WO2006104183A1 - Dlp式エバネッセンス顕微鏡 - Google Patents

Dlp式エバネッセンス顕微鏡 Download PDF

Info

Publication number
WO2006104183A1
WO2006104183A1 PCT/JP2006/306409 JP2006306409W WO2006104183A1 WO 2006104183 A1 WO2006104183 A1 WO 2006104183A1 JP 2006306409 W JP2006306409 W JP 2006306409W WO 2006104183 A1 WO2006104183 A1 WO 2006104183A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
lens system
cover glass
lens
dichroic mirror
Prior art date
Application number
PCT/JP2006/306409
Other languages
English (en)
French (fr)
Inventor
Susumu Terakawa
Takashi Sakurai
Yoshihiko Wakazono
Seiji Yamamoto
Original Assignee
National University Corporation, Hamamatsu University School Of Medicine
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National University Corporation, Hamamatsu University School Of Medicine filed Critical National University Corporation, Hamamatsu University School Of Medicine
Publication of WO2006104183A1 publication Critical patent/WO2006104183A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • G01N21/552Attenuated total reflection
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0816Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
    • G02B26/0833Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/648Specially adapted constructive features of fluorimeters using evanescent coupling or surface plasmon coupling for the excitation of fluorescence

Definitions

  • the present invention relates to a DLP-type evanescent microscope that performs evanescent light illumination under the control of a DMD.
  • a microscope is used that illuminates only the (thickness-thick part) and performs evanescent light illumination to observe that part. In some cases, it is necessary to observe and analyze only a very thin part of the specimen.
  • One method of generating conventional evanescent light illumination is realized by installing a reflective mirror surface of the optical system so that the illumination light is incident on the cover glass at an angle at which it is totally reflected.
  • Patent Documents 1 to 4 are examples that disclose a microscope equipped with an evanescent light illumination or an illumination device that illuminates in a ring shape.
  • Patent Document 1 is a microscope that can selectively acquire a confocal image by a laser microscope and an evanescent fluorescence image by a fluorescence microscope.
  • Evanescent light illumination is realized by using an optical fiber, and the scanner deflection angle is stopped. By adjusting the evanescent light illumination, the evanescent light illumination is adjusted.
  • the use of DMD is not a ring-shaped illumination, so there is a limit to the efficiency with which incident light can be used.
  • Patent Document 2 describes the use of DMD in addition to an LCD in a video projector and ring illumination. In this document, as an example of implementation, a technique for selectively switching between floodlight and transmitted illumination is disclosed. It does not realize evanescent light illumination.
  • Patent Document 3 is an optical microscope that observes a sample by selecting either transmitted illumination or near-field illumination.
  • the former is totally reflected on the lower side of the sample.
  • the mirror is arranged to reflect the illumination light of the Koehler illumination system by the total reflection mirror to illuminate the sample, and the transmitted light from the sample is imaged on the light receiving surface of the upper CCD camera.
  • a cantilever probe is placed on the sample, an upward force laser beam is irradiated onto the probe, and an evanescent wave is generated from a microscopic aperture at the tip of the probe.
  • the propagating light from the sample by the evanescent wave is shown in FIG.
  • the light is totally reflected by the total reflection mirror of the mirror unit that has been transmitted and moved in advance, and is collected by the lens and incident on the photodiode.
  • the near-field illumination in Patent Document 3 is realized by a cantilever, and the propagating light from the sample by evanescent light is observed by an optical system using a total reflection mirror and a lens arranged below the sample. As in Patent Document 1, DMD is not used.
  • Patent Document 4 discloses an illumination optical system capable of switching between normal epi-illumination and evanescent light illumination.
  • the structure for applying the evanescent light illumination realizes the light incident on the lens by changing the position of the optical fiber. DMD is not used for this.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2003-307682
  • Patent Document 2 JP 2000-502472
  • Patent Document 3 Japanese Patent Laid-Open No. 8-220113
  • Patent Document 4 Japanese Patent Laid-Open No. 2001-272606
  • an object of the present invention is to efficiently use irradiated light and to generate light on a specimen.
