WO2006100915A1 - 水素生成装置、レーザ還元装置、エネルギー変換装置、水素生成方法および発電システム - Google Patents

水素生成装置、レーザ還元装置、エネルギー変換装置、水素生成方法および発電システム Download PDF

Info

Publication number
WO2006100915A1
WO2006100915A1 PCT/JP2006/304470 JP2006304470W WO2006100915A1 WO 2006100915 A1 WO2006100915 A1 WO 2006100915A1 JP 2006304470 W JP2006304470 W JP 2006304470W WO 2006100915 A1 WO2006100915 A1 WO 2006100915A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen
metal
laser
water
reaction
Prior art date
Application number
PCT/JP2006/304470
Other languages
English (en)
French (fr)
Inventor
Takashi Yabe
Kazunari Ikuta
Original Assignee
Tokyo Institute Of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Institute Of Technology filed Critical Tokyo Institute Of Technology
Priority to EP06715390A priority Critical patent/EP1862430A4/en
Priority to AU2006225880A priority patent/AU2006225880B2/en
Priority to US11/908,873 priority patent/US8137638B2/en
Publication of WO2006100915A1 publication Critical patent/WO2006100915A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J7/00Apparatus for generating gases
    • B01J7/02Apparatus for generating gases by wet methods
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/12Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
    • B01J19/122Incoherent waves
    • B01J19/127Sunlight; Visible light
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/06Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
    • C01B3/08Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents with metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Definitions

