WO2006100312A2 - Process for producing a chlorhydrin from a multihydroxylated aliphatic hydrocarbon and/or ester thereof in the presence of metal salts - Google Patents
Process for producing a chlorhydrin from a multihydroxylated aliphatic hydrocarbon and/or ester thereof in the presence of metal salts Download PDFInfo
- Publication number
- WO2006100312A2 WO2006100312A2 PCT/EP2006/062438 EP2006062438W WO2006100312A2 WO 2006100312 A2 WO2006100312 A2 WO 2006100312A2 EP 2006062438 W EP2006062438 W EP 2006062438W WO 2006100312 A2 WO2006100312 A2 WO 2006100312A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- aliphatic hydrocarbon
- multihydroxylated
- chlorohydrin
- process according
- reaction
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D3/00—Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
- B01D3/14—Fractional distillation or use of a fractionation or rectification column
- B01D3/143—Fractional distillation or use of a fractionation or rectification column by two or more of a fractionation, separation or rectification step
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C29/00—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
- C07C29/62—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by introduction of halogen; by substitution of halogen atoms by other halogen atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C29/00—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
- C07C29/74—Separation; Purification; Use of additives, e.g. for stabilisation
- C07C29/76—Separation; Purification; Use of additives, e.g. for stabilisation by physical treatment
- C07C29/80—Separation; Purification; Use of additives, e.g. for stabilisation by physical treatment by distillation
- C07C29/82—Separation; Purification; Use of additives, e.g. for stabilisation by physical treatment by distillation by azeotropic distillation
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C31/00—Saturated compounds having hydroxy or O-metal groups bound to acyclic carbon atoms
- C07C31/34—Halogenated alcohols
- C07C31/36—Halogenated alcohols the halogen not being fluorine
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C31/00—Saturated compounds having hydroxy or O-metal groups bound to acyclic carbon atoms
- C07C31/34—Halogenated alcohols
- C07C31/42—Polyhydroxylic acyclic alcohols
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D301/00—Preparation of oxiranes
- C07D301/02—Synthesis of the oxirane ring
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D301/00—Preparation of oxiranes
- C07D301/02—Synthesis of the oxirane ring
- C07D301/03—Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds
- C07D301/04—Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds with air or molecular oxygen
- C07D301/06—Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds with air or molecular oxygen in the liquid phase
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D301/00—Preparation of oxiranes
- C07D301/02—Synthesis of the oxirane ring
- C07D301/24—Synthesis of the oxirane ring by splitting off HAL—Y from compounds containing the radical HAL—C—C—OY
- C07D301/26—Y being hydrogen
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D303/00—Compounds containing three-membered rings having one oxygen atom as the only ring hetero atom
- C07D303/02—Compounds containing oxirane rings
- C07D303/08—Compounds containing oxirane rings with hydrocarbon radicals, substituted by halogen atoms, nitro radicals or nitroso radicals
Definitions
- the present invention relates to processes for producing an organic compound, in particular to a process for producing a chlorohydrin.
- the product is generally obtained in highly diluted aqueous solution with a titre of 5 to 15 % by weight. It is then particularly expensive to purify it. Moreover, in the case of dichloropropanol, the major isomer obtained according to such processes is 2,3 -dichloropropane- 1 -ol.
- the invention relates to a process for producing a chlorohydrin by reaction between a multihydroxylated-aliphatic hydrocarbon, an ester of a multihydroxylated-aliphatic hydrocarbon, or a mixture thereof, and a chlorinating agent, according to which the multihydroxylated-aliphatic hydrocarbon, the ester of a multihydroxylated-aliphatic hydrocarbon, or the mixture thereof used contains at least one solid or dissolved metal salt, the process comprising a separation operation to remove at least part of the metal salt.
- multihydroxylated-aliphatic hydrocarbon refers to a hydrocarbon which contains at least two hydroxyl groups attached to separate saturated carbon atoms.
- the multihydroxylated-aliphatic hydrocarbon may contain, but not to be limited thereby, from 2 to 60 carbon atoms. Any single carbon of a multihydroxylated-aliphatic hydrocarbon bearing the hydroxyl (OH) functional group must possess no more than one OH group, and must be sp3 hybridized.
- the carbon atom bearing the OH group may be primary, secondary or tertiary.
- the multihydroxylated-aliphatic hydrocarbon used in the present invention must contain at least two sp3 hybridized carbons each bearing an OH group.
- the multihydroxylated-aliphatic hydrocarbon includes any vicinal-diol (1,2-diol) or triol (1,2,3-triol) containing hydrocarbon including higher orders of contiguous or vicinal repeating units.
- the definition of multihydroxylated-aliphatic hydrocarbon also includes for example one or more 1,3-, 1,4-, 1,5- and 1,6-diol functional groups as well.
- the multihydroxylated-aliphatic hydrocarbon may also be a polymer such as polyvinylalcohol. Geminal-diols, for example, would be precluded from this class of multihydroxylated-aliphatic hydrocarbon compounds.
- the multihydroxylated-aliphatic hydrocarbon can contain aromatic moieties or heteroatoms including for example halide, sulfur, phosphorus, nitrogen, oxygen, silicon and boron heteroatoms, and mixtures thereof.
- Multihydroxylated-aliphatic hydrocarbons useful in the present invention include for example 1,2-ethanediol (ethylene glycol), 1,2-propanediol (propylene glycol), 1,3 -propanediol, l-chloro-2,3-propanediol (chloropropanediol), 2-chloro- 1,3 -propanediol (chloropropanediol), 1,4-butanediol, 1,5-pentanediol, cyclohexanediols, 1,2-butanediol, 1,2-cyclohexanedimethanol, Ie 1,2,3-propanetriol (also known as glycerol, glycerin or glycerine), and mixtures thereof.
- 1,2-ethanediol ethylene glycol
- 1,2-propanediol propylene glycol
- the multihydroxylated-aliphatic hydrocarbons used in the present invention include for example 1,2-ethanediol, 1,2 -propanediol, 1,3 -propanediol, 1,2,3-propanetriol and mixtures thereof. More preferably, the multihydroxylated-aliphatic hydrocarbons used in the present invention include for example 1,2-ethanediol, 1,2 -propanediol, chloropropanediol, 1,2,3-propanetriol and any mixture thereof. 1,2,3-propanetriol is the most preferred.
- Esters of multihydroxylated-aliphatic hydrocarbon can be present in the multihydroxylated-aliphatic hydrocarbons and/or can be produced in the process for producing the chlorohydrin according to the invention and/or can be manufactured prior to the process for producing the chlorohydrin.
- Examples of esters of multihydroxylated-aliphatic hydrocarbon are ethyle glycol mono acetate, propanediol monoacetates, glycerol monoacetates, glycerol monosterates, glycerol diacetates and their mixtures.
- chlorohydrins refers to a compound containing at least one hydroxyl group and at least one chlorine atom attached to separate saturated carbon atoms.
- a chlorohydrin that contains at least two hydroxyl groups is also a multi-hydroxylated aliphatic hydrocarbon.
- the starting material and product of the present invention can each be chlorohydrins.
- the product chlorohydrin is more highly chlorinated than the starting chlorohydrin, i.i., has more chlorine atoms and fewer hydroxyl groups than the starting chlorohydrin.
- chlorohydrins are for example chloroethanol, chloropropanol, chloropropanediol and dichloropropanol, with dichloropropanol being the most preferred.
- Particularly preferred chlorohydrins are 2-chloroethanol, l-chloropropane-2-ol, 2-chloropropane-l-ol, l-chloropropane-2,3-diol, 2-chloropropane-l,3-diol, l,3-dichloropropane-2-ol and 2,3-dichloropropane-l-ol and any mixture thereof.
- the multihydroxylated-aliphatic hydrocarbon can be a synthetic multihydroxylated-aliphatic hydrocarbon, a multihydroxylated-aliphatic hydrocarbon obtained from renewable raw materials or a mixture thereof.
- the multihydroxylated-aliphatic hydrocarbon used in the process of the invention has at least partially been produced from renewable raw materials.
- the same considerations apply to the ester of a multihydroxylated-aliphatic hydrocarbon, or the mixture of the ester of a multihydroxylated-aliphatic hydrocarbon and the multihydroxylated-aliphatic hydrocarbon.
- the expression « synthetic » means that the multihydroxylated-aliphatic hydrocarbon has been obtained from fossil raw materials.
- fossil raw materials one intends to denote materials derived from natural petrochemical feedstock, like for instance, petroleum, natural gas, and coal.
- natural petrochemical feedstock like for instance, petroleum, natural gas, and coal.
- organic compounds including 2 and 3 carbon atoms are preferred.
- chlororhydrin is dichloropropanol or chloropropanediol
- allyl chloride allyl alcohol and "synthetic" glycerol are more preferred.
- synthetic glycerol one intends to denote a glycerol obtained from petrochemical feedstocks.
- chlorohydrin is chloroethanol
- ethylene and “synthetic" ethylene glycol are more preferred.
- synthetic ethylene glycol one intends to denote an ethylene glycol obtained from petrochemical feedstocks.
- chlorohydrin is chloropropanol
- propylene and “synthetic" propylene glycol are more preferred.
- synthetic propylene glycol By “synthetic" propylene glycol, one intends to denote a propylene glycol obtained from petrochemical feedstocks. The same considerations apply to the ester of a multihydroxylated-aliphatic hydrocarbon, or the mixture of the ester of a multihydroxylated-aliphatic hydrocarbon and the multihydroxylated-aliphatic hydrocarbon.
- renewable raw materials By renewable raw materials, one intends to denote materials obtained from the treatment of renewable raw materials. Among those materials, natural ethylene glycol, natural propylene glycol and natural glycerol are preferred. "Natural" ethylene glycol, propylene glycol and glycerol can be obtained for instance by thermochemical conversion of sugars derived from biomass treatments as described in "Industrial Bioproducts : Today and Tomorrow, Energetics, Incorporated for the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Office of the Biomass Program, July 2003, pages 49, 52 to 56". One process is for example the catalytic hydrogenolysis of sorbitol obtained by thermochemical conversion of glucose. Another process is for example the catalytic hydrogenolysis of xylitol obtained by hydrogenation of xylose. Xylose can for example be obtained by hydrolysis of hemicellulose contained in corn fibers.
- glycerol obtained from renewable raw materials or "natural glycerol” is intended to denote in particular glycerol obtained in the course of the production of biodiesel, or else glycerol obtained during conversions of fats or oils of plant or animal origin in general, such as saponification, trans-esterification or hydrolysis reactions.
- oils usable in the process of the invention one can quote all current oils, like the corn, sunflower, old or new colza, babassu, copra, cabbage tree, palm oils, of ricinus and cotton, groundnut oils, soya, flax and crambe and all oils resulting for example from the plants of sunflower or colza obtained by genetic modification or hybridization.
- oils can even use worn oils of crackling, varied animal oils, like fish oils, tallow, the lard and even of greases of squaring.
- oils used one can still indicate the oils partially modified for example by polymerization or oligomerization such as for example "linseed oil stand oils", sunflower and puffed up vegetable oil.
- a particularly suitable glycerol can be obtained during the conversion of animal fats.
- Another particularly suitable glycerol can be obtained during the production of biodiesel.
- Another yet particularly suitable glycerol can be obtained during the conversion of fats or oils of plant or animal origin, by transesterification in the presence of an heterogeneous catalyst, such as described in documents FR 2752242, FR 2869612 and FR 2869613.
- the heterogeneous catalyst is selected from mixed oxides of aluminium and zinc, mixed oxides of zinc and titanium, mixed oxides of zinc, titanium and aluminium, and mixed oxides of bismuth and aluminium, and the heterogeneous catalyst is used in a fixed-bed configuration.
- glycerol can be as described in the patent application entitled
- “synthetic multihydroxylated-aliphatic hydrocarbon” is generally obtained from petrochemical resources. The same considerations apply to the ester of a multihydroxylated-aliphatic hydrocarbon, or the mixture of the ester of a multihydroxylated-aliphatic hydrocarbon and the multihydroxylated-aliphatic hydrocarbon.
- the multihydroxylated-aliphatic hydrocarbon used can be a crude multihydroxylated-aliphatic hydrocarbon product or a purified multihydroxylated-aliphatic hydrocarbon product.
- a "crude” multihydroxylated-aliphatic hydrocarbon product is a multihydroxylated-aliphatic hydrocarbon which has not been submitted to any treatment after its manufacture.
- a "purified" multihydroxylated-aliphatic hydrocarbon product is a multihydroxylated-aliphatic hydrocarbon which has been submitted to at least one treatment after its manufacture.
- the multihydroxylated-aliphatic hydrocarbon is a crude product obtained from renewable raw materials, it can comprise, for example, water in addition to a metal salt.
- the metal salt is in particular a metal chloride, which is preferably chosen from NaCl and KCl.
- the metal salt can also be selected from metal sulphates such as sodium sulphate and potassium sulfate.
- the multihydroxylated-aliphatic hydrocarbon used in the process according to the invention contains at least one solid or dissolved metal salt which is preferably selected from sodium chloride, potassium chloride, sodium sulfate and potassium sulfate.
- the multihydroxylated-aliphatic hydrocarbon used in the process according to the invention has generally a metal salt content of at least 0.5 % by weight, preferably greater than or equal to approximately 1 % by weight, more preferably greater than or equal to approximately 2 % by weight, most preferably greater than or equal to approximately 3 % by weight.
- the metal salt content is generally of at most 15 % by weight, preferably less than or equal to 10 % by weight, more preferably less than or equal to approximately 7.5 % by weight and most preferably less than or equal to 5 % by weight.
- the same considerations apply to the ester of a multihydroxylated-aliphatic hydrocarbon, or the mixture of the ester of a multihydroxylated-aliphatic hydrocarbon and the multihydroxylated-aliphatic hydrocarbon.
- the crude multihydroxylated- aliphatic hydrocarbon product can also contain organic impurities such as carbonyl compounds, in particular aldehydes, fatty acids, salts of fatty acids or esters of fatty acids, such as in particular mono- or polyesters of the multihydroxylated-aliphatic hydrocarbon with fatty acid, optionally in combination with water.
- organic impurities such as carbonyl compounds, in particular aldehydes, fatty acids, salts of fatty acids or esters of fatty acids, such as in particular mono- or polyesters of the multihydroxylated-aliphatic hydrocarbon with fatty acid, optionally in combination with water.
- organic impurities such as carbonyl compounds, in particular aldehydes, fatty acids, salts of fatty acids or esters of fatty acids, such as in particular mono- or polyesters of the multihydroxylated-aliphatic hydrocarbon with fatty acid, optionally in combination with water.
- preferred fatty acids are saturated and unsaturated fatty acids containing more than 12 carbon atom
- the crude product generally comprises at most 10 % by weight of organic impurities, often 8 % by weight of organic impurities. Often, the crude product comprises at most 6 % by weight of organic impurities. Preferably, it comprises at most 2 % by weight of organic impurities. Most preferably, it comprises at most 1 % by weight of organic impurities.
- the organic impurities typically consist essentially of fatty acids and their derivatives.
- the invention then also relates to a process for producing a chlorohydrin according to which a multihydroxylated-aliphatic hydrocarbon, an ester of a multihydroxylated-aliphatic hydrocarbon, or a mixture thereof, containing at most 8 % by weight of organic impurities is subjected to a reaction with a chlorinating agent. It has surprisingly been found that the use of crude product having a high content of organic impurities does not have substantial impact on the reaction underlying the process of the invention.
- Optional byproducts from the organic impurities can easily be eliminated from the reaction mixture e.g., if applicable, by controlling the purge rate as described in the patent application WO 2005/054167 in the name of SOLVAY SA, the content of which is incorporated herein by reference, from page 17, line 33 to page 18, line 2, from page 24, lines 8 to page 25, line 10.
- the crude multihydroxylated- aliphatic hydrocarbon product generally comprises at least 40 % by weight of the multihydroxylated-aliphatic hydrocarbon. Often, the crude product comprises at least 50 % by weight of the multihydroxylated-aliphatic hydrocarbon. Preferably, it comprises at least 70 % by weight of the multihydroxylated- aliphatic hydrocarbon. Often, the crude product comprises at most 99 % by weight of the multihydroxylated-aliphatic hydrocarbon. Typically, it comprises at most 95 % by weight of the multihydroxylated-aliphatic hydrocarbon.
- the crude multihydroxylated- aliphatic hydrocarbon product generally comprises at least 5 % by weight of water or, in the absence of other compounds than water and the multihydroxylated-aliphatic hydrocarbon, at least 1 % by weight of water.
- the crude multihydroxylated-aliphatic hydrocarbon product generally comprises at most 50 % by weight of water or, in the absence of other compounds other than water and the multihydroxylated- aliphatic hydrocarbon, at most 60 % by weight of water.
- the crude multihydroxylated-aliphatic hydrocarbon product comprises at most 30 % by weight of water, preferably at most 21 % by weight of water.
- the crude multihydroxylated-aliphatic hydrocarbon product comprises at most 89 % by weight of the multihydroxylated-aliphatic hydrocarbon. In that embodiment, the crude multihydroxylated-aliphatic hydrocarbon product comprises at most 85 % by weight of the multihydroxylated-aliphatic hydrocarbon. In that embodiment, the crude multihydroxylated-aliphatic hydrocarbon product comprises generally at least 10 % by weight of water and often at least 14 % by weight of water.
- the crude multihydroxylated-aliphatic hydrocarbon product has a metal salt content of at least 0.5 % by weight, preferably greater than or equal to approximately 1 % by weight and more preferably greater than or equal to approximately 1.5 % by weight.
- the crude multihydroxylated-aliphatic hydrocarbon has a metal salt content of at most 15 % by weight, preferably less than or equal to 12 % by weight and more preferably less than or equal to approximately 7.5 % by weight.
- the separation operation according to the invention applies particularly preferably to the production of chlorinated compounds starting from a multihydroxylated-aliphatic hydrocarbon, especially to the production of chlorohydrins and epoxides. Surprisingly, the separation operation according to the invention makes it possible to economically obtain these compounds starting from renewable resources.
- the term « epoxide » is used to describe a compound containing at least one oxygen bridge on a carbon-carbon bond. Generally, the carbon atoms of the carbon-carbon bond are contiguous and the compound can include other atoms than carbon and oxygen atoms, like hydrogen and halogens, for example.
- Preferred epoxides are ethylene oxide, propylene oxide, glycidol and epichlorohydrin.
- the invention also relates in particular to a process for producing a chlorinated organic compound, according to which a multihydroxylated-aliphatic hydrocarbon, an ester of a multihydroxylated- aliphatic hydrocarbon, or a mixture thereof, obtained from renewable raw materials is used, and the multihydroxylated-aliphatic hydrocarbon, the ester of a multihydroxylated-aliphatic hydrocarbon, or the mixture thereof, used contains at least one solid or dissolved metal salt and the process comprises a separation operation to remove at least part of the metal salt.
- chlorinated compound has to be understood as "chlorohydrin”.
- chlorohydrins are for example chloroethanol, chloropropanol, chloropropanediol and dichloropropanol, with dichloropropanol being the most preferred.
