WO2006098066A1 - 同期誘導電動機の回転子及び圧縮機 - Google Patents

同期誘導電動機の回転子及び圧縮機 Download PDF

Info

Publication number
WO2006098066A1
WO2006098066A1 PCT/JP2005/022687 JP2005022687W WO2006098066A1 WO 2006098066 A1 WO2006098066 A1 WO 2006098066A1 JP 2005022687 W JP2005022687 W JP 2005022687W WO 2006098066 A1 WO2006098066 A1 WO 2006098066A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
slit
axis
vent hole
induction motor
Prior art date
Application number
PCT/JP2005/022687
Other languages
English (en)
French (fr)
Inventor
Koji Yabe
Yoshio Takita
Hayato Yoshino
Original Assignee
Mitsubishi Denki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Denki Kabushiki Kaisha filed Critical Mitsubishi Denki Kabushiki Kaisha
Priority to CN2005800146680A priority Critical patent/CN1950992B/zh
Priority to US11/578,940 priority patent/US7504755B2/en
Publication of WO2006098066A1 publication Critical patent/WO2006098066A1/ja

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K19/00Synchronous motors or generators
    • H02K19/02Synchronous motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/20Stationary parts of the magnetic circuit with channels or ducts for flow of cooling medium
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/24Rotor cores with salient poles ; Variable reluctance rotors
    • H02K1/246Variable reluctance rotors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K17/00Asynchronous induction motors; Asynchronous induction generators
    • H02K17/02Asynchronous induction motors
    • H02K17/16Asynchronous induction motors having rotors with internally short-circuited windings, e.g. cage rotors
    • H02K17/165Asynchronous induction motors having rotors with internally short-circuited windings, e.g. cage rotors characterised by the squirrel-cage or other short-circuited windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/14Structural association with mechanical loads, e.g. with hand-held machine tools or fans
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2201/00Specific aspects not provided for in the other groups of this subclass relating to the magnetic circuits
    • H02K2201/03Machines characterised by aspects of the air-gap between rotor and stator

