WO2020253200A1 - 自起动同步磁阻电机及具有其的压缩机 - Google Patents

自起动同步磁阻电机及具有其的压缩机 Download PDF

Info

Publication number
WO2020253200A1
WO2020253200A1 PCT/CN2019/128872 CN2019128872W WO2020253200A1 WO 2020253200 A1 WO2020253200 A1 WO 2020253200A1 CN 2019128872 W CN2019128872 W CN 2019128872W WO 2020253200 A1 WO2020253200 A1 WO 2020253200A1
Authority
WO
WIPO (PCT)
Prior art keywords
groove
axis
rotor core
self
reluctance motor
Prior art date
Application number
PCT/CN2019/128872
Other languages
English (en)
French (fr)
Inventor
陈彬
胡余生
肖勇
史进飞
余钦宏
李霞
Original Assignee
珠海格力电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力电器股份有限公司 filed Critical 珠海格力电器股份有限公司
Priority to EP19933483.0A priority Critical patent/EP3926794A4/en
Publication of WO2020253200A1 publication Critical patent/WO2020253200A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K19/00Synchronous motors or generators
    • H02K19/02Synchronous motors
    • H02K19/10Synchronous motors for multi-phase current
    • H02K19/103Motors having windings on the stator and a variable reluctance soft-iron rotor without windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/14Stator cores with salient poles
    • H02K1/146Stator cores with salient poles consisting of a generally annular yoke with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/24Rotor cores with salient poles ; Variable reluctance rotors
    • H02K1/246Variable reluctance rotors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/26Rotor cores with slots for windings
    • H02K1/265Shape, form or location of the slots
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K19/00Synchronous motors or generators
    • H02K19/02Synchronous motors
    • H02K19/14Synchronous motors having additional short-circuited windings for starting as asynchronous motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information