- chloroethanol is intended to mean a mixture comprising 2-chloroethanol.
- chloropropanol is intended to mean a mixture of isomers comprising l-chloropropane-2-ol and 2-chloropropane-l-ol.
- chloropropanediol is intended to mean a mixture of isomers comprising l-chloropropane-2,3-diol and 2-chloropropane-l,3-diol.
- dichloropropanol is intended to mean a mixture of isomers comprising l,3-dichloropropane-2-ol and 2,3-dichloro-propane-l-ol.
- the chlorinating agent can be hydrogen chloride and/or hydrochloric acidic as disclosed in the patent application WO 2005/054167 of SOLVAY SA, from page 4, line 30 to page 6, line 2. Mention can particularly be made a chlorinating agent which can be gaseous hydrogen chloride, aqueous solution of hydrogen chloride or combination of both.
- Hydrogen chloride can arise from a pyrolysis process of chlorinated organic compounds as for example, a production of vinyl chloride, a production of of 4,4-methylenediphenyl diisocyanate (MDI) or toluene diisocyanate, or from processes for cleansing metals or by reaction of inorganic acids such as sulphuric acid or phosphoric acid on metal chlorides such as sodium chloride, potassium chloride or calcium chloride.
- MDI 4,4-methylenediphenyl diisocyanate
- MMI 4,4-methylenediphenyl diisocyanate
- toluene diisocyanate toluene diisocyanate
- the chlorinated agent can be aqueous hydrogen chloride or hydrogen chloride preferentially anhydrous, arising from an installation for producing allyl chloride and/or an installation for producing chloromethanes and/or an installation of chlorinolysis and/or a high temperature oxidation installation as described in patent application entitled « Process for manufacturing a chlorohydrin by reaction between a multi-hydroxylated aliphatic hydrocarbon and a chlorinating agent” filed in the name of SOLVAY SA on the same day as the present application, the content of which is incorporated herein by reference.
- Mention is particularly made of a hydrocarbon selected from aromatic hydrocarbons, saturated and unsaturated aliphatic hydrocarbons, or mixtures thereof. Mention is particularly made of an aliphatic unsaturated hydrocarbon selected from acetylene, ethylene, propylene, butene, propadiene, methylacetylene, and mixtures thereof, of a saturated hydrocarbon selected from methane, ethane, propane, butane and mixture thereof, and of an aromatic hydrocarbon which is benzene.
- a hydrocarbon selected from aromatic hydrocarbons, saturated and unsaturated aliphatic hydrocarbons, or mixtures thereof.
- Mention is particularly made of an aliphatic unsaturated hydrocarbon selected from acetylene, ethylene, propylene, butene, propadiene, methylacetylene, and mixtures thereof, of a saturated hydrocarbon selected from methane, ethane, propane, butane and mixture thereof, and of an aromatic hydrocarbon which is benzene.
- halogenated organic compound which is a chlorinated organic compound selected from chloromethanes, chloroethanes, chloropropanes, lchlorobutanes, vinyl chloride, vinylidene chloride, monochloropropenes, Ie perchloroethylene, trichlorethylene, chlorobutadiene, lchlorobenzenes and mixture thereof.
- a halogenated organic compound which is a fluorinated organic compound selected from fluoromethanes, fluoroethanes, vinyl fluoride, vinylidene fluoride and mixtures thereof.
- chlorinating agent est issued at least partially from a process for manufacturing allyl chloride and/or from a process for manufacturing chloormethanes and/or from a chlorinolysis process and/or from a process for oxidizing chlorinated compounds at a temperature higher than or equal to 800°C.
- the chlorinating agent does not contain gaseous hydrogen chloride.
- the process for producing a chlorohydrin according to the invention can be carried out in a reactor as specifically disclosed in the patent application
- Mention is particularly made of an installation made of, or coated with, materials resisting to chlorinating agents, in particular to hydrogen chloride, under the reaction conditions. Mention is more particularly made of an installation made of enamelled-steel or of tantalum.
- the process for producing a chlorohydrin according to the invention can be carried out in equipments, made of or coated with, materials that are resistant to chlorinating agents, as described in patent application entitled « Process for manufacturing a chlorohydrin in equipments resisting to corrosion” filed under the name of SOLVAY SA on the same day of the present application, the content of which is herein incorporated by reference.
- Mention is particularly made of a process for manufacturing a chlorhydrin comprising a stage in which a multi-hydroxylated aliphatic hydrocarbon, an ester of a multi-hydroxylated aliphatic hydrocarbon, or a mixture thereof, is submitted to a reaction with a chlorinating agent containing hydrogen choride and at least one other stage carried out in an equipment, made of or covered with, materials resisting to the chlorinating agent under the conditions of theis stage.
- metallic materials such as enamelled-steel, gold and tantalum
- non-metallic materials such as high density polyethylene, polypropylene, poly(vinylidene fluoride), polytetrafluoroethylene, perfluoro alkoxyalcanes and poly(perfluoropropylvinylether), polysulfones and polysulfides, graphite et impregnated graphite.
- the organic part of the liquid reaction medium is defined as the sum of the organic compounds of the liquid reaction medium that is to say compounds which molecule contents at least one carbon atom.
- the reaction between the multihydroxylated-aliphatic hydrocarbon, the ester of a multihydroxylated-aliphatic hydrocarbon, or the mixture thereof, and the chlorinating agent can be carried out in the presence of a catalyst, as specifically disclosed in the patent application WO 2005/054167 of SOLVAY SA from page 6, line 28 to page 8, line 5.
- a catalyst which is a carboxylic acid or a carboxylic acid derivative having an atmospheric boiling point of greater than or equal to 200°C, preferably adipic acid or an adipic acid derivative.
- the reaction between multihydroxylated-aliphatic hydrocarbon, the ester of a multihydroxylated-aliphatic hydrocarbon, or the mixture thereof and the chlorinating agent can be carried out at a temperature, a pressure and a residence time as specifically disclosed in the patent application WO 2005/054167 of SOLVAY SA from page 8, line 6 to page 10, line 10.
- the reaction between the multihydroxylated-aliphatic hydrocarbon, the ester of a multihydroxylated-aliphatic hydrocarbon, or the mixture thereof, and the chlorinating agent can be carried out in a solvent as specifically disclosed in the patent application WO 2005/054167 of SOLVAY SA from page 11, line 12 to 36.
- an organic solvent such as a chlorinated organic solvent, an alcohol, a ketone, an ester or an ether
- a non-aqueous solvent not miscible with the multi-hydroxylated aliphatic hydrocarbon such as chloroethanol, chloropropanol, chlorpropanediol, dichloropropano
- the reaction between the multihydroxylated-aliphatic hydrocarbon, the ester of a multihydroxylated-aliphatic hydrocarbon, or the mixture thereof, and the chlorinating agent can be carried out in the presence of a liquid phase comprising heavy compounds as described in patent application entitled « Process for manufacturing a chlorohydrin in a liquid phase” filed under the name of SOLVAY SA on the same day as the present application, the content of which is herein incorporated by reference.
- the process for producing a chlorohydrin according to the invention can be carried under batch mode or continuous mode. Continuous mode is preferred.
- the reaction between the multihydroxylated-aliphatic hydrocarbon, the ester of a multihydroxylated-aliphatic hydrocarbon, or the mixture thereof, and the chlorinating agent is preferably carried out in a liquid reaction medium.
- the liquid reaction medium can be mono- or multiphases.
- the liquid reaction medium is made up of all of the dissolved or dispersed solid compounds, dissolved or dispersed gas, dissolved or dispersed liquids, at the temperature of the reaction.
- the reaction medium comprises the reactants, the catalyst, the solvent, the impurities present in the reactants, in the catalyst and in the solvent, the intermediates, the products and the by products of the reaction.
- reactants one intends to denote the multihydroxylated-aliphatic hydrocarbon, the ester of a multihydroxylated aliphatic hydrocarbon and the chlorinating agent.
- carboxylic acids include carboxylic acid, carboxylic acid salts, esters of fatty acids with the multihydroxylated-aliphatic hydrocarbon, esters of fatty acids with alcohols used during trans-esterification, inorganic salts such as for example, alkaline and alkaline-earth chlorides and sulfates.
- the multihydroxylated-aliphatic hydrocarbon is glycerol
- impurities of glycerol carboxylic acids, carboxylic acid salts, fatty acid esters such as mono-, di- and triglycerides, esters of fatty acids with alcohols used during trans-esterification, inorganic salts such as for example, alkaline and alkaline-earth chlorides and sulfates.
- chlorohydrin is dichloropropanol
- monochlorohydrin of glycerol and its esters and/or polyesters esters and/or polyesters of glycerol and esters of dichloropropanol.
- the ester of multihydroxylated aliphatic hydrocarbon can then be a reactant, an impurity of the multihydroxylated aliphatic hydrocarbon or an intermediate.
- Water can be the water produced by the chlorination reaction and/or water introduced in the process.
- oligomers of the multihydroxylated-aliphatic hydrocarbon partially chlorinated and/or esterified.
- the multihydroxylated-aliphatic hydrocarbon is glycerol
- glycerol oligomers partially chlorinated and/or esterified.
- the liquid reaction medium can then contain the multihydroxylated- aliphatic hydrocarbon, the chlorination agent dissolved or dispersed in the form of bubbles, the catalyst, the solvent, the impurities present in the reactant, the catalyst and the solvent, such as salts dissolved or solid for instance, intermediates, products and by-products of the reaction.
- the separation of the chlorohydrin from the other compounds of the reaction medium can be carried out as disclosed in the patent application WO 2005/054167 of SOLVAY SA from page 12, line 1 to page 16, line 35 and at page 18, lines 6 to 13.
- These other compounds are those already mentioned and comprise non-consumed reactants, impurities present in the reactants, in the catalyst and in the solvent, the catalyst, the solvent, the intermediates, water and the by-products of the reaction.
- separation and treatment of the other compounds of the reaction medium can be carried out as described in the patent application WO 2005/054167 of SOLVAY SA from page 18, lines 6 to 13.
- the separation of the chlorohydrin from the other compounds of the reaction medium can be carried out as described in the patent application entitled « « Process for manufacturing a chlorohydrin » filed under the name of SOLVAY SA, on the same day as the present application, and the content of which is herein incorporated by reference.
- Mention is particularly made of a process for manufacturing a chlorohydrin comprising the following steps : (a) a multi-hydroxylated aliphatic hydrocarbon, an ester of a multi-hydroxylated aliphatic hydrocarbon, or a mixture thereof, is submitted to a reaction with a chlorinating agent and an organic acid in order to obtain a mixture containing the chlorhydrin and esters of the chlorohydrin, (b) at least a part of the mixture obtained in step (a) is submitted to one or more treatments in steps subsequent to step (a) and (c) the multi-hydroxylated aliphatic hydrocarbon is added to at least one of the steps subsequent to step (a), so that to react at a temperature of at least 20°C, with the chlorohydrin esters in order to form at least partially esters of the multi-hydroxylated aliphatic hydrocarbon. Mention is more particularly made of a process in which the multi-hydroxylated aliphatic hydrocarbon is glycerol and the chlorohydrin is dichloro
- the separation of the chlorohydrin from the other compounds of the reaction medium can be carried out as described in the patent application entitled « Process for manufacturing a chlorohydrin from a multi-hydroxylated aliphatic hydrocarbon” filed in the name of SOLVAY SA on the same day as the present application, and the content of which is herein incorporated by reference.
- the separation of the chlorohydrin from the other compounds of the reaction medium can be carried out as described in the patent application entitled « Process for converting multi-hydroxylated aliphatic hydrocarbons into chlrohydrins” filed under the name of SOLVAY SA, on the same day of the present application and the content of which is herein incorporated by reference.
- Mention is particularly made of a process for manufacturing a chlorohydrin comprising the following steps : (a) a multi-hydroxylated aliphatic hydrocarbon, an ester of a multi-hydroxylated aliphatic hydrocarbon, or a mixture thereof, is reacted with a chlorinating agent in order to obtain a mixture containing chlorhydrin, chlorohydrin esters and water, (b) at least one fraction of the mixture obtained in step (a) is submitted to a distillation and/or stripping treatment in order to obtain a part concentrated in water, chlorohydrin and chlorhydrin esters, and (c) at least one fraction of the part obtained in step (b) is submitted to a separation operation in the presence of at least one additive so as to obtain a portion concentrated in chlorhydrin and chlorohydrin esters, and which contains less than 40 % by weight of water.
- the separation operation is more particularly a decantation.
- separation and treatment of the other compounds of the reaction medium can be carried out as described in the patent application entitled « Process for manufacturing a chlorohydrin by chlorination of a multi-hydroxylated aliphatic hydrocarbon” filed in the name of SOLVAY SA on the same day as the present application, the content of which is incorporated herein by reference.
- a preferred treatment can consist of submitting a fraction of the other products to a high temperature oxidation.
- a process for manufacturing a chlorohydrin comprising the following steps : (a) a multi-hydroxylated aliphatic hydrocarbon, an ester of a multi-hydroxylated aliphatic hydrocarbon, or a mixture thereof, the alkaline and/or alkaline -earth metals content of which is lower than or equal to 5 g/kg, is reacted with a chlorinating agent and an organic acid, so as to obtain a mixture containing at least the chlorohydrin and by-products, (b) at least one part of the mixture obtained at step (a) is submitted to one or more treatments in steps subsequent to step (a) and (c) at least one step subsequent to step (a) is an oxidation at a temperature higher than or equal to 800°C.
- Mention is more particularly made of a process in which in the subsequent step, a part of the mixture obtained at step (a) is withdrawn and that part is submitted to an oxidation at a temperature higher than or equal to 800°C, during the withdrawal. Mention is also made of a process in which the treatment of step (b) is a separation operation selected from the operations of decantation, filtration, centrifugation, extraction, washing, evaporation, stripping, distillation, adsorption or the combination of at least two of them.
- reaction medium is defined as above.
- This medium is preferably a liquid reaction medium (a liquid phase) as defined above.
- the expression “reaction medium” also includes the gas phase in equilibrium with the liquid.
- reaction medium will then be used to designate indistinctly the liquid phase where the reaction between the multihydroxylated-aliphatic hydrocarbon and the chlorinating agent occurs and the gas phase in equilibrium with that liquid phase.
- vapour stripping of the reaction medium it is possible to obtain a stripped fraction containing from 1 to 5, some times from 2 to 3 and preferably from 1.5 to 2.5 mol/1 of chlorinated organic compound, in particular of chlorohydrin.
- the stripped fraction is mainly composed of water and the chlorohydrin.
- the chlorohydrin when the chlorohydrin is not completely removed from the reaction mixture by withdrawal of a fraction containing water, it is possible to recover at least another fraction of the reaction mixture containing the chlorohydrin.
- At least one fraction comprising from 50 to 95 % by weight of the chlorohydrin and at most 50 % by weight of water is generally recovered.
- this fraction comprises from 75 to 99.9 %, often from 75 to 99 %, by weight of the chlorohydrin and from 0.01 to 25 %, often from 1 to 25 %, by weight of water.
- the recovery is preferably carried out by distillation or evaporation.
- Other fractions obtained during this step comprising, for example, intermediates and, optionally, the multihydroxylated-aliphatic hydrocarbon and the catalyst, can be recycled to the reaction with the chlorinating agent.
- the distillation or evaporation is generally carried out at a pressure of greater than 0.001 bar. This pressure is preferably greater than or equal to approximately 0.003 bar.
- the distillation or evaporation is generally carried out at a pressure of at most 15 bar. This pressure is often at most 10 bar. It is preferably at most 7 bar, more preferably at most 1 bar, yet more preferably at most 0.5 bar and most preferably at most 0.1 bar.
- the distillation or evaporation operation can be carried out either by means of distillation columns or by means of evaporators, of film evaporators or alternatively of wiped thin film evaporators.
- the recoverable fractions of the residues can be separated there from by physical and/or chemical operations.
- An example of physical operation is a distillation advantageously by means of a wiped thin film evaporator with an interior or exterior condenser.
- An example of a chemical operation is an hydrolysis of the residue to recover for instance the catalyst.
- the dichlorohydrin when the chlorohydrin is a dichlorohydrin, the dichlorohydrin is produced according to a process comprising: (a) a first reaction step in which a multihydroxylated-aliphatic hydrocarbon is brought into contact with the chlorinating agent so as to obtain a fraction of products comprising at least a monochlorohydrin; (b) optionally at least part of the fraction of products is subjected to a drying operation; (c) at least part of the fraction of optionally dried products is introduced into a second reaction step in which at least part of the monochlorohydrin is reacted with the chlorinating agent.
- Steps (a) and (c) in this variant are preferably carried out under conditions and with the preferences as described above for the process for producing the chlorohydrin according to the invention. However, it is preferred to carry out the reaction of step (a) in the presence of water at a concentration preferably ranging from 3 to 40 % by weight, preferably from 3 to 40 % by weight relative to the total weight of the reaction medium.
- Step (b) can be carried out, for example, by a stripping operation in at least one of the reactors of steps (a) or (c) or by means of an evaporator placed on a recirculation pipe exterior to the reactor or by distillation.
- the water is removed by means of a membrane technique.
- the process for producing a chlorohydrin according to the invention can be carried out, for example, in cascade reactors, in at least one plate column or in at least one bubble column, or an assembly of such reactors.
- the reactors may effectively be of a type that is stirred either by means of internal stirring, or by means of a recirculation pipe exterior to the reactor.
- the heating can be obtained, for example, by means of a jacket or by means of an internal heat exchanger. Heating can also be obtained by means of a heat exchanger on a recirculation pipe exterior to the reactor. Optionally, the heating is obtained by combined use of a jacket and of a heat exchanger on a recirculation pipe exterior to the reactor.
- purge one intends to denote a withdrawal of a fraction of the reaction medium. If appropriate, the catalyst quantity which is removed during such purging operation can be compensated by the introduction of an equivalent quantity of pure or purified catalyst.
- the catalyst contained in the purge from the reaction mixture can be economically recycled in the reactor after a purification treatment.
- catalysts with low solubility in water can be subjected to an acid hydrolysis treatment, preferably carried out at a temperature higher than 30°C, preferably at least 50°C which is followed by a separation step e.g. by decantation, filtration or extraction. It has been found that in the case of adipic acid, an acid hydrolysis of the purge leads after cooling and filtration, to the recovery of crystallised adipic acid of high purity with a good yield.
- metal salts in particular NaCl, optionally present in the raw materials, for example in the multihydroxylated-aliphatic hydrocarbon, the ester of a multihydroxylated-aliphatic hydrocarbon, or the mixture thereof, from renewable resources described above, can concentrate in the reactor where the reaction between the multihydroxylated-aliphatic hydrocarbon, the ester of a multihydroxylated-aliphatic hydrocarbon, or the mixture thereof, and the chlorinating agent is carried out.
- An increase of metal salt content could possibly lead to a progressive crystallisation of insoluble materials, leading to an increase of the volume of the reaction mixture and to various problems linked to the presence of solid materials such as deposit formation on the reactor walls, on the stirrer and on feed and purge lines and valves.