Definitions

  • the present invention relates to a rotor of a synchronous induction motor that starts by using induction torque and operates synchronously by using reluctance torque, and a compressor using the synchronous induction motor.
  • a rotor core made of an electromagnetic steel plate is provided with a plurality of slits and slots, and in order to facilitate the flow of magnetic flux in the d-axis direction, a vent hole is provided in the d-axis.
  • a vent hole is provided in the d-axis.
  • Patent Document 1 Japanese Patent Laid-Open No. 2003-153511 (Page 5, FIG. 6)
  • the rotor of the conventional synchronous induction motor has an elliptical shape in which the short axis is the q-axis direction and the long-axis force axis direction, and the both sides of the q-axis direction vent hole are
  • the width of the electromagnetic steel sheet can be increased, the width of the magnetic path in the d-axis direction is secured, and the magnetic flux easily passes in the d-axis direction.
  • this configuration has a problem that magnetic flux easily flows in the q-axis direction, and a large salient pole difference cannot be obtained.
  • the present invention has been made in order to solve the above-described problems. It facilitates the passage of magnetic flux in the d-axis direction and causes the magnetic flux to flow in the q-axis direction.
  • the purpose is to construct a rotor with a large salient pole difference and to obtain a highly efficient synchronous induction motor.
  • a synchronous induction motor is provided with at least a pair of a rotor core formed by laminating a plurality of electromagnetic steel sheets and each of the electromagnetic steel sheets of the plurality of electromagnetic steel sheets so that a magnetic flux easily flows in a direction.
  • the slit adjacent to the shaft is characterized in that the shape on the shaft side protrudes along the circumference of the shaft.
  • the rotor of the synchronous induction motor further includes an elongated gas vent hole extending in the d-axis direction on the d axis, and the slit adjacent to the gas vent hole is on the gas vent hole side. The shape is projected along the circumference of the gas vent hole in the longitudinal direction.
  • the width L of the electrical steel sheet at the outer peripheral end on the d-axis, the distance A between the adjacent slit and the gas vent hole on one side of the gas vent hole, and the other side of the gas vent hole is set so that L ⁇ A + B when the distance B between the adjacent slit and the vent hole is B. It is what.
  • the shaft has a cross-sectional shape perpendicular to the rotation axis, and the length adjacent to the shaft in which the length in the q-axis direction is shorter than the length in the d-axis direction has a shape on the shaft side. It protrudes to the shaft side along the circumference of the shaft.
  • the rotor core of the first stage uses a directional electrical steel sheet as the laminated electrical steel sheet, and the directional electrical steel sheet is configured so that the magnetic easy direction is substantially parallel to the d-axis. It is characterized by.
  • a compressor according to the present invention is characterized by including a rotor of the synchronous induction motor.
  • the rotor of the synchronous induction motor according to the present invention is provided with at least a pair of a rotor core formed by laminating a plurality of electromagnetic steel sheets and each of the electromagnetic steel sheets of the plurality of electromagnetic steel sheets.
  • the width L of the electrical steel sheet at the outer peripheral end on the d-axis, the distance A between the adjacent slit and the gas vent hole on one side of the gas vent hole, and the other side of the gas vent hole The distance between the vent hole and the slit adjacent to the vent hole is set so that L ⁇ A + B when the distance B between the adjacent slit and the vent hole is B. It is what.
  • the slit adjacent to the shaft whose cross-sectional shape is perpendicular to the rotation axis and whose length in the q-axis direction is shorter than the length in the d-axis direction has a shape on the shaft side. It protrudes to the shaft side along the circumference of the shaft.
  • the rotor core of the first stage uses a grain-oriented electrical steel sheet as the laminated electrical steel sheet, and the grain-oriented electrical steel sheet is configured so that the direction of easy magnetization is substantially parallel to the d-axis. It is characterized by.
  • a compressor according to the present invention is characterized by including a rotor of the synchronous induction motor.
  • the rotor of the synchronous induction motor according to the present invention is provided with at least one pair of a rotor core formed by laminating a plurality of electromagnetic steel sheets and each of the electromagnetic steel sheets of the plurality of electromagnetic steel sheets.
  • the rotor core is composed of a plurality of rotor core portions in the stacking direction, and the slit has a different shape for each rotor core portion.
  • the electromagnetic steel sheet of the rotor core portion located at one end in the stacking direction has a gap around the shaft.
  • the rotor core is a portion where magnetic steel sheets having slits having different shapes are adjacent to each other, and at least a part of one slit and the slot and at least a part of the other slit and the slot are in the stacking direction. It is configured to be able to communicate.
  • a compressor according to the present invention is characterized by including a rotor of the synchronous induction motor.
  • a rotor core formed by laminating a plurality of electromagnetic steel sheets, and at least a pair of each of the electromagnetic steel sheets of the plurality of electromagnetic steel sheets, a d-axis and a magnetic flux that is a heel direction in which the magnetic flux easily flows are provided.
  • the width of the outer peripheral edge of the electrical steel sheet constituting the path is set to a predetermined width that does not cause magnetic saturation, and the width of the magnetic path on the d-axis excluding the vicinity of the shaft is equal to or more than the predetermined width. Big Is characterized in that the non-magnetic portions digits set to so that.
  • a compressor according to the present invention is characterized by including the rotor of the synchronous induction motor.
  • magnetic projections are formed in the d-axis direction, which is a direction in which magnetic flux easily passes, and in the q-axis direction, which is a direction in which magnetic flux does not easily pass, by arranging slits, which are non-magnetic materials, in parallel on a magnetic steel sheet.
  • the present invention forms a non-magnetic part in the magnetic path on the wide d-axis or protrudes a slit so that the magnetic path on the q-axis passes through the magnetic flux on the q-axis without obstructing the magnetic path on the d-axis.
  • the salient pole difference can be increased. Therefore, according to the present invention, a highly efficient rotor of a synchronous induction motor can be obtained.
  • FIG. 1 shows a synchronous induction motor according to Embodiment 1, and is a cross-sectional configuration diagram in a plane perpendicular to a rotation axis.
  • a stator 20 is arranged around the rotor 1 at a predetermined interval.
  • the stator 20 is composed of a plurality of magnetic steel plates that are magnetic materials, and includes a plurality of stator slots 21, and a winding wire 22 is provided in the stator slot 21.
  • the rotor 1 is made of a plurality of laminated electromagnetic steel plates that are magnetic materials. It is composed.
  • the slit 2 and the slot 3 are filled with, for example, aluminum as a non-magnetic and conductive material by a die casting method.
  • the portion of the electrical steel sheet between the adjacent slits 2 is the strip 4, and the thin portion formed on the outer side of the rotor is 0.1 mm to several mm.
  • At least a pair of slits 2 are provided on the magnetic steel sheet, and magnetic pole projections are formed so that a d-axis that is a direction in which magnetic flux easily flows and a q-axis that is a direction in which magnetic flux does not easily flow are obtained.
  • a plurality of slots 3 are provided near the outer periphery of the electromagnetic steel sheet connected to the slits 2 to generate an induction torque.
  • Aluminum which is a conductive material filled by the die casting method, can generate induced torque by the slot 3 as long as at least the slot 3 of the slit 2 and the slot 3 is filled.
  • the d-axis and q-axis magnetic pole projections can be formed by
  • the shaft 5 serving as the rotation shaft is fixed so as to penetrate through the central portion of the rotor 1 by press-fitting or shrink fitting. Ribs 6 exist to separate slit 2 and slot 3. Since the synchronous induction motor has the rib 6, the secondary current is effectively induced at the time of start-up and the startability is improved.
  • the vent hole 7 is a cavity that may be required for devices that incorporate synchronous induction motors. For example, in the case of a compressor, refrigerant or oil circulates through the vent hole 7. The vent hole 7 may be used for cooling air or positioning when it is mounted on a fan. Also, the vent hole 7 may not be necessary.
  • the slit enlarged portion 8a is a portion in which the shape of the slot 5 adjacent to the shaft 5 on the shaft 5 side is projected along the circumference of the shaft 5 to enlarge the slit.
  • FIG. 2 is a perspective view showing a rotor of the synchronous induction motor.
  • the rotor 1 of the synchronous induction motor is connected by the aluminum force end rings 30 filled in the slits 2 and the slots 3 of the laminated electrical steel sheets, and has the same configuration as the induction motor.
  • the synchronous induction motor When the synchronous induction motor is started, it generates a rotating magnetic field by a single-phase or three-phase winding applied to the stator winding.
  • a rotating magnetic field is applied to the rotor 1
  • a secondary current is induced in the slot 3
  • an induction torque is generated based on the same principle as that of the cage induction machine.
  • the slit 2 of the rotor 1 is filled with aluminum, it forms a nonmagnetic portion. Therefore, the rotor 1 has a d-axis in the direction in which the magnetic flux easily flows. Then, the q-axis is generated in the direction where the magnetic flux is difficult to flow.
  • the synchronous induction motor operates at a synchronous speed during steady operation, and is characterized by being a highly efficient motor with reduced secondary copper loss.
  • the synchronous induction motor operates using reluctance torque during steady operation, a highly efficient synchronous induction motor can be obtained by increasing the salient pole difference.
  • the width of the slit 2 is as large as possible, the salient pole difference can be increased, current-torque characteristics can be improved, and copper loss can be reduced.
  • the width of the slit 2 is excessively widened, the strip 4 becomes narrow and magnetic saturation occurs, which adversely affects the current torque characteristics. Therefore, it is preferable to enlarge the slit 2 while keeping the width of the strip 4 at such a level that magnetic saturation does not occur.
  • the portion with the low magnetic flux density is the portion of the strip 4 a on the d-axis where the shaft 5 exists. As shown in FIG.
  • gas vent holes 7 are provided on both sides of the shaft 5, and the gas vent holes 7 are usually round.
  • the portion of the vent hole 7 is a space and can be regarded as a non-magnetic portion.
  • the shaft 5 occupies an area much larger than the area of the vent hole 7, and this part is regarded as a magnetic part.
  • the shape of the slit 2 adjacent to the shaft 5 on the shaft side is a shape along the circumference of the shaft 5.
  • the slit 2 adjacent to the shaft 5 with a plurality of slits arranged side by side that is, the shape on the shaft side of the innermost slit 2 is projected along the circumference of the shaft 5 to expand the slit. 8a is provided, and the width of the slit adjacent to the shaft 5 is enlarged.
  • the slit enlarged portion 8a By providing the slit enlarged portion 8a, it becomes difficult for the magnetic flux to pass in the q-axis direction.
  • the amount of magnetic flux is almost determined by the width of the outer peripheral edge of the electrical steel sheet. For this reason, even if the magnetic path is narrowed to some extent around the vent hole 7, magnetic saturation is unlikely to occur unless the width is less than the width of the outer peripheral edge of the electrical steel sheet.
  • the shaft 5 is a magnetic part, the magnetic path on the d-axis includes the shaft 5 part. Therefore, the width of slit 2 is increased along the circumference of shaft 5.
  • the magnetic saturation does not occur when the synchronous induction motor is in operation, and the distance is narrow and the distance is kept as the predetermined width L as the rotor outer peripheral dimension on the d-axis.
  • the distance between the vent hole 7 and the slit enlarged portion 8a is smaller than the predetermined width L of the outer peripheral edge of the electromagnetic steel sheet on the d axis, magnetic saturation occurs and the characteristics deteriorate. Therefore, for the predetermined width L, the relationship between the distances A, B, C, and D between the slit enlarged portion 8a and the vent hole 7 should be L ⁇ A + B, L ⁇ C + D.
  • the width L of the outer peripheral edge of the electrical steel sheet on the d-axis is so narrow that magnetic saturation does not occur!
  • the distance can be set to a predetermined width by obtaining it by simulation or operating the prototype device in advance. Almost can be set.
  • slits which are non-magnetic portions, in the magnetic steel sheet in parallel, it is easy to pass the magnetic flux, and the direction is the d-axis direction and the magnetic flux is to pass, and the direction is the q-axis direction.
  • a magnetic pole protrusion is formed.
  • a pair of slits are formed on both sides of the shaft portion, and the d-axis having a wide magnetic path is formed on the shaft portion.
  • the magnetic path of this shaft part is poled in the range where magnetic saturation does not occur.
  • the slit By narrowing the force, the slit can be efficiently expanded in the q-axis direction, and the q-axis magnetic flux can be passed through without interfering with the d-axis magnetic path.
  • the rotor of a conductive induction motive can be obtained.
  • end rings are provided at the top and bottom in the laminating direction to form an induction torque at the time of starting together with the slots, and the laminated electromagnetic steel sheets are firmly held in the up and down direction. For this reason, even if the slit enlarged portion 8a is provided and the width of the slit portion is widened, the structure is sufficiently strong against the centrifugal force during rotation!
  • FIG. 3 is a cross-sectional configuration diagram showing another configuration example of the synchronous induction motor according to this embodiment.
  • the rotor having this configuration is obtained by deforming the shape of the gas vent hole 7 with a circular force.
  • the vent hole 7 is provided depending on the situation of the equipment on which the synchronous induction motor is mounted, but is not particularly limited in shape or the like. Since the gas vent hole 7 only needs to have a configuration in which a certain amount of gas flows during operation, it is assumed here to have a shape extending in the d-axis direction, for example, a rectangular shape.
