WO2020253191A1 - 自起动同步磁阻电机转子结构、电机及压缩机 - Google Patents

自起动同步磁阻电机转子结构、电机及压缩机 Download PDF

Info

Publication number
WO2020253191A1
WO2020253191A1 PCT/CN2019/128067 CN2019128067W WO2020253191A1 WO 2020253191 A1 WO2020253191 A1 WO 2020253191A1 CN 2019128067 W CN2019128067 W CN 2019128067W WO 2020253191 A1 WO2020253191 A1 WO 2020253191A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
self
reluctance motor
synchronous reluctance
axis
Prior art date
Application number
PCT/CN2019/128067
Other languages
English (en)
French (fr)
Inventor
李霞
陈彬
史进飞
肖勇
余钦宏
Original Assignee
珠海格力电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力电器股份有限公司 filed Critical 珠海格力电器股份有限公司
Priority to EP19933449.1A priority Critical patent/EP3923449B1/en
Priority to JP2021553784A priority patent/JP2022537089A/ja
Priority to US17/437,262 priority patent/US11942840B2/en
Publication of WO2020253191A1 publication Critical patent/WO2020253191A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K19/00Synchronous motors or generators
    • H02K19/02Synchronous motors
    • H02K19/14Synchronous motors having additional short-circuited windings for starting as asynchronous motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/24Rotor cores with salient poles ; Variable reluctance rotors
    • H02K1/246Variable reluctance rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B35/00Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for
    • F04B35/04Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for the means being electric
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Definitions