- Deposit formation on the reactor wall can reduce the heat transfer efficiency and require an increase amount of energy to maintain the temperature of the reaction mixture.
- Deposit formation on valves and lines can lead to plugging problems.
- An increased amount of solid in the reaction mixture can reduce the stirring efficiency and require a higher amount of energy to reach a correct agitation.
- Increase of metal salt concentration could then require a higher continuous or discontinuous purge rate leading to higher losses of products.
- metal salt is surprisingly acceptable in the process according to the invention, it may therefore be desirable to remove at least part of the metal salt, in particular NaCl, from the reaction system, e.g. in order to prevent optional accumulation of metal salt in the reaction mixture.
- Such removal can suitably be carried out by subjecting at least a fraction of the reaction mixture which contains metal salt, solid or dissolved, to a treatment comprising at least one separation operation to remove at least part of the metal salt from said fraction.
- the separation operation can be selected from liquid/solid, liquid/liquid, liquid/gas and solid/gas separations.
- the liquid/solid separation operation can be selected from decantation, centrifugation, filtration, adsorption and treatment with ion-exchanged resins.
- the liquid/liquid separation operation can be selected from decantation and centrifugation.
- the liquid/gas separation operation can be selected from stripping, evaporation and distillation.
- Liquid/solid separation operations are preferred, filtration is more preferred and filtration where the metal is removed as a solid is most preferred.
- the reaction is preferably carried out in a reaction mixture and the separation operation is carried out on at least a fraction of the reaction mixture.
- the fraction of the reaction mixture can be submitted to a treatment to remove at least one component other than the metal salt prior to the separation operation. That treatment can be a stripping or a distillation operation;
- the fraction of the reaction mixture to be submitted to the separation operation can be directly withdrawn from the reaction mixture, notably when the reaction is carried out in the liquid phase.
- the fraction of the reaction mixture to be submitted to the separation operation can also be withdrawn from the reaction mixture and further treated before removing the metal salt.
- An example of a suitable treatment is a concentration operation carried out on a liquid fraction of the reaction mixture wherein volatile compounds such as starting materials and products of the reaction, which may optionally be recovered and/or recycled to the reaction mixture, are separated e.g. by stripping, distillation or evaporation and a concentrated fraction having increased content of metal salt, solid or dissolved, is obtained and subjected to the treatment to separate metal salt.
- the separation step can then be carried out at any step of the process for producing the chlorohydrin as described in the patent application
- the fraction of the reaction mixture which contains metal salt is obtained from the purge of the reactor where the reaction takes place and is sent to a least one separation unit, where the separation of the metal salt is carried out for example by adsorption, distillation, extraction, decantation, centrifugation, filtration and treatment with ion exchanged resins.
- a liquid/solid separation unit is preferred and a separation by filtration is more preferred.
- the separated liquid is preferably recycled back to the reactor and the metal salt is left on the filter.
- the filtration step can be carried out at a temperature which is usually greater than or equal to 4 °C, preferably greater than or equal to 20 °C, more preferably greater than or equal to 30 °C, yet more preferably greater than or equal to 50 °C and most preferably greater than or equal to 80 °C.
- This temperature is generally lower than or equal to 150 °C and preferably lower than or equal to 140 °C.
- the nature of the filtration system is not critical and is readily apparent to the skilled person aware of the present invention. A description of suitable filtration systems can be found in "Perry's Chemical Engineers 'Hnadbook, Sixth Edition, 1984, Sections 19-65 to 19-103".
- the metal salt As the metal salt accumulates on the filtration system, it is generally recommended to periodically regenerate the filtration unit by removing the filtrated salt.
- the regeneration can be performed by any means, for example by removing, in particular by mechanical means, the solid or by dissolving the solid.
- solid elution treatments can be incorporated in the regeneration procedure.
- the metal salt is removed as a solid from the filtration system without any pretreatment.
- the salt is disposed off in a suitable manner without further treatment.
- the salt is stored in a separate vessel for further treatment.
- Further treatment can include elution of the solid with solvents and dissolution of the solid with solvents. Such treatments are described herebelow in the preferred embodiment.
- the metal salt is treated before removal from the filtration system.
- adsorbed products and reactants such as in particular catalyst and chlorohydrins and their esters can be recovered from the metal salts, in particular from NaCl, for example by elution with an appropriate eluting solvent such as a mixture of water and the chlorohydrin. Any ratio between water and the chlorohydrin is suitable. It is preferred to use the chlorohydrin saturated with water at room temperature. It is particularly preferred to use one of the phase obtained from the decantation between the chlorohydrin and water.
- the water content of the chlorohydrin used as eluting solvent is generally lower than or equal to 20 % by weight and preferably lower than or equal to 15 % and most preferably lower than or equal to about 12 %.
- the water content in the mixture of water and the chlorohydrin is generally higher than or equal to 1 % by weight.
- the eluting solvent consists essentially of the chlorohydrin.
- the water content is generally lower than 1 % by weight, preferably lower than or equal to 0.5 % by weight.
- the eluting solvent is water for example fresh water as defined above.
- the elution step can be carried out at a temperature which is usually greater than or equal to 20 °C, preferably greater than or equal to 50 °C and most preferably greater than or equal to 80 °C. This temperature is generally lower than or equal to 150 °C and preferably lower than or equal to 140 °C.
- the solvent used for eluting the metal salt can be recycled to the chlorination reactor.
- the metal salt can then be optionally further eluted with an aqueous solution.
- the aqueous solution can arise from any step of the process. It is preferred to use fresh water as defined below.
- the elution step can be carried out at a temperature which is usually greater than or equal to 20 °C, preferably greater than or equal to 50 °C and most preferably greater than or equal to 80 °C. This temperature is generally lower than or equal to 150 °C and preferably lower than or equal to 140 °C.
- the aqueous solution used for eluting the metal salt can be sent to the chlorination reactor, to a dehydrochlorination unit, to a biological treatment unit or to an oxidation treatment unit.
- the salt is removed as a solid in a suitable manner without further treatment.
- the salt is then disposed off in a suitable manner.
- the salt is dissolved with an aqueous solution.
- the aqueous solution can arise from any step of the process. It is preferred to use fresh water as defined above.
- the dissolution step can be carried out at a temperature which is usually greater than or equal to 20 °C, preferably greater than or equal to 50 °C and most preferably greater than or equal to 80 °C. This temperature is generally lower than or equal to 150 °C and preferably lower than or equal to 140 °C.
- the aqueous solution containing the dissolved metal salt can be disposed off. Preferably, it is sent to a dehydrochlorination unit, to a biological treatment unit or to an oxidation treatment unit.
- the elution of the metal salt with water and the dissolution of the metal salt with water can be part of a single unit operation.
- the metal salt is sodium chloride or potassium chloride or sodium sulfate or potassium sulfate or any of their mixtures and more particularly suited for sodium chloride.
- one filtration unit is usually sufficient since the filtration system can be regenerated during the shut-downs of the purge.
- the purge is carried out in a continuous mode, it is preferred to have at least two filtration units working in alternance, one being in filtration mode while the other is in regeneration mode.
- the filtration operation can be carried out in batch mode or continuous mode.
- HCl When anhydrous HCl is used as chlorinating agent, it is preferred to direct a liquid stream comprising the multihydroxylated-aliphatic hydrocarbon against the current of the stream of HCl.
- the HCl is advantageously dried between two reactors, for example by adsorption on a suitable solid, such as a molecular sieve, or by reverse osmosis through a suitable membrane.
- This particular embodiment of the process according to the invention makes it possible to obtain, particularly economically, a concentrated chlorhydrin often having a chlorohydrin content of greater than or equal to 90 % by weight relative to the total weight of the chlorohydrin.
- the chlorohydrin is dichloropropanol
- the mixture can contain the 1,3- dichloropropane-2-ol :and 2,3-dichloropropane-l-ol isomers in a mass ratio 1,3- dichloropropane-2-ol : 2,3-dichloropropane-l-ol generally higher than or equal to 0.5, often higher than or equal to 3, frequently higher than or equal to 7 and in particular higher than or equal to 20.
- the invention is also related to a process for producing a chlorohydrin, according to which :
- step (c) at least part of the fraction obtained in step (b) is introduced into a distillation step (d) the reflux ratio of the distillation step is controlled by supplying water to said distillation step.
- the reaction medium is defined as above.
- the fraction withdrawn at step (b) has a water content preferably higher than or equal to 12 % by weight relative to the total weight of the withdrawn fraction.
- the fraction withdrawn at step (b) may also contain hydrogen chloride.
- the fraction is withdrawn continuously as its constituents form.
- the fraction obtained can subsequently be subjected to an operation of decantation after the distillation step.
- the reaction medium of step (a) can be fed with water, in particular with steam.
- the feeding can be effected with extrinsic water originating from a suitable feed pipe or, optionally, with residual water recovered from another unit reaction or operation.
- This feed is generally effected in such as way as to maintain the water concentration in the reaction medium within the ranges as described in patent application WO 2005/054167 in the name of SOLVAY SA from page 10, line 31 to page 11, line 11.
- Continuous or periodic withdrawal can be carried out by introducing into a distillation step a gaseous phase, in particular withdrawing and introducing into a distillation step a gas phase which is in equilibrium with a liquid phase.
- a particular embodiment for the process according to the invention is to carry out steps (a) to (d) in a reactor surmounted by a suitable distillation column. Step (a) is carried out in the reactor.
- This embodiment is particularly suitable when aqueous hydrochloric acid is used as chlorinating agent. It is most particularly suitable when the chlorinating agent does not contain gaseous hydrogen chloride.
- Anhydrous hydrogen chloride has a water content which is generally lower than or equal to 40 % by weight, preferably lower than or equal to 30 % by weight and most preferably lower than or equal to 25 % by weight.
- the water content of anhydrous hydrogen chloride is generally higher than or equal to 1 ppm by weight.
- the fraction to be introduced into the distillation column separated from the reactor is withdrawn continuously or periodically, preferably continuously, from the liquid reaction mixture and at least water and the chlorohydrin is separated.
- one or more fractions containing organic products such as heavy byproducts and in particular catalyst and/or hydrogen chloride can also be separated in this distillation step and generally recycled to the reaction mixture.
- the reflux ratio can suitably be adjusted by supplying water which is preferably substantially free of hydrogen chloride to the distillation column.
- the water is preferably fed to the top of the distillation column.
- Water can be supplied, for example by recycling at least a portion of water separated in the distillation operation to the top of the distillation column.
- Water can also be supplied by adding fresh water to the top of the distillation column. Both manners of supplying water can be combined. Adding fresh water gives particularly good results.
- “Substantially free of hydrogen chloride” is understood to denote in particular a hydrogen chloride content in the fraction comprising water equal to or less than 10 % by weight relative to the total weight of the fraction comprising water. Often, this content is equal to less than 5 % by weight and preferably equal to or less than 1 % by weight and more preferably equal to or less than 0.3 % by weight. If hydrogen chloride is present in the fraction "substantially free of hydrogen chloride", its content is generally equal to or more than 1 mg/kg, often equal to or more than 5 mg/kg and in particular equal to or more than 10 mg/kg relative to the total weight of the fraction comprising water.
- “Fresh” water is understood to denote water having a content of constituents other than water, organic or inorganic, lower than or equal to 12 % by weight relative to the total weight of the water and of such constituents, preferably lower than or equal to 10 % by weight and most preferably lower than or equal to 1 % by weight.
- fresh water is understood to denote in particular water having a content of constituents other than water, organic or inorganic, equal to or more than 0.001 mg/kg, often equal to or more than 1 mg/kg relative to the total weight of water and of such constituents and frequently higher than or equal to 10 mg/kg.
- a possible source of fresh water can be for example the water used for eluting metal salt as described herein below, demineralized water obtained from ion-exchange resins, distilled water or water arising from steam condensation.
- the invention relates then also to a process for producing a chlorohydrin, according to which :
- step (c) at least part of the fraction obtained in step (b) is introduced into a distillation step wherein the ratio between the hydrogen chloride concentration and the water concentration of the fraction introduced into the distillation step is lower than the hydrogen chloride / water concentration ratio in the binary azeotropic composition hydrogen chloride/water at the temperature and pressure of the distillation.
- the operating conditions of the reactor where the reaction between the multihydroxylated-aliphatic hydrocarbon, the ester of a multihydroxylated-aliphatic hydrocarbon, or the mixture thereof, and the chlorinated agent occurs such as feed rates of reactants, in particular hydrogen chloride and the multihydroxylated-aliphatic hydrocarbon, the ester of a multihydroxylated-aliphatic hydrocarbon, or the mixture thereof, catalyst feed rate, temperature, reactor volume and pressure are preferably adjusted in such a way that the hydrogen chloride content of the fraction introduced into the distillation step is lower than the hydrogen chloride concentration in the binary azeotropic composition hydrogen chloride/water at the temperature and pressure of the distillation.
- An effective means of adjusting this concentration is controlling the hydrogen chloride supply to the liquid reaction medium.
- Such addition can be carried out for example by injection of vapor into the boiler of a distillation column used in the distillation step or by recycling to the distillation step of a water phase which can be obtained for example by decantation of a fraction withdrawn from the top of a distillation column, or by adding fresh water to the top of a distillation column or by adding a mixture of recycled and fresh water.
- a fraction comprising water which fraction is substantially free of hydrogen chloride as defined above can be recovered by distillation from the reaction mixture or the gas phase above the liquid reaction mixture, e.g. by distilling material withdrawn from said gas phase and obtaining the fraction comprising water preferably at the top of the distillation column.
- the chlorohydrin is dichloropropanol
- at atmospheric pressure 101,3 kPa
- the chlorohydrin can contain a high amount of halogenated ketones in particular chloroacetone as described in patent application FR 05.05120 of SOLVAY SA filed on May 20, 2005, the content of which is incorporated herein by reference.
- the halogenated ketone content of the chlorohydrin can be decreased by submitting the chlorohydrin to an azeotropic distillation in the presence of water or by submitting the chlorohydrin to a dehydrochlorination treatment, as described in patent application FR 05.05120 of SOLVAY SA filed on May 20, 2005.
- Mention is particularly made of a process for manufacturing an epoxide in which halogenated ketones are formed as by-products and which comprises at least one treatment for the elimination of at least one part of the formed halogenated ketones.
- Mentions are more particularly made of a process for manufacturing an epoxide by dehydrochlorination of a chlorohydrin where at least a fraction of the chlorohydrin is manufactured by chlorination of a multi- hydroxylated aliphatic hydrocarbon, an ester of a multi-hydroxylated aliphatic hydrocarbon, or a mixture therof, of a treatment of dehydrochlorination and of a treatment by azeotropic distillation of a mixture water -halogenated ketone, both treatments used in order to eliminate at least a part of the formed halogenated ketones and of a process for manufacturing epichlorohydrin in which the halogenated ketone is chloroacetone.
- the chlorohydrin when the chlorohydrin is dichloropropanol, a high selectivity for l,3-dichloropropane-2-ol is surprisingly obtained, which isomer is particularly suitable as starting product for a dehydrochlorination with a view to producing epichlorohydrin.
- the chlorohydrin can be submitted to a dehydrochlorination reaction to produce an epoxide, as described in patent applications WO 2005/054167 and FR 05.05120 in the name of SOLVAY SA
- the chlorohydrin can be submitted to a dehydrochlorination reaction as described in patent application entitled « Process for manufacturing an epoxide from a multi-hydroxylated aliphatic hydrocarbon and a chlorinating agent" filed in the name of SOLVAY SA on the same day as the present application, the content of which is incorporated herein by reference.
- a process for the manufacture of an epoxide comprising the following steps : (a) a multi-hydroxylated aliphatic hydrocarbon, an ester of a multi-hydroxylated aliphatic hydrocarbon , or a mixture thereof, is submitted to a reaction with a chlorinating agent and an organic acid in order to form a chlorohydrin and esters of chlorhydrin, in a reaction mixture containing, the multi-hydroxylated aliphatic hydrocarbon, the esters of multi-hydroxylated aliphatic hydrocarbon, water, the chlorinating agent and the organic acid, the reaction mixture containing at least 10 g of chlorohydrin per kg of the reaction mixture (b) at least one fraction of the mixture obtained in step, fraction which has the same composition as the reaction mixture obtained at step (a), is submitted to one or more treatment in steps subsequent to step (a), and (c) a basic compound is added at at least one of the step subsequent to step (a) so as it reacts at least partially with the chlorohydrin
- the process for producing a chlorohydrin according to the invention can be integrated in a global scheme such as described in patent application entitled « Process for manufacturing an epoxide from a chlorohydrin” filed in the name of SOLVAY SA on on the same day as the present application, the content of which is incorporated herein by reference.
- the process of the invention can be followed by a manufacture of epichlorhydrin by dehydrochlorination of dicghloropropanol and the when the epoxide is epichlorohydrin, it can usefully be used for manufacturing epoxy resins.
- Figure 1 shows a preferred particular scheme for a plant that can be used for carrying out the process for producing a chlorohydrin according to the invention :
- a reactor (4) is fed, in a continuous or batch mode, with a multihydroxylated-aliphatic hydrocarbon, an ester of a multihydroxylated- aliphatic hydrocarbon, or a mixture thereof, via line (1) and catalyst via line (2), the feed of the chlorinating agent, is carried out continuously or in batch-mode via line (3), a distillation column (6) is fed via line (5) with vapour produced from reactor (4), a stream is withdrawn from column (6) via line (7) and fed to a condenser (8), the stream from the condenser is fed via line (9 ) to a decanter (10) in which aqueous and organic phases are separated.
- a fraction of the separated aqueous phase is optionally recycled via line (11) to the top of the column for maintaining reflux.
- Fresh water can be added via line (12) to the top of the column for maintaining reflux.
- the production of the chlorohydrin is distributed between the organic phase withdrawn through line (14) and the aqueous phase withdrawn through line (13).
- the residue from column (6) can be recycled to the reactor via line (15).
- Heavy by-products can optionally be removed from the reactor by means of a purge (16) located in the liquid bottom of the reactor. A stream is withdrawn from the purge (16) and fed via line (17) into an evaporator (18) wherein a partial evaporation operation is carried out e.g.
- the gas phase containing most of the chlorinating agent from stream (17) is recycled via line (19) to the column (6) or via line (20) to the reactor (4), a distillation column or stripping column (22) is fed with the liquid phase arising from the evaporator (18) via line (21), the main fraction of the chlorohydrin is collected from the top of the column (22) through line (23) and the column residue is fed via line (24) to a filtration unit (25) in which solid and liquid phases are separated, the liquid phase is recycled via line (26) to the reactor (4).
- the solid can be withdrawn from the filtration unit (25) via line (27) as a solid or as a solution.
- Solvents can be added to the filtration unit (25) via lines (28) and (29) for washing and/or dissolution of the solid and withdrawn from line (27).
- a stream is withdrawn from the purge (16) and fed via line (30) into a filtration column (25).
- the stripper (18) and the distillation column (22) are then bypassed.
- the process described above is well suited when the multihydroxylated- aliphatic hydrocarbon is ethylene glycol, propylene glycol and glycerol, the chlorohydrine is chloroethanol, chloropropanol, chloropropanediol and dichloropropanol and the epoxide is ethylene oxide, propylene oxide, glycidol and epichlorohydrin and the chlorinating agent is hydrogen chloride, anhydrous or in aqueous solution.
- the process is particularly convenient when the multihydroxylated-aliphatic hydrocarbon is glycerol, the chlorohydrin is dichloropropanol and the epoxide is epichlorohydrin.
- this variant of the process allows to remove at the top by azeotropy almost all of the water arising from the reaction, from the starting materials and/or possibly fed in the bottom of the reactor or of the column and to obtain a mixture of dichloropropanols of very high purity, above 99.5 % by weight for the sum of the two isomers, with a selectivity related to hydrocarbon chain and hydrogen chloride higher than 99 % by weight and to remove the metal salt which can build up in the reactor when crude glycerol is used in the reaction.
- Example 1 is intended to illustrate the invention without, however, limiting it.
- Example 1 is intended to illustrate the invention without, however, limiting it.
- Reactor (4) has been continuously fed with crude glycerol and a 33 % by weight hydrochloric aqueous acid solution with relative flow rates mass ratios of 2.06.
- the crude glycerol was a by product of the biodiesel production and contained 85 % of glycerol, 6 % of NaCl and 0.5 % of organic impurities (fatty acids and derivatives).
- the residence time was 16 h, the adipic acid concentration in the reaction medium was 2.5 mol of acid functionalities/kg.
- the reactor has been operated at atmospheric pressure and at 115°C.
- the reaction mixture has been stripped with of nitrogen and the generated vapor phase has been treated in the distillation column (6) via line (5) (figure 1).
- the gas phase removed from column (6) has been condensed at 25°C (8) and decanted in the decanter (10).
- Reflux ratio was adjusted to withdraw the entire production of dichloropropanol at the top of column by recycling an appropriate amount of the aqueous phase from the decantor.
- an aqueous phase containing 15.0 % of dichloropropanol (13) and an organic phase (14) containing 88 % of dichloropropanol were recovered.
- the profiles in organic impurities in these phases were not different from those observed when pure glycerol is used in the process.
- a slurry from the reactor has been pumped on a 115 micrometer PTFE membrane filter in the filtration column (25).
- the salt cake in the filter has been washed at 20°C with dichloropropanol saturated with water. After removal of the liquid phase and draining of the solid, the salt has been dissolved in water and the salted water phase has been discarded. The duration of washing and salt dissolution was about 2 hours.
- a new filtration cycle of the slurry from the reactor has then been operated.
- the dichloropropanol washing has been recycled to the reactor by continuous feeding.
- the analysis of the water phase with salt indicated a dichloropropanol : NaCl mass ratio of 1.44 and a small amount of catalyst (less than 10 g/kg).
- the quantity of dichloropropanol in the salted water represented 1.6 % of the dichloropropanol total production.
- the global yield in dichloropropanol was 93 %.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Epoxy Compounds (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
- Catalysts (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Paints Or Removers (AREA)
- Epoxy Resins (AREA)
Abstract
Description
Claims
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EA200702549A EA018478B1 (en) | 2005-05-20 | 2006-05-19 | Process for producing an organic compound |
US11/915,059 US8067645B2 (en) | 2005-05-20 | 2006-05-19 | Process for producing a chlorhydrin from a multihydroxylated aliphatic hydrocarbon and/or ester thereof in the presence of metal salts |
EP06755263A EP1904427A2 (en) | 2005-05-20 | 2006-05-19 | Process for producing a chlorhydrin from a multihydroxylated aliphatic hydrocarbon and/or ester thereof in the presence of metal salts |
JP2008511714A JP2008545640A (en) | 2005-05-20 | 2006-05-19 | Method for producing organic compound |
CA2608946A CA2608946C (en) | 2005-05-20 | 2006-05-19 | Process for producing a chlorhydrin from a multihydroxilated aliphatic hydrocarbon and/or ester thereof in the presence of metal salts |
CN2006800005668A CN1993308B (en) | 2005-05-20 | 2006-05-19 | Method for making a chlorhydrine by reaction between a polyhydroxylated aliphatic hydrocarbon and ester thereof in the presence of metal salt |
BRPI0610791-5A BRPI0610791A2 (en) | 2005-05-20 | 2006-05-19 | process to produce a chloroidrin |
US13/238,206 US8420871B2 (en) | 2005-05-20 | 2011-09-21 | Process for producing an organic compound |
Applications Claiming Priority (20)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP05104321.4 | 2005-05-20 | ||
FR0505120 | 2005-05-20 | ||
EP05104321A EP1762556A1 (en) | 2005-05-20 | 2005-05-20 | Process for producing dichloropropanol from glycerol |
FR0505120A FR2885903B1 (en) | 2005-05-20 | 2005-05-20 | PROCESS FOR THE PRODUCTION OF EPICHLORHYDRIN |
US73463705P | 2005-11-08 | 2005-11-08 | |
US73465705P | 2005-11-08 | 2005-11-08 | |
US73463505P | 2005-11-08 | 2005-11-08 | |
US73463405P | 2005-11-08 | 2005-11-08 | |
US73463605P | 2005-11-08 | 2005-11-08 | |
US73465905P | 2005-11-08 | 2005-11-08 | |
US73465805P | 2005-11-08 | 2005-11-08 | |
US73462705P | 2005-11-08 | 2005-11-08 | |
US60/734,657 | 2005-11-08 | ||
US60/734,627 | 2005-11-08 | ||
US60/734,635 | 2005-11-08 | ||
US60/734,659 | 2005-11-08 | ||
US60/734,636 | 2005-11-08 | ||
US60/734,634 | 2005-11-08 | ||
US60/734,637 | 2005-11-08 | ||
US60/734,658 | 2005-11-08 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/915,059 A-371-Of-International US8067645B2 (en) | 2005-05-20 | 2006-05-19 | Process for producing a chlorhydrin from a multihydroxylated aliphatic hydrocarbon and/or ester thereof in the presence of metal salts |
US13/238,206 Continuation US8420871B2 (en) | 2005-05-20 | 2011-09-21 | Process for producing an organic compound |
Publications (3)
Publication Number | Publication Date |
---|---|
WO2006100312A2 true WO2006100312A2 (en) | 2006-09-28 |
WO2006100312A3 WO2006100312A3 (en) | 2006-11-02 |
WO2006100312A9 WO2006100312A9 (en) | 2007-05-18 |
Family
ID=39543862
Family Applications (13)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2006/062444 WO2006100315A2 (en) | 2005-05-20 | 2006-05-19 | Method for making a chlorohydrin by chlorinating a polyhydroxylated aliphatic hydrocarbon |
PCT/EP2006/062459 WO2006100318A2 (en) | 2005-05-20 | 2006-05-19 | Method for making an epoxide starting with a polyhydroxylated aliphatic hydrocarbon and a chlorinating agent |
PCT/EP2006/062461 WO2006100319A1 (en) | 2005-05-20 | 2006-05-19 | Method for preparing chlorohydrin by converting polyhydroxylated aliphatic hydrocarbons |
PCT/EP2006/062463 WO2006106154A1 (en) | 2005-05-20 | 2006-05-19 | Continuous method for making chlorhydrines |
PCT/EP2006/062462 WO2006100320A2 (en) | 2005-05-20 | 2006-05-19 | Method for converting polyhydroxylated aliphatic hydrocarbons into chlorohydrins |
PCT/EP2006/062448 WO2006106153A2 (en) | 2005-05-20 | 2006-05-19 | Method for making a chlorhydrine by reaction between a polyhydroxylated aliphatic hydrocarbon and a chlorinating agent |
PCT/EP2006/062445 WO2006100316A1 (en) | 2005-05-20 | 2006-05-19 | Method for making chlorohydrin in liquid phase in the presence of heavy compounds |
PCT/EP2006/062439 WO2006100313A2 (en) | 2005-05-20 | 2006-05-19 | Method for making a chlorohydrin |
PCT/EP2006/062466 WO2006106155A2 (en) | 2005-05-20 | 2006-05-19 | Method for making an epoxy starting from a chlorhydrine |
PCT/EP2006/062447 WO2006100317A1 (en) | 2005-05-20 | 2006-05-19 | Method for making chlorohydrin in corrosion-resistant equipment |
PCT/EP2006/062442 WO2006100314A1 (en) | 2005-05-20 | 2006-05-19 | Method for making a chlorohydrin starting with a polyhydroxylated aliphatic hydrocarbon |
PCT/EP2006/062438 WO2006100312A2 (en) | 2005-05-20 | 2006-05-19 | Process for producing a chlorhydrin from a multihydroxylated aliphatic hydrocarbon and/or ester thereof in the presence of metal salts |
PCT/EP2006/062437 WO2006100311A2 (en) | 2005-05-20 | 2006-05-19 | Method for making an epoxide |
Family Applications Before (11)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2006/062444 WO2006100315A2 (en) | 2005-05-20 | 2006-05-19 | Method for making a chlorohydrin by chlorinating a polyhydroxylated aliphatic hydrocarbon |
PCT/EP2006/062459 WO2006100318A2 (en) | 2005-05-20 | 2006-05-19 | Method for making an epoxide starting with a polyhydroxylated aliphatic hydrocarbon and a chlorinating agent |
PCT/EP2006/062461 WO2006100319A1 (en) | 2005-05-20 | 2006-05-19 | Method for preparing chlorohydrin by converting polyhydroxylated aliphatic hydrocarbons |
PCT/EP2006/062463 WO2006106154A1 (en) | 2005-05-20 | 2006-05-19 | Continuous method for making chlorhydrines |
PCT/EP2006/062462 WO2006100320A2 (en) | 2005-05-20 | 2006-05-19 | Method for converting polyhydroxylated aliphatic hydrocarbons into chlorohydrins |
PCT/EP2006/062448 WO2006106153A2 (en) | 2005-05-20 | 2006-05-19 | Method for making a chlorhydrine by reaction between a polyhydroxylated aliphatic hydrocarbon and a chlorinating agent |
PCT/EP2006/062445 WO2006100316A1 (en) | 2005-05-20 | 2006-05-19 | Method for making chlorohydrin in liquid phase in the presence of heavy compounds |
PCT/EP2006/062439 WO2006100313A2 (en) | 2005-05-20 | 2006-05-19 | Method for making a chlorohydrin |
PCT/EP2006/062466 WO2006106155A2 (en) | 2005-05-20 | 2006-05-19 | Method for making an epoxy starting from a chlorhydrine |
PCT/EP2006/062447 WO2006100317A1 (en) | 2005-05-20 | 2006-05-19 | Method for making chlorohydrin in corrosion-resistant equipment |
PCT/EP2006/062442 WO2006100314A1 (en) | 2005-05-20 | 2006-05-19 | Method for making a chlorohydrin starting with a polyhydroxylated aliphatic hydrocarbon |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2006/062437 WO2006100311A2 (en) | 2005-05-20 | 2006-05-19 | Method for making an epoxide |
Country Status (12)
Country | Link |
---|---|
US (12) | US8344185B2 (en) |
EP (16) | EP1885674A1 (en) |
JP (13) | JP2008540609A (en) |
KR (7) | KR100979371B1 (en) |
CN (13) | CN101107208B (en) |
BR (8) | BRPI0610744A2 (en) |
CA (13) | CA2608725A1 (en) |
EA (14) | EA200702561A1 (en) |
MX (7) | MX2007014514A (en) |
MY (4) | MY148378A (en) |
TW (16) | TWI349657B (en) |
WO (13) | WO2006100315A2 (en) |
Cited By (53)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ITMI20081535A1 (en) * | 2008-08-26 | 2010-02-26 | Biocompany Srl | PROCESS FOR THE PREPARATION OF 1,3-DICHLORO-2-PROPANOL |
US7674941B2 (en) | 2004-04-16 | 2010-03-09 | Marathon Gtf Technology, Ltd. | Processes for converting gaseous alkanes to liquid hydrocarbons |
JP2010520916A (en) * | 2007-03-14 | 2010-06-17 | ソルヴェイ(ソシエテ アノニム) | Method for producing dichloropropanol |
JP2010523703A (en) * | 2007-04-12 | 2010-07-15 | ダウ グローバル テクノロジーズ インコーポレイティド | Method and apparatus for azeotropic recovery of dichlorohydrin |
JP2010523701A (en) * | 2007-04-12 | 2010-07-15 | ダウ グローバル テクノロジーズ インコーポレイティド | Method and apparatus for recovering dichlorohydrin by co-distillation |
JP2010523698A (en) * | 2007-04-12 | 2010-07-15 | ダウ グローバル テクノロジーズ インコーポレイティド | Multi-stage method and apparatus for recovering dichlorohydrin |
US7838708B2 (en) | 2001-06-20 | 2010-11-23 | Grt, Inc. | Hydrocarbon conversion process improvements |
US7847139B2 (en) | 2003-07-15 | 2010-12-07 | Grt, Inc. | Hydrocarbon synthesis |
US7880041B2 (en) | 2004-04-16 | 2011-02-01 | Marathon Gtf Technology, Ltd. | Process for converting gaseous alkanes to liquid hydrocarbons |
US7883568B2 (en) | 2006-02-03 | 2011-02-08 | Grt, Inc. | Separation of light gases from halogens |
US7930651B2 (en) | 2007-01-18 | 2011-04-19 | Research In Motion Limited | Agenda display in an electronic device |
US7939696B2 (en) | 2005-11-08 | 2011-05-10 | Solvay Societe Anonyme | Process for the manufacture of dichloropropanol by chlorination of glycerol |
WO2011054770A1 (en) | 2009-11-04 | 2011-05-12 | Solvay Sa | Process for manufacturing an epoxy resin |
WO2011054769A2 (en) | 2009-11-04 | 2011-05-12 | Solvay Sa | Process for manufacturing a product derived from epichlorohydrin |
US7964764B2 (en) | 2003-07-15 | 2011-06-21 | Grt, Inc. | Hydrocarbon synthesis |
US20110152580A1 (en) * | 2007-04-12 | 2011-06-23 | Hook Bruce D | Process and apparatus for vapor phase purification during hydrochlorination of multi-hydroxylated aliphatic hydrocarbon compounds |
US7998438B2 (en) | 2007-05-24 | 2011-08-16 | Grt, Inc. | Zone reactor incorporating reversible hydrogen halide capture and release |
US8008535B2 (en) | 2004-04-16 | 2011-08-30 | Marathon Gtf Technology, Ltd. | Process for converting gaseous alkanes to olefins and liquid hydrocarbons |
US8053616B2 (en) | 2006-02-03 | 2011-11-08 | Grt, Inc. | Continuous process for converting natural gas to liquid hydrocarbons |
WO2012016872A1 (en) | 2010-08-02 | 2012-02-09 | Solvay Sa | Electrolysis process |
US8124814B2 (en) | 2006-06-14 | 2012-02-28 | Solvay (Societe Anonyme) | Crude glycerol-based product, process for its purification and its use in the manufacture of dichloropropanol |
WO2012025468A1 (en) | 2010-08-27 | 2012-03-01 | Solvay Sa | Brine purification process |
WO2012041816A1 (en) | 2010-09-30 | 2012-04-05 | Solvay Sa | Derivative of epichlorohydrin of natural origin |
WO2012056005A1 (en) | 2010-10-29 | 2012-05-03 | Solvay Sa | Process for manufacturing epichlorohydrin |
US8173851B2 (en) | 2004-04-16 | 2012-05-08 | Marathon Gtf Technology, Ltd. | Processes for converting gaseous alkanes to liquid hydrocarbons |
US8198495B2 (en) | 2010-03-02 | 2012-06-12 | Marathon Gtf Technology, Ltd. | Processes and systems for the staged synthesis of alkyl bromides |
US8197665B2 (en) | 2007-06-12 | 2012-06-12 | Solvay (Societe Anonyme) | Aqueous composition containing a salt, manufacturing process and use |
US8258350B2 (en) | 2007-03-07 | 2012-09-04 | Solvay (Societe Anonyme) | Process for the manufacture of dichloropropanol |
US8273929B2 (en) | 2008-07-18 | 2012-09-25 | Grt, Inc. | Continuous process for converting natural gas to liquid hydrocarbons |
US8282810B2 (en) | 2008-06-13 | 2012-10-09 | Marathon Gtf Technology, Ltd. | Bromine-based method and system for converting gaseous alkanes to liquid hydrocarbons using electrolysis for bromine recovery |
US8314205B2 (en) | 2007-12-17 | 2012-11-20 | Solvay (Societe Anonyme) | Glycerol-based product, process for obtaining same and use thereof in the manufacturing of dichloropropanol |
US8367884B2 (en) | 2010-03-02 | 2013-02-05 | Marathon Gtf Technology, Ltd. | Processes and systems for the staged synthesis of alkyl bromides |
US8378130B2 (en) | 2007-06-12 | 2013-02-19 | Solvay (Societe Anonyme) | Product containing epichlorohydrin, its preparation and its use in various applications |
US8415509B2 (en) | 2003-11-20 | 2013-04-09 | Solvay (Societe Anonyme) | Process for producing dichloropropanol from glycerol, the glycerol coming eventually from the conversion of animal fats in the manufacture of biodiesel |
US8436220B2 (en) | 2011-06-10 | 2013-05-07 | Marathon Gtf Technology, Ltd. | Processes and systems for demethanization of brominated hydrocarbons |
WO2013092338A1 (en) | 2011-12-19 | 2013-06-27 | Solvay Sa | Process for reducing the total organic carbon of aqueous compositions |
US8507643B2 (en) | 2008-04-03 | 2013-08-13 | Solvay S.A. | Composition comprising glycerol, process for obtaining same and use thereof in the manufacture of dichloropropanol |
US8536381B2 (en) | 2008-09-12 | 2013-09-17 | Solvay Sa | Process for purifying hydrogen chloride |
EP2669306A1 (en) | 2012-06-01 | 2013-12-04 | Solvay Sa | Process for manufacturing an epoxy resin |
EP2669305A1 (en) | 2012-06-01 | 2013-12-04 | Solvay Sa | Process for manufacturing an epoxy resin |
EP2669308A1 (en) | 2012-06-01 | 2013-12-04 | Solvay Sa | Process for manufacturing an epoxy resin |
EP2669307A1 (en) | 2012-06-01 | 2013-12-04 | Solvay Sa | Process for manufacturing an epoxide |
EP2669247A1 (en) | 2012-06-01 | 2013-12-04 | Solvay Sa | Process for manufacturing dichloropropanol |
US8642822B2 (en) | 2004-04-16 | 2014-02-04 | Marathon Gtf Technology, Ltd. | Processes for converting gaseous alkanes to liquid hydrocarbons using microchannel reactor |
US8715568B2 (en) | 2007-10-02 | 2014-05-06 | Solvay Sa | Use of compositions containing silicon for improving the corrosion resistance of vessels |
US8795536B2 (en) | 2008-01-31 | 2014-08-05 | Solvay (Societe Anonyme) | Process for degrading organic substances in an aqueous composition |
US8802908B2 (en) | 2011-10-21 | 2014-08-12 | Marathon Gtf Technology, Ltd. | Processes and systems for separate, parallel methane and higher alkanes' bromination |
US8815050B2 (en) | 2011-03-22 | 2014-08-26 | Marathon Gtf Technology, Ltd. | Processes and systems for drying liquid bromine |
US8829256B2 (en) | 2011-06-30 | 2014-09-09 | Gtc Technology Us, Llc | Processes and systems for fractionation of brominated hydrocarbons in the conversion of natural gas to liquid hydrocarbons |
WO2015074684A1 (en) | 2013-11-20 | 2015-05-28 | Solvay Sa | Process for manufacturing an epoxy resin |
US9193641B2 (en) | 2011-12-16 | 2015-11-24 | Gtc Technology Us, Llc | Processes and systems for conversion of alkyl bromides to higher molecular weight hydrocarbons in circulating catalyst reactor-regenerator systems |
US9206093B2 (en) | 2004-04-16 | 2015-12-08 | Gtc Technology Us, Llc | Process for converting gaseous alkanes to liquid hydrocarbons |
US9850190B2 (en) | 2015-12-18 | 2017-12-26 | Chang Chun Plastics Co., Ltd. | Process for preparing dichloropropanol |
Families Citing this family (40)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080005956A1 (en) * | 2004-05-14 | 2008-01-10 | Tran Bo L | Methods and compositions for controlling bulk density of coking coal |
US7910781B2 (en) * | 2004-07-21 | 2011-03-22 | Dow Global Technologies Llc | Process for the conversion of a crude glycerol, crude mixtures of naturally derived multihydroxylated aliphatic hydrocarbons or esters thereof to a chlorohydrin |
US7906690B2 (en) * | 2004-07-21 | 2011-03-15 | Dow Global Technologies Inc. | Batch, semi-continuous or continuous hydrochlorination of glycerin with reduced volatile chlorinated hydrocarbon by-products and chloracetone levels |
BRPI0610744A2 (en) * | 2005-05-20 | 2012-10-30 | Solvay | manufacturing process of a hydrochlorine |
MY177112A (en) * | 2005-05-20 | 2020-09-07 | Solvay | Process for preparing a chlorohydrin in corrosion-resistant apparatus |
US20100032617A1 (en) * | 2007-02-20 | 2010-02-11 | Solvay (Societe Anonyme) | Process for manufacturing epichlorohydrin |
US20080239428A1 (en) * | 2007-04-02 | 2008-10-02 | Inphase Technologies, Inc. | Non-ft plane angular filters |
WO2008128011A2 (en) * | 2007-04-12 | 2008-10-23 | Dow Global Technologies Inc. | Conversion of a multihydroxylated-aliphatic hydrocarbon or ester thereof to a chlorohydrin |
TW200911740A (en) | 2007-06-01 | 2009-03-16 | Solvay | Process for manufacturing a chlorohydrin |
FR2918058A1 (en) * | 2007-06-28 | 2009-01-02 | Solvay | GLYCEROL-BASED PRODUCT, PROCESS FOR ITS PURIFICATION AND USE IN THE MANUFACTURE OF DICHLOROPROPANOL |
FR2919609A1 (en) * | 2007-07-30 | 2009-02-06 | Solvay | PROCESS FOR PRODUCING GLYCIDOL |
EP2183189A2 (en) | 2007-08-23 | 2010-05-12 | Dow Global Technologies Inc. | Process, adapted microbes, composition and apparatus for purification of industrial brine |
BRPI0815245A2 (en) | 2007-08-23 | 2015-03-31 | Dow Global Technologies Inc | Process for brine purification, process for reducing organic contamination of a brine stream in a chemical process, brine purification apparatus and chemical process apparatus for producing purified brine |
CN101784480A (en) | 2007-08-23 | 2010-07-21 | 陶氏环球技术公司 | brine purification |
KR101410019B1 (en) * | 2007-09-28 | 2014-06-26 | 한화케미칼 주식회사 | Process for preparing chlorohydrin by reaction of polyol with hydrochloric acid |
KR20100126602A (en) * | 2008-04-09 | 2010-12-01 | 다우 글로벌 테크놀로지스 인크. | Process and apparatus for efficient recovery of dichlorohydrins |
CN102007092A (en) * | 2008-04-16 | 2011-04-06 | 陶氏环球技术公司 | Conversion of multihydroxylated-aliphatic hydrocarbon or ester thereof to a chlorohydrin |
AT507260B1 (en) † | 2008-08-25 | 2010-10-15 | Kanzler Walter | PROCESS FOR THE PRODUCTION OF EPICHLORHYDRIN FROM GLYCERIN |
FR2935699A1 (en) * | 2008-09-10 | 2010-03-12 | Solvay | PROCESS FOR PRODUCING A CHEMICAL |
FR2939434B1 (en) * | 2008-12-08 | 2012-05-18 | Solvay | PROCESS FOR TREATING GLYCEROL |
CN103025719B (en) * | 2010-03-10 | 2016-01-20 | 陶氏环球技术有限责任公司 | Process for preparing divinylarene dioxides |
KR101705206B1 (en) * | 2010-06-30 | 2017-02-09 | 롯데정밀화학 주식회사 | Method of preparing chlorohydrins and method of preparing epichlorohydrin using chlorohydrins prepared by the same |
KR101705209B1 (en) * | 2010-06-30 | 2017-02-09 | 롯데정밀화학 주식회사 | Method of preparing composition of chlorohydrins and method of preparing epichlorohydrin using composition of chlorohydrins prepared by the same |
KR101705208B1 (en) * | 2010-06-30 | 2017-02-09 | 롯데정밀화학 주식회사 | Method of preparing composition of chlorohydrins and method of preparing epichlorohydrin using composition of chlorohydrins prepared by the same |
KR101705207B1 (en) * | 2010-06-30 | 2017-02-09 | 롯데정밀화학 주식회사 | Method of preparing chlorohydrins and method of preparing epichlorohydrin using chlorohydrins prepared by the same |
KR101705205B1 (en) * | 2010-06-30 | 2017-02-09 | 롯데정밀화학 주식회사 | Method of preparing chlorohydrins and method of preparing epichlorohydrin using chlorohydrins prepared by the same |
KR101705210B1 (en) * | 2010-06-30 | 2017-02-09 | 롯데정밀화학 주식회사 | Method of preparing composition of chlorohydrins and method of preparing epichlorohydrin using composition of chlorohydrins prepared by the same |
KR20140070498A (en) | 2010-07-28 | 2014-06-10 | 다우 글로벌 테크놀로지스 엘엘씨 | Chlorohydrin processing equipment comprising stainless steel |
JP2012116920A (en) * | 2010-11-30 | 2012-06-21 | Polyplastics Co | Method for producing polyoxymethylene resin |
PL215730B1 (en) | 2011-01-10 | 2014-01-31 | Inst Ciezkiej Syntezy Orga | Process for the preparation of dichloropropanols from glycerine |
PL218074B1 (en) | 2011-04-11 | 2014-10-31 | Inst Ciężkiej Syntezy Organicznej Blachownia | Process for dry chloro-hydrogenation of the mass left after chloro-hydrogenation of glycerol with hydrochloric acid and a device for dry chloro-hydrogenation of the mass left after chloro-hydrogenation of glycerol with hydrochloric acid |
CN104341271B (en) * | 2013-08-02 | 2016-05-18 | 中国石油化工股份有限公司 | A kind of method of hydrochloric acid and glycerine continuous production dichlorohydrin |
CN106630083B (en) * | 2015-10-29 | 2021-05-14 | 中国石油化工股份有限公司 | Harmless treatment method of epoxidized wastewater |
TWI585072B (en) * | 2016-05-31 | 2017-06-01 | 國立清華大學 | Apparatus for manufacturing dichlorohydrin and manufacturing method thereof |
TWI592392B (en) * | 2016-05-31 | 2017-07-21 | 國立清華大學 | Apparatus for manufacturing dichlorohydrin with improved yield and manufacturing method thereof |
KR102058483B1 (en) | 2017-02-27 | 2019-12-23 | 중앙대학교 산학협력단 | Method for preparing novel multi-mutated Brazzein having higher sweetness |
IL312291A (en) | 2018-05-01 | 2024-06-01 | Revolution Medicines Inc | C26-linked rapamycin analogs as mtor inhibitors |
LT3788049T (en) | 2018-05-01 | 2023-07-25 | Revolution Medicines, Inc. | C40-, c28-, and c-32-linked rapamycin analogs as mtor inhibitors |
CN111875477A (en) * | 2020-08-03 | 2020-11-03 | 岳阳隆兴实业公司 | Azeotropic purification method of o-chlorohydrin |
CN115583869B (en) * | 2022-09-13 | 2024-04-23 | 安徽海华科技集团有限公司 | Selective oxidation chlorination method for phenolic compound |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB191314767A (en) * | 1913-06-26 | 1914-01-08 | Henry Fairbrother | Process for Directly Producing Glycerol-halogen-hydrins and Poly-oxy Fatty Acid Esters. |
GB404938A (en) * | 1932-07-15 | 1934-01-15 | Henry Dreyfus | Manufacture of chlorhydrins and ethers thereof |
US2144612A (en) * | 1936-09-10 | 1939-01-24 | Dow Chemical Co | Preparation of glycerol dichlorohydrin |
GB984633A (en) * | 1960-11-07 | 1965-03-03 | Electro Chimie Metal | Manufacture of epoxy resins |
WO2005021476A1 (en) * | 2003-09-01 | 2005-03-10 | Spolek Pro Chemickou A Hutni Vyrobu, Akciova Spolecnost | Method of preparing dichloropropanols from glycerine |
WO2005054167A1 (en) * | 2003-11-20 | 2005-06-16 | Solvay (Société Anonyme) | Process for producing dichloropropanol from glycerol, the glycerol coming eventually from the conversion of animal fats in the manufacture of biodiesel |
Family Cites Families (258)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE238341C (en) * | ||||
DE216471C (en) | ||||
DE197308C (en) | ||||
DE58396C (en) | Dr. P. FRITSCH in Rostock i. M., Augustenstr. 40 | Process for the preparation of glycerides of aromatic acids | ||
DE1075103B (en) | 1960-02-11 | VEB Leuna-Werke "Walter Ulbricht", Leuna (Kr. Merseburg) | Process for the continuous production of epichlorohydrin from glycerine | |
US449255A (en) * | 1891-03-31 | Watch-bow fastener | ||
DE180668C (en) | ||||
DE197309C (en) | ||||
US280893A (en) * | 1883-07-10 | Treating waters containing glycerine obtained by the decomposition of fatty matters | ||
US3061615A (en) | 1962-10-30 | Process for the production of alpha-epichlorhydrin | ||
US865727A (en) | 1907-08-09 | 1907-09-10 | Augustin L J Queneau | Method of making and utilizing gas. |
GB405345A (en) | 1931-05-08 | 1934-01-29 | Boston Blacking Company Ltd | Improvements in or relating to the compounding of latex and to compounded latex |
GB406345A (en) | 1931-08-24 | 1934-02-26 | Du Pont | Improvements in or relating to the production of formic acid |
US2063891A (en) | 1932-07-15 | 1936-12-15 | Dreyfus Henry | Manufacture of chlorhydrins and their ethers |
US2060715A (en) * | 1933-01-13 | 1936-11-10 | Du Pont | Synthetic resins |
GB467481A (en) | 1935-09-12 | 1937-06-14 | Eastman Kodak Co | Processes of removing water from aqueous aliphatic acids |
US2198600A (en) | 1936-09-10 | 1940-04-30 | Dow Chemical Co | Glycerol dichlorohydrin |
BE422877A (en) | 1937-07-28 | 1937-08-31 | ||
US2319876A (en) | 1937-12-04 | 1943-05-25 | Celanese Corp | Preparation of aromatic sulphonamide-phenol-dihalide reaction products |
GB541357A (en) | 1939-02-24 | 1941-11-24 | Du Pont | Improvements in or relating to the production of glycerol |
US2248635A (en) * | 1939-06-20 | 1941-07-08 | Shell Dev | Treatment of halogenated polyhydric alcohols |
NL59974C (en) | 1943-06-16 | |||
DE869193C (en) | 1944-08-22 | 1953-03-05 | Chloberag Chlor Betr Rheinfeld | Process for purifying hydrogen chloride |
GB679536A (en) | 1947-06-11 | 1952-09-17 | Devoe & Raynolds Co | Improvements in epoxide preparation |
US2505735A (en) | 1948-05-22 | 1950-04-25 | Harshaw Chem Corp | Purufication of crude glycerine |
DE848799C (en) | 1948-12-23 | 1956-08-02 | Elektrochemische Werke Rheinfe | Device for the absorption of gases by liquids, in particular for the production of hydrochloric acid |
GB702143A (en) | 1949-10-25 | 1954-01-13 | Hoechst Ag | Cold-hardening compositions containing phenol-formaldehyde condensation products, and a process for making such compositions |
NL179590B (en) | 1952-07-05 | 1900-01-01 | Asahi Chemical Ind | PROCESS FOR PROCESSING A FLUORINATED POLYMER AND MEMBRANE OBTAINED BY THIS PROCESS IN THE MELT. |
DE1041488B (en) | 1954-03-19 | 1958-10-23 | Huels Chemische Werke Ag | Process for the production of oxido alcohols |
US2875217A (en) | 1954-07-14 | 1959-02-24 | Upjohn Co | Producing 17-hydroxy 20-keto steroids by the use of osmium tetroxide and an organicpolyvalent iodo oxide |
US2811227A (en) | 1955-01-20 | 1957-10-29 | Houdaille Industries Inc | Flutter damper |
US2860146A (en) * | 1955-04-14 | 1958-11-11 | Shell Dev | Manufacture of epihalohydrins |
US2829124A (en) * | 1955-12-23 | 1958-04-01 | Borden Co | Epoxide resin |
GB799567A (en) | 1956-04-30 | 1958-08-13 | Solvay | Process for the production of alpha-epichlorhydrin |
US2945004A (en) | 1956-05-29 | 1960-07-12 | Devoe & Raynolds Co | Epoxide resins reacted with polyhydric phenols |
US2876217A (en) | 1956-12-31 | 1959-03-03 | Corn Products Co | Starch ethers containing nitrogen and process for making the same |
US2960447A (en) * | 1957-07-15 | 1960-11-15 | Shell Oil Co | Purification of synthetic glycerol |
US3135705A (en) | 1959-05-11 | 1964-06-02 | Hercules Powder Co Ltd | Polymeric epoxides |
US3026270A (en) | 1958-05-29 | 1962-03-20 | Hercules Powder Co Ltd | Cross-linking of polymeric epoxides |
SU123153A3 (en) | 1958-11-18 | 1958-11-30 | Словак Гельмут | Method for continuous production of epichlorohydrin |
US3052612A (en) | 1959-02-16 | 1962-09-04 | Olin Mathieson | Recovery of chlorine from electrol ysis of brine |
US3158580A (en) | 1960-03-11 | 1964-11-24 | Hercules Powder Co Ltd | Poly (epihalohydrin) s |
GB984446A (en) | 1960-07-05 | 1965-02-24 | Pfaudler Permutit Inc | Improvements relating to semicrystalline glass and to the coating of metal therewith |
US3158581A (en) | 1960-07-27 | 1964-11-24 | Hercules Powder Co Ltd | Polymeric epoxides |
BE609222A (en) | 1960-10-17 | |||
FR1306231A (en) | 1960-10-17 | 1962-10-13 | Shell Int Research | Process for the preparation of glycidic polyethers |
US3247227A (en) | 1962-04-24 | 1966-04-19 | Ott Chemical Company | Epoxidation of organic halohydrins |
US3260259A (en) | 1962-10-08 | 1966-07-12 | S H Camp & Company | Abduction splint |
US3328331A (en) | 1963-01-22 | 1967-06-27 | Hoechst Ag | Epoxy resin masses and process for preparing them |
US3341491A (en) | 1963-09-10 | 1967-09-12 | Hercules Inc | Vulcanized epihalohydrin polymers |
FR1417388A (en) | 1963-10-21 | 1965-11-12 | Hooker Chemical Corp | Purification of hydrochloric acid |
NL129282C (en) | 1963-10-21 | |||
BE655882A (en) | 1963-11-19 | 1965-05-17 | ||
JPS3927230Y1 (en) | 1963-12-30 | 1964-09-15 | ||
DE1226554B (en) | 1964-06-06 | 1966-10-13 | Henkel & Cie Gmbh | Process for the production of glycid from glycerol monochlorohydrin |
FR1417386A (en) | 1964-10-21 | 1965-11-12 | Radyne Ltd | Improvement in spectrometry |
FR1476073A (en) | 1965-04-09 | 1967-04-07 | Shell Int Research | Epoxy resin retarding the propagation of flames |
US3385908A (en) * | 1965-04-09 | 1968-05-28 | Shell Oil Co | Flame retardant phenolic polyglycidyl ether resin compositions |
US3445197A (en) | 1966-05-27 | 1969-05-20 | Continental Oil Co | Removing benzene from aqueous muriatic acid using a liquid paraffin |
US3457282A (en) | 1966-06-01 | 1969-07-22 | Olin Mathieson | Glycidol recovery process |
US3455197A (en) * | 1966-11-21 | 1969-07-15 | Ppg Industries Inc | Adjustable guillotine and table for severing sheet plastic |
DE1643497C3 (en) | 1967-09-02 | 1979-06-21 | Hoechst Ag, 6000 Frankfurt | Process for the production of glycidyl ethers of monohydric and polyhydric phenols |
US3968178A (en) | 1967-11-08 | 1976-07-06 | Stauffer Chemical Company | Chlorination of hydrocarbons |
DE2007867B2 (en) * | 1970-02-20 | 1978-11-02 | Hoechst Ag, 6000 Frankfurt | Process for the continuous production of dichloropropanols |
DE1809607C3 (en) * | 1968-11-19 | 1974-01-10 | Deutsche Gold- Und Silber-Scheideanstalt Vormals Roessler, 6000 Frankfurt | Process for the absorptive separation of mixtures of cyanogen chloride and hydrogen chloride obtained in the gas phase reaction of chlorine and hydrogen cyanide |
US3867166A (en) | 1969-01-27 | 1975-02-18 | Tycon Spa | Coated metal article and method of making the same |
BE744659A (en) | 1969-01-27 | 1970-07-01 | Haveg Industries Inc | COATED METAL ARTICLE AND METHOD FOR MANUFACTURING IT |
CH544801A (en) * | 1970-03-16 | 1973-11-30 | Reichhold Albert Chemie Ag | Process for the preparation of glycidyl ethers |
US3711388A (en) | 1970-12-11 | 1973-01-16 | Dow Chemical Co | Oxidation step in electrolysis of aqueous hci |
CH545778A (en) | 1971-03-26 | 1974-02-15 | ||
US3839169A (en) | 1971-08-11 | 1974-10-01 | Dow Chemical Co | Photooxidizing organic contaminants in aqueous brine solutions |
BE792326A (en) | 1971-12-07 | 1973-03-30 | Degussa | PROCESS FOR THE PREPARATION OF HALOGENOHYDRINS |
DE2163096B2 (en) * | 1971-12-18 | 1974-02-14 | Gutehoffnungshuette Sterkrade Ag, 4200 Oberhausen | Process for reheating a compressed gas stream above the dew point |
US4173710A (en) | 1972-05-15 | 1979-11-06 | Solvay & Cie | Halogenated polyether polyols and polyurethane foams produced therefrom |
LU67005A1 (en) | 1973-02-12 | 1974-10-01 | ||
DE2241393A1 (en) | 1972-08-23 | 1974-02-28 | Bayer Ag | Polyglycidyl ethers of polyhydric phenols - esp of bisphenol A and epichloro-hydrin prepd in presence of ethanol or methanol |
CH575405A5 (en) | 1973-02-15 | 1976-05-14 | Inventa Ag | |
US3865886A (en) | 1973-06-20 | 1975-02-11 | Lummus Co | Production of allyl chloride |
JPS5037714A (en) * | 1973-08-15 | 1975-04-08 | ||
CH593272A5 (en) | 1974-05-24 | 1977-11-30 | Inventa Ag | |
LU70739A1 (en) | 1974-08-14 | 1976-08-19 | ||
US4011251A (en) | 1975-03-13 | 1977-03-08 | Boris Konstantinovich Tjurin | Method of preparing esters of glycerol and polyglycerols and C5-C9 monocarboxylic fatty acids |
US4024301A (en) * | 1975-05-02 | 1977-05-17 | The B. F. Goodrich Company | Internally coated reaction vessel for use in olefinic polymerization |
DE2522286C3 (en) | 1975-05-20 | 1978-05-18 | Hoechst Ag, 6000 Frankfurt | Process for the purification of crude hydrogen chloride |
US3954581A (en) | 1975-07-22 | 1976-05-04 | Ppg Industries, Inc. | Method of electrolysis of brine |
FR2321455A1 (en) | 1975-08-22 | 1977-03-18 | Ugine Kuhlmann | NEW OXIDIZING WATER TREATMENT PROCESS |
US4255470A (en) * | 1977-07-15 | 1981-03-10 | The B. F. Goodrich Company | Process for preventing polymer buildup in a polymerization reactor |
US4127594A (en) * | 1978-02-21 | 1978-11-28 | Shell Oil Company | Selective hydrogenation of olefinic impurities in epichlorohydrin |
FR2455580A1 (en) | 1979-05-04 | 1980-11-28 | Propylox Sa | PROCESS FOR THE PURIFICATION OF ORGANIC SOLUTIONS OF CARBOXYLIC PERACIDS |
JPS55157607A (en) * | 1979-05-25 | 1980-12-08 | Ryonichi Kk | Suspension polymerization of vinyl chloride |
US4415460A (en) | 1979-07-30 | 1983-11-15 | The Lummus Company | Oxidation of organics in aqueous salt solutions |
US4240885A (en) | 1979-07-30 | 1980-12-23 | The Lummus Company | Oxidation of organics in aqueous salt solutions |
JPS5699432A (en) | 1979-12-28 | 1981-08-10 | Sorutan Ogurii Shiyarif Gabiru | |
CA1119320A (en) | 1980-01-15 | 1982-03-02 | James P. Mcmullan | Bassinet |
DE3003819A1 (en) | 1980-02-02 | 1981-08-13 | Basf Ag, 6700 Ludwigshafen | Electrode, esp. cathode for electrolysis of brine - has active coating of iron with specified nickel and/or cobalt content to reduce hydrogen overvoltage |
US4309394A (en) * | 1980-04-09 | 1982-01-05 | Monsanto Company | Method of preparing ultraphosphoric acid |
US4609751A (en) * | 1981-12-14 | 1986-09-02 | General Electric Company | Method of hydrolyzing chlorosilanes |
US4390680A (en) | 1982-03-29 | 1983-06-28 | The Dow Chemical Company | Phenolic hydroxyl-containing compositions and epoxy resins prepared therefrom |
US4405465A (en) * | 1982-06-30 | 1983-09-20 | Olin Corporation | Process for the removal of chlorate and hypochlorite from spent alkali metal chloride brines |
US4499255B1 (en) * | 1982-09-13 | 2000-01-11 | Dow Chemical Co | Preparation of epoxy resins |
SU1125226A1 (en) | 1982-10-15 | 1984-11-23 | Башкирский государственный научно-исследовательский и проектный институт нефтяной промышленности | Method for treating clayey drilling and plugging muds |
DE3243617A1 (en) | 1982-11-25 | 1984-05-30 | Hermetic-Pumpen Gmbh, 7803 Gundelfingen | Pump for conveying highly corrosive media |
US4595469A (en) | 1983-05-31 | 1986-06-17 | Chevron Research Company | Electrolytic process for production of gaseous hydrogen chloride and aqueous alkali metal hydroxide |
DD216471A1 (en) | 1983-06-30 | 1984-12-12 | Leuna Werke Veb | PROCESS FOR PROCESSING EPOXY-HOLLOWED REACTION MIXTURES |
SU1159716A1 (en) | 1983-07-13 | 1985-06-07 | Чувашский государственный университет им.И.Н.Ульянова | Binder for making heat-hardened moulds and cores |
DE3339051A1 (en) | 1983-10-28 | 1985-05-09 | Henkel KGaA, 4000 Düsseldorf | METHOD FOR IMPROVED DISTILLATIVE WORKING UP OF GLYCERIN |
JPS60258171A (en) | 1984-06-04 | 1985-12-20 | Showa Denko Kk | Preparation of epichlorohydrin |
US4599178A (en) * | 1984-07-16 | 1986-07-08 | Shell Oil Company | Recovery of glycerine from saline waters |
EP0180668B1 (en) | 1984-11-09 | 1988-06-01 | Agfa-Gevaert N.V. | Photographic elements comprising protective layers containing antistats |
US4560812A (en) * | 1984-12-10 | 1985-12-24 | Shell Oil Company | Recovery of glycerine from saline waters |
GB2173496B (en) | 1985-04-04 | 1989-01-05 | Inst Ciezkiej Syntezy Orga | Method for producing epichlorohydrin |
DD238341B1 (en) | 1985-06-20 | 1988-06-22 | Thaelmann Schwermaschbau Veb | METHOD FOR REGENERATING ALTSANDEN |
JPS62242638A (en) | 1986-04-14 | 1987-10-23 | Nisso Yuka Kogyo Kk | Production of chlorinated ether compound |
CN1025432C (en) * | 1987-05-29 | 1994-07-13 | 三井石油化学工业株式会社 | Process for preparing epoxy compounds |
DE3811826A1 (en) | 1987-06-25 | 1989-10-19 | Solvay Werke Gmbh | METHOD FOR PRODUCING POLYGLYCERINES |
DE3721003C1 (en) | 1987-06-25 | 1988-12-01 | Solvay Werke Gmbh | Process for the preparation of polyglycerols |
DE3809882A1 (en) | 1988-03-24 | 1989-10-05 | Solvay Werke Gmbh | METHOD FOR PRODUCING POLYGLYCERINES |
DE3811524A1 (en) * | 1988-04-06 | 1989-10-19 | Solvay Werke Gmbh | METHOD AND DEVICE FOR PRODUCING REINST EPICHLORHYDRINE |
DE3816783A1 (en) | 1988-05-17 | 1989-11-30 | Wacker Chemie Gmbh | METHOD FOR PURIFYING RAW, GASEOUS CHLORINE |
US4882098A (en) | 1988-06-20 | 1989-11-21 | General Signal Corporation | Mass transfer mixing system especially for gas dispersion in liquids or liquid suspensions |
KR900006513Y1 (en) | 1988-07-06 | 1990-07-26 | 주식회사 불티나종합상사 | Locking device in lighter |
CA1329782C (en) | 1988-08-09 | 1994-05-24 | Thomas Buenemann | Process for purifying crude glycerol |
DE3842692A1 (en) * | 1988-12-19 | 1990-06-21 | Solvay Werke Gmbh | METHOD FOR PRODUCING POLYGLYCERINES |
JPH0798763B2 (en) | 1989-06-09 | 1995-10-25 | 鐘淵化学工業株式会社 | Method for thermal decomposition of 1,2-dichloroethane |
SU1685969A1 (en) | 1989-07-26 | 1991-10-23 | Всесоюзный научно-исследовательский и проектный институт галургии | Method for suppressing dust from water soluble salts |
BR9004992A (en) | 1989-10-04 | 1991-09-10 | Dow Chemical Co | PROCESS TO PREPARE COMPOUND CONTAINING ONLY ONE VICINAL EPOXIDE GROUP PER MOLECULA |
WO1991009924A1 (en) * | 1989-12-29 | 1991-07-11 | The Procter & Gamble Company | Ultra mild surfactant with good lather |
DE4000104A1 (en) | 1990-01-04 | 1991-07-11 | Dallmer Gmbh & Co | DRAIN ARMATURE FOR A SHOWER TRAY |
JPH0625196B2 (en) * | 1990-01-29 | 1994-04-06 | ダイソー株式会社 | Method for producing epichlorohydrin |
US5146011A (en) * | 1990-03-05 | 1992-09-08 | Olin Corporation | Preparation of chlorohydrins |
US5278260A (en) | 1990-04-12 | 1994-01-11 | Ciba-Geigy Corporation | Process for the preparation of epoxy resins with concurrent addition of glycidol and epihalohydrin |
KR0168057B1 (en) | 1990-04-12 | 1999-03-20 | 베르너 발데크 | Process ror the preparation of epoxy resins |
JPH085821B2 (en) * | 1990-08-01 | 1996-01-24 | 昭和電工株式会社 | Chlorination reactor |
DE4039750A1 (en) * | 1990-12-13 | 1992-06-17 | Basf Ag | METHOD FOR REMOVING PHOSGEN FROM EXHAUST GAS |
FR2677643B1 (en) | 1991-06-12 | 1993-10-15 | Onidol | PROCESS FOR OBTAINING POLYGLYCEROLS AND ESTERS OF POLYGLYCEROLS. |
IT1248564B (en) | 1991-06-27 | 1995-01-19 | Permelec Spa Nora | ELECTROCHEMICAL DECOMPOSITION OF NEUTRAL SALTS WITHOUT HALOGEN OR ACID CO-PRODUCTION AND ELECTROLYSIS CELL SUITABLE FOR ITS REALIZATION. |
DE4131938A1 (en) * | 1991-09-25 | 1993-04-01 | Krupp Koppers Gmbh | METHOD FOR PROCESSING THE SUMP PRODUCT OF EXTRACTIVE DISTILLATION FOR OBTAINING PURE HYDROCARBONS |
US5139622A (en) | 1991-10-03 | 1992-08-18 | Texaco Chemical Company | Purification of propylene oxide by extractive distillation |
BE1005719A3 (en) * | 1992-03-17 | 1993-12-28 | Solvay | Method for producing epichlorohydrin. |
DE4210997C1 (en) | 1992-04-02 | 1993-01-14 | Krupp Vdm Gmbh, 5980 Werdohl, De | |
US5393724A (en) | 1992-04-30 | 1995-02-28 | Tosoh Corporation | Process for removing oxidizable substance or reducible substance, composite containing metal oxide or hydroxide, and process for production thereof |
DE4225870A1 (en) | 1992-08-05 | 1994-02-10 | Basf Ag | Process for the preparation of glycerol carbonate |
EP0586998B1 (en) | 1992-09-06 | 1998-01-07 | Solvay Deutschland GmbH | Process for the treatment of waste water containing organic matter, especially chlorinated organic compounds from the production of epichlorohydrine |
US5286354A (en) | 1992-11-30 | 1994-02-15 | Sachem, Inc. | Method for preparing organic and inorganic hydroxides and alkoxides by electrolysis |
DE4244482A1 (en) * | 1992-12-30 | 1994-07-07 | Solvay Deutschland | Wastewater treatment process |
DE4302306A1 (en) | 1993-01-28 | 1994-08-04 | Erdoelchemie Gmbh | Reducing content of adsorbable organic halogen in waste water |
DE4309741A1 (en) * | 1993-03-25 | 1994-09-29 | Henkel Kgaa | Process for the preparation of diglycerin |
ES2091647T3 (en) | 1993-03-31 | 1996-11-01 | Basf Corp | PROCESS TO PRODUCE QUALITY HYDROCHLORIC ACID FOR REAGENTS FROM THE MANUFACTURE OF ORGANIC ISOCYANATES. |
DE4314108A1 (en) * | 1993-04-29 | 1994-11-03 | Solvay Deutschland | Process for the treatment of waste water containing organic and inorganic compounds, preferably from the production of epichlorohydrin |
DE4335311A1 (en) | 1993-10-16 | 1995-04-20 | Chema Balcke Duerr Verfahrenst | Gas-introduction agitation system |
US5532389A (en) * | 1993-11-23 | 1996-07-02 | The Dow Chemical Company | Process for preparing alkylene oxides |
DE4401635A1 (en) | 1994-01-21 | 1995-07-27 | Bayer Ag | Substituted 1,2,3,4-tetrahydro-5-nitro-pyrimidines |
JPH083087A (en) * | 1994-06-22 | 1996-01-09 | Mitsubishi Chem Corp | Production of alcohol having trifluoromethyl group at alpah-site |
ES2127557T3 (en) | 1994-09-08 | 1999-04-16 | Solvay Umweltchemie Gmbh | PROCEDURE FOR THE ELIMINATION OF CHLORATE AND BROMATE COMPOUNDS FROM WATER BY CATALYTIC REDUCTION. |
US5486627A (en) | 1994-12-02 | 1996-01-23 | The Dow Chemical Company | Method for producing epoxides |
US5578740A (en) | 1994-12-23 | 1996-11-26 | The Dow Chemical Company | Process for preparation of epoxy compounds essentially free of organic halides |
US5731476A (en) * | 1995-01-13 | 1998-03-24 | Arco Chemical Technology, L.P. | Poly ether preparation |
US6177599B1 (en) | 1995-11-17 | 2001-01-23 | Oxy Vinyls, L.P. | Method for reducing formation of polychlorinated aromatic compounds during oxychlorination of C1-C3 hydrocarbons |
JP3827358B2 (en) | 1996-03-18 | 2006-09-27 | 株式会社トクヤマ | Manufacturing method of hydrochloric acid aqueous solution |
US5763630A (en) * | 1996-03-18 | 1998-06-09 | Arco Chemical Technology, L.P. | Propylene oxide process using alkaline earth metal compound-supported silver catalysts |
US5744655A (en) | 1996-06-19 | 1998-04-28 | The Dow Chemical Company | Process to make 2,3-dihalopropanols |
FR2752242B1 (en) | 1996-08-08 | 1998-10-16 | Inst Francais Du Petrole | PROCESS FOR THE MANUFACTURE OF ESTERS FROM VEGETABLE OR ANIMAL OILS AND ALCOHOLS |
US6270682B1 (en) | 1997-02-20 | 2001-08-07 | Solvay Deutschland Gmbh | Method for removing chlorate ions from solutions |
BE1011456A3 (en) | 1997-09-18 | 1999-09-07 | Solvay | METHOD OF MANUFACTURING an oxirane. |
EP0916624B1 (en) | 1997-11-11 | 2001-07-25 | Kawasaki Steel Corporation | Porcelain-enameled steel sheets and frits for enameling |
BE1011576A3 (en) | 1997-11-27 | 1999-11-09 | Solvay | Epichlorohydrin based product and method for manufacturing this product. |
AU738446B2 (en) * | 1997-12-22 | 2001-09-20 | Dow Chemical Company, The | Production of one or more useful products from lesser value halogenated materials |
JP3223267B2 (en) | 1997-12-25 | 2001-10-29 | 独立行政法人物質・材料研究機構 | Oxide sintered body of fluorite type or derivative thereof and method for producing the same |
AU749910B2 (en) * | 1998-03-19 | 2002-07-04 | Mitsubishi Chemical Corporation | Method for producing monoethylene glycol |
JP4122603B2 (en) * | 1998-03-31 | 2008-07-23 | 昭和電工株式会社 | Method for producing dichloroacetoxypropane and derivatives thereof |
DE19817656B4 (en) | 1998-04-21 | 2007-08-02 | Scintilla Ag | Hand tool, in particular jigsaw |
BE1011880A4 (en) | 1998-04-21 | 2000-02-01 | Solvay | Method of treatment of brine. |
US6103092A (en) * | 1998-10-23 | 2000-08-15 | General Electric Company | Method for reducing metal ion concentration in brine solution |
US6142458A (en) * | 1998-10-29 | 2000-11-07 | General Signal Corporation | Mixing system for dispersion of gas into liquid media |
JP4373013B2 (en) | 1998-12-18 | 2009-11-25 | ダウ グローバル テクノロジーズ インコーポレイティド | Method for producing 2,3-dihalopropanol |
WO2000069545A1 (en) | 1999-05-17 | 2000-11-23 | Mitsubishi Heavy Industries, Ltd. | Method for flue gas desulfurization and flue gas desulfurization system |
US6111153A (en) | 1999-06-01 | 2000-08-29 | Dow Corning Corporation | Process for manufacturing methyl chloride |
DE60016314T2 (en) | 1999-06-08 | 2005-12-01 | Showa Denko K.K. | Process for the preparation of epichlorohydrin and intermediate thereof |
US6333420B1 (en) * | 1999-06-08 | 2001-12-25 | Showa Denko K.K. | Process for producing epichlorohydrin and intermediate thereof |
JP2001037469A (en) | 1999-07-27 | 2001-02-13 | Nissan Chem Ind Ltd | Biodegradation of epichlorohydrin |
CN1119320C (en) | 1999-11-10 | 2003-08-27 | 中国石化集团齐鲁石油化工公司 | Process for separation of organic by-products of 3-chloro-2-hydroxypropyl trimethyl ammonium chloride |
BRPI0008181B8 (en) | 2000-01-19 | 2017-03-21 | Sumitomo Chemical Co | Chlorine preparation process. |
JP3712903B2 (en) | 2000-01-28 | 2005-11-02 | 花王株式会社 | Method for producing glycerin |
JP4389327B2 (en) | 2000-03-16 | 2009-12-24 | 東亞合成株式会社 | How to recover hydrochloric acid |
JP2001276572A (en) | 2000-04-04 | 2001-10-09 | Nkk Corp | Method and apparatus for decomposing harmful polyhalogenated compound |
US6613127B1 (en) | 2000-05-05 | 2003-09-02 | Dow Global Technologies Inc. | Quench apparatus and method for the reformation of organic materials |
JP5407100B2 (en) | 2000-05-08 | 2014-02-05 | 東ソー株式会社 | Purification method for inorganic salt containing organic substance and purified salt for salt electrolysis |
US6740633B2 (en) | 2000-05-09 | 2004-05-25 | Basf Aktiengesellschaft | Polyelectrolyte complexes and a method for production thereof |
JP3825959B2 (en) | 2000-06-16 | 2006-09-27 | キヤノン株式会社 | Pollutant decomposition method and apparatus |
JP2002020333A (en) * | 2000-07-06 | 2002-01-23 | Toagosei Co Ltd | Method for substituting hydroxyl group by chlorine |