  • the shape of the gas vent hole 7 is an elongated hole, and the longitudinal direction is arranged so as to be substantially parallel to the d-axis. If the gas vent hole 7 is elongated, the slit enlarged portion 8a can be elongated and expanded along the circumference of the gas vent hole, and the area of the slit enlarged portion 8a is larger than that of the round gas vent hole. Can take. For this reason, if the gas vent hole 7 is elongated, the salient pole difference between the q-axis direction and the d-axis direction can be increased.
  • the magnetic flux is more likely to flow in the d-axis direction than the round shape, and even if the slit enlarged portion 8a is provided, the portion of the electromagnetic steel plate can be sufficiently provided around the gas vent hole 7. Therefore, it is possible to configure a highly efficient rotor of a synchronous induction motor that hardly causes magnetic saturation.
  • the slit can be expanded most efficiently by arranging the gas vent hole 7 to have a rectangular shape and the longitudinal direction of the rectangle to be parallel to the d-axis.
  • the outer circumferential dimension L of the rotor on the d-axis should be kept at a narrow distance such that magnetic saturation does not occur when the synchronous induction motor is operating. If the distance between the punch hole 7 and the slit enlarged portion 8a is smaller than the distance L between the slits, magnetic saturation occurs and the characteristics deteriorate.
  • the occurrence of magnetic saturation can be prevented by setting the relationship of the distances A, B, C, and D between the slit enlarged portion 8a and the vent hole 7 to L ⁇ A + B, L ⁇ C + D.
  • each corner of the rectangular vent hole 7 is rounded or elliptical, and the flow of the magnetic flux is made smoother, the slit can be enlarged and the magnetic flux can easily flow more quickly.
  • a synchronous induction motor can be obtained.
  • the shape of the vent hole 7 is not limited to a round shape or a rectangular shape, but may be composed of other shapes such as an oval shape, a rhombus shape, and a parallelogram shape.
  • FIG. 4 is a cross-sectional configuration diagram showing another configuration example of the rotor of the synchronous induction motor according to this embodiment.
  • the stator is omitted.
  • the stator is the same as that shown in Figs.
  • the deformable shaft 9 is formed by cutting the round shaft 5 substantially parallel to the d-axis.
  • the shape of the slit 2 adjacent to the modified shaft 9 on the modified shaft 9 side is enlarged along the circumference of the modified shaft 9 to form a slit enlarged portion 8b, and the slit in the q-axis direction is formed. Increase the width.
  • the deformable shaft 9 When a magnetic material is used for the deformable shaft 9, it can be used as a magnetic path, and the strip 4a on the d-axis has a sufficiently wide magnetic path and a lower magnetic flux density than other strips. Therefore, even if the slit 2 is enlarged in this part and the width of the strip 4a on the d axis is reduced, the possibility of magnetic saturation can be reduced and the salient pole difference can be increased. However, the distance between the shaft 5 and the slit 2 needs to be large enough to maintain the mechanical strength against the centrifugal force during rotation. The circular shaft 5 has a force that cannot expand the slit. In the configuration shown in Fig.
  • the round shaft 5 is cut almost parallel to the d-axis, and the length of the shaft 5 in the q-axis direction is shorter than the length in the d-axis direction.
  • the slit enlargement portion 8b can be provided. By providing the slit enlarged portion 8b, the salient pole difference can be further increased while maintaining the mechanical strength during rotation, and a more efficient synchronous induction motor can be obtained.
  • the deformed shaft 9 is deformed in its entirety in the laminating direction of the electromagnetic steel sheets, or only the portion inserted into the rotor 1 is deformed, the same effect can be obtained. Further, since the deformed shaft 9 is not completely circular at both ends, a mechanism in which both sides of the shaft are supported on only one side is more suitable than a shape in which both sides of the shaft are fixed by bearings. Further, even if the modified shaft 9 is in a state of being supported on both sides, the same effect can be obtained if the supporting method matches the shape of the modified shaft.
  • the diameter of the part where the shaft is only inserted into the rotor is not inserted. It may be smaller than the diameter.
  • the width of the slit in the q-axis direction can be increased by reducing the shaft diameter. In this case, if the shaft of the portion coming out of the rotor is circular, the vertical force shaft in the stacking direction of the rotor is inserted at the time of manufacture.
  • a high-efficiency synchronous induction motor that can be used in a mechanism that supports an existing circular shaft on both sides and that can expand the width of the slit in the electromagnetic steel sheet in the q-axis direction can be obtained.
  • the modified shaft 9 can also be used as the shaft of FIG. In this case, since the area of the slit enlarged portion can be made larger than the slit enlarged portion in FIG. 1, the salient pole difference can be further increased, and a highly efficient synchronous induction motor can be configured. .
  • a directional electrical steel sheet 10 having a magnetic flux easy direction and a magnetic flux easy direction is used as the laminated electromagnetic steel sheet V, V,
  • the magnetic easy direction 11 indicated by the white arrow is configured to be substantially parallel to the d axis, a rotor in which magnetic flux easily passes in the d axis direction can be obtained.
  • the salient pole difference becomes larger than when a non-oriented laminated electrical steel sheet is used, so that a highly efficient synchronous induction motor can be obtained.
  • FIG. 6 is a cross-sectional configuration diagram showing a rotor of a synchronous induction motor of another configuration according to this embodiment.
  • the rotor 1 is configured such that no gas vent hole is provided, and the shape of the slit 2 adjacent to the shaft 5 on the shaft 5 side is projected along the circumference of the shaft 5.
  • this rotor 1 increases the width of the slit 2, the width of the magnetic path on the d-axis except for the vicinity of the shaft is almost the same as the width L, width E, width F, or the width E and width.
  • F is configured to be slightly larger than the width L.
  • this rotor 1 is a magnetic path on the d-axis, and the width L of the outermost end is narrowed to such an extent that no magnetic saturation occurs during operation, and the width of the magnetic path on the d-axis excluding the vicinity of the shaft E and width F are configured to be as narrow as the specified width L. If a non-magnetic portion is formed in the narrowed portion, the magnetic flux in the d-axis direction can be easily passed while the magnetic flux in the q-axis direction can be passed. As a result, the salient pole difference between the d-axis and the q-axis can be increased, so that a highly efficient synchronous induction motor rotor can be obtained.
  • the B Magnetic field during operation may be set so that the magnetic flux density with respect to the strength of the magnetic field has a margin more than the magnetic saturation state. At this time, if the predetermined width L is widened, the magnetic flux density at this portion is wide enough to allow the magnetic flux to easily pass in the q-axis direction because the force width L is sufficiently wide.
  • the predetermined width L is preferably set so narrow that magnetic saturation does not occur.
  • a force slit having a wider slit adjacent to the shaft 5 may be left as it is, and a nonmagnetic portion may be provided separately.
  • the nonmagnetic portion may be a cavity, or may be filled with a nonmagnetic material such as aluminum as in the case of the slit.
  • FIG. 7 shows a configuration example in which the nonmagnetic portion 24 is provided on the strip 4a on the d-axis.
  • the distance A + distance B and the distance C + distance D are set equal to the distance L or slightly larger than the distance L.
  • the nonmagnetic portion 24 may be filled with a nonmagnetic material such as aluminum as in the slot 3, but may be a cavity. In the case of a cavity, the nonmagnetic portion 24 can function as a vent hole in a device that requires a vent hole.
  • the slit 2 has a slightly curved shape so as to surround the shaft.
  • the width of the magnetic path is the narrowest at the outer peripheral end. Therefore, the width L of the magnetic path at the outer peripheral edge is narrowed to such an extent that magnetic saturation does not occur, and the width of the other part of the magnetic path on the d-axis is made larger than the width L based on this width L. If it is set so as not to become narrow, a highly efficient synchronous induction motor can be obtained without causing magnetic saturation.
  • a rotor core formed by laminating a plurality of electromagnetic steel sheets, and at least a pair of magnetic steel sheets provided with a d axis that is a direction in which magnetic flux easily flows and a q axis that is a direction in which magnetic flux does not easily flow
  • the width L of the outer peripheral edge of the electrical steel sheet comprising the conductive material filled in at least the slot 3 and the shaft 5 provided as the rotating shaft provided in the center of the rotor core and constituting the magnetic path on the d axis Is set to a predetermined width that does not cause magnetic saturation, and a nonmagnetic part is provided so as to be equal to or larger than the predetermined width L, thereby reducing the salient pole difference between the d-axis and the q-axi
  • FIG. 8 is a cross-sectional configuration diagram showing the rotor 1 of the synchronous induction motor according to the second embodiment.
  • FIG. 8 shows a configuration in which the vent hole 7 is formed with an elongated shape and an opening extending in a direction shifted by a predetermined angle with respect to the d axis so as to substantially coincide with the angle of the magnetic flux entering direction.
  • the magnetic flux entering direction 12 of the synchronous induction motor during synchronous rotation is shifted from the d-axis by a predetermined angle.
  • the longitudinal direction of the vent hole 7 is arranged with an inclination of about 45 ° with respect to the d-axis.
  • the gas vent hole By making the gas vent hole an elongated opening provided on the d-axis and extending in a direction shifted by a predetermined angle with respect to the d-axis, a synchronous induction motor that is somewhat efficient can be obtained. In particular, the effect can be further increased if the angle of the vent hole 7 is substantially matched with the magnetic flux entry angle during the steady operation of the synchronous induction motor.
  • the deviation angle between the magnetic flux entry direction and the d-axis can be set in advance by simulation or operation with a prototype device.
  • This magnetic flux entry direction is usually about 0 to 45 ° in electrical angle from the d-axis to the q-axis.
  • using the grain-oriented electrical steel sheet 10 and making the easy magnetization direction 11 an angle deviated from the d-axis by a predetermined angle makes it easier for the magnetic flux to pass in the flow direction of the magnetic flux.
  • a highly efficient synchronous induction motor can be obtained.
  • the effect can be further enhanced by making the angle of the easy magnetization direction 11 of the grain-oriented electrical steel sheet substantially coincide with the magnetic flux entry angle when the synchronous induction motor is in steady operation.
  • FIG. 10 shows a configuration example at this time.
  • FIG. 10 shows a configuration example in which the slit enlarged portion 8c is formed in the comparatively wide portion of the electromagnetic steel sheet of the strip 4a on the d-axis in the rotor 1 having the configuration of FIG.
  • the vent hole 7 having a shape in which the magnetic flux easily passes in the d-axis direction can be realized, and the q-axis direction can be realized.
  • the magnetic flux passes through and the salient pole difference can be increased.
  • the portion of the electromagnetic steel sheet is narrowed by the inclination of the vent hole 7, but the slit also protrudes along the circumference of the shaft 5 in this portion. You may let them.
  • the shape of the shaft 5 is as follows.
  • the length in the q-axis direction is made shorter than the length in the d-axis direction, and the width of the slit adjacent to the shaft 5 is accordingly increased on the d-axis. You can enlarge it by protruding it. With this configuration, the salient pole difference between the q-axis and the d-axis can be increased, and the characteristics can be improved.
  • the shape of the slit 2 adjacent to the shaft 5 is protruded to the shaft 5 side to increase the width in the q-axis direction of the nonmagnetic part.
  • the shape of the slit 2 may be left as it is, and a new nonmagnetic portion may be provided. Further, the newly provided nonmagnetic portion and the slit 2 or the slot 3 may be connected at least partially. If a part of the slit 2 or the slot 3 and a part of the non-magnetic part are connected, the non-magnetic part can be filled with a non-magnetic material such as aluminum at the time of die casting.
  • FIG. 11 shows a longitudinal section with a mechanism 31 having a diameter larger than the diameter of the shaft existing above the shaft 5 of the rotor 1.
  • FIG. 11 When an existing device as shown in the figure is to be rotated by a synchronous induction motor
  • a dead space is created between the end ring 30 of the rotor 1 and the mechanism 31.
  • a configuration in which the tip of the mechanism 31 is embedded in the center of the rotor 1 eliminates the dead space and achieves the J-shaped shape.
  • the rotor corresponding to the part in which the mechanism 31 is embedded is separated into two parts, the upper rotor core 13 being the rotor and the lower rotor core 14 being the other part.
  • a space for the mechanism 31 is provided in the rotation center portion of the upper rotor core 13, and the structure of the lower rotor core 14 may be a rotor structure having a normal slit and slot.
  • the present invention is not limited to this, and the rotor described in the first embodiment or the second embodiment may be used.
  • FIG. 13 is a perspective view showing the upper rotor core 13 and the lower rotor core 14.
  • FIG. 14 is a cross-sectional configuration diagram showing the upper rotor core 13.
  • FIG. 15 is a cross-sectional configuration diagram showing the lower rotor core 14.
  • the lower slit 17 and the lower slot 19 in the lower rotor core 14 shown in FIG. 15 are configured without the slit enlarged portion 8a in FIG.
  • the upper slot 18 in the upper rotor core 13 shown in FIG. 14 is arranged so that at least a part of the slot overlaps with the lower slot 19, and the upper slit 16 connected to the upper slot 18 is slightly deformed.
  • the slit drawn by the dotted line in FIG. 14 is the position of the lower slit 17 of the lower rotor core 14.
  • a space for embedding the mechanism 31 is provided in the rotor central portion 15 excluding the shaft 5, and the upper slit 16 is disposed so as to avoid the portion of the rotor central portion 15.