  • This application relates to the technical field of electric motors, and in particular to a rotor structure of a self-starting synchronous reluctance motor, a motor and a compressor.
  • This application claims the priority of the patent application submitted to the State Intellectual Property Office of China on June 19, 2019, with the application number 201910532905.6 and the invention title of "self-starting synchronous reluctance motor rotor structure, motor and compressor”.
  • the self-starting synchronous reluctance motor combines the structural characteristics of an induction motor and a reluctance motor.
  • the start is realized by the squirrel cage induction to generate torque, and the reluctance torque is generated by the rotor inductance gap to achieve constant speed operation. It can be directly connected to the power supply to achieve start operation.
  • the self-starting synchronous reluctance motor has no rare earth permanent magnet materials and no demagnetization problem. The motor has low cost and good reliability.
  • the patent No. CN1255925C provides an inexpensive and easy-to-start synchronous induction motor and a manufacturing device and method for the synchronous induction motor.
  • the rotor is provided with a d-axis in the direction in which the magnetic flux can easily flow and as a magnetic At least a pair of slits of the two-pole magnetic pole protruding at 90 degrees in the direction in which it is difficult to flow, and a plurality of slits arranged on the outer peripheral side of the slits, in the slits and the slits
  • the part is filled with conductive material.
  • the slit portions are formed in a linear shape, and the slit portions are arranged radially at equal intervals in the circumferential direction.
  • the slots are arranged radially at equal intervals, the direction of the magnetic flux between the slots is perpendicular to the rotor surface to flow radially, and the slots block the flow of magnetic flux in the d-axis direction, especially the closer the slot is to the q-axis,
  • the d-axis magnetic flux obstruction is more obvious, and the q-axis magnetic flux flow is smoother, so the difference between the d-axis and q-axis magnetic flux is not obvious, the salient pole ratio is not large, and the motor output and efficiency are insufficient.
  • the slits are evenly distributed on the periphery of the rotor, and the interaction between the slits and the stator cogging will generate large torque pulsations, causing vibration and noise problems.
  • the main purpose of this application is to provide a self-starting synchronous reluctance motor rotor structure, motor and compressor to solve the problem of large torque ripple in the prior art.
  • a self-starting synchronous reluctance motor rotor structure which includes a rotor core.
  • the rotor core is provided with a plurality of slit slots, and both ends of the slit slots
  • a filling groove is respectively provided, the first end of the filling groove is arranged adjacent to the slit groove, the second end of the filling groove extends outward along the radial direction of the rotor core, and the end of the second end of each filling groove
  • At least one oblique side structure is provided, so that when the d-axis magnetic flux of the rotor core enters the stator along the channel formed at the oblique side structure, the magnetic flux will not change suddenly.
  • the end of the second end of each filling slot is provided with two beveled edge structures, the two beveled edge structures include: a first beveled edge structure, and the first beveled edge structure is arranged in the shaft hole of the filling slot away from the rotor core
  • the extension line of the first hypotenuse structure and the d-axis have a first angle
  • the second hypotenuse structure, the second hypotenuse structure is arranged on the side wall of the filling groove near the shaft hole
  • the extension line of the second hypotenuse structure and the d-axis have a second included angle.
  • first oblique side structure and the second oblique side structure are arranged at a distance in the width direction of the filling groove.
  • the first included angle is ⁇ 1, where 135° ⁇ 1, and/or, the second included angle is ⁇ 2, where ⁇ 2 ⁇ 170°.
  • the angle of the first included angle and/or the second included angle is gradually increased in a direction away from the d-axis.
  • the rotor punching sheet of the rotor core is made of oriented silicon steel sheet, the maximum direction of the magnetic permeability of the oriented silicon steel sheet is the d-axis direction, and the minimum direction of the magnetic permeability of the oriented silicon steel sheet is the q-axis direction.
  • an independent filling slot is opened near the outer edge of the rotor core, and the q axis of the rotor core coincides with the geometric center line of the independent filling slot along the radial direction of the rotor core.
  • the sum of the width of the slit slot located on any magnetic pole of the rotor core and passing through the q axis and the width of the independent filling slot on the magnetic pole passing through the q axis is L3, the shaft hole of the rotor core The distance to the outer edge of the rotor core is L4, where 0.2 ⁇ L4/L3 ⁇ 0.5.
  • the slot and its corresponding filling slots at both ends form a layer of magnetic barrier layer, a magnetic channel is formed between adjacent magnetic barrier layers, and the extension direction of at least one end of the magnetic channel near the outer edge of the rotor core is the same as The d axis is parallel.
  • both ends of the magnetic conductive channel are provided with straight sections, the extending direction of the straight section is parallel to the d-axis, and the length of the straight section is gradually reduced in the direction away from the d-axis.
  • the width of the magnetic channel is gradually increased from both sides of the q axis.
  • the middle part of at least one of the plurality of slit grooves has an arc structure, and the two ends of the slit groove have a straight structure.
  • the distance between adjacent filling grooves is d1
  • the minimum width between adjacent magnetic barrier layers is d, where d1 ⁇ d.
  • the included angle between the two ends of the independent filling slot and the shaft hole of the rotor core is ⁇ , where 20° ⁇ 60°.
  • the independent filling groove and the filling groove are filled with conductive and non-magnetic material, and the filled conductive and non-magnetic material is short-circuited by the end rings located at both ends of the rotor core.
  • the distance from the side wall of the independent filling slot close to the outer edge of the rotor core to the outer edge of the rotor core is L1, where 0.5 ⁇ L1 ⁇ , and/or the distance from the filling slot to the slit slot The distance is L2, where 0.5 ⁇ L2 ⁇ , and ⁇ is the width of the air gap between the stator core and the rotor core.
  • the cross section of the shaft hole is elliptical, the long axis of the shaft hole is located on the d axis, and the short axis of the shaft hole is located on the q axis of the rotor core.
  • a motor including a self-starting synchronous reluctance motor rotor structure, and the self-starting synchronous reluctance motor rotor structure is the above-mentioned self-starting synchronous reluctance motor rotor structure.
  • an electric compressor including a self-starting synchronous reluctance motor rotor structure, and the self-starting synchronous reluctance motor rotor structure is the above-mentioned self-starting synchronous reluctance motor rotor structure.
  • At least one bevel structure is provided at the end of the second end of each filling groove, that is, the cross-sectional area of the end of the second end of the filling groove is reduced, and the gap between two adjacent filling grooves is increased.
  • the width of the formed magnetic channel effectively reduces the sudden change in the magnetic resistance of the rotor structure, thereby effectively reducing the torque pulsation of the motor with the rotor structure, while reducing iron loss and improving the efficiency of the motor.
  • Fig. 1 shows a schematic structural diagram of a first embodiment of a rotor structure of a self-starting synchronous reluctance motor according to the present application
  • FIG. 2 shows a schematic structural diagram of a second embodiment of the rotor structure of a self-starting synchronous reluctance motor according to the present application
  • Fig. 3 shows a schematic structural diagram of a third embodiment of a rotor structure of a self-starting synchronous reluctance motor according to the present application
  • Fig. 4 shows a torque comparison diagram of the rotor structure of the self-starting synchronous reluctance motor according to the present application and the prior art.
  • spatially relative terms such as “above”, “above”, “above”, “above”, etc. can be used here to describe as shown in the figure. Shows the spatial positional relationship between a device or feature and other devices or features. It should be understood that the spatially relative terms are intended to encompass different orientations in use or operation other than the orientation of the device described in the figure. For example, if the device in the figure is inverted, then the device described as “above the other device or structure” or “above the other device or structure” will then be positioned as “below the other device or structure” or “on Under other devices or structures”. Thus, the exemplary term “above” can include both orientations “above” and “below”. The device can also be positioned in other different ways (rotated by 90 degrees or in other orientations), and the relative description of the space used here is explained accordingly.
  • a rotor structure of a self-starting synchronous reluctance motor is provided.
  • the rotor structure includes a rotor core 10.
  • a plurality of slit grooves 20 are provided on the rotor core 10, and two ends of each slit groove 20 are respectively provided with a filling groove 30.
  • the first end of the filling groove 30 is arranged adjacent to the slit groove 20, the second end of the filling groove 30 extends outward along the radial direction of the rotor core 10, and the end of the second end of each filling groove 30 is provided with At least one oblique side structure, so that the d-axis magnetic flux of the rotor core 10 enters the stator along the channel formed at the oblique side structure without sudden changes in the magnetic flux
  • At least one bevel structure is provided at the end of the second end of each filling groove, that is, the cross-sectional area of the end of the second end of the filling groove is reduced, and the formation between two adjacent filling grooves is increased.
  • the width of the magnetic permeability channel effectively reduces the sudden change in the reluctance of the rotor structure, thereby effectively reducing the torque pulsation of the motor with the rotor structure, while also reducing the iron loss and improving the efficiency of the motor.
  • the end of the second end of each filling groove 30 is provided with two oblique side structures
  • the two oblique side structures include: a first oblique side structure 11, and the first oblique side structure 11 is disposed at the end of the filling groove 30
  • the extension line of the first oblique side structure 11 and the d-axis have a first included angle
  • the second oblique side structure 13 is disposed at On the side wall of the filling groove 30 close to the shaft hole 12, the extension line of the second hypotenuse structure 13 has a second angle with the d-axis.
  • the first oblique side structure 11 and the second oblique side structure 13 are arranged at a distance in the width direction of the filling groove 30.
  • the first included angle is ⁇ 1, where 135° ⁇ 1, and/or, the second included angle is ⁇ 2, where ⁇ 2 ⁇ 170°. This setting can gradually reduce the magnetic field entering the stator, reduce torque ripple, and increase the magnetic flux entering the stator to increase the motor torque.
  • the angles of the first included angle and the second included angle may be set to gradually increase in the direction away from the d-axis.