  • the purpose is to provide a DLP-type evanescent microscope that can generate evanescent light by controlling the DMD so that it can be adjusted to the raw position, controlled with a simple configuration, and easily switched to another illumination system.
  • claim 1 of the present invention provides a laser light source, a first lens system that diverges light of the laser light source force, and a light beam diverged by the first lens system as an objective lens system.
  • a dichroic mirror that changes the optical path
  • the objective lens system that receives light from the dichroic mirror, a cover glass disposed in front of the objective lens system, and a sample force on the cover glass.
  • a third lens system that passes through the objective lens system and the dichroic mirror and forms an image of the light, and an observation for observing the image of the specimen imaged by the third lens system
  • the DMD device micromirror is turned on in a ring shape, is incident on the lower surface of the cover glass at a critical angle or more and totally reflected, and evanescent light is generated in the specimen mounted on the cover glass.
  • the second lens system includes a convex lens disposed between the first lens system and the DMD device to make parallel light, and the DMD device and the dichroic light are arranged. Further, a convex lens is further arranged between the mirrors, and is collected on the rear focal plane of the objective lens system.
  • a laser light source a first lens system that diverges light from the laser light source, a second lens system that converts a light beam diverged by the first lens system into parallel light, and A DMD device that receives light from the second lens system and reflects light by ON / OFF control of a large number of micromirrors, a Dyke mouth intake mirror that changes the optical path by receiving reflected light from the DMD device, and the DMD device
  • a condensing lens group system that is disposed between the dichroic mirror and focuses the light beam on the rear focal plane of the object lens system, an objective lens system that receives light from the dichroic mirror, and the objective lens
  • the cover glass disposed on the front side of the lens system and the light of the sample force mounted on the cover glass are connected to the objective lens system and the front lens system.
  • a third lens system that passes through the dichroic mirror and forms an image of the light, and observation means for observing the image of the specimen imaged by the third lens system.
  • the mirror is turned on in a ring shape, and the light of the on-controlled micromirror force is emitted by the condensing lens group system so that it is incident on the lower surface of the cover glass at a critical angle or more and totally reflected. Evanescent light is generated in the specimen mounted on the cover glass.
  • the condensing lens group system is constituted by microlens groups arranged in a ring shape.
  • Claim 5 of the present invention is characterized in that, in the invention of claim 3, the condensing lens group system uses a toric lens (annular lens).
  • FIG. 1 is a block diagram showing an embodiment of a DLP-type evanescence microscope according to the present invention.
  • FIG. 2 is a diagram for explaining details of a specimen illuminated with evanescent light.
  • FIG. 3 is a block diagram showing another embodiment of a DLP-type evanescence microscope according to the present invention.
  • FIG. 4 is a diagram showing an example of a pattern for on-controlling the DMD micromirror in FIG. 3.
  • FIG. 4 is a diagram showing an example of a pattern for on-controlling the DMD micromirror in FIG. 3.
  • FIG. 5 is a diagram showing a specific example of the condensing lens group in FIG. 3.
  • FIG. 1 is a block diagram showing an embodiment of a DLP-type evanescence microscope according to the present invention.
  • This embodiment is described mainly with respect to an optical system directly related to the present invention, and other portions are omitted.
  • Laser light source 1 concave lens 2, convex lens 3, DMD device 4, convex lens 22, dichroic mirror 1, super high numerical aperture objective lens 7, cover glass 8, specimen 9, convex lens 10 and CCD device 11! Speak.
  • the light emitted from the laser light source 1 is diverged by the concave lens 2 and passes through the convex lens 3, the DMD device 4, and the lens 22. Focused on the surface.
  • the light emitted from the convex lens 3 becomes parallel light and enters the DMD device 4.
  • a large number of ring-shaped micromirrors having a predetermined diameter or more are on-controlled.
  • the light incident on the micromirror to be turned on is reflected by the micromirror and reaches the convex lens 22.
  • a toric lens (annular lens) or the like is used, and only a portion corresponding to light reflected in a ring shape by the DMD device 4 is incident and focused.
  • Light entering the micromirror in the off state is reflected by an optical trap (not shown).
  • the DMD device 4 is on / off controlled by a control circuit (not shown), and turns on the portion of the micromirror indicated by 4a having a predetermined diameter or more in order to obtain evanescent light illumination.
  • the irradiation area of the evanescent light can be changed by adjusting the width of the ring shape that controls the micromirror of the DMD device 4 on.
  • the ring-shaped light emitted from the convex lens 22 is reflected by the dichroic mirror 5, and is After focusing on the rear focal plane of the numerical objective lens 7, the light enters the ultrahigh numerical aperture objective lens 7 and is refracted to enter the cover glass 8 at a predetermined angle. Since the incident angle is greater than the critical angle on the lower surface of the cover glass 8, total reflection occurs, and the light enters the ultra high numerical aperture objective lens 7 again (incident position and target position).
  • the surface of the cover glass 8 is thin, evanescent light propagates, and irradiates a specimen that contains a fluorescent material.
  • the fluorescence generated in the specimen passes through the ultra high numerical aperture objective lens 7, dichroic mirror 5, and convex lens 10 and forms an image on the light receiving surface of the CCD device 11.
  • the fluorescence image of the specimen can be observed with a monitor (not shown).
  • Fig. 2 is a diagram for explaining the details of the specimen illuminated with evanescent light.
  • A is a plan view of the specimen part
  • (b) is an ultra-high numerical aperture objective lens, a cover glass, and a specimen part. Show each side view of!
  • the ring-shaped light L is refracted by the ultra-high numerical aperture objective lens 7 and is critical to the cover glass 8.
  • Incident at an angle or more causes total reflection, and returns to the symmetrical position of the ultra-high numerical aperture objective lens 7.
  • Evanescent light L is generated near the bottom surface of the bar glass 8 where total reflection occurs.
  • FIG. 3 is a block diagram showing another embodiment of the DLP-type evanescence microscope according to the present invention.
  • the configuration of the second lens system is different from that in FIG. 1, and other parts are not changed.
  • the same functional parts as those in Fig. 1 are denoted by the same reference numerals.
  • a convex lens 3 is inserted between the concave lens 2 and the DMD device 4, and a condensing lens group 20 is disposed between the dichroic mirror 5 and the DMD device 4.
  • the diverging light from the concave lens 2 is converted into parallel light by the convex lens 3 and made incident on the DMD device 4, and the parallel light from the DMD device 4 is applied to the ultra high numerical aperture objective lens 7 by the lens 20 a in the ring portion of the condenser lens group 20. After focusing on the focal plane.
  • the on-control range of the micromirror of the DMD apparatus 4 is a portion outside a predetermined diameter (corresponding to a critical angle). On-control near the center results in epi-illumination.
  • Light illumination Evanescent light illumination can be performed by turning on a micromirror having a predetermined diameter or more, and switching to another illumination method can be easily realized.
  • FIG. 4 is a diagram showing a pattern example for turning on the DMD micromirror in FIG. 3
  • FIG. 5 is a diagram showing a specific example of the condenser lens group in FIG.
  • the condensing lens group is a toric lens
  • the ring-shaped micromirror shown by 4a in FIG. 4 (a) is turned on for evanescent light illumination.
  • a micro lens group In the case of a micro lens group,
  • micromirror equivalent to the ring-shaped microlens shown at 4a in Fig. 4 (b) is turned on.
  • micromirror in the central circle is turned on.
  • 20a in Fig. 5 (a) is a toric lens corresponding to the on-controlled DMD shown in Fig. 4 (a).
  • 20a in Fig. 5 (b) is the micro-level corresponding to the on-controlled DMD shown in Fig. 4 (b).
  • ring-shaped illumination that achieves a critical angle or more can change the ring width by turning on the corresponding micromirror of the DMD device, and changing the size of the evanescent light generation region. it can.
  • the concave lens and the convex lens shown in each of the above embodiments are shown as a single lens for convenience of explanation, a lens group configured to diverge and converge with a plurality of lenses, respectively. Is possible.
  • the present invention is applied to a microscope for observing a specific part of a specimen such as a cell with fluorescence.

Abstract

 照射光の効率的な利用,発生位置の精度,簡易な制御,他の照明方式にも容易に切替え可能にするため、DMDの制御によってエバネッセント光を発生させることができるDLP式エバネッセンス顕微鏡を提供する。  レーザ光は凹レンズ2で発散され凸レンズ3によって平行光となり、DMD装置4に入射する。DMD装置4ではカバーガラス8で臨界角以上になるような入射光となるリング形状のマイクロミラーがオン制御される。凸レンズ22はリング形状にオン制御されるマイクロミラーからの反射光のみを通過させ、この通過光を超高開口数対物レンズ7の後焦点面に集束させるレンズである。リング形状の光はダイクロイックミラー5で反射され、後焦点面を通過して超高開口数対物レンズ7に入射し屈折する。カバーガラス8の下面で全反射し、エバネッセント光が発生する。

Description

明 細 書
DLP式エバネッセンス顕微鏡
技術分野
[0001] 本発明は、 DMDの制御によってエバネッセント光照明を行う DLP式エバネッセン ス顕微鏡に関する。
背景技術
[0002] 細胞などの標本を観察する場合、エバネッセント光を発生させ、標本の特定の部分
(わず力な厚さ部分)のみ照明し、その部分を観察するためのエバネッセント光照明 を行う顕微鏡が供されて ヽる。場合によっては標本の極めて薄!ヽ部分のみを観察し て分析しなければならない必要性があるからである。
従来のエバネッセント光照明を発生させる方法の 1つは、照明光が全反射する角度 でカバーガラスに入射するように光学系の反射ミラー面を設置することにより実現して いる。
[0003] 上記のように光学素子の位置の調整によって、または切替方式で光学素子の位置 を定めることによってエバネッセント光照明を実現する構成は、光学系の各要素の配 置に一定の制限を与えることとなり、エバネッセント光発生のための照射光の効率的 な利用,エバネッセント光発生位置,光学系を複雑にすることなく容易に発生させる 点,さらに他の照明方式に容易に切り替えることができること等を考慮した場合、十分 な構成とは言えない。上記条件を満たす顕微鏡を構成できれば、細胞などの様々な 標本に対し種々の角度からさらに幅広い観察が可能になる。
[0004] 特許文献 1〜4はエバネッセント光照明またはリング状に照明する照明装置を搭載 した顕微鏡を開示する例である。
特許文献 1は、レーザ顕微鏡によるコンフォーカル画像と蛍光顕微鏡によるエバネ ッセント蛍光画像を選択的に取得可能な顕微鏡で、エバネッセント光照明は光フアイ バを利用して実現し、スキャナの偏向角度の停止位置を決定することによりエバネッ セント蛍光観察の際のエバネッセント光照明の調節を行うものである。 DMDの使用 はなぐリング状照明でもないので入射光の利用効率に限界がある。 特許文献 2は、ビデオプロジェクタで LCD以外に DMDを使用する点およびリング 照明が記載され、当該文献の中で実施の一例として投光照明と透過照明を選択的 に切り替える技術が開示されている力 エバネッセント光照明を実現するものではな い。
[0005] 特許文献 3は、透過照明と近接場照明のいずれかを選択して試料を観察する光学 顕微鏡で、例えば特許文献 3の図 4にお 、ては前者は試料の下側に全反射ミラーを 配置してケーラー照明系力 の照明光を全反射ミラーにより上方に反射し試料を照 明し、試料の透過光を上方の CCDカメラの受光面に結像させている。後者は試料の 上にカンチレバーのプローブを配置し、上方力 レーザ光を前記プローブに照射し、 プローブの先端の微小開口からエバネッセント波を発生させ、エバネッセント波によ る試料からの伝搬光は図 5に示すように透過し予め移動させたミラーユニットの全反 射ミラーで全反射させレンズで集光してフォトダイオードに入射させるようになって!/ヽ る。
特許文献 3における近接場照明はカンチレバーで実現するものであり、エバネッセ ント光による試料からの伝搬光は、試料の下側に配置した全反射ミラー,レンズによ る光学系で観察する構成となっており、特許文献 1と同様、 DMDを使用するもので はない。
特許文献 4は、通常の落射照明とエバネッセント光照明とを切り替え可能な照明光 学系を開示している。し力しながら、エバネッセント光照明を当てるための構造はレン ズに入射する光を光ファイバの位置を変えて実現するものである。これにつ 、ても D MDの使用はない。
特許文献 1:特開 2003 - 307682号公報
特許文献 2:特表 2000 - 502472号公報
特許文献 3:特開平 8 - 220113号公報
特許文献 4:特開 2001— 272606号公報
発明の開示
発明が解決しょうとする課題
[0006] 本発明の目的は、上記状況に鑑みたもので、照射光の効率的な利用,標本上の発 生位置の調整,簡易な構成による制御,他の照明方式に容易に切替え可能にする ため、 DMDの制御によってエバネッセント光を発生させることができる DLP式エバネ ッセンス顕微鏡を提供することにある。
課題を解決するための手段