  • the lower rotor core 14 located below the embedded portion of the mechanism 31 in the stacking direction penetrates the normal shaft 5 without providing a gap around the shaft 5 at the center of the rotor.
  • the configuration is as follows.
  • the rotor is composed only of the upper rotor core 13, air is present in the hole in the center, and the magnetic path of the d axis is obstructed, resulting in poor saliency. The characteristics of the motor will deteriorate.
  • the rotor is divided in the stacking direction and configured as shown in Fig. 13 in combination with a d-axis magnetic path such as the lower rotor core 14, the magnetic flux flows three-dimensionally. Therefore, the magnetic path is formed by combining the strips of the upper rotor core 13 and the lower rotor core 14 together. Due to the restriction of mechanism 31, it has an upper slit 16 as shown in Fig. 14. Even if the rotor has a shape, a magnetic path is secured by combining it with the lower rotor core 14, and a highly efficient synchronous induction motor can be obtained.
  • the magnetic flux flows three-dimensionally, and the flow of magnetic flux is not limited to a certain direction. For this reason, the magnetic paths are averaged in multiple directions compared to when the magnetic flux flows two-dimensionally, and sound and vibration during rotation can be reduced.
  • FIG. 16 is a flowchart showing the manufacturing process until aluminum is formed into slots and slits by the die casting method.
  • the upper rotor core 13 and the lower rotor core 14 made of electromagnetic steel are punched out to form a plurality of slits 16, 17 and slots 18, 19.
  • a predetermined number of upper rotor cores 13 and lower rotor cores 14 are stacked.
  • the laminated upper rotor core 13 and lower rotor core 14 are pressed by the end ring mold having the same shape as the inner diameter of the rotor central portion 15 to hold the inner side of the rotor central portion 15.
  • FIG. 17 is a perspective view showing an example of the end ring mold 32.
  • the end ring mold 32 has a protrusion 32a at the center so as to form a gap for the mechanism 31 to be embedded.
  • aluminum is also injected into the upper injection loca, for example, by die-casting, and the slits 16, 17, slots 18, 19 and end ring 30 are filled to form a secondary conductor.
  • the upper slot 18, the lower slot are used in the upper and lower electromagnetic steel sheets adjacent to the upper rotor core 13 and the lower rotor core 14.
  • 19 or at least a part of the upper slit 16 and the lower slit 17 are configured to communicate with each other in the stacking direction.
  • the slits or slots communicate with each other in the stacking direction, aluminum can be filled into the slots and slits simultaneously during die casting. Further, as shown in FIG. 18, even if the slit is discontinuous in the middle to provide the rotor central portion 15, the upper slot 18, the lower slot 19 or the upper slit 16, the lower slit Die casting is possible if 17 is partially communicated in the stacking direction.
  • the magnetic path in the d-axis direction and the q-axis direction with the lower rotor core 14 configured so as to be effective, a magnetic path is secured and a highly efficient synchronous induction motor can be obtained. wear.
  • the magnetic path since the magnetic flux flows three-dimensionally, the magnetic path is oriented in multiple directions and the sound and vibration during rotation can be reduced.
  • the thin portion 23 is interposed between the upper slit 16 and the rotor central portion 15.
  • aluminum does not leak into the rotor central portion 15.
  • the thin wall portion 23 may swell due to the die-cast pressure of aluminum. Therefore, when performing die casting, the bulge of the thin wall portion 23 can be suppressed by using the end ring mold 32 having the protruding portion 32a.
  • the shape of the cross section required by the mechanism 31 is circular, but this is not limited to this, and the mechanism 31 depends on the shape of the existing mechanism 31. The same is true if the required shape is a shape other than a circle, such as an elliptical shape or a polygonal shape. That is, the gap in the rotor center portion 15 may be matched to the shape.
  • a high-efficiency synchronous induction motor can be configured by combining with a rotor core having a d-axis magnetic path such as the lower rotor core 14 in FIG.
  • a rotor core formed by laminating a plurality of electromagnetic steel sheets and at least a pair are provided on the rotor core, and the direction of the d-axis and the direction of the magnetic flux are less likely to flow.
  • a slit that forms a magnetic pole projection so as to obtain a q-axis a plurality of slots that are connected to the slit and are provided in the vicinity of the outer periphery of the rotor core to generate induction torque, and at least one of the slit and the slot Insert the conductive material filled in the slot and the center of the rotor core.
  • the magnetic steel sheet of the divided portion located at the end in the stacking direction is configured to have a gap around which the other mechanism can be fitted around the shaft 5, it can be easily applied to the other mechanism.
  • a synchronous induction motor can be obtained.
  • the electromagnetic steel plates having different shapes are adjacent to each other, at least a part of one slit 16 and slot 18 and at least a part of the other slit 17 and slot 19 communicate with each other in the stacking direction.
  • the slots 18 and 19 and the slits 16 and 17 can be easily filled with a conductive and nonmagnetic material by using the same manufacturing process as in the prior art.
  • FIG. 19 shows a rotor 1 configured to embed a mechanism 31, and requires a gas vent hole 7 through which a gas such as gas or a liquid such as oil passes through the rotor like a compressor. It is a longitudinal cross-sectional view which shows a rotor.
  • the gas vent hole 7 can use a space formed around the mechanism 31 in the rotor center portion 15 without providing a special gas vent hole.
  • the space for the gas vent hole can be saved by utilizing the space in the rotor center portion 15.
  • the position of the gas vent hole 7 may be configured to be shifted, for example, obliquely in a state where it can communicate in the stacking direction.
  • the vent holes 7 By slanting the vent holes 7 so that they can communicate with each other in the stacking direction, the magnetic path obstructed by the vent holes 7 can be dispersed, and sound and vibration can be reduced.
  • vent hole 7 shown in FIG. 21 has a configuration shifted to a plurality of step shapes so as to communicate with each other in the stacking direction.
  • the number of molds of the lower rotor core 14 is reduced as compared with the configuration of FIG. 20, and the cost applied to the mold can be reduced.
  • the magnetic path obstructed by the vent hole 7 can be dispersed to some extent, so that sound and vibration can be reduced.
  • the rotor 1 shown in FIGS. 12, 19, 20, and 21 is divided into two in the stacking direction, and is formed by combining two types of rotor cores with three or more shapes. Requires a rotor If this is the case, you can combine more than two rotor parts in the stacking direction.
  • FIG. 12 FIG. 19, FIG. 20, and FIG. 21, a gap for embedding the mechanism 31 is provided in the upper rotor core 13, and in the configuration of the lower rotor core 14, only the shaft 5 exists at the center.
  • the configuration is adopted, the same effect as described above can be obtained even when the upper rotor core and the lower rotor core are reversed.
  • the portion in which the mechanism 31 is embedded may be the upper end portion or the lower end portion of the rotor.
  • the electromagnetic steel sheet of the rotor core part located at one end in the stacking direction is configured to have a gap around the shaft so that a low-cost and high-efficiency synchronous induction motor can be mounted on various devices. Therefore, versatility can be improved.
  • a force in which almost all of the slots and slits are filled with, for example, aluminum as a conductive material and a nonmagnetic material is not limited to this. Since it is the slot that generates the induction torque during startup, it is sufficient that at least the slot is filled with a conductive material.
  • the slit is a non-magnetic part, and even if the slit is not completely filled with aluminum or even a gap, it becomes a non-magnetic part, so that a highly efficient synchronous induction motor can be configured.
  • the position of the slit and the strip between the slits can be securely fixed, and a rotor having a high mechanical strength against the centrifugal force during rotation can be configured.
  • the slit is filled with another nonmagnetic material, which is not limited to the force with which the slit is filled with the same aluminum as the material filled in the slot.
  • non-magnetic material and the conductive material other materials such as copper, which is not limited to aluminum, may be used.
  • the shape of the gas vent hole 7 is a combination of a plurality of circular shapes as shown in FIG.
  • the vent hole 7 may have an elliptical shape as shown in FIG. 23 or a polygonal shape as shown in FIG. 24, or a combination of these may be used. The effect of can be obtained.
  • the slot has an asymmetric structure.
  • the slot is not limited to the asymmetry or symmetry of the slot.
  • a highly efficient synchronous induction motor can be obtained.
  • the compressor By mounting the rotor of the synchronous induction motor described in Embodiment 1 and Embodiment 2 on the compressor, the compressor can be operated using the highly efficient synchronous induction motor, and the compressor The driving efficiency can be improved.
  • the compressor can be operated using a highly efficient synchronous induction motor, and the overall size of the compressor can be reduced. This is effective in reducing vibration and noise.
  • stator core in which a plurality of laminated electrical steel sheets are laminated, a plurality of stator slots formed in the stator core, a winding wire provided in the stator slot, and the rotation
  • a rotor core in which a plurality of laminated electromagnetic steel sheets are stacked with a gap inside the core, and a d-axis and a direction in which the magnetic flux easily flows on the rotor core.
  • the shape of the vent hole is an elongated hole.
  • the vent hole is arranged so that its longitudinal direction is substantially parallel to the d-axis, and the slit is enlarged so that it is substantially parallel to the longitudinal direction of the vent hole.
  • a stator core in which a plurality of laminated electromagnetic steel sheets are laminated a stator slot provided in a plurality on the stator core, a winding provided in the stator slot, and the rotor core
  • a rotor core in which a plurality of laminated electrical steel sheets are stacked with a gap inside, and a d-axis and a q-axis, which are provided in the rotor core, are the direction in which magnetic flux easily flows and the direction in which magnetic flux does not easily flow.
  • the shape of the degassing hole is an elongated hole, and its longitudinal direction is set at a predetermined angle with respect to the d-axis.
  • the rotor shaft is cut substantially parallel to the d-axis direction, and the slit in the vicinity of the shaft is enlarged so as to be parallel to the shaft. While maintaining the mechanical strength, the salient pole difference can be increased, and a highly efficient rotor of a synchronous induction motor can be obtained.
  • a stator core in which a plurality of laminated electromagnetic steel sheets are laminated a stator slot provided in a plurality of stator cores, a winding provided in the stator slot, and the rotor core
  • a rotor core in which a plurality of laminated electrical steel sheets are stacked with a gap inside, and a d-axis and a q-axis, which are provided in the rotor core, are the direction in which magnetic flux easily flows and the direction in which magnetic flux does not easily flow.
  • a plurality of slits and slot shapes of the rotor are different. It is possible to obtain a rotor of a high-efficiency synchronous induction motor that can be mounted on an existing mechanism by combining a plurality of rotors in the stacking direction of laminated magnetic steel sheets to form a single rotor. it can.
  • FIG. 1 is a cross-sectional configuration diagram showing a synchronous induction motor according to a first embodiment of the present invention.
  • FIG. 2 is a perspective view showing a rotor of the synchronous induction motor according to the first embodiment of the present invention.
  • FIG. 3 is a cross-sectional configuration diagram illustrating another configuration example of the synchronous induction motor according to the first embodiment of the present invention.
  • FIG. 4 is a cross-sectional configuration diagram showing a rotor of another synchronous induction motor according to Embodiment 1 of the present invention.
  • FIG. 5 is a sectional configuration showing a rotor of another synchronous induction motor according to Embodiment 1 of the present invention.
  • FIG. 6 A cross-sectional configuration diagram showing a rotor of another synchronous induction motor according to the first embodiment of the present invention.
  • FIG. 7 is a cross-sectional configuration diagram showing a rotor of another synchronous induction motor according to Embodiment 1 of the present invention.
  • FIG. 8 is a cross-sectional configuration diagram showing a rotor of a synchronous induction motor according to Embodiment 2 of the present invention.
  • FIG. 9 A cross-sectional configuration diagram showing a rotor of another synchronous induction motor according to the second embodiment of the present invention.
  • FIG. 10 is a cross-sectional configuration diagram showing a rotor of another synchronous induction motor according to Embodiment 2 of the present invention.
  • FIG. 11 An explanatory diagram for comparison with the rotor of the synchronous induction motor according to the third embodiment of the present invention.
  • FIG. 13 A perspective view showing the rotor of the synchronous induction motor according to the third embodiment of the present invention.
  • FIG. 14 is a cross-sectional configuration diagram showing an upper rotor according to a third embodiment of the present invention.
  • FIG. 15 is a cross-sectional configuration diagram showing a lower rotor according to a third embodiment of the present invention.
  • FIG. 16 is a flowchart showing a manufacturing process of the rotor of the synchronous induction motor according to the third embodiment of the present invention.
  • FIG. 17 A perspective view showing an end ring mold according to Embodiment 3 of the present invention.
  • FIG. 18 is a cross-sectional configuration diagram showing another upper rotor according to the third embodiment of the present invention.
  • FIG. 19 A longitudinal sectional view showing a rotor of another synchronous induction motor according to Embodiment 3 of the present invention.
  • FIG. 20 is a longitudinal sectional view showing a rotor of another synchronous induction motor according to Embodiment 3 of the present invention.
  • FIG. 22 is an explanatory view showing another shape of the vent hole according to the first to third embodiments of the present invention.
  • FIG. 23 is an explanatory view showing another shape of the vent hole according to the first to third embodiments of the present invention.
  • FIG. 24 is an explanatory view showing another shape of the vent hole according to the first to third embodiments of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Synchronous Machinery (AREA)