JP2002038195A (en) | 2000-07-27 | 2002-02-06 | Closs Co Ltd | Cleaning agent, method for producing the cleaning agent, apparatus for producing the cleaning agent and cleaning method using the cleaning agent |
PL198770B1 (en) * | 2000-12-04 | 2008-07-31 | Westfalia Separator Ag | Method for pretreating crude oils and raw fats for the production of fatty acid esters |
EP1231189B2 (en) | 2001-02-08 | 2018-03-07 | Pfaudler GmbH | Highly corrosion-resistant enamel composition free from heavy metals, method for its production, use and coated bodies |
JP2002265985A (en) | 2001-03-06 | 2002-09-18 | Kanegafuchi Chem Ind Co Ltd | Lipid composition for inhibiting secretion of apolipoprotein-b |
JP2002265986A (en) * | 2001-03-15 | 2002-09-18 | Akio Kobayashi | Method for producing fatty acid alkyl ester and glycerin |
US6588287B2 (en) * | 2001-04-02 | 2003-07-08 | Daimlerchrysler | Multiple stage system for aerodynamic testing of a vehicle on a static surface and related method |
JP4219608B2 (en) | 2001-04-05 | 2009-02-04 | 日本曹達株式会社 | Method for producing diphenylsulfone compound |
DE10124386A1 (en) * | 2001-05-18 | 2002-11-28 | Basf Ag | Distillation column for mixtures, with toxic component, has packing with variable inner geometry to form lower bubbling layer with dispersed gas phase and an upper film layer with a continuous gas phase |
WO2003002453A1 (en) | 2001-06-28 | 2003-01-09 | Sumitomo Chemical Company, Limited | Method of chlorine purification and process for producing 1,2-dichloroethane |
JP2003081891A (en) * | 2001-06-28 | 2003-03-19 | Sumitomo Chem Co Ltd | Method for producing 1,2-dichloroethane |
JP2003026791A (en) * | 2001-07-11 | 2003-01-29 | Mitsubishi Gas Chem Co Inc | Method for producing aromatic polycarbonate resin |
US6794478B2 (en) | 2001-09-28 | 2004-09-21 | Dainippon Ink And Chemicals, Inc. | Preparing epoxy resin by distilling two fractions to recover and reuse epihalohydrin without glycidol |
WO2003031343A1 (en) | 2001-10-09 | 2003-04-17 | The C & M Group, Llc | Mediated electrochemical oxidation of food waste materials |
US6806396B2 (en) | 2001-12-18 | 2004-10-19 | E. I. Du Pont De Nemours And Company | Disposal of fluoroform (HFC-23) |
JP3981556B2 (en) | 2001-12-20 | 2007-09-26 | 株式会社トクヤマ | Method for producing methyl chloride |
JP2003206473A (en) | 2002-01-15 | 2003-07-22 | Mitsubishi Heavy Ind Ltd | Sealing material and cracker for organic halogen compound utilizing the sealing material |
DE10203914C1 (en) | 2002-01-31 | 2003-10-02 | Degussa | Recovery of hydrogen chloride, used directly as raw material e.g. in chlorosilane production, involves cooling waste gas from organosilane ester production from chlorosilane and alcohol and/or glycol without condensing hydrogen chloride |
DE10207442A1 (en) * | 2002-02-22 | 2003-09-11 | Bayer Ag | Treatment of waste water containing table salt for use in chlor-alkali electrolysis |
US6719957B2 (en) | 2002-04-17 | 2004-04-13 | Bayer Corporation | Process for purification of anhydrous hydrogen chloride gas |
US6802976B2 (en) | 2002-05-13 | 2004-10-12 | E. I. Du Pont De Nemours And Company | Organic sulfur reduction in wastewater |
US6745726B2 (en) * | 2002-07-29 | 2004-06-08 | Visteon Global Technologies, Inc. | Engine thermal management for internal combustion engine |
DE10235476A1 (en) | 2002-08-02 | 2004-02-12 | Basf Ag | Integrated process for the production of isocyanates |
US7037481B2 (en) * | 2002-09-09 | 2006-05-02 | United Brine Services Company, Llc | Production of ultra pure salt |
DE10254709A1 (en) | 2002-11-23 | 2004-06-09 | Reinhold Denz | Electrolysis assembly has series of enclosed tanks each with electrode electrically linked in cascade arrangement to adjacent electrode |
DE10260084A1 (en) * | 2002-12-19 | 2004-07-01 | Basf Ag | Separation of a mixture of hydrogen chloride and phosgene |
JP2004216246A (en) | 2003-01-14 | 2004-08-05 | Toshiba Corp | High-frequency plasma treatment apparatus and high-frequency plasma treatment method |
KR200329740Y1 (en) | 2003-04-21 | 2003-10-10 | 심구일 | Aluminum Composite Panel with Construction |
KR100514819B1 (en) | 2003-05-12 | 2005-09-14 | 주식회사 알에스텍 | Process for producing chiral glycidyl derivatives |
JP2005007841A (en) | 2003-06-18 | 2005-01-13 | Nittetu Chemical Engineering Ltd | Method for fluororesin lining having good corrosion resistance |
JP2005097177A (en) | 2003-09-25 | 2005-04-14 | Sumitomo Chemical Co Ltd | Method for purifying propylene oxide |
FR2868419B1 (en) | 2004-04-05 | 2008-08-08 | Solvay Sa Sa Belge | PROCESS FOR PRODUCING DICHLOROPROPANOL |
CN100577622C (en) | 2003-11-20 | 2010-01-06 | 索尔维公司 | From the method that glycerine is produced dichlorohydrine, glycerine is finally from the conversion of animal tallow in the production of biodiesel |
FR2862644B1 (en) | 2003-11-20 | 2007-01-12 | Solvay | USE OF RENEWABLE RESOURCES |
FR2865903A1 (en) | 2004-02-05 | 2005-08-12 | Michel Jean Robert Larose | Filled food product has edible covering layer over filling that is joined to edges of leavened dough base |
FR2869613B1 (en) | 2004-05-03 | 2008-08-29 | Inst Francais Du Petrole | PROCESS FOR THE TRANSESTERIFICATION OF VEGETABLE OR ANIMAL OILS USING HETEROGENEOUS CATALYSTS BASED ON BISMUTH, TITANIUM AND ALUMINUM |
FR2869612B1 (en) | 2004-05-03 | 2008-02-01 | Inst Francais Du Petrole | PROCESS FOR THE TRANSESTERIFICATION OF VEGETABLE OR ANIMAL OILS USING HETEROGENEOUS CATALYSTS BASED ON ZINC, TITANIUM AND ALUMINUM |
EP1593732A1 (en) | 2004-05-03 | 2005-11-09 | Institut Français du Pétrole | Process for the transesterification of plant or animal oil using a catalyst based on zinc or bismuth, titanium and aluminium |
FR2872504B1 (en) | 2004-06-30 | 2006-09-22 | Arkema Sa | PURIFICATION OF THE HYDROCHLORIC ACID BY-PRODUCT OF THE SYNTHESIS OF METHANE SULFONIC ACID |
CN102516205B (en) * | 2004-07-21 | 2016-05-04 | 兰科知识产权有限责任公司 | Multihydroxylated-aliphatic hydrocarbon or its ester are to the conversion of chloropharin |
US7910781B2 (en) * | 2004-07-21 | 2011-03-22 | Dow Global Technologies Llc | Process for the conversion of a crude glycerol, crude mixtures of naturally derived multihydroxylated aliphatic hydrocarbons or esters thereof to a chlorohydrin |
EP1632558A1 (en) | 2004-09-06 | 2006-03-08 | The Procter & Gamble | A composition comprising a surface deposition enhancing cationic polymer |
DE102004044592A1 (en) | 2004-09-13 | 2006-03-30 | Basf Ag | Process for the separation of hydrogen chloride and phosgene |
WO2006041740A1 (en) * | 2004-10-08 | 2006-04-20 | The Procter & Gamble Company | Oligomeric alkyl glyceryl sulfonate and/or sulfate surfactant mixture and a detergent composition comprising the same |
FR2881732B1 (en) | 2005-02-08 | 2007-11-02 | Solvay | PROCESS FOR THE PURIFICATION OF HYDROGEN CHLORIDE |
TW200630385A (en) * | 2005-02-09 | 2006-09-01 | Vinnolit Gmbh & Co Kg | Process for the polymerisation of vinyl-containing monomers |
BRPI0610744A2 (en) * | 2005-05-20 | 2012-10-30 | Solvay | manufacturing process of a hydrochlorine |
EP1762556A1 (en) | 2005-05-20 | 2007-03-14 | SOLVAY (Société Anonyme) | Process for producing dichloropropanol from glycerol |
FR2885903B1 (en) | 2005-05-20 | 2015-06-26 | Solvay | PROCESS FOR THE PRODUCTION OF EPICHLORHYDRIN |
JP4904730B2 (en) | 2005-07-04 | 2012-03-28 | 住友化学株式会社 | Separation and recovery of aromatic compounds and hydrogen chloride |
TWI318622B (en) | 2005-11-08 | 2009-12-21 | Solvay | Process for the manufacture of dichloropropanol by chlorination of glycerol |
US7126032B1 (en) * | 2006-03-23 | 2006-10-24 | Sunoco, Inc. (R&M) | Purification of glycerin |
FR2913683A1 (en) | 2007-03-15 | 2008-09-19 | Solvay | Crude glycerol-based product useful for producing dichloropropanol which is useful for producing epichlorohydrin and epoxy resins comprises glycerol alkyl ethers in specified amounts |
US8124814B2 (en) | 2006-06-14 | 2012-02-28 | Solvay (Societe Anonyme) | Crude glycerol-based product, process for its purification and its use in the manufacture of dichloropropanol |
DE102006041465A1 (en) * | 2006-09-02 | 2008-03-06 | Bayer Materialscience Ag | Process for the preparation of diaryl carbonate |
FR2912743B1 (en) | 2007-02-20 | 2009-04-24 | Solvay | PROCESS FOR THE PRODUCTION OF EPICHLORHYDRIN |
CN101041421A (en) | 2007-03-22 | 2007-09-26 | 广东富远稀土新材料股份有限公司 | Method for industrial hydrochloric acid purification by liquid extraction |
FR2917411B1 (en) | 2007-06-12 | 2012-08-03 | Solvay | EPICHLORHYDRIN, PROCESS FOR PRODUCTION AND USE |
FR2918058A1 (en) | 2007-06-28 | 2009-01-02 | Solvay | GLYCEROL-BASED PRODUCT, PROCESS FOR ITS PURIFICATION AND USE IN THE MANUFACTURE OF DICHLOROPROPANOL |
DE102007058701A1 (en) | 2007-12-06 | 2009-06-10 | Bayer Materialscience Ag | Process for the preparation of diaryl carbonate |
FR2925046A1 (en) | 2007-12-14 | 2009-06-19 | Rhodia Poliamida E Especialidades Ltda | PROCESS FOR OBTAINING ALCOHOL FROM ALDEHYDE |
FR2925045B1 (en) | 2007-12-17 | 2012-02-24 | Solvay | GLYCEROL-BASED PRODUCT, PROCESS FOR OBTAINING THE SAME AND USE THEREOF IN THE MANUFACTURE OF DICHLOROPROPANOL |
EP2085364A1 (en) | 2008-01-31 | 2009-08-05 | SOLVAY (Société Anonyme) | Process for degrading organic substances in an aqueous composition |
US20090196041A1 (en) * | 2008-02-05 | 2009-08-06 | Joseph Peter D | Energy efficient light |
JP2009263338A (en) | 2008-03-12 | 2009-11-12 | Daiso Co Ltd | Novel manufacturing method of epichlorohydrin |
FR2929611B3 (en) | 2008-04-03 | 2010-09-03 | Solvay | COMPOSITION COMPRISING GLYCEROL, PROCESS FOR OBTAINING THE SAME AND USE THEREOF IN THE MANUFACTURE OF DICHLOROPROPANOL |
TWI368616B (en) * | 2008-08-01 | 2012-07-21 | Dow Global Technologies Llc | Process for producing epoxides |
FR2935699A1 (en) | 2008-09-10 | 2010-03-12 | Solvay | PROCESS FOR PRODUCING A CHEMICAL |
FR2935968B1 (en) | 2008-09-12 | 2010-09-10 | Solvay | PROCESS FOR THE PURIFICATION OF HYDROGEN CHLORIDE |
-
2006
- 2006-05-19 BR BRPI0610744-3A patent/BRPI0610744A2/en not_active Application Discontinuation
- 2006-05-19 MX MX2007014514A patent/MX2007014514A/en active IP Right Grant
- 2006-05-19 US US11/914,868 patent/US8344185B2/en not_active Expired - Fee Related
- 2006-05-19 CA CA002608725A patent/CA2608725A1/en not_active Abandoned
- 2006-05-19 MX MX2007014527A patent/MX2007014527A/en active IP Right Grant
- 2006-05-19 TW TW098117309A patent/TWI349657B/en not_active IP Right Cessation
- 2006-05-19 KR KR1020077029628A patent/KR100979371B1/en active IP Right Grant
- 2006-05-19 EP EP06755270A patent/EP1885674A1/en not_active Withdrawn
- 2006-05-19 CN CN2006800005507A patent/CN101107208B/en not_active Expired - Fee Related
- 2006-05-19 EP EP06755264A patent/EP1890988A2/en not_active Withdrawn
- 2006-05-19 MY MYPI20062334A patent/MY148378A/en unknown
- 2006-05-19 US US11/914,836 patent/US7893193B2/en active Active
- 2006-05-19 CA CA002608953A patent/CA2608953A1/en not_active Abandoned
- 2006-05-19 EA EA200702561A patent/EA200702561A1/en unknown
- 2006-05-19 EA EA200702564A patent/EA014241B1/en not_active IP Right Cessation
- 2006-05-19 JP JP2008511716A patent/JP2008540609A/en active Pending
- 2006-05-19 EP EP10182191.6A patent/EP2284162B1/en active Active
- 2006-05-19 TW TW095117948A patent/TWI323249B/en not_active IP Right Cessation
- 2006-05-19 CN CN2006800005348A patent/CN101031532B/en not_active Expired - Fee Related
- 2006-05-19 JP JP2008511713A patent/JP5777268B2/en active Active
- 2006-05-19 MX MX2007014532A patent/MX2007014532A/en not_active Application Discontinuation
- 2006-05-19 CA CA002608723A patent/CA2608723A1/en not_active Abandoned
- 2006-05-19 CN CN2012100221382A patent/CN102659511A/en active Pending
- 2006-05-19 TW TW098117312A patent/TWI332942B/en not_active IP Right Cessation
- 2006-05-19 EA EA200702565A patent/EA200702565A1/en unknown
- 2006-05-19 MY MYPI20062337A patent/MY148295A/en unknown
- 2006-05-19 WO PCT/EP2006/062444 patent/WO2006100315A2/en not_active Application Discontinuation
- 2006-05-19 JP JP2008511714A patent/JP2008545640A/en active Pending
- 2006-05-19 CA CA002608816A patent/CA2608816A1/en not_active Abandoned
- 2006-05-19 EP EP10182309A patent/EP2275417A3/en not_active Withdrawn
- 2006-05-19 JP JP2008511725A patent/JP2008540613A/en active Pending
- 2006-05-19 JP JP2008511717A patent/JP5259390B2/en not_active Expired - Fee Related
- 2006-05-19 EP EP10182403A patent/EP2284163A3/en not_active Withdrawn
- 2006-05-19 WO PCT/EP2006/062459 patent/WO2006100318A2/en not_active Application Discontinuation
- 2006-05-19 JP JP2008511730A patent/JP2008540617A/en active Pending
- 2006-05-19 CN CN200680000523XA patent/CN1993306B/en not_active Expired - Fee Related
- 2006-05-19 JP JP2008511720A patent/JP5419446B2/en active Active
- 2006-05-19 CA CA002608719A patent/CA2608719A1/en not_active Abandoned
- 2006-05-19 US US11/914,862 patent/US7615670B2/en not_active Expired - Fee Related
- 2006-05-19 JP JP2008511715A patent/JP2008545641A/en active Pending
- 2006-05-19 CN CN2006800006054A patent/CN101006037B/en not_active Expired - Fee Related
- 2006-05-19 JP JP2008511718A patent/JP5179351B2/en not_active Expired - Fee Related
- 2006-05-19 WO PCT/EP2006/062461 patent/WO2006100319A1/en not_active Application Discontinuation
- 2006-05-19 WO PCT/EP2006/062463 patent/WO2006106154A1/en not_active Application Discontinuation
- 2006-05-19 JP JP2008511721A patent/JP2008545643A/en active Pending
- 2006-05-19 EP EP06763200A patent/EP1891032A2/en not_active Withdrawn
- 2006-05-19 EA EA200702554A patent/EA200702554A1/en unknown
- 2006-05-19 BR BRPI0610746-0A patent/BRPI0610746A2/en not_active IP Right Cessation
- 2006-05-19 US US11/915,056 patent/US7557253B2/en not_active Expired - Fee Related
- 2006-05-19 CA CA2608946A patent/CA2608946C/en not_active Expired - Fee Related
- 2006-05-19 BR BRPI0610745-1A patent/BRPI0610745A2/en not_active Application Discontinuation
- 2006-05-19 US US11/915,053 patent/US8389777B2/en not_active Expired - Fee Related
- 2006-05-19 CN CN201110379336XA patent/CN102531841A/en active Pending
- 2006-05-19 CA CA002608715A patent/CA2608715A1/en not_active Abandoned
- 2006-05-19 CN CN2012100221289A patent/CN102603474A/en active Pending
- 2006-05-19 BR BRPI0610751-6A patent/BRPI0610751A2/en not_active Application Discontinuation
- 2006-05-19 CN CN2006800005352A patent/CN1993307B/en not_active Expired - Fee Related
- 2006-05-19 MX MX2007014530A patent/MX2007014530A/en not_active Application Discontinuation
- 2006-05-19 TW TW095117942A patent/TWI333945B/en not_active IP Right Cessation
- 2006-05-19 JP JP2008511726A patent/JP5405821B2/en not_active Expired - Fee Related
- 2006-05-19 WO PCT/EP2006/062462 patent/WO2006100320A2/en not_active Application Discontinuation
- 2006-05-19 WO PCT/EP2006/062448 patent/WO2006106153A2/en not_active Application Discontinuation
- 2006-05-19 WO PCT/EP2006/062445 patent/WO2006100316A1/en not_active Application Discontinuation
- 2006-05-19 EP EP06755263A patent/EP1904427A2/en not_active Withdrawn
- 2006-05-19 JP JP2008511727A patent/JP5551359B2/en not_active Expired - Fee Related
- 2006-05-19 EP EP06755272A patent/EP1885675A1/en not_active Withdrawn
- 2006-05-19 CA CA002608956A patent/CA2608956A1/en not_active Abandoned
- 2006-05-19 TW TW095117955A patent/TWI335323B/en not_active IP Right Cessation
- 2006-05-19 US US11/914,891 patent/US8106245B2/en not_active Expired - Fee Related
- 2006-05-19 EA EA200702553A patent/EA200702553A1/en unknown
- 2006-05-19 BR BRPI0610791-5A patent/BRPI0610791A2/en active Search and Examination
- 2006-05-19 TW TW098117310A patent/TWI332941B/en not_active IP Right Cessation
- 2006-05-19 EA EA200702548A patent/EA200702548A1/en unknown
- 2006-05-19 KR KR1020077029655A patent/KR100978436B1/en active IP Right Grant
- 2006-05-19 BR BRPI0610799-0A patent/BRPI0610799A2/en not_active IP Right Cessation
- 2006-05-19 MX MX2007014523A patent/MX2007014523A/en active IP Right Grant
- 2006-05-19 EA EA200702549A patent/EA018478B1/en not_active IP Right Cessation
- 2006-05-19 CN CN2006800005511A patent/CN101098843B/en not_active Expired - Fee Related
- 2006-05-19 EA EA200702546A patent/EA200702546A1/en unknown
- 2006-05-19 CA CA002608720A patent/CA2608720A1/en not_active Abandoned
- 2006-05-19 US US11/914,856 patent/US7906691B2/en active Active
- 2006-05-19 CN CN2012101645245A patent/CN102690168A/en active Pending
- 2006-05-19 US US11/915,046 patent/US20080194850A1/en not_active Abandoned
- 2006-05-19 EP EP06755268A patent/EP1885672A2/en not_active Withdrawn
- 2006-05-19 TW TW095117963A patent/TWI320037B/en not_active IP Right Cessation
- 2006-05-19 WO PCT/EP2006/062439 patent/WO2006100313A2/en not_active Application Discontinuation
- 2006-05-19 US US11/915,088 patent/US20080214848A1/en not_active Abandoned
- 2006-05-19 TW TW095117967A patent/TWI322142B/en active
- 2006-05-19 CA CA002608937A patent/CA2608937A1/en not_active Abandoned
- 2006-05-19 KR KR1020077029668A patent/KR101345965B1/en active IP Right Grant
- 2006-05-19 EP EP06763198A patent/EP1885678A1/en not_active Withdrawn
- 2006-05-19 CN CN2006800005530A patent/CN101052606B/en not_active Expired - Fee Related
- 2006-05-19 US US11/914,879 patent/US8173823B2/en active Active
- 2006-05-19 MX MX2007014525A patent/MX2007014525A/en active IP Right Grant
- 2006-05-19 EP EP06755269.5A patent/EP1885673B1/en not_active Not-in-force
- 2006-05-19 EA EA200702550A patent/EA018479B1/en not_active IP Right Cessation
- 2006-05-19 EA EA200702555A patent/EA200702555A1/en unknown
- 2006-05-19 KR KR1020077029658A patent/KR100982605B1/en active IP Right Grant
- 2006-05-19 CA CA002608732A patent/CA2608732A1/en not_active Abandoned
- 2006-05-19 TW TW095117952A patent/TW200700401A/en unknown
- 2006-05-19 US US11/915,067 patent/US20080200701A1/en not_active Abandoned
- 2006-05-19 EP EP06763189A patent/EP1885677A2/en not_active Withdrawn
- 2006-05-19 KR KR1020077029659A patent/KR100982618B1/en not_active IP Right Cessation
- 2006-05-19 CN CN2006800006073A patent/CN101006068B/en not_active Ceased
- 2006-05-19 TW TW095117962A patent/TWI332493B/en not_active IP Right Cessation
- 2006-05-19 CN CN2012100221306A patent/CN102603475A/en active Pending
- 2006-05-19 WO PCT/EP2006/062466 patent/WO2006106155A2/en not_active Application Discontinuation
- 2006-05-19 EP EP06755267A patent/EP1885671A1/en not_active Withdrawn
- 2006-05-19 EA EA201300253A patent/EA201300253A1/en unknown
- 2006-05-19 WO PCT/EP2006/062447 patent/WO2006100317A1/en not_active Application Discontinuation
- 2006-05-19 TW TW095117946A patent/TWI313261B/en not_active IP Right Cessation
- 2006-05-19 MY MYPI20062328A patent/MY158842A/en unknown
- 2006-05-19 TW TW095117957A patent/TWI332940B/en not_active IP Right Cessation
- 2006-05-19 TW TW095117961A patent/TWI320036B/en not_active IP Right Cessation
- 2006-05-19 MY MYPI20062332A patent/MY148345A/en unknown
- 2006-05-19 CA CA002608722A patent/CA2608722A1/en not_active Abandoned
- 2006-05-19 EA EA200702551A patent/EA200702551A1/en unknown
- 2006-05-19 WO PCT/EP2006/062442 patent/WO2006100314A1/en not_active Application Discontinuation
- 2006-05-19 US US11/914,874 patent/US7906692B2/en not_active Expired - Fee Related
- 2006-05-19 EA EA200702552A patent/EA017149B1/en not_active IP Right Cessation
- 2006-05-19 JP JP2008511728A patent/JP5280842B2/en not_active Expired - Fee Related
- 2006-05-19 WO PCT/EP2006/062438 patent/WO2006100312A2/en not_active Application Discontinuation
- 2006-05-19 MX MX2007014516A patent/MX2007014516A/en not_active Application Discontinuation
- 2006-05-19 EA EA200702562A patent/EA013681B1/en not_active IP Right Cessation
- 2006-05-19 BR BRPI0610748-6A patent/BRPI0610748A2/en not_active IP Right Cessation
- 2006-05-19 BR BRPI0610789-3A patent/BRPI0610789A2/en not_active Application Discontinuation
- 2006-05-19 CA CA2608961A patent/CA2608961C/en not_active Expired - Fee Related
- 2006-05-19 TW TW095117959A patent/TWI321129B/en not_active IP Right Cessation
- 2006-05-19 TW TW095117970A patent/TW200700403A/en unknown
- 2006-05-19 EP EP06755273A patent/EP1885676A2/en not_active Withdrawn
- 2006-05-19 WO PCT/EP2006/062437 patent/WO2006100311A2/en not_active Application Discontinuation
- 2006-05-19 TW TW095117968A patent/TWI388542B/en not_active IP Right Cessation
- 2006-05-19 KR KR1020077029670A patent/KR101337048B1/en not_active IP Right Cessation
- 2006-05-19 EP EP06755271A patent/EP1885706A2/en not_active Withdrawn
- 2006-05-19 EP EP06755262.0A patent/EP1885705B1/en active Active
- 2006-05-19 KR KR1020077029669A patent/KR101331367B1/en not_active IP Right Cessation
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB191314767A (en) * | 1913-06-26 | 1914-01-08 | Henry Fairbrother | Process for Directly Producing Glycerol-halogen-hydrins and Poly-oxy Fatty Acid Esters. |
GB404938A (en) * | 1932-07-15 | 1934-01-15 | Henry Dreyfus | Manufacture of chlorhydrins and ethers thereof |
US2144612A (en) * | 1936-09-10 | 1939-01-24 | Dow Chemical Co | Preparation of glycerol dichlorohydrin |
GB984633A (en) * | 1960-11-07 | 1965-03-03 | Electro Chimie Metal | Manufacture of epoxy resins |
WO2005021476A1 (en) * | 2003-09-01 | 2005-03-10 | Spolek Pro Chemickou A Hutni Vyrobu, Akciova Spolecnost | Method of preparing dichloropropanols from glycerine |
WO2005054167A1 (en) * | 2003-11-20 | 2005-06-16 | Solvay (Société Anonyme) | Process for producing dichloropropanol from glycerol, the glycerol coming eventually from the conversion of animal fats in the manufacture of biodiesel |
Non-Patent Citations (2)
Title |
---|
FAUCONNIER M A: "PREPARATION DE L'EPICHLORHYDRINE" BULL.SOC.CHIM.FRANCE, vol. 50, no. 50, 1888, pages 212-214, XP009046846 * |
GIBSON G P: "THE PREPARATION, PROPERTIES AND USES OF GLYCEROL DERIVATIVES. Part III. THE CHLOROHYDRINS" CHEMISTRY AND INDUSTRY, CHEMICAL SOCIETY, LECHWORTH, GB, 1931, pages 949-970, XP009042263 ISSN: 0009-3068 * |
Cited By (62)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7838708B2 (en) | 2001-06-20 | 2010-11-23 | Grt, Inc. | Hydrocarbon conversion process improvements |
US8415512B2 (en) | 2001-06-20 | 2013-04-09 | Grt, Inc. | Hydrocarbon conversion process improvements |
US7964764B2 (en) | 2003-07-15 | 2011-06-21 | Grt, Inc. | Hydrocarbon synthesis |
US7847139B2 (en) | 2003-07-15 | 2010-12-07 | Grt, Inc. | Hydrocarbon synthesis |
US8415509B2 (en) | 2003-11-20 | 2013-04-09 | Solvay (Societe Anonyme) | Process for producing dichloropropanol from glycerol, the glycerol coming eventually from the conversion of animal fats in the manufacture of biodiesel |
US9663427B2 (en) | 2003-11-20 | 2017-05-30 | Solvay (Société Anonyme) | Process for producing epichlorohydrin |
US8173851B2 (en) | 2004-04-16 | 2012-05-08 | Marathon Gtf Technology, Ltd. | Processes for converting gaseous alkanes to liquid hydrocarbons |
US7880041B2 (en) | 2004-04-16 | 2011-02-01 | Marathon Gtf Technology, Ltd. | Process for converting gaseous alkanes to liquid hydrocarbons |
US7674941B2 (en) | 2004-04-16 | 2010-03-09 | Marathon Gtf Technology, Ltd. | Processes for converting gaseous alkanes to liquid hydrocarbons |
US9206093B2 (en) | 2004-04-16 | 2015-12-08 | Gtc Technology Us, Llc | Process for converting gaseous alkanes to liquid hydrocarbons |
US8232441B2 (en) | 2004-04-16 | 2012-07-31 | Marathon Gtf Technology, Ltd. | Process for converting gaseous alkanes to liquid hydrocarbons |
US8642822B2 (en) | 2004-04-16 | 2014-02-04 | Marathon Gtf Technology, Ltd. | Processes for converting gaseous alkanes to liquid hydrocarbons using microchannel reactor |
US8008535B2 (en) | 2004-04-16 | 2011-08-30 | Marathon Gtf Technology, Ltd. | Process for converting gaseous alkanes to olefins and liquid hydrocarbons |
US7939696B2 (en) | 2005-11-08 | 2011-05-10 | Solvay Societe Anonyme | Process for the manufacture of dichloropropanol by chlorination of glycerol |
US8053616B2 (en) | 2006-02-03 | 2011-11-08 | Grt, Inc. | Continuous process for converting natural gas to liquid hydrocarbons |
US7883568B2 (en) | 2006-02-03 | 2011-02-08 | Grt, Inc. | Separation of light gases from halogens |
US8124814B2 (en) | 2006-06-14 | 2012-02-28 | Solvay (Societe Anonyme) | Crude glycerol-based product, process for its purification and its use in the manufacture of dichloropropanol |
US7930651B2 (en) | 2007-01-18 | 2011-04-19 | Research In Motion Limited | Agenda display in an electronic device |
US8921625B2 (en) | 2007-02-05 | 2014-12-30 | Reaction35, LLC | Continuous process for converting natural gas to liquid hydrocarbons |
US8258350B2 (en) | 2007-03-07 | 2012-09-04 | Solvay (Societe Anonyme) | Process for the manufacture of dichloropropanol |
JP2010520916A (en) * | 2007-03-14 | 2010-06-17 | ソルヴェイ(ソシエテ アノニム) | Method for producing dichloropropanol |
US8471074B2 (en) | 2007-03-14 | 2013-06-25 | Solvay (Societe Anonyme) | Process for the manufacture of dichloropropanol |
JP2010523698A (en) * | 2007-04-12 | 2010-07-15 | ダウ グローバル テクノロジーズ インコーポレイティド | Multi-stage method and apparatus for recovering dichlorohydrin |
US20110152580A1 (en) * | 2007-04-12 | 2011-06-23 | Hook Bruce D | Process and apparatus for vapor phase purification during hydrochlorination of multi-hydroxylated aliphatic hydrocarbon compounds |
JP2010523701A (en) * | 2007-04-12 | 2010-07-15 | ダウ グローバル テクノロジーズ インコーポレイティド | Method and apparatus for recovering dichlorohydrin by co-distillation |
JP2010523703A (en) * | 2007-04-12 | 2010-07-15 | ダウ グローバル テクノロジーズ インコーポレイティド | Method and apparatus for azeotropic recovery of dichlorohydrin |
US7998438B2 (en) | 2007-05-24 | 2011-08-16 | Grt, Inc. | Zone reactor incorporating reversible hydrogen halide capture and release |
US8378130B2 (en) | 2007-06-12 | 2013-02-19 | Solvay (Societe Anonyme) | Product containing epichlorohydrin, its preparation and its use in various applications |
US8399692B2 (en) | 2007-06-12 | 2013-03-19 | Solvay (Societe Anonyme) | Epichlorohydrin, manufacturing process and use |
US8197665B2 (en) | 2007-06-12 | 2012-06-12 | Solvay (Societe Anonyme) | Aqueous composition containing a salt, manufacturing process and use |
US8715568B2 (en) | 2007-10-02 | 2014-05-06 | Solvay Sa | Use of compositions containing silicon for improving the corrosion resistance of vessels |
US8314205B2 (en) | 2007-12-17 | 2012-11-20 | Solvay (Societe Anonyme) | Glycerol-based product, process for obtaining same and use thereof in the manufacturing of dichloropropanol |
US8795536B2 (en) | 2008-01-31 | 2014-08-05 | Solvay (Societe Anonyme) | Process for degrading organic substances in an aqueous composition |
US8507643B2 (en) | 2008-04-03 | 2013-08-13 | Solvay S.A. | Composition comprising glycerol, process for obtaining same and use thereof in the manufacture of dichloropropanol |
US8282810B2 (en) | 2008-06-13 | 2012-10-09 | Marathon Gtf Technology, Ltd. | Bromine-based method and system for converting gaseous alkanes to liquid hydrocarbons using electrolysis for bromine recovery |
US8415517B2 (en) | 2008-07-18 | 2013-04-09 | Grt, Inc. | Continuous process for converting natural gas to liquid hydrocarbons |
US8273929B2 (en) | 2008-07-18 | 2012-09-25 | Grt, Inc. | Continuous process for converting natural gas to liquid hydrocarbons |
ITMI20081535A1 (en) * | 2008-08-26 | 2010-02-26 | Biocompany Srl | PROCESS FOR THE PREPARATION OF 1,3-DICHLORO-2-PROPANOL |
US8536381B2 (en) | 2008-09-12 | 2013-09-17 | Solvay Sa | Process for purifying hydrogen chloride |
WO2011054769A2 (en) | 2009-11-04 | 2011-05-12 | Solvay Sa | Process for manufacturing a product derived from epichlorohydrin |
WO2011054770A1 (en) | 2009-11-04 | 2011-05-12 | Solvay Sa | Process for manufacturing an epoxy resin |
US8367884B2 (en) | 2010-03-02 | 2013-02-05 | Marathon Gtf Technology, Ltd. | Processes and systems for the staged synthesis of alkyl bromides |
US8198495B2 (en) | 2010-03-02 | 2012-06-12 | Marathon Gtf Technology, Ltd. | Processes and systems for the staged synthesis of alkyl bromides |
US9133078B2 (en) | 2010-03-02 | 2015-09-15 | Gtc Technology Us, Llc | Processes and systems for the staged synthesis of alkyl bromides |
WO2012016872A1 (en) | 2010-08-02 | 2012-02-09 | Solvay Sa | Electrolysis process |
WO2012025468A1 (en) | 2010-08-27 | 2012-03-01 | Solvay Sa | Brine purification process |
US9309209B2 (en) | 2010-09-30 | 2016-04-12 | Solvay Sa | Derivative of epichlorohydrin of natural origin |
WO2012041816A1 (en) | 2010-09-30 | 2012-04-05 | Solvay Sa | Derivative of epichlorohydrin of natural origin |
WO2012056005A1 (en) | 2010-10-29 | 2012-05-03 | Solvay Sa | Process for manufacturing epichlorohydrin |
US8815050B2 (en) | 2011-03-22 | 2014-08-26 | Marathon Gtf Technology, Ltd. | Processes and systems for drying liquid bromine |
US8436220B2 (en) | 2011-06-10 | 2013-05-07 | Marathon Gtf Technology, Ltd. | Processes and systems for demethanization of brominated hydrocarbons |
US8829256B2 (en) | 2011-06-30 | 2014-09-09 | Gtc Technology Us, Llc | Processes and systems for fractionation of brominated hydrocarbons in the conversion of natural gas to liquid hydrocarbons |
US8802908B2 (en) | 2011-10-21 | 2014-08-12 | Marathon Gtf Technology, Ltd. | Processes and systems for separate, parallel methane and higher alkanes' bromination |
US9193641B2 (en) | 2011-12-16 | 2015-11-24 | Gtc Technology Us, Llc | Processes and systems for conversion of alkyl bromides to higher molecular weight hydrocarbons in circulating catalyst reactor-regenerator systems |
WO2013092338A1 (en) | 2011-12-19 | 2013-06-27 | Solvay Sa | Process for reducing the total organic carbon of aqueous compositions |
EP2669247A1 (en) | 2012-06-01 | 2013-12-04 | Solvay Sa | Process for manufacturing dichloropropanol |
EP2669307A1 (en) | 2012-06-01 | 2013-12-04 | Solvay Sa | Process for manufacturing an epoxide |
EP2669308A1 (en) | 2012-06-01 | 2013-12-04 | Solvay Sa | Process for manufacturing an epoxy resin |
EP2669305A1 (en) | 2012-06-01 | 2013-12-04 | Solvay Sa | Process for manufacturing an epoxy resin |
EP2669306A1 (en) | 2012-06-01 | 2013-12-04 | Solvay Sa | Process for manufacturing an epoxy resin |
WO2015074684A1 (en) | 2013-11-20 | 2015-05-28 | Solvay Sa | Process for manufacturing an epoxy resin |
US9850190B2 (en) | 2015-12-18 | 2017-12-26 | Chang Chun Plastics Co., Ltd. | Process for preparing dichloropropanol |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2608946C (en) | Process for producing a chlorhydrin from a multihydroxilated aliphatic hydrocarbon and/or ester thereof in the presence of metal salts | |
US8420871B2 (en) | Process for producing an organic compound |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 200680000566.8 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2608946 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2006755263 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2008511714 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: MX/a/2007/014528 Country of ref document: MX Ref document number: 11915059 Country of ref document: US Ref document number: 12007502611 Country of ref document: PH Ref document number: 5266/CHENP/2007 Country of ref document: IN |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020077029628 Country of ref document: KR |
|
WWE | Wipo information: entry into national phase |
Ref document number: 200702549 Country of ref document: EA |
|
NENP | Non-entry into the national phase |
Ref country code: RU |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: RU |
|
WWP | Wipo information: published in national office |
Ref document number: 2006755263 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: PI0610791 Country of ref document: BR Kind code of ref document: A2 |