前記目的を達成するために本発明の請求項 1は、レーザ光源と、前記レーザ光源 力 の光を発散する第 1レンズ系と、前記第 1レンズ系で発散された光束を、対物レン ズ系の後焦点面に集束させる第 2レンズ系と、前記第 2レンズ系からの光が入射し、 多数のマイクロミラーのオンオフ制御によって光を反射する DMD装置と、前記 DMD 装置からの反射光を入射して光路を変更するダイクロイツクミラーと、前記ダイクロイツ クミラーからの光を入射する前記対物レンズ系と、前記対物レンズ系の前側に配置さ れたカバーガラスと、前記カバーガラス上の標本力 の光力 前記対物レンズ系およ び前記ダイクロイツクミラーを通過し、該光を結像させる第 3レンズ系と、前記第 3レン ズ系で結像された前記標本の像を観察するための観察手段とを備え、前記 DMD装 置のマイクロミラーをリング形状でオン制御して前記カバーガラス下面に臨界角以上 で入射させて全反射させ、前記カバーガラスに搭載された標本にエバネッセント光を 発生させることを特徴とする。
本発明の請求項 2は、請求項 1記載の発明において前記第 2レンズ系は前記第 1レ ンズ系と前記 DMD装置の間に凸レンズを配置して平行光にし、前記 DMD装置とダ ィクロイツクミラーの間にさらに凸レンズを配置して前記対物レンズ系の後焦点面に集 束させることを特徴とする。
本発明の請求項 3は、レーザ光源と、前記レーザ光源からの光を発散する第 1レン ズ系と、前記第 1レンズ系で発散された光束を平行光にする第 2レンズ系と、前記第 2 レンズ系からの光が入射し、多数のマイクロミラーのオンオフ制御によって光を反射 する DMD装置と、前記 DMD装置からの反射光を入射して光路を変更するダイク口 イツクミラーと、前記 DMD装置と前記ダイクロイツクミラーの間に配置され、光束を対 物レンズ系の後焦点面に集束させる集光用レンズ群系と、前記ダイクロイツクミラーか らの光を入射する対物レンズ系と、前記対物レンズ系の前側に配置されたカバーガ ラスと、前記カバーガラスに搭載された標本力 の光が、前記対物レンズ系および前 記ダイクロイツクミラーを通過し、該光を結像させる第 3レンズ系と、前記第 3レンズ系 で結像された前記標本の像を観察するための観察手段とを備え、前記 DMD装置の マイクロミラーをリング形状でオン制御し、かつ集光用レンズ群系で前記オン制御さ れたマイクロミラー力 の光^^光することにより前記カバーガラス下面に臨界角以上 で入射させて全反射させ、前記カバーガラスに搭載された標本にエバネッセント光を 発生させることを特徴とする。
本発明の請求項 4は、請求項 3記載の発明において前記集光用レンズ群系は、リン グ状に配置されたマイクロレンズ群で構成したことを特徴とする。
本発明の請求項 5は、請求項 3記載の発明において前記集光用レンズ群系は、ト 一リックレンズ (環状レンズ)を用いたことを特徴とする。
発明の効果
[0008] 上記構成によれば、従来のエバネッセント光照明方式に比較し、光の利用効率や 発生位置精度の向上,簡易な構成による制御および他の照明方式に簡単に切り替 えられ、幅広 、標本の観察ができる顕微鏡を実現できる。
図面の簡単な説明
[0009] [図 1]本発明による DLP式エバネッセンス顕微鏡の実施の形態を示すブロック図であ る。
[図 2]エバネッセント光照明された標本の詳細を説明するための図である。
[図 3]本発明による DLP式エバネッセンス顕微鏡の他の実施の形態を示すブロック図 である。
[図 4]図 3における DMDのマイクロミラーをオン制御するパターン例を示す図である。
[図 5]図 3における集光用レンズ群の具体例を示す図である。
符号の説明
[0010] 1 レーザ光源
2 凹レンズ
3, 10 凸レンズ
4 DMD装置
5 ダイクロイツクミラー(DM) 7 超高開口数対物レンズ
8 カバーガラス
9 標本 (細胞)
11 CCD装置 (観察手段)
12 エバネッセント光
発明を実施するための最良の形態
[0011] 以下、図面を参照して本発明の実施の形態を詳しく説明する。
図 1は、本発明による DLP式エバネッセンス顕微鏡の実施の形態を示すブロック図 である。
この実施の形態は、本発明に直接関連する光学系を中心に記載したもので、他の 部分は省略してある。
レーザ光源 1,凹レンズ 2,凸レンズ 3, DMD装置 4,凸レンズ 22,ダイクロイツクミラ 一 5,超高開口数対物レンズ 7,カバーガラス 8,標本 9,凸レンズ 10および CCD装 置 11によって構成されて!ヽる。
[0012] レーザ光源 1から出射した光は、凹レンズ 2によって発散され、凸レンズ 3, DMD装 置 4, レンズ 22を介して超高開口数対物レンズ(開口数が 1. 33以上) 7の後焦点面 に集束される。凸レンズ 3を出射した光は、平行光になって DMD装置 4に入射する。 DMD装置 4では、所定の径以上のリング状の多数のマイクロミラーがオン制御される 。オン制御されるマイクロミラーに入射した光は、該マイクロミラーで反射され凸レンズ 22に達する。凸レンズ 22はトーリックレンズ (環状レンズ)などが用いられ、 DMD装 置 4でリング状に反射される光に対応する部分のみを入射し集束させる。オフ状態に あるマイクロミラーに入った光は図示しない光トラップに反射する。
DMD装置 4は図示しない制御回路によってオンオフ制御され、エバネッセント光照 明を得るために所定径以上の 4aで示す部分のマイクロミラーをオン状態にする。
[0013] DMD装置 4のマイクロミラーをオン制御するリング形状の幅を調整することによりェ バネッセント光の照射領域を変えることができる。
凸レンズ 22を出射したリング形状の光はダイクロイツクミラー 5で反射され、超高開 口数対物レンズ 7の後焦点面でー且集束した後、超高開口数対物レンズ 7に入射し て屈折し所定の角度でカバーガラス 8に入射する。カバーガラス 8上の下面に対し臨 界角以上の入射であるため、全反射を起こし、再度、超高開口数対物レンズ 7へ入 射する (入射位置と対象位置)。
カバーガラス 8の表面には薄 、エバネッセント光が伝搬し、蛍光物質が含まれて ヽ る標本を照射する。標本で発生した蛍光は超高開口数対物レンズ 7,ダイクロイツクミ ラー 5, 凸レンズ 10を通過して CCD装置 11の受光面に結像する。標本の蛍光像は、 図示しないモニタなどによって観察することができる。
[0014] 図 2は、エバネッセント光照明された標本の詳細を説明するための図で、 (a)は標 本部分の平面図, (b)は超高開口数対物レンズ,カバーガラスおよび標本部分の側 面図をぞれぞれ示して!/ヽる。
リング形状の光 L は超高開口数対物レンズ 7で屈折されカバーガラス 8に対し臨界
1
角以上で入射し、全反射を起こして超高開口数対物レンズ 7の対称位置に戻る。力 バーガラス 8の全反射を起こした下面部分付近にエバネッセント光 L が発生し、これ
2
らはカバーガラスの上面に向けて伝搬し標本の下面の領域に達する。標本には蛍光 物質が含まれているため、エバネッセント光により蛍光が発生し蛍光によるエバネッ セント光照射部分の像を観察することができる。
[0015] 図 3は、本発明による DLP式エバネッセンス顕微鏡の他の実施の形態を示すブロッ ク図である。
この実施の形態は、図 1と第 2のレンズ系の構成が異なり、他の部分は変わらない。 図 1と同じ機能部分には同じ符号を付してある。
凹レンズ 2と DMD装置 4の間に凸レンズ 3を挿入するとともにダイクロイツクミラー 5と DMD装置 4の間に集光用レンズ群 20を配置してある。凸レンズ 3によって凹レンズ 2 からの発散光を平行光にして DMD装置 4に入射させ、 DMD装置 4からの平行光を 集光用レンズ群 20のリング部分のレンズ 20aによって超高開口数対物レンズ 7の後 焦点面に集束させている。
[0016] DMD装置 4のマイクロミラーのオン制御範囲は、所定の径(臨界角相当)の外側の 部分である。中心付近をオン制御すると落射照射になり、臨界角内の範囲ではスリツ ト光照明になる。所定の径以上の範囲のマイクロミラーのオン制御によりエバネッセン ト光照明を行うことができ、他の照明方式に切り替えることも容易に実現できる。
集光用レンズ群 20からの光はダイクロイツクミラー 5によって反射され、後焦点面 6 を通って超高開口数対物レンズ 7で屈折しカバーガラス 8の下面に臨界角以上の角 度で入射して全反射しエバネッセント光を発生させる。
[0017] 図 4は図 3における DMDのマイクロミラーをオン制御するパターン例を、図 5は図 3 における集光用レンズ群の具体例を示す図である。
集光用レンズ群がトーリックレンズの場合、エバネッセント光照明するには図 4 (a)の 4a に示すリング状のマイクロミラーをオン制御する。また、マイクロレンズ群の場合、
1
図 4 (b)の 4a に示すリング状のマイクロレンズ相当のマイクロミラーをオン制御する。
2
エバネッセント光照明からスリット光照明に切り替えるには、 DMDのマイクロミラーをリ ング状のマイクロミラー 4a , 4a 力 内側のリング部分のマイクロミラーをオン制御し
1 2
、さらに落射照明に切り替えるには中心の円部分のマイクロミラーをオン制御する。 図 5 (a)の 20a は図 4 (a)で示すオン制御される DMDに対応したトーリックレンズ
1
の例を、図 5 (b)の 20a は図 4 (b)で示すオン制御される DMDに対応したマイクロレ
2
ンズ群の例をそれぞれ示して 、る。
このように臨界角以上を実現するリング状の照明は、リングの幅を DMD装置の対 応するマイクロミラーをオン制御することによって変えることができ、エバネッセント光 の発生領域の大きさを変えることができる。
[0018] 以上の各実施の形態で示した凹レンズおよび凸レンズは、説明の便宜上、 1枚の 場合を示したが、複数枚のレンズによってそれぞれ発散,集束を行うようにしたレンズ 群を構成することが可能である。
また、標本として細胞の例を説明したが、半透明体や液体などを対象としても良い。 産業上の利用可能性
[0019] 細胞などの標本の特定部分を蛍光観察する顕微鏡などに適用される。

Claims

請求の範囲
[1] レーザ光源と、
前記レーザ光源からの光を発散する第 1レンズ系と、
前記第 1レンズ系で発散された光束を、対物レンズ系の後焦点面に集束させる第 2 レンズ系と、
前記第 2レンズ系からの光が入射し、多数のマイクロミラーのオンオフ制御によって 光を反射する DMD装置と、
前記 DMD装置力 の反射光を入射して光路を変更するダイクロイツクミラーと、 前記ダイクロイツクミラーからの光を入射する前記対物レンズ系と、
前記対物レンズ系の前側に配置されたカバーガラスと、
前記カバーガラス上の標本からの光力 前記対物レンズ系および前記ダイクロイツ クミラーを通過し、該光を結像させる第 3レンズ系と、
前記第 3レンズ系で結像された前記標本の像を観察するための観察手段とを備え 前記 DMD装置のマイクロミラーをリング形状でオン制御して前記カバーガラス下面 に臨界角以上で入射させて全反射させ、前記カバーガラスに搭載された標本にエバ ネッセント光を発生させることを特徴とする DLP式エバネッセンス顕微鏡。
[2] 前記第 2レンズ系は前記第 1レンズ系と前記 DMD装置の間に凸レンズを配置して 平行光にし、前記 DMD装置とダイクロイツクミラーの間にさらに凸レンズを配置して 前記対物レンズ系の後焦点面に集束させることを特徴とする請求項 1記載の DLP式 エバネッセンス顕微鏡。
[3] レーザ光源と、
前記レーザ光源からの光を発散する第 1レンズ系と、
前記第 1レンズ系で発散された光束を平行光にする第 2レンズ系と、
前記第 2レンズ系からの光が入射し、多数のマイクロミラーのオンオフ制御によって 光を反射する DMD装置と、
前記 DMD装置力 の反射光を入射して光路を変更するダイクロイツクミラーと、 前記 DMD装置と前記ダイクロイツクミラーの間に配置され、光束を対物レンズ系の 後焦点面に集束させる集光用レンズ群系と、
前記ダイクロイツクミラーからの光を入射する対物レンズ系と、
前記対物レンズ系の前側に配置されたカバーガラスと、
前記カバーガラスに搭載された標本力 の光が、前記対物レンズ系および前記ダ ィクロイツクミラーを通過し、該光を結像させる第 3レンズ系と、
前記第 3レンズ系で結像された前記標本の像を観察するための観察手段とを備え 前記 DMD装置のマイクロミラーをリング形状でオン制御し、かつ集光用レンズ群系 で前記オン制御されたマイクロミラー力 の光^^光することにより前記カバーガラス 下面に臨界角以上で入射させて全反射させ、前記カバーガラスに搭載された標本に エバネッセント光を発生させることを特徴とする DLP式エバネッセンス顕微鏡。
[4] 前記集光用レンズ群系は、リング状に配置されたマイクロレンズ群で構成したことを 特徴とする請求項 3記載の DLP式エバネッセンス顕微鏡。
[5] 前記集光用レンズ群系は、トーリックレンズを用いたことを特徴とする請求項 3記載 の DLP式エバネッセンス顕微鏡。
PCT/JP2006/306409 2005-03-29 2006-03-29 Dlp式エバネッセンス顕微鏡 WO2006104183A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005093685A JP4370404B2 (ja) 2005-03-29 2005-03-29 Dlp式エバネッセンス顕微鏡
JP2005-093685 2005-03-29

Publications (1)

Publication Number Publication Date
WO2006104183A1 true WO2006104183A1 (ja) 2006-10-05

Family

ID=37053437

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/306409 WO2006104183A1 (ja) 2005-03-29 2006-03-29 Dlp式エバネッセンス顕微鏡

Country Status (2)

Country Link
JP (1) JP4370404B2 (ja)
WO (1) WO2006104183A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015510150A (ja) * 2012-02-29 2015-04-02 アジレント・テクノロジーズ・インクAgilent Technologies, Inc. ソフトウェア定義式顕微鏡

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5542067B2 (ja) * 2008-02-04 2014-07-09 コーニンクレッカ フィリップス エヌ ヴェ エバネセント照射及び蛍光に基づく分子診断システム
JP5311196B2 (ja) * 2008-09-16 2013-10-09 横河電機株式会社 顕微鏡装置
US9116353B2 (en) 2008-09-16 2015-08-25 Yokogawa Electric Corporation Microscope device
JP6351951B2 (ja) 2013-10-22 2018-07-04 浜松ホトニクス株式会社 全反射型光照射装置
DE102015101847B4 (de) 2015-02-10 2017-11-02 Eyesense Gmbh Strahlteiler und Anordnung zur Untersuchung einer mittels elektromagnetischer Strahlung anregbaren Probe

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002023061A (ja) * 2000-07-11 2002-01-23 Nikon Corp 顕微鏡の暗視野照明装置および暗視野照明方法
JP2003057172A (ja) * 2001-08-10 2003-02-26 Mitsubishi Heavy Ind Ltd 表面プラズモン共鳴センサ装置
JP2003084205A (ja) * 2001-09-10 2003-03-19 Olympus Optical Co Ltd 照明装置
JP2004212800A (ja) * 2003-01-07 2004-07-29 Olympus Corp 顕微鏡照明装置及びそれを用いた共焦点顕微鏡
JP2004302421A (ja) * 2003-03-17 2004-10-28 Nikon Corp 全反射顕微鏡
JP2004347777A (ja) * 2003-05-21 2004-12-09 Olympus Corp 全反射蛍光顕微鏡

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002023061A (ja) * 2000-07-11 2002-01-23 Nikon Corp 顕微鏡の暗視野照明装置および暗視野照明方法
JP2003057172A (ja) * 2001-08-10 2003-02-26 Mitsubishi Heavy Ind Ltd 表面プラズモン共鳴センサ装置
JP2003084205A (ja) * 2001-09-10 2003-03-19 Olympus Optical Co Ltd 照明装置
JP2004212800A (ja) * 2003-01-07 2004-07-29 Olympus Corp 顕微鏡照明装置及びそれを用いた共焦点顕微鏡
JP2004302421A (ja) * 2003-03-17 2004-10-28 Nikon Corp 全反射顕微鏡
JP2004347777A (ja) * 2003-05-21 2004-12-09 Olympus Corp 全反射蛍光顕微鏡

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015510150A (ja) * 2012-02-29 2015-04-02 アジレント・テクノロジーズ・インクAgilent Technologies, Inc. ソフトウェア定義式顕微鏡

Also Published As

Publication number Publication date
JP2006275685A (ja) 2006-10-12
JP4370404B2 (ja) 2009-11-25

Similar Documents

Publication Publication Date Title
JP4538633B2 (ja) Dlp式スリット光走査顕微鏡
EP1857853B1 (en) Illuminating device
US8014065B2 (en) Microscope apparatus with fluorescence cube for total-internal-reflection fluorescence microscopy
JP5006694B2 (ja) 照明装置
JP5941634B2 (ja) マイクロおよびマクロ対物レンズを含む顕微鏡
JP2002196246A (ja) 走査型光学顕微鏡
JP4370404B2 (ja) Dlp式エバネッセンス顕微鏡
WO2005106558A1 (ja) レーザ集光光学系
US20060250689A1 (en) Objective for evanescent illumination and microscope
JP2004086009A5 (ja)
US20170192217A1 (en) Optical-axis-direction scanning microscope apparatus
JP2011118264A (ja) 顕微鏡装置
KR20200096238A (ko) 기능 모듈 및 기능 모듈이 장착된 현미경
JPH09203864A (ja) Nfm一体型顕微鏡
JP5039307B2 (ja) 対物レンズおよび顕微鏡
WO2009142312A1 (ja) 顕微鏡装置
JP4128387B2 (ja) 顕微鏡装置
JP2003307682A5 (ja)
JP2007328223A (ja) 顕微鏡
JP2007264322A (ja) 赤外顕微鏡
US20190250387A1 (en) Microscope system
JP2002023061A (ja) 顕微鏡の暗視野照明装置および暗視野照明方法
JP2010257585A (ja) 照明装置及びこの照明装置を備えた光学装置
JP2010164834A (ja) 顕微鏡装置、蛍光キューブ
JP2016057405A (ja) 多光子励起型観察システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06730357

Country of ref document: EP

Kind code of ref document: A1