Abstract

 d軸方向の磁路を阻害することなく、q軸方向の磁束を通りにくくし、突極差を大きくすることにより、高効率な同期誘導電動機を得ることを目的とする。シャフト5に隣合うスリットを、シャフト5の周囲に沿ってシャフト側に拡大して、スリット拡大部8aとする。さらにガス抜き穴7をd軸方向に伸びた細長い開口とし、ガス抜き穴7の周に沿ってスリットを突出させる。また、ガス抜き穴7をd軸に対して所定の角度をずらした方向に伸びた細長い開口で構成する。また、回転子鉄心1を積層方向に複数の回転子鉄心部分で構成し、回転子鉄心部分毎に異なる形状のスリットとした。

Description

明 細 書
同期誘導電動機の回転子及び圧縮機
技術分野
[0001] この発明は、誘導トルクを用いることにより起動し、リラクタンストルクを用いることによ り同期運転する同期誘導電動機の回転子及びこの同期誘導電動機を用 、た圧縮機 に関するものである。
背景技術
[0002] 従来の同期誘導電動機においては、電磁鋼板により構成された回転子鉄心に複 数のスリットおよびスロットが設けられており、 d軸方向に磁束が流れやすくするため、 ガス抜き穴を d軸方向に伸びた楕円形状として、同期誘導電動機の効率向上を図つ ているものがあった (例えば、特許文献 1参照。 ) o
[0003] 特許文献 1 :特開 2003— 153511号公報 (第 5頁、図 6)
発明の開示
発明が解決しょうとする課題
[0004] 従来の同期誘導電動機の回転子は、ガス抜き穴の形状を、短軸が q軸方向、長軸 力 軸方向になる楕円形状とすることで、 q軸方向のガス抜き穴の両側の電磁鋼板の 幅を厚くでき、 d軸方向の磁路の幅を確保して、 d軸方向に磁束が通りやすくなるよう に構成していた。ところが、この構成では q軸方向にも磁束が流れやすくなつてしまい 、大きな突極差が得られないという課題があった。
[0005] この発明は、上記のような課題を解決するためになされたもので、 d軸方向に磁束 が通りやすくすると共に q軸方向に磁束が流れに《して、 d軸と q軸とで大きな突極差 を有する回転子を構成し、高効率な同期誘導電動機を得ることを目的とする。
課題を解決するための手段
[0006] この発明に係わる同期誘導電動機は、複数枚の電磁鋼板を積層してなる回転子鉄 心と、前記複数枚の電磁鋼板の各電磁鋼板に少なくとも一対設けられ、磁束の流れ やす 、方向である d軸および磁束の流れにく 、方向である q軸が得られるように磁極 突起を形成するスリットと、前記スリットに接続して前記回転子鉄心の外周近傍に設け られ、誘導トルクを発生させる複数のスロットと、前記スリット及び前記スロットのうちの 少なくとも前記スロットに充填された導電性材と、前記回転子鉄心の中央部を貫通し 回転軸となるシャフトと、を備え、前記シャフトに隣合うスリットは、前記シャフト側の形 状を前記シャフトの周に沿って突出することを特徴とするものである。
[0007] また、同期誘導電動機の回転子は、さらに、前記 d軸上に d軸方向に伸びた細長い 開口のガス抜き穴を備え、前記ガス抜き穴に隣合うスリットは、前記ガス抜き穴側の形 状を前記ガス抜き穴の長手方向の周に沿って突出することを特徴とするものである。
[0008] また、前記 d軸上の外周端における電磁鋼板の幅 Lと、前記ガス抜き穴の一方側で 隣合うスリットと前記ガス抜き穴との距離 Aと、前記ガス抜き穴の他方側で隣合うスリツ トと前記ガス抜き穴との距離 Bとしたとき、 L≤A+Bとなるように、前記ガス抜き穴とこ のガス抜き穴に隣合うスリットとの距離が設定されたことを特徴とするものである。
[0009] また、前記シャフトは、前記回転軸に垂直な断面形状で前記 q軸方向の長さが前記 d軸方向の長さよりも短ぐ前記シャフトに隣合うスリットは、前記シャフト側の形状を前 記シャフトの周に沿って前記シャフト側に突出することを特徴とするものである。
[0010] また、前期回転子鉄心は、前記積層する電磁鋼板として方向性電磁鋼板を用い、 方向性電磁鋼板は、その磁ィ匕容易方向を前記 d軸にほぼ平行となるように構成する ことを特徴とするものである。
[0011] また、この発明に係わる圧縮機は、前記同期誘導電動機の回転子を備えたことを 特徴とするものである。
[0012] また、この発明に係わる同期誘導電動機の回転子は、複数枚の電磁鋼板を積層し てなる回転子鉄心と、前記複数枚の電磁鋼板の各電磁鋼に少なくとも一対設けられ 、磁束の流れやすい方向である d軸および磁束の流れにくい方向である q軸が得られ るように磁極突起を形成するスリットと、前記スリットに接続して前記電磁鋼板の外周 近傍に設けられ、誘導トルクを発生させる複数のスロットと、前記スリット及び前記スロ ットのうちの少なくとも前記スロットに充填された導電性材と、前記回転子鉄心の中央 部に設けられ回転軸となるシャフトと、前記 d軸上に設けられ前記 d軸に対して所定の 角度をずらした方向に伸びた細長い開口のガス抜き穴と、を備えたことを特徴とする ものである。 [0013] また、前記 d軸上の外周端における電磁鋼板の幅 Lと、前記ガス抜き穴の一方側で 隣合うスリットと前記ガス抜き穴との距離 Aと、前記ガス抜き穴の他方側で隣合うスリツ トと前記ガス抜き穴との距離 Bとしたとき、 L≤A+Bとなるように、前記ガス抜き穴とこ のガス抜き穴に隣合うスリットとの距離が設定されたことを特徴とするものである。
[0014] また、前記シャフトは、前記回転軸に垂直な断面形状で前記 q軸方向の長さが前記 d軸方向の長さよりも短ぐ前記シャフトに隣合うスリットは、前記シャフト側の形状を前 記シャフトの周に沿って前記シャフト側に突出することを特徴とするものである。
[0015] また、前期回転子鉄心は、前記積層する電磁鋼板として方向性電磁鋼板を用い、 方向性電磁鋼板は、その磁ィ匕容易方向を前記 d軸にほぼ平行となるように構成する ことを特徴とするものである。
[0016] また、この発明に係わる圧縮機は、前記同期誘導電動機の回転子を備えたことを 特徴とするものである。
[0017] また、この発明に係わる同期誘導電動機の回転子は、複数枚の電磁鋼板を積層し てなる回転子鉄心と、前記複数枚の電磁鋼板の各電磁鋼に少なくとも一対設けられ 、磁束の流れやすい方向である d軸および磁束の流れにくい方向である q軸が得られ るように磁極突起を形成するスリットと、前記スリットに接続して前記電磁鋼板の外周 近傍に設けられ、誘導トルクを発生させる複数のスロットと、前記スリット及び前記スロ ットのうちの少なくとも前記スロットに充填された導電性材と、前記回転子鉄心の中央 部に設けられ回転軸となるシャフトと、を備え、前記回転子鉄心は、積層方向に複数 の回転子鉄心部分で構成され、前記スリットは、前記回転子鉄心部分毎に異なる形 状としたことを特徴とするものである。
[0018] また、積層方向の一端部に位置する回転子鉄心部分の電磁鋼板は、前記シャフト の周囲に空隙を有することを特徴とするものである。
[0019] また、前記回転子鉄心は、異なる形状のスリットを有する電磁鋼板が隣接する部分 で、一方のスリット及びスロットの少なくとも一部分と、他方のスリット及びスロットの少 なくとも一部分とが積層方向で連通可能に構成したことを特徴とするものである。
[0020] また、前記回転子鉄心は、 d軸上にガス抜き穴を有し、前記ガス抜き穴の位置を積 層方向で連通可能な状態でずらしたことを特徴とするものである。 [0021] また、この発明に係わる圧縮機は、前記同期誘導電動機の回転子を備えたことを 特徴とするものである。
[0022] また、複数枚の電磁鋼板を積層してなる回転子鉄心と、前記複数枚の電磁鋼板の 各電磁鋼板に少なくとも一対設けられ、磁束の流れやす ヽ方向である d軸および磁 束の流れにくい方向である q軸が得られるように磁極突起を形成するスリットと、前記 スリットに接続して前記電磁鋼板の外周近傍に設けられ、誘導トルクを発生させる複 数のスロットと、前記スリット及び前記スロットのうちの少なくとも前記スロットに充填さ れた導電性材と、前記回転子鉄心の中央部に設けられ回転軸となるシャフトと、を備 え、前記電磁鋼板は、前記 d軸上の磁路を構成する電磁鋼板の外周端の幅を磁気 飽和が生じない程度の所定幅にすると共に、前記シャフト近傍を除く d軸上の磁路の 幅が前記所定幅と同等程度または前記所定幅よりも大きくなるように非磁性部分を設 けたことを特徴とするものである。
[0023] また、この発明に係わる圧縮機は、前記同期誘導電動機の回転子を備えたことを 特徴とするものである。
発明の効果
[0024] この発明は、電磁鋼板に非磁性体であるスリットを並設することで磁束の通りやすい 方向である d軸方向と磁束の通りにくい方向である q軸方向とで磁極突起を形成して いる。ここで、この発明は、幅の広い d軸上の磁路に非磁性部分を形成するまたはス リットを突出することで、 d軸の磁路を阻害することなく q軸の磁束を通りに《して突極 差を大きくできる。したがって、この発明によれば、高効率な同期誘導電動機の回転 子を得ることができる。
発明を実施するための最良の形態
[0025] 実施の形態 1.
以下、この発明の実施の形態 1について図を用いて説明する。図 1は実施の形態 1 に係る同期誘導電動機を示し、回転軸に垂直な面での断面構成図である。回転子 1 の周りに所定の間隔をおいて固定子 20が配置される。固定子 20は、磁性体である 複数の電磁鋼板により構成され、複数の固定子スロット 21が存在し、固定子スロット 2 1内に卷線 22が施されている。回転子 1は、磁性体である複数の積層電磁鋼板によ り構成される。スリット 2及びスロット 3には、ダイカスト法にて、非磁性体でかつ導電性 の材料として、例えばアルミニウムが充填されている。隣合うスリット 2の間の電磁鋼板 の部分はストリップ 4であり、回転子外側に形成された薄肉部は、 0. 1mm〜数 mmで ある。スリット 2は、電磁鋼板に少なくとも一対設けられ、磁束の流れやすい方向であ る d軸および磁束の流れにくい方向である q軸が得られるように磁極突起を形成して いる。また、スロット 3は、スリット 2に接続して電磁鋼板の外周近傍に複数設けられ、 誘導トルクを発生させる。ダイカスト法によって充填された導電性材であるアルミ-ゥ ムは、スリット 2及びスロット 3のうちの少なくともスロット 3に充填されていれば、スロット 3によって誘導トルクを発生させることができると共に、スリット 2によって d軸及び q軸 の磁極突起を形成できる。
[0026] 回転軸となるシャフト 5は、圧入または焼き嵌めにより回転子 1の中央部に貫通する ように固着されている。リブ 6はスリット 2とスロット 3を分離するために存在する。同期 誘導電動機は、リブ 6があることにより、起動時に有効に二次電流が誘導され起動性 が向上する。ガス抜き穴 7は、同期誘導電動機を搭載する装置で必要となることがあ る空洞である。例えば圧縮機であれば、冷媒ゃ油などがガス抜き穴 7を通って循環す る。ガス抜き穴 7は、ファンに搭載させる場合などには、冷却用の風を通したり、位置 合わせなどに使用される場合もある。また、ガス抜き穴 7が必要ない場合もある。スリツ ト拡大部 8aは、シャフト 5に隣合うスロットのシャフト 5側の形状を、シャフト 5の周に沿 つて突出させてスリットを拡大した部分である。
[0027] 図 2は同期誘導電動機の回転子を示す斜視図である。同期誘導電動機の回転子 1 は積層された電磁鋼板のスリット 2及びスロット 3に充填されたアルミニウム力 エンドリ ング 30でつながっており、誘導モータと同じような構成となっている。
[0028] 以下、同期誘導電動機の動作について説明する。
同期誘導電動機は、起動時には、固定子卷線に施された単相、または三相卷線に より回転磁界を発生させる。そして、同期誘導電動機は、回転子 1に回転磁界を与え ることにより、スロット 3に二次電流が誘導され、かご型誘導機と同様の原理により、誘 導トルクを発生する。また、回転子 1のスリット 2にはアルミニウムが充填されているた め非磁性部分を構成する。これ〖こより、回転子 1には、磁束の流れやすい方向の d軸 と、磁束が流れにくい方向の q軸が発生する。そのため、 d軸のインダクタンス Ldと q 軸のインダクタンス Lqに差が生じ、回転子 1は突極性を持つ。この突極性によってリ ラタタンストルクが発生するため、回転子 1は、同期速度近くになると、同期速度に引 き込まれ、リラクタンストルクを用いて、同期運転を行う。
以上の原理により、同期誘導電動機を運転するために、特別な起動装置が必要な いことから、低コストな同期誘導電動機を構成できる。また、同期誘導電動機は、定常 運転時には、同期速度で運転するため、二次銅損が低減され、高効率な電動機であ ることを特徴とする。特に、同期誘導電動機は、定常運転時には、リラクタンストルクを 用いて動作するため、突極差を大きくすると高効率な同期誘導電動機を得ることがで きる。
[0029] スリット 2の幅はできるだけ大きい方が突極差を大きくでき、電流—トルク特性が向 上し、銅損の低減が図れる。一方、スリット 2の幅を拡大しすぎてしまうと、ストリップ 4 が狭くなつて磁気飽和が発生し、逆に電流 トルク特性を悪ィ匕させてしまう。そこで、 ストリップ 4の幅を磁気飽和が発生しない程度に保った状態で、スリット 2を拡大すると よい。図 1のような構成では、複数のストリップ 4のうちで、磁束密度が低い部分はシャ フト 5が存在する d軸上のストリップ 4aの部分である。シャフト 5の両側には図 1に示す ように、ガス抜き穴 7が設けられており、通常このガス抜き穴 7は丸い形状である。ガス 抜き穴 7の部分は空間であり非磁性部分と見なすことができる。シャフト 5はガス抜き 穴 7の面積よりもはるかに大きな面積を占め、この部分は磁性部分と見なされる。この 実施の形態では、シャフト 5に隣合うスリット 2のシャフト側の形状を、シャフト 5の周に 沿った形状とする。図 1では、複数のスリットが並設されている力 シャフト 5に隣合うス リット 2、即ち一番内側のスリット 2のシャフト側の形状を、シャフト 5の周に沿って突出 させてスリット拡大部 8aを設け、シャフト 5に隣合うスリットの幅を拡大する。
[0030] スリット拡大部 8aを設けることで、 q軸方向に磁束が通りにくくなる。一方、 d軸方向 には電磁鋼板の外周端の幅でほぼ磁束量が決まってしまう。そのため、ガス抜き穴 7 の周辺の部分で磁路をある程度狭くしても電磁鋼板の外周端の幅以下にならない限 り、磁気飽和は発生しにくい。さらにシャフト 5は磁性部分であるため d軸上の磁路は シャフト 5の部分も含まれる。従って、シャフト 5の周に沿ってスリット 2の幅を拡大して も、 d軸方向の磁束の通りやすさは保持され、 q軸方向の磁束の通りにくさを増大する ことができる。このため、スリット拡大部 8aを設けることで、突極差を大きくでき、高効 率な同期誘導電動機の回転子を構成することができる。
[0031] 前述したように、シャフト 5の周に沿ってスリット拡大部 8aを設けても磁束はシャフト の部分を流れるので、この部分での磁路は充分に確保される。ところが、 d軸上のスト リップ 4aでシャフト 5の両側にガス抜き穴 7が設けられているため、必然的にスリット拡 大部 8aの形状はガス抜き穴 7の周の一部に沿う形状になる。ガス抜き穴 7の部分は 空洞であり磁路にはならないので、ガス抜き穴 7の周にはある程度磁路が形成される ように電磁鋼板の部分を残す必要がある。
[0032] 例えば、図 1に示すように、同期誘導電動機が運転している時に磁気飽和が発生し な 、程度で狭 、距離として、 d軸上のロータ外周部寸法として所定幅 Lを保つように する。この場合、ガス抜き穴 7とスリット拡大部 8aの距離が、 d軸上の電磁鋼板の外周 端の所定幅 Lよりも小さくなると磁気飽和を起こし、特性が悪化する。そのため、所定 幅 Lに対し、スリット拡大部 8aとガス抜き穴 7との距離 A、 B、 C、 Dの関係を L≤A+B 、 L≤C + Dとすればよい。 q軸方向に磁束が通りに《なるようにスリット拡大部 8aを 最大限に設けたとき、 A+B及び C + Dと Lとを同等程度、あるいは A+B及び C + D を Lよりも少し大きくなるように構成すれば、 d軸上のストリップ 4aで磁気飽和が発生す ることはない。即ち、シャフト 5及びガス抜き穴 7の周に沿ってスリット拡大部 8aを突出 させる際、上記の関係を保つように設定すれば、ガス抜き穴 7の周りで磁気飽和が発 生するのを防止でき、特性が低下するのを防止できる。
なお、 d軸上の電磁鋼板の外周端の幅 Lを磁気飽和が発生しな ヽ程度で狭!、距離 とするには、予めシミュレーションによって求めたり、試作装置を運転することで、所定 幅にほぼ設定できる。
[0033] この実施の形態では、電磁鋼板に非磁性部分であるスリットを並設することで磁束 の通りやす 、方向である d軸方向と磁束の通りにく 、方向である q軸方向とで磁極突 起を形成している。ここで、この実施の形態では、回転軸となるシャフトを設ける必要 から、シャフトの部分の両側に一対のスリットを形成しシャフトの部分は広い磁路の d 軸が形成されて ヽる。このシャフトの部分の磁路を磁気飽和が発生しな ヽ範囲で極 力狭くすることで、 q軸方向にスリットを効率よく拡大することができ、 d軸の磁路を阻 害することなく q軸の磁束を通しに《できるため、突極差を大きくし、高効率な同期誘 導電動機の回転子を得ることができる。