Definitions

  • This application relates to the technical field of compressor equipment, and in particular, to a self-starting synchronous reluctance motor and a compressor having the same.
  • This application claims the priority of a patent application filed to the State Intellectual Property Office of China on June 19, 2019 with the application number 201910533865.7 and the invention title "Self-starting synchronous reluctance motor and compressor with the same”.
  • the self-starting synchronous reluctance motor combines the structural characteristics of an induction motor and a self-starting synchronous reluctance motor.
  • the starting is achieved through the induction of the squirrel cage, and the reluctance torque is generated by the rotor d and q inductance to achieve constant speed operation. Enter the power supply to achieve starting operation.
  • the self-starting synchronous reluctance motor has no rare earth permanent magnet materials and no demagnetization problem.
  • the motor has low cost and good reliability; compared with asynchronous motors, it has high efficiency and constant speed.
  • the patent publication number CN 103208894 A discloses a rotor structure.
  • the outer circumference of the rotor is provided with slots (grooves) in the q-axis direction, thereby increasing the magnetic resistance in the q-axis direction and reducing the q-axis Inductance, thereby increasing the difference in inductance between d and q of the motor, and increasing the torque of the motor; however, the squirrel cage at the groove is cut, resulting in poor starting ability of the motor, and the groove design does not consider the law of the relationship with the stator cogging, and the effect is not good.
  • the patent number CN 1255925C provides an inexpensive and easy-to-start synchronous induction motor and a manufacturing device and method for the synchronous induction motor.
  • the rotor is provided with a d-axis in the direction in which the magnetic flux easily flows, and the magnetic flux is difficult to flow through.
  • At least a pair of slit portions of the two-pole magnetic pole protrusions with the q-axis of the direction being 90 degrees, and a plurality of slit portions arranged on the outer peripheral side of the slit portion, and the slit portion and the slit portion are filled with conductivity material.
  • the slit portions are formed in a linear shape, and the slit portions are arranged radially at equal intervals in the circumferential direction.
  • the slot portions are arranged radially at equal intervals, the magnetic flux direction between the slot portions is perpendicular to the radial flow of the rotor surface, and the slot portions hinder the flow of magnetic flux in the d-axis direction, especially the closer to the q-axis In the slot, the d-axis magnetic flux obstruction is more obvious, and the q-axis magnetic flux flow is smoother, so the difference between the d-axis and q-axis magnetic flux is not obvious, the salient pole ratio is not large, and the motor output and efficiency are insufficient.
  • the slit portion is made into a straight shape, the rotor center has a shaft hole, and the internal space of the d-axis rotor is very large, and the internal space of the rotor is not well used to provide the slit portion to increase the salient pole ratio of the motor.
  • the main purpose of this application is to provide a self-starting synchronous reluctance motor and a compressor with the same to solve the problem of low motor efficiency in the prior art.
  • the magnetic flux blocking portion is a q-axis filling slot opened at the q-axis, and the q-axis filling slot extends along the circumferential direction of the rotor core.
  • the magnetic flux blocking portion includes: a q-axis filling groove, the q-axis filling groove is opened at the q-axis; a first groove, the first groove is opened on the outer circumferential surface of the rotor core, the first groove and the q-axis The first end of the filling groove is arranged adjacent to each other; the second groove is provided on the outer circumferential surface of the rotor core, and the second groove is arranged adjacent to the second end of the q-axis filling groove.
  • first groove, the q-axis filling groove, and the second groove are arranged symmetrically about the q-axis, and the cross-sections of the first groove and the second groove are rectangular, elliptical or circular.
  • the total width of the first groove and the second groove in the circumferential direction of the rotor core is smaller than the width of the q-axis filling groove in the circumferential direction of the rotor core.
  • the depth of the first groove and/or the second groove in the radial direction of the rotor core is H, where 0.5 ⁇ H ⁇ 10 ⁇ , where ⁇ is the distance between the stator core and the rotor core The width of the air gap.
  • the magnetic flux blocking portion is a third groove opened on the outer circumferential surface of the rotor core, and the third groove extends along the circumferential direction of the rotor core.
  • the maximum depth of the third groove along the radial direction of the rotor core is H, where 0.5 ⁇ H ⁇ 10 ⁇ , where ⁇ is the width of the air gap between the stator core and the rotor core.
  • the third groove shape is a structure composed of at least one of a straight line segment or an arc line segment.
  • a plurality of slit grooves are provided on the rotor core, and both ends of each slit groove are provided with a filling groove, and the extending direction of the filling groove is parallel to the d-axis of the rotor core or arranged at an angle.
  • the slit groove is composed of a partial arc section and/or a straight section, and the arc section is arranged protrudingly toward the side away from the shaft hole of the rotor core, and/or the width of the slit groove is along both sides of the q axis Set incrementally.
  • the slit groove has an arc section, and the arc arc of the arc section of the slit groove is gradually reduced in a radial direction away from the rotor core shaft hole.
  • the slit groove has a straight section and an arc section, the straight section of the slit groove is located at both ends of the arc section, and the length of the straight section is gradually reduced in the radial direction away from the rotor core shaft hole.
  • the straight section of the slit groove extends along the d-axis direction.
  • the width of the slit groove is gradually increased along both sides of the q axis.
  • a reinforcing rib is provided between the end of the slot and its corresponding filling groove, the width of the reinforcing rib is L4, where 0.5 ⁇ L4 ⁇ , and ⁇ is the gas between the stator core and the rotor core. Gap width.
  • the slit slot and the filling slots at both ends thereof are combined to form a magnetic barrier layer, and the magnetic barrier layer has at least two layers in the radial direction of the rotor core.
  • the sum of the radial width of all the slit slots on the q axis and the radial width of the q axis filling slot on the q axis, and the effective core width of the rotor core is Q1, where 0.3 ⁇ Q1 ⁇ 0.6.
  • all filling grooves, magnetic flux blocking parts and slit grooves, all filling grooves and q-axis filling grooves are filled with conductive and non-magnetic materials.
  • the filling groove and the q-axis filling groove are filled with conductive and non-magnetic materials that are connected to the conductive end rings at both ends of the rotor core to form a squirrel cage structure.
  • the material of the conductive end ring is filled with the filling groove and the q-axis filling groove.
  • the input materials are the same.
  • a compressor including a self-starting synchronous reluctance motor, and the self-starting synchronous reluctance motor is the aforementioned self-starting synchronous reluctance motor.
  • Number, N is rounded to an integer value. It can effectively increase the difference between the magnetic flux of the d-axis and the q-axis, increase the reluctance torque of the motor with the rotor structure, and improve the output torque and efficiency of the motor.
  • Fig. 1 shows a schematic structural diagram of a first embodiment of a self-starting synchronous reluctance motor according to the present application
  • Fig. 2 shows a schematic structural diagram of a second embodiment of a self-starting synchronous reluctance motor according to the present application
  • Fig. 3 shows a schematic structural diagram of a third embodiment of a self-starting synchronous reluctance motor according to the present application
  • Fig. 4 shows a schematic structural diagram of a fourth embodiment of a self-starting synchronous reluctance motor according to the present application
  • Fig. 5 shows a comparison diagram of the output force of the self-starting synchronous reluctance motor according to the present application and the motor in the prior art
  • Fig. 6 shows a schematic diagram of an embodiment of a magnetic circuit of a self-starting synchronous reluctance motor according to the present application
  • Fig. 7 shows a schematic diagram of an embodiment of a magnetic circuit of a motor in the prior art.
  • Fig. 8 shows the relationship between different magnetic barrier ratios and the output torque of the motor according to the present application.
  • Fig. 9 shows a schematic structural diagram of a fifth embodiment of a self-starting synchronous reluctance motor according to the present application.
  • Fig. 10 shows a schematic structural diagram of a sixth embodiment of a self-starting synchronous reluctance motor according to the present application
  • Fig. 11 shows a schematic diagram of a three-dimensional rotor of a fourth embodiment of a self-starting synchronous reluctance motor according to the present application.
  • the above drawings include the following reference signs:
  • spatially relative terms such as “above”, “above”, “above”, “above”, etc. can be used here to describe as shown in the figure. Shows the spatial positional relationship between a device or feature and other devices or features. It should be understood that the spatially relative terms are intended to encompass different orientations in use or operation other than the orientation of the device described in the figure. For example, if the device in the figure is inverted, then the device described as “above the other device or structure” or “above the other device or structure” will then be positioned as “below the other device or structure” or “on Under other devices or structures”. Thus, the exemplary term “above” can include both orientations “above” and “below”. The device can also be positioned in other different ways (rotated by 90 degrees or in other orientations), and the relative description of the space used here is explained accordingly.
  • a self-starting synchronous reluctance motor is provided.
  • the motor includes a stator core 10 and a rotor core 20.
  • a plurality of stator teeth 11 are provided on the inner peripheral surface of the stator core 10.
  • N is rounded to an integer value. It can effectively increase the difference between the magnetic flux of the d-axis and the q-axis, increase the reluctance torque of the motor with the rotor structure, and improve the output torque and efficiency of the motor.
  • the magnetic flux blocking portion is a q-axis filling slot 21 opened at the q-axis, and the q-axis filling slot 21 extends along the circumferential direction of the rotor core 20.
  • the q-axis filling slot 21 can form a magnetic barrier structure. This arrangement can increase the magnetic flux difference between the q-axis and the d-axis, thereby increasing the rotating torque of the motor.
  • the magnetic flux blocking portion includes a q-axis filling groove 21, a first groove 22 and a second groove 23.
  • the q-axis filling groove 21 is opened at the q-axis.
  • the first groove 22 is opened on the outer circumferential surface of the rotor core 20, and the first groove 22 is arranged adjacent to the first end of the q-axis filling groove 21.
  • the second groove 23 is opened on the outer circumferential surface of the rotor core 20, and the second groove 23 is arranged adjacent to the second end of the q-axis filling groove 21.
  • the first groove 22, the q-axis filling groove 21, and the second groove 23 are symmetrically arranged about the q-axis.
  • the total width of the first groove 22 and the second groove 23 in the circumferential direction of the rotor is smaller than the width of the q-axis filling groove 21 in the circumferential direction of the rotor.
  • This setting can also reduce the torque ripple of the motor and improve the efficiency of the motor, and at the same time help to improve the starting ability of the motor.
  • the first groove 22 and the second groove 23 may have various shapes such as a rectangle, a circle, or an ellipse.
  • the depth of the first groove 22 and the second groove 23 in the radial direction of the rotor core 20 can be set to H, where 0.5 ⁇ H ⁇ 10 ⁇ , where ⁇ is The width of the air gap between the stator core 10 and the rotor core 20.
  • the magnetic flux blocking portion is a third groove 24 opened on the outer circumferential surface of the rotor core 20, the third groove 24 extends along the circumferential direction of the rotor core 20, and the third groove
  • the shape of 24 is not limited, and multiple structures can be composed of at least one of straight line segments and arc line segments, as shown in Figs. 9 and 10.
  • the maximum depth of the third groove 24 along the radial direction of the rotor core 20 is H, where 0.5 ⁇ H ⁇ 10 ⁇ , where ⁇ is the air gap width between the stator core 10 and the rotor core 20. This setting can also reduce the torque ripple of the motor and improve the efficiency of the motor.
  • the rotor core 20 is provided with a plurality of slit grooves 30, and both ends of each slit groove 30 are provided with a filling groove 40 to form a magnetic barrier layer.
  • the extending direction of the filling groove 40 is parallel to the d-axis of the rotor core 20 or arranged at an angle, wherein the included angle is small, so that the extending direction of the filling groove 40 is substantially parallel to the d-axis.
  • the slit slot 30 is composed of a partial arc section and/or a straight section, and the arc section is protrudingly arranged toward the side away from the shaft hole of the rotor core 20.
  • the arc of the slot 30 gradually decreases in the radial direction away from the shaft hole of the rotor core 20.
  • the straight line segments at both ends of the slit groove 30 generally extend along the d-axis direction.
  • the length of the straight section gradually decreases in the radial direction away from the shaft hole of the rotor core 20, and there is even no straight section.
  • the width of the slit groove 30 is gradually increased along both sides of the q axis.
  • a reinforcing rib 50 is provided between the end of the slot 30 and its corresponding filling groove 40.
  • the width of the reinforcing rib 50 is L4, where 0.5 ⁇ L4 ⁇ , and ⁇ is the difference between the stator core 10 and the rotor core 20
  • the slit groove 30 and the filling groove 40 at both ends thereof are combined to form a magnetic barrier layer, and the magnetic barrier layer has at least two layers in the radial direction of the rotor.
  • the sum of the radial width of all the slit slots 30 on the q axis and the radial width of the q axis filling slot 21 on the q axis, and the ratio of the effective core width in the radial direction of the rotor is Q1, where 0.3 ⁇ Q1 ⁇ 0.6 . More preferably, the ratio is 0.38-0.45, so set a proper magnetic barrier ratio to avoid magnetic field saturation and effectively increase the motor output torque.
  • the effective core width refers to the width from the inner circle of the rotor shaft hole to the outer edge of the rotor core.
  • All the filling grooves 40, the magnetic flux blocking portion and the slit groove 30, all the filling grooves 40 and the q-axis filling groove 21 are filled with conductive and non-magnetic materials.
  • the conductive and non-magnetic material is aluminum or aluminum alloy.
  • the filling groove 40 and the q-axis filling groove 21 are filled with conductive and non-magnetic materials to communicate with the conductive end rings 25 at both ends of the rotor core to form a squirrel cage structure.
  • the material of the conductive end ring 25 is the same as the material filled in the filling groove 40 and the q-axis filling groove 21.
  • the magnetic barrier layer is provided to hinder the q-axis magnetic flux, increase the inductance difference between the d-axis and the q-axis of the motor, and improve the efficiency of the motor.
  • the motor mechanism in the above embodiment can also be used in the technical field of compressor equipment, that is, according to another aspect of the present application, a compressor is provided.
  • the compressor includes a self-starting synchronous reluctance motor, and the self-starting synchronous reluctance motor is the above-mentioned self-starting synchronous reluctance motor.
  • the self-starting synchronous reluctance motor rotor structure and motor provided in the present application can increase the difference between the magnetic flux of the d-axis and the q-axis, solve the problem of low efficiency and low speed of the asynchronous motor, and improve the output power and efficiency of the motor.
  • the motor is a self-starting synchronous reluctance two-pole motor, which includes a stator iron core laminated by stator punching pieces, and a rotor iron core laminated by rotor punching pieces with a specific structure.
  • the rotor punching piece is provided with multiple sets of slit grooves and filling grooves, q-axis filling grooves, and a central shaft hole matched with the rotating shaft.
  • a magnetic flux blocking part is provided in the q-axis direction on the outer circumference of the rotor punching piece.
  • the total circumferential width of the magnetic flux blocking part is L, which is greater than the outer width of the N stator teeth, and is less than N+2, that is, there are 2 stators on the left and right of the N stator teeth.
  • the width of the tooth inner side, N Z/8, Z is the number of stator teeth, and N is rounded to the nearest integer.
  • the total circumferential width L of the magnetic flux blocking portion is greater than the outer width of the three stator teeth, as shown in Figure 1, L1 is less than
  • the width of the inner side of the 5 stator teeth is L2 as shown in Figure 1, that is, L satisfies L1 ⁇ L ⁇ L2.
  • Figures 6 and 7 show the comparison of the influence of the magnetic flux blocking part on the q-axis magnetic field.
  • the total circumferential width L of the magnetic flux blocking part is small, a large amount of magnetic flux enters the q-axis 3 stator teeth from both sides of the magnetic flux blocking part.
  • the q-axis magnetic flux is relatively large.
  • the magnetic flux blocking part can block the 3 stator teeth, effectively increasing the magnetic resistance in the q-axis direction, and greatly reducing the magnetic flux entering the q-axis 3 stator teeth, as shown in Figure 6, Good effect of reducing magnetic flux.
  • the magnetic flux blocking portion may be an elongated q-axis filling groove extending along the d-axis direction, and its width is the q-axis filling groove width L, as shown in FIG. 1, satisfying L1 ⁇ L ⁇ L2.
  • the magnetic flux blocking portion may also be a long strip filled groove and two grooves, and its width L is the maximum width between the outermost edges of the two grooves, as shown in FIG. 2, which satisfies L1 ⁇ L ⁇ L2.
  • the q-axis filling groove is located in the middle of the two grooves, and the two grooves are arranged symmetrically about the q-axis.
  • the magnetic flux blocking portion is a large groove, and its width L is the width of both sides of the large groove, which satisfies L1 ⁇ L ⁇ L2.
  • the above-mentioned magnetic flux blocking part is different from the magnetic flux blocking part, and the width L of the magnetic flux blocking part satisfies L1 ⁇ L ⁇ L2, which can increase the magnetic resistance in the q-axis direction, reduce the q-axis magnetic flux, and increase d, q
  • the difference in shaft flux will eventually increase the reluctance torque of the motor and increase the efficiency of the motor.
  • the circumferential radial depth of the groove and the large groove can be set to H to satisfy 0.5 ⁇ H ⁇ 10 ⁇ , where ⁇ is the width of the air gap between the stator core and the rotor core. More preferably, 2 ⁇ H ⁇ 5 ⁇ , such a setting ensures that the magnetic resistance of the magnetic flux blocking part is large enough to reduce the q-axis magnetic flux.
  • the extending direction of the filling groove at both ends of the slit groove is substantially parallel to the d-axis, so that the d-axis magnetic flux can flow smoothly in the d-axis direction.
  • the filling groove is located at both ends of the slit groove and is symmetrical about the d axis or the q axis.
  • the slit groove is composed of an arc section or a straight section and a circular arc section, and the arc of the slit groove gradually decreases in the direction away from the center of the rotating shaft.
  • the extending direction of the straight section of the slot is approximately parallel to the d-axis.
  • the arc of the slit groove protrudes toward the side away from the center of the rotating shaft, the slit width of the slit groove on the q axis is L3, and the width L3 of the slit groove gradually increases from the q axis to both sides. In this way, the rotor space is effectively used, the magnetic flux saturation is reduced, and the d-axis magnetic flux is increased.
  • a dividing rib between the filling groove and the corresponding slit groove, the width of which is L4, which satisfies: 0.5 ⁇ L4 ⁇ .
  • a suitable dividing rib is set to divide the slit groove and the filling groove, while ensuring a certain width, ensuring mechanical strength and reducing q-axis magnetic leakage.
  • the filling slot and the corresponding slit slot are combined to form a magnetic barrier layer.
  • the magnetic barrier layer is arranged in at least two layers in the radial direction of the rotor, which increases the saliency of the motor, increases the reluctance torque, and improves efficiency.
  • All filling grooves, q-axis filling grooves and slit grooves, at least all filling grooves and q-axis filling grooves are filled with conductive and non-magnetic materials.
  • the conductive and non-magnetic material is aluminum or aluminum alloy.
  • Fig. 5 shows a comparison between the technical solution of the present application and the torque curve of the prior art. The technical solution of the present application has a significant increase in average torque and a significant effect.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Synchronous Machinery (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

