen
US9517272B2 (en) 2009-12-16 2016-12-13 Magforce Ag Temperature dependent activation of catalytic nucleic acids for controlled active substance release
WO2011082796A3 (de) * 2009-12-16 2012-05-03 Magforce Nanotechnologies Ag Temperaturabhängige aktivierung von katalytischen nukleinsäuren zur kontrollierten wirkstofffreisetzung
WO2011082796A2 (de) 2009-12-16 2011-07-14 Magforce Nanotechnologies Ag Temperaturabhängige aktivierung von katalytischen nukleinsäuren zur kontrollierten wirkstofffreisetzung
DE102009058769A1 (de) 2009-12-16 2011-06-22 MagForce Nanotechnologies AG, 10589 Temperaturabhängige Aktivierung von katalytischen Nukleinsäuren zur kontrollierten Wirkstofffreisetzung
US9408912B2 (en) 2011-08-10 2016-08-09 Magforce Ag Agglomerating magnetic alkoxysilane-coated nanoparticles
US9962442B2 (en) 2011-08-10 2018-05-08 Magforce Ag Agglomerating magnetic alkoxysilane-coated nanoparticles
US9849193B2 (en) 2013-02-08 2017-12-26 University Of Louisville Research Foundation, Inc. Nanoparticles for drug delivery
RU2550955C1 (ru) * 2013-12-11 2015-05-20 Общество с ограниченной ответственностью "Уральский центр биофармацевтических технологий Способ электрохимического иммуноанализа для определения вирусов/антигенов вирусов
US11957788B2 (en) 2014-06-04 2024-04-16 Exicure Operating Company Multivalent delivery of immune modulators by liposomal spherical nucleic acids for prophylactic or therapeutic applications
US11364304B2 (en) 2016-08-25 2022-06-21 Northwestern University Crosslinked micellar spherical nucleic acids
DE102020116859A1 (de) 2020-06-26 2021-12-30 Pharma Development Holding Gmbh Liposomen
WO2021259425A1 (de) 2020-06-26 2021-12-30 Pharma Development Holding Gmbh Nanopartikel enthaltende, bisphosphonat modifizierte liposomen
DE202021004435U1 (de) 2020-06-26 2024-07-10 Pharma Development Holding Gmbh Liposomen

Also Published As

Publication number Publication date
EP1871423A2 (de) 2008-01-02
IL186521A0 (en) 2008-01-20
US9345768B2 (en) 2016-05-24
WO2006108405B1 (de) 2007-04-05
KR20130098441A (ko) 2013-09-04
CN101247836A (zh) 2008-08-20
CA2603734A1 (en) 2006-10-19
ES2392346T3 (es) 2012-12-07
JP2008536837A (ja) 2008-09-11
DE102005016873A1 (de) 2006-10-19
KR20080007323A (ko) 2008-01-18
RU2490027C9 (ru) 2013-09-27
KR20120101727A (ko) 2012-09-14
MX2007012670A (es) 2008-01-28
EP1871423B1 (de) 2012-08-01
CA2603734C (en) 2012-06-05
BRPI0610220A2 (pt) 2012-09-25
IL186521A (en) 2013-03-24
NZ561928A (en) 2010-10-29
US20080268061A1 (en) 2008-10-30
CN101247836B (zh) 2013-07-10
AU2006233483B2 (en) 2009-07-16
JP5037490B2 (ja) 2012-09-26
RU2490027C2 (ru) 2013-08-20
WO2006108405A3 (de) 2007-02-01
DE112006001565A5 (de) 2008-03-27
ZA200708692B (en) 2009-01-28
EP1871423B9 (de) 2014-09-10
RU2007141588A (ru) 2009-05-20
AU2006233483A1 (en) 2006-10-19
DK1871423T3 (da) 2012-10-29

Similar Documents

Publication Publication Date Title
EP1871423B9 (de) Nanopartikel-wirkstoff-konjugate
EP2249804B1 (de) Implantierbare nanopartikel-enthaltende produkte
EP2266544B1 (de) Verfahren zur einschleusung von therapeutischen substanzen in zellen
CN102666879B (zh) 模板化的纳米缀合物
EP2176170B1 (de) Magnetische transducer
EP2512441A2 (de) Temperaturabhängige aktivierung von katalytischen nukleinsäuren zur kontrollierten wirkstofffreisetzung
AU1694301A (en) Magnetic nanoparticles having biochemical activity, method for the production thereof and their use
CN115607680A (zh) 金团簇-核酸适体及其衍生物组装体的制备及应用
Oak et al. Nanoparticle Functionalization: Approaches and Applications

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 561928

Country of ref document: NZ

WWE Wipo information: entry into national phase

Ref document number: 2603734

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2006742238

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2006233483

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 186521

Country of ref document: IL

WWE Wipo information: entry into national phase

Ref document number: 2008505731

Country of ref document: JP

Ref document number: MX/a/2007/012670

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 1020077023700

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2006233483

Country of ref document: AU

Date of ref document: 20060412

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2006233483

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2007141588

Country of ref document: RU

Ref document number: 1934/MUMNP/2007

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 200680019614.8

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1120060015656

Country of ref document: DE

WWP Wipo information: published in national office

Ref document number: 2006742238

Country of ref document: EP

REF Corresponds to

Ref document number: 112006001565

Country of ref document: DE

Date of ref document: 20080327

Kind code of ref document: P

WWE Wipo information: entry into national phase

Ref document number: 11911196

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020127020330

Country of ref document: KR

ENP Entry into the national phase

Ref document number: PI0610220

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20071015

WWE Wipo information: entry into national phase

Ref document number: 1020137021157

Country of ref document: KR