なお、図 2に示すように積層方向の上下でエンドリングが設けられ、スロットと共に起 動時の誘導トルクを形成すると共に、上下方向に積層電磁鋼板を強固に保持してい る。このため、スリット拡大部 8aを設けてスリットの部分の幅を広くしても、回転時の遠 心力に対して充分強 、構成となって!/、る。
[0034] 図 3はこの実施の形態に係る同期誘導電動機の他の構成例を示す断面構成図で ある。この構成の回転子は、ガス抜き穴 7の形状を円形状力も変形させたものである。 ガス抜き穴 7は、同期誘導電動機を搭載する機器側の事情によって設けられているも のであるが、特に形などに制約のあるものではない。ガス抜き穴 7は、運転中にある 程度の流量のガスが流れる構成であればよいので、ここでは、 d軸方向に伸びた形 状とし、例えば長方形状とする。
[0035] 図 3では、ガス抜き穴 7の形状を細長く開口された穴とし、その長手方向を d軸とほ ぼ平行になるように配置している。ガス抜き穴 7を細長い形状にすると、スリット拡大部 8aを細長 、ガス抜き穴の周に沿うように拡大することができ、丸形状のガス抜き穴の 場合よりもスリット拡大部 8aの面積を大きくとることができる。このため、ガス抜き穴 7を 細長い形状にすると、 q軸方向と d軸方向の突極差を大きくできる。また、丸形状よりも d軸方向に磁束が流れやすい形状であり、スリット拡大部 8aを設けてもガス抜き穴 7 の周囲に電磁鋼板の部分を充分に設けることができる。そのため、磁気飽和が発生 しにくぐ高効率な同期誘導電動機の回転子を構成することができる。
[0036] 図 3に示すように、ガス抜き穴 7を長方形とし、長方形の長手方向が d軸と平行にな るように配置することで、最も効率よくスリットを拡大することができる。ただし、図 1の 構成と同様、 d軸上のロータ外周寸法 Lを、同期誘導電動機が運転している時に磁 気飽和が発生しな ヽ程度の狭 ヽ距離を保つようにするときは、ガス抜き穴 7とスリット 拡大部 8aの距離が、スリット間の距離 Lよりも小さくなると磁気飽和を起こし、特性が 悪化する。そのため、スリット拡大部 8aとガス抜き穴 7との距離 A、 B、 C、 Dの関係を L ≤A + B、 L≤C + Dとすることにより、磁気飽和の発生を防止できる。 [0037] また、長方形のガス抜き穴 7の各角を丸取り、または楕円形状とし、磁束の流れをよ り滑らかにすれば、スリットを拡大しやすぐさらに磁束も流れやすくなるため、高効率 な同期誘導電動機を得ることができる。なお、ガス抜き穴 7の形状は、丸形状や長方 形状に限るものではなぐ楕円形状やひし形状や平行四辺形状など、他の形状で構 成してちょい。
[0038] また、図 4はこの実施の形態に係る同期誘導電動機の回転子の別の構成例を示す 断面構成図である。図 4では固定子を省略して示す。固定子に関しては、図 1や図 3 で示した構成と同様である。図 4に示す構成では、変型シャフト 9は丸型シャフト 5を d 軸に対し、ほぼ平行にカットした形状とする。そして、図 4に示す構成では、変型シャ フト 9に隣合うスリット 2の変型シャフト 9側の形状を、変型シャフト 9の周に沿って拡大 してスリット拡大部 8bとし、スリットの q軸方向の幅を大きくする。
[0039] 変型シャフト 9に磁性体を用いた場合、磁路として活用することが可能であり、 d軸 上のストリップ 4aは、他のストリップに比べ磁路が十分広ぐ磁束密度は低い。そのた め、この部分にスリット 2を拡大して d軸上のストリップ 4aの幅を狭くしても、磁気飽和 が発生する可能性は少なぐ突極差を大きくできる。しかし、シャフト 5とスリット 2の距 離は、回転時の遠心力に対する機械的強度を保てる大きさが必要であり、円形状の シャフト 5では、スリットを拡大することが出来な力つた。図 4に示す構成では、丸型シ ャフト 5を d軸とほぼ平行にカットし、シャフト 5の q軸方向長さを d軸方向の長さよりも短 くしたので、 q軸方向の短くした部分にスリット拡大部 8bを設けることができる。スリット 拡大部 8bを備えたことで、回転時の機械的強度を保ちつつ、突極差をより大きくする ことができ、更に高効率な同期誘導電動機を得ることができる。
[0040] また、変型シャフト 9は電磁鋼板の積層方向の全体を変型させても、回転子 1に挿 入される部分のみを変型させても同様の効果を得ることができる。また、変型シャフト 9は、両端の形状が完全な円形状でないため、シャフトの両側がベアリングで固定さ れる形状よりも、片側だけで支持されている機構のほうが適している。また、変型シャ フト 9は、両側支持の状態であっても、支持方法が変型シャフトの形状と合うようにす れば同様の効果を得ることができる。
また、単にシャフトが回転子に挿入される部分のみの径を挿入されていない部分の 径よりも小さくしてもよい。シャフトの径を小さくした分、スリットの q軸方向の幅を拡大 することができる。この場合には回転子から出ている部分のシャフトは円形状として、 製造時には回転子の積層方向の上下力 シャフトを挿入するようにすれば 、 、。既 存の円形シャフトを両側で支持する機構で使用でき、かつ電磁鋼板内でのスリットの q軸方向の幅を拡大することができる高効率な同期誘導電動機を得ることができる。 また、この変型シャフト 9を図 1のシャフトとして用いることもできる。この場合には、図 1でのスリット拡大部よりもさらにスリット拡大部の面積を大きくすることができるので、さ らに突極差を大きくでき、高効率な同期誘導電動機を構成することができる。
[0041] 図 5に示す構成の同期誘導電動機の回転子 1では、積層電磁鋼板として、磁束が 通りやすい磁ィ匕容易方向と、磁束が通りにくい方向を持つ方向性電磁鋼板 10を用 V、る。白抜き矢印で示した磁ィ匕容易方向 11を d軸とほぼ平行になるように構成すると 、 d軸方向に磁束が通りやすい回転子が得られる。即ち、無方向性の積層電磁鋼板 を用いるよりも突極差が大きくなるため、高効率な同期誘導電動機を得ることができる
[0042] 図 6はこの実施の形態に係る別の構成の同期誘導電動機の回転子を示す断面構 成図である。この回転子 1はガス抜き穴を設けていない構成としており、シャフト 5に 隣合うスリット 2のシャフト 5側の形状をシャフト 5の周に沿って突出させた構成である。 この回転子 1は、このスリット 2の幅を大きくする際、シャフト近傍を除く d軸上の磁路の 幅を、幅 L、幅 E、幅 Fのようにほぼ同等程度、または幅 E及び幅 Fを幅 Lよりも若干大 さく構成している。
このように、この回転子 1は、 d軸上の磁路で、最も外周端の幅 Lを運転時に磁気飽 和が生じない程度に狭くし、シャフト近傍を除く d軸上の磁路の幅 E及び幅 Fをこの所 定幅 Lと同等程度に狭く構成する。そして、その狭くした分に非磁性部分を形成すれ ば、 d軸方向の磁束の通りやすさは保持しながら q軸方向の磁束を通りにく 、構成に できる。これによつて d軸と q軸の突極差を大きくできるので、高効率な同期誘導電動 機の回転子が得られる。
[0043] ここで、 d軸上の電磁鋼板の外周端の幅 Lを運転時に磁気飽和が生じない程度の 所定幅に設定する際、 B— H特性等を考慮して、電磁鋼板の場合の運転時の磁場 の強さに対する磁束密度が磁気飽和の状態よりも若干の余裕があるように所定幅 L を設定すればよい。このとき、所定幅 Lを広くすると、この部分の磁束密度については 充分に余裕がある構成となる力 幅 Lが広いので q軸方向にも磁束が通り易くなつて しまう。所定幅 Lは磁気飽和が発生しない程度に狭く設定するのが好ましい。
[0044] 図 6ではシャフト 5に隣合うスリットの幅を広くした力 スリットの形状はそのままとし、 別に非磁性部分を設けてもよい。この非磁性部分は空洞でもよいし、スリットと同様、 アルミニウムなどの非磁性材料が充填されてもよい。
図 7は d軸上のストリップ 4aの上に非磁性部分 24を設けた構成例を示す。この構成 では d軸上の磁路は非磁性部分 24の周をまわって通るので、距離 A+距離 Bや距離 C +距離 Dを距離 Lと同等程度または距離 Lよりも若干大きくする。このように構成し ても、磁気飽和を生じることのない d軸上の磁路を構成できると同時に、 q軸方向に磁 束が通りにくい構成にできる。非磁性部分 24はスロット 3と同様、アルミニウムなどの 非磁性材料を充填してもよいが、空洞でもよい。空洞とした場合には、ガス抜き穴が 必要な装置で非磁性部分 24をガス抜き穴として機能させることができる。
この実施の形態では、スリット 2の形状はシャフトを囲むように少し湾曲した形状で構 成しており、 d軸上の磁路では外周端で磁路の幅が最も狭くなる。そこで、この外周 端の磁路の幅 Lを磁気飽和を生じることのな 、程度に狭くし、 d軸上の磁路の他の部 分の幅を、この幅 Lに基づいて幅 Lよりも狭くならないように設定すれば、磁気飽和が 生じることなく高効率な同期誘導電動機を得ることができる。
[0045] このように、複数枚の電磁鋼板を積層してなる回転子鉄心と、電磁鋼板に少なくとも 一対設けられ、磁束の流れやすい方向である d軸および磁束の流れにくい方向であ る q軸が得られるように磁極突起を形成するスリット 2と、スリット 2に接続して電磁鋼板 の外周近傍に設けられ、誘導トルクを発生させる複数のスロット 3と、スリット 2及びスロ ット 3のうちの少なくともスロット 3に充填された導電性材と、回転子鉄心の中央部に設 けられ回転軸となるシャフト 5と、を備え、 d軸上の磁路を構成する電磁鋼板の外周端 の幅 Lを磁気飽和が生じない程度の所定幅にすると共に、所定幅 Lと同等程度また は所定幅 Lよりも大きくなるように非磁性部分を設けたことにより、 d軸と q軸の突極差 を大きくでき、特性の良好な同期誘導電動機の回転子が得られる。 [0046] 実施の形態 2.
以下、この発明の実施の形態 2について図を用いて説明する。図 8は実施の形態 2 に係る同期誘導電動機の回転子 1を示す断面構成図である。図 8は、ガス抜き穴 7を 磁束の進入方向の角度とほぼ一致するように、 d軸に対して所定角度ずらした方向に 伸びた細長 、開口で構成したものである。
[0047] 同期回転中である同期誘導電動機の磁束の進入方向 12は、 d軸から所定の角度 ずれた方向になる。例えば d軸力 q軸の方向に電気角で 45° 程度ずれた角度から 磁束が進入するとした場合に、ガス抜き穴 7の長手方向を d軸に対して 45° 程度傾 けて配置する。これにより、磁束の進入方向 12から進入した磁束はガス抜き穴 7の周 に沿って流れるので、磁束が流れやすくなる。このため、ガス抜き穴 7の周辺でのロス を少なくでき、高効率な同期誘導電動機を得ることができる。ガス抜き穴を、 d軸上に 設けられ d軸に対して所定の角度をずらした方向に伸びた細長い開口とすることで、 ある程度効率のよい同期誘導電動機を得ることができる。特に、ガス抜き穴 7の角度 を、同期誘導電動機が定常運転時の磁束の進入角度とほぼ一致させると効果をさら に上げることができる。
ここで、同期回転中に磁束の進入方向と d軸とのずれ角度は、予めシミュレーション や試作装置での運転などによって設定することができる。この磁束の進入方向は、通 常、 d軸から q軸の方向に電気角で 0〜45° 程度である。
[0048] さらに、図 9に示すように方向性電磁鋼板 10を用いて、磁化容易方向 11を、 d軸か ら所定の角度ずれた角度にすると、磁束の流れ方向に磁束が通りやすくなるため、 高効率な同期誘導電動機を得ることができる。特に、方向性電磁鋼板の磁化容易方 向 11の角度は、同期誘導電動機が定常運転する時の磁束の進入角度とほぼ一致さ せることにより、効果をさらに上げることができる。
[0049] 図 8、図 9のようにガス抜き穴 7を d軸方向に伸びた形状とし、さらに長手方向を定常 運転時の磁束の進入方向とほぼ一致させた構成において、 d軸上のストリップ 4aの 電磁鋼板の部分に、シャフト 5に隣合うスリット 2のシャフト側の形状を突出させてスリツ ト拡大部 8cとして磁束を q軸方向に流れに《なるように構成してもよ 、。このときの構 成例を図 10に示す。 [0050] 図 10は、図 8の構成の回転子 1において、 d軸上のストリップ 4aの電磁鋼板の比較 的広 ヽ部分にスリット拡大部 8cを形成した構成例を示す。このようにシャフト 5の周及 びガス抜き穴 7の周に沿ってスリット拡大部 8cを形成すれば、 d軸方向に磁束が通り やすい形状のガス抜き穴 7を実現できると共に、 q軸方向に磁束が通りに《なって突 極差を大きくできる。また、スリット拡大部 8cを形成した部分の反対側はガス抜き穴 7 を傾斜させている分だけ電磁鋼板の部分は狭くなつているが、この部分にもシャフト 5 の周に沿ってスリットを突出させてもよい。 d軸方向と q軸方向の突極差を大きくするこ とで、高効率な同期誘導電動機を得ることができる。図 9に関しても同様である。
[0051] この実施の形態においても、実施の形態 1と同様、 d軸上のロータ外周寸法 Lを、同 期誘導電動機が運転して ヽる時に磁気飽和が発生しな!ヽ程度の狭!ヽ距離を保つよ うにするときは、ガス抜き穴 7とスリット拡大部 8cの距離が、スリット間の距離 Lよりも小 さくなると磁気飽和を起こし、特性が悪化する。そのため、スリット拡大部 8cとガス抜き 穴 7との距離 A、 B、 C、 Dの関係を L≤A + B、 L≤C + Dとすることにより、磁気飽和 の発生を防止できる。
[0052] また、図 8、図 9において、シャフト 5の形状を、 q軸方向の長さを d軸方向の長さより も短くし、その分だけシャフト 5に隣合うスリットの幅を d軸上に突出させて拡大してもよ い。この様に構成することで、 q軸と d軸との突極差を大きくでき、特性を向上すること できる。
実施の形態 1、 2において、図 1、図 3〜図 6、図 10では、シャフト 5に隣合うスリット 2 の形状をシャフト 5側に突出させて非磁性部分の q軸方向の幅を大きくしたが、これに 限るものではない。図 7に示したようにスリット 2の形状はそのままとし、新たに非磁性 部分を設けてもよい。また、新たに設けた非磁性部分とスリット 2またはスロット 3とを少 なくとも一部で接続してもよい。スリット 2またはスロット 3の一部と非磁性部分の一部と を接続すれば、ダイカスト時に非磁性部分にアルミニウムなどの非磁性材料を同時に 充填することができる。
[0053] 実施の形態 3.
以下、この発明の実施の形態 3について図を用いて説明する。図 11は回転子 1の シャフト 5の上部にシャフトの径より大きい径を有する機構 31が存在する状態の縦断 面図である。図に示すような既存の装置を同期誘導電動機で回転させようとする場合
、すでに存在する機構 31に取り付けようとすると、回転子 1のエンドリング 30と機構 3 1の間にデッドスペースができてしまう。この実施の形態では、図 12に示すように機構 31の先端部を回転子 1中心に埋め込むような構成にすることにより、デッドスペース をなくして/ Jヽ形ィ匕を図る。
[0054] ここで、機構 31を埋め込む部分に該当する回転子を上部回転子鉄心 13、それ以 外の部分を下部回転子鉄心 14として 2つの部分に分離する。上部回転子鉄心 13の 回転中心部分には機構 31のための空隙を設け、下部回転子鉄心 14の構造は通常 のスリット及びスロットを有する回転子の構造であってもよい。これに限るものではなく 、実施の形態 1や実施の形態 2で記載した回転子であってもよ ヽ。
[0055] 図 13は上部回転子鉄心 13と下部回転子鉄心 14を示す斜視図である。また、図 14 は上部回転子鉄心 13を示す断面構成図である。また、図 15は下部回転子鉄心 14 を示す断面構成図である。
図 15に示す下部回転子鉄心 14における下部スリット 17及び下部スロット 19は、例 えば図 1にお 、てスリット拡大部 8aを有さな 、構成である。図 14に示す上部回転子 鉄心 13における上部スロット 18は下部スロット 19と少なくともスロットの一部分が重な るように配設し、上部スロット 18に接続する上部スリット 16は少し変形させている。図 1 4の点線で描いたスリットは下部回転子鉄心 14の下部スリット 17の位置である。シャ フト 5を除いた回転子中心部 15には機構 31を埋め込むための空隙を設け、上部スリ ット 16を回転子中心部 15の部分を避けて配置する。そして、積層方向で機構 31の 埋め込み分よりも下部に位置する下部回転子鉄心 14の部分は、回転子中心部のシ ャフト 5の周りには空隙を設けずに通常のシャフト 5が貫通している構成とする。