  • Hydrogen generator laser reduction device, energy conversion device, hydrogen generation method and power generation system
  • the present invention relates to a technique for recovering elemental force reaction energy such as sodium, potassium, magnesium, aluminum, calcium, and zinc and generating hydrogen gas.
  • the present invention relates to a hydrogen generation apparatus that reduces a metal oxide, a generated metal oxide or a chemical substance using a laser, a laser reduction, an energy conversion method, a hydrogen generation, and a power generation system.
  • Patent Document 1 in a hydrogen generation method in which hydrogen is generated by hydrolyzing a hydride in a sealable main body container, a small amount of hydride and water are used. Both of them are formed by a water-repellent water-permeable water-permeable material that is permeable to water, and are separated by a squeezed member and reacted with water molecules and hydrides that permeate the water-repellent water-permeable material.
  • Patent Document 2 in a hydrogen generation method in which hydrogen is generated by hydrolyzing a hydride in a sealable main body container, a small amount of hydride and water are used. Both of them are formed by a water-repellent water-permeable water-permeable material that is permeable to water, and are separated by a squeezed member and reacted with water molecules and hydrides that permeate the water-repellent water-permeable material.
  • a hydrogen generation method for generating hydrogen is disclosed!
  • Patent Document 2 discloses a container for storing a hydrogen generating fuel composed of aluminum and an alkali metal or an alkaline earth metal, and the generation of hydrogen contained in the container.
  • a hydrogen generator for recovering hydrogen generated by the hydrogen recovery means comprising heating means for heating and melting the fuel for alloying and water supply means for supplying water to the hydrogen generating fuel in the container Disclosure!
  • Patent Document 3 uses a hydrogen generating fuel made of an alloy of aluminum and an alkali metal or an alkaline earth metal, and cools the inside of the container. And a hydrogen generation method using the device.
  • Patent Document 4 a reaction metal body is melted through a heat source, and the melted reaction metal body is stored at the bottom of the container and the molten reaction metal.
  • a hydrogen generation method is disclosed in which water is supplied to the body to generate a thermochemical reaction, the obtained hydrogen is led out, and the metal oxide body is discharged out of the container through the discharge means.
  • JP-A-8-59201 Patent Document 5
  • JP-A-7-109102 Patent Document 6
  • a hydrogen generation method and an apparatus therefor are disclosed in which water is supplied from above the reaction metal body and hydrogen gas is generated by an electrothermal chemical reaction between the reaction metal body and water.
  • Patent Document 7 in order to generate hydrogen from water, aluminum powder and calcium carbonate powder are included, and the mixing ratio of the aluminum powder is 85% by mass.
  • a hydrogen generation material and a hydrogen generation method and apparatus using the material are as follows: Disclosure.
  • a hydrogen generating material is used as a mixture in order to obtain a high temperature state in which water can be reduced using metal, and the mixture is heated.
  • the purpose is to generate hydrogen gas by chemical reaction or by using a substance containing high hydrogen atoms.
  • the metal element generates hydrogen and then is oxidized to a metal oxide.
  • the metal oxide is discarded or used for other purposes, it generates hydrogen.
  • the total environmental cost, including power consumption and the use of fossil fuels is not necessarily low. .
  • the oxidation and reduction of metal elements both proceed at high temperatures, in addition to using wet electrochemical methods.
  • hydrogen is generated by generating metal element acid at the minimum equipment cost, and at the same time, the object to be treated is changed, and metal oxide is reduced and metal is generated by changing the minimum equipment configuration. If it is possible to provide a hydrogen generator that can do this, it will be possible to significantly reduce environmental costs including raw materials for hydrogen generation.
  • the laser device mainly generates electric light by converting electric energy into light (lamp lighting) or discharge form and exciting the laser medium.
  • This method includes a multi-stage energy conversion process and is known to have low energy efficiency (efficiency of several percent or less). The reason for this is that originally good quality electrical energy is converted into light through low-efficiency energy conversion.
  • a solid-state laser pumped with a semiconductor laser has been proposed as an improvement of this point, and a photoelectric conversion efficiency of about 50% has been obtained, and its versatility is also increasing. Ma It is thought that it will improve.
  • a solar light pumped laser that uses sunlight as a light source is also known. If sunlight is used as the excitation light source, it can be used as a light source for laser oscillation without using an electro-optical conversion process that directly uses the electricity generated by fossil fuels. For industrial equipment such as equipment, it is considered that laser equipment can be used more easily, at low cost, and with low environmental impact.
  • power generation methods that do not rely on fossil fuels, such as wind power generation, tidal power generation, and geothermal power generation are being put into practical use. For example, in recent years, wind power generation is characterized by the fact that the amount of power generation fluctuates significantly depending on the conditions, but the peak power generation amount can provide power exceeding 2000 kWh. It has a big problem of changing significantly. By using a laser reduction device that uses a laser that oscillates with this electric power, energy can be stored in the form of magnesium, and energy supply with reduced environmental load becomes possible.
  • metal ions are generated in the initial process of decomposition of metal oxides and the like. Since metal ions generated by laser reduction form a local plasma, they can be controlled by using existing magnetic confinement devices, and metal ions and negative ions can be controlled in a direction perpendicular to the magnetic field direction! Since it moves in the opposite direction, it is expected that energy conversion by photoelectric conversion will be possible by taking it out of the system as current.
  • Patent Document 1 Japanese Patent Laid-Open No. 2003-313001
  • Patent Document 2 Japanese Patent Laid-Open No. 2003-226502
  • Patent Document 3 Japanese Patent Laid-Open No. 2002-69558
  • Patent Document 4 JP-A-8-109001
  • Patent Document 5 JP-A-8-59201
  • Patent Document 6 Japanese Patent Laid-Open No. 7-109102
  • Patent Document 7 Japanese Patent Application Laid-Open No. 2004-231466
  • the conventional general-purpose laser consumes electric power and has a low electric-light energy conversion efficiency
  • the solar-pumped laser is only experimentally researched at universities' research institutes, There was a problem that it could not be applied to applications.
  • the present invention has been made in view of the above prior art, and the present invention efficiently uses a renewable energy, recovers reaction energy, and generates hydrogen gas.
  • the purpose is to provide.
  • Another object of the present invention is to provide a laser reduction device that can reduce the generated metal oxide to an alkali metal or an alkaline earth element again using renewable energy. Objective.
  • an object of the present invention is to provide a hydrogen generation method using the above-described hydrogen generation apparatus and laser reduction apparatus.
  • the present invention also relates to oxygen-containing chemical substances such as NOx, CO, dioxin, and environmental hormones.
  • An object of the present invention is to provide a laser reduction device that can be decomposed by reduction or conversion into other compounds.
  • the present invention finds that metal cations are generated when laser reduction of alkali metal or alkaline earth metal is performed, and the generated plasma is generated by confining a magnetic field using charged particles generated at this time.
  • An object of the present invention is to provide an energy conversion device and a power generation system by controlling the power.
  • the metal element can be heated to a high temperature to obtain the ability to reduce water, or water can be reduced to hydrogen gas simply by contacting with water, and the generated oxide is thermally decomposed. Again, focusing on providing the metal element, the present invention has been achieved.
  • alkali Metal elements or alkaline earth elements are first combusted, and water is supplied under the condition of being kept at a high temperature. The supplied water generates hydrogen by the reduction action of the metal elements and recovers the generated hydrogen.
  • the oxide obtained as a by-product is heated to a high temperature using a laser beam to thermally decompose the oxide and regenerate the metal element again.
  • the heating in the present invention is performed using a solar-excited laser, and the use of energy derived from fossil fuel for heating can be minimized.
  • the regenerated metal elements are used again for hydrogen production.
  • an alkali metal, an alkaline earth metal, NOx, CO or the like is specified.
  • Chemical substances can be decomposed or converted efficiently and at low cost using a laser light source such as a solar pump laser, and energy conversion can be performed using charged particles generated in plasma.
  • a laser light source such as a solar pump laser
  • a hydrogen extraction pipe for recovering hydrogen gas and reaction energy generated by the reaction between the metal element and the water
  • the metal element may be selected from group forces including sodium, potassium, magnesium, aluminum, strength, zinc, or a mixture thereof.
  • the hydrogen generation device may include a hydrogen storage device that stores the recovered hydrogen gas, and the hydrogen storage device may include a hydrogen storage alloy.
  • a laser reduction device for reducing a metal oxide to a metal using a laser beam
  • the metal oxide is irradiated with a laser beam through the irradiation window inside the vacuum vessel. With laser to reduce
  • a laser reduction device is provided.
  • the metal oxide can be selected from acid sodium, acid potassium, magnesium oxide, acid aluminum, acid calcium, zinc oxide, or a mixture thereof.
  • the laser can be a solar light pumped laser.
  • a hydrogen generation method for generating hydrogen gas by reducing water with a metal comprising:
  • a group force in which the metal includes sodium, potassium, magnesium, aluminum, calcium, zinc, or a mixture thereof can be selected.
  • the method may include a step of recovering the generated hydrogen gas, and the step of storing the recovered hydrogen gas may include a step of causing the hydrogen storage alloy to absorb the hydrogen gas.
  • the laser reduction can reduce metal oxide or metal hydroxide using a solar light excitation laser.
  • a laser reduction device for reducing an oxygen-containing chemical substance using a laser beam the vacuum container containing the chemical substance and including an irradiation window;
  • a solar-excited laser that irradiates the inside of the vacuum vessel with a laser beam through the irradiation window to reduce the chemical substance
  • a laser reduction device is provided.
  • An apparatus for performing energy conversion by laser reduction using a laser beam to reduce an oxygen-containing compound A container for containing the chemical substance;
  • a magnetic field generator for generating a magnetic field for deflecting the plasma
  • a grid disposed in the vessel for extracting current from the plasma in the vessel
  • an energy conversion device including a capacitor for accumulating charges generated by the plasma outside the container.
  • a reaction vessel for reacting metal elements A reaction vessel for reacting metal elements
  • a feeder for supplying the molded body of the metal element into the reaction vessel so as to come into contact with the water
  • a hydrogen extraction pipe for recovering hydrogen gas and reaction energy generated by the reaction between the metal element and the water
  • a hydrogen generator including a refrigerant jacket for cooling the reaction vessel.
  • a recovery container that is separated from the reaction container by sieving and recovers the oxide powder of the metal element.
  • a power generation system including the hydrogen generator described in any one of the above items can be provided.
  • a reaction vessel for holding a metal-containing substance for holding a metal-containing substance
  • a portion of the metal-containing substance that contacts the water is heated to oxidize the metal-containing substance, and a hydrogen extraction pipe that recovers hydrogen gas and reaction energy generated by the reaction between the metal-containing substance and the water;
  • Energy conversion is performed by using the hydrogen gas with the hydrogen extraction pipe force.
  • a reducing device that regenerates the metal-containing material by reducing an oxygen-containing compound produced by oxidation of the metal-containing material
  • a recovery device for recovering the metal-containing material regenerated by the reduction device, and a regenerative hydrogen generation device comprising:
  • FIG. 1 is a diagram showing a schematic configuration of a hydrogen generator of the present invention.
  • the hydrogen generator 10 of the present invention generally includes a reaction vessel 12, a hydrogen extraction pipe 14 for taking out generated hydrogen out of the system, and a water tank 16 for supplying water to the reaction vessel. Yes.
  • the gap between the reaction vessel 12 and the water storage tank 16 is provided with an opening 20 and when no water is supplied, 18 is closed.
  • the valve 18 is driven manually or by an electric actuator 22 to supply water stored in the water storage tank 16 to the reaction vessel 12.
  • a material 24 containing a metal element such as metal magnesium is accumulated.
  • the metal in the present invention means sodium, potassium, magnesium, aluminum, calcium, zinc, or a mixture thereof. Further, in the present invention, a wider range of alkali metal elements or alkaline earth elements can be contained. Further, as a compound that can be decomposed according to the present invention, oxygen-containing chemical substances NOx and CO, dioxin And environmental hormones.
  • a material 24 such as metallic magnesium is first ignited in the reaction vessel 12, burned in the presence of oxygen, and brought to a high temperature state.
  • “high temperature” means a temperature at which normal temperature is not included and the material used in the present invention can reduce water.
  • the valve 18 is opened manually or by an electric actuator, and water is showered inside the reaction vessel 12.
  • the magnesium metal is burned at a high temperature in the specific embodiment of the present invention, and the magnesium heated to the high temperature reduces the supplied water to generate hydrogen gas.
  • the generated hydrogen gas is taken out of the system through a hydrogen extraction pipe 14 disposed on the upper side of the reaction vessel 12, and its reaction energy is recovered by a heat exchanger (not shown), for example. It is consumed directly by hydrogen consuming devices such as automobiles equipped with fuel cells.
  • the recovered reaction energy can be reused for heating the reaction vessel 12 or the like.
  • all or part of the generated hydrogen gas can be stored in a hydrogen storage device 26 equipped with a hydrogen storage alloy or the like, and the hydrogen gas can be discharged and used as necessary.
  • water is generated by reducing water at room temperature, such as metallic sodium and metallic lithium, it is not necessary to heat the material to a high temperature.
  • examples of the hydrogen storage alloy include La Nb Ni Co Al, La Nb Zr
  • Mm is a misch metal and consists mainly of Ce (40 to 50%), La (20 to 40%), Pr, and Nd. It is a mixture of rare earth elements. ).
  • Laves phase (AB type) alloy specifically, Ti -Mn, Ti-Cr and Zr-Mn alloys can also be used. More specifically, (Ti Zr V
  • the magnesium after the reaction that generates hydrogen is converted into an acid or hydroxide such as magnesium oxide or magnesium hydroxide, and accumulated in the reaction vessel 12.
  • the accumulated magnesium oxide or magnesium hydroxide can then be taken out of the reaction vessel 12 and used as a raw material for regeneration of magnesium metal and the like.
  • FIG. 2 is a diagram showing a laser reduction device used for the regeneration of metallic magnesium.
  • the apparatus 30 shown in FIG. 2 generally includes a vacuum vessel 32, a line 34 for supplying metal oxides, and a line 36 for supplying iron iodide used for reduction in certain embodiments of the invention.
  • an optical system 38 including an irradiation window disposed in a vacuum vessel for locally generating a high temperature by introducing a laser beam.
  • the metal oxide is heated in a kiln (not shown) to convert the hydroxide into an acid, and then supplied into the vacuum vessel 32 through the line 34 and the hopper.
  • the key element (Si) can be used alone, or the key element for reduction need not be used.
  • the vacuum vessel 32 is depressurized, and then a laser beam is irradiated through the optical system 38 to cause a reduction reaction.
  • Cr 3+ , Co 2+ , Ce, Pr, Pm are added to rubies, Nd 3+ : YAG, gannet, sapphire, emerald, alexandrite, etc. for flash lamp excitation, semiconductor laser excitation, etc. , Sm, Eu, Tb, Dy, Ho, Er, Tm, Yb, Lu and other lanthanoid elements, or their ions, and lasers using laser media doped with transition metal elements or transition metal ions be able to.
  • a catalyst may be used to promote the reduction.
  • an optical scanning mechanism can be provided in the optical system 38 so that the target substance such as magnesium oxide can be irradiated as uniformly as possible.
  • FIG. 3 is a diagram showing a schematic configuration of the solar light excitation laser 40 of the present invention.
  • Solar-pumped laser of the present invention 40 Includes a laser medium 42, a receiving device 44 for accommodating the laser medium 42, a total reflection mirror 46 disposed at one end of the laser medium 42, and a noise mirror 48 disposed at the other end. It is configured to include.
  • the accommodation device 44 further includes an optical element 52 that condenses the sunlight 50 onto the laser medium 42, and optically excites the laser medium 42 to form an inverted distribution.
  • the optical element 52 includes a reflection element, a lens element, and the like, and is cooled by a cooling liquid such as water held in the storage device 44, so that highly efficient and efficient laser oscillation is possible under efficient cooling.
  • a cooling liquid such as water held in the storage device 44