  • the rotor punching sheet of the rotor core 10 is made of oriented silicon steel sheet, the maximum direction of the magnetic permeability of the oriented silicon steel sheet is the d-axis direction, and the minimum direction of the magnetic permeability of the oriented silicon steel sheet is the q-axis direction.
  • An independent filling slot 40 is opened near the outer edge of the rotor core 10, and the q axis of the rotor core 10 coincides with the geometric center line of the independent filling slot 40 along the radial direction of the rotor core 10.
  • the sum of the width of the slit slot 20 located on any magnetic pole of the rotor core 10 and passing the q axis and the width of the independent filling slot 40 on the magnetic pole passing the q axis is L3, and the rotor core
  • the distance between the shaft hole 12 of 10 and the outer edge of the rotor core 10 is L4, where 0.2 ⁇ L4/L3 ⁇ 0.5.
  • the slot 20 and the filling grooves 30 corresponding to both ends form a magnetic barrier layer, and a magnetic channel is formed between adjacent magnetic barrier layers.
  • the extension direction of at least one end of the magnetic channel close to the outer edge of the rotor core 10 is The d axis is parallel.
  • This setting can make the d-axis magnetic flux flow smoothly on the d-axis, increase the inductance gap, and improve the reluctance torque.
  • both ends of the magnetic channel are parallel to the upper line of the d-axis.
  • both ends of the magnetic channel are provided with straight sections 50, the extending direction of the straight section 50 is parallel to the d-axis, and the length of the straight section 50 is gradually reduced in the direction away from the d-axis.
  • the width of the magnetic channel is gradually increased from both sides of the q axis.
  • the middle portion of at least one of the slit grooves 20 of the plurality of slit grooves has an arc structure, and both ends of the slit groove 20 having an arc structure have a straight structure.
  • the distance between adjacent filling grooves 30 is d1
  • the minimum width between adjacent magnetic barrier layers is d, where d1 ⁇ d.
  • the angle between the two ends of the independent filling slot 40 and the shaft hole 12 of the rotor core 10 is ⁇ , where 20° ⁇ 60°.
  • the independent filling groove 40 and the filling groove 30 are filled with conductive and non-magnetic materials, and the filled conductive and non-magnetic materials are short-circuited by end rings 60 located at both ends of the rotor core 10.
  • the distance from the side wall of the independent filling slot 40 near the outer edge of the rotor core to the outer edge of the rotor core 10 is L1, where 0.5 ⁇ L1 ⁇ , and the distance from the filling slot 30 to the slit slot 20 is L2 , Where 0.5 ⁇ L2 ⁇ , and ⁇ is the width of the air gap between the stator core and the rotor core 10.
  • the cross section of the shaft hole 12 is elliptical, the long axis of the shaft hole 12 is located on the d axis, and the short axis of the shaft hole 12 is located on the q axis of the rotor core 10.
  • the cross section of the shaft hole 12 has a circular structure.
  • the rotor structure in the above embodiment can also be used in the technical field of electrical equipment, that is, according to another aspect of the present application, a motor is provided, including a self-starting synchronous reluctance motor rotor structure, and the self-starting synchronous reluctance motor rotor structure is The rotor structure of the self-starting synchronous reluctance motor in the above embodiment.
  • the rotor structure in the above embodiment can also be used in the technical field of compressor equipment, that is, according to another aspect of the present application, a compressor is provided, including a self-starting synchronous reluctance motor rotor structure, and a self-starting synchronous reluctance motor rotor
  • the structure is the rotor structure of the self-starting synchronous reluctance motor in the above embodiment.
  • the rotor structure can also be used in the technical fields of fans and air compressor equipment.
  • the self-starting synchronous moving reluctance motor rotor structure of the present application solves the problem of low efficiency of asynchronous motors and changes in speed with load.
  • the use of the rotor structure has low cost, high reliability, and can realize efficient constant speed operation.
  • the outer end of the filling groove is designed to be chamfered and set into a hypotenuse structure, which effectively reduces the sudden change of reluctance, reduces the torque ripple of the motor, and at the same time reduces the iron loss and improves the efficiency of the motor.
  • the corner cut design is carried out by filling the outer end of the slot, which effectively reduces the sudden change of reluctance, reduces the torque pulsation of the motor, and also reduces the iron loss and improves the efficiency of the motor.
  • This arrangement enables the magnetic flux to gradually transition into the stator through the oblique edge during the rotation of the rotor, which slows down sudden changes in magnetic flux and reduces torque pulsation.
  • the incision ensures that effective d-axis magnetic flux enters the stator to generate torque, and does not Will increase magnetic flux leakage.
  • the rotor adopts oriented silicon steel sheet.
  • the maximum direction of the silicon steel sheet magnetic permeability is the rotor d-axis direction, and the minimum direction of the silicon steel sheet magnetic permeability is the rotor q-axis direction.
  • the material characteristics make the inductance difference of the motor larger and increase the reluctance torque of the motor ,
  • the elliptical shaft hole is used to reduce the arc of the magnetic barrier, so that the passage between the magnetic barriers tends to be straight, and the oriented silicon steel sheet is optimally used.
  • the rotor structure is formed by axially laminating rotor punching pieces with a specific structure.
  • the rotor punching pieces are provided with filling grooves and slit grooves, and a shaft hole 12 matched with the shaft.
  • the filling grooves and the slit grooves together form the rotor Multi-layer magnetic barrier structure, the space between adjacent magnetic barrier layers is the magnetic flux flow channel of the rotor, in which both sides of the outer end of the filling slot are cut corners, and the two cut sides are clamped with the horizontal side parallel to the d-axis
  • the angles are ⁇ 1 and ⁇ 2, respectively.
  • angles ⁇ 1 and ⁇ 2 gradually increase as the filling groove moves away from the d-axis direction, that is, the farther the filling groove is from the d-axis, the two cut edges at the outer end of the filling groove and the horizontal side parallel to the d-axis The greater the angle.
  • the angles ⁇ 1 and ⁇ 2 both satisfy 135° ⁇ 1 or ⁇ 2 ⁇ 170°. More preferably, 145° ⁇ 1 or ⁇ 2 ⁇ 165°. This arrangement enables the magnetic flux to gradually transition into the stator through the incision during the rotation of the rotor, which slows down changes in magnetic flux and reduces torque pulsation. In addition, the incision ensures that effective d-axis magnetic flux enters the stator to generate torque without increasing Magnetic flux leakage.
  • the rotor punching sheet is made of oriented silicon steel sheet, in which the maximum direction of the silicon steel sheet magnetic permeability is the rotor d-axis direction, and the minimum direction of the silicon steel sheet magnetic permeability is the rotor q-axis direction.
  • the purpose is to use the material characteristics to make the inductance difference of the motor larger and increase
  • the reluctance torque of the motor reduces the iron loss of the motor rotor and improves the efficiency of the motor.
  • the ratio of the width in the q-axis direction of the rotor magnetic barrier part composed of the filling slot and the slit slot to the distance between the outer circle of the rotor and the shaft hole can be between 0.2 and 0.5. More preferably, the ratio may be between 0.3 and 0.4.
  • the purpose is to select a reasonable magnetic barrier ratio, which not only guarantees sufficient magnetic barrier width, effectively obstructs the q-axis magnetic flux, but also ensures a reasonable magnetic flux channel to prevent magnetic flux saturation, increase the d-axis magnetic flux, and make the motor's salient poles
  • the ratio is larger, and the reluctance torque of the motor is increased to optimize the output torque of the motor.
  • the rotor magnetic permeability channel between the rotor magnetic barrier layer composed of the filling slot and the slit slot is parallel to the maximum direction of the silicon steel sheet magnetic permeability near the outer edge of the rotor.
  • the width of the magnetic channel between the rotor magnetic barrier layer composed of the filling slot and the slit slot is the narrowest at the position of the q axis, and the width of the magnetic channel from the q axis to both sides of the rotor outer circle gradually transitions to the maximum.
  • the purpose is to optimize the d-axis magnetic flux channel, increase the magnetic flux in the d-axis direction, increase the difference between the d-axis and q-axis magnetic flux, generate greater reluctance torque, and increase the output torque and efficiency of the motor.
  • the slit slot is composed of a straight part close to the outer circle of the rotor and a corresponding arc line segment.
  • the slit slot closer to the shaft hole position has a greater arc of the arc line segment, which transitions from the shaft hole position to the outer circumference of the rotor.
  • the arc of the line segment gradually decreases, and even becomes a straight line.
  • the relationship between the width d1 between adjacent filling grooves and the minimum width d between the corresponding magnetic barrier layers should satisfy d1 ⁇ d. This setting can ensure that the magnetic channel in the d-axis direction will not be oversaturated, and avoid Supersaturation hinders the flow of d-axis magnetic flux.
  • the outer periphery of the rotor is also provided with independent filling grooves, which are located in the q-axis direction of the rotor, and are symmetrically distributed on both sides of the d-axis.
  • the angle between the two ends of the independent filling grooves in the q-axis direction and the line of the center of the circle is ⁇ ,
  • the angle range should satisfy 20° ⁇ 60°, more preferably, the angle should satisfy 40° ⁇ 50°.
  • this design can increase the number of magnetic barrier layers of the rotor and increase the salient pole difference. On the other hand, it can improve the starting performance of the motor.
  • Both the filling groove and the independent filling groove are filled with conductive and non-magnetic materials, and the end rings 60 at both ends of the rotor realize self-short-circuit, forming a squirrel cage structure, and realizing the self-starting function.
  • the distance between the filling groove and the independent filling groove to the outer surface of the rotor core is L1
  • the distance between the filling groove 2 and the slit groove is L2.
  • L1 and L2 should satisfy 0.5 ⁇ L1 ⁇ , 0.5 ⁇ L2 ⁇ , where, ⁇ is the width of the air gap between the stator core and the rotor core. This design can reduce the amount of magnetic flux leakage in the rotor part of the motor while ensuring the mechanical strength of the rotor, and improve the performance of the motor;
  • the shape of the shaft hole is not limited to the shape of a round hole. More preferably, the shaft hole 5 is designed to be elliptical or elliptical.
  • the long axis of the elliptical or elliptical shaft hole is in the d-axis direction of the rotor, and the short axis is located in the rotor. In the q-axis direction.
  • the elliptical shaft hole design reduces the arc of the magnetic barrier in order to match the characteristics of the oriented silicon steel material, so that the passage between the magnetic barriers tends to be straight, and the oriented silicon steel sheet is optimally used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Synchronous Machinery (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

本申请提供了一种自起动同步磁阻电机转子结构、电机及压缩机。自起动同步磁阻电机转子结构包括转子铁芯,转子铁芯上设置有多个狭缝槽,各狭缝槽的两端分别设置有一个填充槽,填充槽的第一端与狭缝槽相邻地设置,填充槽的第二端沿转子铁芯的径向方向向外延伸设置,各填充槽的第二端的端部设置有至少一个斜边结构,以使转子铁芯的d轴磁通沿着斜边结构处形成的通道进入定子时磁通不会发生突变。在各填充槽的第二端的端部设置至少一个斜边结构,即减小填充槽的第二端的端部的横截面积,增加相邻两个填充槽之间形成导磁通道的宽度,有效降低了转子结构磁阻发生突变,有效降低了具有该转子结构的电机转矩脉动,同时还能减低铁损,提升电机效率。

Description

自起动同步磁阻电机转子结构、电机及压缩机 技术领域
本申请涉及电机技术领,具体而言,涉及一种自起动同步磁阻电机转子结构、电机及压缩机。本申请要求于2019年6月19日提交至中国国家知识产权局、申请号为201910532905.6、发明名称为“自起动同步磁阻电机转子结构、电机及压缩机”的专利申请的优先权。
背景技术
自起动同步磁阻电机结合了感应电机与磁阻电机的结构特点,通过鼠笼感应产生力矩实现起动,通过转子电感差距产生磁阻转矩实现恒转速运行,能够直接接电源实现起动运行。自起动同步磁阻电机与异步起动永磁电机相比,没有稀土永磁材料,也不存在退磁问题,电机成本低,可靠性好。
现有技术中,专利号为CN1255925C的专利提供一种廉价的容易起动的同步感应电动机及同步感应电动机的制造装置和制造方法,在转子上设置磁通容易流过的方向的d轴及作为磁通难以流过的方向的q轴成90度的两极的磁极突起的至少一对狭缝部,以及配置在前述狭缝部的外周侧的多个狭槽部,在狭缝部和前述狭槽部内填充导电性材料。狭缝部制成为直线的形状,狭槽部沿圆周方向等间隔放射状地配置。由于狭槽部等间隔放射状地配置,使得狭槽部之间的磁通方向垂直转子表面径向流动,狭槽部阻碍了磁通d轴方向流通,特别是越靠近q轴的狭槽部,d轴磁通阻碍越明显,而且q轴磁通流通更顺畅,因此d轴、q轴磁通量相差不明显,凸极比不大,电机出力及效率不够。另外,狭缝部均匀分布在转子外围,狭缝部与定子齿槽作用会产生较大的转矩脉动,引起振动噪声问题。
发明内容
本申请的主要目的在于提供一种自起动同步磁阻电机转子结构、电机及压缩机,以解决现有技术中转矩脉动大的问题。
为了实现上述目的,根据本申请的一个方面,提供了一种自起动同步磁阻电机转子结构,包括:转子铁芯,转子铁芯上设置有多个狭缝槽,各狭缝槽的两端分别设置有一个填充槽,填充槽的第一端与狭缝槽相邻地设置,填充槽的第二端沿转子铁芯的径向方向向外延伸设置,各填充槽的第二端的端部设置有至少一个斜边结构,以使转子铁芯的d轴磁通沿着斜边结构处形成的通道进入定子时磁通不会发生突变。
进一步地,各填充槽的第二端的端部设置有两个斜边结构,两个斜边结构包括:第一斜边结构,第一斜边结构设置于填充槽的远离转子铁芯的轴孔的一侧的侧壁上,第一斜边结构的延长线与d轴具有第一夹角;第二斜边结构,第二斜边结构设置于填充槽的靠近轴孔一侧的侧壁上,第二斜边结构的延长线与d轴具有第二夹角。
进一步地,第一斜边结构与第二斜边结构在填充槽的宽度方向具有距离地设置。
进一步地,第一夹角为θ1,其中,135°≤θ1,和/或,第二夹角为θ2,其中,θ2≤170°。
进一步地,第一夹角和/或第二夹角的角度沿远离d轴的方向逐渐增大地设置。
进一步地,转子铁芯的转子冲片由取向硅钢片制成,取向硅钢片的磁导最大方向为d轴方向,取向硅钢片的磁导最小方向为q轴方向。
进一步地,靠近转子铁芯的外边缘处开设有独立填充槽,转子铁芯的q轴与独立填充槽的沿转子铁芯的径向方向的几何中心线相重合。
进一步地,位于转子铁芯的任一个磁极上的狭缝槽的且过q轴处的宽度与该磁极上的独立填充槽的过q轴处的宽度的和为L3,转子铁芯的轴孔至转子铁芯外缘的距离为L4,其中,0.2≤L4/L3≤0.5。
进一步地,狭缝槽与其两端对应设置的填充槽形成一层磁障层,相邻磁障层之间形成导磁通道,导磁通道的靠近转子铁芯外边缘的至少一端的延伸方向与d轴相平行。
进一步地,导磁通道的两端均设置有直段,直段的延伸方向与d轴相平行,直段的长度沿远离d轴方向逐渐减小地设置。
进一步地,导磁通道的宽度从q轴向两侧逐渐增加地设置。
进一步地,多个狭缝槽中的至少一个狭缝槽的中部为弧形结构,该狭缝槽的两端为直段结构。
进一步地,相邻填充槽之间的距离为d1,相邻磁障层之间的最小宽度为d,其中,d1≥d。
进一步地,独立填充槽的两端与转子铁芯的轴孔的连线的夹角为α,其中,20°≤α≤60°。
进一步地,独立填充槽和填充槽内填充导电不导磁材料,填充的导电不导磁材料通过位于转子铁芯两端的端环短接。
进一步地,独立填充槽的靠近转子铁芯外边缘一侧的侧壁至转子铁芯的外边缘的距离为L1,其中,0.5δ≤L1<δ,和/或,填充槽至狭缝槽的距离为L2,其中,0.5δ≤L2<δ,δ为定子铁芯与转子铁芯之间的气隙宽度。
进一步地,轴孔的横截面呈椭圆形,轴孔的长轴位于d轴上,轴孔的短轴位于转子铁芯的q轴上。
根据本申请的另一方面,提供了一种电机,包括自起动同步磁阻电机转子结构,自起动同步磁阻电机转子结为上述的自起动同步磁阻电机转子结构。
根据本申请的另一方面,提供了一种电压缩机,包括自起动同步磁阻电机转子结构,自起动同步磁阻电机转子结构为上述的自起动同步磁阻电机转子结构。
应用本申请的技术方案,在各填充槽的第二端的端部设置至少一个斜边结构,即减小填充槽的第二端的端部的横截面积,增加了相邻两个填充槽之间形成的导磁通道的宽度,有效降低了转子结构磁阻发生突变,从而有效降低了具有该转子结构的电机转矩脉动,同时还能减低铁损,提升电机效率。
附图说明
构成本申请的一部分的说明书附图用来提供对本申请的进一步理解,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1示出了根据本申请的自起动同步磁阻电机转子结构的第一实施例的结构示意图;
图2示出了根据本申请的自起动同步磁阻电机转子结构的第二实施例的结构示意图;
图3示出了根据本申请的自起动同步磁阻电机转子结构的第三实施例的结构示意图;
图4示出了根据本申请的自起动同步磁阻电机转子结构与现有技术转矩对比图。
其中,上述附图包括以下附图标记:
10、转子铁芯;11、第一斜边结构;12、轴孔;13、第二斜边结构;
20、狭缝槽;
30、填充槽;
40、独立填充槽;
50、直段;
60、端环。
具体实施方式
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本申请。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
需要说明的是,本申请的说明书和权利要求书及附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,以便这里描述的本申请的实施方式例如能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖 不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
为了便于描述,在这里可以使用空间相对术语,如“在……之上”、“在……上方”、“在……上表面”、“上面的”等,用来描述如在图中所示的一个器件或特征与其他器件或特征的空间位置关系。应当理解的是,空间相对术语旨在包含除了器件在图中所描述的方位之外的在使用或操作中的不同方位。例如,如果附图中的器件被倒置,则描述为“在其他器件或构造上方”或“在其他器件或构造之上”的器件之后将被定位为“在其他器件或构造下方”或“在其他器件或构造之下”。因而,示例性术语“在……上方”可以包括“在……上方”和“在……下方”两种方位。该器件也可以其他不同方式定位(旋转90度或处于其他方位),并且对这里所使用的空间相对描述作出相应解释。
现在,将参照附图更详细地描述根据本申请的示例性实施方式。然而,这些示例性实施方式可以由多种不同的形式来实施,并且不应当被解释为只限于这里所阐述的实施方式。应当理解的是,提供这些实施方式是为了使得本申请的公开彻底且完整,并且将这些示例性实施方式的构思充分传达给本领域普通技术人员,在附图中,为了清楚起见,有可能扩大了层和区域的厚度,并且使用相同的附图标记表示相同的器件,因而将省略对它们的描述。
结合图1至图3所示,根据本申请的实施例,提供了一种自起动同步磁阻电机转子结构。
具体地,如图1所示,该转子结构包括转子铁芯10。转子铁芯10上设置有多个狭缝槽20,各狭缝槽20的两端分别设置有一个填充槽30。填充槽30的第一端与狭缝槽20相邻地设置,填充槽30的第二端沿转子铁芯10的径向方向向外延伸设置,各填充槽30的第二端的端部设置有至少一个斜边结构,以使转子铁芯10的d轴磁通沿着斜边结构处形成的通道进入定子时磁通不会发生突变
在本实施例中,在各填充槽的第二端的端部设置至少一个斜边结构,即减小填充槽的第二端的端部的横截面积,增加了相邻两个填充槽之间形成的导磁通道的宽度,有效降低了转子结构磁阻发生突变,从而有效降低了具有该转子结构的电机转矩脉动,同时还能减低铁损,提升电机效率。
如图1所示,各填充槽30的第二端的端部设置有两个斜边结构,两个斜边结构包括:第一斜边结构11,第一斜边结构11设置于填充槽30的远离转子铁芯10的轴孔12的一侧的侧壁上,第一斜边结构11的延长线与d轴具有第一夹角;第二斜边结构13,第二斜边结构13设置于填充槽30的靠近轴孔12一侧的侧壁上,第二斜边结构13的延长线与d轴具有第二夹角。其中,第一斜边结构11与第二斜边结构13在填充槽30的宽度方向具有距离地设置。第一夹角为θ1,其中,135°≤θ1,和/或,第二夹角为θ2,其中,θ2≤170°。这样设置能够使进入定子的磁场逐渐减少,减少转矩脉动,也能增加进入定子的磁通,提升电机转矩。
为了能够进一步提高该转子结构的性能,使得具有该转子结构的电机具有较好的效率,可以将第一夹角和第二夹角的角度设置成沿远离d轴的方向逐渐增大地设置。其中,转子铁 芯10的转子冲片由取向硅钢片制成,取向硅钢片的磁导最大方向为d轴方向,取向硅钢片的磁导最小方向为q轴方向。靠近转子铁芯10的外边缘处开设有独立填充槽40,转子铁芯10的q轴与独立填充槽40的沿转子铁芯10的径向方向的几何中心线相重合。
进一步地,位于转子铁芯10的任一个磁极上的狭缝槽20的且过q轴处的宽度与该磁极上的独立填充槽40的过q轴处的宽度的和为L3,转子铁芯10的轴孔12至转子铁芯10外缘的距离为L4,其中,0.2≤L4/L3≤0.5。狭缝槽20与其两端对应设置的填充槽30形成一层磁障层,相邻磁障层之间形成导磁通道,导磁通道的靠近转子铁芯10外边缘的至少一端的延伸方向与d轴相平行。这样设置能够使d轴磁通在d轴上顺畅流通,增加电感差距,提升磁阻转矩。其中,如图1所示,导磁通道的两端均与d轴上线平行。
如图1所示,导磁通道的两端均设置有直段50,直段50的延伸方向与d轴相平行,直段50的长度沿远离d轴方向逐渐减小地设置。导磁通道的宽度从q轴向两侧逐渐增加地设置。
进一步地,多个狭缝槽中的至少一个狭缝槽20的中部为弧形结构,为弧形结构的狭缝槽20的两端为直段结构。相邻填充槽30之间的距离为d1,相邻磁障层之间的最小宽度为d,其中,d1≥d。如图1所示,独立填充槽40的两端与转子铁芯10的轴孔12的连线的夹角为α,其中,20°≤α≤60°。独立填充槽40和填充槽30内填充导电不导磁材料,填充的导电不导磁材料通过位于转子铁芯10两端的端环60短接。独立填充槽40的靠近转子铁芯外边缘一侧的侧壁至转子铁芯10的外边缘的距离为L1,其中,0.5δ≤L1<δ,填充槽30至狭缝槽20的距离为L2,其中,0.5δ≤L2<δ,δ为定子铁芯与转子铁芯10之间的气隙宽度。其中,轴孔12的横截面呈椭圆形,轴孔12的长轴位于d轴上,轴孔12的短轴位于转子铁芯10的q轴上。当然,如图2所示,轴孔12的横截面呈圆形结构。
上述实施例中的转子结构还可以用于电机设备技术领域,即根据本申请的另一方面,提供了一种电机,包括自起动同步磁阻电机转子结构,自起动同步磁阻电机转子结构为上述实施例中的自起动同步磁阻电机转子结构。
上述实施例中的转子结构还可以用于压缩机设备技术领域,即根据本申请的另一方面,提供了一种压缩机,包括自起动同步磁阻电机转子结构,自起动同步磁阻电机转子结构为上述实施例中的自起动同步磁阻电机转子结构。当然,该转子结构还可以用于风机、空压机设备技术领域。
具体地,采用本申请的自起动同步动磁阻电机转子结构,解决了异步电机效率低,转速随负载变化的问题,采用该转子结构的成本低,可靠性高,能够实现高效恒转速运行。填充槽外端部进行切角设计即设置成斜边结构,有效降低磁阻突变,降低电机转矩脉动,同时还能减低铁损,提升电机效率。减少现有技术中填充槽(狭槽部)对转子d轴磁通的阻碍,同时采用取向硅钢材料,使转子d轴导磁方向与取向硅钢材料最大导磁方向一致,增加d轴、q轴磁通量之差,提高电机输出功率及效率。
通过填充槽外端部进行切角设计,有效降低磁阻突变,降低电机转矩脉动,同时还能减低铁损,提升电机效率。如此设置,使得转子在转动过程中,磁通能够通过斜边处逐渐过渡 进入定子,减缓磁通突变,降低转矩脉动,另外切口保证了有效的d轴磁通进入定子产生转矩,而且不会增加漏磁。转子采用有取向硅钢片,硅钢片磁导最大方向为转子d轴方向,硅钢片磁导最小方向为转子q轴方向,利用材料特性使电机的电感差更大化,增加电机的磁阻转矩,同时采用椭圆轴孔,减小磁障弧度,使磁障之间通道更趋于直线,取向硅钢片利用最佳。
其中,转子结构由具有特定结构的转子冲片轴向叠压而成,转子冲片上设有填充槽和狭缝槽,以及和转轴配合的轴孔12,填充槽和狭缝槽共同组成转子的多层磁障结构,相邻磁障层之间的空间为转子的磁通流通通道,其中填充槽外端部两边都进行切角,其两个切边与平行于d轴的水平边的夹角分别为θ1和θ2,角度θ1和θ2随着填充槽远离d轴方向逐渐增大,即填充槽离d轴越远,填充槽外端部两个切边与平行于d轴的水平边的夹角越大。角度θ1和θ2,均满足135°≤θ1或θ2≤170°。更优地,145°≤θ1或θ2≤165°。这样设置使得转子在转动过程中,磁通能够通过切口处逐渐过渡进入定子,减缓磁通突变,降低转矩脉动,另外切口保证了有效的d轴磁通进入定子产生转矩,而且不会增加漏磁。
转子冲片采用有取向硅钢片,其中硅钢片磁导最大方向为转子d轴方向,硅钢片磁导最小方向为转子q轴方向,其目的是利用材料特性使电机的电感差更大化,增加电机的磁阻转矩,降低电机转子铁损,提升电机效率。由填充槽和狭缝槽组成的转子磁障部分在q轴方向上的宽度和与转子外圆到轴孔之间的距离的比值可以在0.2~0.5之间。更优地,该比值可以在0.3~0.4之间。目的是选择合理的磁障占比,既保证足够的磁障宽度,有效阻碍q轴磁通,又保证合理的磁通通道,防止出现磁通过饱和,增加d轴磁通,使电机的凸极比更大化,增加电机的磁阻转矩,使得电机的输出转矩最优。
填充槽和狭缝槽组成的转子磁障层之间的转子导磁通道在靠近转子外侧边缘部分平行于硅钢片磁导最大方向。转子磁障层之间的转子导磁通道越靠近d轴,平行于硅钢片磁导最大方向的导磁通道长度越长,目的是使得d轴磁通无阻碍流通。
填充槽和狭缝槽组成的转子磁障层之间的磁通道宽度在q轴位置时最窄,由q轴至转子外圆两边的磁通道宽度逐渐过渡到最大。目的是优化d轴磁通通道,增大d轴方向的磁通量,增大d轴、q轴磁通量之间的差值,产生更大的磁阻转矩,增加电机的输出转矩和效率。狭缝槽由靠近转子外圆处的直线部分和相应的弧线段部分组成,越靠近轴孔位置的狭缝槽其弧线段的弧度越大,由轴孔位置向转子外圆周过渡,弧线段的弧度逐渐减小,甚至于成为直线状。此设计在考虑转子轴孔的位置下,合理利用转子d轴和q轴方向的空间,使得d轴的磁通流通通道尽可能顺畅,同时阻隔q轴的磁通流通通道,最优化的利用转子空间来改善转子d、q轴电感差,使得电机性能更佳。
进一步地,相邻填充槽之间的宽度d1与对应磁障层之间的最小宽度d的关系应满足d1≥d,这样设置能够保证d轴方向磁通道不会出现过饱和的现象,避免因过饱和阻碍d轴磁通的流通的现象。转子外围还设置有独立填充槽,位于转子的q轴方向上,对称的分布在d轴的两侧,位于q轴方向上的独立填充槽两端与圆心的连线之间的夹角为α,其角度范围应满足 20°≤α≤60°,更优地,该角度应满足40°≤α≤50°。此设计一方面可以增加转子的磁障层数,增加凸极差,另一方面可以改善电机的起动性能。
填充槽及独立填充槽中均填充导电不导磁的材料,并且通过转子两端的端环60实现自行短路,形成鼠笼结构,实现自起动功能。
填充槽及独立填充槽到转子铁心外表面的距离为L1,填充槽2到狭缝槽的距离为L2,L1、L2应分别满足0.5δ≤L1<δ,0.5δ≤L2<δ,其中,δ为定子铁心与转子铁心之间的气隙宽度。此设计可以在保证转子机械强度的条件下减少电机转子部分的漏磁量,改善电机的性能;
轴孔的形状不限于圆孔状,更优地,轴孔5设计为椭圆状或类椭圆状,椭圆状或类椭圆状轴孔的长轴在转子的d轴方向上,其短轴位于转子的q轴方向上。椭圆形轴孔设计,使为了配合取向硅钢材料特性,减小磁障弧度,使磁障之间通道更趋于直线,取向硅钢片利用最佳。
如图4所示,为本申请的转子结构与现有技术的转矩对比图,本申请的转子结构可以有效提升电机的输出转矩,使得电机的性能更优,同时电机转矩脉动下降,铁损降低。
除上述以外,还需要说明的是在本说明书中所谈到的“一个实施例”、“另一个实施例”、“实施例”等,指的是结合该实施例描述的具体特征、结构或者特点包括在本申请概括性描述的至少一个实施例中。在说明书中多个地方出现同种表述不是一定指的是同一个实施例。进一步来说,结合任一实施例描述一个具体特征、结构或者特点时,所要主张的是结合其他实施例来实现这种特征、结构或者特点也落在本申请的范围内。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (21)

  1. 一种自起动同步磁阻电机转子结构,其特征在于,包括:
    转子铁芯(10),所述转子铁芯(10)上设置有多个狭缝槽(20),各所述狭缝槽(20)的两端分别设置有一个填充槽(30),所述填充槽(30)的第一端与所述狭缝槽(20)相邻地设置,所述填充槽(30)的第二端沿所述转子铁芯(10)的径向方向向外延伸设置,各所述填充槽(30)的第二端的端部设置有至少一个斜边结构,以使所述转子铁芯(10)的d轴磁通沿着所述斜边结构处形成的通道进入定子时磁通不会发生突变。
  2. 根据权利要求1所述的自起动同步磁阻电机转子结构,其特征在于,各所述填充槽(30)的第二端的端部设置有两个斜边结构,两个所述斜边结构包括:
    第一斜边结构(11),所述第一斜边结构(11)设置于所述填充槽(30)的远离所述转子铁芯(10)的轴孔(12)的一侧的侧壁上,所述第一斜边结构(11)的延长线与所述d轴具有第一夹角;
    第二斜边结构(13),所述第二斜边结构(13)设置于所述填充槽(30)的靠近所述轴孔(12)一侧的侧壁上,所述第二斜边结构(13)的延长线与所述d轴具有第二夹角。
  3. 根据权利要求2所述的自起动同步磁阻电机转子结构,其特征在于,所述第一斜边结构(11)与所述第二斜边结构(13)在所述填充槽(30)的宽度方向具有距离地设置。
  4. 根据权利要求2或3所述的自起动同步磁阻电机转子结构,其特征在于,所述第一夹角为θ1,其中,135°≤θ1,所述第二夹角为θ2,其中,θ2≤170°。
  5. 根据权利要求4所述的自起动同步磁阻电机转子结构,其特征在于,所述第一夹角和所述第二夹角中的至少一个的角度沿远离所述d轴的方向逐渐增大地设置。
  6. 根据权利要求1所述的自起动同步磁阻电机转子结构,其特征在于,所述转子铁芯(10)的转子冲片由取向硅钢片制成,所述取向硅钢片的磁导最大方向为d轴方向,所述取向硅钢片的磁导最小方向为q轴方向。
  7. 根据权利要求1所述的自起动同步磁阻电机转子结构,其特征在于,靠近所述转子铁芯(10)的外边缘处开设有独立填充槽(40),所述转子铁芯(10)的q轴与所述独立填充槽(40)的沿所述转子铁芯(10)的径向方向的几何中心线相重合。
  8. 根据权利要求7所述的自起动同步磁阻电机转子结构,其特征在于,位于所述转子铁芯(10)的任一个磁极上的所述狭缝槽(20)的且过所述q轴处的宽度与该磁极上的所述独立填充槽(40)的过所述q轴处的宽度的和为L3,所述转子铁芯(10)的轴孔(12)至所述转子铁芯(10)外缘的距离为L4,其中,0.2≤L4/L3≤0.5。
  9. 根据权利要求1所述的自起动同步磁阻电机转子结构,其特征在于,所述狭缝槽(20)与其两端对应设置的所述填充槽(30)形成一层磁障层,相邻所述磁障层之间形成导磁通道,所述导磁通道的靠近所述转子铁芯(10)外边缘的至少一端的延伸方向与d轴相平行。
  10. 根据权利要求9所述的自起动同步磁阻电机转子结构,其特征在于,所述导磁通道的两端均设置有直段(50),所述直段(50)的延伸方向与所述d轴相平行,所述直段(50)的长度沿远离所述d轴方向逐渐减小地设置。
  11. 根据权利要求9所述的自起动同步磁阻电机转子结构,其特征在于,所述导磁通道的宽度从所述q轴向两侧逐渐增加地设置。
  12. 根据权利要求1所述的自起动同步磁阻电机转子结构,其特征在于,多个所述狭缝槽(20)中的至少一个所述狭缝槽(20)的中部为弧形结构,该所述狭缝槽(20)的两端为直段结构。
  13. 根据权利要求9所述的自起动同步磁阻电机转子结构,其特征在于,相邻所述填充槽(30)之间的距离为d1,相邻所述磁障层之间的最小宽度为d,其中,d1≥d。
  14. 根据权利要求7所述的自起动同步磁阻电机转子结构,其特征在于,所述独立填充槽(40)的两端与所述转子铁芯(10)的轴孔(12)的连线的夹角为α,其中,20°≤α≤60°。
  15. 根据权利要求7所述的自起动同步磁阻电机转子结构,其特征在于,所述独立填充槽(40)和所述填充槽(30)内填充导电不导磁材料,填充的所述导电不导磁材料通过位于所述转子铁芯(10)两端的端环短接。
  16. 根据权利要求7所述的自起动同步磁阻电机转子结构,其特征在于,所述独立填充槽(40)的靠近所述转子铁芯(10)外边缘一侧的侧壁至所述转子铁芯(10)的外边缘的距离为L1,其中,0.5δ≤L1<δ,所述填充槽(30)至所述狭缝槽(20)的距离为L2,其中,0.5δ≤L2<δ,δ为定子铁芯与所述转子铁芯(10)之间的气隙宽度。
  17. 根据权利要求2所述的自起动同步磁阻电机转子结构,其特征在于,所述轴孔(12)的横截面呈椭圆形,所述轴孔(12)的长轴位于所述d轴上,所述轴孔(12)的短轴位于所述转子铁芯(10)的q轴上。
  18. 根据权利要求2或3所述的自起动同步磁阻电机转子结构,其特征在于,所述第一夹角为θ1,其中,135°≤θ1,或者,所述第二夹角为θ2,其中,θ2≤170°。
  19. 根据权利要求7所述的自起动同步磁阻电机转子结构,其特征在于,所述独立填充槽(40)的靠近所述转子铁芯(10)外边缘一侧的侧壁至所述转子铁芯(10)的外边缘的距离为L1,其中,0.5δ≤L1<δ,或者,所述填充槽(30)至所述狭缝槽(20)的距离为L2,其中,0.5δ≤L2<δ,δ为定子铁芯与所述转子铁芯(10)之间的气隙宽度。
  20. 一种电机,包括自起动同步磁阻电机转子结构,其特征在于,所述自起动同步磁阻电机转子结构为权利要求1至19中任一项所述的自起动同步磁阻电机转子结构。
  21. 一种压缩机,包括自起动同步磁阻电机转子结构,其特征在于,所述自起动同步磁阻电机转子结构为权利要求1至19中任一项所述的自起动同步磁阻电机转子结构。
PCT/CN2019/128067 2019-06-19 2019-12-24 自起动同步磁阻电机转子结构、电机及压缩机 WO2020253191A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP19933449.1A EP3923449B1 (en) 2019-06-19 2019-12-24 Self-starting synchronous reluctance motor rotor structure, motor, and compressor
JP2021553784A JP2022537089A (ja) 2019-06-19 2019-12-24 自己始動型同期リラクタンスモータ回転子、モータおよび圧縮機
US17/437,262 US11942840B2 (en) 2019-06-19 2019-12-24 Self-starting synchronous reluctance motor rotor, motor, and compressor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910532905.6 2019-06-19
CN201910532905.6A CN110112846B (zh) 2019-06-19 2019-06-19 自起动同步磁阻电机转子结构、电机及压缩机

Publications (1)

Publication Number Publication Date
WO2020253191A1 true WO2020253191A1 (zh) 2020-12-24

Family

ID=67495545

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/128067 WO2020253191A1 (zh) 2019-06-19 2019-12-24 自起动同步磁阻电机转子结构、电机及压缩机

Country Status (5)

Country Link
US (1) US11942840B2 (zh)
EP (1) EP3923449B1 (zh)
JP (1) JP2022537089A (zh)
CN (1) CN110112846B (zh)
WO (1) WO2020253191A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110112846B (zh) 2019-06-19 2023-12-08 珠海格力电器股份有限公司 自起动同步磁阻电机转子结构、电机及压缩机
IT202000006052A1 (it) * 2020-03-23 2021-09-23 Motovario S P A Motore a riluttanza autoavviante.
CN112653265B (zh) * 2020-12-17 2022-09-13 珠海格力电器股份有限公司 转子结构、电机和转子加工方法
CN112701818B (zh) * 2020-12-17 2021-12-24 珠海格力电器股份有限公司 转子结构、电机和转子加工方法
US11973370B2 (en) * 2021-03-15 2024-04-30 Anhui Meizhi Precision Manufacturing Co., Ltd. Motor, compressor and refrigeration device
CN113964969A (zh) * 2021-11-19 2022-01-21 珠海格力电器股份有限公司 电机转子和自起动同步磁阻电机
CN114598060A (zh) * 2022-01-26 2022-06-07 珠海格力电器股份有限公司 电机转子及其自起动同步磁阻电机、压缩机

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5831367A (en) * 1997-02-13 1998-11-03 Emerson Electric Co. Line-start reluctance motor with grain-oriented rotor laminations
JP2001258222A (ja) * 2000-03-10 2001-09-21 Mitsubishi Electric Corp リラクタンスモータ
CN1726629A (zh) * 2002-12-12 2006-01-25 Lg电子株式会社 直接起动磁阻电动机的转子
CN1255925C (zh) 2001-11-12 2006-05-10 三菱电机株式会社 同步感应电动机,压缩机
CN108110920A (zh) * 2017-12-14 2018-06-01 珠海格力节能环保制冷技术研究中心有限公司 异步起动同步磁阻电机转子、电机及压缩机
CN109328425A (zh) * 2016-07-01 2019-02-12 Abb瑞士股份有限公司 用于同步磁阻电机的转子、电机以及转子的制造方法
CN110112846A (zh) * 2019-06-19 2019-08-09 珠海格力电器股份有限公司 同步磁阻电机转子结构、电机及压缩机
CN110138117A (zh) * 2019-06-19 2019-08-16 珠海格力电器股份有限公司 同步磁阻电机转子结构、电机及转子结构制造的方法
CN110149015A (zh) * 2019-06-19 2019-08-20 珠海格力电器股份有限公司 直接起动同步磁阻电机转子结构、电机
CN209805521U (zh) * 2019-06-19 2019-12-17 珠海格力电器股份有限公司 直接起动同步磁阻电机转子结构、电机
CN209805523U (zh) * 2019-06-19 2019-12-17 珠海格力电器股份有限公司 自起动同步磁阻电机转子结构、电机及压缩机

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002136074A (ja) * 2000-10-30 2002-05-10 Matsushita Electric Ind Co Ltd ロータコア
JP2005006416A (ja) * 2003-06-12 2005-01-06 Mitsubishi Electric Corp 自己始動型リラクタンスモータ
JP4193726B2 (ja) * 2004-02-24 2008-12-10 三菱電機株式会社 同期誘導電動機の回転子及び圧縮機
KR100876173B1 (ko) * 2006-12-28 2008-12-31 주식회사 포스코 방향성 전기강판의 자기이방특성을 이용한 릴럭턴스 모터용회전자 제조방법
JP2015159706A (ja) 2014-01-22 2015-09-03 日本精工株式会社 電動機、電動パワーステアリング装置及び車両
DE102014215304A1 (de) * 2014-08-04 2016-02-04 Ksb Aktiengesellschaft Rotor, Reluktanzmaschine und Herstellungsverfahren für Rotor
DE102014215303A1 (de) 2014-08-04 2016-02-04 Ksb Aktiengesellschaft Rotor und Reluktanzmaschine
JP6796449B2 (ja) 2016-10-21 2020-12-09 東芝産業機器システム株式会社 同期リラクタンス型回転電機

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5831367A (en) * 1997-02-13 1998-11-03 Emerson Electric Co. Line-start reluctance motor with grain-oriented rotor laminations
JP2001258222A (ja) * 2000-03-10 2001-09-21 Mitsubishi Electric Corp リラクタンスモータ
CN1255925C (zh) 2001-11-12 2006-05-10 三菱电机株式会社 同步感应电动机,压缩机
CN1726629A (zh) * 2002-12-12 2006-01-25 Lg电子株式会社 直接起动磁阻电动机的转子
CN109328425A (zh) * 2016-07-01 2019-02-12 Abb瑞士股份有限公司 用于同步磁阻电机的转子、电机以及转子的制造方法
CN109347223A (zh) * 2017-12-14 2019-02-15 珠海格力节能环保制冷技术研究中心有限公司 异步起动同步磁阻电机转子结构、电机及压缩机
CN108110920A (zh) * 2017-12-14 2018-06-01 珠海格力节能环保制冷技术研究中心有限公司 异步起动同步磁阻电机转子、电机及压缩机
CN109586435A (zh) * 2017-12-14 2019-04-05 珠海格力节能环保制冷技术研究中心有限公司 异步起动同步磁阻电机转子、电机及压缩机
CN110112846A (zh) * 2019-06-19 2019-08-09 珠海格力电器股份有限公司 同步磁阻电机转子结构、电机及压缩机
CN110138117A (zh) * 2019-06-19 2019-08-16 珠海格力电器股份有限公司 同步磁阻电机转子结构、电机及转子结构制造的方法
CN110149015A (zh) * 2019-06-19 2019-08-20 珠海格力电器股份有限公司 直接起动同步磁阻电机转子结构、电机
CN209805521U (zh) * 2019-06-19 2019-12-17 珠海格力电器股份有限公司 直接起动同步磁阻电机转子结构、电机
CN209805523U (zh) * 2019-06-19 2019-12-17 珠海格力电器股份有限公司 自起动同步磁阻电机转子结构、电机及压缩机

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3923449A4

Also Published As

Publication number Publication date
EP3923449B1 (en) 2023-02-22
US11942840B2 (en) 2024-03-26
EP3923449A1 (en) 2021-12-15
US20220173644A1 (en) 2022-06-02
CN110112846B (zh) 2023-12-08
JP2022537089A (ja) 2022-08-24
CN110112846A (zh) 2019-08-09
EP3923449A4 (en) 2022-03-30

Similar Documents

Publication Publication Date Title
WO2020253191A1 (zh) 自起动同步磁阻电机转子结构、电机及压缩机
WO2020253203A1 (zh) 直接起动同步磁阻电机转子结构、电机及转子结构制造的方法
RU2689311C1 (ru) Вращающаяся электрическая машина
JP7482902B2 (ja) ラインスタート同期リラクタンスモータの回転子の構造、モータ、および圧縮機
US12095311B2 (en) Direct starting synchronous reluctance motor rotor and motor
JP2006254552A (ja) 同期誘導電動機の回転子及び圧縮機
CN110112847B (zh) 直接起动同步磁阻电机转子结构及具有其的电机
US11777346B2 (en) Rotor assembly and motor
JP2006166688A (ja) 永久磁石電動機
WO2020253192A1 (zh) 异步起动同步磁阻电机转子结构、电机及压缩机
WO2020253200A1 (zh) 自起动同步磁阻电机及具有其的压缩机
EP2658091A2 (en) Rotor assembly
CN210839094U (zh) 直接起动同步磁阻电机转子结构、电机
CN112671127B (zh) 转子结构、电机及转子加工方法
WO2020253196A1 (zh) 直接起动同步磁阻电机转子结构、电机及压缩机
CN209805521U (zh) 直接起动同步磁阻电机转子结构、电机
EP3926796A1 (en) Rotor structure of self-starting synchronous reluctance motor and motor having same
CN110149014B (zh) 自起动同步磁阻电机转子结构及具有其的电机
CN209805522U (zh) 自起动同步磁阻电机转子结构及具有其的电机
CN209805523U (zh) 自起动同步磁阻电机转子结构、电机及压缩机
CN109347233B (zh) 带空气磁障的永磁同步电机转子
CN209805640U (zh) 自起动同步磁阻电机及具有其的压缩机
US10404109B2 (en) Single phase permanent magnet motor and stator core

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19933449

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021553784

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019933449

Country of ref document: EP

Effective date: 20210910

NENP Non-entry into the national phase

Ref country code: DE