[0056] 上部回転子鉄心 13のみで構成される回転子であると、中心部の穴には空気が存 在し、 d軸の磁路が阻害され突極性が悪ィ匕するため、同期誘導電動機の特性が悪く なる。しかし、回転子を積層方向に分割し、下部回転子鉄心 14のような d軸の磁路が 確保されて ヽる形状と組合せて図 13のように構成すると、磁束は三次元的に流れる ことも可能なことから、上部回転子鉄心 13と下部回転子鉄心 14のストリップと合わせ て磁路が構成される。機構 31による制約のため、図 14のような上部スリット 16を有す る回転子形状であっても、下部回転子鉄心 14と組み合わせることにより、磁路が確保 され、高効率な同期誘導電動機を得ることができる。
[0057] さらに、図 13に示す回転子のように複数の回転子鉄心を積層した形状であると、磁 束が三次元的に流れ、磁束の流れがある一定方向だけではなくなる。そのため、磁 束の流れが二次元的に流れる場合よりも磁路が多方向に向き平均化され、回転時の 音や振動を低減することができる。
[0058] 以下に、このような回転子の製造工程について説明する。図 16はアルミニウムをダ イカスト法によってスロット及びスリットに形成するまでの製造工程を示すフローチヤ一 トである。
ST1の工程では電磁鋼板による上部回転子鉄心 13と下部回転子鉄心 14を打ち 抜いて、複数のスリット 16、 17及びスロット 18、 19を形成する。 ST2では上部回転子 鉄心 13及び下部回転子鉄心 14を所定枚数積層する。 ST3では積層された上部回 転子鉄心 13及び下部回転子鉄心 14を回転子中心部 15の内径と同一の形状を有 するエンドリング用金型で回転子中心部 15の内側を押える。図 17はエンドリング用 金型 32の一例を示す斜視図である。このエンドリング用金型 32は機構 31が埋め込 むための空隙を形成するように、中央に突出部 32aを有する。次に ST4では、ダイ力 スト法でアルミニウムを例えば上部の注入ロカも注入し、スリット 16、 17、スロット 18、 19及びエンドリング 30に充填して、二次導体を形成する。
[0059] 図 17のようなエンドリング用金型 32を用いてダイカストを行うことで、アルミニウムを 充填すると共に機構 31を埋め込む空隙を確実に確保できる。この回転子中心部 15 の空隙に機構 31を埋め込むことで、全体として小型化でき、さらに低コストで高効率 な同期誘導電動機を用いて回転駆動できる効果がある。
ここで、スリット 16、 17及びスロット 18、 19にアルミニウムをダイカストする際には、上 部回転子鉄心 13と下部回転子鉄心 14の隣接する部分の上下の電磁鋼板において 、上部スロット 18、下部スロット 19または上部スリット 16、下部スリット 17の少なくとも 一部が積層方向に連通するように構成する。スリットまたはスロットが積層方向で連通 することで、ダイカストの際に、アルミニウムをスロット及びスリットに同時に充填するこ とがでさる。 [0060] また、図 18に示すように、回転子中心部 15を設けるためにスリットを途中で不連続 とした構成であっても、上部スロット 18、下部スロット 19または上部スリット 16、下部ス リット 17が積層方向に一部でも連通していれば、ダイカストが可能である。さらに、 d軸 方向及び q軸方向の磁路を効果的になるように配置した構成の下部回転子鉄心 14と 組み合わせることにより、磁路が確保され、高効率な同期誘導電動機を得ることがで きる。また、磁束が三次元的に流れることで、磁路が多方向に向き平均化され、回転 時の音や振動を低減することができる。
特に、図 18に示すように上部スリット 16が回転子中心部 15で不連続な構成であつ ても、アルミニウムをダイカストする際には上部スリット 16と回転子中心部 15との間に 薄肉部 23を設けることで、アルミニウムが回転子中心部 15に漏れることがない。ただ し、上部回転子鉄心 13にアルミニウムをダイカストする際には、薄肉部 23がアルミ- ゥムのダイカストされた圧力により、膨らむ可能性がある。そこで、ダイカストを行う際、 突出部 32aを有するようなエンドリング用金型 32を用いることで、薄肉部 23の膨らみ を押えることができる。
また、薄肉部 23が存在しなくても、ダイカスト時のエンドリング用金型 32の突出部 3 2aを回転子中心部 15と同じ形状とすれば、アルミニウムが回転子中心部 15に漏れ ることがなぐ必要な部分にアルミニウムを確実に充填することが可能である。
[0061] また、図 14、図 18に示す上部回転子鉄心 13では機構 31による必要な断面の形状 を円形状としたが、これに限るものではなぐ既存の機構 31の形状に応じ、機構 31に よる必要な形状が円以外の形状、例えば楕円形状や多角形となっても同様である。 即ち、回転子中心部 15の空隙をその形状に合わせればよい。そして、図 12の下部 回転子鉄心 14のような d軸の磁路が確保された回転子鉄心と組み合わせることにより 、高効率な同期誘導電動機を構成することができる。
[0062] このように、複数枚の電磁鋼板を積層してなる回転子鉄心と、回転子鉄心に少なく とも一対設けられ、磁束の流れやす 、方向である d軸および磁束の流れにく 、方向 である q軸が得られるように磁極突起を形成するスリットと、スリットに接続して回転子 鉄心の外周近傍に設けられ、誘導トルクを発生させる複数のスロットと、スリット及びス ロットのうちの少なくともスロットに充填された導電性材と、回転子鉄心の中央部を貫 通し回転軸となるシャフト 5と、を備え、複数の電磁鋼板を積層方向に複数に分割し、 分割部分 13、 14で異なる形状のスリット 16、 17及びスロット 18、 19としたことにより、 同期誘導電動機の機能を損なわずに、多様な機構に適用でき、幅広く用いることが できる汎用性の高い同期誘導電動機が得られる。
[0063] また、特に積層方向の端部に位置する分割部分の電磁鋼板は、シャフト 5の周囲に 他の機構をはめ込み可能な空隙を有するように構成すれば、容易に他の機構に適 用できる同期誘導電動機が得られる。
[0064] また、異なる形状の電磁鋼板が隣接する部分で、一方のスリット 16及びスロット 18 の少なくとも一部分と、他方のスリット 17及びスロット 19の少なくとも一部分とが積層 方向で連通するように構成すれば、従来と同様の製造工程を用いて容易に導電性 及び非磁性材料をスロット 18、 19やスリット 16、 17に充填できる。
[0065] また、図 19は機構 31を埋め込む構成の回転子 1で、圧縮機等のように回転子にガ ス等の気体、または油のような液体が通るガス抜き穴 7が必要である回転子を示す縦 断面図である。ガス抜き穴 7は上部回転子鉄心 13では、特別なガス抜き穴を設けず に、回転子中心部 15の機構 31の周囲に形成される空間を利用することができる。こ のように上部回転子鉄心 13では回転子中心部 15の空間を利用することで、ガス抜き 穴のスペースを省くことができる。
[0066] また、図 20に示す下部回転子鉄心 14のガス抜き穴 7のように、ガス抜き穴 7の位置 を積層方向で連通可能な状態で、例えば斜めにずらして構成してもよい。ガス抜き穴 7を積層方向で連通可能な状態で斜めにすることにより、ガス抜き穴 7が阻害してい た磁路を分散することができ、音及び振動を低減できる。
また、図 21に示すガス抜き穴 7は、積層方向で連通可能な状態で複数の段形状に ずらした構成である。ガス抜き穴 7を段形状にすることにより、図 20の構成に比べて、 下部回転子鉄心 14の金型の個数が減るため、金型に力かるコストを安くすることがで きる。このような段形状に構成した場合にも、ガス抜き穴 7が阻害していた磁路をある 程度分散することができるので、音及び振動を低減できる。
[0067] また、図 12、図 19、図 20、図 21に示した回転子 1は、積層方向に 2分割し、 2種類 の形状の回転子鉄心を組み合わせて構成した力 3つ以上の形状の回転子が必要 な場合、積層方向に 3つ以上の複数の回転子部分を組み合わせてもよ 、。
[0068] また、図 12、図 19、図 20、図 21では機構 31の埋め込むための空隙を上部回転子 鉄心 13に設け、下部回転子鉄心 14の構成では中央部にシャフト 5のみが存在する 構成としたが、上部回転子鉄心と下部回転子鉄心とが逆の構成でも上記と同様の効 果を得ることができる。
ここで、機構 31が埋め込まれる部分は、回転子の上端部分または下端部分であれ ばよい。積層方向の一端部に位置する回転子鉄心部分の電磁鋼板で、シャフトの周 囲に空隙を有するように構成することで、低コストで高効率の同期誘導電動機を種々 の装置に搭載できるようになり、汎用性を向上できる。
[0069] 実施の形態 1〜実施の形態 3において、スロットとスリットのほぼ全てに導電性材で かつ非磁性材料として例えばアルミニウムを充填した構成とした力 これに限るもので はない。起動時に誘導トルクを発生するのはスロットであるため、少なくともスロットに 導電性材料が充填されていればよい。スリットは非磁性部分であり、スリットにアルミ- ゥムが完全に充填されていなくても、さらには空隙のままでも非磁性部分となるので、 高効率な同期誘導電動機を構成できる。ただし、スリットに非磁性材料を充填するこ とで、スリットおよびスリット間のストリップの位置を確実に固定でき、回転時の遠心力 に対して機械的強度の強い回転子を構成できる。
また、ここではスロットに充填した材料と同じアルミニウムをスリットにも充填した力 こ れに限るものではなぐ別の非磁性材料をスリットに充填してもよ 、。
また、非磁性体でかつ導電性材料としては、アルミニウムに限るものではなぐ銅な ど、他の材料を用いてもよい。
[0070] また、実施の形態 1〜実施の形態 3におけるガス抜き穴 7を設けた構成の場合、ガ ス抜き穴 7の形状は、図 22に示したような複数の円形状の組み合わせ、または図 23 に示したような楕円形状、または図 24に示したような多角形形状で構成されたガス抜 き穴 7であってもよ 、し、またそれらの複数を組み合わせて構成しても同様の効果を 得ることができる。
[0071] また、実施の形態 1〜実施の形態 3に示した各図の電磁鋼板において、スロットは 非対称構造のものを示したが、スロットの非対称、対称に限らず効果を示すことがで き、高効率な同期誘導電動機を得ることができる。また、回転子 1の起動特性を向上 させるためにスリットとスロットの間にリブを設けた構成としている力 起動特性を満足 して!/、るモデルにぉ ヽてはリブを用いなくてもよ!/、。
[0072] 実施の形態 1、実施の形態 2で記載した同期誘導電動機の回転子を圧縮機に搭載 することで、高効率の同期誘導電動機を用いて圧縮機を運転することができ、圧縮 機の運転効率を向上することができる。
また、実施の形態 3で記載した同期誘導電動機の回転子を圧縮機に搭載すること で、高効率の同期誘導電動機を用いて圧縮機を運転することができ、さらに圧縮機 の全体寸法を小さくでき、振動や騒音を低減できる効果がある。
[0073] 以上のように、複数枚の積層電磁鋼板が積層される固定子鉄心と、固定子鉄心に 複数個あけられた固定子スロットと、固定子スロットに施された卷線と、前記回転子鉄 心の内側に空隙をはさみ、複数枚の積層電磁鋼板が積層される回転子鉄心と、回転 子鉄心に設けられた、磁束の流れやすい方向である d軸および磁束の流れにくい方 向である q軸が得られるように磁極突起を形成する少なくとも一対のスリット部と、前記 スリット部と少なくとも一対は連結され、誘導トルクを発生させる外側に配置された複 数のスロット部と、前記スリット部又は前記スロット部のうち少なくともスロット部に充填 された導電性材かつ非磁性体と、 d軸上にガス抜き穴を有する同期誘導電動機にお いて、前記ガス抜き穴の形状を細長く開口された穴とし、その長手方向を d軸とほぼ 平行になるように配置したガス抜き穴と、それに伴い、ガス抜き穴の長手方向とほぼ 平行になるようにスリットを拡大したことを特徴とすることで、突極差を大きくでき、磁気 飽和が発生しにくぐ高効率な同期誘導電動機の回転子が得られる。
[0074] また、複数枚の積層電磁鋼板が積層される固定子鉄心と、固定子鉄心に複数個あ けられた固定子スロットと、固定子スロットに施された卷線と、前記回転子鉄心の内側 に空隙をはさみ、複数枚の積層電磁鋼板が積層される回転子鉄心と、回転子鉄心に 設けられた、磁束の流れやすい方向である d軸および磁束の流れにくい方向である q 軸が得られるように磁極突起を形成する少なくとも一対のスリット部と、前記スリット部 と少なくとも一対は連結され、誘導トルクを発生させる外側に配置された複数のスロッ ト部と、前記スリット部又は前記スロット部のうち少なくともスロット部に充填された導電 性材かつ非磁性体と、 d軸上にガス抜き穴を有する同期誘導電動機において、前記 ガス抜き穴の形状を細長く開口された穴とし、その長手方向を d軸に対して所定の角 度をずらして配置したことを特徴とすることで、磁束が通りやすくなつて、高効率な同 期誘導電動機の回転子が得られる。
[0075] また、前記回転子のシャフトを、 d軸方向に対しほぼ平行にカットし、それに伴いシ ャフト近傍のスリットを、シャフトと平行になるように拡大したことを特徴とすることで、機 械的強度を保ちつつ、突極差を大きくすることができ、高効率な同期誘導電動機の 回転子が得られる。
[0076] また、複数枚の積層電磁鋼板が積層される固定子鉄心と、固定子鉄心に複数個あ けられた固定子スロットと、固定子スロットに施された卷線と、前記回転子鉄心の内側 に空隙をはさみ、複数枚の積層電磁鋼板が積層される回転子鉄心と、回転子鉄心に 設けられた、磁束の流れやすい方向である d軸および磁束の流れにくい方向である q 軸が得られるように磁極突起を形成する少なくとも一対のスリット部と、前記スリット部 と少なくとも一対は連結され、誘導トルクを発生させる外側に配置された複数のスロッ ト部と、前記スリット部又は前記スロット部のうち少なくともスロット部に充填された導電 性材かつ非磁性体と、 d軸上にガス抜き穴を有する同期誘導電動機において、前記 回転子のスリット、スロット形状が異なる複数の回転子を積層電磁鋼板の積層方向に 対して、複数組み合わせて一つの回転子を構成することを特徴とすることで、既存の 機構に装着できる高効率な同期誘導電動機の回転子を得ることができる。
図面の簡単な説明
[0077] [図 1]この発明の実施の形態 1に係る同期誘導電動機を示す断面構成図である。
[図 2]この発明の実施の形態 1に係る同期誘導電動機の回転子を示す斜視図である
[図 3]この発明の実施の形態 1に係る同期誘導電動機の他の構成例を示す断面構成 図である。
[図 4]この発明の実施の形態 1に係る別の同期誘導電動機の回転子を示す断面構成 図である。
[図 5]この発明の実施の形態 1に係る別の同期誘導電動機の回転子を示す断面構成 図である。
圆 6]この発明の実施の形態 1に係る別の同期誘導電動機の回転子を示す断面構成 図である。
圆 7]この発明の実施の形態 1に係る別の同期誘導電動機の回転子を示す断面構成 図である。
圆 8]この発明の実施の形態 2に係る同期誘導電動機の回転子を示す断面構成図で ある。
圆 9]この発明の実施の形態 2に係る別の同期誘導電動機の回転子を示す断面構成 図である。
圆 10]この発明の実施の形態 2に係る別の同期誘導電動機の回転子を示す断面構 成図である。
圆 11]この発明の実施の形態 3に係る同期誘導電動機の回転子と比較して説明する 説明図である。
圆 12]この発明の実施の形態 3に係る同期誘導電動機の回転子を示す縦断面図で ある。
圆 13]この発明の実施の形態 3に係る同期誘導電動機の回転子を示す斜視図であ る。
圆 14]この発明の実施の形態 3に係る上部回転子を示す断面構成図である。
圆 15]この発明の実施の形態 3に係る下部回転子を示す断面構成図である。
圆 16]この発明の実施の形態 3に係る同期誘導電動機の回転子の製造工程を示す フローチャートである。
圆 17]この発明の実施の形態 3に係るエンドリング用金型を示す斜視図である。 圆 18]この発明の実施の形態 3に係る別の上部回転子を示す断面構成図である。 圆 19]この発明の実施の形態 3に係る別の同期誘導電動機の回転子を示す縦断面 図である。
圆 20]この発明の実施の形態 3に係る別の同期誘導電動機の回転子を示す縦断面 図である。
圆 21]この発明の実施の形態 3に係る別の同期誘導電動機の回転子を示す縦断面 図である。
[図 22]この発明の実施の形態 1〜実施の形態 3に係るガス抜き穴の他の形状を示す 説明図である。
[図 23]この発明の実施の形態 1〜実施の形態 3に係るガス抜き穴の他の形状を示す 説明図である。
[図 24]この発明の実施の形態 1〜実施の形態 3に係るガス抜き穴の他の形状を示す 説明図である。
符号の説明
1 回転子、 2 スリット、 3 スロット、 4 ストリップ、 4a d軸上のストリップ、 5 シャフト 、 7 ガス抜き穴、 8a スリット拡大部、 8b スリット拡大部、 8c スリット拡大部、 9 変 型シャフト、 10 方向性電磁鋼板、 11 磁化容易方向、 12 磁束の進入方向、 13 上部回転子鉄心、 14 下部回転子鉄心、 15 回転子中心部、 16 上部スリット、 17 下部スリット、 18 上部スロット、 19 下部スロット、 23 薄肉部、 24 非磁性部分、 3 0 エンドリング、 31 機構、 32 エンドリング用金型。

