WO2006097254A2 - Kollimator mit einstellbarer brennweite - Google Patents

Kollimator mit einstellbarer brennweite Download PDF

Info

Publication number
WO2006097254A2
WO2006097254A2 PCT/EP2006/002252 EP2006002252W WO2006097254A2 WO 2006097254 A2 WO2006097254 A2 WO 2006097254A2 EP 2006002252 W EP2006002252 W EP 2006002252W WO 2006097254 A2 WO2006097254 A2 WO 2006097254A2
Authority
WO
WIPO (PCT)
Prior art keywords
collimator
focal length
adjustable focal
cone sliding
sliding part
Prior art date
Application number
PCT/EP2006/002252
Other languages
English (en)
French (fr)
Other versions
WO2006097254A3 (de
Inventor
Martin Hartick
Norbert Haunschild
Andreas Streyl
Original Assignee
Smiths Heimann Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Smiths Heimann Gmbh filed Critical Smiths Heimann Gmbh
Priority to AT06723364T priority Critical patent/ATE433188T1/de
Priority to DE502006003884T priority patent/DE502006003884D1/de
Priority to EP06723364A priority patent/EP1859454B1/de
Publication of WO2006097254A2 publication Critical patent/WO2006097254A2/de
Publication of WO2006097254A3 publication Critical patent/WO2006097254A3/de
Priority to US11/854,535 priority patent/US7436934B2/en

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • G21K1/02Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diaphragms, collimators
    • G21K1/04Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diaphragms, collimators using variable diaphragms, shutters, choppers

Definitions

  • the present invention relates to a collimator with adjustable focal length, in particular in X-ray inspection systems.
  • X-ray inspection methods are used in particular for the detection of critical substances and objects in pieces of baggage or other cargo.
  • multistage systems whose first stage is based on the absorption of X-rays.
  • a second stage is used, which is selectively fed to objects from the first stage.
  • the second stage uses systems whose operating principle is based on diffraction phenomena.
  • the diffraction angle in which an incident X-ray beam is deflected, depends on the atomic lattice spacing of the material to be investigated and on the energy and thus the wavelength of the incident radiation.
  • the sharply delimited X-ray beam used for the examination the so-called needle beam
  • the so-called needle beam has an energy spectrum which is known, for example, from measurements. From the Bragg equation it follows that the incident radiation diffracted at any point at an angle that depends on the energy of the radiation. Radiation with an energy spectrum is therefore diffracted in an angular range, while the diffraction is rotationally symmetrical about the incident needle beam. In an X-ray test, it is desirable to detect only diffracted radiation at a certain angle. This is also achieved through the use of a collimator.
  • the passband of the collimator essentially corresponds to the lateral surface of a cone whose tip coincides with the point whose diffraction properties are to be investigated. To examine an area within an object, a plurality of points must be focused.
  • a collimator which has a plurality of parallel openings of the same opening angle and with which therefore several points can be focused simultaneously on the axis of rotation.
  • the use of a non-segmented detector which is not spatially resolving and therefore provides a common output for all focused points has the disadvantage that the evaluation and the unambiguous assignment of the detected radiation to a diffraction point are difficult.
  • a segmented detector which is divided, for example, in separately evaluable circular rings, this disadvantage does not occur, but such a detector is complicated and expensive.
  • a collimator according to the invention consists of an outer part, which can simultaneously assume the function of a housing, with a conical inner surface and an inner part with a conical outer surface. These two parts are firmly connected at some distance, leaving a gap between them results. In this gap is at least one movably arranged hollow cone, which is also referred to as a cone sliding part. By moving the movable cone or the movable cones, the focal length of the collimator can be varied.
  • the diffraction spectrum detected at a certain angle can be compared with the spectrum of the needle beam. From the Bragg equation, it follows that a diffraction spectrum recorded at a different angle is shifted from the first one. Therefore, the identification is simplified if each measurement is performed at the same opening angle. A constant detection angle of the collimator is achieved in that all conical surfaces have the same opening angle.
  • Different detection angles depending on the set focal length can be achieved by different opening angles of the conical surfaces. It is advantageous whenever two adjacent conical surfaces have the same opening angle. Due to this pairwise adaptation, the conical surfaces lie over a large area, which leads to a high radiation absorption of the collimator.
  • the adjustment of the focal length is achieved in that the at least one cone sliding part is movable along the axis of rotation.
  • the focus of the collimator can be adjusted by a simple translational movement of the cone sliding part in one direction.
  • the adjustment of the focal length of the collimator and thus the focused point in the object to be examined is done by the fact that the at least one cone sliding part is moved along the axis of rotation until the desired focal length is reached, wherein using multiple sliding cones this independently can be moved from each other.
  • the cone sliding part or the cone sliding parts should always be positioned so that the collimator has only one opening gap. If all the conical surfaces are arranged concentrically around a common axis of rotation and adjacent surfaces each have the same opening angle, the surfaces conform to each other over their entire height. Except in the range of the set gap, the entire collimator appears as a compact unit and allows maximum shielding of the unwanted X-radiation.
  • the fact that the individual cone sliding parts can be moved independently, so a single gap can be generated at different positions. This allows as many possible focal lengths. For a number of n cone sliding parts, there are n + 1 possible gaps.
  • the collimator can be held in a fixed position and focus by scanning the cone sliding part or the cone sliding parts several points in an object to be examined.
  • the travel can be reduced by switching the focal length after the travel of a distance through the collimator, and by moving the collimator along the same path to another examined area.
  • the maximum required travel of the collimator according to the invention compared to a non-adjustable collimator can be reduced by a factor that corresponds to the number of adjustable focal lengths, in a collimator with two focal lengths so by half.
  • 1a shows a collimator with adjustable focal length with a cone sliding part in an end position
  • Figure 1b shows a collimator with adjustable focal length with a cone sliding part in the other end position
  • the collimator according to the invention consists essentially of the outer part 1 and the inner part 2. These are arranged concentrically about a rotation axis 4.
  • the collimator has a cone sliding part, in FIG. 2 there are two cone sliding parts.
  • Such collimators are used in particular in X-ray inspection systems, especially in higher stages of multi-stage testing systems.
  • FIG. 1 a there is a cone sliding part 3 in an end position in which it lies against the inner part 2. This results in a passage gap for the radiation between cone sliding part 3 and outer part 1.
  • the collimator filters out all radiation that is not diffracted at a point with distance d ⁇ from the collimator at the angle ⁇ .
  • the cone sliding part 3 is located on the outer part 1. This results in a passage gap between cone sliding part 3 and inner part 2.
  • the opening angle ⁇ of the collimator remains unchanged, but in this position, a point at the distance d 2 is focused by the collimator. It will be readily apparent that by switching the position of the cone sliding part 3, the area focused in moving the collimator is varied. This means that with a fixed area to be examined, the travel of the collimator is reduced. In extreme cases, this saving is half the extent of the area to be examined.
  • the collimator again consists of an outer part 1 and an inner part 2, but has two independently movable cone sliding parts 5 and 6.
  • the cone sliding part 5 lies on the outer part 1 and conical sliding part 6 on the inner part 2. This results, again under the opening angle ⁇ , to focus on a point at a distance d. 3
  • the focal lengths di and d 2 already shown in FIGS. 1a and 1b are obtained.
  • the focal length of the collimator according to the invention is adapted by displacing the at least one cone sliding part 3 along the axis of rotation 4 until the desired focal length is reached, wherein when several cone sliding parts 5, 6 are used, they can be moved independently of each other
  • the collimator with adjustable focal length according to the invention is part of an X-ray inspection system, which also has an X-ray source, an X-ray detector and an evaluation device for evaluating the detected radiation.

Abstract

Die Erfindung betrifft einen Kollimator mit einstellbarer Brennweite, insbesondere in Röntgenprüfanlagen, mit einem Außenteil mit einer konischen Innenfläche und einem Innenteil mit einer konischen Außenfläche, die fest beabstandet miteinander verbunden sind, sowie mindestens einem beweglich zwischen Innen- und Außenteil angeordneten Konus-Schiebeteil.

Description

B E S C H R E I B U N G
Kollimator mit einstellbarer Brennweite
Die vorliegende Erfindung betrifft einen Kollimator mit einstellbarer Brennweite insbesondere in Röntgenprüfanlagen.
Prüfverfahren mit Hilfe von Röntgenstrahlung werden insbesondere bei der Detektion kritischer Stoffe und Gegenstände in Gepäckstücken oder sonstigem Frachtgut eingesetzt. Zu diesem Zweck sind mehrstufige Systeme bekannt, deren erste Stufe auf der Absorption von Röntgenstrahlung beruht. Zur Detektion bestimmter kritischer Stoffe wie beispielsweise Sprengstoffen wird eine zweite Stufe eingesetzt, der selektiv Objekte aus der ersten Stufe zugeführt werden. Als zweite Stufe werden Systeme verwendet, deren Wirkprinzip auf Beugungserscheinungen beruht. Dabei ist der Beugungswinkel, in dem ein einfallender Röntgenstrahl abgelenkt wird, abhängig vom Atomgitterabstand des zu untersuchenden Materials sowie der Energie und damit der Wellen- länge der einfallenden Strahlung. Durch Analyse der Beugungserscheinung mittels Röntgendetektoren kann auf den Gitterabstand und somit auf das Material geschlossen werden. Ein derartiges zweistufiges System wird beispielsweise in der deutschen Patentanmeldung 103 30 521.1 offenbart.
Da Röntgenprüfanlagen mit äußerst geringen Strahlungsintensitäten arbeiten, werden sehr empfindliche Detektoren eingesetzt. Zur Vermeidung von Messungenauigkeiten muss daher erreicht werden, dass nur durch das Prüfgerät erzeugte Strahlung auf den Detektor trifft. Außerdem muss dafür gesorgt werden, dass nur in einem einzelnen Punkt gebeugte Strahlung detektiert wird, da sonst eine Lokalisierung innerhalb des zu untersuchenden Objekts nicht möglich ist. Es ist also eine räumliche Filterung erforderlich, die durch einen sogenannten Kollimator erfolgt.
Da es technisch sehr aufwändig ist, monochromatische Röntgenstrahlung zu erzeugen, weist der zur Untersuchung eingesetzte, scharf begrenzte Röntgenstrahl, der so- genannte Nadelstrahl, ein Energiespektrum auf, dass beispielsweise aus Messungen bekannt ist. Aus der Bragg'schen Gleichung ergibt sich, das die einfallende Strahlung in jedem Punkt in einem Winkel gebeugt wird, der von der Energie der Strahlung abhängt. Strahlung mit einem Energiespektrum wird daher in einem Winkelbereich gebeugt, dabei ist die Beugung rotationssymetrisch um den einfallenden Nadelstrahl. Bei einer Röntgenprüfung ist es wünschenswert, nur unter einem bestimmten Winkel ge- beugte Strahlung zu detektieren. Auch dies wird durch den Einsatz eines Kollimators erreicht. Der Durchlassbereich des Kollimators entspricht im Wesentlichen der Mantelfläche eines Kegels, dessen Spitze mit dem Punkt übereinstimmt, dessen Beugungseigenschaften untersucht werden sollen. Zur Untersuchung eines Bereiches innerhalb eines Objekts muss eine Vielzahl von Punkten fokussiert werden.
Zu diesem Zweck ist die Verwendung eines Kollimators bekannt, der mehrere parallele Öffnungen des gleichen Öffnungswinkels aufweist und mit dem daher gleichzeitig mehrere Punkte auf der Rotationsachse fokussiert werden können. Die Verwendung eines nicht segmentierten Detektors, der nicht ortsauflösend ist und daher ein gemeinsames Ausgangssignal für alle fokussierten Punkte liefert, ergibt jedoch den Nachteil, dass die Auswertung und die eindeutige Zuordnung der detektierten Strahlung zu einem Beugungspunkt schwierig sind. Bei Verwendung eines segmentierten Detektors, der beispielsweise in separat auswertbare Kreisringe unterteilt ist, tritt dieser Nachteil zwar nicht auf, doch ist ein solcher Detektor aufwändig und teuer.
Aus der Deutschen Patentanmeldung 103 30 521.1 ist zur Untersuchung eines Objektbereiches ein Verfahren bekannt, bei dem die Anordnung aus Detektor und Kollimator in Richtung des einfallenden Röntgenstrahls verfahren werden kann. Der Nachteil dieses Verfahrens ist darin zu sehen, dass die gesamte Vorrichtung eine Bauhöhe von mehr als dem Doppelten der Höhe des zu untersuchenden Objektes aufweisen muss.
Ausgehend zu diesem Stand der Technik ist es die Aufgabe der vorliegenden Erfindung, einen Kollimator derart zu verbessern, dass sich geringere Verfahrwege und damit eine verringerte Bauhöhe des Röntgenprüfgerätes ergeben.
Gelöst wird diese Aufgabe durch einen Kollimator mit einstellbarer Brennweite, mit den Merkmalen des kennzeichnenden Teils des Patentanspruchs 1.
Grundsätzlich besteht ein erfindungsgemäßer Kollimator aus einem Außenteil, das gleichzeitig die Funktion eines Gehäuses übernehmen kann, mit einer konischen Innenfläche und einem Innenteil mit konischer Außenfläche. Diese beiden Teile sind in gewissem Abstand fest miteinander verbunden, so dass sich zwischen ihnen ein Spalt ergibt. In diesem Spalt befindet sich mindestens ein beweglich angeordneter Hohlkonus, der auch als Konus-Schiebeteil bezeichnet wird. Durch Verschieben des beweglichen Konus beziehungsweise der beweglichen Konusse kann die Brennweite des Kollimators variiert werden.
Wie weiter oben bereits ausgeführt gelangt in Röntgenprüfanlagen idealer Weise nur unter einem Winkel in einem Punkt gebeugte Strahlung auf den Röntgendetektor. Es ist also eine räumliche Filterung notwendig. Dabei ist die optimale räumliche Filtercharakteristik derart, dass sich ein kegelmantelförmiger Durchlassbereich ergibt. Dies wird mit dem erfindungsgemäßen Kollimator dadurch erreicht, dass sämtliche konischen Flächen konzentrisch um eine gemeinsame Rotationsachse angeordnet sind, wobei die Rotationsachse der Einfallsrichtung des Nadelstrahls entspricht.
Zur Identifikation eines Stoffes in einem zu untersuchenden Objekt kann das unter einem bestimmten Winkel detektierte Beugungsspektrum mit dem Spektrum des Nadelstrahls verglichen werden. Aus der Bragg 'sehen Gleichung folgt, dass ein unter einem anderen Winkel aufgenommenes Beugungsspektrum gegenüber dem ersten verschoben ist. Daher wird die Identifizierung vereinfacht, wenn jede Messung unter dem gleichen Öffnungswinkel durchgeführt wird. Ein gleichbleibender Detektionswinkel des Kollimators wird dadurch erreicht, dass sämtliche konischen Flächen denselben Öffnungswinkel aufweisen.
Unterschiedliche Detektionswinkel je nach eingestellter Brennweite lassen sich durch unterschiedliche Öffnungswinkel der konischen Flächen erreichen. Dabei ist es vorteil- haft, wenn immer zwei benachbarte konische Flächen denselben Öffnungswinkel aufweisen. Durch diese paarweise Anpassung liegen die konischen Flächen großflächig aufeinander, was zu einer hohen Strahlungsabsorption des Kollimators führt.
Die Einstellung der Brennweite wird dadurch erreicht, dass das mindestens eine Ko- nus-Schiebeteil entlang der Rotationsachse verfahrbar ist. Dadurch kann der Fokus des Kollimators durch eine einfache translatorische Bewegung des Konus-Schiebeteils in eine Richtung angepasst werden.
Die Anpassung der Brennweite des Kollimators und damit des fokussierten Punktes im Untersuchungsobjekt geschieht also dadurch, dass das mindestens eine Konus- Schiebeteil entlang der Rotationsachse verschoben wird, bis die gewünschte Brennweite erreicht ist, wobei bei Verwendung mehrerer Schiebekonusse diese unabhängig voneinander bewegt werden können. Um eine optimale räumliche Filterwirkung zu erreichen, sollte das Konus-Schiebeteil bzw. die Konus-Schiebeteile stets so positioniert werden, dass der Kollimator nur einen Öffnungsspalt aufweist. Wenn sämtliche konischen Flächen konzentrisch um eine gemeinsame Rotationsachse angeordnet sind und jeweils benachbarte Flächen denselben Öffnungswinkel aufweisen, so schmiegen sich die Flächen über ihre gesamte Höhe aneinander an. Außer im Bereich des eingestellten Spalts erscheint der gesamte Kollimator so als kompakte Einheit und ermöglicht eine maximale Abschirmung der unerwünschten Röntgenstrahlung. Dadurch, dass die einzelnen Konus-Schiebeteile unabhängig voneinander bewegt werden können, kann so ein einzelner Spalt an verschieden Positionen erzeugt werden. Dies ermöglicht ebenso viele mögliche Brennweiten. Bei einer Anzahl von n Konus-Schiebeteilen ergeben sich n +1 mögliche Spalte.
Für einen Kollimator mit einstellbarer Brennweite gemäß der vorliegenden Erfindung ergeben sich mehrere vorteilhafte Einsatzmöglichkeiten. In einem ersten Fall kann der Kollimator an einer festen Position gehalten werden und durch Verfahren des Konus- Schiebeteils beziehungsweise der Konus-Schiebeteile mehrere Punkte in einem zu untersuchenden Objekt fokussieren. Andererseits ist es möglich, den Kollimator linear zu verfahren und so eine kontinuierliche Messung des zu untersuchenden Objekts vor- zunehmen. In diesem Fall lässt sich der Verfahrweg dadurch reduzieren, dass nach Abfahren einer Strecke durch den Kollimator die Brennweite umgeschaltet wird und sich beim Verfahren des Kollimators entlang der gleichen Strecke ein anderer untersuchter Bereich ergibt. Im Idealfall kann der maximal benötigte Verfahrweg des erfindungsgemäßen Kollimators gegenüber einem nicht einstellbaren Kollimator um einen Faktor reduziert werden, der der Anzahl der einstellbaren Brennweiten entspricht, bei einem Kollimator mit zwei Brennweiten also um die Hälfte.
Die vorliegende Erfindung soll anhand zweier Ausführungsbeispiele veranschaulicht werden. Dabei zeigt
Figur 1a einen Kollimator mit einstellbarer Brennweite mit einem Konus-Schiebeteil in einer Endstellung,
Figur 1b einen Kollimator mit einstellbarer Brennweite mit einem Konus-Schiebeteil in der anderen Endstellung und
Figur 2 einen Kollimator mit einstellbarer Brennweite mit zwei Konus-Schiebeteilen. In allen Figuren besteht der erfindungsgemäße Kollimator im Wesentlichen aus dem Außenteil 1 und dem Innenteil 2. Diese sind konzentrisch um eine Rotationsachse 4 angeordnet. In den Figuren 1a und 1b weist der Kollimator ein Konus-Schiebeteil auf, in Figur 2 sind es zwei Konus-Schiebeteile. Derartige Kollimatoren werden insbesondere in Röntgenprüfanlagen eingesetzt, besonders in höheren Stufen mehrstufiger Prüfanlagen.
In Figur 1a befindet sich Konus-Schiebeteil 3 in einer Endposition, in der es am Innen- teil 2 anliegt. Somit ergibt sich ein Durchtrittsspalt für die Strahlung zwischen Konus- Schiebeteil 3 und Außenteil 1. In diesem Fall filtert der Kollimator alle Strahlung aus, die nicht in einem Punkt mit Abstand dϊ vom Kollimator unter dem Winkel α gebeugt wird.
In Figur 1b liegt das Konus-Schiebeteil 3 am Außenteil 1 an. Somit ergibt sich ein Durchtrittsspalt zwischen Konus-Schiebeteil 3 und Innenteil 2. Der Öffnungswinkel α des Kollimators bleibt unverändert, jedoch ist in dieser Stellung ein Punkt im Abstand d2 vom Kollimator fokussiert. Es wird sofort ersichtlich, dass durch Umschalten der Position des Konus-Schiebeteils 3 der beim Verfahren des Kollimators fokussierte Bereich variiert wird. Dies bedeutet, dass bei einem festen zu untersuchenden Bereich der Verfahrweg des Kollimators verringert wird. Im Extremfall beträgt diese Einsparung die Hälfte der Ausdehnung des zu untersuchenden Bereichs.
In Figur 2 besteht der Kollimator wieder aus einem Außenteil 1 und einem Innenteil 2, weist jedoch zwei unabhängig voneinander verfahrbare Konus-Schiebeteile 5 und 6 auf. In der gezeigten Stellung liegt Konus-Schiebeteil 5 am Außenteil 1 an und Konus- Schiebeteil 6 am Innenteil 2. Dadurch ergibt sich, wieder unter dem Öffnungswinkel α, eine Fokussierung auf einen Punkt im Abstand d3. Für den Fall, dass die Konus- Schiebeteile 5 und 6 aneinander anliegen, ergeben sich die bereits in den Figuren 1a und 1b dargestellten Brennweiten di und d2.
Die Brennweite des erfindungsgemäßen Kollimators wird dadurch angepasst, dass das mindestens eine Konus-Schiebeteil 3 entlang der Rotationsachse 4 verschoben wird, bis die gewünschte Brennweite erreicht ist, wobei bei Verwendung mehrerer Konus- Schiebteile 5, 6 diese unabhängig voneinander bewegt werden können In einer bevorzugten Verwendung ist der erfindungsgemäße Kollimator mit einstellbarer Brennweite Teil einer Röntgenprüfanlage, die außerdem eine Röntgenquelle, einen Röntgendetektor sowie eine Auswertungsvorrichtung zur Auswertung der detektierten Strahlung aufweist.
Die beiden vorgenannten Ausführungsbeispiele sind rein exemplarisch und insofern nicht beschränkend. Insbesondere kann die Anzahl und Größe der Konus-Schiebeteile variieren, ohne den Erfindungsgedanken zu verlassen.

Claims

P A T E N T A N S P R Ü C H E
1. Kollimator mit einstellbarer Brennweite, insbesondere in Röntgenprüfanlagen, gekennzeichnet durch ein Außenteil (1) mit einer konischen Innenfläche und ein Innenteil (2) mit einer konischen Außenfläche, die fest beabstandet miteinander verbunden sind, sowie mindestens einen beweglich zwischen Innen (2)- und Außenteil (1) angeordnetes Konus-Schiebeteil (3).
2. Kollimator mit einstellbarer Brennweite nach Anspruch 1 , dadurch gekennzeichnet, dass sämtliche konischen Flächen konzentrisch um eine gemeinsame Rotationsachse (4) angeordnet sind.
3. Kollimator mit einstellbarer Brennweite nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass sämtliche konischen Flächen denselben Öffnungswinkel α aufweisen.
4. Kollimator mir einstellbarer Brennweite nach Anspruch 1 oder 2, dadurch gekenn- zeichnet, dass immer zwei benachbarte konische Flächen den selben Öffnungswinkel aufweisen.
5. Kollimator mit einstellbarer Brennweite nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass das mindestens eine Konus-Schiebeteil (3, 4, 5) in Richtung der Rotationsachse (4) verfahrbar ist.
6. Verfahren zur Anpassung der Brennweite eines Kollimators nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass das mindestens eine Konus- Schiebeteil (3, 5, 6) entlang der Rotationsachse (4) verschoben wird, bis die ge- wünschte Brennweite erreicht ist, wobei bei Verwendung mehrerer Konus-
Schiebeteile (5, 6) diese unabhängig voneinander bewegt werden können.
7. Röntgenprüfanlage, gekennzeichnet durch eine Röntgenquelle, einen Kollimator mit einstellbarer Brennweite nach einem der Ansprüche 1 bis 5, einen Röntgende- tektor sowie eine Auswertungsvorrichtung zur Auswertung der detektierten Strahlung.
PCT/EP2006/002252 2005-03-12 2006-03-10 Kollimator mit einstellbarer brennweite WO2006097254A2 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
AT06723364T ATE433188T1 (de) 2005-03-12 2006-03-10 Kollimator mit einstellbarer brennweite
DE502006003884T DE502006003884D1 (de) 2005-03-12 2006-03-10 Kollimator mit einstellbarer brennweite
EP06723364A EP1859454B1 (de) 2005-03-12 2006-03-10 Kollimator mit einstellbarer brennweite
US11/854,535 US7436934B2 (en) 2005-03-12 2007-09-12 Collimator with adjustable focal length

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005011467A DE102005011467B4 (de) 2005-03-12 2005-03-12 Kollimator mit einstellbarer Brennweite, hierauf gerichtetes Verfahren sowie Röntgenprüfanlage
DE102005011467.9 2005-03-12

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/854,535 Continuation US7436934B2 (en) 2005-03-12 2007-09-12 Collimator with adjustable focal length

Publications (2)

Publication Number Publication Date
WO2006097254A2 true WO2006097254A2 (de) 2006-09-21
WO2006097254A3 WO2006097254A3 (de) 2006-12-28

Family

ID=36914763

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2006/002252 WO2006097254A2 (de) 2005-03-12 2006-03-10 Kollimator mit einstellbarer brennweite

Country Status (5)

Country Link
US (1) US7436934B2 (de)
EP (1) EP1859454B1 (de)
AT (1) ATE433188T1 (de)
DE (2) DE102005011467B4 (de)
WO (1) WO2006097254A2 (de)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005016656A1 (de) * 2005-01-26 2006-08-10 Smiths Heimann Gmbh Kollimator mit einstellbarer Brennweite
DE102008055921B4 (de) * 2008-11-05 2010-11-11 Siemens Aktiengesellschaft Modulierbarer Strahlenkollimator
KR102065158B1 (ko) * 2012-07-05 2020-01-10 아메리칸 사이언스 앤 엔지니어링, 인크. 가변 각도 시준기
US9417340B2 (en) * 2012-07-06 2016-08-16 Morpho Detection, Llc Compact geometry CT system
CN104754848B (zh) * 2013-12-30 2017-12-08 同方威视技术股份有限公司 X射线发生装置以及具有该装置的x射线透视成像系统
CN108450030B (zh) 2015-09-10 2021-02-26 美国科学及工程股份有限公司 使用行间自适应电磁x射线扫描的反向散射表征
US11193898B1 (en) 2020-06-01 2021-12-07 American Science And Engineering, Inc. Systems and methods for controlling image contrast in an X-ray system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2003753A1 (de) * 1969-02-20 1970-09-03 Kratky Dipl Ing Dr Rechn Dr H Blendenanordnung zur Begrenzung eines Roentgenstrahlenbuendels
US4086494A (en) * 1976-12-17 1978-04-25 Malak Stephen P Radiation collimator for use with high energy radiation beams
DE3323477A1 (de) * 1982-07-08 1984-01-12 Instrumentarium Oy, 00101 Helsinki Roentgenstrahl-collimator
US4825454A (en) * 1987-12-28 1989-04-25 American Science And Engineering, Inc. Tomographic imaging with concentric conical collimator
EP0811991A1 (de) * 1996-05-30 1997-12-10 Moshe Ein-Gal Kollimatoren
FR2801103A1 (fr) * 1999-11-13 2001-05-18 Heimann Systems Gmbh & Co Procede et dispositif de determination d'une matiere d'un objet detecte
DE19954661A1 (de) * 1999-11-13 2001-05-31 Heimann Systems Gmbh & Co Vorrichtung und Verfahren zur Justage eines Kollimators

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3197638A (en) * 1963-01-21 1965-07-27 Kenneth F Sinclair Backscatter flaw detection system
US3373286A (en) * 1964-09-18 1968-03-12 Industrial Nucleonics Corp Device for measuring the characteristics of a material moving on a conveyor with means for minimizing the effect of flutter
US4809312A (en) * 1986-07-22 1989-02-28 American Science And Engineering, Inc. Method and apparatus for producing tomographic images
DE3909147A1 (de) * 1988-09-22 1990-09-27 Philips Patentverwaltung Anordnung zur messung des impulsuebertrages
DE4137242A1 (de) * 1991-11-13 1993-05-19 Philips Patentverwaltung Kollimator zum ausblenden von roentgenstrahlung
US6542578B2 (en) * 1999-11-13 2003-04-01 Heimann Systems Gmbh Apparatus for determining the crystalline and polycrystalline materials of an item
DE19954662B4 (de) * 1999-11-13 2004-06-03 Smiths Heimann Gmbh Vorrichtung und Verfahren zum Detektieren von unzulässigen Reisegepäckgegenständen
DE10330521A1 (de) 2003-07-05 2005-02-10 Smiths Heimann Gmbh Gerät und Verfahren zur Überprüfung von Gegenständen
US7075073B1 (en) * 2004-05-21 2006-07-11 Kla-Tencor Technologies Corporation Angle resolved x-ray detection

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2003753A1 (de) * 1969-02-20 1970-09-03 Kratky Dipl Ing Dr Rechn Dr H Blendenanordnung zur Begrenzung eines Roentgenstrahlenbuendels
US4086494A (en) * 1976-12-17 1978-04-25 Malak Stephen P Radiation collimator for use with high energy radiation beams
DE3323477A1 (de) * 1982-07-08 1984-01-12 Instrumentarium Oy, 00101 Helsinki Roentgenstrahl-collimator
US4825454A (en) * 1987-12-28 1989-04-25 American Science And Engineering, Inc. Tomographic imaging with concentric conical collimator
EP0811991A1 (de) * 1996-05-30 1997-12-10 Moshe Ein-Gal Kollimatoren
FR2801103A1 (fr) * 1999-11-13 2001-05-18 Heimann Systems Gmbh & Co Procede et dispositif de determination d'une matiere d'un objet detecte
DE19954661A1 (de) * 1999-11-13 2001-05-31 Heimann Systems Gmbh & Co Vorrichtung und Verfahren zur Justage eines Kollimators

Also Published As

Publication number Publication date
ATE433188T1 (de) 2009-06-15
WO2006097254A3 (de) 2006-12-28
EP1859454B1 (de) 2009-06-03
EP1859454A2 (de) 2007-11-28
DE102005011467A1 (de) 2006-09-14
DE502006003884D1 (de) 2009-07-16
US20080089478A1 (en) 2008-04-17
DE102005011467B4 (de) 2008-02-28
US7436934B2 (en) 2008-10-14

Similar Documents

Publication Publication Date Title
DE112010001478B4 (de) Verwendung einer Röntgenvorrichtung
EP3502677B1 (de) Aufbau und verfahren zur ortsaufgelösten messung mit einem wellenlängendispersiven röntgenspektrometer
EP1859454B1 (de) Kollimator mit einstellbarer brennweite
DE102005036527B4 (de) Röntgen-CT-Prüfanlage sowie CT-Verfahren zur Prüfung von Objekten
EP1647840B1 (de) Röntgen- oder neutronenoptisches Analysegerät mit variabel ausgeleuchtetem Streifendetektor
DE102006041850B4 (de) CT-Verfahren zur Prüfung von Objekten unterschiedlicher Größe
AT513660A1 (de) Verfahren und Vorrichtung zur Untersuchung von Proben
EP1063676B1 (de) Vorrichtung und Verfahren zur energie- und winkelaufgelösten Elektronenspektroskopie
DE102013214397A1 (de) Röntgenstrahl-Spannungsmessverfahren und Vorrichtung
DE102013108367A1 (de) Vorrichtung und Verfahren zur Aufnahme von Durchstrahlungsbildern bei einer Computertomografie
DE2331091C3 (de) Einrichtung zur Bestimmung der Energie geladener Teilchen
EP0854495B1 (de) Vorrichtung und Verfahren zum betrieb eines Spektrometers mit Energie- und Winkel-auflösung
DE2646394A1 (de) Vorrichtung zur messung des spinpolarisationsgrades eines elektronenstrahls
EP1469303A1 (de) In Richtung der optischen Achse verschiebbarer Primärstrahlfänger für Röntgen- oder Neutronenstrahlen
EP1842208B1 (de) Kollimator mit einstellbarer brennweite
EP3987279B1 (de) Vorrichtung und verfahren zum bestimmen der werkstoffeigenschaften eines polykristallinen produkts
EP3011582B1 (de) Verfahren zur detektion von röntgenstrahlen sowie vorrichtung
DE19954661C2 (de) Vorrichtung und Verfahren zur Justage eines Kollimators
DD268059B5 (de) Vorrichtung zur roentgenografischen abbildung und messung lokaler spannungsverteilungen
DE10065277B4 (de) Verfahren zur Analyse von Eigenspannungen in metallischen Werkstoffen mittels hochenergetischer Photonen
DE4341144A1 (de) Energieanalysator für geladene Teilchen
DE102018206514A1 (de) Verfahren und Vorrichtung zur Kontrolle einer Brennfleckposition
DE2003753C (de) Blendenanordnung zur Begrenzung eines Rontgenstrahlenbundels
DE102008049163A1 (de) Vorrichtung zum Bestrahlen mit Röntgenstrahlung
DE3032801A1 (de) Anordnung zur darstellung der inneren struktur eines koerpers, insbesondere eines sich bewegenden koerpers

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2006723364

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11854535

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: RU

WWW Wipo information: withdrawn in national office

Country of ref document: RU

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 2006723364

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11854535

Country of ref document: US