  • Both ends of the storage device 44 shown in FIG. 3 are the material forming the end of the storage device 44, or the laser medium 42 when the laser medium 42 is directly exposed to the end of the storage device 44. And the Brewster angle defined by the air. In the present invention, when it is not particularly necessary to provide a Brewster angle, an end portion having another angle can be used.
  • the storage device 44 may be formed integrally with the laser medium 42 or may be fixed to the end surface of the storage device 44 using an appropriate flange, O-ring, or the like.
  • the end of the storage device 44 is coated with an antireflection film ARC to improve efficiency.
  • the inside of the housing device 44 is filled with a cooling liquid such as water, and the laser medium 42 accompanying laser oscillation is cooled to prevent damage to the laser medium due to thermal shock.
  • the shape of the storage device 44 can be circular, elliptical, parabolic, etc., and when using a storage device with a circular cross section, the position in response to the curvature of the storage device and the refractive index of the cooling refrigerant A laser medium is disposed on the surface.
  • the laser medium can be arranged at one focal point and sunlight can be condensed at the other focal point, and these shapes can be combined to condense on the laser medium. Can be made.
  • the storage device 44 has a function of concentrating sunlight on the laser medium 42, and also holds the cooling liquid inside, so that the cooling liquid is used together with the cooling of the laser medium.
  • Use of water as the cooling liquid is preferred for cost and operability.
  • Cooling refrigerant is also capable of transmitting sunlight and simultaneously concentrating sunlight on the laser medium. Sealed or contained in a containment device containing a lens Can be distributed.
  • a light emitting diode or a semiconductor laser that generates laser light having a wavelength corresponding to the laser wavelength can be used so that the laser can be appropriately triggered.
  • a polarizing plate and a material that uses the light power effect that polarizes the polarization angle by an external electrical trigger it is possible to use a polarizing plate and a material that uses the light power effect that polarizes the polarization angle by an external electrical trigger, and a supersaturated dye is used. You can also trigger laser oscillation in Q-switch mode.
  • the laser medium is formed as an optically transparent rod having a diameter of several mm to several cm.
  • a laser medium that can be used in the present invention, for example, ruby (Cr 3+ : A1
  • An element selected from the group consisting of, an element selected from the group consisting of Ga, Sc, and Lu is used for Site B, and a group force consisting of Y, Gd, La, and Lu is also used for Site C.
  • the laser medium 42 further includes other rare earth elements such as Ce, Pr, Pm, Sm, Eu, Tb, Dy, Ho, Er, Tm, Yb, Lu, or the like. And laser media of different characteristics doped with transition metal elements or transition metal ions can be used.
  • the total reflection mirror 46 includes a mirror using a metal coating such as A1 vapor deposition, a mirror including a coating that selectively reflects a laser oscillation wavelength by a dielectric multilayer coating, or a prism system using total reflection.
  • the half mirror 48 can preferably be a mirror with a transmittance of about 10% to 90%, including a dielectric multilayer coating.
  • the optical element 52 that can be used in the present invention can be used in any known coating such as a dielectric multilayer coating or a metal coating.
  • the metal produced by heating and reduction is Then, after being cooled by the condenser 54, it is recovered, forged by the forging device 56, and recovered as a bare metal 58. Further, the iron halide accumulated in the vacuum vessel 32 is also recovered, and after the soluble components are separated, it is recovered as slag.
  • the recovered metal 58 can be supplied again to the hydrogen generator of the present invention, or can be used for other purposes. Furthermore, in the present invention, it is not always necessary to use a catalyst such as iron oxide!
  • hydrogen gas generated by the hydrogen generator shown in FIG. 1 is introduced into the chamber to generate a reducing atmosphere, and a reduction reaction is generated by irradiation with a solar-excited laser for decomposition or other Can be converted into chemical substances.
  • a reduction reaction is generated by irradiation with a solar-excited laser for decomposition or other Can be converted into chemical substances.
  • FIG. 4 is a diagram showing another embodiment of the energy conversion device of the present invention.
  • a grid 68 and an oxygen-containing chemical substance 74 are arranged in a toroidal container 62 formed in a toroidal shape.
  • MgO can be used in a specific embodiment of the present invention, but the present invention is not limited to MgO.
  • the oxygen-containing chemical substance 74 is irradiated with the laser beam LB from the light transmitting window 76.
  • the laser beam that can be used in this case can be generated using the laser described above.
  • the laser beam LB is focused on an oxygen-containing chemical substance 74 through a condensing optical system 64 such as a lens, and decomposes the oxygen-containing chemical substance 74 to generate a plasma 78.
  • Plasma 78 in a particular embodiment of the present invention, includes Mg + and negative ions are formed that provide a corresponding charge balance.
  • a magnetic field is applied to the toroidal container 62 of the energy conversion device 60 along the circumferential direction of the toroidal container 62 so that the generated plasma 78 can be magnetically confined. For this reason, charged particles in plasma 78 drift at a velocity given by (VBZB) RU.
  • B is the magnetic field intensity
  • VB is the spatial gradient of the magnetic field
  • Rs is the Larmor radius (the turning radius in the magnetic field)
  • U is the turning speed of the charged particles.
  • the intensity of the magnetic field used in the present invention can be approximately 10 T or less, and the electric charge accumulated in the capacitor for a certain time is supplied to the load 72 to drive the load. For this reason, it is possible to convert actinic light energy into electric energy by using charged particles generated when performing the laser reduction of the present invention.
  • the toroidal container 62 is provided with a recovery container 68 for recovering a metal that gives a cation.
  • the recovery container 68 recovers a metal such as Mg, and at the same time, the gas force exhaust line 80 also generates a tractive force. It is discharged outside the toroidal container 62.
  • FIG. 5 is a schematic diagram showing a state of charged particles that drift between the grids 66.
  • the grid 66 is grounded on the upper side, and the cation generated in the plasma 78 moves to the lower side while performing the Larmor radius drift motion, and performs the negative ion force S Larmor radius drift motion. However, it is moving upward, and current is generated between the grids.
  • Grid 66 is formed as a suitable mesh and allows the discharge and passage of cations. In the present invention, an appropriate potential difference is set in the grid 66.
  • FIG. 6 shows the emission spectrum of the cationic species observed in the plasma formed according to the present invention.
  • the emission spectrum of Mg + obtained for a plasma equivalent to about 10,000K formed by irradiating an MgO target with an Nd 3+ : YAG laser (pulse output 0.3J, pulse width 5ns) MgII, 448. 1130 nm, 2P6 4f—2p6 3d, and Mgl, 518. 36042 nm, 3s4s—3s3p).
  • Mg + emission is clearly observed from the plasma confined in the toroidal vessel, and charged particles can be generated in the plasma generated by laser irradiation. It was shown that it can be done.
  • FIG. 7 is a diagram showing an essential configuration of the second embodiment of the hydrogen generator of the present invention.
  • the hydrogen generator 90 shown in FIG. 7 has sodium (Na), potassium (K), magnesium ( Mg), potassium (Ca), aluminum (Al), zinc (Zn) or a mixture of these! /, Etc. is oxidized by HO, and conversely, HO is reduced to H to generate hydrogen.
  • Figure 1
  • the hydrogen generator 90 shown in FIG. 7 is inserted into the reaction vessel 92 and the reaction vessel 92, and an introduction pipe for introducing HO into the reaction vessel 92.
  • 94 and Mg are inserted into the reaction vessel 92 and the reaction vessel 92, and an introduction pipe for introducing HO into the reaction vessel 92.
  • the reaction vessel 92 can be formed with material forces such as SUS 304, SUS316, SUS321, SUS329, SUS309, SUS310, SUS317, SUS405, SUS347, SUS420, SUS410 S, O-ring, metal seal, etc. Sealing from the outside can be ensured by using a proper sealing means.
  • H 2 O preferably enters the reaction vessel 92 in the form of high temperature 'high pressure steam.
  • the hydrogen generator 90 shown in FIG. 7 includes a sieve 108 that extends through the inside and is formed of mesh meshes that are superposed on each other.
  • the sieve 108 is reciprocated in the left-right direction on the paper surface by a motor 110 or the like disposed outside the reaction vessel 92 !, and the resulting massive MgO is crushed and reacted as a powder 112 having a predetermined particle size. Accumulate under container 92.
  • Mg and! A film of a material, a plate, flakes, and a slice are introduced into the reaction vessel 92 through the feeder 96, but the feeder 96 is adapted to the shape of the film, flakes, and the like. Anything can be used as long as it has a supply capability.
  • a die can be used as the feeder 96.
  • materials such as films, plates, flakes, and sliced Mg are separately stored in the supply chamber 98 so that Mg and the like are not oxidized by air before being introduced into the die. be able to.
  • the interior of containment chamber 98 is suitable for N Ar, etc.
  • the material that can be used in the present invention can be 0.1 to several mm thick when it is a film or plate, and the major axis is several mm to several cm when it is flakes. Can do. In the present invention, the amount of H 2 O to be supplied and the supply amount of the material film, etc.
  • a material having an acid-oxidation endotherm or a calorific value smaller than that of Mg, for example, zinc can be mixed.
  • a material roll 104 and a conveying roller 102 are arranged inside the storage chamber 98, and in response to the degree of oxidation and consumption of the material in the reaction container 92, a film shape or a plate shape The material 100 is supplied into the reaction vessel 92.
  • a cutting blade is disposed in the storage chamber 98 and the material roll 104 is rotated. Power can also be obtained using H or heat discharged from reaction vessel 92.
  • the body 112 is collected at regular intervals or a predetermined amount of exhaust loca (not shown) and provided for energy conversion by laser reduction.
  • FIG. 8 is a diagram showing a more detailed configuration of the second embodiment of the hydrogen generator of the present invention.
  • the hydrogen generator 120 shown in FIG. 8 includes a reaction vessel 124 and a heat exchange jacket 122 for surrounding the reaction vessel 124 and exchanging heat from the reaction vessel 124.
  • a refrigerant (water) supply line 130 is connected to the heat exchange jacket 122 via a valve 128.
  • the valve 128 can be, for example, a three-way valve, and can switch between a refrigerant supply mode and a heat exchange / water vapor supply mode by connecting the supply line 132 in response to the stop position.
  • the tip of the supply line 132 is introduced into the reaction vessel 124, and water vapor ( ⁇ 200 ° C.) generated by heat exchange is introduced into the reaction vessel 124.
  • a plate of material such as Mg or an introduction slit (not shown) provided on the upper part of the film force and a feed mechanism (see FIG. (Not shown).
  • the plate, film, or flake of the material can be used in any arrangement that does not interfere with the processing. It can be introduced and it is not always necessary to introduce material along the inner wall.
  • a spark gap 134 made of tungsten (W) or the like is inserted into the reaction vessel 124 as an active means for providing initial combustion that provides a temperature for sustaining the reaction. It is possible to cause burning of the material.
  • a YAG laser, a semiconductor laser, a solar light pumped laser, or the like can be used as the active light means instead of the spark gap 134.
  • a metal that generates an exothermic reaction of water at a high temperature it is preferable to use a metal that generates an exothermic reaction of water at a high temperature.
  • a material that generates a small endothermic or exothermic material during the water reducing reaction such as zinc.
  • a cap 138 in which fastening means is formed is connected to the upper part of the reaction vessel 124.
  • the cap 138 is a discharge line for discharging H generated from the cap 138 to the outside 1
  • Cap 138 is connected to reaction vessel 124 using fastening means that can withstand high temperature and pressure.
  • a fastening means any means that should be known so far can be used, but specific examples include a kakura joint.
  • a sieve 126 for pulverizing the generated oxide is formed on the lower side of the reaction vessel 124, and the crushed acid oxide powder 146 is formed on the lower side of the sieve 126. Accumulated in collection container 142.
  • the reaction vessel 124 and the collection vessel 142 are connected using a flange. For example, the powder material generated from the observation window formed in the collection vessel 142 is monitored, After the predetermined charge has accumulated, the reaction container 124 and the recovery container 142 fastened with bolts and nuts can be separated to recover the powder.
  • the recovered oxide such as MgO is supplied again to the laser reduction method shown in FIG. 2 and the like, and can be used for regeneration of Mg and the like. Further, H generated by the hydrogen generator 120 in FIG. 8 can be directly used as fuel for the fuel cell. The generated H is
  • the hydrogen generator 120 shown in FIG. 8 of the present invention can be applied to a non-polluting internal combustion engine, a non-polluting generator, and the like that are not powerful as a hydrogen supply source. Can be significantly reduced.
  • the present invention can be used for a city emergency lifeline in the event of a disaster.
  • a major earthquake it is important to secure lifelines and extinguish the fire.
  • an M7 class earthquake occurs in large cities such as Tokyo, Osaka, Nagoya and Fukuoka
  • 77% of damaged houses will be lost due to the fire. It is estimated.
  • water for disaster prevention is secured at 12,000 locations, but it is considered impossible for fire trucks to reach this location during a disaster.
  • the present invention can also be used as an emergency lifeline restoration device using a reaction between water, Mg having no spontaneous combustion property, and water.
  • the present invention functions as an emergency lifeline restoration device as follows.
  • a gas turbine is started by heat generated by Mg and water and heat by hydrogen, and fire extinguishing activities are carried out in a local government by a pump from fire prevention water.
  • a gas turbine, rotary engine, reciprocating engine, Stirling engine, etc. in which the hydrogen produced in the present invention is combusted in an amount of 35 cm square Mg, you will have 6 to 8 hours of fire truck power. It will be possible.
  • Drinking water The heat generated during the reaction of Mg and water can evaporate the water, thereby securing distilled water and providing drinking water.
  • the heat generated during the reaction of 35 cm square Mg generates steam in addition to hydrogen. By condensing this steam, 800 kg of safe drinking water can be produced.
  • Electricity can be secured by generating electricity using hydrogen as the power of the gas turbine, rotary engine, and reciprocating engine. In this case, it is considered that 35cm square Mg can secure electricity for 1 household for 1-2 weeks to about 1 month.
  • Hot water Regeneratively using the heat of the condensation process of distilled water described above to boil fire-proof water Hot water such as Lu can be secured.
  • the merit of Mg is that it is not flammable like gasoline or heavy oil, so it can be buried near the surface of the ground and stored safely with a simple shielding process. 'Explosion ⁇ It is not likely to cause health and safety problems.
  • FIG. 9 shows still another embodiment of the laser reduction device of the present invention.
  • the laser reduction device 150 shown in FIG. 9 includes a container 152 having a window 160 for allowing a laser beam to enter, and a nozzle 156 for injecting an inert gas such as helium, argon, and nitrogen into the container 152. Yes.
  • Mg0148 in the form of lumps, granules and pellets is accumulated.
  • the laser beam 162 is irradiated onto the MgO and is focused on an appropriate position of the MgO, and the MgO is melted by laser ablation.
  • the laser beam 162 can be moved in the direction of arrow A to increase the MgO melting area and improve the efficiency.
  • the inert gas can be injected into the container 152 after being heated to a high temperature so as not to be cooled by the injection of the inert gas.
  • hydrogen can be generated and stored as needed while applying a minimum load to the environment, so that more versatile supply of hydrogen energy is possible. It is possible to make a major change in the energy infrastructure infrastructure, and contribute greatly to global warming, fossil combustion, and other problems.
  • a laser reduction device, an energy conversion device, and a hydrogen generation method can be provided.
  • the hydrogen produced by the present invention can be provided for a fuel cell, but the generated hydrogen can be directly applied as a fuel for an internal combustion engine. It can also be used appropriately for the provision of services.
  • FIG. 1 is a schematic view of a hydrogen generator of the present invention.
  • FIG. 2 is a schematic view of a laser reduction device of the present invention.
  • FIG. 3 is a schematic side view of a solar light pumped laser used in the present invention.
  • FIG. 4 is a schematic view of the energy conversion device of the present invention.
  • FIG. 5 is a schematic view of drift motion of charged particles in the energy conversion device of the present invention.
  • FIG. 6 is a diagram showing an emission spectrum of positive ions generated by using the energy conversion device of the present invention.
  • FIG. 7 is a diagram showing an essential configuration of a hydrogen generator according to a second embodiment of the present invention.
  • FIG. 8 is a diagram showing a detailed configuration of a hydrogen generator according to a second embodiment of the present invention.
  • FIG. 9 is a view showing another embodiment of the laser reduction device of the present invention.
  • Toroidal container 64 ... Condensing optics, 66 ... Grid, 68 ... Collection container, 70 ⁇ Capacitor, 72... Load, 74 ⁇ Target, 76 ⁇ Light transmissive window, 78 ⁇ Plasma, 80 ⁇ Exhaust line, LB ⁇ Laser light

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Toxicology (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Fuel Cell (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

【課題】 水素生成装置、レーザ還元装置、エネルギー変換装置、水素生成方法および発電システムを提供すること。 【解決手段】 本発明の水素生成装置10は、金属元素を保持する反応容器12と、反応容器12に水を供給するための貯水槽16と、金属元素と水との反応により生成した水素ガスを回収する水素取出管14とを含んでいる。本発明では、回収された水素ガスを貯蔵する水素貯蔵装置26を含んでいてもよい。また、本発明は、水素ガスを還元して生成した金属元素の酸化物または水酸化物をレーザ還元し、金属元素を再生する。レーザ還元においては、太陽光励起レーザを使用することができる。また、本発明によればレーザ還元の際に形成される荷電粒子を使用して電流を生成する、エネルギー変換装置および上述の水素発生システムを使用する発電システムを提供することができる。

Description

明 細 書
水素生成装置、レーザ還元装置、エネルギー変換装置、水素生成方法 および発電システム
技術分野
[0001] 本発明は、ナトリウム、カリウム、マグネシウム、アルミニウム、カルシウム、亜鉛など の元素力 反応エネルギーを回収すると共に、水素ガスを発生させる技術に関し、よ り詳細には、金属を用いて水を水素に還元する水素生成装置、および生成された金 属酸ィ匕物または化学物質を、レーザを使用して還元するレーザ還元、エネルギー変 換方法、水素生成および発電システムに関する。
背景技術
[0002] 水素ガスは、酸化剤により酸化しても水を生成するので、燃料電池の燃料などタリ ーンな燃焼として注目されており、また近年、化石燃焼の枯渴や、地球温暖化の観 点から基幹エネルギー 'インフラ基盤を、化石燃料力もクリーンなエネルギーへと切 換える必要もあり、注目されている燃料である。これまで、水素は、水の電気分解反 応により生成され、高圧容器に充填された後、各所に運搬されて使用されている。こ のため、運搬において重量が増え、また可燃性であるが故にその取り扱いにも注意 を必要とし、また、長期保存性という点力も見ても充分なものではなかった。
[0003] このため、今後、水素ガスを運搬するのではなぐ簡便に、かつクリーンなエネルギ 一で生成する装置および方法が必要とされるものと考えられる。また、水素ガスの生 成についても、水の電気分解といった膨大な化石燃料を使用して生成された電気を 大量に使用する方法ではなぐより再生可能エネルギーを有効に利用しつつ、水素 ガスを発生させる技術が必要となるものと考えられる。また、水素生成装置およびそ のための方法もできるだけ原料を再利用することが好ましい。
[0004] 従来、含マグネシウム酸化物(酸化マグネシウム、ドロマイト)などの酸化物資源を約 1000°Cの高温とするアーク放電を使用して熱的に還元する方法が知られており、こ のようなシステムに水を添カ卩しても水素ガスを得ることができると考えられる。しかしな がら、水素ガスを得る目的が COなどの削減を行うためのクリーンエネルギー生成と いうことに鑑みれば、アーク放電を生成するための電力は、多くの場合に環境負荷を 増大させる原因となると考えられる。
[0005] また、水素生成装置およびそのための方法が種々提案されている。例えば、特開 2 003— 313001号公報 (特許文献 1)では、密閉可能な本体容器内で、水素化物を 加水分解させて水素を発生させる水素発生方法において、水素化物と水とを、少な くとも一部が水蒸気透過性を有する撥水性水蒸気透過材で形成されて!ヽる部材によ つて隔離すると共に、該撥水性水蒸気透過材を透過してくる水分子と水素化物と反 応させて水素を発生させる水素発生方法が開示されて!、る。
[0006] また、特開 2003— 226502号公報(特許文献 2)では、アルミニウムとアルカリ金属 もしくはアルカリ土類金属とからなる水素発生用燃料を収容する容器と、該容器に収 容された水素発生用燃料を加熱溶融して合金化する加熱手段と、前記容器内の水 素発生用燃料に水を供給する水供給手段とを備え、水素回収手段により発生した水 素を回収する水素発生装置を開示して!/、る。
[0007] また、特開 2002— 69558号公報(特許文献 3)にはアルミニウムとアルカリ金属もし くはアルカリ土類金属との合金カゝらなる水素発生用燃料を使用し、容器の内部を冷 却する冷却手段を備える水素発生装置および該装置を用いる水素発生方法を開示 している。
[0008] さらに、特開平 8— 109001号公報 (特許文献 4)では、反応金属体を熱源を介して 溶融し、この溶融した溶融反応金属体を前記容器の底部に貯めると共にこの溶融反 応金属体に水を供給し熱化学反応を発生させ、得られた水素を外部に導出し、酸化 金属体を排出手段を介して容器外に排出する水素発生方法を開示している。
[0009] また、特開平 8— 59201号公報 (特許文献 5)および特開平 7— 109102号公報( 特許文献 6)では、容器内に設けられ水と電熱化学反応する反応金属体とを用い、 反応金属体の上部から水を供給し、反応金属体と水とによる電熱化学反応によって 水素ガスを発生する水素発生方法およびそのための装置が開示されている。
[0010] また、特開 2004— 231466号公報 (特許文献 7)では、水素を水から生成させるた めにアルミニウム粉末と酸ィ匕カルシウム粉末とを含み、アルミニウム粉末の配合比が 8 5質量%以下である水素発生材料および該材料を使用する水素発生方法、装置を 開示している。
[0011] 上述した水素発生装置および水素発生方法は、金属を使用して水を還元すること ができる高温状態にするために水素発生材料を混合物とし、この混合物を加熱する ため、電気炉、電気化学反応、または高水素原子含有物質を使用することにより水 素ガスを生成することを目的とするものである。この際、金属元素は、水素を発生させ た後、酸化されて金属酸化物となるが、金属酸化物を廃棄してしまったり、他の用途 に使用したりするのでは、水素を生成するため、際限なく金属元素を必要とすること になり、例えばアルミニウムを使用する場合などは、電力消費およびそのための化石 燃料の使用などを含めたトータルな環境コストは、必ずしも低いものと言うことはでき ない。
[0012] 一方、金属元素の酸化および還元は、湿式の電気化学的方法を使用する以外に、 いずれも高温下で進行する。この場合、最小の装置コストで金属元素の酸ィ匕を生じさ せて水素を生成し、同時に処理対象を変更し、最小の装置構成の変更で金属酸ィ匕 物を還元して金属を生成することが可能な水素発生装置が提供できれば、水素発生 に対して原材料を含めた環境コストを著しく低減することが可能となると考えられる。
[0013] さらに、近年では、化学物質に関連する環境的な問題が知られており、例えば NO Xにより発生した酸性雨による自然破壊や構造物劣化といった点で、窒素酸化物 NO Xの低減が求められており、また二酸ィ匕炭素、 COについては、地球温暖化の大きな
2
要因として全世界的に削減を行う必要がある。さら〖こ、これ以外でも、ダイォキシン、 環境ホルモンなどの特定ィ匕学物質についてもその低コストの分解'変換方法が必要 とされている。
[0014] 一方、レーザ装置は、主に電気エネルギーを光 (ランプ点灯)や放電の形態に変換 し、レーザ媒体を励起することによりレーザ光を発生している。この手法には、複数段 のエネルギー変換過程が含まれており、エネルギー効率が低 ヽ (効率数%以下)こと が知られている。この理由としては、もともと品質の良い電気エネルギーを、低効率ェ ネルギー変換を経て光に変換して利用することを挙げることができる。また、この点を 改良したものとして、半導体レーザ励起の固体レーザが提案されており、光電変換効 率としては、約 50%程度のものが得られるようになつてきており、その汎用性もますま す向上すると考えられる。
[0015] 一方では、光源として太陽光を使用する太陽光励起レーザも知られている。太陽光 を励起光源として使用すれは、化石燃料により生成された電気を直接使用した電気 一光変換プロセスを使用することなぐレーザ発振のための光源とすることができ、水 素発生装置、レーザ還元装置といった工業的装置に対して、レーザ装置をより容易、 かつ低コスト、さらに低い環境負荷のもとで使用することができると考えられる。加えて 、風力発電、潮力発電、地熱発電など化石燃料に依存しない発電方式も実用化され つつある。例えば、近年では、風力発電は、条件により発電量が著しく変動するという 特徴はあるものの、ピーク発電量では、 2000kWhを超える電力を提供することが可 能とされているが、条件により発電量が著しく変化するという大きな問題を抱えている 。この電力によって発振するレーザを使用するレーザ還元装置を用いることにより、マ グネシゥムの形でエネルギーを蓄えることができ、環境負荷を低減したエネルギー供 給が可能となる。
[0016] また、レーザ還元を行う場合、金属酸ィ匕物などの分解の初期プロセスにおいては、 金属イオンが生成することが見出された。レーザ還元により発生する金属イオンは、 局所的なプラズマを形成するので、既存の磁気閉じこめ装置を使用することにより制 御可能であり、また磁場方向に垂直な方向に金属イオンおよび負イオンは互!ヽに逆 方向に運動するため、系外に電流として取り出すことにより、光電変換によるエネル ギー変換が可能となるものと期待される。
特許文献 1 :特開 2003— 313001号公報
特許文献 2:特開 2003 - 226502号公報
特許文献 3 :特開 2002— 69558号公報
特許文献 4:特開平 8 - 109001号公報
特許文献 5:特開平 8— 59201号公報
特許文献 6 :特開平 7— 109102号公報
特許文献 7:特開 2004 - 231466号公報
発明の開示
発明が解決しょうとする課題 [0017] 上述した金属元素を用いて水から水素を製造する場合、酸ィヒ物が副生物として得 られ、高いアルカリ性の故に、その処理'廃棄などが困難であった。さらに、金属元素 の酸ィ匕物は高温で分解すれば、再度アルカリ金属またはアルカリ土類金属に変換す ることができ、このため、再生可能エネルギーを使用して高温環境を生成することが できれば、環境に対して最も負荷の少な 、方法で水素ガスを生成することができると いうことができる。
[0018] また、従来の汎用レーザは、電力を消費し、また電気一光エネルギー変換効率が 低ぐ一方、太陽光励起レーザは、大学'研究機関などにおける実験的研究がなされ るにすぎず、工業用途に適用することができないという問題があった。
[0019] 本発明は上記従来技術に鑑みてなされたものであり、本発明は、再生可能なエネ ルギーを効率的に使用し、反応エネルギーを回収すると共に、水素ガスを生成する、 水素生成装置を提供することを目的とする。
[0020] また、本発明の他の目的は、生成した金属酸化物を再生可能エネルギーを使用し て再度アルカリ金属またはアルカリ土類元素に還元することを可能とするレーザ還元 装置を提供することを目的とする。
[0021] さらに、本発明は上述した水素生成装置およびレーザ還元装置を用いた水素生成 方法を提供することを目的とする。
[0022] また、本発明は、 NOx、 CO、ダイォキシン、環境ホルモンなどの含酸素化学物質
2
の還元による分解または他の化合物への変換することを可能とするレーザ還元装置 を提供することを目的とする。
[0023] さらに、本発明は、アルカリ金属またはアルカリ土類金属などをレーザ還元する場 合に金属陽イオンが生成することを見出し、このときに発生する荷電粒子を使用し、 磁場閉じこめにより生成プラズマを制御することによる、エネルギー変換装置および 発電システムを提供することを目的とする。
課題を解決するための手段
[0024] 本発明は、金属元素は、燃焼して高温となって水の還元能力を得る力、または水と 接触させるだけで水を水素ガスへと還元でき、生成した酸化物は、熱分解により再度 、金属元素を与えることに着目し、本発明に至ったものである。本発明では、アルカリ 金属元素またはアルカリ土類元素を、まず燃焼させ、高温下に保持された状態の下 で水を供給する。供給された水は、金属元素の還元作用により水素を発生し、発生し た水素を回収する。
[0025] その後、副生物として得られた酸ィ匕物が、レーザ光線を使用して高温に加熱され、 酸化物を熱分解して、再度金属元素を再生する。本発明における加熱は、太陽光励 起レーザを使用して行 、、加熱のために化石燃料に由来するエネルギーの使用を 最小限とすることができる。再生された金属元素は、再度水素の生成のために使用さ れる。
[0026] また、本発明では、アルカリ金属、アルカリ土類金属または、 NOx、 COなどの特定
2 化学物質は、太陽光励起レーザなどのレーザ光源を使用して、効率的かつ低コスト に分解または変換され、プラズマ中で生成した荷電粒子を使用して、エネルギー変 換を行うことが可能となる
[0027] すなわち、本発明によれば、
金属元素を保持する反応容器と、
前記反応容器に水を供給するための貯水槽と、
前記金属元素が前記水に接触する部分を加熱して前記金属元素を加熱するレー ザと、
前記金属元素と前記水との反応により生成した水素ガスおよび反応エネルギーを 回収する水素取出管と、
を含む水素生成装置を提供することができる。
[0028] 本発明では、前記金属元素は、ナトリウム、カリウム、マグネシウム、アルミニウム、力 ルシゥム、亜鉛またはそれらの混合物を含む群力も選択することができる。前記水素 生成装置は、前記回収された水素ガスを貯蔵する水素貯蔵装置を含み、前記水素 貯蔵装置は、水素吸蔵合金を備えていてもよい。
[0029] 本発明の第 2の構成によれば、レーザ光線を使用して金属酸ィ匕物を金属に還元す るレーザ還元装置であって、
金属酸化物を収容し、照射窓を備える真空容器と、
前記真空容器内部に前記照射窓を介してレーザ光線を照射して前記金属酸化物 を還元するレーザと
を備える、レーザ還元装置が提供される。
[0030] 本発明では、前記金属酸化物は、酸ィ匕ナトリウム、酸ィ匕カリウム、酸化マグネシウム 、酸ィ匕アルミニウム、酸ィ匕カルシウム、酸化亜鉛またはこれらの混合物から選択するこ とができる。前記レーザは、太陽光励起レーザとすることができる。
[0031] 本発明の第 3の構成によれば、金属により水を還元して水素ガスを生成する水素生 成方法であって、前記方法は、
金属元素を高温下で水と接触させて水素ガスに還元して、金属酸化物または金属 水酸化物を生成する工程と、
前記生成した水素ガスを回収する工程と、
前記生成した金属酸化物または金属水酸化物をレーザ還元して金属を再生する 工程と
を含む水素生成方法が提供できる。
[0032] 本発明では、前記金属が、ナトリウム、カリウム、マグネシウム、アルミニウム、カルシ ゥム、亜鉛またはこれらの混合物を含む群力も選択することができる。前記方法は、 前記生成した水素ガスを回収する工程を含み、前記回収された水素ガスを貯蔵する 工程は、前記水素ガスを水素吸蔵合金に吸収させる工程を含むことができる。前記 レーザ還元は、太陽光励起レーザを使用して金属酸化物または金属水酸化物を還 元することができる。
[0033] 本発明の第 4の構成では、
レーザ光線を使用して含酸素化学物質を還元するレーザ還元装置であって、 前記化学物質を収容し、照射窓を備える真空容器と、
前記真空容器内部に前記照射窓を介してレーザ光線を照射して前記化学物質を 還元する太陽光励起レーザと
を備える、レーザ還元装置が提供される。
[0034] 本発明の第 5の構成では、
レーザ光線を使用して酸素含有ィヒ合物を還元するレーザ還元によりエネルギー変 換を行う装置であって、 前記化学物質を収容する容器と、
前記化学物質力 プラズマを生成させるためのレーザと、
前記プラズマを偏向する磁場を生成する磁場発生装置と、
前記容器内に配置され、前記容器内の前記プラズマから電流を取り出すためのグ リツド、と、
前記プラズマにより発生した電荷を前記容器外で蓄積するキャパシタとを含むエネ ルギー変換装置が提供される。
[0035] 本発明の第 6の構成によれば、
金属元素を反応させる反応容器と、
前記反応容器に水を供給するための貯水槽と、
前記水と接触するように前記金属元素の成形体を前記反応容器内に供給するフィ ーダと、
前記金属元素と前記水との反応により生成した水素ガスおよび反応エネルギーを 回収する水素取出管と、
前記反応容器内で前記金属の酸化反応が持続する状態に活性化する活性化手 段と
を備える水素生成装置が提供できる
さらに、本発明によれば、前記反応容器を冷却するための冷媒ジャケットを備える、 水素生成装置を提供することができる。本発明では、前記反応容器から篩いで分離 され、前記金属元素の酸ィ匕物粉体を回収する回収容器を備えることができる。
[0036] さらに、本発明の第 7の構成では、上記いずれか 1項に記載の水素生成装置を備 える発電システムを提供することができる。
[0037] また、本発明の第 8の構成によれば、含金属物質を保持する反応容器と、
前記反応容器に水を供給するための貯水槽と、
前記含金属物質が前記水に接触する部分を加熱して前記含金属物質を酸化させ 、前記含金属物質と前記水との反応により生成した水素ガスおよび反応エネルギー を回収する水素取出管と、
前記水素取出管力 の前記水素ガスを用いてエネルギー変換を行うエネルギー変 換装置と、
前記含金属物質が酸化されて生成した含酸素化合物を還元して前記含金属物質 を再生する還元装置と、
前記還元装置により再生された含金属物質を回収するための回収装置と、 を含む再生型水素生成装置が提供できる。
発明の効果
[0038] 本発明によれば、再生可能なエネルギーを効率的に使用することで水素ガスを生 成する、水素生成装置を提供することができる。
[0039] また、本発明によれば、生成した金属酸化物を、再生可能エネルギーを使用して再 度金属に還元することを可能とするレーザ還元装置を提供することができる。
[0040] さらに、本発明によれば、上述した水素生成装置およびレーザ還元装置を用いた 水素生成方法を提供することができる。
[0041] また、本発明によれば、 NOxや COなど、大きな環境負荷を与える化学物質を効
2
率的、かつ還元のために、さらに NOxや COの発生を伴うエネルギー消費を伴うこと
2
なぐ除去することを可能とする、レーザ還元装置を提供することができ、さらには、上 述した有害物質などを含む特定ィ匕学物質の分解を行うレーザを使用した物質変換 装置および分解の際の荷電粒子を有効に利用して光電変換を可能とする、エネルギ 一変換装置を提供することが可能となる。
[0042] また、本発明によれば、含金属物質と!/、つた生成するに多大なエネルギーを使用 する材料を効率的に再生利用することを可能とし、海水まで考慮すればほとんど無 尽蔵に地球上に存在する水だけを消費し、含金属物質の消費を最低限に抑制する ことを可能とする、環境負荷の小さな水素生成システムを提供することができる。 発明を実施するための最良の形態
[0043] <セクション 1:水素生成装置 第 1の実施の形態一 >
図 1は、本発明の水素生成装置の概略的構成を示した図である。本発明の水素生 成装置 10は、概ね、反応容器 12と、発生した水素を系外に取り出すための水素取 出管 14と、反応容器に水を供給するための貯水槽 16とを含んでいる。反応容器 12 と貯水槽 16との間〖こは、開口 20が設けられていて、水を供給しない場合には、バル ブ 18が閉じられている。バルブ 18は、反応容器 12内に水を供給する場合には、手 作業または電気的ァクチユエータ 22により駆動されて、貯水槽 16に蓄えられた水を 反応容器 12へと供給する。反応容器 12の下部には、金属マグネシウムといった金属 元素を含む材料 24が蓄積されている。本発明における金属とは、ナトリウム、カリウム 、マグネシウム、アルミニウム、カルシウム、亜鉛、またはこれらの混合物を意味する。 また、本発明においてはより広ぐアルカリ金属元素、またはアルカリ土類元素を含む ことができ、さらに、本発明により分解可能な化合物としては、酸素を含有する化学物 質である NOxおよび CO、ダイォキシン、環境ホルモンなどを挙げることができる。
2
[0044] さらに図 1に示した実施の形態を説明すると、金属マグネシウムといった材料 24は、 反応容器 12内でまず点火され、酸素の存在下燃焼し、高温状態にされる。また本発 明では、「高温」とは、常温を含まず、本発明で使用する材料が水を還元することがで きる温度を意味する。この段階で、手動、または電気的ァクチユエータによりバルブ 1 8を開き、反応容器 12の内部に水をシャワリングさせる。このとき金属マグネシウムは 、本発明の特定の実施の形態では高温で燃焼しており、高温に加熱されたマグネシ ゥムは、供給された水を還元して、水素ガスを生成させる。発生した水素ガスは、反 応容器 12の上側に配設された水素取出管 14を介して系外へと取り出され、熱交換 器(図示せず)などによりその反応エネルギーを回収した後、例えば燃料電池を搭載 した自動車などの水素消費装置により直接消費される。回収した反応エネルギーは 、反応容器 12の加熱などに再利用することができる。また、本発明では、生成した水 素ガスの全部または一部を水素吸蔵合金などを備えた水素貯蔵装置 26に貯蔵して おき、必要に応じて水素ガスを放出させて使用することもできる。なお、本発明にお いては、金属ナトリウム、金属リチウムなど、常温で水を還元して水素ガスを発生させ る場合には、特に材料を高温に加熱する必要はない。
[0045] 本発明では、水素吸蔵合金としては、例えば、 La Nb Ni Co Al 、 La Nb Zr
0.8 0.2 2.5 2.4 0.1 0.8 0.2 0.0
Ni Co Al 、MmNi Co Mn Al 、 MmNi Co Al 、 Mm Zr Ni Al V (上
3 3.8 0.7 0.5 3.65 0.75 0.4 0.3 2.5 0.7 0.8 0.85 0.15 1.0 0.8 0.2 記一般式中、 Mmは、ミッシュメタルで、 Ce(40〜50%), La(20〜40%)、 Pr、 Nd を主要構成元素とした希土類の混合物である。)を挙げることができる。この他にも、 本発明においては、水素吸蔵合金として、ラーべス相 (AB型)合金、具体的には、 Ti -Mn系、 Ti- Cr系、 Zr- Mn系の合金も用いることができ、より具体的には、(Ti Zr V
ζ-χ χ 4-y
Ni ) Cr、ZrV Ni 、 ZrMn Cr Ni などがある力 これらに限定されるものではな y 1-z 2 0.41 1.6 0.6 0.2 1.2
い。水素を発生させた反応後のマグネシウムは、酸化マグネシウムや水酸化マグネシ ゥムなどの酸ィ匕物または水酸ィ匕物に変換され、反応容器 12の内部に蓄積される。蓄 積した酸ィ匕マグネシウムや水酸ィ匕マグネシウムは、その後反応容器 12の外に取り出 され、金属マグネシウムなどの再生のための原料として使用することもできる。
[0046] <セクション 2 :レーザ還元装置 >
図 2は、金属マグネシウムの再生に用いるレーザ還元装置を示した図である。図 2 に示される装置 30は、概ね真空容器 32と、金属酸化物を供給するライン 34と、本発 明の特定の実施の形態で還元のために使用されるケィ化鉄を供給するライン 36と、 レーザ光線を導入して局所的に高温を生成するための真空容器に配設された照射 窓を含む光学系 38とを含んでいる。まず、金属酸ィ匕物は、図示しないキルンで加熱 され、水酸ィ匕物を酸ィ匕物に変換した後に、ライン 34およびホッパを介して真空容器 3 2内に供給される。なお、本発明の他の実施の形態では、ケィ素(Si)元素を単独で 使用することもでき、また還元のためのケィ素元素を使用しなくともよい。
[0047] 同時にケィ化鉄がライン 36を介して供給された後、真空容器 32が減圧され、その 後光学系 38を介してレーザ光線を照射して還元反応を生じさせる。この場合、本発 明では、フラッシュランプ励起、半導体レーザ励起などの、ルビー、 Nd3+ :YAG、ガ 一ネット、サファイア、エメラルド、アレキサンドライトなどに Cr3+、 Co2+、 Ce、 Pr、 Pm 、 Sm、 Eu、 Tb、 Dy、 Ho, Er、 Tm、 Yb、 Luなどのランタノイド元素、またはそれらの イオンや、遷移金属元素または遷移金属イオンがドーピングされたレーザ媒体を使 用するレーザを使用することができる。また、本発明の他の実施の形態では、還元を 促進させるため触媒を使用することもできる。さらに、本発明では、より効率的にレー ザ光線を照射するため、光学系 38に光走査機構を設け、できるだけ均一にレーザ光 を酸ィ匕マグネシウムなどの対象物質に照射することもできる。
[0048] また、本発明では、上述したレーザと共に、または上述したレーザに変えて、太陽 光励起レーザを使用して、還元反応を生じさせることができる。図 3は、本発明の太 陽光励起レーザ 40の概略的構成を示した図である。本発明の太陽光励起レーザ 40 は、レーザ媒体 42と、レーザ媒体 42を収容する収容装置 44と、レーザ媒体 42の一 端に配設された全反射ミラー 46と、他端に配設されたノヽーフ'ミラー 48とを含んで構 成されている。収容装置 44は、さらに太陽光 50をレーザ媒体 42へと集光する光学 要素 52を含んでいて、レーザ媒体 42を光学的に励起させ、反転分布を形成させて いる。光学要素 52は反射要素、レンズ要素などを含んで構成されていて、収容装置 44に保持された水などの冷却液体により冷却され、効率的な冷却の下で高!、効率 のレーザ発振を可能として 、る。
[0049] 図 3に示した収容装置 44の両端は、収容装置 44の端部を形成する材料、または、 レーザ媒体 42が収容装置 44の端部に直接露出している場合にはレーザ媒体 42と 空気とにより規定されるブリュースター角度を与えている。なお、本発明において特に ブリュースター角を設けることが必要でない場合には、他の角度の端部を使用するこ とができる。収容装置 44は、レーザ媒体 42と一体として形成されていても良いし、収 容装置 44の端面に、適切なフランジ、 O—リングなどを使用して固定されていてもよ い。また、収容装置 44の端部には、反射防止膜 ARCがコーティングされていて、効 率を向上させている。なお、本発明で反射防止膜 ARCを使用することが必要ではな い場合や、構造的に使用できない場合には、特に反射防止膜 ARCを設ける必要は ない。収容装置 44の内部には、水などの冷却液体が満たされていて、レーザ発振に 伴うレーザ媒体 42を冷却し、熱衝撃によるレーザ媒体の損傷を防止している。収容 装置 44の形状は、断面が円形、楕円形、放物線形などを使用することができ、円形 断面の収容装置を使用する場合には、収容装置の曲率と冷却冷媒の屈折率に応答 した位置にレーザ媒質が配置される。また、収容装置が楕円形の場合には、レーザ 媒質を一方の焦点に配置し、他方の焦点に太陽光を集光した配置とすることができ、 これらの形状を組み合わせてレーザ媒質に集光させることができる。
[0050] 本発明では、収容装置 44は、レーザ媒体 42へと太陽光を集光させる機能を有して おり、また内部に冷却液体を保持して 、るのでレーザ媒体の冷却と共に冷却液体に よる冷却を受けることができる。冷却液体としては水を使用することが、コストおよび操 作性の点力 好ましぐまた、冷却冷媒は、太陽光線を透過させ、同時にレーザ媒体 に太陽光を集光させることが可能な形状またはレンズを含む収容装置内に密閉また は流通させることちできる。
[0051] また、本発明ではレーザを適切にトリガすることができるように、レーザ波長に対応 する波長のレーザ光を発生させる発光ダイオードや半導体レーザを使用することが できる。さらに、レーザ発振をトリガする目的で、外部からの電気的なトリガで偏光角 度を偏光する光力一効果を使用する材料と偏光板とを使用することができるし、また 過飽和色素を使用してレーザ発振を Qスィッチ ·モードでトリガすることもできる。
[0052] レーザ媒体は、数 mm〜数 cmの径を有する光学的に透明なロッドとして形成されて いる。本発明で使用することができるレーザ媒体としては、例えば、ルビー(Cr3+ :A1
2
O )、 YAG (Nd3+ :Y Al O )、アレキサンドライト(Cr3+: BeAl O )、エメラルド(Cr
3 3 5 12 2 4
3+ : Be Al (SiO ) ) )、一般式が A B C O で与えられ、サイト Aには、 Gaまたは Al
3 2 3 6 3 2 3 12
からなる群から選択される元素が使用され、サイト Bには、 Ga、 Sc、 Luからなる群から 選択される元素が使用され、サイト Cには、 Y、 Gd、 La、 Luからなる群力も選択される 元素が用いられる、所謂ガーネットに Cr3+、 Nd3+を添加したレーザ媒体、サファイア (Ti3+: Al O )、 Co2+: MgF、 Cr3+: ScBO、 Nd3+: GGG (Gd Ga O )、 Cr, Nd:
2 3 2 3 3 5 12
GSGG (Gd (GaSc) O )などを挙げることができる力 太陽光の範囲に適切な結
3 5 12
晶場による吸収バンドを形成することができる限り、いかなるレーザ媒体でも用いるこ とができる。また、本発明では、レーザ媒体 42には、さらに他の希土類元素、例えば 、 Ce、 Pr、 Pm、 Sm、 Eu、 Tb、 Dy、 Ho, Er、 Tm、 Yb、 Luなどのランタノイド元素、 またはそれらのイオンや、遷移金属元素または遷移金属イオンがドーピングされた異 なる特性のレーザ媒体を使用することができる。
[0053] 全反射ミラー 46は、 A1蒸着などの金属コーティングを使用したミラー、誘電体多層 膜コーティングによりレーザ発振波長を選択的に反射するコーティングを含むミラー、 または全反射を使用したプリズム系などを使用して構成することができ、ハーフ'ミラ 一 48は、好ましくは、誘電体多層膜コーティングを含む、透過率が 10%〜90%程度 のミラーとすることができる。また、本発明に使用することができる光学要素 52につい ても、誘電体多層膜コーティング、または金属コーティングなど、これまで知られたい かなるコーティングでも使用することができる。
[0054] 再度図 2を使用して本発明を説明すると、加熱され、還元されて生成された金属は 、コンデンサ 54により冷却された後、回収され、铸造装置 56により铸造されて、地金 58として回収される。また、真空容器 32内に蓄積したケィ化鉄も回収され、可溶性成 分を分離した後、スラグとして回収される。回収された地金 58は、本発明の水素生成 装置に再度供給することもできるし、また他の用途に使用することもできる。さらに、本 発明にお ヽては、必ずしもケィ化鉄などの触媒を使用しなくともよ!/ヽ。
[0055] また、本発明に従 、、 NOx、 CO、ダイォキシン、環境ホルモンなどを還元する場
2
合には、例えば、図 1に示した水素発生装置で生成した水素ガスをチャンバ内に導 入して還元性雰囲気を生成させ、太陽光励起レーザによる照射により還元反応を生 成させ、分解または他の化学物質への変換を行うことができる。また、本発明におい てレーザ光線だけで効率的な還元を行うことができる場合には、必ずしも水素ガスを 供給する必要はない。
[0056] <セクション 3:レーザ還元を使用するエネルギー変換装置 >
図 4は、本発明のエネルギー変換装置の他の実施の形態を示した図である。図 4に 示したエネルギー変換装置 60は、トロイダル状に形成されたトロイダル容器 62内に、 グリッド 68と、酸素含有化学物質 74とが配置されている。酸素含有化学物質 74とし ては、本発明の特定の実施の形態では、 MgOを使用できるが本発明では、 MgOに 限定されるものではない。酸素含有化学物質 74には、光透過性ウィンドウ 76から、レ 一ザ光線 LBが照射されている。この際に用いることができるレーザ光線は、上述した レーザを使用して生成させることができる。レーザ光線 LBは、レンズといった集光光 学系 64を通して酸素含有ィ匕学物質 74へと集光されて 、て、酸素含有化学物質 74 を分解してプラズマ 78を生成させている。プラズマ 78は、本発明の特定の実施の形 態では、 Mg+を含んでいて、対応する電荷バランスを与える負イオンが形成されてい る。
[0057] また、エネルギー変換装置 60のトロイダル容器 62には、生成したプラズマ 78を磁 気閉じこめが可能なように、磁場がトロイダル容器 62の周方向に沿って印加されてい る。このため、プラズマ 78内の荷電粒子は、(VBZB)R Uで与えられる速度でドリフ s
ト運動する。上記式中、 Bは、磁場強度、 VBは、磁場の空間勾配、 Rsは、ラーモア 半径 (磁場中の旋回半径)、 Uは、荷電粒子の旋回速度である。このため、図 4の構 成において、グリッド 66に電位を生成させることにより、正負の荷電粒子は、ラーモア 半径で互いに反対方向にドリフト運動を行 、ながら移動して電流を生成する。図 4に 示したエネルギー変換装置 60は、この電流を、ハーメチック'シールなどを使用してト ロイダル容器 62の外へと導出し、キャパシタ 70に蓄積して 、る。
[0058] 本発明において使用される磁場の強度は、概ね 10T以下とすることができ、一定時 間キャパシタに蓄積された電荷は、負荷 72へと供給され、負荷を駆動させる。このた め、本発明のレーザ還元を行う際に生成する荷電粒子を使用することにより、化学 光エネルギーを、電気エネルギーへと変換することが可能となる。また、トロイダル容 器 62には、カチオンを与える金属を回収する回収容器 68が形成されていて、 Mgと いった金属を回収し、同時にァ-オン力も生成した気体力 排気ライン 80を介してト ロイダル容器 62の外部へと排出されて 、る。
[0059] 図 5は、グリッド 66の間をドリフト運動する荷電粒子の様子を示した模式図である。
グリッド 66は、上側がグランドに接地されており、プラズマ 78において発生した陽ィォ ンが下側へと、ラーモア半径のドリフト運動を行いながら移動し、陰イオン力 Sラーモア 半径のドリフト運動を行ないながら、上側へと移動しており、グリッド間に電流を生成さ せている。グリッド 66は、適切なメッシュとして形成されていて、陽イオンの放電およ び通過を可能としている。なお、本発明では、グリッド 66に適切な電位差を設定する ことちでさる。
[0060] 図 6は、本発明により形成されたプラズマ中で観測された陽イオン種の発光スぺタト ルを示す。図 6では、 Nd3+ :YAGレーザ(パルス出力 0. 3J、パルス幅 5ns)を MgOタ 一ゲットに照射して形成された、約 10000K程度に相当するプラズマについて得られ た Mg+の発光スペクトル(MgII、 448. 1130nm、 2P6 4f— 2p6 3d、および Mgl 、 518. 36042nm、 3s4s— 3s3p)である。図 6【こ示されるよう【こ本発明【こよりト口イダ ル容器内に封じ込めたプラズマから、 Mg+の発光が明確に観測され、レーザ照射に より生成したプラズマ中に荷電粒子を生成させることができることが示された。
[0061] <セクション 4:水素生成装置 第 2の実施の形態 >
図 7は、本発明の水素発生装置の第 2の実施の形態の本質的な構成を示した図で ある。図 7に示した水素発生装置 90は、ナトリウム (Na)、カリウム (K)、マグネシウム( Mg)、カリウム(Ca)、アルミニウム (Al)、亜鉛 (Zn)またはこれらの!/、かなる混合物な どを H Oにより酸化、逆に H Oを Hに還元することで水素を発生させる点では、図 1
2 2 2
などに示した水素発生装置と共通する。特に、図 7に示した第 2の実施例では、粉末 状の Mgなどの材料ではなぐフィルム状、プレート状、フレーク状、切片状の材料を 連続的に水素発生装置内に導入し、水素を発生させる。
[0062] より詳細に図 7を説明すると、図 7に示した水素発生装置 90は、反応容器 92と、反 応容器 92内に挿通され、 H Oを反応容器 92内に導入するための導入管 94と Mgと
2
いった材料を導入するためのフィーダ 96とを備えている。反応容器 92などは、 SUS 304、 SUS316, SUS321, SUS329, SUS309, SUS310, SUS317, SUS40 5、 SUS347, SUS420, SUS410などの材料力ら形成すること力 Sでき、 O—リング、 メタルシールなどの適切なシール手段を使用して外界からの密閉性を確保すること ができる。 H Oは、好ましくは高温 '高圧の水蒸気の状態で反応容器 92の内部へと
2
導かれ、導入管 94から排出された位置で図 7に示した実施の形態では、フィルム状 に形成された Mgと接触して酸ィ匕反応を生じさせている。
[0063] 酸化反応の結果として MgOと Hとが生成する。生成した Hは、排気管 114を介し
2 2
て反応容器 92の外部へと導出され、燃料電池へと直接、または水素吸蔵合金などに 蓄積するために供給されている。一方、図 7に示した水素発生装置 90は、内部を通 して延び、互いに重合したメッシュカゝら形成された篩い 108を備えている。篩い 108 は、反応容器 92の外部に配置されたモータ 110などにより紙面左右方向に往復運 動されて!、て、生成した塊状の MgOを解砕して所定の粒径の粉体 112として反応容 器 92の下側に蓄積させる。
[0064] また、 Mgと!、つた材料のフィルム、プレート、フレーク、切片などは、フィーダ 96を 通して反応容器 92内に導入されるが、フィーダ 96は、フィルム、フレークなどの形状 に適合した供給能力を有している限り、いかなるものでも用いることができる。例えば 、 Mgなどをフィルムまたはプレートとして反応容器 92内に導入する場合には、フィー ダ 96としては、ダイを使用することができる。また、本発明では、ダイに導入される前 に Mgなどが空気酸ィ匕されてしまわないようにフィルム、プレート、フレーク、切片状の Mgなどの材料は、供給室 98に別に収容しておくことができる。 [0065] 収容室 98の内部は、 N Arなどの適切
2、 な不活性ガスにより置換することが好まし い。本発明で使用することができる材料は、フィルムまたはプレートとする場合には、 0. 1〜数 mm厚とすることができ、フレークとする場合には、長径を数 mm〜数 cmと することができる。本発明では、供給する H Oの量と材料フィルムなどの供給量とを
2
制御することにより発熱量の他、生成させる Hの量を制御することが可能となる。また
2
、発熱量を制御する目的で酸ィ匕反応が吸熱または発熱量が Mgよりも小さい材料、例 えば亜鉛を混合することもできる。
[0066] 収容室 98の内部には、材料ロール 104と、搬送ローラ 102とが配置されていて、反 応容器 92内での材料の酸化'消耗の程度に応答して、フィルム状またはプレート状 の材料 100を反応容器 92内に供給している。なお、本発明のさらに別の実施の形態 では、材料ロール 104を回動させ、常にフレッシュな表面を有する材料を提供するた め、切削刃を収容室 98内に配置し、材料ロール 104の回動力を、反応容器 92から 排出される Hまたは熱を使用して得ることもできる。生成した MgOなどの酸ィ匕物の粉
2
体 112は、図示しない排出ロカ 定期的または所定量蓄積するごとに回収され、レ 一ザ還元によるエネルギー変換などに提供される。
[0067] 図 8は、本発明の水素生成装置の第 2の実施の形態のより詳細な構成を示した図 である。図 8に示した水素生成装置 120は、反応容器 124と、反応容器 124を包囲し て反応容器 124からの熱を交換するための熱交換ジャケット 122とを備えて 、る。熱 交換ジャケット 122には、冷媒 (水)の供給ライン 130がバルブ 128を介して連結され ている。バルブ 128は、例えば 3方バルブとすることができ、その停止位置に応答して 冷媒の供給モードと、供給ライン 132を接続して熱交換一水蒸気供給モードとを相 互に切り換えることができる。供給ライン 132の先端は、反応容器 124の内部へと導 入され、熱交換により生成した水蒸気(〜200°C)を反応容器 124の内部へと導入し ている。
[0068] また、図 8に示した実施の形態では、反応容器 124の内側壁に沿って Mgといった 材料のプレートまたはフィルム力 上部に設けられた導入スリット(図示せず)およびフ イード機構(図示せず)を用いて供給されている。なお、本発明では、材料のプレート 、フィルム、またはフレークなどは、処理を妨げない配置でいかなる方法を使用しても 導入することができ、内側壁に沿って材料を導入することは必ずしも必要とされない。 一方、反応容器 124には、タングステン (W)製などのスパークギャップ 134が反応を 持続させる温度を提供する初期燃焼を与えるための活性ィ匕手段として挿入されてい て、初期の反応容器 124内での材料の燃焼を生じさせることが可能とされている。
[0069] 本発明のさらに別の実施の形態では、スパークギャップ 134の代わりに、 YAGレー ザ、半導体レーザ、太陽光励起レーザなどを、活性ィ匕手段として使用することができ る。また、本発明は、高温下で水の還元反応が発熱反応として生成する金属を使用 することが好ましぐこの際、亜鉛といった水の還元反応に際して吸熱または発熱量 の小さ ヽ材料を生成する材料を、反応制御添加物として使用することもできる。
[0070] 反応容器 124の上部には、締結手段の形成されたキャップ 138が連結されている。
キャップ 138は、キャップ 138から生成した Hを外部に排出させるための排出ライン 1
2
40が延ばされている。キャップ 138は、高温 '高圧に耐えられる締結手段を使用して 反応容器 124に連結されている。このような締結手段としてはこれまで知られたいか なる手段でも用いることができるものの、具体的にはカクラ式ジョイントを挙げることが できる。反応容器 124の下側には、生成した酸化物を粉砕するための篩い 126が形 成されており、解砕された酸ィ匕物の粉体 146は、篩い 126の下側に形成された回収 容器 142に蓄積される。なお、本発明では、反応容器 124と回収容器 142との間は、 フランジを使用して連結されていて、例えば、回収容器 142に形成された観測窓から 生成した粉体料をモニタして、所定料が蓄積した後に、ボルト'ナットにより締結され た反応容器 124と回収容器 142とを分離して、粉体を回収することができる。
[0071] 回収された MgOなどの酸ィ匕物は、再度、図 2などに示したレーザ還元法に供給さ れて、 Mgなどの再生に使用することができる。また、図 8の水素発生装置 120により 生成した Hは、燃料電池のための燃料に直接使用することができる。生成した Hは
2 2
、より取扱性を向上させるため、水素吸蔵合金などに蓄積させ、燃料電池の燃料とし て使用することができる。本発明のさらに別の実施の形態では、余剰の水蒸気を蒸 気タービンへと供給することにより、発電を行うことができる。蒸気タービンにより冷却 された水は、再度供給ライン 130へと循環され、反応容器 124内で発生する熱の熱 交換媒体として使用してもよい。 [0072] 本発明では、反応容器 124の熱交換を行う媒体として直接水を使用することができ るが、冷却媒体として代替フロン、超臨界流体などの冷媒を水とは別に使用すること により、冷却効率の制御を可能とし、反応の制御性を高めることが可能となる。上述し たように、本発明の図 8に示した水素発生装置 120は、水素供給源としてば力りでは なぐ無公害型内燃機関、無公害型発電機などに適用することが出来、環境負荷を 著しく低減することが可能となる。
[0073] また、本発明は、災害時における都巿緊急ライフラインのために使用することができ る。大震災の災害時には、ライフラインの確保と消火が重要であり、特に、東京、大阪 、名古屋、福岡などの大都市で M7クラスの地震が起きれば、損壊家屋 77%は、火 災により失われると推定されている。このため、東京都などでは、 1万 2千箇所に防災 用水を確保しているものの、災害時、消防車がここに到達するのは不可能と考えられ る。
[0074] 本発明は、水と、自発燃焼性のない Mgと、水との反応を利用した緊急ライフライン 復旧装置としても使用することができる。本発明は以下の通り、緊急ライフライン復旧 装置として機能する。
[0075] (1)消火: Mgと水で発生する熱と、水素による熱とにより、ガスタービンを起動させ、 防火用水からのポンプにより、自治体で消火活動にあたる。概ね、 35cm角の Mgの 量で本発明生成した水素を燃焼させたガスタービン、ロータリーエンジン、レシプロェ ンジン、スターリング ·エンジンなどを使用するとすれば、消防車の 6〜8時間分の動 力が確保できることになる。
[0076] (2)飲料水: Mgと水との反応時に発生する熱は、水を蒸発させることができるので、 これにより、蒸留水を確保し、飲料水を提供する。例えば、防火用水を使用して、 35c m角の Mgの反応時の発熱により、水素の他、水蒸気が発生し、この水蒸気を凝集さ せることで、安全な飲料水 800kgが生成可能となる。
[0077] (3)電気:ガスタービン、ロータリーエンジン、レシプロエンジンの動力として水素を用 いて発電を行い、電気を確保することができる。この場合、 35cm角の Mgで、 1家庭 の電気、 1—2週間〜約 1ヶ月分確保できると考えられる。
[0078] (4)温水:上述した蒸留水の凝縮課程の熱を再生的に使用し、防火用水を沸かし風 呂などの温水を確保することができる。本発明において、 Mgのメリットは、ガソリンや 重油のような引火性がないので、地中表面近くに埋めておき、簡単な遮蔽処理によ つて安全に貯蔵することができ、大災害時にも漏洩'爆発 ·安全衛生的な問題を生じ させることがないこと〖こある。
[0079] <セクション 5:レーザアブレーシヨンを使用する還元装置 >
図 9は、本発明のレーザ還元装置のさらに他の実施の形態を示す。図 9に示したレ 一ザ還元装置 150は、レーザ光線を入射させるウィンドウ 160を備える容器 152と、 容器 152内に、ヘリウム、アルゴン、窒素などの不活性ガスを噴射するノズル 156とを 備えている。容器 152の下部には、塊状、粒状、ペレット状の Mg0148が蓄積される 。また、容器 152の上部からは、レーザ光線 162が、 MgOへと照射され、 MgOの適 切な位置に集光されていて、レーザアブレーシヨンにより MgOを溶融させている。
[0080] 一方、ノズル 156からは、高速の不活性ガス力 レーザ光線 162により溶融した Mg 0148へと噴射されていて、 2MgO→2Mg + 0として分解'生成した Mgと Oとが再
2 2 結合しないように分離している。生成した固体 Mgは、不活性ガスの圧力により、容器 152の内壁に付着し、以後に回収される。一方、生成した Oは、容器 152の上部に
2
配置された排気管およびバルブを通して容器 152の外部へと導出される。なお、図 9 に示す本発明のレーザ還元装置 150では、レーザ光線 162を、矢線 Aの方向に移 動させて、 MgOの溶融面積を増加させ、効率を向上させることができる。また、本発 明では、不活性ガスの噴射により冷却させることがないように、不活性ガスを、高温と してから、容器 152内に噴射させることができる。
産業上の利用可能性
[0081] 本発明によれば、環境に対して最小限の負荷を与えつつ、水素を必要に応じて生 成し、貯蔵することを可能とするので、水素エネルギーのより汎用的な供給を可能とし 、エネルギー 'インフラ基盤を大きく変更することを可能とし、地球温暖化、化石燃焼 の枯渴化と!、つた問題に対して大きな貢献をなす、極めて産業上価値の高!、水素生 成装置、レーザ還元装置、エネルギー変換装置、および水素生成方法を提供するこ とができる。また、本発明により生成された水素は、燃料電池用に提供することもでき るが、発生した水素を直接内燃機関の燃料として適用することもでき、緊急ライフライ ン提供用にも適切に使用することができる。
図面の簡単な説明
[0082] [図 1]本発明の水素生成装置の概略図。
[図 2]本発明のレーザ還元装置の概略図。
[図 3]本発明で使用する太陽光励起レーザの概略側面図。
[図 4]本発明のエネルギー変換装置の概略図。
[図 5]本発明のエネルギー変換装置内での荷電粒子のドリフト運動の概略図。
[図 6]本発明のエネルギー変換装置を使用して生成されたプラズマ力ゝらの陽イオンの 発光スペクトルを示した図。
[図 7]本発明の第 2の実施の形態の水素発生装置の本質的な構成を示した図。
[図 8]本発明の第 2の実施の形態の水素発生装置の詳細な構成を示した図。
[図 9]本発明のレーザ還元装置の他の実施の形態を示した図。
符号の説明
[0083] 10···水素生成装置、 12···反応容器、 14···水素取出管、 16···貯水槽、 18···バルブ 、 20···開口、 22···ァクチユエータ、 24···材料、 26…水素貯蔵装置、 30···レーザ還 元装置、 32…真空容器、 34…ライン、 36…ライン、 38…光学系、 La…レーザ、 40 …太陽光励起レーザ、 42レーザ媒体、 44···収容装置、 46…全反射ミラー、 48···ハ ーフ 'ミラー、 50…太陽光、 52···光学要素、 ARC…反射防止膜、 54···コンデンサ、 56···铸造装置、 58···地金、 60···エネルギー変換装置、 62···トロイダル容器、 64··· 集光光学系、 66…グリッド、 68…回収容器、 70···キャパシタ、 72…負荷、 74···ター ゲット、 76…光透過性ウィンドウ、 78…プラズマ、 80···排気ライン、 LB…レーザ光

Claims

請求の範囲
[1] 金属元素を保持する反応容器と、
前記反応容器に水を供給するための貯水槽と、
前記金属元素が前記水に接触する部分を加熱して前記金属元素を加熱するレー ザと、
前記金属元素と前記水との反応により生成した水素ガスおよび反応エネルギーを 回収する水素取出管と、
を含む水素生成装置。
[2] 前記金属元素は、ナトリウム、カリウム、マグネシウム、アルミニウム、カルシウム、亜 鉛またはそれらの混合物を含む群力 選択される、請求項 1の水素生成装置。
[3] 前記水素生成装置は、前記回収された水素ガスを貯蔵する水素貯蔵装置を含み、 前記水素貯蔵装置は、水素吸蔵合金を備える、請求項 1に記載の水素生成装置。
[4] レーザ光線を使用して金属の金属酸化物を金属に還元するレーザ還元装置であ つて、
金属酸化物を収容し、照射窓を備える真空容器と、
前記真空容器内部に前記照射窓を介してレーザ光線を照射して前記金属酸化物 を還元するレーザと
を備える、レーザ還元装置。
[5] 前記金属酸化物は、酸ィ匕ナトリウム、酸ィ匕カリウム、酸化マグネシウム、酸ィ匕アルミ二 ゥム、酸化カルシウム、酸化亜鉛またはこれらの混合物から選択される、請求項 4に 記載のレーザ還元装置。
[6] 前記レーザは、太陽光励起レーザである、請求項 4または 5に記載のレーザ還元装 置。
[7] 金属により水を還元して水素ガスを生成する水素生成方法であって、前記方法は、 金属元素を水と接触させて水素ガスに還元して、金属酸化物または金属水酸化物 を生成する工程と、
前記生成した水素ガスを回収する工程と、
前記生成した金属酸化物または金属水酸化物をレーザ還元して金属を再生する 工程と
を含む水素生成方法。
[8] 前記金属が、ナトリウム、カリウム、マグネシウム、アルミニウム、カルシウム、亜鉛ま たはこれらの混合物を含む群力 選択される、請求項 7に記載の方法。
[9] 前記方法は、前記回収した水素ガスを貯蔵する工程を含み、前記回収された水素 ガスを貯蔵する工程は、前記水素ガスを水素吸蔵合金に吸収させる工程を含む、請 求項 7または 8に記載の方法。
[10] 前記レーザ還元は、太陽光励起レーザを使用して金属酸化物または金属水酸ィ匕 物を還元する、請求項 7〜9のいずれ力 1項に記載の方法。
[11] レーザ光線を使用して酸素含有化学物質を還元するレーザ還元装置であって、 前記化学物質を収容し、照射窓を備える真空容器と、
前記真空容器内部に前記照射窓を介してレーザ光線を照射して前記化学物質を 還元する太陽光励起レーザと
を備える、レーザ還元装置。
[12] レーザ光線を使用して酸素含有ィヒ合物を還元するレーザ還元によりエネルギー変 換を行う装置であって、
前記化学物質を収容する容器と、
前記化学物質力 プラズマを生成させるためのレーザと、
前記プラズマを偏向する磁場を生成する磁場発生装置と、
前記容器内に配置され、前記容器内の前記プラズマから電流を取り出すためのグ リツド、と、
前記プラズマにより発生した電荷を前記容器外で蓄積するキャパシタとを含むエネ ルギー変換装置。
[13] 金属元素を反応させる反応容器と、
前記反応容器に水を供給するための貯水槽と、
前記水と接触するように前記金属元素の成形体を前記反応容器内に供給するフィ ーダと、
前記金属元素と前記水との反応により生成した水素ガスおよび反応エネルギーを 回収する水素取出管と、
前記反応容器内で前記金属元素の酸化反応が持続する状態に活性化する活性 化手段と
を備える水素生成装置。
[14] さらに前記反応容器を冷却するための冷媒ジャケットを備える、請求項 13に記載の 水素生成装置。
[15] 前記反応容器から篩いで分離され、前記金属元素の酸化物粉体を回収する回収 容器を備える、請求項 13または 14に記載の水素生成装置。
[16] 請求項 13〜15のいずれか 1項に記載の水素生成装置を備える発電システム。
[17] 含金属物質を保持する反応容器と、
前記反応容器に水を供給するための貯水槽と、
前記含金属物質が前記水に接触する部分を加熱して前記含金属物質を酸化させ 、前記含金属物質と前記水との反応により生成した水素ガスおよび反応エネルギー を回収する水素取出管と、
前記水素取出管力 の前記水素ガスを用いてエネルギー変換を行うエネルギー変 換装置と、
前記含金属物質が酸化されて生成した含酸素化合物を還元して前記含金属物質 を再生する還元装置と、
前記還元装置により再生された含金属物質を回収するための回収装置と、 を含む再生型水素生成装置。
PCT/JP2006/304470 2005-03-18 2006-03-08 水素生成装置、レーザ還元装置、エネルギー変換装置、水素生成方法および発電システム WO2006100915A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP06715390A EP1862430A4 (en) 2005-03-18 2006-03-08 HYDROGEN PRODUCTION DEVICE, LASER REDUCTION DEVICE, ENERGY CONVERSION DEVICE, METHOD FOR PRODUCING HYDROGEN AND ELECTRICITY GENERATION SYSTEM
AU2006225880A AU2006225880B2 (en) 2005-03-18 2006-03-08 Hydrogen forming apparatus, laser reduction apparatus, energy transformation apparatus method for forming hydrogen and electricity generation system
US11/908,873 US8137638B2 (en) 2005-03-18 2006-03-08 Hydrogen generation apparatus, laser reduction apparatus, energy conversion apparatus, hydrogen generation method and electric power generation system

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2005079451 2005-03-18
JP2005-079451 2005-03-18
JP2005-138074 2005-05-11
JP2005138074 2005-05-11
JP2005-317226 2005-10-31
JP2005317226 2005-10-31

Publications (1)

Publication Number Publication Date
WO2006100915A1 true WO2006100915A1 (ja) 2006-09-28

Family

ID=37023589

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/304470 WO2006100915A1 (ja) 2005-03-18 2006-03-08 水素生成装置、レーザ還元装置、エネルギー変換装置、水素生成方法および発電システム

Country Status (4)

Country Link
US (1) US8137638B2 (ja)
EP (1) EP1862430A4 (ja)
AU (1) AU2006225880B2 (ja)
WO (1) WO2006100915A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100891925B1 (ko) 2007-06-22 2009-04-08 한국에너지기술연구원 분할반응형식의 태양열 집광을 통한 물분해 수소제조장치
JP2011026182A (ja) * 2009-05-28 2011-02-10 Toshiharu Fukai 水素の製造方法
JP2020193134A (ja) * 2019-05-30 2020-12-03 津田 訓範 副生水素生成装置

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006100941A1 (ja) * 2005-03-18 2006-09-28 Tokyo Institute Of Technology 太陽光励起レーザおよび太陽光励起レーザの冷却方式
US20100061923A1 (en) * 2008-09-05 2010-03-11 Reddy Alla V K Hydrogen production and use
IT1391452B1 (it) * 2008-09-26 2011-12-23 Univ Degli Studi Modena E Reggio Emilia Impianto cogenerativo a combustibile metallico
SA109300643B1 (ar) * 2008-10-28 2014-11-12 Electra Holdings Co Ltd جهاز لتنقية شعاع الليزر وطريقة لتنقية شعاع الليزر
US11952273B2 (en) * 2011-05-26 2024-04-09 Hari Har Parshad Cohly Clean green fuel technology
AU2012287009B2 (en) 2011-07-25 2018-01-18 H2 Catalyst, Llc Methods and systems for producing hydrogen
LT5983B (lt) * 2012-04-03 2013-12-27 Uab "Inovatas" Vandenilio gavybos iš vandens būdas, panaudojant vandens sąveiką su plazmoje aktyvuotais metalų ar jų lydinių paviršiais
US8936734B2 (en) * 2012-12-20 2015-01-20 Sunpower Technologies Llc System for harvesting oriented light—water splitting
FR3031515A1 (fr) * 2015-01-13 2016-07-15 Nicolas Gilbert Ugolin Procede de stockage et de production d'energie par reduction et oxydation de particules d'aluminium
US9878907B2 (en) * 2015-10-12 2018-01-30 Cavendish Energy System and method to produce hydrogen
DE102015222695B4 (de) * 2015-11-17 2021-07-22 Deutsches Zentrum für Luft- und Raumfahrt e.V. Energiesystem und Verfahren zum Speichern und/oder Bereitstellen von Wasserstoff
JP6915073B2 (ja) * 2019-05-09 2021-08-04 Sppテクノロジーズ株式会社 プラズマ着火方法及びプラズマ生成装置
US10899611B1 (en) * 2019-09-12 2021-01-26 New World Energy LLC Method of producing hydrogen through laser ablation
CN111392769A (zh) * 2020-04-10 2020-07-10 上海大学 一种激光热源金属氧化物脱氧方法
KR20220075499A (ko) * 2020-11-30 2022-06-08 (주)케이워터크레프트 해수전해조로부터 발생된 부산물을 활용하는 에너지 시스템
CN115253955B (zh) * 2022-08-05 2023-11-07 西安交通大学 一种适用于光热耦合催化的反应装置及其应用
CN115304027A (zh) * 2022-08-31 2022-11-08 中山大学 一种激光全解水制氢方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08259389A (ja) * 1995-03-24 1996-10-08 Showa Denko Kk ダイヤモンド膜の製造方法
JPH11323410A (ja) * 1998-05-14 1999-11-26 Fujitsu Ltd クロム微粒子の生成方法、フォトマスクの製造方法及びフォトマスクの修正方法
JP2004067422A (ja) * 2002-08-05 2004-03-04 Uchiya Thermostat Kk 水素発生装置
JP2004182496A (ja) * 2002-11-29 2004-07-02 Toshiba Corp 水素製造装置
JP2004313831A (ja) * 2003-04-11 2004-11-11 Mitsui Eng & Shipbuild Co Ltd 光化学反応装置及び光化学反応方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5339274A (en) * 1976-09-22 1978-04-11 Hitachi Ltd Vacuum evaporating method for forming aluminum oxide film by means of laser as heat source
US4701592A (en) * 1980-11-17 1987-10-20 Rockwell International Corporation Laser assisted deposition and annealing
US4776937A (en) * 1984-05-14 1988-10-11 Allied Corporation Light induced production of ultrafine powders comprising metal silicide powder
JPH0682643B2 (ja) * 1987-03-13 1994-10-19 科学技術庁長官官房会計課長 表面処理方法
JPH05286717A (ja) * 1992-04-06 1993-11-02 Sumitomo Electric Ind Ltd 複合酸化物超電導薄膜の成膜方法
JPH07109102A (ja) 1993-08-19 1995-04-25 Japan Steel Works Ltd:The 水素発生方法及び装置並びに電熱化学ボイラ
JPH0859201A (ja) 1994-08-12 1996-03-05 Japan Steel Works Ltd:The 水素発生方法及び装置
JPH08109001A (ja) 1994-10-12 1996-04-30 Japan Steel Works Ltd:The 水素発生方法及び装置
JPH10313005A (ja) * 1997-05-13 1998-11-24 Sony Corp 金属膜のリフロー方法
JP2002069558A (ja) 2000-09-05 2002-03-08 Mitsubishi Heavy Ind Ltd 水素発生用燃料及び水素発生装置及び水素発生方法
CN1163622C (zh) * 2000-09-29 2004-08-25 于洪喜 内热法炼镁生产工艺及设备
JP2003226502A (ja) * 2002-02-06 2003-08-12 Mitsubishi Heavy Ind Ltd 水素発生装置及び方法
JP4199966B2 (ja) 2002-02-22 2008-12-24 岩谷産業株式会社 水素発生方法及び水素発生装置
JP2004168583A (ja) * 2002-11-19 2004-06-17 Uchiya Thermostat Kk 水素発生装置
JP4276854B2 (ja) 2003-01-30 2009-06-10 ウチヤ・サーモスタット株式会社 水素発生材料、水素発生方法及び水素発生装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08259389A (ja) * 1995-03-24 1996-10-08 Showa Denko Kk ダイヤモンド膜の製造方法
JPH11323410A (ja) * 1998-05-14 1999-11-26 Fujitsu Ltd クロム微粒子の生成方法、フォトマスクの製造方法及びフォトマスクの修正方法
JP2004067422A (ja) * 2002-08-05 2004-03-04 Uchiya Thermostat Kk 水素発生装置
JP2004182496A (ja) * 2002-11-29 2004-07-02 Toshiba Corp 水素製造装置
JP2004313831A (ja) * 2003-04-11 2004-11-11 Mitsui Eng & Shipbuild Co Ltd 光化学反応装置及び光化学反応方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
IMAZAKI K.: "Uchu Taiyoko Laser to Suiso Seisei", INSTITUTE FOR LASER TECHNOLOGY NEWS, no. 195, 2004, pages 1 - 3, XP003001591 *
NAKASHIMA N.: "VUV laser photolysis of CO2 systems", ENERGY CONVERSION AND MANAGEMENT, vol. 36, no. 6 TO 9, 1995, pages 673 - 676, XP004039948 *
YAMABE C.: "Plamsa o Mochiita Hikari. Denki Energy Henkan to Denryoku no Denso", THE INSTITUTE OF ELECTRICAL ENGINEERS OF JAPAN ZENKOKU TAIKAI KOEN RONBUNSHU, vol. 1989, no. 2, 1989, pages S.2-21 - S.2-24, XP003001592 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100891925B1 (ko) 2007-06-22 2009-04-08 한국에너지기술연구원 분할반응형식의 태양열 집광을 통한 물분해 수소제조장치
JP2011026182A (ja) * 2009-05-28 2011-02-10 Toshiharu Fukai 水素の製造方法
JP2020193134A (ja) * 2019-05-30 2020-12-03 津田 訓範 副生水素生成装置
JP7418970B2 (ja) 2019-05-30 2024-01-22 訓範 津田 副生水素生成装置

Also Published As

Publication number Publication date
AU2006225880B2 (en) 2012-01-19
US8137638B2 (en) 2012-03-20
AU2006225880A1 (en) 2006-09-28
US20090010837A1 (en) 2009-01-08
EP1862430A4 (en) 2009-10-21
EP1862430A1 (en) 2007-12-05

Similar Documents

Publication Publication Date Title
JP5124728B2 (ja) 水素生成装置、レーザ還元装置、エネルギー変換装置、水素生成方法および発電システム
WO2006100915A1 (ja) 水素生成装置、レーザ還元装置、エネルギー変換装置、水素生成方法および発電システム
JP2022068189A (ja) 光起電力パワー発生システム及び同システムに関する方法
Yabe et al. Demonstrated fossil-fuel-free energy cycle using magnesium and laser
KR102292890B1 (ko) 발전 시스템 및 발전 방법
CN102333722B (zh) 用于生成氢的组合物和方法
JP2018067536A (ja) 電気化学的水素−触媒パワー・システム
WO2012138576A1 (en) H2o-based electrochemical hydrogen-catalyst power system
EP2783369A2 (en) Thermal-energy producing system and method
AU2009310941A1 (en) Laser refining apparatus and laser refining method
CN101163639A (zh) 氢生成装置、激光还原装置、能量转换装置、氢生成方法及发电系统
JP6827254B2 (ja) パワー発生システム及び同システムに関する方法
JP6080034B2 (ja) アルミニウムを再生可能燃料として利用する方法
JP2021073651A (ja) パワー発生システム及び同システムに関する方法
JP2017040272A (ja) アルミニウムを燃料として利用する方法
Grigorieva et al. Ways to produce renewable energy from carbon dioxide
KR102681406B1 (ko) 발전 시스템 및 발전 방법
CN115744818A (zh) 水分解成氢氧能源的制备与工艺
Aubin Alkali Hydride-Borohydride Solutions for the Application to Thermally Regenerative Electrochemical Systems
KR20240110087A (ko) 발전 시스템 및 발전 방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680012953.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 6878/DELNP/2007

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2006715390

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006225880

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2006225880

Country of ref document: AU

Date of ref document: 20060308

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: RU

WWP Wipo information: published in national office

Ref document number: 2006225880

Country of ref document: AU

WWP Wipo information: published in national office

Ref document number: 2006715390

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11908873

Country of ref document: US