Claims

請求の範囲
[1] 複数枚の電磁鋼板を積層してなる回転子鉄心と、前記複数枚の電磁鋼板の各電 磁鋼板に少なくとも一対設けられ、磁束の流れやす ヽ方向である d軸および磁束の 流れにくい方向である q軸が得られるように磁極突起を形成するスリットと、前記スリツ トに接続して前記電磁鋼板の外周近傍に設けられ、誘導トルクを発生させる複数のス ロットと、前記スリット及び前記スロットのうちの少なくとも前記スロットに充填された導 電性材と、前記回転子鉄心の中央部に設けられ回転軸となるシャフトと、を備え、前 記シャフトに隣合うスリットは、前記シャフト側の形状を前記シャフトの周に沿って突出 することを特徴とする同期誘導電動機の回転子。
[2] 同期誘導電動機の回転子は、さらに、前記 d軸上に d軸方向に伸びた細長い開口 のガス抜き穴を備え、前記ガス抜き穴に隣合うスリットは、前記ガス抜き穴側の形状を 前記ガス抜き穴の長手方向の周に沿って突出することを特徴とする請求項 1記載の 同期誘導電動機の回転子。
[3] 前記 d軸上の外周端における電磁鋼板の幅 Lと、前記ガス抜き穴の一方側で隣合う スリットと前記ガス抜き穴との距離 Aと、前記ガス抜き穴の他方側で隣合うスリットと前 記ガス抜き穴との距離 Bとしたとき、 L≤A+Bとなるように、前記ガス抜き穴とこのガス 抜き穴に隣合うスリットとの距離が設定されたことを特徴とする請求項 2記載の同期誘 導電動機の回転子。
[4] 前記シャフトは、前記回転軸に垂直な断面形状で前記 q軸方向の長さが前記 d軸 方向の長さよりも短ぐ前記シャフトに隣合うスリットは、前記シャフト側の形状を前記 シャフトの周に沿って前記シャフト側に突出することを特徴とする請求項 1記載の同 期誘導電動機の回転子。
[5] 前期回転子鉄心は、前記積層する電磁鋼板として方向性電磁鋼板を用い、方向性 電磁鋼板は、その磁ィ匕容易方向を前記 d軸にほぼ平行となるように構成することを特 徴とする請求項 1記載の同期誘導電動機の回転子。
[6] 請求項 1記載の同期誘導電動機の回転子を備えたことを特徴とする圧縮機。
[7] 複数枚の電磁鋼板を積層してなる回転子鉄心と、前記複数枚の電磁鋼板の各電 磁鋼板に少なくとも一対設けられ、磁束の流れやす ヽ方向である d軸および磁束の 流れにくい方向である q軸が得られるように磁極突起を形成するスリットと、前記スリツ トに接続して前記電磁鋼板の外周近傍に設けられ、誘導トルクを発生させる複数のス ロットと、前記スリット及び前記スロットのうちの少なくとも前記スロットに充填された導 電性材と、前記回転子鉄心の中央部に設けられ回転軸となるシャフトと、前記 d軸上 に設けられ前記 d軸に対して所定の角度をずらした方向に伸びた細長い開口のガス 抜き穴と、を備えたことを特徴とする同期誘導電動機の回転子。
[8] 前記 d軸上の外周端における電磁鋼板の幅 Lと、前記ガス抜き穴の一方側で隣合う スリットと前記ガス抜き穴との距離 Aと、前記ガス抜き穴の他方側で隣合うスリットと前 記ガス抜き穴との距離 Bとしたとき、 L≤A+Bとなるように、前記ガス抜き穴とこのガス 抜き穴に隣合うスリットとの距離が設定されたことを特徴とする請求項 7記載の同期誘 導電動機の回転子。
[9] 前記シャフトは、前記回転軸に垂直な断面形状で前記 q軸方向の長さが前記 d軸 方向の長さよりも短ぐ前記シャフトに隣合うスリットは、前記シャフト側の形状を前記 シャフトの周に沿って前記シャフト側に突出することを特徴とする請求項 7記載の同 期誘導電動機の回転子。
[10] 前期回転子鉄心は、前記積層する電磁鋼板として方向性電磁鋼板を用い、方向性 電磁鋼板は、その磁ィ匕容易方向を前記 d軸にほぼ平行となるように構成することを特 徴とする請求項 7記載の同期誘導電動機の回転子。
[11] 請求項 7記載の同期誘導電動機の回転子を備えたことを特徴とする圧縮機。
[12] 複数枚の電磁鋼板を積層してなる回転子鉄心と、前記複数枚の電磁鋼板の各電 磁鋼板に少なくとも一対設けられ、磁束の流れやす ヽ方向である d軸および磁束の 流れにくい方向である q軸が得られるように磁極突起を形成するスリットと、前記スリツ トに接続して前記電磁鋼板の外周近傍に設けられ、誘導トルクを発生させる複数のス ロットと、前記スリット及び前記スロットのうちの少なくとも前記スロットに充填された導 電性材と、前記回転子鉄心の中央部に設けられ回転軸となるシャフトと、を備え、前 記回転子鉄心は、積層方向に複数の回転子鉄心部分で構成され、前記スリットは、 前記回転子鉄心部分毎に異なる形状としたことを特徴とする同期誘導電動機の回転 子。
[13] 積層方向の一端部に位置する回転子鉄心部分の電磁鋼板は、前記シャフトの周 囲に空隙を有することを特徴とする請求項 12記載の同期誘導電動機の回転子。
[14] 前記回転子鉄心は、異なる形状のスリットを有する電磁鋼板が隣接する部分で、一 方のスリット及びスロットの少なくとも一部分と、他方のスリット及びスロットの少なくとも 一部分とが積層方向で連通可能に構成したことを特徴とする請求項 12記載の同期 誘導電動機の回転子。
[15] 前記回転子鉄心は、 d軸上にガス抜き穴を有し、前記ガス抜き穴の位置を積層方 向で連通可能な状態でずらしたことを特徴とする請求項 12記載の同期誘導電動機 の回転子。
[16] 請求項 12記載の同期誘導電動機の回転子を備えたことを特徴とする圧縮機。
[17] 複数枚の電磁鋼板を積層してなる回転子鉄心と、前記複数枚の電磁鋼板の各電 磁鋼板に少なくとも一対設けられ、磁束の流れやす ヽ方向である d軸および磁束の 流れにくい方向である q軸が得られるように磁極突起を形成するスリットと、前記スリツ トに接続して前記電磁鋼板の外周近傍に設けられ、誘導トルクを発生させる複数のス ロットと、前記スリット及び前記スロットのうちの少なくとも前記スロットに充填された導 電性材と、前記回転子鉄心の中央部に設けられ回転軸となるシャフトと、を備え、前 記電磁鋼板は、前記 d軸上の磁路を構成する電磁鋼板の外周端の幅を磁気飽和が 生じない程度の所定幅にすると共に、前記シャフト近傍を除く d軸上の磁路の幅が前 記所定幅と同等程度または前記所定幅よりも大きくなるように非磁性部分を設けたこ とを特徴とする同期誘導電動機の回転子。
[18] 請求項 17記載の同期誘導電動機の回転子を備えたことを特徴とする圧縮機。
PCT/JP2005/022687 2005-03-09 2005-12-09 同期誘導電動機の回転子及び圧縮機 WO2006098066A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2005800146680A CN1950992B (zh) 2005-03-09 2005-12-09 同步感应电动机的转子及压缩机
US11/578,940 US7504755B2 (en) 2005-03-09 2005-12-09 Rotor of synchronous induction motor and compressor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005065098A JP4763320B2 (ja) 2005-03-09 2005-03-09 同期誘導電動機の回転子及び圧縮機
JP2005-065098 2005-03-09

Publications (1)

Publication Number Publication Date
WO2006098066A1 true WO2006098066A1 (ja) 2006-09-21

Family

ID=36991423

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/022687 WO2006098066A1 (ja) 2005-03-09 2005-12-09 同期誘導電動機の回転子及び圧縮機

Country Status (6)

Country Link
US (1) US7504755B2 (ja)
JP (1) JP4763320B2 (ja)
KR (1) KR100820503B1 (ja)
CN (1) CN1950992B (ja)
MY (1) MY140353A (ja)
WO (1) WO2006098066A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109660099A (zh) * 2018-12-10 2019-04-19 陕西法士特齿轮有限责任公司 一种混合励磁同步电机
WO2020188810A1 (ja) * 2019-03-20 2020-09-24 三菱電機株式会社 回転子及びモータ

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4763320B2 (ja) * 2005-03-09 2011-08-31 三菱電機株式会社 同期誘導電動機の回転子及び圧縮機
JP4466671B2 (ja) * 2007-03-28 2010-05-26 株式会社日立製作所 誘導機
JP2009011019A (ja) * 2007-06-26 2009-01-15 Minebea Co Ltd ロータ構造
US8729887B2 (en) * 2009-11-09 2014-05-20 Aisan Kogyo Kabushiki Kaisha Rotation angle sensor
WO2012000561A1 (en) * 2010-07-02 2012-01-05 Abb Research Ltd Rotor disk with spoke openings
FI122757B (fi) * 2010-10-12 2012-06-29 Abb Oy Synkronireluktanssikoneen roottori ja menetelmä synkronireluktanssikoneen roottorin valmistamiseksi
JP5874246B2 (ja) * 2011-08-31 2016-03-02 シンフォニアテクノロジー株式会社 リニア駆動装置の可動子
EP2651010B1 (en) 2012-04-12 2014-12-17 ABB Technology AG A method for manufacturing a rotor of a synchronous reluctance motor, a rotor of a synchronous reluctance motor, and a synchronous reluctance motor
DE102014215304A1 (de) * 2014-08-04 2016-02-04 Ksb Aktiengesellschaft Rotor, Reluktanzmaschine und Herstellungsverfahren für Rotor
DE102014215303A1 (de) * 2014-08-04 2016-02-04 Ksb Aktiengesellschaft Rotor und Reluktanzmaschine
JP6214498B2 (ja) * 2014-09-02 2017-10-18 住友重機械工業株式会社 極低温冷凍機
CN106716785B (zh) * 2014-10-13 2020-06-23 比泽尔制冷设备有限公司 压缩机
JP6343567B2 (ja) * 2015-01-13 2018-06-13 ミネベアミツミ株式会社 モータシャフト、モータ及びモータ構造体
US10491061B2 (en) 2015-12-08 2019-11-26 General Electric Company Rotor for a reluctance machine
FI20176003A1 (en) * 2017-11-09 2019-05-10 Lappeenrannan Teknillinen Yliopisto Rotor of a pulse-oscillating machine and its manufacturing method
CN108011459A (zh) * 2017-11-30 2018-05-08 珠海格力节能环保制冷技术研究中心有限公司 转子结构、异步起动同步磁阻电机及压缩机
CN108110920A (zh) * 2017-12-14 2018-06-01 珠海格力节能环保制冷技术研究中心有限公司 异步起动同步磁阻电机转子、电机及压缩机
JP7353786B2 (ja) * 2019-04-23 2023-10-02 東芝インフラシステムズ株式会社 回転電機の回転子
IT202000006052A1 (it) * 2020-03-23 2021-09-23 Motovario S P A Motore a riluttanza autoavviante.
CN112653265B (zh) * 2020-12-17 2022-09-13 珠海格力电器股份有限公司 转子结构、电机和转子加工方法
US11661646B2 (en) 2021-04-21 2023-05-30 General Electric Comapny Dual phase magnetic material component and method of its formation
US11926880B2 (en) 2021-04-21 2024-03-12 General Electric Company Fabrication method for a component having magnetic and non-magnetic dual phases

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000166198A (ja) * 1998-09-21 2000-06-16 Denso Corp リラクタンス型電動機
JP2003153511A (ja) * 2001-11-15 2003-05-23 Mitsubishi Electric Corp 同期誘導電動機の回転子及び電動機の回転子及び同期誘導電動機及び誘導電動機及び直流ブラシレスモータ及び密閉型圧縮機及び冷蔵庫及び空気調和機及び同期誘導電動機の回転子の製造方法
JP2003189568A (ja) * 2001-12-19 2003-07-04 Mitsubishi Electric Corp 同期電動機、送風機、圧縮機、冷凍・空調装置
JP2005006416A (ja) * 2003-06-12 2005-01-06 Mitsubishi Electric Corp 自己始動型リラクタンスモータ

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3758800A (en) * 1972-01-24 1973-09-11 Gen Electric Reluctance synchronous motors and rotors for same
US3862446A (en) * 1973-12-28 1975-01-21 Allis Chalmers Two pole synchronous reluctance motor
JP3431991B2 (ja) * 1994-05-02 2003-07-28 オークマ株式会社 同期電動機
US5831367A (en) * 1997-02-13 1998-11-03 Emerson Electric Co. Line-start reluctance motor with grain-oriented rotor laminations
JP3743348B2 (ja) 2001-11-12 2006-02-08 三菱電機株式会社 同期誘導電動機、同期誘導電動機の製造方法、圧縮機
JP4019838B2 (ja) * 2002-07-22 2007-12-12 三菱電機株式会社 同期誘導電動機、及び圧縮機
JP4265244B2 (ja) * 2003-03-14 2009-05-20 三菱電機株式会社 同期誘導電動機の回転子の製造方法、同期誘導電動機の回転子用金型
JP4763320B2 (ja) * 2005-03-09 2011-08-31 三菱電機株式会社 同期誘導電動機の回転子及び圧縮機

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000166198A (ja) * 1998-09-21 2000-06-16 Denso Corp リラクタンス型電動機
JP2003153511A (ja) * 2001-11-15 2003-05-23 Mitsubishi Electric Corp 同期誘導電動機の回転子及び電動機の回転子及び同期誘導電動機及び誘導電動機及び直流ブラシレスモータ及び密閉型圧縮機及び冷蔵庫及び空気調和機及び同期誘導電動機の回転子の製造方法
JP2003189568A (ja) * 2001-12-19 2003-07-04 Mitsubishi Electric Corp 同期電動機、送風機、圧縮機、冷凍・空調装置
JP2005006416A (ja) * 2003-06-12 2005-01-06 Mitsubishi Electric Corp 自己始動型リラクタンスモータ

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109660099A (zh) * 2018-12-10 2019-04-19 陕西法士特齿轮有限责任公司 一种混合励磁同步电机
WO2020188810A1 (ja) * 2019-03-20 2020-09-24 三菱電機株式会社 回転子及びモータ
JPWO2020188810A1 (ja) * 2019-03-20 2021-04-01 三菱電機株式会社 回転子及びモータ

Also Published As

Publication number Publication date
CN1950992A (zh) 2007-04-18
JP2006254552A (ja) 2006-09-21
KR100820503B1 (ko) 2008-04-11
JP4763320B2 (ja) 2011-08-31
KR20070088284A (ko) 2007-08-29
MY140353A (en) 2009-12-31
CN1950992B (zh) 2010-08-18
US20070170803A1 (en) 2007-07-26
US7504755B2 (en) 2009-03-17

Similar Documents

Publication Publication Date Title
WO2006098066A1 (ja) 同期誘導電動機の回転子及び圧縮機
JP3743348B2 (ja) 同期誘導電動機、同期誘導電動機の製造方法、圧縮機
WO2020253203A1 (zh) 直接起动同步磁阻电机转子结构、电机及转子结构制造的方法
JP3801477B2 (ja) 同期誘導電動機のロータ及び同期誘導電動機及びファンモータ及び圧縮機及び空気調和機及び冷蔵庫
KR100624381B1 (ko) 영구자석 매립형 전동기의 회전자와 그 제조방법
CN109792180A (zh) 转子、旋转电机以及压缩机
WO2020253191A1 (zh) 自起动同步磁阻电机转子结构、电机及压缩机
JP2003153511A (ja) 同期誘導電動機の回転子及び電動機の回転子及び同期誘導電動機及び誘導電動機及び直流ブラシレスモータ及び密閉型圧縮機及び冷蔵庫及び空気調和機及び同期誘導電動機の回転子の製造方法
JP7482902B2 (ja) ラインスタート同期リラクタンスモータの回転子の構造、モータ、および圧縮機
JP3775328B2 (ja) 同期誘導電動機の回転子、圧縮機、同期誘導電動機の回転子の製造方法、同期誘導電動機の回転子用金型
CN110112847B (zh) 直接起动同步磁阻电机转子结构及具有其的电机
JP7427019B2 (ja) 直接起動同期リラクタンス・モータの回転子構造及びモータ
EP3926798A1 (en) Direct-start synchronous reluctance electric motor rotor structure, electric motor and compressor
JP2010183800A (ja) 電動機の回転子及び電動機及び送風機及び圧縮機
JP4019838B2 (ja) 同期誘導電動機、及び圧縮機
JP2001333553A (ja) 永久磁石電動機
JP4193726B2 (ja) 同期誘導電動機の回転子及び圧縮機
JP2000245087A (ja) 永久磁石電動機
JP2001086673A (ja) 永久磁石電動機
JP2011147259A (ja) リラクタンスモータ
JP5872605B2 (ja) ロータ
JP6060376B2 (ja) 自己始動形永久磁石同期電動機およびそれを搭載した送風装置
JP2014212599A (ja) 誘導同期電動機
JP5679695B2 (ja) 永久磁石式回転電機
KR102515118B1 (ko) 매립형 영구자석 전동기용 로터

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 1020067021586

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2007170803

Country of ref document: US

Ref document number: 11578940

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 200580014668.0

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 11578940

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

WWW Wipo information: withdrawn in national office

Country of ref document: RU

122 Ep: pct application non-entry in european phase

Ref document number: 05814276

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 5814276

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP