WO2006095741A1 - マルチアンテナ無線通信システム、無線受信装置、および再送方法 - Google Patents

マルチアンテナ無線通信システム、無線受信装置、および再送方法 Download PDF

Info

Publication number
WO2006095741A1
WO2006095741A1 PCT/JP2006/304401 JP2006304401W WO2006095741A1 WO 2006095741 A1 WO2006095741 A1 WO 2006095741A1 JP 2006304401 W JP2006304401 W JP 2006304401W WO 2006095741 A1 WO2006095741 A1 WO 2006095741A1
Authority
WO
WIPO (PCT)
Prior art keywords
retransmission
substream
antenna
reliability
substreams
Prior art date
Application number
PCT/JP2006/304401
Other languages
English (en)
French (fr)
Inventor
Xiaoming She
Jifeng Li
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Publication of WO2006095741A1 publication Critical patent/WO2006095741A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1893Physical mapping arrangements

Definitions

  • Multi-antenna wireless communication system wireless receiver, and retransmission method
  • the present invention relates to a retransmission technique in a multi-antenna wireless communication system, and more specifically, a method based on reliability estimation, which can efficiently improve the throughput performance of a MIMO wireless communication system.
  • the present invention relates to a system, a wireless reception device, and a retransmission method.
  • MIMO multi-input 'multi-output
  • the transmitting side divides one data block into a plurality of substreams and transmits using a plurality of antennas
  • the receiving side uses the plurality of antennas to transmit a spatially multiplexed signal including the plurality of substreams.
  • Receive. Compared to conventional single antenna transmission technology, M IMO technology can significantly improve the channel capacity and thus improve the information transmission rate.
  • AMC adaptive modulation and coding
  • ARQ automatic repeat request
  • HARQ hybrid ARQ
  • AMC technology adaptively change the modulation and coding parameters used for transmission based on channel characteristics so that more information is transmitted when channel conditions are better, and when channel conditions are poor. By transmitting less information, it is possible to improve the average throughput of the system over a predetermined time, that is, the frequency utilization efficiency.
  • ARQ or HARQ technology is a technology that retransmits when there is an error in the received data packet.
  • the receiving side feeds back a retransmission request to the transmitting side through the feedback channel and requests to retransmit the data in which the transmission error has occurred. Note that until the data is received correctly or the number of retransmissions reaches the maximum limit. Until then, such a retransmission operation is continued. In this way, ARQ or HARQ retransmission technology can improve communication errors and perform reliable communication by retransmitting data in which transmission errors occur.
  • FIG. 1 is a diagram illustrating a probability distribution of the number of substreams including error bits when a data block includes error bits.
  • indicates the probability that an error bit is included in only one substream when an error is detected in a data block received with the reception quality of each SNR value.
  • indicates the probability that an error bit is included in only one substream when an error is detected in a data block received with the reception quality of each SNR value.
  • indicates the probability that an error bit is included in only one substream when an error is detected in a data block received with the reception quality of each SNR value.
  • indicates the probability that an error bit is included in only one substream when an error is detected in a data block received with the reception quality of each SNR value.
  • mouth indicates the probability that an error bit is included in the received data block with the reception quality of each SNR value.
  • the number of transmit antennas and receive antennas to be used are both four, and the adaptive modulation parameters to be used are “not transmit”, BPSK, QPSK, 8PSK. , and a 16QAM, the target error rate (BER) is 1 0_ 3, one data block consists of 4000 symbols, MIMO detection method using the ZF method.
  • the ARQ or HARQ retransmission method is the entire data block, that is, all substreams included in the data block.
  • the problem of reducing the throughput of a wireless communication system by retransmitting a substream that does not need to be retransmitted There is. This is because, in a wireless communication system using the ARQ or HARQ retransmission method, error coding is detected by performing CRC encoding and CRC decoding on a data block to be transmitted. Therefore, it cannot be detected in which substream of the data block the error bit is specifically included.
  • an object of the present invention is to provide multi-antenna wireless communication capable of improving the throughput of a wireless communication system without retransmitting the entire data block when an error bit is detected in the data block received by the receiving side. It is to provide a system, a wireless receiver, and a retransmission method.
  • a multi-transmission apparatus comprising: a radio transmission apparatus that transmits a plurality of substreams using a plurality of transmission antennas; and a radio reception apparatus that receives the plurality of substreams using a plurality of reception antennas.
  • the wireless reception device determines whether or not the plurality of received substreams need to be retransmitted based on the reliability of each substream, and determines a retransmission substream. Determining and reporting information on the determined retransmission substream to the wireless transmission device, and the wireless transmission device, based on the information notified from the wireless reception device, the retransmission substream and the untransmitted substream, The configuration is used to transmit the messages simultaneously.
  • FIG. 1 is a diagram showing a probability distribution of the number of substreams including error bits when a data block includes error bits.
  • FIG. 2 is a block diagram showing the main configuration of a MIMO wireless communication system according to an embodiment of the present invention.
  • FIG. 3 is a block diagram showing a detailed configuration of a retransmission processing unit according to an embodiment of the present invention.
  • FIG. 4 is a block diagram showing the main configuration of a MIMO wireless communication system not equipped with a retransmission processing unit.
  • FIG. 5 is a flowchart showing a retransmission method based on reliability estimation in a MIMO wireless communication system according to an embodiment of the present invention.
  • FIG. 6 shows a comparison of frequency utilization efficiency performance between a retransmission method based on reliability estimation according to an embodiment of the present invention and a conventional retransmission method.
  • FIG. 2 is a block diagram showing the main configuration of MIMO radio communication system 100 according to one embodiment of the present invention.
  • a MIMO wireless communication system will be described as an example of a multi-antenna wireless communication system that uses a retransmission method based on reliability estimation.
  • MIMO wireless communication system 100 is a wireless transmission system that performs transmission using n transmission antennas.
  • Radio apparatus 150 and radio receiver 160 that performs reception using n reception antennas.
  • Radio transmission apparatus 150 includes data resource unit 101, block formation unit 102, C RC encoding unit 103, division unit 104, AMC units 105-1 to 105-n, and a transmission antenna.
  • the wireless receiving device 160 includes receiving antennas 107—1 to 107—n.
  • An AMC parameter determination unit 112 and a retransmission processing unit 113 are provided.
  • the AMC unit 105-1 to 105-n of the wireless transmission device 150 is replaced with the AMC unit 105 and the transmission antenna 106-1 to 106.
  • the transmitting antenna 106 may be collectively referred to as the transmitting antenna 106, and the receiving antenna of the wireless receiving device 160
  • the receiving antenna 107 may be collectively referred to as the receiving antenna 107.
  • the data resource unit 101 is a source for providing transmission data transmitted by the wireless transmission device 150, and outputs the transmission data to the block forming unit 102.
  • the data resource unit 101 determines transmission data to be output to the block forming unit 102 with reference to the feedback information regarding the retransmission fed back from the radio reception device 160.
  • Block forming section 102 forms individual data blocks using transmission data provided by data resource section 101 and outputs the data blocks to CRC code section 103.
  • Block forming part 102 The size of the data block to be formed is determined based on the feedback information regarding the retransmission that is fed back from the wireless reception device 160. Further, block forming section 102 determines a data block to be transmitted by radio transmitting apparatus 150 based on feedback information regarding retransmission fed back from radio receiving apparatus 160, and outputs the data block to CRC code encoding section 103.
  • CRC code unit 103 performs cyclic redundancy check (CRC) code on the data block input from block forming unit 102.
  • CRC code is a process of attaching several CRC bits to the end of a data block. The CRC bit is used to perform an error check on the data block in the wireless reception device 160.
  • Division section 104 divides the data block input from CRC code section 103 into a plurality of substreams, and outputs them to AMC sections 105-1 to 105-n. Ie split
  • Unit 104 divides one data stream into a plurality of substreams. Each substream corresponds to one transmit antenna. Division section 104 determines the size of each substream based on information fed back from radio receiving apparatus 160 using feedback channel 110.
  • Each of the AMC units 105-1 to 105-n includes sub-streams input from the dividing unit 104.
  • the adaptive modulation and coding is performed based on the adaptive modulation and coding (AMC) parameters fed back from the wireless receiver 160 using the feedback channel 110, and the generated transmission signal is transmitted to the transmission antenna. Output to each of 106-l to 106-n.
  • AMC adaptive modulation and coding
  • the transmission antenna 106 transmits a transmission signal to the wireless reception device 160.
  • reception antenna 107 receives a spatially multiplexed signal including a data block having a plurality of substream powers.
  • Channel estimation section 111 obtains channel estimation matrix H by performing channel estimation based on the pilot signal in the signal received by receiving antenna 107 or using another method.
  • Channel estimation section 111 outputs the obtained channel estimation matrix H to AMC parameter determination section 112, MIMO detection Z retransmission data combining section 108, and retransmission processing section 113.
  • AMC parameter determination section 112 determines adaptive modulation and coding parameters for each substream based on channel estimation matrix H and the MIMO detection method used by radio reception apparatus 160, and determines the determined adaptive modulation and coding. Using the feedback channel 110 Feedback to the wireless transmission device 150. Here, in order to reduce the amount of feedback data, only the number corresponding to each adaptive modulation code key parameter is fed back.
  • AMC parameter determination section 112 feeds back the determined AMC parameter to radio transmission apparatus 150 and outputs it to MIMO detection Z retransmission data synthesis section 108 of radio reception apparatus 160.
  • the AMC parameter output to the MIMO detection Z retransmission data combining unit 108 is used to perform MIMO detection and retransmission data combining processing in the next reception process on the substream using the AMC parameter.
  • MIMO detection Z retransmission data combining section 108 performs MIMO detection processing on the signal received by receiving antenna 107, and performs combining processing on different versions of data in which the same data is retransmitted several times. That is, MIMO detection Z retransmission data combining section 108 has two processing functions: MIMO detection and retransmission data block combining. Specifically, it is first determined whether or not the received data block is retransmission data. Next, process (1) or (2). (1) When the received data block is the data to be transmitted for the first time, ie, the retransmission data, the MIMO detection Z retransmission data combining unit 108 performs only the MIMO detection processing on the received data block.
  • each received antenna block 105-1 to 105-n of the wireless transmission device 150 uses the received data block.
  • Each transmitted substream is separated. Next, demodulation and decoding processing are performed on each substream based on the AMC parameters used by each substream input from the AMC parameter determination unit 112 in the previous reception processing.
  • the MIMO detection Z retransmission data synthesis unit 108 performs MIMO detection processing on the data block. In addition, the process of combining all the versions of data received before the data block and the data of the version received this time is performed.
  • MIMO detection Z retransmission data combining section 108 outputs a signal obtained by performing MIMO detection and retransmission data combining processing to CRC decoding section 109 and retransmission processing section 113.
  • CRC decoding section 109 performs CRC decoding on the signal input from MIMO detection Z retransmission data combining section 108 to generate an affirmative (ACK) or negative (NAK) as a retransmission response signal, and retransmits Feedback is made to the wireless transmission device 150 through the processing unit 113 and the feedback channel 110.
  • the retransmission response signals ACK and NAK indicate two cases, respectively, when the data block includes an error bit and when the data block does not include an error bit.
  • the retransmission response signal fed back from the C RC decoding unit 109 is used for performing a retransmission operation in the radio transmission apparatus 150. If the retransmission response signal is an ACK, the data block is correctly received and the next transmission process is performed.
  • CRC decoding section 109 feeds back the retransmission response signal to radio transmitting apparatus 150 and outputs it to MIMO detection Z retransmission data combining section 108 and retransmission processing section 113. Also, the CRC decoding unit 109 removes the CRC bits attached to the end of the information bits of the CRC-decoded data block when the CRC-decoded data block does not include an error bit, and is obtained by removing the CRC bits. Output data (Rx data).
  • Retransmission processing section 113 is input from MIMO detection Z retransmission data combining section 108 using channel estimation matrix H input from channel estimation section 111 and retransmission response signal input from CRC decoding section 109. Next, a substream that needs to be retransmitted next time, that is, a retransmission substream, is determined, and a transmission antenna used for retransmission, that is, a retransmission antenna is selected. Retransmission processing section 113 feeds back the retransmission substream determination result and retransmission antenna selection result to radio transmitting apparatus 150 and outputs the result to MIMO detection Z retransmission data combining section 108.
  • feedback information related to retransmission generated by radio receiving apparatus 160 includes a retransmission response signal (ACK or NAK), a retransmission substream determination result, and And the retransmission antenna selection result.
  • ACK or NAK retransmission response signal
  • NAK retransmission substream determination result
  • retransmission antenna selection result ACK or NAK
  • FIG. 3 is a block diagram showing a detailed configuration of retransmission processing section 113 according to the present embodiment.
  • the retransmission processing unit 113 includes a reliability estimation unit 301, a retransmission substream determination unit 302, and a retransmission antenna selection unit 303.
  • reliability estimation section 301 determines a retransmission response signal input from CRC decoding section 109.
  • the retransmission response signal is ACK
  • reliability estimation section 301 receives each input from MIMO detection Z retransmission data combining section 108.
  • Estimate the reliability for the substream Specifically, the reliability of each substream is estimated based on the soft decision value after decoding of each substream. The higher the substream reliability, the lower the probability that the substream contains error bits. The lower the substream reliability, the higher the probability that the substream contains error bits.
  • the reliability estimation unit 301 outputs the reliability of each substream obtained by estimation to the retransmission substream determination unit 302.
  • retransmission substream determination section 302 determines a predetermined number of substreams as retransmission substreams with the medium reliability level of all substreams being low, and determines the determination result for the next reception process. Output to MIMO detection Z retransmission data synthesis section 108 and feed back to radio transmission apparatus 150 through feedback channel 110 for the next transmission.
  • retransmission antenna selection section 303 selects a retransmission transmission antenna that retransmits the retransmission substream determined by retransmission substream determination section 302 based on channel estimation matrix H input from channel estimation section 111.
  • One method of selecting the retransmission antenna is to select the original transmission antenna as the retransmission antenna again.
  • a method for selecting another retransmission antenna a plurality of transmission antennas may be selected based on the channel estimation matrix H estimated by the channel estimation unit 111 in order of channel characteristics (channel gain value) being inferior.
  • Retransmission antenna selection section 303 feeds back the retransmission substream number and the corresponding retransmission antenna number as a selection result to radio transmission apparatus 150 for the next transmission processing, and MIMO detection Z for the next reception processing. Output to retransmission data combining section 108.
  • a retransmission method in MIMO radio communication system 100 configured as described above will be described below.
  • the MIMO radio communication system 200 in the case where the retransmission processing unit 113 is not provided is compared with the MIMO radio communication system 100 according to the present embodiment.
  • the same components as those in the MIMO wireless communication system 100 are denoted by the same reference numerals.
  • the data block including all substreams can only be retransmitted as a whole.
  • the wireless transmission device 150 retransmits the same data, and the wireless reception device 260 performs a combining process on each version of the data retransmitted several times.
  • the method of combining retransmission data that is generally used is as follows. Here, if the received signal is the Nth transmission of data block s, all received signals of N transmissions are r, r,
  • indicated as r r indicates the received signal for the first transmission, and the rest indicates the received signal for retransmission.
  • the wireless receiver 260 receives the received signal r of the Nth transmission and performs MIMO detection processing.
  • s is the data block retransmitted by the wireless transmitter 150 for the i-th time.
  • radio detection apparatus 260 shows a signal obtained by separating the jth substream of s by radio detection apparatus 260 through MIMO detection processing.
  • MIMO detection of radio receiver 260 Z retransmission data synthesis section 108 performs MIMO detection for s and the received signals r, r, ..., r received N times before
  • the signals s, s,..., S obtained by processing are added and synthesized.
  • N sub-streams are received N times for each substream constituting the data block s.
  • the retransmission method of the present invention uses the retransmission processing unit 113 of the radio reception device 160 to determine which substream specifically contains an error bit in a data block in which an error has occurred. Determine and feed back to the wireless transmission device 150.
  • the wireless transmission device 150 retransmits only the retransmission substream determined by the retransmission processing unit 113 without having to retransmit the entire data block including all substreams, and does not perform retransmission on the remaining transmission antennas.
  • the next new data block can be transmitted. Therefore, the throughput of the MIMO wireless communication system 100 can be improved.
  • retransmission processing section 113 further selects a transmission antenna to be used for retransmission of the retransmission substream in the next transmission based on a predetermined condition.
  • the determination of retransmission substreams and selection of retransmission antennas are performed based on an estimation of the reliability of each substream.
  • FIG. 5 is a flowchart showing a retransmission method based on reliability estimation in MIMO wireless communication system 100 according to one embodiment of the present invention.
  • the number of retransmission substreams determined by retransmission substream determination section 302 every time is a predetermined value, and is denoted as n (l ⁇ n ⁇ n) here.
  • n is system
  • step S 401 CRC decoding section 109 detects that there is an error in the data block received by radio receiving apparatus 160.
  • the number of transmitting antennas is n
  • the number of receiving antennas is n
  • T 1 2 nT i represents each substream constituting data block s, and each substream corresponds to one transmission antenna.
  • the channel estimation matrix H is obtained by the estimation of the channel estimation unit 111.
  • step S402 each substream ⁇ S, S,
  • the reliability ⁇ , ⁇ ,..., ⁇ is estimated by the reliability estimation unit 301 nT 1 2 nT
  • is the reliability after receiving the first information bit in the substream.
  • L is the number of information bits of the substream.
  • the substream reliability calculated according to the above equation (1) is an average value of the reliability after reception of all the bits included in the substream.
  • the number of information bits included in the substream and having a reliability greater than the threshold ⁇ 8 is obtained as the reliability of the substream.
  • arg indicates the array of information bits included in the substream and the reliability is greater than the threshold value
  • length is the length of this array, that is, the information bits included in the substream and the reliability is greater than the threshold ⁇ 8. Indicates a number.
  • b represents the value of the information bit, that is, “0” or “1”
  • r represents the received signal.
  • I LLR I indicates the absolute value of the log likelihood ratio (LLR) of information bits
  • the information bit is transmitted.
  • the absolute value of the soft decision value of the decoder is directly taken as the reliability OC.
  • step S403 n substreams constituting the data block S
  • step S404 the retransmission substream ⁇ S 1, S 2, “′, S
  • One method is a transmission antenna 106-k, 106 that transmits substreams ⁇ S, S, ..., S ⁇ in this transmission. — K,
  • ⁇ , 106—k is selected as the resend antenna ⁇ A, ⁇ , ⁇ , ⁇ as it is
  • adaptive selection is performed for the modulation code key parameters of each stream so that the required target BER is satisfied in each transmission. Assuming this, the retransmission substream contains error bits, but the BER performance itself is not so bad, so the substream ⁇ S, S, "', S ⁇
  • Another method for selecting retransmission antennas is a method for selecting n transmission antennas based on the channel estimation matrix H from those with poor channel characteristics.
  • the reason why the channel characteristics are inferior is that the receiving antenna is selected as a transmitting antenna.
  • the receiving device synthesizes the received data twice or more at the time of initial reception and at the time of retransmission. It is not necessary to use a transmitting antenna with excellent characteristics.
  • transmit antennas with poorer channel characteristics for retransmission transmit antennas with better channel characteristics can be used to transmit new data, increasing the accuracy of transmission of new data, thus reducing system throughput. Can be improved.
  • the substream with the lowest reliability among the substreams has the inferior channel characteristics.
  • the channel characteristics are the best among the selected n retransmission antennas ⁇ A, ⁇ ,.
  • Radio reception apparatus 160 feeds back information on the selected retransmission substream and retransmission antenna to radio transmission apparatus 150, and at the same time, MIM of radio reception apparatus 160
  • radio transmitting apparatus 150 transmits retransmission antennas ⁇ A, A
  • a ⁇ is used to retransmit the retransmit substream ⁇ S 1, S 2, “', S ⁇ , and the other transmit antenna is set to kn kl k2 kn
  • FIG. 6 is a diagram showing a comparison of frequency use efficiency between a retransmission method based on reliability estimation according to an embodiment of the present invention and a conventional retransmission method.
  • “+” indicates the frequency utilization efficiency obtained in each SNR when the conventional retransmission method is used.
  • “Mouth” indicates the frequency utilization efficiency obtained in each SNR when the retransmission method based on reliability estimation is used and the original transmission antenna is selected as the retransmission antenna.
  • “ ⁇ ” indicates the frequency utilization efficiency obtained in each SNR when the retransmission method based on reliability estimation is used and the transmission antenna with the worst channel characteristics is selected as the retransmission antenna.
  • the simulation for performance comparison there are four transmission antennas and four reception antennas.
  • Channel flat damping channel adaptive modulation parameters used are "not transmitted", BPSK, QPSK, 8PSK, and in 16QAM, the target BER is Ru 10_ 5 der.
  • the use of the retransmission method based on the reliability estimation according to the present invention can provide better frequency utilization efficiency. That is, the throughput of the MIMO wireless communication system can be improved. Note that the frequency utilization efficiency can be further improved if the transmission antenna having the poorest channel characteristics is selected as the retransmission antenna.
  • reception is possible in a multi-antenna wireless communication system. If there is an error in the received data block, it is determined correctly based on the reliability of each substream, and it is determined correctly which substream the error bit is in and only the retransmission substream including the error bit is retransmitted. Duplicate transmission of received substreams can be avoided, and the throughput of a multi-antenna wireless communication system can be improved.
  • system resources can be used more appropriately, and the throughput of the MIMO wireless communication system can be improved. can do.
  • the number of substreams determined by retransmission substream determining section 302 as a predetermined value is determined in advance as an example when the number of substreams determined as retransmission substreams is determined in advance.
  • any substream whose reliability is lower than a predetermined value may be determined as a retransmission substream.
  • the accuracy of retransmission can be improved.
  • retransmission substream determining section 302 has the lowest reliability and a case where a plurality of substreams are determined as retransmission substreams has been described as an example.
  • One substream may be determined as a retransmission substream.
  • a retransmission antenna is also used in a MIMO wireless communication system that does not perform adaptive modulation and coding. If you select the transmitting antenna as the retransmitting antenna, the channel characteristics are inferior.
  • the multi-antenna radio communication system, radio reception apparatus, and retransmission method according to the present invention are not limited to the above-described embodiments, and can be implemented with various modifications.
  • the radio reception apparatus can be mounted on a communication terminal apparatus and a base station apparatus in a multi-antenna radio communication system, and thereby a communication terminal apparatus and a base having the same operational effects as described above. It is possible to provide a station apparatus and a mobile communication system.
  • the present invention is configured by nodeware has been described as an example.
  • the invention can also be realized in software. For example, by describing the algorithm of the retransmission method according to the present invention in a programming language, storing the program in a memory, and executing it by an information processing means, the same function as the wireless receiver according to the present invention is realized. can do.
  • the multi-antenna wireless communication system, the wireless reception device, and the retransmission method according to the present invention can be applied to uses such as retransmission in the multi-antenna wireless communication system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Radio Transmission System (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)

Abstract

 マルチアンテナ伝送において、信頼度推定に基づく再送方法を開示する。この方法は、複数アンテナにより送信される、複数のサブストリームからなるデータブロックを含む信号を受信し、この信号に対して復号を行って、対応する軟判定を出力するステップと、前記軟判定を各サブストリームの信頼度と推定するステップと、上記信頼度に基づき前記複数のサブストリームの中から再送サブストリームを確定するステップと、前記再送サブストリームを再送する、再送アンテナを選択するステップと、上記選択された再送アンテナ上で前記再送サブストリームを再送するステップと、を有する。これによれば、正しく受信されたサブストリームの重複伝送を回避することができるため、システムスループットを向上させることができる。

Description

明 細 書
マルチアンテナ無線通信システム、無線受信装置、および再送方法 技術分野
[0001] 本発明は、マルチアンテナ無線通信システムにおける再送技術に関し、具体的に は信頼度推定に基づく方法であって、 MIMO無線通信システムのスループット性能 を効率よく向上することができるマルチアンテナ無線通信システム、無線受信装置、 および再送方法に関する。
背景技術
[0002] 高まり続ける情報伝送レートに対する要求は、将来無線通信システムが直面する主 な問題の 1つである。限られた周波数資源を用いてより高い情報伝送レートを実現す るために、マルチインプット 'マルチアウトプット(MIMO)技術はすでに、将来無線通 信システムにおいて採用される不可欠な技術の 1つとなっている。 MIMO無線通信 システムにおいて、送信側は 1つのデータブロックを複数のサブストリームに分割し、 複数アンテナを用いて送信し、受信側は複数アンテナを用いて上記複数のサブストリ ームを含む空間多重信号を受信する。従来のシングルアンテナ伝送技術に比べ、 M IMO技術はチャネル容量を著しく向上し、従って情報伝送率を向上することができる
[0003] MIMO技術の他に、適応変調符号化 (AMC)技術、自動再送要求 (ARQ)および ノ、イブリツド ARQ (HARQ)技術も将来無線通信システムの重要で肝心な技術となつ ている。 AMC技術の基本思想は、チャネル特性に基づいて送信に用いられる変調 符号化パラメータを適応的に変化して、チャネル条件がより良い場合には情報をより 多く伝送し、チャネル条件が悪い場合には情報をより少なく伝送することにより、所定 の時間に渡ってのシステムの平均スループット、すなわち周波数利用効率を向上す ることができる。 ARQまたは HARQ技術は、受信したデータパケットに誤りがある場 合、再送を行う技術である。すなわち受信側はフィードバックチャネルを通じて送信 側に再送要求をフィードバックして伝送誤りが発生したデータを再送するように要求 する。なお、当該データが正しく受信されるまで、または再送回数が最大制限数に達 するまで、このような再送動作は続けて行われる。このように ARQまたは HARQ再送 技術は、伝送誤りが発生したデータを再送することにより、伝送誤りを改善して確実な 通信を行うことができる。
発明の開示
発明が解決しょうとする課題
[0004] し力し、 1つのデータブロックを複数のサブストリームに分割し、複数アンテナを用い て送信する MIMO無線通信システムにおいては、伝送誤りが発生し、受信側がデー タブロックに含まれて ヽる誤りビットを検出した場合、当該データブロックを構成する 複数のサブストリームのうち、 1つまたは 2つのサブストリームのみに誤りビットがある確 率が高い。
[0005] 図 1は、データブロックが誤りビットを含む場合、そのうち誤りビットを含むサブストリ ームの個数の確率分布を示す図である。この図において「〇」は、各 SNR値の受信 品質で受信されたデータブロックに誤りが検出される場合において、 1つのサブストリ ームのみに誤りビットが含まれている確率を示す。同様に、「 +」、「口」、およびはそ れぞれ、各 SNR値の受信品質で受信されたデータブロックに誤りが検出される場合 、 2つ、 3つ、または 4つのサブストリームに誤りビットが含まれている確率を示す。
[0006] この図に示す確率分布を得るためのシミュレーションにおいて、用いる送信アンテ ナおよび受信アンテナの数は両方とも 4本であり、用いる適応変調パラメータは、「伝 送しない」、 BPSK、 QPSK、 8PSK、および 16QAMであり、 目標誤り率(BER)は 1 0_3であり、 1つのデータブロックは 4000個のシンボルからなり、 MIMO検出方法は ZF方法を用いる。
[0007] 図 1が示すように、データブロックに誤りビットが現れる時、大多数の場合は、当該 データブロックが含むすべてのサブストリームの中で、 1つまたは 2つのサブストリーム のみに誤りがあって、残りのサブストリームは正しく受信され、誤りビットを含まない。
[0008] し力しながら、 ARQまたは HARQ再送方法は、受信側にお!、てデータブロックに 誤りが検出される場合、当該データブロック全体を丸ごと、すなわち当該データブロッ クが含むすべてのサブストリームをもう 1回再送するため、再送必要がないサブストリ ームに対しても再送を行い、無線通信システムのスループットを低下させるという問題 がある。なぜなら、 ARQまたは HARQ再送方法を用いる無線通信システムにおいて は、伝送するデータブロックに対して CRC符号化および CRC復号を行って、誤りビッ トを検出しているが、 CRC符号ィ匕および CRC復号は、誤りビットが具体的に当該デ 一タブロックのどのサブストリームに含まれているかを検出することはできない。
[0009] よって本発明の目的は、受信側が受信したデータブロックに誤りビットが検出される 場合、当該データブロックを丸ごと再送せず、無線通信システムのスループットの向 上することができるマルチアンテナ無線通信システム、無線受信装置、および再送方 法を提供することである。
課題を解決するための手段
[0010] 本発明の複数のサブストリームを複数の送信アンテナを用いて送信する無線送信 装置と、前記複数のサブストリームを複数の受信アンテナを用いて受信する無線受 信装置と、を具備するマルチアンテナ無線通信システムにおいて、前記無線受信装 置は、受信された前記複数のサブストリームに対し、各サブストリームの信頼度に基 づいて再送の必要がある力否かを判定し、再送サブストリームを決定し、決定された 再送サブストリームに関する情報を前記無線送信装置に通知し、前記無線送信装置 は、前記無線受信装置から通知される情報に基づき、前記再送サブストリームと未送 信のサブストリームとを同時に送信する構成を採る。
発明の効果
[0011] 本発明によれば、受信側が受信したデータブロックに誤りビットが検出される場合、 正しく受信されたデータの再送を減少し、無線通信システムのスループットを向上す ることがでさる。
図面の簡単な説明
[0012] [図 1]データブロックが誤りビットを含む場合、そのうち誤りビットを含むサブストリーム の個数の確率分布を示す図
[図 2]本発明の一実施の形態に係る MIMO無線通信システムの主要な構成を示す ブロック図
[図 3]本発明の一実施の形態に係る再送処理部の詳細な構成を示すブロック図であ る。 [図 4]再送処理部を備えない MIMO無線通信システムの主要な構成を示すブロック 図
[図 5]本発明の一実施の形態に係る MIMO無線通信システムにおける、信頼度推定 に基づく再送方法を示すフロー図
[図 6]本発明の一実施の形態に係る信頼度推定に基づく再送方法と、従来の再送方 法との周波数利用効率性能を比較して示す図
発明を実施するための最良の形態
[0013] 以下、本発明の実施の形態について、添付図面を参照して詳細に説明する。
[0014] 図 2は、本発明の一実施の形態に係る MIMO無線通信システム 100の主要な構成 を示すブロック図である。本実施の形態では、信頼度推定に基づく再送方法を用い るマルチアンテナ無線通信システムとして MIMO無線通信システムを例にとって説 明する。
[0015] MIMO無線通信システム 100は、 n本の送信アンテナを用いて送信を行う無線送
T
信装置 150と、 n本の受信アンテナを用いて受信を行う無線受信装置 160とを備え
R
て構成される。無線送信装置 150は、データリソース部 101、ブロック形成部 102、 C RC符号化部 103、分割部 104、 AMC部 105— 1〜105— n、および送信アンテナ
T
106— 1〜106— nを備え、無線受信装置 160は、受信アンテナ 107— 1〜107— n
T
、 MIMO検出 Z再送データ合成部 108、 CRC復号部 109、チャネル推定部 111、
R
AMCパラメータ決定部 112、および再送処理部 113を備える。以下、無線送信装置 150の AMC部 105— 1〜105— nを AMC部 105と、送信アンテナ 106— 1〜106
T
-nを送信アンテナ 106と総称する場合があり、無線受信装置 160の受信アンテナ
T
107- l〜107-nを受信アンテナ 107と総称する場合がある。
R
[0016] 無線送信装置 150においてデータリソース部 101は、無線送信装置 150が送信す る送信データの提供源であり、送信データをブロック形成部 102に出力する。データ リソース部 101は、無線受信装置 160からフィードバックされる再送に関するフィード ノ ック情報を参照して、ブロック形成部 102に出力する送信データを決める。
[0017] ブロック形成部 102は、データリソース部 101が提供する送信データを用いて、個 々のデータブロックを形成し、 CRC符号ィ匕部 103に出力する。ブロック形成部 102は 、無線受信装置 160からフィードバックされる再送に関するフィードバック情報により、 形成するデータブロックの大きさを決める。またブロック形成部 102は、無線受信装 置 160からフィードバックされる再送に関するフィードバック情報に基づき、無線送信 装置 150が送信するデータブロックを決定し、 CRC符号ィ匕部 103に出力する。
[0018] CRC符号ィ匕部 103は、ブロック形成部 102から入力されるデータブロックに対して 、巡回冗長検査 (CRC)符号ィ匕を行う。 CRC符号ィ匕とは、データブロックの末尾に数 ビットの CRCビットを添附する処理である。上記の CRCビットは、無線受信装置 160 においてデータブロックに対して誤り検査を行うのに用いられる。
[0019] 分割部 104は、 CRC符号ィ匕部 103から入力されるデータブロックを複数のサブスト リームに分割し、 AMC部 105— 1〜105— nそれぞれに出力する。すなわち、分割
T
部 104は、 1つのデータストリームを複数のサブストリームに分割する。各サブストリー ムはそれぞれ 1つの送信アンテナに対応する。なお、分割部 104は、フィードバック チャネル 110を用いて無線受信装置 160からフィードバックされる情報に基づき、各 サブストリームの大きさを決める。
[0020] AMC部 105— 1〜105— nそれぞれは、分割部 104から入力される各サブストリ
T
ームに対して、フィードバックチャネル 110を用いて無線受信装置 160からフィードバ ックされる適応変調符号化 (AMC)パラメータに基づき、適応変調及び符号化を行 い、生成される送信信号を送信アンテナ 106— l〜106—nそれぞれに出力する。
T
送信アンテナ 106は、送信信号を無線受信装置 160に送信する。
[0021] 無線受信装置 160において受信アンテナ 107は、複数のサブストリーム力もなるデ 一タブロックを含む空間多重信号を受信する。
[0022] チャネル推定部 111は、受信アンテナ 107が受信した信号の中のパイロット信号に 基づき、または他の方法を用いてチャネル推定を行ってチャネル推定行列 Hを得る。 チャネル推定部 111は、得られたチャネル推定行列 Hを、 AMCパラメータ決定部 11 2、 MIMO検出 Z再送データ合成部 108、および再送処理部 113に出力する。
[0023] AMCパラメータ決定部 112は、チャネル推定行列 Hと、無線受信装置 160が用い る MIMO検出方法とに基づき、各サブストリームの適応変調符号化パラメータを決定 し、決定された適応変調及び符号ィ匕パラメータをフィードバックチャネル 110を用い て無線送信装置 150にフィードバックする。ここで、フィードバックデータ量を低減す るために、各適応変調符号ィ匕パラメータに対応する番号のみをフィードバックする。 A MCパラメータ決定部 112は、決定された AMCパラメータを無線送信装置 150にフ イードバックするとともに、無線受信装置 160の MIMO検出 Z再送データ合成部 10 8に出力する。 MIMO検出 Z再送データ合成部 108に出力された AMCパラメータ は、当該 AMCパラメータを用いたサブストリームに対し、次回の受信処理において MIMO検出及び再送データ合成処理を行うのに用いられる。
MIMO検出 Z再送データ合成部 108は、受信アンテナ 107が受信した信号に対 して MIMO検出処理を行い、また同一のデータが数回再送された異なるバージョン のデータに対して合成処理を行う。すなわち、 MIMO検出 Z再送データ合成部 108 は MIMO検出、および再送データブロックの合成という 2つの処理機能を有する。具 体的には、まず受信するデータブロックが再送データであるか否かを判定する。次い で(1)または(2)の処理を行う。(1)受信データブロックが、再送データでなぐすな わち、初めて伝送されるデータである場合、 MIMO検出 Z再送データ合成部 108は 当該受信データブロックに対して MIMO検出処理のみを行う。ここで、 MIMO検出 方法として多数の方法があって、例えば一般的に使われる ZF (Zero Forcing)方法、 MM¾E (Minimum Mean Square Error)方法、 SIC (successive Interferenceし ancella tion)方法などがある。 MIMO検出において、まず上記のような検出方法を用いて受 信データブロックから、無線送信装置 150の各送信アンテナ 105— 1〜105— nによ
T
り送信された各サブストリームを分離する。次いで、前回の受信処理において AMC ノ ラメータ決定部 112から入力された、各サブストリームが用いる AMCパラメータに 基づき、各サブストリームに対して復調及び復号処理を行う。(2)受信データブロック が再送データである場合、すなわち当該データブロックを前に正しく受信できなかつ たことがある場合、 MIMO検出 Z再送データ合成部 108は、当該データブロックに 対して MIMO検出処理を行うほ力、さらに当該データブロックの前に受信したすべて のバージョンのデータと、今回受信したバージョンのデータとを合成する処理を行う。 具体的には、再送処理部 113から入力される再送に関するフィードバック情報を参照 し、前に正しく受信され CRC復号部により CRCビットが除去された各サブストリームと 、今回正しく受信され CRC復号部により CRCビットが除去された各サブストリームとを 合成する。 MIMO検出 Z再送データ合成部 108は、 MIMO検出および再送データ 合成処理を行って得られた信号を CRC復号部 109および再送処理部 113に出力す る。
[0025] CRC復号部 109は、 MIMO検出 Z再送データ合成部 108から入力される信号に 対して、 CRC復号を行って再送応答信号として肯定 (ACK)または否定 (NAK)を生 成し、再送処理部 113およびフィードバックチャネル 110を通じて無線送信装置 150 にフィードバックする。再送応答信号 ACKおよび NAKは、当該データブロックが誤り ビットを含む場合、および誤りビットを含まない場合の 2つの場合をそれぞれ示す。 C RC復号部 109からフィードバックされる再送応答信号は、無線送信装置 150におい て再送動作を行うのに用いられ、 ACKである場合は、当該データブロックが正しく受 信され、次回の送信処理にぉ 、て次の新 、データブロックを送信して良 、ことを示 す。一方、再送応答信号が NAKである場合は、当該データブロックが正しく受信さ れな力つたため、次回の送信処理において当該データブロックをもう 1回送信するこ とを示す。 CRC復号部 109は、再送応答信号を無線送信装置 150にフィードバック するとともに、 MIMO検出 Z再送データ合成部 108、および再送処理部 113に出力 する。また CRC復号部 109は、 CRC復号されたデータブロックが誤りビットを含まな V、場合、 CRC復号されたデータブロックの情報ビットの末尾に添附されて 、る CRC ビットを除去して、得られる受信データ (Rx データ)を出力する。
[0026] 再送処理部 113は、チャネル推定部 111から入力されるチャネル推定行列 H、 CR C復号部 109から入力される再送応答信号を用いて、 MIMO検出 Z再送データ合 成部 108から入力される信号のうち、次回に再送する必要があるサブストリーム、すな わち再送サブストリームを決定し、さらに、再送に用いられる送信アンテナ、すなわち 再送アンテナを選択する。再送処理部 113は、再送サブストリームの決定結果と、再 送アンテナの選択結果とを無線送信装置 150にフィードバックするとともに、 MIMO 検出 Z再送データ合成部 108に出力する。
[0027] 上記のように、無線受信装置 160において生成される再送に関するフィードバック 情報は、再送応答信号 (ACKまたは NAK)、再送サブストリームの決定結果、およ び再送アンテナの選択結果などを指す。
[0028] 図 3は、本実施の形態に係る再送処理部 113の詳細な構成を示すブロック図であ る。
[0029] 再送処理部 113は、信頼度推定部 301、再送サブストリーム決定部 302、および再 送アンテナ選択部 303を備えて構成される。
[0030] まず、信頼度推定部 301は、 CRC復号部 109から入力される再送応答信号を判定 し、再送応答信号が ACKである場合、 MIMO検出 Z再送データ合成部 108から入 力される各サブストリームに対して信頼度を推定する。具体的には、各サブストリーム の復号後の軟判定値に基づき、各サブストリームの信頼度を推定する。サブストリー ムの信頼度が高いほど当該サブストリームが誤りビットを含む確率はより低ぐサブスト リームの信頼度が低いほど当該サブストリームが誤りビットを含む確率はより高い。信 頼度推定部 301は、推定して得られた各サブストリームの信頼度を再送サブストリー ム決定部 302に出力する。
[0031] 次いで、再送サブストリーム決定部 302は、すべてのサブストリームの中力 信頼度 が低 、方力 所定数のサブストリームを再送サブストリームと決定し、決定結果を次 回の受信処理用に MIMO検出 Z再送データ合成部 108に出力するとともに、次回 の送信用にフィードバックチャネル 110を通じて無線送信装置 150にフィードバック する。
[0032] 次いで、再送アンテナ選択部 303は、再送サブストリーム決定部 302で決定された 再送サブストリームを再送する再送送信アンテナを、チャネル推定部 111から入力さ れるチャネル推定行列 Hに基づき選択する。再送アンテナを選択する 1つの方法は 、元の送信アンテナを再び再送アンテナとして選択する方法である。別の再送アンテ ナを選択する方法として、チャネル推定部 111が推定したチャネル推定行列 Hに基 づき、チャネル特性 (チャネル利得値)が劣る方から複数の送信アンテナを選択して も良い。再送アンテナ選択部 303は、選択結果として再送サブストリームの番号と、 対応する再送アンテナの番号とを次回の送信処理用に無線送信装置 150にフィード バックするとともに、次回の受信処理用に MIMO検出 Z再送データ合成部 108に出 力する。 [0033] 以上のように構成された MIMO無線通信システム 100における再送方法にっ 、て 以下説明する。
[0034] まず、仮に再送処理部 113を備えない場合の MIMO無線通信システム 200 (図 4 参照)と、本実施の形態に係る MIMO無線通信システム 100とを比較しながら本発 明の基本的な考え方について説明する。この図において、 MIMO無線通信システム 100 (図 2参照)と同様の構成要素には同一の符号を付している。
[0035] MIMO無線通信システム 200の再送方法においては、データブロックに対する CR C符号ィ匕および CRC復号により、当該データブロックの中に誤りビットが含まれて!/、る か否かを検出する。 CRC符号ィ匕および CRC復号により、誤りビットが具体的に当該 データブロックのどのサブストリームに含まれているかを検出することはできないため
、すべてのサブストリームを含むデータブロックを丸ごと再送するしかない。データブ ロックが正しく受信されるまで、無線送信装置 150は同一データを再送し、無線受信 装置 260は、数回再送されたデータの各バージョンに対して合成処理を行う。一般 的に使われる再送データ合成の方法は以下のようである。ここで受信信号がデータ ブロック sの N回目伝送である場合、 N回伝送のすべての受信信号をそれぞれ r、 r、
1 2
· ··、 rと示す。 rは初め 1回目伝送の受信信号を示し、残りは再送の受信信号を示す
N 1
。無線受信装置 260は N回目伝送の受信信号 rを受信し、 MIMO検出処理を行つ
N
て無線送信装置 150の各送信アンテナが送信したサブストリーム s = (s 、s 、…
N Ν,Ι Ν,2
、 s )に分離する。 s は、無線送信装置 150により i回目に再送されたデータブロッ
Ν,ηΤ i,j
ク sの j番目のサブストリームを、無線受信装置 260が MIMO検出処理により分離して 得られた信号を示す。無線受信装置 260の MIMO検出 Z再送データ合成部 108は s と、前の N— 1回に渡って受信した受信信号 r、 r、 · ··、 r に対して MIMO検出
N 1 2 N- l
処理を行って得られた各信号 s、 s、 · ··、 s とを加算合成する。合成して得られる信
1 2 N- 1
号は s = l/N * (s +s H—— hs , s +s H—— hs , · ··, s +s H—— hs
0 1,1 2,1 N,l 1,2 2,2 N,2 Ι,ηΤ 2,nT
)となる。すなわち、データブロック sを構成する各サブストリーム毎に、 N回受信さ
Ν,ηΤ
れた結果を加算して Νで除算して、平均を求める。
[0036] しかし、図 1に示すシミュレーション結果力 分力るように、実際にデータブロックに 誤りが発生する場合、そのうちの 1つまたは 2つのサブストリームのみに誤りが発生す る確率が高い。
[0037] そこで、本発明の再送方法は、誤りが発生したデータブロックにおいて誤りビットが 具体的にどのサブストリームに含まれて 、るかを、無線受信装置 160の再送処理部 1 13を用いて判定し、無線送信装置 150にフィードバックする。これにより、無線送信 装置 150はすべてのサブストリームを含むデータブロック丸ごとを再送する必要がな ぐ再送処理部 113で決定された再送サブストリームのみを再送し、再送を行わない 残りの送信アンテナ上では次の新し 、データブロックを送信することができる。このた め、 MIMO無線通信システム 100のスループットを向上することができる。システムの 性能をさらに向上するために、再送処理部 113はさらに次回の送信において、再送 サブストリームを再送するのに用いる送信アンテナを所定の条件に基づき選択する。 本発明の再送方法において、再送サブストリームの決定および再送アンテナの選択 は、各サブストリームの信頼度に対する推定に基づいて行われる。
[0038] 次 、で、本発明に係る信頼度推定に基づく再送方法につ!、て説明する。
[0039] 図 5は、本発明の一実施の形態に係る MIMO無線通信システム 100における、信 頼度推定に基づく再送方法を示すフロー図である。
[0040] 本実施の形態において、再送サブストリーム決定部 302が毎回決定する再送サブ ストリームの数は所定値であって、ここでは n(l≤n≤n )と記す。 nの値はシステムの
T
初期設定の時に設定される。
[0041] まずステップ S401において、無線受信装置 160が受信したデータブロックに誤りが あると CRC復号部 109により検出される。前述したように MIMO無線通信システム 1 00の送信アンテナの個数は nで、受信アンテナの個数は nであり、データブロック S
T R
は n個のサブストリーム力ら構成され、 S= {S、 S、 · ··、 S }と記される。ここで Sは、
T 1 2 nT i データブロック sを構成する各サブストリームを表し、各サブストリームは 1つの送信ァ ンテナにそれぞれ対応する。なお、チャネル推定部 111の推定によりチャネル推定 行列 Hが得られる。
[0042] 次いでステップ S402において、データブロック Sが含む各サブストリーム {S、 S、
1 2
•••、S }それぞれの信頼度 { 、 μ 、 · · ·、 μ }が、信頼度推定部 301により推定さ nT 1 2 nT
れる。各サブストリームの信頼度 は下記の式(1)または式(2)に従って求められる。 [数 1]
Figure imgf000013_0001
この式において、 αはサブストリーム中の 1個目の情報ビットの受信後の信頼度であ
1
り、 Lは当該サブストリームの情報ビットの数である。上記の式(1)に従って求めたサ ブストリームの信頼度は、サブストリームが含むすべてのビットの受信後の信頼度の 平均値である。
[0043] 下記の式(2)においては、サブストリームの信頼度として、サブストリームに含まれ 信頼度が閾値 ι8より大きい情報ビットの数を求める。
[数 2] μ = lengthi
Figure imgf000013_0002
この式において、 argはサブストリームに含まれ信頼度が閾値 |8より大きい情報ビット の配列を示し、 lengthはこの配列の長さ、すなわちサブストリームに含まれ信頼度が 閾値 ι8より大きい情報ビットの数を示す。
[0044] 上記の式(1)および式(2)において、情報ビットの信頼度 αの意味について、下記 の式 (3)を用いて説明する。
[数 3]
Figure imgf000013_0003
この式において、 bは情報ビットの値、すなわち「0」または「1」を示し、 rは受信信号 を示す。 I LLR I は情報ビットの対数尤度比 (LLR)の絶対値を示し、 p(b=l/r)及び p(b=l/r)はそれぞれ受信信号が既知である条件で、情報ビット bが 1である場合、およ び情報ビット bが 0である場合の確率を示す。本実施の形態において、情報ビットの信 頼度 OCとして、直接、復号器の軟判定値の絶対値をとる。
[0045] 次いでステップ S403において、データブロック Sを構成する n個のサブストリーム
T
の中で、最も信頼できない n個のサブストリーム S 、S 、 "'、S を選択する。具体的
kl k2 kn
には、ステップ S401において得られる各サブストリーム {S、 S、 · ··、 S }の信頼度 {
1 2 nT
μ 、 μ 、…ヽ μ }の中で値が最も低い η個を最も信頼できない η個のサブストリーム
1 2 nT
として決定する。このように決定された η個のサブストリーム {S 、S 、 "'、S }は、す
kl k2 kn なわち再送サブストリームとなる。
[0046] 次いでステップ S404において、次回の伝送で再送サブストリーム {S 、S 、 "'、S
kl k2 k
}を再送する再送アンテナ {A 、Α 、 · ··、Α }を選択する。
n kl k2 kn
[0047] 再送アンテナを選択する方法として 2つの方法があって、 1つの方法は、今回の伝 送でサブストリーム {S 、 S 、 · ··、 S }を送信した送信アンテナ 106— k , 106— k ,
kl k2 kn 1 2
· ··, 106—kをそのまま再送アンテナ {A 、Α 、 · ··、Α }として選択する方法である
n kl k2 kn
。 MIMO無線通信システム 100の適応伝送において、毎回の伝送では所定の目標 BERの要求を満たすように、各ストリームの変調符号ィ匕パラメータに対して適応的な 選択を行っている。これを前提として、再送サブストリームは誤りビットを含むものの、 BER性能自体はそんなに悪いわけではないため、サブストリーム {S 、S 、 "'、S }
kl k2 kn を送信した送信アンテナ 106— k, 106—k,…, 106—kをそのまま再送アンテナ
1 2 n
{A 、Α 、 · ··、Α }として選択する場合、再送の BER性能が大きく低下することはな kl k2 kn
い。
[0048] 再送アンテナを選択するもう 1つの方法は、チャネル推定行列 Hにより、チャネル特 性が劣る方カゝら n本の送信アンテナを選択する方法である。ここでチャネル特性が劣 る方力 送信アンテナとして選択する理由は、無線通信システムにおいて受信装置 は初回受信時と再送時との 2回以上に渡っての受信データを合成するため、再送時 にチャネル特性が優れる送信アンテナを用いる必要がな ヽ。チャネル特性がより劣る 送信アンテナを再送に用いることにより、チャネル特性がより良い送信アンテナを新し いデータの送信に用いて、新しいデータの伝送の正確率を高めることができるため、 システムのスループットを向上することができる。再送サブストリーム {S 、 S 、 · ··、 S
kl k2 k
}と再送アンテナ {A 、Α 、 · ··、Α }とを対応付ける方法として、この η個の再送サ n kl k2 kn ブストリーム中で信頼度が一番低いサブストリームは、チャネル特性が劣る方力 選 択された n個の再送アンテナ { A 、Α 、 · ··、Α }の中でチャネル特性が一番優れる
kl k2 kn
1つを用いて再送し、信頼度が 2番目に低いサブストリームはチャネル特性が 2番目 に優れる 1つを用いて再送し、同様の処理によりすベての再送サブストリームと再送 アンテナとを対応付ける。
[0049] 無線受信装置 160は、選択された再送サブストリームおよび再送アンテナに関する 情報を、無線送信装置 150にフィードバックするとともに、無線受信装置 160の MIM
O検出 Z再送データ合成部 108に出力する。
[0050] 次いでステップ S405において、無線送信装置 150は再送アンテナ {A 、A
kl k2
A }を用いて再送サブストリーム {S 、S 、 "'、S }を再送し、他の送信アンテナを kn kl k2 kn
用いて次の新し 、データブロックのサブストリームを送信する。
[0051] 図 6は、本発明の一実施の形態に係る信頼度推定に基づく再送方法と、従来の再 送方法との周波数利用効率を比較して示す図である。この図において、「 +」は従来 の再送方法を用いる場合、各 SNRにおいて得られる周波数利用効率を示す。「口」 は信頼度推定に基づく再送方法を用い、元の送信アンテナをそのまま再送アンテナ として選択する場合、各 SNRにおいて得られる周波数利用効率を示す。「◊」は信頼 度推定に基づく再送方法を用い、チャネル特性が最も劣る送信アンテナを再送アン テナとして選択する場合、各 SNRにおいて得られる周波数利用効率を示す。
[0052] 性能比較のためのシミュレーションにおいて送信アンテナおよび受信アンテナは両 方とも 4本である。チャネルは平坦減衰チャネルで、用いられる適用変調パラメータは 「伝送しない」、 BPSK、 QPSK、 8PSK、および 16QAMで、目標 BERは 10_5であ る。 1つの伝送データブロックは 4000個のシンボルを含み、 MIMO検出方法は n= 1の ZR検出方法を用いる。図 6が示すように、従来の再送方法と比べ、本発明に係る 信頼度推定に基づく再送方法を用いれば、より優れた周波数利用効率を得ることが できる。すなわち、 MIMO無線通信システムのスループットを向上することができる。 なお、チャネル特性が最も劣る送信アンテナを再送アンテナとして選択すれば周波 数利用効率をさらに向上することができる。
[0053] このように、本実施の形態によれば、マルチアンテナ無線通信システムにお ヽて受 信したデータブロックに誤りがある場合、各サブストリーム毎の信頼度に基づき、誤り ビットが具体的にどのサブストリームにあるかを判定し、誤りビットを含む再送サブスト リームのみを再送するため、正しく受信されたサブストリームの重複な伝送を回避する ことができ、マルチアンテナ無線通信システムのスループットを向上することができる
[0054] また、本実施の形態によれば、チャネル推定行列に基づき再送サブストリームを再 送する再送アンテナを選択することにより、システム資源をより適切に利用し、 MIMO 無線通信システムのスループットを向上することができる。
[0055] なお、本実施の形態では、再送サブストリーム決定部 302で再送サブストリームと判 定するサブストリームの数を所定値に予め決める場合を例にとって説明した力 再送 サブストリームの数を決めなくて、信頼度が所定値より低 ヽあらゆるサブストリームを 再送サブストリームと判定しても良い。これにより、再送の正確率を向上することがで きる。
[0056] また、本実施の形態では、再送サブストリーム決定部 302では信頼度が最も低 、複 数のサブストリームを再送サブストリームとして決定する場合を例にとって説明したが 、信頼度が最も低い 1つのサブストリームを再送サブストリームとして決定しても良い。
[0057] また、本実施の形態では、 MIMO無線通信システムとして適応変調符号化を行う 場合を例にとって説明したが、適応変調符号化を行わな ヽ MIMO無線通信システム でも良ぐかかる場合、再送アンテナを選択する方法としてチャネル特性が最も劣る 送信アンテナを再送アンテナとして選択すれば良!ヽ。
[0058] 以上、本発明の一実施の形態について説明した。
[0059] 本発明に係るマルチアンテナ無線通信システム、無線受信装置、および再送方法 は、上記各実施の形態に限定されず、種々変更して実施することが可能である。
[0060] 本発明に係る無線受信装置は、マルチアンテナ無線通信システムにおける通信端 末装置および基地局装置に搭載することが可能であり、これにより上記と同様の作用 効果を有する通信端末装置、基地局装置、および移動体通信システムを提供するこ とがでさる。
[0061] なお、ここでは、本発明をノヽードウエアで構成する場合を例にとって説明したが、本 発明をソフトウェアで実現することも可能である。例えば、本発明に係る再送方法のァ ルゴリズムをプログラミング言語によって記述し、このプログラムをメモリに記憶してお いて情報処理手段によって実行させることにより、本発明に係る無線受信装置と同様 の機能を実現することができる。
[0062] 本明細書は、 2005年 3月 7日出願の中国特許出願第 200510054151. 6号に基 づく。この内容はすべてここに含めておく。
産業上の利用可能性
[0063] 本発明に係るマルチアンテナ無線通信システム、無線受信装置、および再送方法 は、マルチアンテナ無線通信システムにおける再送等の用途に適用することができる