本申请提供了一种自起动同步磁阻电机及具有其的压缩机。自起动同步磁阻电机包括定子铁芯,定子铁芯的内周面设置有多个定子齿;转子铁芯,转子铁芯的q轴处设置有磁通阻挡部,磁通阻挡部沿转子铁芯的周向延伸设置,磁通阻挡部的两端分别位于相邻的两个定子齿的齿靴形成的间隙之间,磁通阻挡部沿转子铁芯的径向方向朝向定子铁芯一侧的投影线覆盖N个定子齿,其中,N=Z/8,Z为定子齿的个数,N为四舍五入取整数值。能够有效增加d轴、q轴磁通量之差,增加具有该转子结构的电机磁阻转矩,提高电机输出转矩及效率。

Description

自起动同步磁阻电机及具有其的压缩机 技术领域
本申请涉及压缩机设备技术领域,具体而言,涉及一种自起动同步磁阻电机及具有其的压缩机。本申请要求于2019年6月19日提交至中国国家知识产权局、申请号为201910533865.7、发明名称为“自起动同步磁阻电机及具有其的压缩机”的专利申请的优先权。
背景技术
自起动同步磁阻电机结合了感应电机与自起动同步磁阻电机的结构特点,通过鼠笼感应产生力矩实现起动,通过转子d、q电感差距产生磁阻转矩实现恒转速运行,能够直接通入电源实现起动运行。自起动同步磁阻电机与自起动永磁电机相比,没有稀土永磁材料,也不存在退磁问题,电机成本低,可靠性好;与异步电机相比,效率高,转速恒定。
而现有技术中,专利公开号为CN 103208894 A的专利公开了一种转子结构,转子外周侧在q轴方向设置有切槽(凹槽),从而增加q轴方向磁阻,减小q轴电感,从而增加电机d、q电感差,提升电机转矩;但是,由于凹槽处鼠笼被切除,导致电机起动能力变差,而且凹槽设计没有考虑与定子齿槽作用关系规律,效果不佳。专利号为CN 1255925C的专利提供一种廉价的容易起动的同步感应电动机及同步感应电动机的制造装置和制造方法,在转子上设置磁通容易流过的方向的d轴及作为磁通难以流过的方向的q轴成90度的两极的磁极突起的至少一对狭缝部,以及配置在前述狭缝部的外周侧的多个狭槽部,在狭缝部和前述狭槽部内填充导电性材料。狭缝部制成为直线的形状,狭槽部沿圆周方向等间隔放射状地配置。该专利中,由于狭槽部等间隔放射状地配置,使得狭槽部之间的磁通方向垂直转子表面径向流动,狭槽部阻碍了磁通d轴方向流通,特别是越靠近q轴的狭槽部,d轴磁通阻碍越明显,而且q轴磁通流通更顺畅,因此d、q轴磁通量相差不明显,凸极比不大,电机出力及效率不够。另外,狭缝部制成为直线的形状,转子中心有轴孔,d轴转子内部空间很大,没有很好的利用转子内部空间来设置狭缝部来增大电机凸极比。
发明内容
本申请的主要目的在于提供一种自起动同步磁阻电机及具有其的压缩机,以解决现有技术中电机效率低的问题。
为了实现上述目的,根据本申请的一个方面,提供了一种自起动同步磁阻电机,包括:定子铁芯,定子铁芯的内周面设置有多个定子齿;转子铁芯,转子铁芯的q轴处设置有磁通阻挡部,磁通阻挡部沿转子铁芯的周向延伸设置,磁通阻挡部的两端分别位于相邻的两个定子齿的齿靴形成的间隙之间,磁通阻挡部沿转子铁芯的径向方向朝向定子铁芯一侧的投影线覆盖N个定子齿,其中,N=Z/8,Z为定子齿的个数,N为四舍五入取整数值。
进一步地,磁通阻挡部为开设于q轴处的q轴填充槽,q轴填充槽沿转子铁芯周向延伸设置。
进一步地,磁通阻挡部包括:q轴填充槽,q轴填充槽开设于q轴处;第一凹槽,第一凹槽开设于转子铁芯的外周面上,第一凹槽与q轴填充槽的第一端相邻地设置;第二凹槽,第二凹槽开设于转子铁芯的外周面上,第二凹槽与q轴填充槽的第二端相邻地设置。
进一步地,第一凹槽、q轴填充槽和第二凹槽关于q轴对称地设置,第一凹槽和第二凹槽的横截面为矩形椭圆形或圆形。
进一步地,第一凹槽和第二凹槽在转子铁芯圆周方向的总宽度小于q轴填充槽在转子铁芯圆周方向的宽度。
进一步地,第一凹槽和/或第二凹槽沿转子铁芯的径向方向的深度为H,其中,0.5δ≤H≤10δ,其中,δ为定子铁芯与转子铁芯之间的气隙宽度。
进一步地,磁通阻挡部为开设于转子铁芯的外周面的第三凹槽,第三凹槽沿转子铁芯周向延伸设置。
进一步地,第三凹槽的沿转子铁芯的径向方向的最大深度为H,其中,0.5δ≤H≤10δ,其中,δ为定子铁芯与转子铁芯之间的气隙宽度。
进一步地,第三凹槽形状为直线段或弧线段中的至少一种组成的结构。
进一步地,转子铁芯上开设有多个狭缝槽,各狭缝槽的两端均设置有一个填充槽,填充槽的延伸方向与转子铁芯的d轴相平行或具有夹角地设置。
进一步地,狭缝槽由部分弧形段和/或直线段组成,弧形段朝向远离转子铁芯的轴孔一侧凸出地设置,和/或,狭缝槽的宽度沿q轴两侧逐渐增加地设置。
进一步地,狭缝槽具有弧形段,狭缝槽的弧形段的弧形弧度沿远离转子铁芯轴孔的径向方向逐渐减小地设置。
进一步地,狭缝槽具有直线段和弧形段,狭缝槽的直线段位于弧形段的两端,直线段的长度沿远离转子铁芯轴孔的径向方向逐渐减小地设置。
进一步地,狭缝槽的直线段沿d轴方向延伸。
进一步地,狭缝槽的宽度沿q轴两侧逐渐增加地设置。
进一步地,狭缝槽的端部与其对应的填充槽之间设置有加强筋,加强筋的宽度为L4,其中,0.5δ≤L4≤δ,δ为定子铁芯与转子铁芯之间的气隙宽度。
进一步地,填充槽与转子铁芯的外周缘之间具有间距L4,其中,0.5δ≤L4≤δ。
进一步地,狭缝槽与其两端的填充槽组合成磁障层,磁障层在转子铁芯的径向方向上至少为两层。
进一步地,所有狭缝槽在q轴上的径向宽度与q轴填充槽在q轴上的径向宽度之和,与转子铁芯的有效铁芯宽度的比值为Q1,其中,0.3≤Q1≤0.6。
进一步地,所有填充槽及磁通阻挡部及狭缝槽,所有填充槽及q轴填充槽中填入导电不导磁的材料。
进一步地,填充槽及q轴填充槽中填入导电不导磁的材料与转子铁芯两端的导电端环连通,形成鼠笼结构,导电端环的材料与填充槽及q轴填充槽中填入材料一致。
根据本申请的另一方面,提供了一种压缩机,包括自起动同步磁阻电机,自起动同步磁阻电机为上述的自起动同步磁阻电机。
应用本申请的技术方案,通过将磁通阻挡部沿转子铁芯的径向方向朝向定子铁芯一侧的投影线覆盖N个定子齿,其中,N=Z/8,Z为定子齿的个数,N为四舍五入取整数值。能够有效增加d轴、q轴磁通量之差,增加具有该转子结构的电机磁阻转矩,提高电机输出转矩及效率。
附图说明
构成本申请的一部分的说明书附图用来提供对本申请的进一步理解,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1示出了根据本申请的自起动同步磁阻电机的第一实施例的结构示意图;
图2示出了根据本申请的自起动同步磁阻电机的第二实施例的结构示意图;
图3示出了根据本申请的自起动同步磁阻电机的第三实施例的结构示意图;
图4示出了根据本申请的自起动同步磁阻电机的第四实施例的结构示意图;
图5示出了根据本申请的自起动同步磁阻电机与现有技术中的电机输出力的对比图;
图6示出了根据本申请的自起动同步磁阻电机的磁路的实施例示意图;
图7示出了现有技术中电机的磁路的实施例示意图。
图8示出了根据本申请的电机的不同磁障占比与电机输出扭矩的关系图。
图9示出了根据本申请的自起动同步磁阻电机的第五实施例的结构示意图;
图10示出了根据本申请的自起动同步磁阻电机的第六实施例的结构示意图;
图11示出了根据本申请的自起动同步磁阻电机的第四实施例的三维转子示意图。其中,上述附图包括以下附图标记:
10、定子铁芯;11、定子齿;
20、转子铁芯;21、q轴填充槽;22、第一凹槽;23、第二凹槽;24、第三凹槽;
30、狭缝槽;
40、填充槽;
50、加强筋。
具体实施方式
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本申请。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
需要说明的是,本申请的说明书和权利要求书及附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,以便这里描述的本申请的实施方式例如能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
为了便于描述,在这里可以使用空间相对术语,如“在……之上”、“在……上方”、“在……上表面”、“上面的”等,用来描述如在图中所示的一个器件或特征与其他器件或特征的空间位置关系。应当理解的是,空间相对术语旨在包含除了器件在图中所描述的方位之外的在使用或操作中的不同方位。例如,如果附图中的器件被倒置,则描述为“在其他器件或构造上方”或“在其他器件或构造之上”的器件之后将被定位为“在其他器件或构造下方”或“在其他器件或构造之下”。因而,示例性术语“在……上方”可以包括“在……上方”和“在……下方”两种方位。该器件也可以其他不同方式定位(旋转90度或处于其他方位),并且对这里所使用的空间相对描述作出相应解释。
现在,将参照附图更详细地描述根据本申请的示例性实施方式。然而,这些示例性实施方式可以由多种不同的形式来实施,并且不应当被解释为只限于这里所阐述的实施方式。应当理解的是,提供这些实施方式是为了使得本申请的公开彻底且完整,并且将这些示例性实施方式的构思充分传达给本领域普通技术人员,在附图中,为了清楚起见,有可能扩大了层和区域的厚度,并且使用相同的附图标记表示相同的器件,因而将省略对它们的描述。
结合图1至图11所示,根据本申请的实施例,提供了一种自起动同步磁阻电机。
具体地,如图1所示,该电机包括定子铁芯10和转子铁芯20。定子铁芯10的内周面设置有多个定子齿11。转子铁芯20的q轴处设置有磁通阻挡部,磁通阻挡部沿转子铁芯20的 周向延伸设置,磁通阻挡部的两端分别位于相邻的两个定子齿11的齿靴形成的间隙之间,磁通阻挡部沿转子铁芯20的径向方向朝向定子铁芯10一侧的投影线覆盖N个定子齿11,其中,N=Z/8,Z为定子齿11的个数,N为四舍五入取整数值。
在本实施例中,通过将磁通阻挡部沿转子铁芯20的径向方向朝向定子铁芯10一侧的投影线覆盖N个定子齿11,其中,N=Z/8,Z为定子齿11的个数,N为四舍五入取整数值。能够有效增加d轴、q轴磁通量之差,增加具有该转子结构的电机磁阻转矩,提高电机输出转矩及效率。
其中,磁通阻挡部为开设于q轴处的q轴填充槽21,q轴填充槽21沿转子铁芯20周向延伸设置。这样能够使得q轴填充槽21形成磁障结构,这样设置能够提高q轴与d轴之间的磁通之差,继而提高了电机的转动力矩。
根据本申请的一个实施例,如图2所示,磁通阻挡部包括q轴填充槽21、第一凹槽22和第二凹槽23。q轴填充槽21开设于q轴处。第一凹槽22开设于转子铁芯20的外周面上,第一凹槽22与q轴填充槽21的第一端相邻地设置。第二凹槽23开设于转子铁芯20的外周面上,第二凹槽23与q轴填充槽21的第二端相邻地设置。第一凹槽22、q轴填充槽21和第二凹槽23关于q轴对称地设置。第一凹槽22和所述第二凹槽23在转子圆周方向的总宽度小于q轴填充槽21在转子圆周方向的宽度。这样设置能够同样起到降低电机的转矩脉动提高电机效率的作用,同时有助于提升电机启动能力。其中,第一凹槽22和第二凹槽23可以是矩形、圆形或椭圆形等各种形状。
为了能够进一步提高该电机的效率,可以将第一凹槽22和第二凹槽23沿转子铁芯20的径向方向的深度设置为H,其中,0.5δ≤H≤10δ,其中,δ为定子铁芯10与转子铁芯20之间的气隙宽度。
如图3所示的实施例中,磁通阻挡部为开设于转子铁芯20的外周面的第三凹槽24,第三凹槽24沿转子铁芯20周向延伸设置,第三凹槽24形状不限,可由直线段和弧线段中的至少一种组成的多种结构,如图9、图10所示。第三凹槽24的沿转子铁芯20的径向方向的最大深度为H,其中,0.5δ≤H≤10δ,其中,δ为定子铁芯10与转子铁芯20之间的气隙宽度。这样设置能够同样起到降低电机的转矩脉动提高电机效率的作用。
进一步地,转子铁芯20上开设有多个狭缝槽30,各狭缝槽30的两端均设置有一个填充槽40以形成磁障层。填充槽40的延伸方向与转子铁芯20的d轴相平行或具有夹角地设置,其中该夹角较小,以使填充槽40的延伸方向与d轴大致平行。狭缝槽30由部分弧形段和/或直线段组成,弧形段朝向远离转子铁芯20的轴孔一侧凸出地设置。狭缝槽30的弧形弧度沿远离转子铁芯20轴孔的径向方向逐渐减小。狭缝槽30两端的直线段大体沿d轴方向延伸。直线段才长度沿远离转子铁芯20轴孔的径向方向逐渐减小,甚至没有直线段。狭缝槽30的宽度沿q轴两侧逐渐增加地设置。狭缝槽30的端部与其对应的填充槽40之间设置有加强筋50,加强筋50的宽度为L4,其中,0.5δ≤L4≤δ,δ为定子铁芯10与转子铁芯20之间的 气隙宽度。这样设置能够有效地利用转子空间,增加电机电感差,提高电机的效率,增加了电机的实用性。
进一步地狭缝槽30与其两端的填充槽40组合成磁障层,磁障层在转子径向方向上至少为两层。所有狭缝槽30在q轴上的径向宽度与q轴填充槽21在q轴上的径向宽度之和,与转子径向有效铁芯宽度的比值为Q1,其中,0.3≤Q1≤0.6。更优地,该比值为0.38-0.45,如此设置合适的磁障占比,避免磁场饱和,有效提升电机输出转矩,如图8所示,磁障比为0.42左右时电机出力最大,磁障比太大或太小,电机出力均会下降,合适的磁障比对电机出力影响较大。其中,有效铁芯宽度指的转子轴孔的内圆至转子铁芯外缘之间的宽度。
所有填充槽40及所述磁通阻挡部及狭缝槽30,所有填充槽40及q轴填充槽21中填入导电不导磁的材料。优选地,导电不导磁的材料为铝或者铝合金。填充槽40及q轴填充槽21中填入导电不导磁的材料与转子铁芯两端的导电端环25连通,形成鼠笼结构。导电端环25材料与填充槽40及q轴填充槽21中填入材料一致。设置磁障层,阻碍q轴磁通,增加电机d轴、q轴电感差,提升电机效率。设计合适的鼠笼结构帮助电机实现异步起动,提升电机起动能力。
上述实施例中的电机机构还可以用于压缩机设备技术领域,即根据本申请的另一方面,提供了一种压缩机。该压缩机包括自起动同步磁阻电机,自起动同步磁阻电机为上述的自起动同步磁阻电机。
具体地,本申请提供的自起动同步磁阻电机转子结构及电机,能够增加d轴、q轴磁通量之差,解决异步电机效率低,转速低的问题,提高电机输出功率及效率。该电机为自起动同步磁阻2极电机,包括由定子冲片叠压而成的定子铁芯,及由具有特定结构的转子冲片叠压而成的转子铁心。转子冲片上设置有多组狭缝槽和填充槽,q轴填充槽,以及和转轴配合的中心轴孔。转子冲片外周q轴方向上设置有磁通阻挡部,该磁通阻挡部圆周总宽度为L,L大于N个定子齿的外边宽度,小于N+2即位于N个定子齿左右2个定子齿内边宽度,N=Z/8,Z为定子齿数,N按四舍五入取整数值。
以24槽定子为例,此时N=Z/8=24/8=3,则所述磁通阻挡部圆周总宽度L大于3个定子齿的外边宽度,如图1中所示L1,小于5个定子齿内边宽度,如图1中所示L2,即L满足L1<L<L2。图6和图7所示为磁通阻挡部对q轴磁场影响对比,当磁通阻挡部圆周总宽度L较小时,大量磁通从磁通阻挡部两侧进入q轴3个定子齿,如图7所示,q轴磁通量较大。当L满足L1<L<L2时,磁通阻挡部能够遮挡3个定子齿,有效增加q轴方向的磁阻,使进入q轴3个定子齿的磁通量大幅降低,如图6所示,达到减小磁通的很好效果。
磁通阻挡部可以为一个沿着d轴方向延伸的长条形的q轴填充槽,其宽度即为q轴填充槽宽度L,如图1所示,满足L1<L<L2。磁通阻挡部也可以是一个长条形的填充槽和两个凹槽,其宽度L为两个凹槽最外边之间最大宽度,如图2所示,满足L1<L<L2。此时q轴填充槽位于两个凹槽中间,两个凹槽关于q轴对称布置。当然,如图3所示,磁通阻挡部为一个大凹槽,其宽度L为大凹槽两边宽度,满足L1<L<L2。
上述磁通阻挡部不同磁通阻挡部实施方式,其磁通阻挡部宽度L都满足L1<L<L2,都可以达到增加q轴方向的磁阻,降低q轴磁通量的效果,增加d、q轴磁通量之差,最终使电机磁阻转矩增大,电机效率提升。
若磁通阻挡部宽度过大,降低q轴磁通量的效果明显,但使得d轴定子齿较少,定子齿饱和,d轴磁通量减小,使得d、q轴磁通量无增加,达不到效果。所以可以将凹槽及大凹槽圆周径向深度设置为H,满足0.5δ≤H≤10δ,其中,δ为定子铁芯与转子铁心之间的气隙宽度。更优地,2δ≤H≤5δ,如此设置,保证磁通阻挡部磁阻足够大,降低q轴磁通量。
进一步地,狭缝槽两端的填充槽的延伸方向与d轴大致平行,使d轴磁通量在d轴方向顺畅流通。填充槽位于狭缝槽两端且关于d轴或q轴对称。狭缝槽为弧形段或直线段和圆弧段组成,而且狭缝槽的圆弧弧度按远离转轴中心方向逐渐减小。狭缝槽直线段延伸方向与d轴大致平行。狭缝槽圆弧朝向远离转轴中心的一侧突出,狭缝槽在q轴上的狭缝宽度为L3,而且狭缝槽的宽度L3从q轴往两边逐渐增大。如此有效利用转子空间,降低磁通饱和,提升d轴磁通量。
填充槽与对应的狭缝槽之间具有分割筋,其宽度为L4,满足:0.5δ≤L4≤δ。设置合适的分割筋将狭缝槽与填充槽分割,同时保证一定宽度,保证机械强度的同时减小q轴漏磁。填充槽与对应的狭缝槽组合成磁障层,磁障层在转子径向方向上至少布置两层以上,增加电机的凸极性,增加磁阻转矩,提升效率。所有填充槽及q轴填充槽及狭缝槽、至少所有填充槽及q轴填充槽中均注入导电不导磁的材料。优选地,导电不导磁的材料为铝或者铝合金。图5所示为本申请的技术方案与现有技术转矩曲线对比,本申请的技术方案平均转矩提升明显,效果明显。
除上述以外,还需要说明的是在本说明书中所谈到的“一个实施例”、“另一个实施例”、“实施例”等,指的是结合该实施例描述的具体特征、结构或者特点包括在本申请概括性描述的至少一个实施例中。在说明书中多个地方出现同种表述不是一定指的是同一个实施例。进一步来说,结合任一实施例描述一个具体特征、结构或者特点时,所要主张的是结合其他实施例来实现这种特征、结构或者特点也落在本申请的范围内。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (25)

  1. 一种自起动同步磁阻电机,其特征在于,包括:
    定子铁芯(10),所述定子铁芯(10)的内周面设置有多个定子齿(11);
    转子铁芯(20),所述转子铁芯(20)的q轴处设置有磁通阻挡部,所述磁通阻挡部沿所述转子铁芯(20)的周向延伸设置,所述磁通阻挡部的两端分别位于相邻的两个所述定子齿(11)的齿靴形成的间隙之间,所述磁通阻挡部沿所述转子铁芯(20)的径向方向朝向所述定子铁芯(10)一侧的投影线覆盖N个所述定子齿(11),其中,N=Z/8,Z为所述定子齿(11)的个数,N为四舍五入取整数值。
  2. 根据权利要求1所述的自起动同步磁阻电机,其特征在于,所述磁通阻挡部为开设于所述q轴处的q轴填充槽(21),所述q轴填充槽(21)沿所述转子铁芯(20)周向延伸设置。
  3. 根据权利要求1所述的自起动同步磁阻电机,其特征在于,所述磁通阻挡部包括:
    q轴填充槽(21),所述q轴填充槽(21)开设于所述q轴处;
    第一凹槽(22),所述第一凹槽(22)开设于所述转子铁芯(20)的外周面上,所述第一凹槽(22)与所述q轴填充槽(21)的第一端相邻地设置;
    第二凹槽(23),所述第二凹槽(23)开设于所述转子铁芯(20)的外周面上,所述第二凹槽(23)与所述q轴填充槽(21)的第二端相邻地设置。
  4. 根据权利要求3所述的自起动同步磁阻电机,其特征在于,所述第一凹槽(22)、所述q轴填充槽(21)和所述第二凹槽(23)关于所述q轴对称地设置,所述第一凹槽(22)和第二凹槽(23)的横截面为矩形椭圆形或圆形。
  5. 根据权利要求3所述的自起动同步磁阻电机,其特征在于,所述第一凹槽(22)和所述第二凹槽(23)在所述转子铁芯(20)圆周方向的总宽度小于所述q轴填充槽(21)在所述转子铁芯(20)圆周方向的宽度。
  6. 根据权利要求3或4所述的自起动同步磁阻电机,其特征在于,所述第一凹槽(22)或所述第二凹槽(23)沿所述转子铁芯(20)的径向方向的深度为H,其中,0.5δ≤H≤10δ,其中,δ为所述定子铁芯(10)与所述转子铁芯(20)之间的气隙宽度。
  7. 根据权利要求1所述的自起动同步磁阻电机,其特征在于,所述磁通阻挡部为开设于所述转子铁芯(20)的外周面的第三凹槽(24),所述第三凹槽(24)沿所述转子铁芯(20)周向延伸设置。
  8. 根据权利要求7所述的自起动同步磁阻电机,其特征在于,所述第三凹槽(24)的沿所述转子铁芯(20)的径向方向的最大深度为H,其中,0.5δ≤H≤10δ,其中,δ为所述定子铁芯(10)与所述转子铁芯(20)之间的气隙宽度。
  9. 根据权利要求7所述的自起动同步磁阻电机,其特征在于,所述第三凹槽(24)形状为直线段或弧线段中的至少一种组成的结构。
  10. 根据权利要求1所述的自起动同步磁阻电机,其特征在于,所述转子铁芯(20)上开设有多个狭缝槽(30),各所述狭缝槽(30)的两端均设置有一个填充槽(40),所述填充槽(40)的延伸方向与所述转子铁芯(20)的d轴相平行或具有夹角地设置。
  11. 根据权利要求10所述的自起动同步磁阻电机,其特征在于,所述狭缝槽(30)由部分弧形段或直线段组成,所述弧形段朝向远离所述转子铁芯(20)的轴孔一侧凸出地设置,或者,所述狭缝槽(30)的宽度沿所述q轴两侧逐渐增加地设置。
  12. 根据权利要求10所述的自起动同步磁阻电机,其特征在于,所述狭缝槽(30)具有弧形段,所述狭缝槽(30)的弧形段的弧形弧度沿远离所述转子铁芯(20)轴孔的径向方向逐渐减小地设置。
  13. 根据权利要求10所述的自起动同步磁阻电机,其特征在于,所述狭缝槽(30)具有直线段和弧形段,所述狭缝槽(30)的直线段位于弧形段的两端,直线段的长度沿远离所述转子铁芯(20)轴孔的径向方向逐渐减小地设置。
  14. 根据权利要求13所述的自起动同步磁阻电机,其特征在于,所述狭缝槽(30)的直线段沿d轴方向延伸。
  15. 根据权利要求10所述的自起动同步磁阻电机,其特征在于,所述狭缝槽(30)的宽度沿q轴两侧逐渐增加地设置。
  16. 根据权利要求10所述的自起动同步磁阻电机,其特征在于,所述狭缝槽(30)的端部与其对应的所述填充槽(40)之间设置有加强筋(50),所述加强筋(50)的宽度为L4,其中,0.5δ≤L4≤δ,δ为所述定子铁芯(10)与所述转子铁芯(20)之间的气隙宽度。
  17. 根据权利要求10所述的自起动同步磁阻电机,其特征在于,所述填充槽(40)与所述转子铁芯(20)的外周缘之间具有间距L4,其中,0.5δ≤L4≤δ。
  18. 根据权利要求10所述的自起动同步磁阻电机,其特征在于,所述狭缝槽(30)与其两端的所述填充槽(40)组合成磁障层,所述磁障层在所述转子铁芯(20)的径向方向上至少为两层。
  19. 根据权利要求10所述的自起动同步磁阻电机,其特征在于,所有狭缝槽(30)在q轴上的径向宽度与q轴填充槽(21)在q轴上的径向宽度之和,与所述转子铁芯(20)的有效铁芯宽度的比值为Q1,其中,0.3≤Q1≤0.6。
  20. 根据权利要求10所述的自起动同步磁阻电机,其特征在于,所有填充槽(40)及所述磁通阻挡部及狭缝槽(30),所有填充槽(40)及q轴填充槽(21)中填入导电不导磁的材料。
  21. 根据权利要求1或8所述的自起动同步磁阻电机,其特征在于,填充槽(40)及q轴填充槽(21)中填入导电不导磁的材料与所述转子铁芯(10)两端的导电端环(25)连通,形成鼠笼结构,所述导电端环(25)的材料与所述填充槽(40)及所述q轴填充槽(21)中填入材料一致。
  22. 根据权利要求10所述的自起动同步磁阻电机,其特征在于,所述狭缝槽(30)由部分弧形段和直线段组成,所述弧形段朝向远离所述转子铁芯(20)的轴孔一侧凸出地设置,所述狭缝槽(30)的宽度沿所述q轴两侧逐渐增加地设置。
  23. 根据权利要求10所述的自起动同步磁阻电机,其特征在于,所述狭缝槽(30)由部分弧形段和直线段组成,所述弧形段朝向远离所述转子铁芯(20)的轴孔一侧凸出地设置。
  24. 根据权利要求3或4所述的自起动同步磁阻电机,其特征在于,所述第一凹槽(22)和所述第二凹槽(23)沿所述转子铁芯(20)的径向方向的深度为H,其中,0.5δ≤H≤10δ,其中,δ为所述定子铁芯(10)与所述转子铁芯(20)之间的气隙宽度。
  25. 一种压缩机,包括自起动同步磁阻电机,其特征在于,所述自起动同步磁阻电机为权利要求1至23中任一项所述的自起动同步磁阻电机。
PCT/CN2019/128872 2019-06-19 2019-12-26 自起动同步磁阻电机及具有其的压缩机 WO2020253200A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP19933483.0A EP3926794A4 (en) 2019-06-19 2019-12-26 SELF-STARTING SYNCHRONOUS RELUCTANCY MOTOR AND COMPRESSOR WITH IT

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910533865.7A CN110212724B (zh) 2019-06-19 2019-06-19 自起动同步磁阻电机及具有其的压缩机
CN201910533865.7 2019-06-19

Publications (1)

Publication Number Publication Date
WO2020253200A1 true WO2020253200A1 (zh) 2020-12-24

Family

ID=67793481

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/128872 WO2020253200A1 (zh) 2019-06-19 2019-12-26 自起动同步磁阻电机及具有其的压缩机

Country Status (3)

Country Link
EP (1) EP3926794A4 (zh)
CN (1) CN110212724B (zh)
WO (1) WO2020253200A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4020763A1 (en) * 2020-12-25 2022-06-29 Nidec Corporation Synchronous reluctance motor and electrical product

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110212724B (zh) * 2019-06-19 2023-12-08 珠海格力电器股份有限公司 自起动同步磁阻电机及具有其的压缩机
CN111049296B (zh) * 2019-12-09 2021-05-07 珠海格力电器股份有限公司 电机转子和磁阻电机
CN114598058A (zh) * 2022-01-26 2022-06-07 珠海格力电器股份有限公司 一种自起动同步磁阻电机转子和自起动同步磁阻电机

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1289166A (zh) * 1999-09-22 2001-03-28 Lg电子株式会社 磁通障碍型同步磁阻电动机
CN1255925C (zh) 2001-11-12 2006-05-10 三菱电机株式会社 同步感应电动机,压缩机
JP4627853B2 (ja) * 2000-03-17 2011-02-09 株式会社デンソー リラクタンス型電動機
CN103208894A (zh) 2012-01-11 2013-07-17 珠海格力节能环保制冷技术研究中心有限公司 自起动式同步磁阻电机及其转子
CN108110927A (zh) * 2017-12-29 2018-06-01 上海崇林汽车电子有限公司 一种电动汽车永磁电机转子冲片
CN109309415A (zh) * 2017-11-30 2019-02-05 珠海格力节能环保制冷技术研究中心有限公司 转子结构、异步起动同步磁阻电机及压缩机
CN110212724A (zh) * 2019-06-19 2019-09-06 珠海格力电器股份有限公司 同步磁阻电机及具有其的压缩机
CN209805640U (zh) * 2019-06-19 2019-12-17 珠海格力电器股份有限公司 自起动同步磁阻电机及具有其的压缩机

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10156269A1 (de) * 2001-11-16 2003-06-05 Siemens Ag Traktionsantrieb
JP5332137B2 (ja) * 2007-05-22 2013-11-06 日産自動車株式会社 回転電機
EP2406870B1 (en) * 2009-03-12 2016-05-11 ABB Research Ltd. Rotor for a synchronous reluctance machine
JP2012213269A (ja) * 2011-03-31 2012-11-01 Daikin Ind Ltd 回転電気機械
FR2980056B1 (fr) * 2011-09-14 2014-05-16 Renault Sas Machine a reluctance comportant des moyens de refroidissement par un flux de gaz ou de liquide
CN104600938B (zh) * 2013-12-25 2016-03-09 珠海格力节能环保制冷技术研究中心有限公司 永磁电机
EP3255758A1 (de) * 2016-06-07 2017-12-13 Siemens Aktiengesellschaft Läufer für eine reluktanzmaschine
KR101904922B1 (ko) * 2016-12-16 2018-10-15 효성중공업 주식회사 라인기동식 동기형 릴럭턴스 전동기 및 그 회전자
RU2669361C1 (ru) * 2017-11-13 2018-10-11 Ооо "Эмаш" Синхронная реактивная машина
CN109861414A (zh) * 2017-11-30 2019-06-07 日本电产株式会社 转子、马达以及包含该马达的电气设备
CN108110920A (zh) * 2017-12-14 2018-06-01 珠海格力节能环保制冷技术研究中心有限公司 异步起动同步磁阻电机转子、电机及压缩机

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1289166A (zh) * 1999-09-22 2001-03-28 Lg电子株式会社 磁通障碍型同步磁阻电动机
JP4627853B2 (ja) * 2000-03-17 2011-02-09 株式会社デンソー リラクタンス型電動機
CN1255925C (zh) 2001-11-12 2006-05-10 三菱电机株式会社 同步感应电动机,压缩机
CN103208894A (zh) 2012-01-11 2013-07-17 珠海格力节能环保制冷技术研究中心有限公司 自起动式同步磁阻电机及其转子
CN109309415A (zh) * 2017-11-30 2019-02-05 珠海格力节能环保制冷技术研究中心有限公司 转子结构、异步起动同步磁阻电机及压缩机
CN108110927A (zh) * 2017-12-29 2018-06-01 上海崇林汽车电子有限公司 一种电动汽车永磁电机转子冲片
CN110212724A (zh) * 2019-06-19 2019-09-06 珠海格力电器股份有限公司 同步磁阻电机及具有其的压缩机
CN209805640U (zh) * 2019-06-19 2019-12-17 珠海格力电器股份有限公司 自起动同步磁阻电机及具有其的压缩机

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3926794A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4020763A1 (en) * 2020-12-25 2022-06-29 Nidec Corporation Synchronous reluctance motor and electrical product
US11770036B2 (en) 2020-12-25 2023-09-26 Nidec Corporation Synchronous reluctance motor and electrical product

Also Published As

Publication number Publication date
CN110212724B (zh) 2023-12-08
EP3926794A1 (en) 2021-12-22
EP3926794A4 (en) 2022-03-23
CN110212724A (zh) 2019-09-06

Similar Documents

Publication Publication Date Title
CN109347225B (zh) 异步起动同步磁阻电机转子、电机及压缩机
WO2020253203A1 (zh) 直接起动同步磁阻电机转子结构、电机及转子结构制造的方法
WO2020253200A1 (zh) 自起动同步磁阻电机及具有其的压缩机
CN109510345B (zh) 转子结构、异步起动同步磁阻电机及压缩机
US10770960B2 (en) Permanent magnet assisted synchronous reluctance motor for increasing minimum electromagnetic torque
WO2020253191A1 (zh) 自起动同步磁阻电机转子结构、电机及压缩机
JP6595443B2 (ja) 回転電機
WO2020253192A1 (zh) 异步起动同步磁阻电机转子结构、电机及压缩机
WO2020253194A1 (zh) 直接起动同步磁阻电机转子结构及具有其的电机
WO2020253195A1 (zh) 直接起动同步磁阻电机转子结构、电机及压缩机
JP7427019B2 (ja) 直接起動同期リラクタンス・モータの回転子構造及びモータ
EP4037152B1 (en) Synchronous reluctance motor
WO2020253193A1 (zh) 自起动同步磁阻电机转子结构及具有其的电机
CN210839094U (zh) 直接起动同步磁阻电机转子结构、电机
WO2020253196A1 (zh) 直接起动同步磁阻电机转子结构、电机及压缩机
CN209805522U (zh) 自起动同步磁阻电机转子结构及具有其的电机
JP2005006416A (ja) 自己始動型リラクタンスモータ
CN209805640U (zh) 自起动同步磁阻电机及具有其的压缩机
CN215186137U (zh) 转子组件和自起动永磁同步磁阻电机
CN207504658U (zh) 交替极电机及具有其的压缩机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19933483

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019933483

Country of ref document: EP

Effective date: 20210915

NENP Non-entry into the national phase

Ref country code: DE