WO2006106667A1 - 絶縁膜の製造方法および半導体装置の製造方法 - Google Patents

絶縁膜の製造方法および半導体装置の製造方法 Download PDF

Info

Publication number
WO2006106667A1
WO2006106667A1 PCT/JP2006/306288 JP2006306288W WO2006106667A1 WO 2006106667 A1 WO2006106667 A1 WO 2006106667A1 JP 2006306288 W JP2006306288 W JP 2006306288W WO 2006106667 A1 WO2006106667 A1 WO 2006106667A1
Authority
WO
WIPO (PCT)
Prior art keywords
plasma
treatment
gas
oxygen
insulating film
Prior art date
Application number
PCT/JP2006/306288
Other languages
English (en)
French (fr)
Inventor
Tatsuo Nishita
Toshio Nakanishi
Shuuichi Ishizuka
Tomoe Nakayama
Yutaka Fujino
Original Assignee
Tokyo Electron Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Limited filed Critical Tokyo Electron Limited
Priority to CN2006800105952A priority Critical patent/CN101151721B/zh
Priority to US11/910,332 priority patent/US20090239364A1/en
Publication of WO2006106667A1 publication Critical patent/WO2006106667A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32192Microwave generated discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32192Microwave generated discharge
    • H01J37/32211Means for coupling power to the plasma
    • H01J37/3222Antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02126Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC
    • H01L21/0214Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC the material being a silicon oxynitride, e.g. SiON or SiON:H
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/02227Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
    • H01L21/0223Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate
    • H01L21/02233Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer
    • H01L21/02236Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer group IV semiconductor
    • H01L21/02238Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer group IV semiconductor silicon in uncombined form, i.e. pure silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/02227Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
    • H01L21/02252Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by plasma treatment, e.g. plasma oxidation of the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02321Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment introduction of substances into an already existing insulating layer
    • H01L21/02329Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment introduction of substances into an already existing insulating layer introduction of nitrogen
    • H01L21/02332Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment introduction of substances into an already existing insulating layer introduction of nitrogen into an oxide layer, e.g. changing SiO to SiON
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02337Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to a gas or vapour
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02337Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to a gas or vapour
    • H01L21/0234Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to a gas or vapour treatment by exposure to a plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28158Making the insulator
    • H01L21/28167Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation
    • H01L21/28211Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation in a gaseous ambient using an oxygen or a water vapour, e.g. RTO, possibly through a layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/314Inorganic layers
    • H01L21/316Inorganic layers composed of oxides or glassy oxides or oxide based glass
    • H01L21/3165Inorganic layers composed of oxides or glassy oxides or oxide based glass formed by oxidation
    • H01L21/31654Inorganic layers composed of oxides or glassy oxides or oxide based glass formed by oxidation of semiconductor materials, e.g. the body itself
    • H01L21/31658Inorganic layers composed of oxides or glassy oxides or oxide based glass formed by oxidation of semiconductor materials, e.g. the body itself by thermal oxidation, e.g. of SiGe
    • H01L21/31662Inorganic layers composed of oxides or glassy oxides or oxide based glass formed by oxidation of semiconductor materials, e.g. the body itself by thermal oxidation, e.g. of SiGe of silicon in uncombined form

Definitions

  • the present invention relates to a method of manufacturing an insulating film that forms an insulating film by processing an object to be processed such as a semiconductor substrate using plasma, and a semiconductor device represented by, for example, a transistor using the insulating film It relates to the manufacturing method.
  • SiO is used as a gate insulating film of a transistor.
  • silicon oxide film is formed. Also, from the viewpoint of suppressing penetration of boron (B), which is a P-type impurity, and an increase in tunneling current, the silicon oxide film is nitrided to form a silicon nitride film (SiON), which is used as a gate insulating film. It is often.
  • B boron
  • SiON silicon nitride film
  • Methods for forming a silicon oxide film are roughly classified into a thermal acid treatment using an oxidation furnace using an RTP (Rapid Thermal Process) device and a plasma acid treatment using a plasma treatment device.
  • RTP Rapid Thermal Process
  • a plasma acid treatment using a plasma treatment device For example, in wet acid treatment using an acid furnace, which is one of the thermal acid treatments, a silicon substrate is heated to a temperature of 800 ° C or higher, and the atmosphere is oxidized using a WVG (Water Vapor Generator) device. The silicon surface is oxidized by exposure to form an oxide film.
  • WVG Water Vapor Generator
  • plasma oxidation treatment is performed at a low temperature of 550 ° C or lower using a plasma treatment apparatus that generates plasma by introducing microwaves into the treatment chamber using a radial line slot antenna.
  • a method of forming a silicon oxide film by performing this method has been proposed (for example, Patent Document 1).
  • Patent Document 1 Japanese Patent Laid-Open No. 2001-160555 (for example, paragraph 0015)
  • an object of the present invention is to provide an insulating film manufacturing method capable of forming a high-quality insulating film that can impart excellent electrical characteristics to a semiconductor device even if it is thin.
  • a first aspect of the present invention is an oxidation in which a silicon oxide film is formed by applying oxygen-containing plasma to silicon on the surface of an object to be processed in a processing chamber of a plasma processing apparatus. Including processing steps,
  • the treatment temperature in the oxidation treatment process is more than 600 ° C and less than 1000 ° C, and the oxygen-containing plasma introduces an oxygen-containing treatment gas containing at least a rare gas and an oxygen gas into the treatment chamber, and There is provided a method for manufacturing an insulating film, which is plasma of the oxygen-containing processing gas formed by introducing a high frequency or microwave into the processing chamber via the substrate.
  • the dielectric plate having a plurality of through openings between the plasma generation region in the treatment chamber and the object to be treated. It is preferable to carry out the treatment with intervening.
  • the hole diameter of the through-opening is 2.5 to 12 mm, and the total area ratio of the through-opening to the area of the substrate is 10 to 50 within a region corresponding to the substrate on the dielectric plate. % Is preferred.
  • the treatment pressure force in the acid / sodium treatment process is preferably 1.33 Pa to 1333 Pa.
  • the film thickness force of the silicon oxide film is preferably 0.2 to: LOnm.
  • a second aspect of the present invention is an oxidation treatment step of forming a silicon oxide film by applying an oxygen-containing plasma to silicon on a surface of an object to be processed in a processing chamber of a plasma processing apparatus;
  • the treatment temperature in the oxidation treatment process is more than 600 ° C and less than 1000 ° C, and the oxygen-containing plasma introduces an oxygen-containing treatment gas containing at least a rare gas and an oxygen gas into the treatment chamber, and There is provided a method for manufacturing an insulating film, which is plasma of the oxygen-containing processing gas formed by introducing a high frequency or microwave into the processing chamber via the substrate.
  • the nitrogen-containing plasma introduces a nitrogen-containing processing gas containing at least a rare gas and a nitrogen gas into a processing chamber, and the antenna-containing plasma is supplied via an antenna.
  • the nitrogen-containing processing gas plasma is preferably formed by introducing high frequency or microwaves into the processing chamber.
  • the acid treatment process and the nitridation process may be performed in the same processing chamber.
  • the acid treatment process and the nitridation process may be performed separately in a state where they can be evacuated. You can do it in the processing room!
  • the oxidation treatment step it is preferable to perform the treatment by interposing a dielectric plate having a plurality of through openings between the plasma generation region in the treatment chamber and the object to be treated.
  • the hole diameter of the through-opening is 2.5 to 12 mm, and the total area ratio of the through-opening to the area of the substrate is 10 to 50 within a region corresponding to the substrate on the dielectric plate. % Is preferred.
  • the treatment pressure force in the acid / sodium treatment process is preferably 1.33 Pa to 1333 Pa.
  • the film thickness force of the silicon oxide film is preferably 0.2 to: LOnm.
  • a third aspect of the present invention is that a silicon oxide film is formed by operating on a computer and, at the time of execution, causing oxygen-containing plasma to act on silicon on the surface of the object to be processed in a processing chamber of the plasma processing apparatus.
  • the treatment temperature in the acid bath treatment is more than 600 ° C and less than 1000 ° C
  • the oxygen-containing plasma introduces an oxygen-containing process gas containing at least a rare gas and an oxygen gas into the process chamber, and at a high frequency or in the process chamber via an antenna.
  • a control program is provided which is a plasma of the oxygen-containing process gas formed by introducing a microwave.
  • a fourth aspect of the present invention is a computer-readable storage medium storing a control program that operates on a computer
  • the control program controls the plasma processing apparatus so that, during execution, an oxidation process is performed in which a silicon oxide film is formed by applying an oxygen-containing plasma to silicon on the surface of an object to be processed in a processing chamber of the plasma processing apparatus.
  • the treatment temperature in the acid / sodium treatment is more than 600 ° C and less than 1000 ° C
  • the oxygen-containing plasma is formed by introducing an oxygen-containing treatment gas containing at least a rare gas and an oxygen gas into the treatment chamber and introducing high frequency or microwaves into the treatment chamber via an antenna.
  • a computer-readable storage medium that is a plasma of a contained process gas.
  • plasma generating means for generating plasma
  • a processing container capable of being evacuated for processing the object to be processed by the plasma, a substrate support for placing the object to be processed in the processing container,
  • the processing temperature is higher than 600 ° C and lower than 1000 ° C, and an oxygen-containing processing gas containing at least a rare gas and oxygen gas is introduced into the processing chamber, and a high frequency or microwave is introduced into the processing chamber via an antenna.
  • a plasma processing apparatus comprising: a control unit that controls to perform an oxidation process step of oxidizing the object to be processed using the oxygen-containing plasma formed by doing so.
  • a sixth aspect of the present invention is a semiconductor device characterized by including a step of forming a gate electrode on an insulating film manufactured by the insulating film manufacturing method of the first aspect.
  • a manufacturing method is provided.
  • a seventh aspect of the present invention is a semiconductor device characterized by including a step of forming a gate electrode on an insulating film manufactured by the insulating film manufacturing method of the second aspect.
  • a manufacturing method is provided.
  • the microwave introduced into the processing chamber by the antenna and at least rare By using an oxygen-containing plasma formed by a process gas containing gas and oxygen gas and performing oxidation treatment at a high temperature of over 600 ° C and below 1000 ° C, it is possible to prevent plasma damage as much as possible and improve the quality.
  • a silicon oxide film can be formed. Furthermore, by using a silicon oxynitride film obtained by nitriding the silicon oxide film as necessary, for example, as an insulating film such as a gate insulating film, the electrical characteristics of a semiconductor device such as a transistor are improved. be able to.
  • a semiconductor device having excellent current drive characteristics can be obtained.
  • even when forming a thin film of lnm or less as a gate insulating film it is possible to form an ideal oxide film that is dense and has few traps. Therefore, a thermal oxide film is formed while suppressing an increase in tunnel current. Since the drive current can be greatly increased as compared with the case where it is used, the performance of the semiconductor device can be improved.
  • FIG. 1 is a schematic view showing an example of a semiconductor manufacturing apparatus that can be suitably used in the practice of the present invention.
  • FIG. 2 is a schematic cross-sectional view showing an example of a plasma processing apparatus that can be used for plasma oxidation processing.
  • FIG. 3A is a plan view for explaining a plate.
  • FIG. 3B is a cross-sectional view of an essential part for explaining the plate.
  • FIG. 4 is a drawing for explaining a planar antenna member.
  • FIG. 5A is a schematic diagram of a cross-sectional structure of a wafer W showing a process of forming a gate insulating film, and shows a state where a plasma oxidation process is performed.
  • FIG. 5B is a schematic diagram of a cross-sectional structure of wafer W showing a process of forming a gate insulating film, showing a state after plasma oxidation treatment.
  • FIG. 5C is a schematic diagram of a cross-sectional structure of wafer W showing the formation process of the gate insulating film, and shows a state where the plasma nitridation process is performed.
  • FIG. 5D is a schematic diagram of a cross-sectional structure of wafer W showing a process of forming a gate insulating film, and shows a state after plasma nitriding treatment.
  • FIG. 6 is a schematic cross-sectional view showing an example of a plasma processing apparatus that can be used for plasma nitriding. is there.
  • FIG. 7A is a schematic diagram showing a gate electrode structure of a transistor, showing a tungsten polycide structure.
  • FIG. 7B is a schematic diagram showing a gate electrode structure of a transistor, showing a tungsten polymetal structure.
  • FIG. 7C is a schematic diagram showing a gate electrode structure of a transistor, showing a tungsten metal gate structure.
  • FIG. 8 is a graph showing a Gm curve of a transistor.
  • FIG. 9 is a graph showing an I—Jg plot of a transistor.
  • FIG. 10 is a graph showing the relationship between oxidation treatment time and film thickness.
  • FIG. 11 is a partially enlarged view of FIG.
  • FIG. 12 is a graph showing the results of a running test.
  • FIG. 13 is a graph showing the results of an etching resistance test.
  • FIG. 14 is a graph showing measurement results of interface roughness.
  • FIG. 15 is a graph showing the measurement results of film density.
  • FIG.16 A graph showing the relationship between electrical film thickness (EOT) and I in NMOS transistors.
  • FIG. 17 is a graph showing the relationship between the electrical film thickness (EOT) and the maximum value of Gm in an NMOS transistor.
  • FIG. 1 is a schematic diagram showing a schematic configuration of a semiconductor manufacturing apparatus 200 for carrying out the method for manufacturing a gate insulating film of the present invention.
  • a transfer chamber 131 for transferring a semiconductor wafer (hereinafter simply referred to as a “wafer”) W is disposed almost at the center of the semiconductor manufacturing apparatus 200, and surrounds the periphery of the transfer chamber 131.
  • plasma processing apparatuses 100 and 101 as plasma processing units for performing various processes on the wafer W, a gate valve (not shown) for performing communication Z shutoff between the processing chambers, a transfer chamber 131 and an atmospheric transfer chamber 140.
  • a heating unit 136 is provided for performing the operation.
  • a preliminary cooling unit 145 and a cooling unit 146 for performing various preliminary cooling or cooling operations are respectively arranged.
  • the mouth drop units 134 and 135 are used as a cooling unit, the preliminary cooling unit 145 and the cooling P unit 146 need not be provided.
  • transfer arms 137 and 138 are disposed, and the wafer W can be transferred to and from each unit.
  • an atmospheric transfer chamber 140 in which transfer means 141 and 142 are provided is provided.
  • This atmospheric transfer chamber 140 is in a state in which a clean environment is maintained by downflow of tailored air.
  • a force set unit 143 is connected to the atmospheric transfer chamber 140, and wafers W are taken in and out of the four cassettes 144 set on the cassette 143 by the transfer means 141 and 142. I can do it.
  • an alignment chamber 147 is provided adjacent to the atmospheric transfer chamber 140, where wafer W is aligned.
  • Each component of the semiconductor manufacturing apparatus 200 is controlled by a process controller 50 having a CPU.
  • SiO 2 is transferred to a plasma processing apparatus 101 connected in a vacuum state, where SiO 2
  • the plasma processing apparatus 100 and the plasma processing apparatus 101 can separately perform SiO film formation and nitriding treatment to the SiO film.
  • FIG. 2 is a cross-sectional view schematically showing an example of the plasma processing apparatus 100.
  • This plasma processing apparatus 100 has a high density by generating plasma by introducing microwaves into a processing chamber using a planar antenna having a plurality of slots, in particular, a radial line slot antenna (RLSA). It is configured as an RLSA microwave plasma processing device that can generate microwave plasma with a low electron temperature.
  • RLSA microwave plasma processing device that can generate microwave plasma with a low electron temperature.
  • a gate insulating film in the manufacturing process of various semiconductor devices such as MOS transistors and MOSFETs (field effect transistors) It can be suitably used for the purpose such as formation.
  • the plasma processing apparatus 100 is an airtight, substantially cylindrical chamber that is grounded. Have one. A circular opening 10 is formed in a substantially central portion of the bottom wall la of the chamber 11, and an exhaust chamber 11 that communicates with the opening 10 and protrudes downward is provided in the bottom wall la. ing.
  • a susceptor 2 having a ceramic mixing force such as A1N for horizontally supporting a wafer W as an object to be processed is provided.
  • the susceptor 2 is supported by a support member 3 made of ceramics such as a cylindrical A1N extending upward from the center of the bottom of the exhaust chamber 11.
  • a guide ring 4 for guiding the wafer W is provided on the outer edge of the susceptor 2.
  • a resistance heating type heater 5 is embedded in the susceptor 2, and the heater 5 is heated by the heater power supply 6 to heat the susceptor 2, and the wafer W that is the object to be processed is heated by the heat. Heat.
  • temperature control is possible in the range from room temperature to 1000 ° C.
  • a cylindrical liner 7 having a quartz force is provided on the inner periphery of the chamber 11.
  • a baffle plate 8 having a large number of exhaust holes 8a is provided in an annular shape on the outer peripheral side of the susceptor 2 to uniformly exhaust the inside of the chamber 11, and the baffle plate 8 is supported by a plurality of support columns 9. Yes.
  • wafer support pins (not shown) for supporting the wafer W and moving it up and down are provided so as to protrude and retract with respect to the surface of the susceptor 2.
  • a plate 60 having a plurality of through holes for attenuating and passing the energy of active species (ions, radicals, etc.) in the plasma is disposed.
  • This plate 60 is made of, for example, quartz, sapphire, SiN, SiC, Al 2 O
  • the plate 60 can be composed of a ceramic dielectric such as A1N, silicon single crystal, polysilicon, amorphous silicon or the like. In this embodiment, quartz is used.
  • the plate 60 is supported by engaging an outer peripheral portion thereof with a support portion 70 that protrudes from the liner 7 in the chamber 11 toward the inner side over the entire periphery. The plate 60 may not be provided when the thickness of the oxide film that forms the force that acts to attenuate the energy of the active species in the plasma exceeds 5 nm.
  • the mounting position of the plate 60 is preferably a position close to the wafer W, and the distance between the lower end of the plate 60 and the wafer W is preferably about 10 mm, preferably 3 to 20 mm. In this case, the distance between the upper end of the plate 60 and the lower end of the transmission plate 28 (described later) is, for example, 20-50mm is preferred!
  • the plate 60 is formed with a plurality of through holes 60a.
  • 3A and 3B are drawings showing details of the plate 60.
  • FIG. FIG. 3A shows the state of the plate 60 as viewed from above, and
  • FIG. 3B shows a cross-section of the main part of the plate 60.
  • the through holes 60a of the plate 60 are arranged substantially evenly so that the arrangement region of the through holes 60a is slightly larger than the placement region of the wafer W indicated by a broken line in FIG. 3A.
  • a length L force corresponding to the diameter of a circle connecting the extension of the arrangement region of the through hole 60a to a 300 mm diameter wafer W, approximately 5 to 30 mm outside from the periphery of the wafer W.
  • a through hole 60a is provided in an enlarged manner.
  • the through hole 60a is disposed on the entire surface of the plate 60.
  • the diameter D of the through hole 60a can be arbitrarily set, and is set to about 2.5 mm, 5 mm, or 10 mm, for example.
  • the size of the hole may be changed depending on the position of the through hole 60a in the plate 60, and the arrangement of the through holes 60a may be selected from any arrangement such as concentric circles, radial shapes, and spiral shapes.
  • the thickness (T) of the plate 60 is more preferably set to about 3 to 8 mm, for example, preferably about 2 to 20 mm.
  • the plate 60 acts as an energy attenuating means for attenuating the energy of active species such as ions in the plasma.
  • the dielectric plate 60 it is possible to pass mainly radicals in the plasma and attenuate energy such as high-energy ions such as Ar ions and N ions.
  • energy such as high-energy ions such as Ar ions and N ions.
  • the ratio of the total opening area of the through holes 60a to the area of the wafer W in the region corresponding to the wafer W on the plate 60 is 10 to It is preferable to make it 50%.
  • An annular gas introduction member 15 is provided on the side wall of the chamber 11, and a gas supply system 16 is connected to the gas introduction member 15.
  • the gas introduction member is in a shower shape. You may arrange.
  • the gas supply system 16 includes, for example, an Ar gas supply source 17 and an O gas supply source 18.
  • Each of the gas lines 20 is provided with a mass flow controller 21 and front and rear opening / closing valves 22.
  • a rare gas such as Kr, Xe, or He can be used.
  • An exhaust pipe 23 is connected to the side surface of the exhaust chamber 11, and an exhaust device 24 including a high-speed vacuum pump is connected to the exhaust pipe 23. Then, by operating the exhaust device 24, the gas force in the chamber 11 is uniformly discharged into the space 11 a of the exhaust chamber 11 and is exhausted through the exhaust pipe 23. As a result, the inside of the chamber 11 can be depressurized at a high speed to a predetermined degree of vacuum, for example, 0.133 Pa.
  • a loading / unloading port 25 for loading / unloading the wafer W to / from a transfer chamber (not shown) adjacent to the plasma processing apparatus 100, and the loading / unloading port 25 are opened and closed.
  • a gate valve 26 is provided!
  • the upper portion of the chamber 11 is an opening, and a ring-shaped support 27 is provided along the periphery of the opening, and a dielectric such as quartz or Al 2 O 3 is provided on the support 27.
  • a ceramic plate such as A1N is also provided, and a transmission plate 28 that transmits microwaves is airtightly provided through a seal member 29. Therefore, the inside of the chamber 11 is kept airtight.
  • a disk-shaped planar antenna member 31 is provided above the transmission plate 28 so as to face the susceptor 2.
  • the planar antenna member 31 is locked to the upper end of the side wall of the chamber 11.
  • the planar antenna member 31 also has a conductive material force such as a copper plate or aluminum plate whose surface is plated with gold or silver, and a large number of slot holes 32 for radiating microwaves penetrate in a predetermined pattern.
  • the structure is formed.
  • the slot hole 32 has a long groove shape, and is typically arranged in the shape of a force between adjacent slot holes 32.
  • the plurality of slot holes 32 are arranged concentrically. ing.
  • the length and arrangement interval of the slot holes 32 are determined according to the wavelength ( ⁇ g) of the microwave.
  • the slot holes 32 are arranged such that the interval between the slot holes 32 is gZ4, gZ2, or g.
  • the interval between adjacent slot holes 32 formed concentrically is indicated by Ar.
  • the slot hole 32 may have another shape such as a circular shape or an arc shape.
  • slot holes The arrangement form of 32 is not particularly limited, and may be arranged in a concentric form, for example, a spiral form or a radial form.
  • a slow wave member 33 having a dielectric constant larger than that of a vacuum is provided on the upper surface of the planar antenna member 31.
  • the planar antenna member 31 and the transmission plate 28, and the slow wave member 33 and the planar antenna member 31 may be in close contact with each other or separated from each other.
  • a shield lid 34 made of a metal material such as aluminum or stainless steel is provided on the upper surface of the chamber 11 so as to cover the planar antenna member 31 and the slow wave material 33.
  • the shield lid 34 functions as a part of the waveguide and propagates the microwaves uniformly.
  • the upper surface of the chamber 11 and the shield cover 34 are sealed by a seal member 35.
  • a cooling water flow path 34a is formed in the shield lid 34, and the cooling lid 34, the slow wave material 33, the planar antenna member 31, and the transmission plate 28 are cooled by allowing cooling water to flow therethrough. It is like that.
  • the shield lid 34 is grounded.
  • An opening 36 is formed in the center of the upper wall of the shield lid 34, and a waveguide 37 is connected to the opening.
  • a microwave generator 39 is connected to the end of the waveguide 37 via a matching circuit 38.
  • a microwave having a frequency of 2.45 GHz generated by the microwave generator 39 is propagated to the planar antenna member 31 through the waveguide 37.
  • the microwave frequency 8.35 GHz, 1.98 GHz, or the like can be used.
  • the waveguide 37 includes a coaxial waveguide 37a having a circular cross section extending upward from the opening 36 of the shield lid 34, and a mode converter 40 at the upper end of the coaxial waveguide 37a. And a rectangular waveguide 37b extending in the horizontal direction.
  • the mode change 40 between the rectangular waveguide 37b and the coaxial waveguide 37a has a function of converting the microphone mouth wave propagating in the TE mode in the rectangular waveguide 37b into the TEM mode.
  • An inner conductor 41 extends in the center of the coaxial waveguide 37a, and the inner conductor 41 is formed at the lower end of the planar antenna member 31. The connection is fixed at the center. Thereby, the microwave is efficiently and uniformly propagated radially and uniformly to the planar antenna member 31 through the inner conductor 41 of the coaxial waveguide 37a.
  • Each component of the plasma processing apparatus 100 is connected to and controlled by a process controller 50 having a CPU.
  • the process controller 50 also includes a keyboard for a process manager to input commands to manage the plasma processing apparatus 100, a display that visualizes and displays the operating status of the plasma processing apparatus 100, and the like.
  • One interface 51 is connected!
  • the process controller 50 stores a control program (software) for realizing various processes executed by the plasma processing apparatus 100 under the control of the process controller 50, and recipes in which processing condition data is recorded.
  • the stored storage unit 52 is connected.
  • recipes such as the control program and processing condition data may be stored in a computer-readable storage medium such as a CD-ROM, a hard disk, a flexible disk, or a flash memory. For example, it is possible to transmit the data from time to time through a dedicated line and use it online.
  • the gate valve 26 is opened, and the wafer W having a silicon layer is loaded into the chamber 11 from the loading / unloading port 25 and placed on the susceptor 2. Then, Ar gas and O gas are supplied from the Ar gas supply source 17 and the O gas supply source 18 of the gas supply system 16.
  • the gas is introduced into the chamber 11 through the gas introduction member 15 at a predetermined flow rate.
  • the flow rate of a rare gas such as Ar is set to 200 to 3000 mLZmin (sccm), O gas.
  • the microwave from the microwave generator 39 is guided to the waveguide 37 through the matching circuit 38, and sequentially propagated through the rectangular waveguide 37b, the mode converter 40, and the coaxial waveguide 37a. Then, it is supplied to the planar antenna member 31 and radiated from the slot of the planar antenna member 31 into the chamber 11 through the transmission plate 28.
  • the microwave propagates in the TE mode in the rectangular waveguide 37b, and the TE mode microwave is converted into the TEM mode by the mode change ⁇ 40, and the inside of the coaxial waveguide 37a is directed to the planar antenna member 31. Will be propagated.
  • An electromagnetic field is formed in the chamber 1 by the microwave radiated from the planar antenna member 31 to the chamber 1 through the transmission plate 28, and Ar gas and O gas are turned into plasma. This oxygen-containing plasma
  • the silicon layer 111 of the wafer W is processed as shown in FIG. 5A.
  • the power of the microwave generator 39 is preferably 0.5 to 5 kW, more preferably 1 to 3 kW.
  • This microwave plasma has a high density of about 1 X 10 1 (> 5 X 10 12 Zcm 3 ) and a wafer by the microwave being radiated by a large number of slot holes 32 of the planar antenna member 31. In the vicinity of W, it becomes a low electron temperature plasma of approximately 1.5 eV or less, and the microwave plasma formed in this way is due to the provision of a force plate 60 that has less plasma damage due to ions and the like. When the plasma formed on the plate 60 passes to the wafer W side, the energy of the active species (ions, etc.) in the plasma is attenuated.
  • the electron temperature is less than leV and the wafer W
  • a mild plasma of 0.7 eV or less is generated in the vicinity of the plasma, and plasma damage can be further reduced, and the active species in the plasma, mainly oxygen radicals (O *).
  • oxygen is introduced into silicon and Si—O bonds are formed, and a high-quality silicon oxide film 113 with high density and few traps is formed, as shown in FIG.
  • a dense and high-quality silicon oxide film (gate insulating film) can be formed within the range of 0.2 to LOnm.
  • Possible and preferred Can be formed with a thin film thickness of 0.5 to 2. Onm, more preferably 0.8 to 1.2 nm.
  • the wafer support pins (not shown) are raised and preheated while supporting the wafer W while protruding from the susceptor 2. carry out. This preheating is performed for about 20 seconds while the pressure in the chamber 11 is set to 266.6 Pa (2 Torr), for example, and Ar gas is introduced from the Ar gas supply source 17 at a flow rate of 2000 mLZmin (sccm).
  • the wafer support pins (not shown) are lowered to place the wafer W on the susceptor 2, and Ar gas is introduced into the chamber 1 while introducing Ar gas at a flow rate of 2000 mLZmin (sccm). Pull out and continue preheating for about 70 seconds.
  • the preheating treatment is preferably performed until reaching the same temperature as the treatment temperature.
  • the microwave generator 39 while maintaining the pressure and gas flow rate, the microwave generator 39 generates microwaves with an output of 2 kW, for example, and as described above, the matching circuit 38, the waveguide 37 and Plasma is excited by being introduced into the chamber 11 through the planar antenna member 31 and the like, and a plasma oxidation process is performed on the wafer W in a time of about 10 to 50 seconds, for example.
  • the plasma is terminated while the microwave is stopped and the pressure and gas flow rate are maintained for about 3 seconds.
  • the plasma oxidation process in the plasma processing apparatus 100 is completed for one wafer W.
  • the high-quality silicon oxide film 113 formed as described above can be used as the gate insulating film of the semiconductor element.
  • a silicon nitride film 113 can be nitrided to form a silicon nitride film on the surface side of the silicon oxide film 113.
  • the nitriding process can be carried out by continuously introducing a nitrogen-containing gas into the same chamber, that is, the plasma processing apparatus 100 shown in FIG. 2. If the inside of the chamber 11 is in an acid atmosphere, Since this may affect the nitriding process, it is preferable to transfer Ueno and W to another chamber.
  • a plasma processing apparatus 101 shown in FIG. 6 can be used.
  • the plasma processing apparatus 101 is an RLS A type plasma processing apparatus, and the basic configuration is the same as that of the plasma processing apparatus 100 of FIG. 2 except for the gas supply system. The description is omitted.
  • the plasma processing apparatus 101 of Fig. 6 includes an N gas supply source 19, from which N gas is supplied.
  • the processing gas in nitriding is N gas
  • a rare gas such as Kr, Xe, or He can be used instead of the gas.
  • the conditions of the nitriding process using the plasma processing apparatus 101 are not particularly limited.
  • the flow rate of rare gas such as Ar is 100 to 3000 mLZmin (sccm), and the N gas flow rate is 10 to: L0
  • the temperature is set to OOmLZmin (sccm), the inside of the chamber is adjusted to a processing pressure of 1.3 to 1333 Pa (10 mTorr to: LOTorr), and the temperature of the wafer W is heated to 300 to 500 ° C.
  • the power of the microwave generator 39 is preferably 0.5 to 5 kW.
  • a silicon nitride film (SiON film) can be formed in the vicinity of the surface of the silicon oxide film 113.
  • a force capable of performing nitriding without the plate 60 is provided.
  • a plate having through holes 60a is used to attenuate the energy of nitrogen ions in the plasma. It is preferable to use 60. As a result, plasma damage can be suppressed.
  • the N concentration in the formed SiON film it is preferable to set the N concentration in the formed SiON film to 1 to 25% from the viewpoint of suppressing the leakage current in the transistor including the gate insulating film 114 5 to 15%. 8-12% is preferable. Further, in the present embodiment, during the plasma nitriding process, the nitrogen concentration distribution is uniformly distributed at a high concentration on the surface side of the gate oxide film, It is possible to control the formation of a SiON film in which nitrogen is not distributed near the interface with the silicon substrate.
  • annealing treatment can be performed if necessary.
  • This post-nitridation annealing process uses, for example, an RTP (Rapid Thermal Process) apparatus, etc., at a low oxygen partial pressure or an inert gas atmosphere such as N, Ar, etc., at a pressure of 133.3 Pa (lTorr), and a wafer W temperature of 1000
  • the interface between the silicon substrate and the insulating film can be made smooth, the film quality of the insulating film can be improved, and nitrogen desorption can be suppressed to form a stable insulating film.
  • the gate insulating film 114 can be manufactured [FIG. 5D].
  • the method of the present invention can be used in the process of manufacturing a semiconductor device such as a MOS transistor, and can be applied to the manufacture of a semiconductor device having a gate electrode structure as shown in FIGS. 7A to 7C, for example. 7A to 7C, the element isolation region, the oxide film on the side wall of the gate electrode, the side wall, and the like are not shown.
  • FIG. 7A and FIG. 7B are examples of a semiconductor device having a polymetal gate.
  • FIG. 7A shows a silicon oxide film (SiO film) or a silicon oxynitride film (SiO film) (Si film 111) formed on a Si substrate 111 by the method of the present invention.
  • FIG. 7B shows the gate insulation of the SiO film or the SiON film on the Si substrate 111 by the method of the present invention.
  • An edge film 114 is formed, and a tungsten polymetal structure in which a polysilicon layer 115, a barrier layer 118 such as tungsten nitride (WN), and a tungsten layer 119 are stacked as a gate electrode.
  • Figure 7C shows the gate insulation of SiO film or SiON film on Si substrate 111.
  • a tungsten metal gate structure in which a film 114 is formed, and a barrier layer 118 such as tungsten nitride (WN) and a tungsten layer 119 are stacked thereon.
  • the tungsten silicide layer 116 is used as the metal silicide layer
  • the tungsten layer 119 is used as the metal layer.
  • other metals such as copper, platinum, titanium, Mo, Ni, and Co may be used.
  • the gate electrode structure shown in FIG. 7B is taken as an example, and the manufacturing procedure is shown as follows.
  • a well region (diffusion region) is formed by doping P + or N + on a Si substrate 111 having a clean surface after F (dilute hydrofluoric acid) cleaning, and the plasma processing apparatus 100 shown in FIG.
  • F dilute hydrofluoric acid
  • a plasma oxidation treatment is performed at a temperature above 700 ° C to form a SiO film on the Si substrate surface.
  • the SiO 2 film surface is plasma-nitrided under the above conditions to form a SiON film, and if necessary, an inert gas such as nitrogen
  • the gate insulating film 114 is formed by annealing at a temperature of about 1000 ° C. in a neutral atmosphere.
  • a polysilicon layer 115 is formed on the gate insulating film 114 by, for example, CVD, a noorie layer 118 is further formed thereon, and a tungsten layer 119 is further formed from tungsten which is a refractory electrode material.
  • CVD chemical vapor deposition
  • a sputtering method can be used to form the tungsten layer 119.
  • tungsten nitride is used as the NOR layer 118.
  • a hard mask layer such as silicon nitride is formed on the tungsten layer 119, and a photoresist film (not shown) is further formed. Then, the photomask is used to etch the hard mask layer using the photoresist film as a mask, followed by the photoresist film + hard mask layer, or the hard mask layer as a mask, followed by the tungsten layer 119, the noria layer 118, and the polysilicon layer 115. Etch. During this time, ashing is performed at a necessary timing, and a gate electrode is formed by finally forming a sidewall (not shown). By using the gate electrode formed in this manner, a high-quality transistor with a small leakage current and a large driving current can be manufactured.
  • the Si substrate 111 was subjected to high-temperature plasma oxidation treatment to form an oxide film, and a gate insulating film 114 having a thickness of 1. Onm was formed (nitriding treatment was not performed).
  • a gate electrode having a structure similar to that shown in FIG. 7A was formed to manufacture a transistor.
  • the conditions of the plasma treatment in the oxidation treatment process are as follows.
  • the diameter is 2.5mm, Ar / O is used as the processing gas, and the flow rate is 2000ZlO [mLZ
  • the wafer temperature was 800 ° C
  • the pressure was 66.7 Pa (500 mTorr)
  • the power supplied to the plasma was 2. OkW
  • the processing time was 7 seconds.
  • Example 1 1 Except that the temperature of the oxidation process was set to 400 ° C, the film thickness was the same as in Example 1 1
  • a gate electrode was formed in the same manner as in Example 1 to manufacture a transistor.
  • WVG Water Vapor Generator
  • Fig. 8 shows the measurement results of Gm (transfer conductance) of these transistors.
  • the vertical axis in Fig. 8 is Gm (GmZCox) with respect to the capacitance Cox of the oxide film, and the horizontal axis is
  • the effective electric field is shown.
  • the transistor of Example 1 using the gate insulating film 114 obtained by the acid treatment at the high temperature (800 ° C) of the present invention using the plasma processing apparatus 100 is 400 ° C.
  • the Gm value is high on the high electric field side. It was confirmed to show electrical characteristics.
  • the transistor of Example 1 having a high Gm value on the high electric field side is a transistor having a high-speed and stable property because the current mobility is large and the current gain is improved.
  • the reason why the transistor of Example 1 shows a high Gm value on the high electric field side is that gate insulation formed by oxidizing silicon at a high temperature exceeding 600 ° C using the plasma processing apparatus 100 Film 114 has low roughness at the SiO ZSi interface, which suppresses interface roughness scattering
  • Example 2 (Acid film by high temperature plasma acid treatment; 800 ° C)
  • the gate insulating film 114 was formed by performing nitridation using the device 101 and carrying it into a heating unit 136 after nitriding and performing annealing. Using this gate insulating film 114, a gate electrode having the structure shown in FIG. 7A was formed to manufacture a transistor. The thickness of the gate insulating film 114 was about lnm.
  • the oxidation treatment, nitriding treatment and annealing treatment are preferably performed continuously via a vacuum.
  • the plasma treatment conditions in the oxidation treatment process are as follows: plate 60 with through hole 60a having a diameter of 2.5 mm, Ar / O as the treatment gas, and a flow rate of 2000 ZlO [mLZ
  • the plasma treatment conditions in the nitriding treatment process are as follows: the plate 60 has a through hole 60a with a diameter of 10mm, ArZN is used as a processing gas, and the flow rate is 2000/40 [
  • the wafer temperature was 400 ° C
  • the pressure was 6.7 Pa (50 mTorr)
  • the power supplied to the plasma was 1.5 kW.
  • the oxynitride film was formed by controlling the treatment time to 8 seconds, 17.5 seconds or 24 seconds so that the nitrogen concentration in the SiON film was 6%, 11% or 13%.
  • O ZN lZl [LZmin (slm)], pressure 133.3 Pa (lTorr), wafer W temperature 1000 using RTP (Rapid Thermal Process) equipment.
  • the test was carried out at ° C for 20 seconds.
  • a gate insulating film 114 was formed in the same manner as in Example 2 except that the processing temperature of the plasma oxidation treatment was changed to 400 ° C., and a transistor was manufactured.
  • the characters “6%”, “11%”, and “13%” indicate the N concentration in the gate insulating film 114.
  • the transistor of Example 2 having the film 114 includes an oxide film obtained by plasma oxidation at a low temperature of 400 ° C. using the plasma processing apparatus 100, and a thermal oxide film by WVG thermal oxidation treatment and RTP thermal oxidation treatment. Based on these results, it was shown that the current drive capability was superior to that when the gate insulating film 114 obtained by nitriding was used (Comparative Examples 3 to 5). This is thought to be due to the difference in the current drivability due to the difference in the quality of the oxide film that is the basis of each oxynitride film.
  • a transistor including the gate insulating film 114 formed by nitriding based on an oxide film formed by oxidation at a processing temperature of more than 600 ° C. according to the method of the present invention has a mobility. It was shown that it has excellent performance and high response speed, and can save power. Note that the N concentration in the oxynitride film is preferably in the range of 125%.
  • the gate insulating film 114 based on the oxide film obtained by performing the acid treatment at 800 ° C using the plasma processing apparatus 100 was used even if it was a thin film of about lnm.
  • the transistor showed high current drive capability compared to the thermal oxide film while suppressing leakage current, and it was confirmed that the performance of the transistor can contribute to improvement. Therefore, according to the method of the present invention, a high-quality gate insulating film in the range of 0.2 to: LOnm thickness (preferably 0.5.2.0, more preferably 0.81.2 nm, thickness). It has been shown that 114 can be formed.
  • the diameter of the through-hole 60a of the plate 60 is the thickness of the oxide film formed on the Si substrate.
  • the results of the test on the effects on the environment will be described with reference to FIGS.
  • the plate 60 a plate with a through hole 60a having a hole diameter of 10 mm (626 holes), a plate with a through hole 60a having a hole diameter of 5 mm (629 holes), and a through hole 60a having a hole diameter of 2.5 mm
  • Three types of plates (number of holes: 270) were prepared, and plasma oxidation treatment was also performed when plate 60 was not used.
  • the oxide film is formed in a short time when the acid silicate is high. This oxide film was a good quality uniform oxide film. However, when a plate is not used, there is a limit to forming an oxide film with a uniform film thickness of l 2 nm or less.
  • FIG. 11 is an enlarged view of the graph of FIG. 10 with the oxide film thickness narrowed down to the range of 0.5 nm to 2. Onm. From this Fig. 11, it can be seen that the purpose of setting the hole diameter of the plate 60 to 5mm and 2.5mm is 0.5 ⁇ ! ⁇ 1.5 It is found that it is effective in forming a thin film of 5 nm or less.
  • the processing time can be changed within a range of approximately 0.8 nm to l. It was shown that the oxide film thickness can be controlled at a high speed, and a uniform, dense and high-quality oxide film can be formed in a short time.
  • Fig. 12 shows the silicon between the surfaces of the wafer W when a plasma oxidation apparatus 100 running test is performed on 5000 wafers W using the plasma processing apparatus 100 provided with a plate 60 having a hole diameter of 5 mm. The change in the thickness of the oxide film is shown. In this test, ArZO was used as the processing gas.
  • the flow rate was 1000Z5 [mLZmin (sccm)], the wafer temperature was 800 ° C, the pressure was 66.7 Pa (5 OOmTorr), the power supplied to the plasma was 2.0 kW, and the processing time was 10 seconds.
  • the target silicon oxide film thickness is 0.8 ⁇ ! ⁇ 1.
  • Table 1 shows the uniformity of the film thickness of the silicon oxide film on the wafer W surface when plasma oxidation treatment is performed on Ueno and W using the deployed plasma processing apparatus 100. The results of measurements using a single wavelength ellipsometer are shown. Plasma oxidation treatment conditions were the same as in the running test.
  • section A shows in-plane uniformity when a plate 60 with a hole diameter of 2.5 mm is used and the target film thickness is set to 1. Onm.
  • Section B also has a hole diameter of 2.5 mm. In-plane uniformity is shown when plate 60 is used and the target film thickness is set to 1.2 nm.
  • Category C shows in-plane uniformity when a plate 60 with a hole diameter of 10 mm is used and the target film thickness is set to 1.7 nm.
  • means the standard deviation of the film thickness
  • ⁇ ⁇ average film thickness indicates a value obtained by standardizing the standard deviation with the average film thickness (nm).
  • the etching resistance, interface roughness, argon concentration, and film density were measured for the silicon oxide film formed on the silicon substrate by the following method.
  • WVG thermal oxidation treatment performed at 900 ° C (as a comparative sample).
  • HF dilute hydrofluoric acid
  • the film thickness before and after etching was measured with an ellipsometer and evaluated by calculating the etching rate.
  • Fig. 13 shows the measurement results of etching resistance.
  • the vertical axis in FIG. 13 shows the etching rate as a standard. From Fig. 13, it can be seen that the silicon oxide film formed by WVG thermal oxidation treatment and the silicon oxide film formed by 400 ° C plasma acid treatment are treated by plasma oxidation treatment at 800 ° C. The formed silicon oxide film was shown to have excellent etching resistance. Therefore, it was confirmed that the silicon oxide film formed by the high-temperature plasma acid treatment at 800 ° C. was dense and had good film quality. [0097] ⁇ Interface roughness>
  • Interfacial roughness is obtained by immersing wafer W on which silicon oxide film is formed in 0.5% dilute hydrofluoric acid solution to remove silicon oxide film (SiO 2) and then using a surface roughness meter.
  • the roughness of the interface was measured. The results are shown in FIG. From Fig. 14, it can be seen that the interface between the silicon oxide film and silicon formed by high-temperature plasma oxidation treatment at 800 ° C (treatment pressure 26.6 Pa) is low-temperature plasma oxidation treatment at 400 ° C (treatment pressure 26.6 Pa). ) And WVG thermal oxidation treatment (900 ° C), it was confirmed that the interface roughness was small and good compared to the interface between the silicon oxide film and silicon. Such small interface roughness contributes to suppression of leakage current.
  • the argon concentration of each silicon oxide film was measured using total reflection X-ray fluorescence analysis (Trex).
  • the argon concentration in the silicon oxide film formed by the plasma acid treatment at a processing temperature of 400 ° C was 7 X lO 10 [atoms / cm 2 ].
  • pressure is 26.6 Pa
  • the argon concentration is less than both 1 X 10 1G [a t O m S / cm 2], and argon concentration of less silicon Sani ⁇ and same level of formed by WVG Netsusani ⁇ , good The film quality was confirmed (results omitted).
  • the film density was measured by incident X-ray reflectometry (GIXR).
  • Figure 15 shows the results. From Fig. 15, it can be seen that compared to the film density of the silicon oxide film formed by plasma oxidation at 400 ° C (pressure 26.6 Pa), 600 ° C, 700 ° C and 800 ° C
  • the silicon oxide film formed by the plasma acid treatment at the C treatment temperature is obviously higher than the silicon oxide film formed by the WVG thermal acid treatment. It was shown that the film density profile was similar.
  • FIG. 16 shows the relationship between the electrical thickness (EOT) of the gate insulating film and I at the threshold voltage of + 0.7V.
  • FIG. 17 shows the relationship between the electrical thickness (EOT) of the gate insulating film and the maximum value (Gm) max of the transfer conductance.
  • the value was significantly higher, and it was confirmed that the electrical characteristics were excellent.
  • a silicon oxide film formed by high-temperature plasma oxidation treatment at 600 ° C. or higher and a silicon oxynitride film formed by nitriding the silicon oxide film can be suitably used for various semiconductor devices.
  • the power given as an example of the RLSA type plasma processing apparatus 100 may be a plasma processing apparatus such as a remote plasma type, an ICP plasma type, an ECR plasma type, a surface reflected wave plasma type, a magnetron plasma type, etc. Yo! /.
  • the force of deploying one plate 60 can be deployed by stacking two or more plates as required.
  • the opening area of the through hole 60a, the ratio thereof, and the like can be appropriately adjusted according to the target of the plasma processing, processing conditions, and the like.
  • the plasma processing apparatus 100 of FIG. 2 is replaced with an Ar gas supply source 17 and an O gas supply source 18 as a gas supply system 16, and an H gas supply source (not shown) is provided.
  • Ar gas and O gas Ar gas and O gas
  • the nitridation process is performed using the RLSA type plasma processing apparatus 101.
  • the apparatus and conditions used for the nitriding process are not limited.
  • a plasma processing apparatus such as a remote plasma system, an ICP plasma system, an ECR plasma system, a surface reflection wave plasma system, a magnetron plasma system or the like can be used under appropriate conditions.
  • the present invention can be suitably used in the manufacture of various semiconductor devices such as transistors.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Formation Of Insulating Films (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

 ゲート絶縁膜の製造方法は、プラズマ処理装置の処理室内で、被処理体表面のシリコンに酸素含有プラズマを作用させてシリコン酸化膜を形成する酸化処理工程を含み、酸化処理工程における処理温度は600°C超1000°C以下であり、酸素含有プラズマは、少なくとも希ガスと酸素ガスとを含む酸素含有処理ガスを前記処理室内に導入するとともに、アンテナを介して該処理室内に高周波またはマイクロ波を導入することによって形成される酸素含有処理ガスのプラズマである。  

Description

明 細 書
絶縁膜の製造方法および半導体装置の製造方法
技術分野
[0001] 本発明は、プラズマを用いて半導体基板等の被処理体を処理し、絶縁膜を形成す る絶縁膜の製造方法、およびこの絶縁膜を使用した、例えばトランジスタに代表され る半導体装置の製造方法に関する。
背景技術
[0002] 各種半導体装置の製造過程では、例えばトランジスタのゲート絶縁膜として SiOな
2 どのシリコン酸ィ匕膜の形成が行なわれている。また、 P型不純物であるボロン (B)のつ き抜けや、トンネル電流の増加を抑制するという観点から、シリコン酸化膜を窒化処 理してシリコン窒化膜 (SiON)とし、これをゲート絶縁膜とすることも多い。
[0003] シリコン酸化膜を形成する方法としては、酸化炉ゃ RTP (Rapid Thermal Process) 装置を用いる熱酸ィ匕処理と、プラズマ処理装置を用いるプラズマ酸ィ匕処理に大別さ れる。例えば、熱酸ィ匕処理の一つである酸ィ匕炉によるウエット酸ィ匕処理では、 800°C 以上の温度にシリコン基板を加熱し、 WVG (Water Vapor Generator)装置を用いて 酸化雰囲気に曝すことによりシリコン表面を酸化させて酸化膜を形成する。
[0004] 一方、プラズマ酸ィ匕処理としては、ラジアルラインスロットアンテナにより処理室内に マイクロ波を導入してプラズマを生成させるプラズマ処理装置を用い、 550°C以下の 低温でプラズマ酸ィ匕処理を行なうことによりシリコン酸ィ匕膜を形成する方法が提案さ れて 、る(例えば、特許文献 1)。
特許文献 1:特開 2001— 160555号公報 (例えば、段落 0015など)
発明の開示
[0005] 従来は、熱酸化処理を行なうことにより、良質なシリコン酸ィ匕膜を形成できると考え られてきた。しかし、熱酸化の場合、膜厚が極薄くなると量子力学的効果によって酸 化膜 (絶縁膜)を電子が通り抜けるトンネル現象や膜質の低下が起こりリーク電流が 増大するなど、シリコン酸化膜やそれを窒化処理して得られるシリコン酸窒化膜をゲ ート絶縁膜として用いる半導体装置の電気的特性に悪影響を与えるという課題があ つた o
[0006] また、近年では半導体装置の微細化に伴 、、ゲート絶縁膜の薄膜ィ匕が進んでおり
、特に 65nmノード以降では、膜厚が数 nm以下の薄いゲート絶縁膜が要求されるた め、従来の熱酸化処理やプラズマ酸化処理では満足できる膜質のシリコン酸化膜を 得ることは困難になって 、る。
[0007] 従って本発明の目的は、薄膜ィ匕しても、半導体装置に優れた電気的特性を付与で きる良質な絶縁膜を形成可能な絶縁膜の製造方法を提供することにある。
[0008] 上記課題を解決するため、本発明の第 1の観点は、プラズマ処理装置の処理室内 で、被処理体表面のシリコンに酸素含有プラズマを作用させてシリコン酸ィ匕膜を形成 する酸化処理工程を含み、
前記酸ィ匕処理工程における処理温度は 600°C超 1000°C以下であり、 前記酸素含有プラズマは、少なくとも希ガスと酸素ガスとを含む酸素含有処理ガス を前記処理室内に導入するとともに、アンテナを介して該処理室内に高周波または マイクロ波を導入することによって形成される前記酸素含有処理ガスのプラズマであ る、絶縁膜の製造方法を提供する。
[0009] 上記第 1の観点の絶縁膜の製造方法において、前記酸化処理工程では、前記処 理室内のプラズマ発生領域と前記被処理体との間に、複数の貫通開口を有する誘 電体プレートを介在させて処理を行なうことが好ましい。
また、前記貫通開口の孔径が 2. 5〜12mmであり、前記誘電体プレート上の前記 基板に対応する領域内で、前記基板の面積に対する前記貫通開口の合計の開口面 積比率が 10〜50%であることが好ましい。
また、前記酸ィ匕処理工程における処理圧力力 1. 33Pa〜1333Paであることが好 ましい。
また、前記シリコン酸ィ匕膜の膜厚力 0. 2〜: LOnmであることが好ましい。
[0010] 本発明の第 2の観点は、プラズマ処理装置の処理室内で、被処理体表面のシリコ ンに酸素含有プラズマを作用させてシリコン酸化膜を形成する酸化処理工程と、 前記酸ィ匕処理工程で形成された前記シリコン酸ィ匕膜に窒素含有プラズマを作用さ せてシリコン酸窒化膜を形成する窒化処理工程と、 を含み、
前記酸ィ匕処理工程における処理温度は 600°C超 1000°C以下であり、 前記酸素含有プラズマは、少なくとも希ガスと酸素ガスとを含む酸素含有処理ガス を前記処理室内に導入するとともに、アンテナを介して該処理室内に高周波または マイクロ波を導入することによって形成される前記酸素含有処理ガスのプラズマであ る、絶縁膜の製造方法を提供する。
[0011] 上記第 2の観点の絶縁膜の製造方法において、前記窒素含有プラズマは、少なく とも希ガスと窒素ガスとを含む窒素含有処理ガスを処理室内に導入するとともに、ァ ンテナを介して該処理室内に高周波またはマイクロ波を導入することによって形成さ れる前記窒素含有処理ガスのプラズマであることが好ましい。
また、前記酸ィ匕処理工程と前記窒化処理工程を同一の処理室内で行ってもよぐ あるいは前記酸ィ匕処理工程と前記窒化処理工程を、真空排気可能な状態で連結さ れた別々の処理室内で行なってもよ!/、。
また、前記酸化処理工程では、前記処理室内のプラズマ発生領域と前記被処理体 との間に、複数の貫通開口を有する誘電体プレートを介在させて処理を行なうことが 好ましい。
また、前記貫通開口の孔径が 2. 5〜12mmであり、前記誘電体プレート上の前記 基板に対応する領域内で、前記基板の面積に対する前記貫通開口の合計の開口面 積比率が 10〜50%であることが好ましい。
また、前記酸ィ匕処理工程における処理圧力力 1. 33Pa〜1333Paであることが好 ましい。また、前記シリコン酸ィ匕膜の膜厚力 0. 2〜: LOnmであることが好ましい。
[0012] 本発明の第 3の観点は、コンピュータ上で動作し、実行時に、プラズマ処理装置の 処理室内で、被処理体表面のシリコンに酸素含有プラズマを作用させてシリコン酸ィ匕 膜を形成する酸ィヒ処理が行なわれるように前記プラズマ処理装置を制御する制御プ ログラムであり、
前記酸ィ匕処理における処理温度は 600°C超 1000°C以下であり、
前記酸素含有プラズマは、少なくとも希ガスと酸素ガスとを含む酸素含有処理ガス を前記処理室内に導入するとともに、アンテナを介して該処理室内に高周波または マイクロ波を導入することによって形成される前記酸素含有処理ガスのプラズマであ る、制御プログラムを提供する。
[0013] 本発明の第 4の観点は、コンピュータ上で動作する制御プログラムが記憶されたコ ンピュータ読取り可能な記憶媒体であって、
前記制御プログラムは、実行時に、プラズマ処理装置の処理室内で、被処理体表 面のシリコンに酸素含有プラズマを作用させてシリコン酸化膜を形成する酸化処理が 行なわれるように前記プラズマ処理装置を制御する制御プログラムであり、
前記酸ィ匕処理における処理温度は 600°C超 1000°C以下であり、
前記酸素含有プラズマは、少なくとも希ガスと酸素ガスとを含む酸素含有処理ガス を前記処理室内に導入するとともに、アンテナを介して該処理室内に高周波または マイクロ波を導入することによって形成される前記酸素含有処理ガスのプラズマであ る、コンピュータ読取り可能な記憶媒体を提供する。
[0014] 本発明の第 5の観点は、プラズマを発生させるプラズマ生成手段と、
前記プラズマにより、被処理体を処理するための真空排気可能な処理容器と、 前記処理容器内で前記被処理体を載置する基板支持台と、
処理温度が 600°C超 1000°C以下であり、少なくとも希ガスと酸素ガスとを含む酸素 含有処理ガスを前記処理室内に導入するとともに、アンテナを介して該処理室内に 高周波またはマイクロ波を導入することによって形成される前記酸素含有プラズマを 用いて被処理体を酸化処理する酸化処理工程が行なわれるように制御する制御部と を備えた、プラズマ処理装置を提供する。
[0015] 本発明の第 6の観点は、上記第 1の観点の絶縁膜の製造方法により製造された絶 縁膜上に、ゲート電極を形成する工程を含むことを特徴とする、半導体装置の製造 方法を提供する。
[0016] 本発明の第 7の観点は、上記第 2の観点の絶縁膜の製造方法により製造された絶 縁膜上に、ゲート電極を形成する工程を含むことを特徴とする、半導体装置の製造 方法を提供する。
[0017] 本発明によれば、アンテナにより処理室内に導入されるマイクロ波と、少なくとも希 ガスと酸素ガスとを含む処理ガスと、によって形成される酸素含有プラズマを用い、 6 00°C超 1000°C以下の高温で酸化処理を行なうことによって、プラズマダメージを極 力防ぎつつ、良質なシリコン酸ィ匕膜を形成することが可能となる。さらに、このシリコン 酸ィ匕膜を、必要に応じて窒化処理して得られるシリコン酸窒化膜を例えばゲート絶縁 膜などの絶縁膜として用いることにより、トランジスタなどの半導体装置の電気的特性 を向上させることができる。
すなわち、本発明方法により製造される絶縁膜を用いることにより、電流駆動特性 に優れた半導体装置を得ることができる。特にゲート絶縁膜として、 lnm以下の薄膜 に形成する場合にも、緻密でトラップが少ない理想的な酸ィ匕膜を形成できるため、ト ンネル電流の増加を抑制しつつ、熱酸ィ匕膜を使用した場合に比べて駆動電流を大 幅に増加させ得るので、半導体装置の性能向上を図ることが可能である。
図面の簡単な説明
[図 1]本発明の実施に好適に使用可能な半導体製造装置の一例を示す概略図であ る。
[図 2]プラズマ酸化処理に利用可能なプラズマ処理装置の一例を示す概略断面図で ある。
[図 3A]プレートの説明に供する平面図である。
[図 3B]プレートの説明に供する要部断面図である。
[図 4]平面アンテナ部材の説明に供する図面である。
[図 5A]ゲート絶縁膜の形成過程を示すウェハ Wの断面構造の模式図であり、プラズ マ酸化処理をして!/ヽる状態を示す。
[図 5B]ゲート絶縁膜の形成過程を示すウェハ Wの断面構造の模式図であり、プラズ マ酸化処理後の状態を示す。
[図 5C]ゲート絶縁膜の形成過程を示すウェハ Wの断面構造の模式図であり、プラズ マ窒化処理をして!/ヽる状態を示す。
[図 5D]ゲート絶縁膜の形成過程を示すウェハ Wの断面構造の模式図であり、プラズ マ窒化処理後の状態を示す。
[図 6]プラズマ窒化処理に利用可能なプラズマ処理装置の一例を示す概略断面図で ある。
[図 7A]トランジスタのゲート電極構造を示す模式図であり、タングステンポリサイド構 造を示す。
[図 7B]トランジスタのゲート電極構造を示す模式図であり、タングステンポリメタル構 造を示す。
[図 7C]トランジスタのゲート電極構造を示す模式図であり、タングステンメタルゲート 構造を示す。
[図 8]トランジスタの Gm曲線を示すグラフである。
[図 9]トランジスタの I —Jgプロットを示すグラフである。
on
[図 10]酸化処理時間と膜厚との関係を示すグラフである。
[図 11]図 10を部分的に拡大した図面である。
[図 12]ランニング試験の結果を示すグラフである。
[図 13]エッチング耐性試験の結果を示すグラフである。
[図 14]界面ラフネスの測定結果を示すグラフである。
[図 15]膜密度の測定結果を示すグラフである。
[図 16]NMOSトランジスタにおける電気的膜厚 (EOT)と I との関係を示すグラフで
on
ある。
[図 17]NMOSトランジスタにおける電気的膜厚 (EOT)と Gmの最大値との関係を示 すグラフである。
発明を実施するための最良の形態
以下、適宜添付図面を参照して本発明の実施の形態について具体的に説明する 。図 1は本発明のゲート絶縁膜の製造方法を実施するための半導体製造装置 200の 概略構成を示す模式図である。この半導体製造装置 200のほぼ中央には、半導体ゥ ェハ(以下、単に「ウェハ」と記す) Wを搬送するための搬送室 131が配設されており 、この搬送室 131の周囲を取り囲むように、ウェハ Wに種々の処理を行なうプラズマ 処理ユニットとしてのプラズマ処理装置 100および 101、各処理室間の連通 Z遮断 の操作を行なうゲートバルブ(図示を省略)、搬送室 131と大気搬送室 140との間で ウェハ Wの受渡しを行う二基のロードロックユニット 134および 135、ウェハ Wに加熱 操作 (ァニール)を行なうための加熱ユニット 136が配設されて 、る。
[0020] ロードロックユニット 134、 135の横には、種々の予備冷却ないし冷却操作を行なう ための予備冷却ユニット 145、冷却ユニット 146がそれぞれ配設されている。なお、口 一ドロツクユニット 134、 135を冷却ユニットとして使用する場合には、予備冷却ュ-ッ ト 145、冷去 Pユニット 146は設けなくてもよい。
[0021] 搬送室 131の内部には、搬送アーム 137および 138が配設されており、前記各ュ ニットとの間でウェハ Wを搬送することができる。
[0022] ロードロックユニット 134および 135に接続して、搬送手段 141および 142が配備さ れた大気搬送室 140が設けられて 、る。この大気搬送室 140はダウンフローのタリー ンなエアーによりクリーンな環境が維持された状態にある。大気搬送室 140には、力 セットユニット 143が接続されており、搬送手段 141および 142により、カセットュ-ッ ト 143上にセットされた 4台のカセット 144との間でウェハ Wの出し入れをすることがで きる。また、大気搬送室 140に隣接してァライメントチャンバ一 147が設けられており 、ここでウェハ Wのァライメントが行なわれる。また、半導体製造装置 200の各構成部 は、 CPUを備えたプロセスコントローラ 50により制御される構成となっている。
[0023] なお、図 1の半導体製造装置 200では、例えば、プラズマ処理装置 100で SiO膜
2 を形成した後、真空状態で連結されたプラズマ処理装置 101へ搬送し、そこで SiO
2 膜を表面窒化することが可能であり、またプラズマ処理装置 100およびプラズマ処理 装置 101でそれぞれ別々に SiO膜形成と該 SiO膜への窒化処理までを同一装置
2 2
内で連続して行ってもよい。
[0024] 図 2は、プラズマ処理装置 100の一例を模式的に示す断面図である。このプラズマ 処理装置 100は、複数のスロットを有する平面アンテナ、特に RLSA (Radial Line Slo t Antenna;ラジアルラインスロットアンテナ)にて処理室内にマイクロ波を導入してプラ ズマを発生させることにより、高密度かつ低電子温度のマイクロ波プラズマを発生さ せ得る RLSAマイクロ波プラズマ処理装置として構成されており、例えば、 MOSトラ ンジスタ、 MOSFET (電界効果型トランジスタ)などの各種半導体装置の製造過程 におけるゲート絶縁膜の形成などの目的で好適に利用可能なものである。
[0025] 上記プラズマ処理装置 100は、気密に構成され、接地された略円筒状のチャンバ 一 1を有している。チャンバ一 1の底壁 laの略中央部には円形の開口部 10が形成さ れており、底壁 laにはこの開口部 10と連通し、下方に向けて突出する排気室 11が 設けられている。
[0026] チャンバ一 1内には被処理体であるウェハ Wを水平に支持するための A1N等のセ ラミックス力もなるサセプタ 2が設けられている。このサセプタ 2は、排気室 11の底部 中央から上方に延びる円筒状の A1N等のセラミックス力 なる支持部材 3により支持 されて!/、る。サセプタ 2の外縁部にはウェハ Wをガイドするためのガイドリング 4が設け られている。また、サセプタ 2には抵抗加熱型のヒータ 5が埋め込まれており、このヒー タ 5はヒータ電源 6から給電されることによりサセプタ 2を加熱して、その熱で被処理体 であるウェハ Wを加熱する。このとき、例えば室温から 1000°Cまでの範囲で温度制 御可能となっている。なお、チャンバ一 1の内周には、石英力もなる円筒状のライナー 7が設けられている。また、サセプタ 2の外周側には、チャンバ一 1内を均一排気する ため、多数の排気孔 8aを有するバッフルプレート 8が環状に設けられ、このバッフル プレート 8は、複数の支柱 9により支持されている。
[0027] サセプタ 2には、ウェハ Wを支持して昇降させるためのウェハ支持ピン(図示せず) がサセプタ 2の表面に対して突没可能に設けられている。
[0028] サセプタ 2の上方には、プラズマ中の活性種 (イオン、ラジカルなど)のエネルギー を減衰させて通過させるための複数の貫通孔を有するプレート 60が配備されている 。このプレート 60は、例えば石英や、サフアイャ、 SiN、 SiC、 Al O
2 3、 A1N等のセラミ ッタスの誘電体や、シリコン単結晶、ポリシリコン、アモルファスシリコン等により構成す ることができる。なお、本実施形態では石英を使用している。そして、プレート 60は、 その外周部が、チャンバ一 1内のライナー 7から内側に向けて全周にわたって突起し た支持部 70と係合することにより支持されている。なお、このプレート 60は、プラズマ 中の活性種のエネルギーを減衰させるように作用するものである力 形成する酸ィ匕膜 の膜厚が 5nmを超える場合などには配備しなくてもよい。
[0029] プレート 60の取付け位置は、ウェハ Wに近接した位置が好ましぐプレート 60の下 端とウェハ Wとの距離は、例えば 3〜20mmが好ましぐ 10mm程度とすることがより 好ましい。この場合、プレート 60の上端と透過板 28 (後述)の下端との距離は、例え ば 20〜50mmが好まし!、。
[0030] プレート 60には、複数の貫通孔 60aが形成されている。図 3A,図 3Bは、プレート 6 0の詳細を示す図面である。図 3Aは、プレート 60を上から見た状態を示しており、図 3Bは、プレート 60の要部断面を示している。
[0031] プレート 60の貫通孔 60aは、図 3A中、破線で示すウェハ Wの載置領域に対して貫 通孔 60aの配設領域が若干大きくなるように略均等に配置されている。具体的には、 例えば図 3Aでは、 300mm径のウェハ Wに対して貫通孔 60aの配置領域の外延を 結ぶ円の直径に相当する長さ L力 ウェハ Wの周縁より、略 5〜30mm外側に拡大し て貫通孔 60aが配設されている。なお、貫通孔 60aをプレート 60の全面に配設するこ とちでさる。
[0032] 貫通孔 60aの径 Dは、任意に設定することが可能であり、例えば、 2. 5mm、 5mm または 10mm程度に設定されている。プレート 60内で貫通孔 60aの位置により孔の 大きさを変化させてもよぐまた、貫通孔 60aの配置も、例えば同心円状、放射状、螺 旋状等の任意の配列を選択できる。なお、プレート 60の厚さ(T )は、例えば 2〜20 mm程度が好ましぐ 3〜8mm程度に設定することがより好ましい。
[0033] このプレート 60は、プラズマ中のイオンなどの活性種のエネルギーを減衰させるェ ネルギー減衰手段として作用するものである。
すなわち、誘電体のプレート 60を配備することにより、主にプラズマ中のラジカルを 通過させ、エネルギーの大きなイオン例えば Arイオンや Nイオンなどのエネルギーを 減衰させることが可能になる。この目的の為には、後述するように、プレート 60の貫通 孔 60aの開口面積、貫通孔 60aの径 D さらには貫通孔 60aの形状や配置、プレート 60の厚さ T (つまり、壁 60bの高さ)、プレート 60の設置位置(ウェハ Wからの距離) などを総合的に考慮することが好ましい。その一例として、貫通孔 60aの孔径を 2. 5 〜 12mmとした場合、プレート 60上のウェハ Wに対応する領域内で、ウェハ Wの面 積に対する貫通孔 60aの合計の開口面積比率が 10〜50%となるようにすることが好 ましい。
[0034] チャンバ一 1の側壁には環状をなすガス導入部材 15が設けられており、このガス導 入部材 15にはガス供給系 16が接続されている。なお、ガス導入部材はシャワー状に 配置してもよい。このガス供給系 16は、例えば Arガス供給源 17、 Oガス供給源 18
2
を有しており、これらガスが、それぞれガスライン 20を介してガス導入部材 15に至り、 ガス導入部材 15からチャンバ一 1内に導入される。ガスライン 20の各々には、マスフ ローコントローラ 21およびその前後の開閉バルブ 22が設けられている。なお、前記 A rガスに代えて、 Kr、 Xe、 Heなどの希ガスを用いることもできる。
[0035] 上記排気室 11の側面には排気管 23が接続されており、この排気管 23には高速真 空ポンプを含む排気装置 24が接続されて 、る。そしてこの排気装置 24を作動させる ことによりチャンバ一 1内のガス力 排気室 11の空間 11a内へ均一に排出され、排気 管 23を介して排気される。これによりチャンバ一 1内は所定の真空度、例えば 0. 133 Paまで高速に減圧することが可能となって 、る。
[0036] チャンバ一 1の側壁には、プラズマ処理装置 100に隣接する搬送室(図示せず)と の間でウェハ Wの搬入出を行なうための搬入出口 25と、この搬入出口 25を開閉する ゲートバルブ 26とが設けられて!/、る。
[0037] チャンバ一 1の上部は開口部となっており、この開口部の周縁部に沿ってリング状 の支持部 27が設けられており、この支持部 27に誘電体、例えば石英や Al O
2 3、 A1N 等のセラミックス力もなり、マイクロ波を透過する透過板 28がシール部材 29を介して 気密に設けられている。したがって、チャンバ一 1内は気密に保持される。
[0038] 透過板 28の上方には、サセプタ 2と対向するように、円板状の平面アンテナ部材 3 1が設けられて 、る。この平面アンテナ部材 31はチャンバ一 1の側壁上端に係止され ている。平面アンテナ部材 31は、例えば表面が金または銀メツキされた銅板またはァ ルミ-ゥム板などの導電性材料力もなり、マイクロ波を放射するための多数のスロット 孔 32が所定のパターンで貫通して形成された構成となっている。スロット孔 32は、例 えば図 4に示すように長溝状をなし、典型的には隣接するスロット孔 32同士力 ^丁」字 状に配置され、これら複数のスロット孔 32が同心円状に配置されている。スロット孔 3 2の長さや配列間隔は、マイクロ波の波長( λ g)に応じて決定され、例えばスロット孔 32の間隔は、 gZ4、 gZ2またはえ gとなるように配置される。なお、図 4におい て、同心円状に形成された隣接するスロット孔 32同士の間隔を Arで示している。ま た、スロット孔 32は、円形状、円弧状等の他の形状であってもよい。さらに、スロット孔 32の配置形態は特に限定されず、同心円状のほか、例えば、螺旋状、放射状に配 置することちでさる。
[0039] この平面アンテナ部材 31の上面には、真空よりも大きい誘電率を有する遅波材 33 が設けられている。この遅波材 33は、例えば石英や Al O
2 3、 A1N等のセラミックス、ポ リテトラフルォロエチレン等のフッ素系榭脂ゃポリイミド系榭脂により構成されており、 真空中ではマイクロ波の波長が長くなることから、マイクロ波の波長を短くしてプラズ マを調整する機能を有している。なお、平面アンテナ部材 31と透過板 28との間、また 、遅波材 33と平面アンテナ部材 31との間は、それぞれ密着させても離間させてもよ い。
[0040] チャンバ一 1の上面には、これら平面アンテナ部材 31および遅波材 33を覆うように 、例えばアルミニウムやステンレス鋼等の金属材カ なるシールド蓋体 34が設けられ ている。また、シールド蓋体 34は、導波路の一部として機能し、マイクロ波を均一に 伝搬させる。チャンバ一 1の上面とシールド蓋体 34とはシール部材 35によりシールさ れている。シールド蓋体 34には、冷却水流路 34aが形成されており、そこに冷却水を 通流させることにより、シールド蓋体 34、遅波材 33、平面アンテナ部材 31、透過板 2 8を冷却するようになっている。なお、シールド蓋体 34は接地されている。
[0041] シールド蓋体 34の上壁の中央には、開口部 36が形成されており、この開口部には 導波管 37が接続されている。この導波管 37の端部には、マッチング回路 38を介して マイクロ波発生装置 39が接続されている。これにより、マイクロ波発生装置 39で発生 した、例えば周波数 2. 45GHzのマイクロ波が導波管 37を介して上記平面アンテナ 部材 31へ伝搬されるようになっている。マイクロ波の周波数としては、 8. 35GHz, 1 . 98GHz等を用いることもできる。
[0042] 導波管 37は、上記シールド蓋体 34の開口部 36から上方へ延出する断面円形状 の同軸導波管 37aと、この同軸導波管 37aの上端部にモード変換器 40を介して接続 された水平方向に延びる矩形導波管 37bとを有している。矩形導波管 37bと同軸導 波管 37aとの間のモード変翻 40は、矩形導波管 37b内を TEモードで伝播するマ イク口波を TEMモードに変換する機能を有している。同軸導波管 37aの中心には内 導体 41が延在しており、内導体 41は、その下端部において平面アンテナ部材 31の 中心に接続固定されている。これにより、マイクロ波は、同軸導波管 37aの内導体 41 を介して平面アンテナ部材 31へ放射状に効率よく均一に伝播される。
[0043] プラズマ処理装置 100の各構成部は、 CPUを備えたプロセスコントローラ 50に接 続されて制御される構成となっている。プロセスコントローラ 50には、工程管理者がプ ラズマ処理装置 100を管理するためにコマンドの入力操作等を行なうキーボードや、 プラズマ処理装置 100の稼働状況を可視化して表示するディスプレイ等力もなるュ 一ザ一インターフェース 51が接続されて!、る。
[0044] また、プロセスコントローラ 50には、プラズマ処理装置 100で実行される各種処理を プロセスコントローラ 50の制御にて実現するための制御プログラム(ソフトウェア)や 処理条件データ等が記録されたレシピが格納された記憶部 52が接続されている。
[0045] そして、必要に応じて、ユーザーインターフェース 51からの指示等にて任意のレシ ピを記憶部 52から呼び出してプロセスコントローラ 50に実行させることで、プロセスコ ントローラ 50の制御下で、プラズマ処理装置 100での所望の処理が行われる。また、 前記制御プログラムや処理条件データ等のレシピは、コンピュータ読み取り可能な記 憶媒体、例えば CD— ROM、ハードディスク、フレキシブルディスク、フラッシュメモリ などに格納された状態のものを利用したり、あるいは、他の装置から、例えば専用回 線を介して随時伝送させてオンラインで利用したりすることも可能である。
[0046] このように構成された RLSA方式のプラズマ処理装置 100においては、例えば図 5 A,図 5Bに示す手順でウェハ Wのシリコン層 111を酸化してシリコン酸化膜 113を形 成する処理を行なうことができる。また、さらに、図 5C,図 5Dに示すように、形成され たシリコン酸ィ匕膜 113の表面をさらに窒化処理して、シリコン酸窒化膜を有するゲート 絶縁膜 114を形成することもできる。
[0047] まず、シリコン酸ィ匕膜の形成では、ゲートバルブ 26を開にして搬入出口 25からシリ コン層を有するウェハ Wをチャンバ一 1内に搬入し、サセプタ 2上に載置する。そして 、ガス供給系 16の Arガス供給源 17および Oガス供給源 18から、 Arガス、 Oガスを
2 2 所定の流量でガス導入部材 15を介してチャンバ一 1内に導入する。
[0048] 具体的には、例えば Arなどの希ガス流量を 200〜3000mLZmin(sccm)、 Oガ
2 ス流量を l〜600mLZmin (sccm)に設定し、チャンバ一内を 1. 33〜1333Pa (10 mTorr〜: LOTorr)、好ましくは 26. 6〜400Pa (200mTorr〜3Torr)の処理圧力に 調整し、ウェハ Wの温度を 600°C超 1000°C以下、好ましくは 700°C超 1000°C以下 、より好ましくは 700°C超 900°C以下に加熱する。この際、 Arと Oとの流量比は 200
2
0: 1〜5: 1程度とすることが好まし!/、。
[0049] 次に、マイクロ波発生装置 39からのマイクロ波を、マッチング回路 38を経て導波管 37に導き、矩形導波管 37b、モード変換器 40、および同軸導波管 37aを順次伝搬さ せて平面アンテナ部材 31に供給し、平面アンテナ部材 31のスロットから透過板 28を 介してチャンバ一 1内に放射させる。マイクロ波は、矩形導波管 37b内では TEモード で伝搬し、この TEモードのマイクロ波はモード変^ ^40で TEMモードに変換されて 、同軸導波管 37a内を平面アンテナ部材 31に向けて伝搬されていく。平面アンテナ 部材 31から透過板 28を経てチャンバ一 1に放射されたマイクロ波によりチャンバ一 1 内で電磁界が形成され、 Arガスと Oガスがプラズマ化する。この酸素含有プラズマ
2
により、図 5Aに示すようにウェハ Wのシリコン層 111を処理する。この際、マイクロ波 発生装置 39のパワーは、 0. 5〜5kWとすることが好ましぐ l〜3kWとすることがより 好ましい。
[0050] このマイクロ波プラズマは、マイクロ波が平面アンテナ部材 31の多数のスロット孔 32 力も放射されることにより、略 1 X 101(>〜5 X 1012Zcm3の高密度で、かつウェハ W近 傍では、略 1. 5eV以下の低電子温度プラズマとなる。このようにして形成されるマイ クロ波プラズマは、イオン等によるプラズマダメージが少ないものである力 プレート 6 0を設けたことにより、プレート 60の上に形成されるプラズマがウェハ W側へ通過する 際に、プラズマ中の活性種 (イオン等)のエネルギーを減衰せしめ、プレート 60の下 方側では電子温度が leV以下、ウェハ Wの近傍では 0. 7eV以下のマイルドなプラ ズマが生成されることとなり、プラズマダメージをよりいっそう低減することができる。そ して、プラズマ中の活性種、主として酸素ラジカル (O*)などの作用によってシリコン 中に酸素が導入されて Si— O結合が形成され、図 5Bに示すように、緻密でトラップの 少ない良質なシリコン酸ィ匕膜 113が成膜される。このように、プラズマ処理装置 100を 用い、 600°C超の温度でプラズマ処理を行なうことにより、 0. 2〜: LOnmの膜厚範囲 で緻密で良質なシリコン酸ィ匕膜 (ゲート絶縁膜)を形成することが可能であり、好ましく は、 0. 5〜2. Onm、より好ましくは 0. 8〜1. 2nmの薄い膜厚での形成が可能である
[0051] ここで、プラズマ処理装置 100で行われるプラズマ酸ィ匕処理のより具体的な手順に ついて説明する。まず、ウエノ、 Wをチャンバ一 1内に搬入した後、第 1のステップとし て、ウェハ支持ピン (不図示)を上昇させ、サセプタ 2から突出させた状態でウェハ W を支持しながら、プレヒートを実施する。このプレヒートは、チャンバ一 1内の圧力を例 えば 266. 6Pa (2Torr)とし、 Arガス供給源 17から Arガスを 2000mLZmin(sccm )の流量で導入しながら約 20秒程度実施する。
[0052] 次に、第 2ステップでは、ウェハ支持ピン (不図示)を下降させてウェハ Wをサセプ タ 2に載置し、 Arガスを 2000mLZmin (sccm)の流量で導入しながらチャンバ一 1 内を引き切り状態とし、約 70秒間かけて、さらにプレヒートを続ける。以上の第 1ステツ プおよび第 2ステップのプレヒート処理を行うことにより、例えば 800°Cの高温でゥェ ハ Wを処理する際に、急激な昇温によってウェハ Wに歪みが生じることを防止できる 。プレヒート処理は、処理温度と同じ温度に達するまで行なうことが好ましい。
[0053] 第 3ステップでは、 Arガスの流量を維持したまま Oガス供給源 18より Oガスを 10m
2 2
LZmin(sccm)の流量で導入し、チャンバ一 1内の圧力を 67. 7Pa (500mTorr)に 調節する。この状態で約 20秒間維持することにより、ガス流量を安定化させる。
[0054] 次に、第 4ステップでは、圧力およびガス流量を維持したまま、マイクロ波発生装置 39により、例えば出力 2kWでマイクロ波を発生させ、前記のようにマッチング回路 38 、導波管 37および平面アンテナ部材 31等を介してチャンバ一 1内に導入することに よりプラズマを励起させ、例えば 10〜50秒間程度の時間でウェハ Wに対してプラズ マ酸化処理を実施する。
[0055] 第 5ステップでは、マイクロ波を停止し、圧力およびガス流量を約 3秒間程度維持し た状態でプラズマの終了処理を行う。以上の第 1〜第 5のステップの処理を実施する ことにより、 1枚のウェハ Wに対して、プラズマ処理装置 100におけるプラズマ酸化処 理が完了する。
[0056] 本発明にお 、ては、以上のようにして形成された良質なシリコン酸ィ匕膜 113を半導 体素子のゲート絶縁膜として使用することが可能である。また、ゲート絶縁膜 114とし て使用する場合に、シリコン酸ィ匕膜 113を窒化処理してシリコン酸ィ匕膜 113の表面側 にシリコン窒化膜を形成することも可能である。窒化処理は、同一チャンバ一内、つ まり図 2のプラズマ処理装置 100内に、引き続き窒素含有ガスを導入して実施するこ とも可能である力 チャンバ一 1内が酸ィ匕雰囲気にあると、窒化処理に影響を与える ことがあるので、別チャンバ一にウエノ、 Wを移して行なうことが好ましい。別チャンバ 一での窒化処理の際には、例えば図 6に示すプラズマ処理装置 101を用いることが できる。このプラズマ処理装置 101は、 RLS A方式のプラズマ処理装置であり、ガス 供給系を除けば基本的な構成は図 2のプラズマ処理装置 100と同様であるため、同 一の構成には同一の符号を付して説明を省略する。
[0057] 図 6のプラズマ処理装置 101では、 Nガス供給源 19を備えており、ここから Nガス
2 2 を供給できるように構成されている。窒化処理における処理ガスとしては、 Nガスに
2 代えて、例えば NHガス、 Nと Hとの混合ガスなどを用いることもできる。また、 Arガ
3 2 2
スに代えて、 Kr、 Xe、 Heなどの希ガスを用いることもできる。
[0058] プラズマ処理装置 101を用いる窒化処理の条件は特に限定されるものではなぐ例 ぇばArなどの希ガス流量を100〜3000mLZmin (sccm)、Nガス流量を 10〜: L0
2
OOmLZmin (sccm)に設定し、チャンバ一内を 1. 3〜1333Pa (10mTorr〜: LOTo rr)の処理圧力に調整し、ウェハ Wの温度を 300〜500°Cに加熱する。また、マイクロ 波発生装置 39のパワーは、 0. 5〜5kWとすることが好ましい。
[0059] 以上のような条件で、図 5Cに示すようにプラズマ窒化処理を行うことによって、シリ コン酸ィ匕膜 113の表面付近にシリコン窒化膜 (SiON膜)を形成することができる。
[0060] なお、図 6のプラズマ処理装置 101においても、プレート 60を配設せずに窒化処理 を行なうことができる力 プラズマ中の窒素イオンのエネルギーを減衰させるため、貫 通孔 60aを有するプレート 60を用いることが好ましい。これにより、プラズマダメージを 抑帘 Uすることができる。
[0061] 以上の窒化処理では、ゲート絶縁膜 114を含むトランジスタにおいてリーク電流を 抑制する観点から、形成される SiON膜中の N濃度を 1〜25%にすることが好ましぐ 5〜15%がより好ましぐ 8〜12%が望ましい。さらに、本実施形態ではプラズマ窒化 処理の際に、窒素濃度分布をゲート酸化膜の表面側に高濃度で均一に分布させ、 シリコン基板との界面付近には窒素が分布しない SiON膜を形成する制御が可能で ある。
[0062] 窒化処理の後は、必要によりァニール処理を行なうことができる。この窒化後ァニー ル処理は、例えば RTP (Rapid Thermal Process)装置等を用い、低酸素分圧または N 、 Arなどの不活性ガス雰囲気で、圧力 133. 3Pa (lTorr)、ウェハ W温度 1000
2
°C以上で、 10〜30秒間程度の短時間加熱をすることによって実施できる。これにより
、シリコン基板と絶縁膜との界面をスムーズにできるとともに、絶縁膜の膜質を向上さ せ、さらに窒素抜けを抑制して安定な絶縁膜が形成される。
以上のような各工程を実施することにより、ゲート絶縁膜 114を製造できる [図 5D]。
[0063] 本発明方法は、 MOSトランジスタなどの半導体装置の製造過程で使用することが でき、例えば図 7A〜図 7Cに示すようなゲート電極構造を有する半導体装置の製造 に適用することができる。なお、図 7A〜図 7Cにおいては、素子分離領域、ゲート電 極側壁の酸化膜、サイドウォールなどは図示を省略して 、る。
[0064] 図 7Aおよび図 7Bは、ポリメタルゲートを有する半導体装置の例である。図 7Aは、 S i基板 111上に本発明方法により、シリコン酸ィ匕膜 (SiO膜)またはシリコン酸窒化膜(
2
SiON膜)のゲート絶縁膜 114が形成され、さらにゲート電極としてポリシリコン層 115 およびタングステンシリサイド (WSi)層 116を積層したタングステンポリサイド構造で ある。図 7Bは、本発明方法により Si基板 111上に SiO膜または SiON膜のゲート絶
2
縁膜 114が形成され、さらにゲート電極としてポリシリコン層 115、タングステンナイト ライド (WN)などのバリア層 118およびタングステン層 119を積層したタングステンポ リメタル構造である。図 7Cは、 Si基板 111上に SiO膜または SiON膜のゲート絶縁
2
膜 114が形成され、その上にタングステンナイトライド (WN)などのバリア層 118、タン ダステン層 119を積層したタングステンメタルゲート構造である。
[0065] なお、図 7Aでは、金属シリサイド層としてタングステンシリサイド層 116を、また図 7 B,図 7Cでは、金属層としてタングステン層 119を挙げた力 金属シリサイド層や金 属層の構成金属としては、例えば銅、白金、チタン、 Mo、 Ni、 Coなどの他の金属で あってもよい。
[0066] 次に、図 7Bに示すゲート電極構造を例に挙げ、その作製手順を示すと、まず、 DH F (希フッ酸)洗浄して清浄面を有する Si基板 111に、 P +または N +をドープしてゥ エル領域 (拡散領域)を形成し、次 、で図 2に示すプラズマ処理装置 100を用いて、 前述の条件に従 、700°C超の温度でプラズマ酸ィ匕処理して Si基板表面に SiO膜を
2 形成し、好ましくはその後、図 6に示すプラズマ処理装置 101を用いて前記条件で Si O膜表面をプラズマ窒化処理して SiON膜を形成し、必要に応じて窒素などの不活
2
性雰囲気下、 1000°C程度の温度でァニールをしてゲート絶縁膜 114を作製する。
[0067] 次に、ゲート絶縁膜 114上に、例えば CVDによりポリシリコン層 115を成膜し、その 上にノ リア層 118を成膜し、さらに高融点電極材料であるタングステンによりタンダス テン層 119を形成する。タングステン層 119の形成には、例えば CVD法ゃスパッタ 法が利用できる。なお、この例では、ノ リア層 118としてタングステンナイトライドを用 いている。
[0068] タングステン層 119の上には、窒化シリコンなどのハードマスク層(図示せず)を形 成し、さらにフォトレジスト膜 (図示せず)を形成しておく。そして、フォトリソグラフィー 技術によりフォトレジスト膜をマスクとしてハードマスク層をエッチングし、さらにフオトレ ジスト膜 +ハードマスク層、またはハードマスク層をマスクとしてタングステン層 119、 ノ リア層 118、ポリシリコン層 115を順次エッチングする。この間、必要なタイミングで アツシングゃ洗浄を行ない、最後にサイドウォール (不図示)を形成することによって ゲート電極が形成される。このようにして形成されたゲート電極を用いることにより、リ ーク電流が小さぐ駆動電流が大きな良質なトランジスタを製造することができる。
[0069] 次に、本発明の効果を確認した試験結果について、図 8および図 9を参照しながら 説明を行なう。
[0070] 実施例 1
(本発明の高温プラズマ酸ィ匕処理による酸ィ匕膜; 800°C)
プラズマ処理装置 100を用い、 Si基板 111を高温プラズマ酸ィ匕処理して酸ィ匕膜を 形成し、膜厚 1. Onmのゲート絶縁膜 114を形成した (窒化処理は行なっていない)。 この本発明方法により形成したゲート絶縁膜 114を用い、図 7Aと同様の構造のゲー ト電極を形成してトランジスタを製造した。
[0071] 酸化処理工程におけるプラズマ処理の条件は、プレート 60として、貫通孔 60aの直 径が 2. 5mmのものを用い、処理ガスとして Ar/Oを用い、流量 2000ZlO[mLZ
2
min(sccm) ]とし、ウェハ温度は 800°C、圧力は 66. 7Pa(500mTorr)とし、プラズ マへの供給パワーは 2. OkW、処理時間 7秒で行なった。
[0072] 比較例 1
(低温プラズマ酸ィ匕処理による酸ィ匕膜; 400°C)
酸化処理工程の温度を 400°Cとした以外は、実施例 1と同様にして成膜した膜厚 1
. Onmの酸ィ匕膜をゲート絶縁膜 114として用い、実施例 1と同様にしてゲート電極を 形成し、トランジスタを製造した。
[0073] 比較例 2
(WVG熱酸化処理による酸化膜; 800°C)
WVG (Water Vapor Generator)を配備した酸化炉を用いて Si基板 111を 800°Cで 熱酸化処理して形成した膜厚 1. Onmの熱酸化膜をゲート絶縁膜 114として用いた 以外は、実施例 1と同様にしてゲート電極を形成し、トランジスタを製造した。
[0074] これらのトランジスタの Gm (伝達コンダクタンス)を測定した結果を図 8に示した。な お、図 8の縦軸は、酸ィ匕膜の電気容量 Coxに対する Gm(GmZCox)であり、横軸は
、有効電界を示す。
[0075] 図 8より、プラズマ処理装置 100を用い、本発明の高温(800°C)で酸ィ匕処理して得 られたゲート絶縁膜 114を用いた実施例 1のトランジスタは、 400°Cでのプラズマ酸 化処理 (比較例 1)や、熱酸化処理 (比較例 2)により得られたゲート絶縁膜 114を用 いたトランジスタに比較して、高電界側で Gmの値が高ぐ良好な電気的特性を示す ことが確認された。すなわち、高電界側での Gm値が高い実施例 1のトランジスタは、 電子の移動度 (モピリティ)が大きぐ電流利得が向上しているため、高速'安定な性 質を有するトランジスタである。
[0076] 実施例 1のトランジスタが高電界側で高!、Gm値を示す理由は、プラズマ処理装置 100を用いて 600°C超の高温でシリコンを酸化処理することによって形成されたゲー ト絶縁膜 114は、 SiO ZSi界面のラフネスが小さいために、界面ラフネス散乱が抑制
2
されているためであると推測される。
[0077] 実施例 2 (高温プラズマ酸ィ匕処理による酸ィ匕膜; 800°C)
プラズマ処理装置 100を用い、 1%DHF溶液で洗浄した Si基板 111表面を高温プ ラズマ酸ィ匕処理して酸ィ匕膜を形成し、さらにこの酸ィ匕膜を図 6に示すプラズマ処理装 置 101を用いて窒化処理し、さらに窒化後に加熱ユニット 136に搬入してァニール処 理を行なってゲート絶縁膜 114を形成した。このゲート絶縁膜 114を用い、図 7Aに 示す構造のゲート電極を形成し、トランジスタを製造した。ゲート絶縁膜 114の膜厚 は約 lnmとした。なお、酸化処理、窒化処理およびァニール処理は真空を介して連 続的に行なうことが好ましい。
[0078] 酸化処理工程におけるプラズマ処理の条件は、プレート 60として、貫通孔 60aの直 径が 2. 5mmのものを用い、処理ガスとして Ar/Oを用い、流量 2000ZlO[mLZ
2
min (sccm) ]とし、ウエノ、温度 800。C、圧力は 66. 7Pa (500mTorr)とし、プラズマ への供給パワーは 2. OkW、処理時間 7秒で行なった。
[0079] また、窒化処理工程におけるプラズマ処理の条件は、プレート 60として、貫通孔 60 aの直径が 10mmのものを用い、処理ガスとして ArZNを用い、流量を 2000/40 [
2
mLZmin (sccm) ]とし、ウェハ温度 400°C、圧力は 6. 7Pa (50mTorr)とし、プラズ マへの供給パワーは 1. 5kWとした。窒化処理は、 SiON膜中の窒素濃度が 6%、 11 %または 13%となるように処理時間 8秒、 17.5秒または 24秒に制御して酸窒化膜を 形成した。
[0080] 窒化後ァニール処理における条件は、 RTP (Rapid Thermal Process)装置を用い て O ZN = lZl [LZmin (slm) ]、圧力 133. 3Pa (lTorr)、ウェハ W温度 1000
2 2
°Cで 20秒間かけて実施した。
[0081] また、比較のため、以下の方法で製造したトランジスタにつ 、ても試験を行なった。
比較例 3
(低温プラズマ酸ィ匕処理による酸ィ匕膜; 400°C)
プラズマ酸ィ匕処理の処理温度を 400°Cにした以外は実施例 2と同様にしてゲート絶 縁膜 114を形成し、トランジスタを製造した。
[0082] 比較例 4 :
(WVG熱酸化処理による酸化膜; 800°C) WVG (Water Vapor Generator)を配備した酸化炉を用い、 800°Cで成膜した熱酸 化膜に対し、実施例 2と同様に、プラズマ処理装置 101を用いて窒化処理し、さらに 窒化後ァニール処理を行なってゲート絶縁膜 114を形成し、トランジスタを製造した。
[0083] 比較例 5 :
(RTP熱酸化処理による酸化膜; 1000°C)
RTP (Rapid Thermal Process)装置で、 O ZN = 1/1 [L/min (slm) ]を用いて
2 2
圧力 133. 3Pa (lTorr)、温度 1000°Cで 5秒間、熱酸化処理して成膜した熱酸化膜 に対し、プラズマ処理装置 101を用 、て上記実施例 2と同様の条件で窒化処理した 後、さらに窒化後ァニール処理を行なってゲート絶縁膜 114を形成し、トランジスタを 製造した。
[0084] これらのトランジスタについて、 I —Jgプロットを作成した。その結果を図 9に示した on
。図 9の縦軸は、しきい値電圧 + 0. 7Vにおける I であり、この値は比較例 4 (WVG on
熱酸ィ匕処理; 800°C)のゲート絶縁膜 114の I で規格ィ匕した。横軸は、閾値電圧 + 0 on
. 7Vにおける であり、同様に比較例 4の Jgで規格ィ匕した値を示している。なお、 I on は、オン電流(=駆動電流)を意味し、 Jgは、ゲート絶縁膜 114を介して流れる単位 面積当りのリーク電流を意味する。従って、図 9のグラフの左上にいくほどリーク電流 が少なぐ駆動電流が大きくなるので、トランジスタの電流駆動能力が優れていること を示している。
なお、図 9中、「6%」、「11%」、「13%」の文字は、ゲート絶縁膜 114中の N濃度を 示す。
[0085] 図 9の結果から、プラズマ処理装置 100を用いて 800°Cの高温でプラズマ酸化処 理した酸化膜 (SiO )を元に窒化処理して得られた酸窒化膜 (SiON)のゲート絶縁
2
膜 114を有する実施例 2のトランジスタは、プラズマ処理装置 100を用いて 400°Cの 低温でプラズマ酸化処理して得た酸化膜や、 WVG熱酸化処理および RTP熱酸ィ匕 処理による熱酸化膜を元に、それぞれ窒化処理して得られたゲート絶縁膜 114を使 用した場合 (比較例 3〜5)に比べ、優れた電流駆動能力を有することが示された。こ れは、それぞれの酸窒化膜の元になつた酸化膜の膜質の差がこのような電流駆動能 力の差となって現れたものと考えられる。本実施例では、 800°Cでプラズマ酸ィ匕処理 を行ったが、本発明方法により 600°C超の処理温度で酸化処理して形成された酸ィ匕 膜を元に窒化処理して形成されたゲート絶縁膜 114を備えたトランジスタは、モビリテ ィ性能に優れ、応答速度が高ぐ省電力化が可能なものであることが示された。なお 、酸窒化膜中の N濃度は 1 25%の範囲とすることが好ましい。
[0086] また、プラズマ処理装置 100を用い 800°Cで酸ィ匕処理して得た酸ィ匕膜をベースとし たゲート絶縁膜 114は、 lnm程度の薄膜であっても、これを用いたトランジスタにお いて、リーク電流を抑制しつつ、熱酸ィ匕膜に比べて高い電流駆動能力を示したことか ら、トランジスタの性能が向上に寄与できることが確認された。従って、本発明方法に より、 0. 2〜: LOnmの膜厚(好ましくは、 0. 5 2. 0 より好ましくは 0. 8 1. 2nm の薄 、膜厚)の範囲で良質なゲート絶縁膜 114を形成できることが示された。
[0087] 次に、プラズマ処理装置 100を用いた Si基板へのプラズマ酸化処理にお!、て、プ レート 60の貫通孔 60aの孔径が Si基板上に形成された酸ィ匕膜の膜厚に与える影響 について試験した結果を、図 10〜図 12を参照しつつ説明する。ここでは、プレート 6 0として、貫通孔 60aの孔径 10mmのプレート(孔の数 626個)、貫通孔 60aの孔径 5 mmのプレート(孔の数 629個)、貫通孔 60aの孔径 2. 5mmのプレート(孔の数 270 1個)の三種類を準備し、また、プレート 60を使用しない場合についてもそれぞれプ ラズマ酸化処理を実施した。
[0088] プラズマ酸化処理における条件は、処理ガスとして ArZOを流量比 1000/5 [m
2
LZmin(sccm) ]とし、ウェハ温度 800°C、圧力は 66. 7Pa (500mTorr)とし、プラ ズマへの供給パワーは 2. OkW、処理時間 5 60秒で変化させて実施し、そのときの 酸化膜厚を測定した。
[0089] 図 10から、プレートを使用しない場合には、酸ィ匕レートが高ぐ短時間で酸化膜が 形成されている。なお、この酸ィ匕膜は、良質で均一な酸ィ匕膜であった。しかしながら、 プレートを使用しない場合には、 l 2nm以下の均一な膜厚で酸ィ匕膜を形成するこ とには限界がある。
一方、プレート 60を使用することによって、プレート 60を使用しない場合に比較して 酸化膜の成長が抑制され、極薄膜を形成できることが理解される。この場合、プレー ト 60の孔径カ S小さくなるに従 、酸化膜の成長速度 (酸化レート)が抑制されて 、る。 図 11は、図 10のグラフを酸化膜厚 0. 5nm〜2. Onmの範囲に絞って拡大したもの である。この図 11から、プレート 60の孔径を 5mmおよび 2. 5mmとすることが目的の 0. 5ηπ!〜 1. 5nm以下の薄膜形成において有効であることがわかる。また、特に孔 径が 5mmのプレート 60を用いることにより、 800°Cの高温処理においても、処理時 間を 10秒〜 35秒の間で変化させるだけでほぼ 0. 8nm〜l. 2nmの範囲で酸化膜 厚を高速で制御でき、短時間に均一かつ緻密で高品質の酸ィ匕膜を形成できることが 示された。
[0090] 図 12に、孔径 5mmのプレート 60を配備したプラズマ処理装置 100を用い、 5000 枚のウェハ Wに対してプラズマ酸ィ匕処理のランニング試験を実施した場合のウェハ Wの面間のシリコン酸化膜の膜厚変化を示す。本試験では、処理ガスとして ArZO
2 を流量比 1000Z5 [mLZmin (sccm) ]とし、ウェハ温度 800°C、圧力は 66. 7Pa (5 OOmTorr)とし、プラズマへの供給パワーは 2. 0kW、処理時間 10秒で実施した。 目 標とするシリコン酸ィ匕膜の膜厚は、 0. 8ηπ!〜 1. 2nmの薄膜に設定した。図 12から、 0. 5nm〜2. Onmの薄膜形成において、 800°Cの高温処理でも再現性よくシリコン 酸ィ匕膜を形成できることが示された。このランニング試験における平均膜厚は、 0. 83 09nm、膜厚の面間均一性は 0. 621%Sigmaであった。これは、プレート 60を配備 してイオンの量を制御することによって、ウェハ Wの表面付近でプラズマ中の活性種 が均一化されたためであると推測される。
[0091] 表 1は、配備したプラズマ処理装置 100を用い、ウエノ、 Wに対してプラズマ酸ィ匕処 理を実施した場合のウェハ W面内のシリコン酸ィ匕膜の膜厚の均一性を、単波長エリ プソメーターを用いて測定した結果を示している。プラズマ酸ィ匕処理の条件は、上記 ランニング試験と同様とした。表 1中、区分 Aは孔径 2. 5mmのプレート 60を使用し、 目標膜厚を 1. Onmに設定した場合の面内均一性を示しており、区分 Bは同様に孔 径 2. 5mmのプレート 60を使用し、 目標膜厚を 1. 2nmに設定した場合の面内均一 性を示している。また、区分 Cは、孔径 10mmのプレート 60を使用し、 目標膜厚を 1. 7nmに設定した場合の面内均一性を示している。また、図中 σは膜厚の標準偏差を 意味しており、 σ Ζ平均膜厚は標準偏差を平均膜厚 (nm)で規格ィ匕した値を示すも のである。 [0092] [表 1]
Figure imgf000025_0001
[0093] 表 1から、プレート 60を使用することにより、ウェハ Wの面内においても酸化膜厚の 均一性が約 1. 23%以下と、良好な結果が得られることが確認された。
[0094] 次に、プラズマ処理装置 100を用い、下記の方法でシリコン基板上に形成したシリ コン酸化膜に対し、エッチング耐性、界面ラフネス、アルゴン濃度、膜密度の測定を 行った。
<シリコン酸化膜形成方法 >
WVG熱酸化処理: 900°Cで行った(比較サンプルとして)。
プラズマ酸化処理: 処理ガスとして Arと Oを流量比 ArZO = 1000/10 [mL/
2 2
min (sccm) ]で用い、マイクロ波出力 2000W、処理圧力 26. 6Pa、 66. 7Paまたは 533. 3Pa、処理温度 400。C、 600。C、 700。Cまたは 800。Cで実施した。
[0095] <エッチング而性 >
エッチング耐性は、各シリコン酸ィ匕膜に対して、 0. 5%濃度 (純水 Z50%HF= 10 0/1)の希フッ酸 (HF)を用いて 30秒間のウエットエッチング処理を行い、エツチン グ前後の膜厚をエリプソメーターによって測定し、エッチングレートを算出することに より評価した。
[0096] エッチング耐性の測定結果を図 13に示した。なお、図 13の縦軸はエッチングレート を規格ィ匕して示している。この図 13より、 WVG熱酸化処理によって形成したシリコン 酸ィ匕膜や 400°Cのプラズマ酸ィ匕処理によって形成したシリコン酸ィ匕膜に比べて、 80 0°Cのプラズマ酸ィ匕処理によって形成したシリコン酸ィ匕膜は、エッチング耐性に優れ ていることが示された。よって、 800°Cの高温プラズマ酸ィ匕処理によって形成されたシ リコン酸ィ匕膜は、緻密で良好な膜質であることが確認された。 [0097] <界面ラフネス >
界面ラフネス (Ra)は、シリコン酸ィ匕膜が形成されたウェハ Wを 0. 5%希フッ酸溶液 に浸漬し、シリコン酸ィ匕膜 (SiO )を除去した後、表面粗さ計を用いて露出したシリコ
2
ン界面のラフネスを計測した。その結果を図 14に示した。この図 14より、 800°Cの高 温プラズマ酸化処理 (処理圧力 26. 6Pa)によって形成したシリコン酸ィ匕膜とシリコン との界面は、 400°Cの低温プラズマ酸化処理(処理圧力 26. 6Pa)や WVG熱酸化処 理(900°C)で形成したシリコン酸ィ匕膜とシリコンとの界面に比較して、界面ラフネスが 小さく良好であることが確認された。このように小さな界面ラフネスは、リーク電流の抑 制に寄与する。
[0098] <アルゴン濃度 >
各シリコン酸ィ匕膜のアルゴン濃度は、全反射 X線蛍光分析 (Trex)を用いて測定し た。その結果、 400°Cの処理温度 (圧力 26. 6Pa)でプラズマ酸ィ匕処理を行うことによ り形成したシリコン酸ィ匕膜中のアルゴン濃度は、 7 X lO10 [atoms/cm2]を超えていた のに対し、 600°C、 700°Cおよび 800°Cの処理温度(圧力はいずれも 26. 6Pa)でプ ラズマ酸ィ匕処理を行うことにより形成したシリコン酸ィ匕膜中のアルゴン濃度はいずれも 1 X 101G[atOmS/cm2]以下であり、 WVG熱酸ィ匕により形成したシリコン酸ィ匕膜と同レ ベル以下のアルゴン濃度であり、良好な膜質であることが確認された (結果は図示を 省略)。
[0099] <膜密度 >
膜密度の測定は、入射 X線反射率測定法 (GIXR)により行った。その結果を図 15 に示す。この図 15より、 400°Cの処理温度(圧力 26. 6Pa)でプラズマ酸化処理を行 うことにより形成したシリコン酸ィ匕膜の膜密度に比べて、 600°C、 700°Cおよび 800°C の処理温度 (圧力はいずれも 26. 6Pa)でプラズマ酸ィ匕処理を行うことにより形成した シリコン酸ィ匕膜は明らかに高ぐ WVG熱酸ィ匕処理により形成したシリコン酸ィ匕膜と同 様の膜密度プロファイルであることが示された。
[0100] 次に、種々の条件で形成したシリコン酸ィ匕膜およびシリコン窒化膜をゲート絶縁膜 として使用して NMOSトランジスタを作成し、電気的特性を評価した。図 16は、ゲー ト絶縁膜の電気的膜厚 (EOT)と、しきい値電圧 + 0. 7Vにおける I の関係を示し、 図 17は、ゲート絶縁膜の電気的膜厚 (EOT)と伝達コンダクタンスの最大値 (Gm ) max との関係を示している。
[0101] 図 16および図 17中の符号 A〜Nは、以下の試験区分を示している。
A;WVG熱酸化 900°C
B; WVG熱酸ィ匕 900°C +プラズマ窒化処理
C ;プラズマ酸化 400°C, 106. 6Pa (孔径 10mmプレート使用) +プラズマ窒化処 理
D;プラズマ酸化 800°C, 66. 7Pa +プラズマ窒化処理
E ;プラズマ酸化 400°C, 66. 7Pa +プラズマ窒化処理
F;プラズマ酸化 800°C, 106. 6Pa (孔径 10mmプレート使用) +プラズマ窒化処 理
G ;プラズマ酸化 650°C, 106. 6Pa (孔径 10mmプレート使用) +プラズマ窒化処 理
H ;WVG熱酸化 900°C
I ;WVG熱酸化 900°C +プラズマ窒化処理
J ;プラズマ酸化 400°C, 106. 6Pa (孔径 10mmプレート使用) +プラズマ窒化処理 K;プラズマ酸化 800°C, 66. 7Pa+プラズマ窒化処理
L;プラズマ酸化 800°C, 106. 6Pa (孔径 10mmプレート使用) +プラズマ窒化処 理
M ;プラズマ酸化 800°C, 106. 6Pa (孔径 2. 5mmプレート使用) +プラズマ窒化 処理
N;プラズマ酸化 650°C, 106. 6Pa (孔径 10mmプレート使用) +プラズマ窒化処 理
[0102] プラズマ酸化処理は、処理ガスとして Arと Oを流量比 ArZO = 1000/5 [mL/
2 2
min (sccm) ]で用い、マイクロ波出力 900W、処理圧力 66. 7Pa (500mTorr)また は 106. 6Pa (800mTorr)、処理温度 400。C、 650。Cまたは 800。Cで実施した。また 、プラズマ窒化処理は、処理ガスとして Arと Nを流量比 ArZN = 1000/40 [mL
2 2
Zmin (sccm) ]で用い、マイクロ波出力 1500W、処理圧力 6. 7Pa (50mTorr)、処 理温度 400°Cで実施した。なお、プラズマ酸ィ匕処理後のプラズマ窒化処理は、図 1の プラズマ処理装置内で引き続き実施した。
[0103] 図 16および図 17から、 800°Cの高温でプラズマ酸化処理を行い、さらにプラズマ 窒化処理を行って形成した酸窒化膜 (SiON膜)をゲート絶縁膜として用いた場合に は、同じ EOTで比較した場合に I および Gm ともに、 WVG熱酸ィ匕処理によって形 on max
成したシリコン酸化膜 (SiO )や、 400°Cのプラズマ酸ィ匕処理後にプラズマ窒化処理
2
を行って形成した酸窒化膜 (SiON膜)をゲート絶縁膜として用いた場合に比べて有 意に高い値を示しており、電気的特性に優れていることが確認された。このことから、 600°C以上の高温プラズマ酸化処理によって形成したシリコン酸化膜やこれを窒化 処理して形成したシリコン酸窒化膜は各種半導体装置に好適に利用できることが明 らかとなつた。
[0104] 以上、本発明の実施形態を述べたが、本発明は上記実施形態に制約されることは なぐ種々の変形が可能である。
たとえば、図 2および図 6では、周波数 300MHz〜300GHzのマイクロ波によりプラ ズマを励起させるマイクロ波プラズマ処理装置 100, 101を用いた力 周波数 30kHz 〜300MHzの高周波を用いてプラズマを励起させる高周波プラズマ処理装置を用 いることちでさる。
また、図 2では、 RLSA方式のプラズマ処理装置 100を例に挙げた力 例えばリモ ートプラズマ方式、 ICPプラズマ方式、 ECRプラズマ方式、表面反射波プラズマ方式 、マグネトロンプラズマ方式等のプラズマ処理装置であってもよ!/、。
[0105] また、図 2および図 6では、プレート 60を 1枚配備した力 必要に応じてプレートを二 枚以上重ねて配備することもできる。貫通孔 60aの開口面積やその比率などは、ブラ ズマ処理の対象や処理条件等に応じて適宜調整することができる。
[0106] また、図 2のプラズマ処理装置 100にお!/、て、ガス供給系 16として、 Arガス供給源 17および Oガス供給源 18にカ卩え、 Hガス供給源(不図示)を設け、 Arガスと Oガス
2 2 2 に所定の流量比率で Hガスを混合してプラズマ酸ィ匕処理を行うことも可能である。 H
2
ガスを適量混合することによって、 Si基板 111上の自然酸ィ匕膜を除去することが可
2
能となり、良質なシリコン酸ィ匕膜 113を形成できる。 [0107] さらに、上記実施形態では、 RLSA方式のプラズマ処理装置 101を用いて窒化処 理を行なった力 窒化処理に用いる装置や条件は限定されるものではなぐ他の方 式のプラズマ処理装置、例えばリモートプラズマ方式、 ICPプラズマ方式、 ECRプラ ズマ方式、表面反射波プラズマ方式、マグネトロンプラズマ方式等のプラズマ処理装 置を用い、適宜の条件で実施できる。
産業上の利用可能性
[0108] 本発明は、トランジスタなどの各種半導体装置の製造において好適に利用可能で ある。

Claims

請求の範囲
[1] プラズマ処理装置の処理室内で、被処理体表面のシリコンに酸素含有プラズマを 作用させてシリコン酸化膜を形成する酸化処理工程を含み、
前記酸ィ匕処理工程における処理温度は 600°C超 1000°C以下であり、 前記酸素含有プラズマは、少なくとも希ガスと酸素ガスとを含む酸素含有処理ガス を前記処理室内に導入するとともに、アンテナを介して該処理室内に高周波または マイクロ波を導入することによって形成される前記酸素含有処理ガスのプラズマであ る、絶縁膜の製造方法。
[2] 前記酸化処理工程では、前記処理室内のプラズマ発生領域と前記被処理体との 間に、複数の貫通開口を有する誘電体プレートを介在させて処理を行なう、請求項 1 に記載の絶縁膜の製造方法。
[3] 前記貫通開口の孔径が 2. 5〜12mmであり、前記誘電体プレート上の前記基板に 対応する領域内で、前記基板の面積に対する前記貫通開口の合計の開口面積比 率が 10〜50%である、請求項 2に記載の絶縁膜の製造方法。
[4] 前記酸ィ匕処理工程における処理圧力力 1. 33Pa〜1333Paである、請求項 1に 記載の絶縁膜の製造方法。
[5] 前記シリコン酸ィ匕膜の膜厚が、 0. 2〜: LOnmである、請求項 1に記載の絶縁膜の製 造方法。
[6] プラズマ処理装置の処理室内で、被処理体表面のシリコンに酸素含有プラズマを 作用させてシリコン酸化膜を形成する酸化処理工程と、
前記酸ィ匕処理工程で形成された前記シリコン酸ィ匕膜に窒素含有プラズマを作用さ せてシリコン酸窒化膜を形成する窒化処理工程と、
を含み、
前記酸ィ匕処理工程における処理温度は 600°C超 1000°C以下であり、 前記酸素含有プラズマは、少なくとも希ガスと酸素ガスとを含む酸素含有処理ガス を前記処理室内に導入するとともに、アンテナを介して該処理室内に高周波または マイクロ波を導入することによって形成される前記酸素含有処理ガスのプラズマであ る、絶縁膜の製造方法。
[7] 前記窒素含有プラズマは、少なくとも希ガスと窒素ガスとを含む窒素含有処理ガス を処理室内に導入するとともに、アンテナを介して該処理室内に高周波またはマイク 口波を導入することによって形成される前記窒素含有処理ガスのプラズマである、請 求項 6に記載の絶縁膜の製造方法。
[8] 前記酸ィ匕処理工程と前記窒化処理工程を同一の処理室内で行う、請求項 6に記 載の絶縁膜の製造方法。
[9] 前記酸ィ匕処理工程と前記窒化処理工程を、真空排気可能な状態で連結された別 々の処理室内で行う、請求項 6に記載の絶縁膜の製造方法。
[10] 前記酸化処理工程では、前記処理室内のプラズマ発生領域と前記被処理体との 間に、複数の貫通開口を有する誘電体プレートを介在させて処理を行なう、請求項 6 に記載の絶縁膜の製造方法。
[11] 前記貫通開口の孔径が 2. 5〜12mmであり、前記誘電体プレート上の前記基板に 対応する領域内で、前記基板の面積に対する前記貫通開口の合計の開口面積比 率が 10〜50%である、請求項 10に記載の絶縁膜の製造方法。
[12] 前記酸ィ匕処理工程における処理圧力が、 1. 33Pa〜1333Paである、請求項 6〖こ 記載の絶縁膜の製造方法。
[13] 前記シリコン酸ィ匕膜の膜厚が、 0. 2〜: LOnmである、請求項 6に記載の絶縁膜の製 造方法。
[14] コンピュータ上で動作し、実行時に、プラズマ処理装置の処理室内で、被処理体表 面のシリコンに酸素含有プラズマを作用させてシリコン酸化膜を形成する酸化処理が 行なわれるように前記プラズマ処理装置を制御する制御プログラムであり、
前記酸ィ匕処理における処理温度は 600°C超 1000°C以下であり、
前記酸素含有プラズマは、少なくとも希ガスと酸素ガスとを含む酸素含有処理ガス を前記処理室内に導入するとともに、アンテナを介して該処理室内に高周波または マイクロ波を導入することによって形成される前記酸素含有処理ガスのプラズマであ る、
制御プログラム。
[15] コンピュータ上で動作する制御プログラムが記憶されたコンピュータ読取り可能な記 憶媒体であって、
前記制御プログラムは、実行時に、プラズマ処理装置の処理室内で、被処理体表 面のシリコンに酸素含有プラズマを作用させてシリコン酸化膜を形成する酸化処理が 行なわれるように前記プラズマ処理装置を制御する制御プログラムであり、
前記酸ィ匕処理における処理温度は 600°C超 1000°C以下であり、
前記酸素含有プラズマは、少なくとも希ガスと酸素ガスとを含む酸素含有処理ガス を前記処理室内に導入するとともに、アンテナを介して該処理室内に高周波または マイクロ波を導入することによって形成される前記酸素含有処理ガスのプラズマであ る、
コンピュータ読取り可能な記憶媒体。
[16] プラズマを発生させるプラズマ生成手段と、
前記プラズマにより、被処理体を処理するための真空排気可能な処理容器と、 前記処理容器内で前記被処理体を載置する基板支持台と、
処理温度が 600°C超 1000°C以下であり、少なくとも希ガスと酸素ガスとを含む酸素 含有処理ガスを前記処理室内に導入するとともに、アンテナを介して該処理室内に 高周波またはマイクロ波を導入することによって形成される前記酸素含有プラズマを 用いて被処理体を酸化処理する酸化処理工程が行なわれるように制御する制御部と を備えた、プラズマ処理装置。
[17] 請求項 1に記載の絶縁膜の製造方法により製造された絶縁膜上に、ゲート電極を 形成する工程を含む、半導体装置の製造方法。
[18] 請求項 6に記載の絶縁膜の製造方法により製造された絶縁膜上に、ゲート電極を 形成する工程を含む、半導体装置の製造方法。
PCT/JP2006/306288 2005-03-30 2006-03-28 絶縁膜の製造方法および半導体装置の製造方法 WO2006106667A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2006800105952A CN101151721B (zh) 2005-03-30 2006-03-28 绝缘膜的制造方法和等离子体处理装置
US11/910,332 US20090239364A1 (en) 2005-03-30 2006-03-28 Method for forming insulating film and method for manufacturing semiconductor device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005099408 2005-03-30
JP2005-099408 2005-03-30
JP2005292346A JP2006310736A (ja) 2005-03-30 2005-10-05 ゲート絶縁膜の製造方法および半導体装置の製造方法
JP2005-292346 2005-10-05

Publications (1)

Publication Number Publication Date
WO2006106667A1 true WO2006106667A1 (ja) 2006-10-12

Family

ID=37073233

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/306288 WO2006106667A1 (ja) 2005-03-30 2006-03-28 絶縁膜の製造方法および半導体装置の製造方法

Country Status (6)

Country Link
US (1) US20090239364A1 (ja)
JP (1) JP2006310736A (ja)
KR (1) KR100966927B1 (ja)
CN (1) CN101151721B (ja)
TW (1) TWI402912B (ja)
WO (1) WO2006106667A1 (ja)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200511430A (en) * 2003-05-29 2005-03-16 Tokyo Electron Ltd Plasma processing apparatus and plasma processing method
JP4975569B2 (ja) * 2007-09-11 2012-07-11 東京エレクトロン株式会社 プラズマ酸化処理方法およびシリコン酸化膜の形成方法
JP5520455B2 (ja) * 2008-06-11 2014-06-11 東京エレクトロン株式会社 プラズマ処理装置
JP4902716B2 (ja) * 2008-11-20 2012-03-21 株式会社日立国際電気 不揮発性半導体記憶装置およびその製造方法
JP5692794B2 (ja) * 2010-03-17 2015-04-01 独立行政法人産業技術総合研究所 透明導電性炭素膜の製造方法
US8450221B2 (en) * 2010-08-04 2013-05-28 Texas Instruments Incorporated Method of forming MOS transistors including SiON gate dielectric with enhanced nitrogen concentration at its sidewalls
JP5839804B2 (ja) * 2011-01-25 2016-01-06 国立大学法人東北大学 半導体装置の製造方法、および半導体装置
US9287093B2 (en) * 2011-05-31 2016-03-15 Applied Materials, Inc. Dynamic ion radical sieve and ion radical aperture for an inductively coupled plasma (ICP) reactor
KR101817131B1 (ko) 2012-03-19 2018-01-11 에스케이하이닉스 주식회사 게이트절연층 형성 방법 및 반도체장치 제조 방법
US20180076026A1 (en) * 2016-09-14 2018-03-15 Applied Materials, Inc. Steam oxidation initiation for high aspect ratio conformal radical oxidation
CN108807139A (zh) * 2017-05-05 2018-11-13 上海新昇半导体科技有限公司 氧化硅生长系统、方法及半导体测试结构的制作方法
CN109545687B (zh) * 2018-11-13 2020-10-30 中国科学院微电子研究所 基于交流电压下微波等离子体氧化的凹槽mosfet器件制造方法
CN109494147B (zh) * 2018-11-13 2020-10-30 中国科学院微电子研究所 基于交流电压下微波等离子体的碳化硅氧化方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002058130A (ja) * 2000-08-07 2002-02-22 Sumitomo Wiring Syst Ltd 電気接続箱
JP2004040064A (ja) * 2002-07-01 2004-02-05 Yutaka Hayashi 不揮発性メモリとその製造方法
WO2004047157A1 (ja) * 2002-11-20 2004-06-03 Tokyo Electron Limited プラズマ処理装置及びプラズマ処理方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10265948A (ja) * 1997-03-25 1998-10-06 Rohm Co Ltd 半導体装置用基板およびその製法
EP1361605A4 (en) * 2001-01-22 2006-02-15 Tokyo Electron Ltd METHOD FOR PRODUCING MATERIAL OF AN ELECTRONIC COMPONENT
JP2003124204A (ja) * 2001-10-18 2003-04-25 Toshiba Corp プラズマ処理装置及びこれを用いた半導体装置の製造方法
US7517751B2 (en) * 2001-12-18 2009-04-14 Tokyo Electron Limited Substrate treating method
CN100429753C (zh) * 2003-02-06 2008-10-29 东京毅力科创株式会社 等离子体处理方法、半导体基板以及等离子体处理装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002058130A (ja) * 2000-08-07 2002-02-22 Sumitomo Wiring Syst Ltd 電気接続箱
JP2004040064A (ja) * 2002-07-01 2004-02-05 Yutaka Hayashi 不揮発性メモリとその製造方法
WO2004047157A1 (ja) * 2002-11-20 2004-06-03 Tokyo Electron Limited プラズマ処理装置及びプラズマ処理方法

Also Published As

Publication number Publication date
US20090239364A1 (en) 2009-09-24
KR20070112830A (ko) 2007-11-27
CN101151721B (zh) 2011-11-16
JP2006310736A (ja) 2006-11-09
TWI402912B (zh) 2013-07-21
KR100966927B1 (ko) 2010-06-29
CN101151721A (zh) 2008-03-26
TW200703505A (en) 2007-01-16

Similar Documents

Publication Publication Date Title
WO2006106667A1 (ja) 絶縁膜の製造方法および半導体装置の製造方法
JP4926219B2 (ja) 電子デバイス材料の製造方法
KR101122347B1 (ko) 절연막의 형성 방법 및 반도체 장치의 제조 방법
JP4633729B2 (ja) 半導体装置の製造方法およびプラズマ酸化処理方法
US6897149B2 (en) Method of producing electronic device material
JP5252913B2 (ja) 半導体装置の製造方法およびプラズマ酸化処理方法
US8158535B2 (en) Method for forming insulating film and method for manufacturing semiconductor device
KR100980528B1 (ko) 금속계막의 탈탄소 처리 방법, 성막 방법 및 반도체 장치의제조 방법
US8247331B2 (en) Method for forming insulating film and method for manufacturing semiconductor device
WO2007099922A1 (ja) プラズマ酸化処理方法および半導体装置の製造方法
US20060269694A1 (en) Plasma processing method
WO2006025363A1 (ja) シリコン酸化膜の形成方法、半導体装置の製造方法およびコンピュータ記憶媒体
JP2010087187A (ja) 酸化珪素膜およびその形成方法、コンピュータ読み取り可能な記憶媒体並びにプラズマcvd装置
WO2007034871A1 (ja) 選択的プラズマ処理方法
JPWO2008117798A1 (ja) 窒化珪素膜の形成方法、不揮発性半導体メモリ装置の製造方法、不揮発性半導体メモリ装置およびプラズマ処理装置
WO2008041601A1 (fr) Procédé d&#39;oxydation par plasma, appareil d&#39;oxydation par plasma et support de stockage
WO2010038654A1 (ja) シリコン酸化膜の形成方法及び装置
JP2008251959A (ja) 絶縁層の形成方法及び半導体装置の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680010595.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020077022436

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06730236

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 11910332

Country of ref document: US