Claims

請求の範囲
[1] 複数のサブストリームを複数の送信アンテナを用いて送信する無線送信装置と、前 記複数のサブストリームを複数の受信アンテナを用いて受信する無線受信装置と、を 具備するマルチアンテナ無線通信システムにお 、て、
前記無線受信装置は、
受信された前記複数のサブストリームに対し、各サブストリームの信頼度に基づいて 再送の必要がある力否かを判定し、再送サブストリームを決定し、決定された再送サ ブストリームに関する情報を前記無線送信装置に通知し、
前記無線送信装置は、
前記無線受信装置から通知される情報に基づき、前記再送サブストリームと未送信 のサブストリームとを同時に送信する、
マルチアンテナ無線通信システム。
[2] 前記無線受信装置は、
前記各サブストリームの軟判定値を求め、求まった軟判定値を前記各サブストリー ムの信頼度とし、前記信頼度に基づいて 1つまたは複数のサブストリームを再送サブ ストリームと決定する、
請求項 1記載のマルチアンテナ無線通信システム。
[3] 前記無線受信装置は、
チャネル推定を行ってチャネル推定行列を得、前記チャネル推定行列に基づき、 チャネル特性が劣る方から、前記再送サブストリームの再送に使用するアンテナを選 択する、
請求項 2記載のマルチアンテナ無線通信システム。
[4] マルチアンテナ伝送に用いられる再送方法であって、
複数の送信アンテナにより送信される複数のサブストリーム力 なるデータブロック を含む信号を受信し、この信号に対して復号を行って、対応する軟判定値を出力す るステップと、
前記軟判定値を各サブストリームの信頼度として使用するステップと、
前記信頼度に基づき前記複数のサブストリームの中から再送サブストリームを決定 するステップと、
前記再送サブストリームを再送する再送アンテナを選択するステップと、 前記選択された再送アンテナ上で前記再送サブストリームを再送するステップと、 を具備する再送方法。
[5] 複数の送信アンテナから送信される複数のサブストリームを受信する複数の受信ァ ンテナと、
受信された前記各サブストリームに対して再送の必要がある力否かを判定し、再送 サブストリームを決定する再送サブストリーム決定手段と、
前記決定された再送サブストリームに関する情報を前記無線送信装置に通知する 通知手段と、
を具備する無線受信装置。
[6] 前記複数の受信アンテナが受信した信号の中からチャネル推定行列を推定するチ ャネル推定部と、
前記複数の受信アンテナが受信した信号に対してマルチインプット ·マルチアウトプ ッ HMIMO)検出を行い、検出の結果信号を出力する MIMO検出及び再送合成部 と、
前記チャネル推定行列と、 MIMO検出及び再送合成部が用いる MIMO検出方法 と、に基づき、各サブストリームを送信するのに用いる変調符号ィ匕パラメータを決定し 、決定された各サブストリームの変調符号化パラメータを送信側にフィードバックする 変調符号化パラメータ推定部と、
前記 MIMO検出及び再送合成部が出力する結果信号に対して循環冗長検査 (C RC)復号を行って、前記データブロックの中に誤りビットが存在するか否かを確定す る循環冗長検査復号部と、
前記循環冗長検査復号部が前記データブロックの中に誤りが存在すると確定した 場合、前記データブロックが含む各サブストリームの信頼度に基づき再送サブストリ ームを決定する前記再送サブストリーム決定手段を備え、なお前記再送サブストリー ムを再送する再送アンテナを選択する再送処理部と、
をさらに具備し、 前記複数の受信アンテナは、複数の送信アンテナにより送信される複数のサブスト リーム力もなるデータブロックを含む信号を受信する、
請求項 5記載の無線受信装置。
[7] 前記再送処理部は、
前記データブロックが含む各サブストリームの信頼度を推定する信頼度推定手段と 前記データブロックのすべてのサブストリームの中力 再送サブストリームを決定す る再送サブストリーム決定手段と、
再送サブストリームを再送する再送アンテナを選択する再送アンテナ選択手段と、 を具備する、
請求項 5記載の無線受信装置。
[8] 前記信頼度推定手段は、
サブストリーム中の情報ビットの信頼度の平均値を前記サブストリームの信頼度とし て使用し、
前記情報ビットの信頼度は、情報ビットの対数尤度比の絶対値である、 請求項 7記載の無線受信装置。
[9] 前記信頼度推定手段は、
サブストリーム中の情報ビットの信頼度が所定の閾値より大きい情報ビットの個数を 前記サブストリームの信頼度とし、前記情報ビットの信頼度は、情報ビットの対数尤度 比の絶対値である、
請求項 7記載の無線受信装置。
[10] 前記再送サブストリーム決定手段は、
信頼度が最も劣る 1つのサブストリームを、再送サブストリームとして決定する、 請求項 7記載の無線受信装置。
[11] 前記再送アンテナ選択手段は、
チャネル特性が最も劣る 1個の送信アンテナを、再送アンテナとして選択する、 請求項 10記載の無線受信装置。
[12] 前記再送アンテナ選択手段は、 再送サブストリームが送信された元の送信アンテナを、再送アンテナとして選択する 請求項 10記載の無線受信装置。
[13] 前記再送サブストリーム決定手段は、
前記信頼度が劣る方力 複数のサブストリームを、再送サブストリームとして決定す る、
請求項 7記載の無線受信装置。
[14] 前記再送アンテナ選択手段は、
チャネル特性が劣る方力 複数の送信アンテナを再送アンテナとして選択する、 請求項 13記載の無線受信装置。
[15] 前記再送サブストリーム決定手段は、
信頼度が所定の閾値より低いサブストリームを、再送サブストリームとして決定する、 請求項 7記載の無線受信装置。
[16] 前記再送アンテナ選択手段は、
チャネル特性行列に基づき、チャネル特性が劣る方から、再送サブストリームの数 に対応する数の送信アンテナを、再送アンテナとして選択する、
請求項 15記載の無線受信装置。
PCT/JP2006/304401 2005-03-07 2006-03-07 マルチアンテナ無線通信システム、無線受信装置、および再送方法 WO2006095741A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200510054151.6 2005-03-07
CNA2005100541516A CN1832390A (zh) 2005-03-07 2005-03-07 用于多天线自适应传输中基于可靠度估计的重传方法

Publications (1)

Publication Number Publication Date
WO2006095741A1 true WO2006095741A1 (ja) 2006-09-14

Family

ID=36953335

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/304401 WO2006095741A1 (ja) 2005-03-07 2006-03-07 マルチアンテナ無線通信システム、無線受信装置、および再送方法

Country Status (2)

Country Link
CN (1) CN1832390A (ja)
WO (1) WO2006095741A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007061065A1 (ja) * 2005-11-24 2007-05-31 Matsushita Electric Industrial Co., Ltd. マルチアンテナ通信システムにおける無線通信方法
WO2008050788A1 (fr) * 2006-10-24 2008-05-02 Mitsubishi Electric Corporation Appareil émetteur, appareil récepteur, appareil de communication et système de communication

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101325473B (zh) * 2007-06-13 2013-04-17 华为技术有限公司 重传数据的方法、信号接收器及信号发送器
KR101412174B1 (ko) 2007-10-17 2014-06-26 삼성전자주식회사 이동통신 시스템의 복호 장치 및 방법
CN101557280B (zh) * 2008-04-11 2014-04-09 株式会社Ntt都科摩 多入多出系统中预编码矩阵/矢量的选择方法和装置
CN101924619B (zh) * 2009-06-16 2015-02-25 中兴通讯股份有限公司 一种多天线lte系统中的混合自动重传方法和装置
CN107911195B (zh) * 2017-10-19 2020-03-17 重庆邮电大学 一种基于cva的咬尾卷积码信道译码方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03104335A (ja) * 1989-09-19 1991-05-01 Nippon Telegr & Teleph Corp <Ntt> 信号伝送方式
JP2001119426A (ja) * 1999-10-15 2001-04-27 Ntt Docomo Inc 誤り制御方法及びその方法を使用する通信システム
JP2003078480A (ja) * 2001-06-13 2003-03-14 Ntt Docomo Inc 移動体通信システム、移動体通信方法、基地局、移動局、及び移動体通信システムにおける信号送信方法
JP2003115892A (ja) * 2001-10-03 2003-04-18 Matsushita Electric Ind Co Ltd データ通信方法及びデータ通信システム
JP2004135304A (ja) * 2002-09-30 2004-04-30 Lucent Technol Inc 無線通信システムのためのmimoharqスキームでの信号および制御メカニズム
WO2004038986A2 (en) * 2002-10-25 2004-05-06 Qualcomm Incorporated Closed-loop rate control for a multi-channel communication system
JP2004253959A (ja) * 2003-02-19 2004-09-09 Matsushita Electric Ind Co Ltd 無線通信システムおよび無線通信方法
WO2005004376A1 (ja) * 2003-06-30 2005-01-13 Fujitsu Limited 多入力多出力伝送システム
JP2005277570A (ja) * 2004-03-23 2005-10-06 Fujitsu Ltd 送信装置、受信装置、再送制御方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03104335A (ja) * 1989-09-19 1991-05-01 Nippon Telegr & Teleph Corp <Ntt> 信号伝送方式
JP2001119426A (ja) * 1999-10-15 2001-04-27 Ntt Docomo Inc 誤り制御方法及びその方法を使用する通信システム
JP2003078480A (ja) * 2001-06-13 2003-03-14 Ntt Docomo Inc 移動体通信システム、移動体通信方法、基地局、移動局、及び移動体通信システムにおける信号送信方法
JP2003115892A (ja) * 2001-10-03 2003-04-18 Matsushita Electric Ind Co Ltd データ通信方法及びデータ通信システム
JP2004135304A (ja) * 2002-09-30 2004-04-30 Lucent Technol Inc 無線通信システムのためのmimoharqスキームでの信号および制御メカニズム
WO2004038986A2 (en) * 2002-10-25 2004-05-06 Qualcomm Incorporated Closed-loop rate control for a multi-channel communication system
JP2004253959A (ja) * 2003-02-19 2004-09-09 Matsushita Electric Ind Co Ltd 無線通信システムおよび無線通信方法
WO2005004376A1 (ja) * 2003-06-30 2005-01-13 Fujitsu Limited 多入力多出力伝送システム
JP2005277570A (ja) * 2004-03-23 2005-10-06 Fujitsu Ltd 送信装置、受信装置、再送制御方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007061065A1 (ja) * 2005-11-24 2007-05-31 Matsushita Electric Industrial Co., Ltd. マルチアンテナ通信システムにおける無線通信方法
WO2008050788A1 (fr) * 2006-10-24 2008-05-02 Mitsubishi Electric Corporation Appareil émetteur, appareil récepteur, appareil de communication et système de communication
JPWO2008050788A1 (ja) * 2006-10-24 2010-02-25 三菱電機株式会社 送信装置、受信装置、通信装置および通信システム
US8290072B2 (en) 2006-10-24 2012-10-16 Mitsubishi Electric Corporation Transmission apparatus, reception apparatus, communication apparatus, and communication system

Also Published As

Publication number Publication date
CN1832390A (zh) 2006-09-13

Similar Documents

Publication Publication Date Title
JP4128197B2 (ja) 多入力多出力伝送システム
US8514959B2 (en) MIMO transmitting apparatus, and data retransmitting method in MIMO system
US8817905B2 (en) Retransmission method for HARQ in MIMO systems
JP4769201B2 (ja) マルチアンテナ通信方法およびマルチアンテナ通信装置
KR100912762B1 (ko) 멀티 안테나 전송에서의 재송 방법 및 송신 방법
JP4384668B2 (ja) Mimo−ofdmシステムにおける自動再送要求制御システム及び再送信方法
EP3503449B1 (en) Method and apparatus for error control in telecommunications systems
JP4903268B2 (ja) 再送エラー制御技術送信用のリンク適応
CN101411112B (zh) 电信系统中的方法和设备
JP4926038B2 (ja) 送信装置及び送信方法
JP5299156B2 (ja) 自動再送制御方法と通信システム及びその送信機と受信機
US20090028263A1 (en) Mimo communication apparatus and data retransmission method
JPWO2006095904A1 (ja) 再送方法、無線受信装置、およびマルチアンテナ無線通信システム
CN101689975A (zh) 用于在mimo系统中进行改进的无线电资源分配的方法和设备
WO2006095741A1 (ja) マルチアンテナ無線通信システム、無線受信装置、および再送方法
US20100180170A1 (en) Method for retransmitting packets in mimo system
JP5223915B2 (ja) 移動通信システム及びその通信方法並びに送信局
JP4812779B2 (ja) 移動通信システム及びその通信方法並びに送信局
WO2008023922A1 (en) Method for retransmitting packets in mimo system
AU2011224065B2 (en) Harq in spatial multiplexing mimo system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06728720

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP