WO2006093264A1 - レーザ加熱装置およびレーザ加熱方法 - Google Patents

レーザ加熱装置およびレーザ加熱方法 Download PDF

Info

Publication number
WO2006093264A1
WO2006093264A1 PCT/JP2006/304074 JP2006304074W WO2006093264A1 WO 2006093264 A1 WO2006093264 A1 WO 2006093264A1 JP 2006304074 W JP2006304074 W JP 2006304074W WO 2006093264 A1 WO2006093264 A1 WO 2006093264A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
light
infrared sensor
heating apparatus
temperature
Prior art date
Application number
PCT/JP2006/304074
Other languages
English (en)
French (fr)
Inventor
Tutomu Sakurai
Koji Funami
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to JP2007506018A priority Critical patent/JP5042013B2/ja
Priority to CN2006800028693A priority patent/CN101107501B/zh
Publication of WO2006093264A1 publication Critical patent/WO2006093264A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/0003Radiation pyrometry, e.g. infrared or optical thermometry for sensing the radiant heat transfer of samples, e.g. emittance meter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/0008Soldering, e.g. brazing, or unsoldering specially adapted for particular articles or work
    • B23K1/0016Brazing of electronic components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/005Soldering by means of radiant energy
    • B23K1/0056Soldering by means of radiant energy soldering by means of beams, e.g. lasers, E.B.
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/03Observing, e.g. monitoring, the workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/0604Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/0604Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams
    • B23K26/0608Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams in the same heat affected zone [HAZ]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/067Dividing the beam into multiple beams, e.g. multifocusing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/082Scanning systems, i.e. devices involving movement of the laser beam relative to the laser head
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/0037Radiation pyrometry, e.g. infrared or optical thermometry for sensing the heat emitted by liquids
    • G01J5/004Radiation pyrometry, e.g. infrared or optical thermometry for sensing the heat emitted by liquids by molten metals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/025Interfacing a pyrometer to an external device or network; User interface
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/06Arrangements for eliminating effects of disturbing radiation; Arrangements for compensating changes in sensitivity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/07Arrangements for adjusting the solid angle of collected radiation, e.g. adjusting or orienting field of view, tracking position or encoding angular position
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0801Means for wavelength selection or discrimination
    • G01J5/0802Optical filters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0806Focusing or collimating elements, e.g. lenses or concave mirrors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/084Adjustable or slidable
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0846Optical arrangements having multiple detectors for performing different types of detection, e.g. using radiometry and reflectometry channels
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0859Sighting arrangements, e.g. cameras
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/60Radiation pyrometry, e.g. infrared or optical thermometry using determination of colour temperature
    • G01J5/602Radiation pyrometry, e.g. infrared or optical thermometry using determination of colour temperature using selective, monochromatic or bandpass filtering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices
    • B23K2101/42Printed circuits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/0014Radiation pyrometry, e.g. infrared or optical thermometry for sensing the radiation from gases, flames
    • G01J5/0018Flames, plasma or welding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/005Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar

Definitions

  • Patent application title Laser heating apparatus and laser heating method
  • the present invention relates to a laser heating apparatus and a laser heating method for performing heating and processing such as soldering, resin bonding, and welding with a laser beam emitted from, for example, a semiconductor laser.
  • a laser heating apparatus that performs non-contact heating and processing by laser light
  • a laser diode module semiconductor laser array
  • a lens composed of a collimating lens for collimating the emitted laser light (parallel light) and a condenser lens for condensing the collimated laser light (for example, , JP2002-9388A).
  • the conventional laser heating apparatus can perform heating / processing on the object to be heated placed at the focal position of the condenser lens.
  • the present invention detects abnormal heat generation that is a sign of the occurrence of temperature changes or burns at the time of melting of solder or resin at a processing point, and soldering that does not cause burns in the peripheral part.
  • Another object of the present invention is to provide a laser heating apparatus and a laser heating method that enable resin bonding that does not cause resin to be damaged.
  • the present invention provides an infrared sensor that generates a signal based on an integrated value of infrared spectral radiance emitted from an object to be heated such as solder or resin.
  • an object to be heated such as solder or resin.
  • the output signal of the infrared sensor and the The relational expression of the calibration value with the measured temperature of the heated object of the star is obtained in advance.
  • the temperature of the object to be heated is calculated based on the output signal of the infrared sensor and the relational expression.
  • the laser heating device outputs a signal based on an integrated value of a laser emitting portion that emits laser light to irradiate an object to be heated and spectral radiance of infrared rays received by the light receiving surface.
  • the laser heating device according to claim 2 is the laser heating device according to claim 1, wherein the laser emitting unit emits a laser beam having a wavelength of 1.6 ⁇ or less. Let's say.
  • the laser heating device according to claim 3 is the laser heating device according to claim 1, wherein the infrared sensor has a peak sensitivity at a wavelength of 1.2 xm or more. To do.
  • the laser heating apparatus is the laser heating apparatus according to claim 1, wherein the optical system receives infrared light having a wavelength longer than the wavelength of the laser light. It is characterized by leading to the surface.
  • the laser heating apparatus according to claim 5 is the laser heating apparatus according to claim 2, wherein the optical system transmits only infrared rays in a specific wavelength range.
  • the laser heating apparatus is the laser heating apparatus according to claim 1, further comprising an imaging device that images visible light from the object to be heated and its peripheral portion. It is characterized by.
  • the laser heating device according to claim 7 is the laser heating device according to claim 1, characterized in that an aperture for specifying a region for temperature measurement is provided.
  • the laser heating device according to claim 8 is the laser heating device according to claim 1, wherein the infrared sensor has a relative sensitivity of 10% or more for a wavelength of 1.2 ⁇ or more. Yes, and characterized by generating a Motodzure was signals totalized value of infrared 10- 5 W / (cm 2 ' sr' / m) or more spectral radiance received by the light receiving surface.
  • the laser heating device according to claim 9 is the laser heating device according to claim 1, wherein the infrared sensor is an InGaAs PIN photodiode.
  • the laser heating device according to claim 10 is the laser heating device according to claim 1, characterized in that the laser irradiation range at the processing point is spot-like.
  • the laser heating device according to claim 11 is the laser heating device according to claim 1, further comprising an optical system for making the laser irradiation range on the processed surface rectangular or elliptical. It is characterized by.
  • the laser heating device is the laser heating device according to claim 1, wherein the laser beam emitted from the laser emitting unit is reflected and is reflected on a processing surface. It is characterized by further comprising at least one scan mirror for performing a line scan irradiation or a two-dimensional scan irradiation to make the laser irradiation range on the processing surface rectangular or elliptical.
  • the laser heating apparatus is the laser heating apparatus according to claim 1, wherein the laser emitting section includes two or more laser diodes that emit the laser light, An optical system is further provided for suppressing the spread of each laser beam emitted from the laser diode in the FAST direction and making the laser irradiation range on the processing surface rectangular or elliptical with each laser beam suppressing the spread. It is characterized by that.
  • the laser heating apparatus is the laser heating apparatus according to claim 1, wherein the laser emitting unit includes two or more laser diodes that emit the laser light, and the lasers.
  • the laser irradiation range on the processing surface is made rectangular or elliptical by each laser beam from the lens.
  • the laser heating apparatus is the laser heating apparatus according to claim 1, wherein when the amount of change in the output signal level of the infrared sensor reaches a set amount of change, the laser emission is performed.
  • a control unit that stops the emission of the laser beam by the unit or intermittently emits the laser beam with a predetermined laser pattern.
  • the laser heating method according to claim 16 is a laser heating method in which a heating target object is irradiated with a laser beam to heat the heating target object, and the laser beam is applied to the heating target object. While irradiating, it is radiated or reflected from the object to be heated and its surroundings to the light receiving surface of the infrared sensor that generates a signal based on the integrated value of the infrared spectral radiance received by the light receiving surface. Infrared light other than the light having the wavelength of the laser light is guided, the signal generated by the infrared sensor, the actually measured temperature of the object to be heated and the signal generated by the infrared sensor are obtained in advance. The temperature of the object to be heated is calculated based on a relational expression of the calibration value with the level.
  • the laser heating method according to claim 17 is the laser heating method according to claim 16, wherein the laser beam is irradiated on the processing surface by line scan irradiation or two-dimensional scan irradiation, and the laser irradiation range on the processing surface is measured. It is characterized by having a rectangular or elliptical shape.
  • the laser heating method according to claim 18 is the laser heating method according to claim 16, wherein when the change amount of the output signal level of the infrared sensor reaches a set change amount, the laser beam is emitted. Or the laser light is intermittently emitted with a predetermined laser power.
  • the temperature change at the processing point, the rapid temperature change before and after the melting change of the solder or resin, and the rapid temperature change before and after the occurrence of kogation in the periphery of the solder or the resin are detected. It is possible to detect that a desired processing such as soldering or resin bonding has been performed, detect the occurrence of kogation, prevent the occurrence of kogation, and the like. Furthermore, the processing state can be observed with an imaging device. In addition, the aperture detects a minute specific position around the object to be heated and a minute specific position on the object to be heated to detect temperature changes at that specific position and prevent the occurrence of kogation. And so on.
  • FIG. 1 is a diagram showing a configuration of a laser heating apparatus according to Embodiment 1 of the present invention.
  • FIG. 2 is a diagram showing a spectral sensitivity characteristic of the InGaAsPIN photodiode according to the first embodiment of the present invention.
  • FIG. 3 is a diagram showing infrared absorption characteristics of optical component materials.
  • FIG. 4 is a diagram showing the spectral radiance characteristics of infrared rays emitted from a black body.
  • FIG. 5 is a diagram showing practical radiance detected by the InGaAsPIN photodiode according to the first embodiment of the present invention (when the processing point temperature is 227 ° C.).
  • FIG. 6 is a diagram showing practical radiance detected by the InGaAsPIN photodiode according to the first embodiment of the present invention (when the processing point temperature is 127 ° C.).
  • FIG. 7 is a diagram showing practical radiance detected by the InGaAsPIN photodiode according to the first embodiment of the present invention (when the processing point temperature is 327 ° C.).
  • FIG. 8 is a diagram showing a configuration of a laser heating apparatus according to Embodiment 2 of the present invention.
  • FIG. 9 is a diagram showing a configuration of a laser heating apparatus according to Embodiment 3 of the present invention.
  • FIG. 10 is a diagram showing a configuration of a laser heating apparatus according to Embodiment 4 of the present invention.
  • FIG. 11 is a diagram showing a configuration of a laser heating apparatus in a fifth embodiment of the present invention.
  • FIG. 12 is a diagram showing a configuration of a laser heating apparatus according to Embodiment 6 of the present invention.
  • FIG. 13 is a diagram showing a configuration of a laser heating device according to a seventh embodiment of the present invention.
  • FIG. 14 is a diagram showing a configuration of a laser heating apparatus in an eighth embodiment of the present invention.
  • FIG. 15 is a diagram showing a configuration of a laser heating apparatus according to Embodiment 9 of the present invention.
  • FIG. 16 is a diagram for explaining the shape (laser irradiation range) of laser light formed on the processing surface by the laser heating device according to Embodiment 9 of the present invention.
  • FIG. 17 shows an example of a laser emission unit provided in the laser heating apparatus according to Embodiment 10 of the present invention. It is a block diagram which shows a specific example.
  • FIG. 18 is a diagram for explaining laser power control of the laser heating apparatus according to Embodiment 11 of the present invention.
  • FIG. 19 is a diagram for explaining laser power control of the laser heating apparatus according to Embodiment 11 of the present invention.
  • an infrared sensor that generates a signal based on the integrated value of the infrared spectral radiance received by the light receiving surface. Then, before performing laser heating and processing, a relational expression of the calibration value between the output signal of the infrared sensor and the measured temperature of the object to be heated of the master is obtained in advance. Then, at the time of actual laser heating 'processing, infrared rays other than the light having the wavelength of the laser light out of the light emitted or reflected from the object to be heated and its peripheral part are used as the infrared sensor. The temperature of the object to be heated is calculated based on the signal generated by the infrared sensor and the relational expression obtained in advance.
  • FIG. 1 shows the configuration of the laser heating apparatus according to the first embodiment.
  • Laser heating device
  • the object to be heated is irradiated with laser light to heat the object to be heated.
  • a laser emitting unit 1 emits laser light having a constant wavelength.
  • the laser emitting unit includes, for example, a semiconductor laser or a semiconductor excitation laser.
  • a laser diode that oscillates laser light having a wavelength of 920 nm is provided as an example.
  • the wavelength of laser light is not limited to 920 nm. In general, the wavelength of laser light from a laser diode is 1.6 x m or less.
  • the condensing lens 2 condenses the laser light from the laser emitting unit 1 and heats the solder 3 that is an object to be heated placed at the condensing position.
  • Solder 3 is applied on land 5 of printed circuit board 4.
  • solder will be described as an example.
  • the solder 3 When the solder 3 is heated by laser irradiation, the solder 3 and its peripheral lands 5 and the printed circuit board are printed. Infrared radiation is emitted from the plate 4. Also, the irradiated laser light and visible light are reflected from the solder 3 and its peripheral part.
  • the laser light cut filter 6 receives light radiated or reflected from the solder 3 or the like and cuts light having a wavelength of laser light (920 nm). Visible light cut The FINOLETA 7 receives the light transmitted through the laser light cut filter 6 and cuts visible light.
  • the incident light S is incident on the condenser lens 8 with infrared rays other than the light (infrared rays) having the wavelength of the laser light out of the infrared rays emitted from the solder 3 or the like.
  • the condensing lens 8 condenses the light transmitted through the visible light cut filter 7 and makes the infrared light other than the light having the wavelength of the laser light enter the light receiving surface 10 of the infrared sensor 9 placed at the condensing position. To do. As described above, in the laser heating apparatus according to the first embodiment, light emitted or reflected from the solder 3 or its peripheral part is received, and infrared light other than the light having the wavelength of the laser light (920 nm) is received.
  • An optical system that leads to the light is composed of a laser light cut filter 6, a visible light cut filter 7, and a condenser lens 8.
  • the arrangement order of the condenser lens 8, the laser light cut filter 6, and the visible light cut filter 7 is arbitrary. Further, for example, a filter that transmits light having a wavelength longer than the wavelength of the laser light may be used instead of the laser light cut filter.
  • the infrared sensor 9 generates a signal based on the integrated value of the infrared spectral radiance received by the light receiving surface 10.
  • an infrared sensor an InGaAsPIN photodiode having a predetermined sensitivity range in which the sensitivity reaches a peak at a wavelength of 2.3 / im will be described as an example.
  • the laser heating apparatus includes a storage unit that stores in advance a relational expression of a calibration value (calibration value) between the level of the signal generated by the infrared sensor 9 and the measured temperature of the solder 3;
  • a microcomputer is provided as a temperature measuring unit for calculating the temperature of the solder 3 based on the signal generated by the infrared sensor 9 and the relational expression.
  • FIG. 2 shows the spectral sensitivity characteristics of an InGaAs PIN PIN photodiode with a predetermined sensitivity range where the sensitivity peaks at a wavelength of 2.3 zm.
  • this InGaAs' PIN photodiode has a relative sensitivity of 10% or more for wavelengths of 1.2 x m-2.
  • Fig. 3 shows the transmittance (infrared ray) of B K7 (borosilicate crown optical glass), which is an optical component material used for a condensing lens, a half mirror described later, synthetic quartz, and anhydrous synthetic quartz. Absorption characteristics).
  • B K7 borosilicate crown optical glass
  • the solid line shows the transmittance of BK7
  • the alternate long and short dash line shows the transmittance of synthetic quartz
  • the broken line shows the transmittance of anhydrous synthetic quartz.
  • Fig. 4 is a so-called Planck radiation law, and shows the spectral radiance characteristics of infrared rays emitted from a black body.
  • 0 ° C (273K) near the lower limit of measurement temperature
  • 227 ° C (50 OK) near the melting point of lead-free solder
  • the graph shows the power from radiance 10_ 8 W / (cm2 'sr' m) to the top.In practical use, it should be 10_ 5 W / (cm2 'sr- xm) or more to avoid the effects of noise. Treat as a practical area.
  • FIGS. 5 to 7 show that the infrared sensor (InGaAs' PIN photodiode) 9 detects when the processing point (object to be heated) is 227 ° C, 127 ° C, and 327 ° C. Indicates radiance.
  • the broken line indicates a graph of the infrared spectral radiance emitted from the processing point
  • the alternate long and short dash line indicates the infrared spectral radiance after passing through BK7, which is an optical component material such as a condenser lens.
  • the solid line shows a graph of the practical infrared radiance detected by the infrared sensor 9.
  • the infrared sensor 9 is actually shown in FIGS. 5 to 7 in which the spectral sensitivity characteristic shown in FIG. 2 is multiplied by the infrared ray absorption characteristic shown in FIG. 3 and the spectral radiance characteristic shown in FIG. Detect solid lines.
  • the infrared sensor 9, the solid line and 10 _5 W / (cm2 'sr ' / m) of 10_ 5 / the area range (IR received by the light receiving surface 10 which is surrounded by line ( ⁇ 112 '31:' / 1 111) Generate a signal level signal based on the above (integrated value of spectral radiance).
  • the output signal level of the infrared sensor 9 is slight at 127 ° C, but increases to 5 times or more at 227 ° C, and more than 10 times at 327 ° C. Monotonically increasing.
  • an optical bandpass filter (hereinafter referred to as BPF) that can transmit only light in a specific wavelength range longer than the wavelength of the laser light may be used.
  • BPF optical bandpass filter
  • a BPF is placed on the light receiving surface 10 of the infrared sensor 9.
  • an infrared sensor that has practical sensitivity to light in a specific wavelength range transmitted by the BPF is used as an infrared sensor that receives the transmitted light of the BPF.
  • This configuration makes it possible to detect that the processing point (object to be heated) has reached a specific temperature.
  • the output signal level of the infrared sensor 9 rapidly increases when the processing point reaches a specific temperature, so BPF is effective in detecting the specific temperature.
  • a BPF that transmits only narrow-band infrared light having a wavelength of 1064 nm and a half-value width of 10 ⁇ m has a processing point of about 200 degrees (temperature near the melting point of solder). It is useful for detection, and by keeping this temperature, it is possible to realize soldering that reliably melts and the peripheral portion is not damaged.
  • an infrared sensor in order to measure the temperature of an object to be heated at 400 K or higher, has a sensitivity power S at a wavelength of 1.2 / im or higher. It is desirable to have a predetermined sensitivity range that peaks.
  • the output signal level of the infrared sensor that rapidly increases when the processing point (object to be heated) reaches a temperature of 100 degrees or higher is captured, and laser irradiation is performed. It is possible to measure the temperature of the heated object that rises rapidly at 400K or higher almost accurately.
  • the temperature change at the processing point (object to be heated), the rapid temperature change before and after the melting change of the solder or resin, the rapid temperature before and after the formation of kogation around the solder or the resin By detecting the change and detecting that the desired processing such as soldering or resin bonding has been completed, the occurrence of kogation can be detected and the occurrence of kogation can be prevented.
  • FIG. 8 shows the configuration of the laser heating apparatus according to the second embodiment. However, the same members as those described with reference to FIG. 8 are identical.
  • an optical fiber 11 emits laser light from the laser emitting unit 1 into the air.
  • the collimating lens 12 collimates the laser light from the optical fiber 11 (hereinafter referred to as collimated light).
  • the half mirror 13 is provided with a thin film filter that reflects collimated light and transmits light emitted or reflected from the solder 3 and the land 5 or printed circuit board 4 in the periphery thereof.
  • a half mirror with a thin film coating that reflects only 920 nm (light with the wavelength of the laser beam) may be used.
  • a folded BPF capable of transmitting only infrared rays having a longer wavelength than the laser beam and having a specific wavelength range may be arranged.
  • the second embodiment light that is emitted or reflected from the solder 3 or its peripheral part is received, and infrared light other than light having a wavelength of laser light (920 nm) is guided to the light receiving surface 10 of the infrared sensor 9.
  • the academic system consists of a half mirror 13, a laser light cut filter 6, a visible light cut filter 7, and a condensing lens 8. The arrangement order of the condenser lens 8, the laser light cut filter 6 and the visible light cut filter 7 is arbitrary.
  • the preamplifier 14 amplifies the output signal from the infrared sensor 9.
  • the laser heating device includes a storage unit that stores in advance a relational expression of a calibration value between the output signal level of the preamplifier 14 and the actually measured temperature of the solder 3.
  • the meter 15 includes a microcomputer that calculates the temperature of the solder 3 based on the output signal of the preamplifier 14 and the relational expression as a temperature measurement unit. Meter 15 displays the measured temperature calculated by the micro computer.
  • the laser heating apparatus is configured to output a detection signal from the meter 15 to the laser emitting unit 1.
  • a detection signal for example, when a rapid temperature change before and after the melting change of the solder 3 is detected, the laser power is reduced, or a rapid temperature change before and after the kogation occurs around the solder 3. It is possible to stop the laser oscillation when a laser beam is detected, and it is possible to complete automatic soldering and prevent the occurrence of kogation.
  • a BPF that can transmit only infrared rays in a specific wavelength range longer than the laser beam may be disposed on the light receiving surface 10 of the infrared sensor 9.
  • the case where the laser beam is collimated has been described. However, even if the F value of the collimator lens is adjusted to make it non-collimated, the optical fiber The same effect can be obtained by shortening the distance between the light exit and the half mirror.
  • FIG. 9 shows the configuration of the laser heating apparatus according to the third embodiment.
  • the same members as those described with reference to FIGS. 1 and 8 are denoted by the same reference numerals, and description thereof is omitted.
  • the hot mirror 16 receives the transmitted light of the half mirror 13 through the condenser lens 8, reflects the infrared light, guides it to the light receiving surface 10 of the infrared sensor 9, and transmits visible light.
  • the light is guided to the second laser light cut filter 17.
  • a camera (imaging device) 18 that receives visible light through the laser light cut filter 17 images the solder 3 and its peripheral part.
  • an optical system that guides visible light to the camera 18 includes a half mirror 13, a condenser lens 8, two laser light cut filters 6, 17, and a hot mirror 16.
  • a filter or a BPF that transmits light having a wavelength longer than the wavelength of the laser light may be used in place of the laser light cut filter 6.
  • the BPF is disposed on the light receiving surface 10 of the infrared sensor 9.
  • an aperture 19 for specifying a position for temperature measurement is attached in the vicinity of the optical path axis 20 to the light receiving surface 10 of the infrared ray sensor 9. Therefore, by changing the size, shape, and arrangement position of the adapter 19 and changing the processing point detection visual field 21, temperature abnormalities around the solder 3 can be detected, or the temperature of a specific part of the laser irradiation range can be detected. It is possible to measure the degree.
  • the infrared sensor 9 and the camera 18 by providing the infrared sensor 9 and the camera 18, it is possible to observe the change in the appearance of the processing point simultaneously with the temperature change of the processing point during laser irradiation.
  • the field of view of the machining point can be changed by changing the position and size of the aperture 19, it is necessary to detect the occurrence of kogation in the periphery, the detection of minute temperature fluctuations at specific locations, and the prevention of kogation. Can do.
  • a cold mirror may be used in place of the hot mirror by reversing the arrangement positions of the infrared sensor 9 and the camera 18. Further, the arrangement position of the infrared sensor 9 and the camera 18 may be reversed, and a folded BPF that can transmit only infrared rays having a specific wavelength range longer than the laser beam may be arranged instead of the hot mirror.
  • a BPF is placed instead of a hot mirror, Visible light after being reflected by the BPF and transmitted through the laser light cut filter 17 enters the camera 18. Therefore, the camera 18 can image the processing point. According to the third embodiment, it is possible to realize soldering that is surely melted and has a strong force and a peripheral portion while monitoring with a camera.
  • Infrared sensors that use InGaAs PIN photodiodes can be infrared sensors that have peak sensitivity at wavelengths of 1.2 zm or more, such as compound semiconductors.
  • the force crown described using BK7 that absorbs infrared rays with a wavelength of 1.7 xm or more without an AR coating is used as an optical component such as each condenser lens and mirror. Even glass or achromatic lenses.
  • anhydrous synthetic quartz is suitable because it can improve the SZN ratio without causing a decrease in transmittance even at around 2.7 ⁇ m, which is the sensitivity limit of InGaAs PIN photodiodes.
  • AR coating may be applied to the wavelength of the sensitivity range of the infrared sensor.
  • the shape of the laser beam (laser irradiation range) formed at the processing point is limited to a spot shape (perfect circle shape). Therefore, in the laser heating apparatus in each of the above embodiments:! To 3, the land and the resin substrate are lined up together such as FPIC (field programmable interconnector component) and FPC (flexible nore print tif spring plate). The response to the surface is not enough.
  • FPIC field programmable interconnector component
  • FPC flexible nore print tif spring plate
  • the shape of the laser beam formed on the processed surface is made rectangular or elliptical (hereinafter referred to as a rectangular shape or the like). Respond sufficiently to soldering to the processed surface on which resin substrates are arranged.
  • a wide range including the rectangular laser irradiation range and its periphery is set as a detection range (temperature observation range) of the infrared sensor.
  • Infrared radiant energy increases in proportion to the fourth power of the temperature according to Stefan's Bolman's law, so by increasing the temperature observation area of the infrared sensor, the temperature rises when abnormal heat generation occurs in that temperature observation area The infrared sensor will be able to detect it quickly, and control such as reducing the laser power can be performed quickly.
  • FIG. 10 (a) shows the configuration of the laser heating apparatus according to the fourth embodiment.
  • the same members as those described with reference to FIGS. 1, 8, and 9 are denoted by the same reference numerals, and description thereof is omitted.
  • the laser heating apparatus is a condensing lens between the half mirror 13 and the processing surface as an optical system for making the shape of the laser light formed on the processing surface a rectangular shape or the like.
  • a cylindrical lens is disposed instead of the third embodiment.
  • a cylindrical lens 22 receives the laser light reflected by the half mirror 13 that is a folding mirror, and forms a rectangular or other laser light on the processed surface.
  • the solder applied to each land of FPIC23 is explained as an example of the object to be heated.
  • FIG. 10 (b) is a side view of the laser heating device viewed from the y direction, and shows a collimating lens.
  • FIG. 10 (c) is a top view showing the shape of the laser beam formed on the processed surface.
  • the cylindrical lens 22 has a rectangular or elliptical shape (laser irradiation range 24) on the surface of the received spot-like (true round) laser beam. Make it.
  • the size of the laser irradiation range 24 in the X direction can be adjusted by changing the distance to the processing surface of the cylindrical lens 22.
  • the temperature observation region 25 is wider than the laser irradiation range 24.
  • the divergence angle of the laser light can be adjusted by adjusting the distance from the collimating lens 12 to the optical fiber 11.
  • the spread angle of the laser beam can be adjusted by adjusting the distance of the cylindrical lens to the optical fiber 11.
  • the folding mirror 26 is provided with a thin film coat or thin film filter that transmits visible light and reflects infrared rays in the vicinity of 2 ⁇ m.
  • the folding mirror 26 receives the transmitted light of the half mirror 13 through the collecting lens 8 (a convex lens having a spherical aberration corrected such as an achromatic lens) and reflects the infrared light in the vicinity of 2 xm to receive the light receiving surface of the infrared sensor 9.
  • the visible light is guided to the camera (for example, the CCD surface of the CCD camera) 18.
  • the camera 18 that receives visible light through the second laser light cut filter 17 expands the processed surface without distortion. Big observation is possible.
  • the preamplifier (amplifier circuit) 14 is a high gain amplifier, and amplifies the output signal level of the infrared sensor 9 several hundred times or more.
  • an optical system that guides the visible light to the surface 10 and also guides the visible light to the camera 18 includes a half mirror 13, a condenser lens 8, a folding mirror 26, and two laser light cut filters 6 and 17.
  • the laser control device 27 for controlling the laser power so that the temperature of the object to be heated becomes a preset temperature Ts
  • the laser emitting unit 1 the object to be heated
  • Temperature level conversion circuit (temperature measurement unit) 28 that calculates the temperature
  • volume 29 for setting the set temperature Ts the control unit 30 that controls the current supplied to the laser diode (LD element) included in the laser emission unit 1 With.
  • the laser control device 27 is not shown in the figure, and the output signal level of the preamplifier 14 and the measured temperature of the solder applied to each land of the FPIC 23 (for example, the average value of the measured temperature of the solder applied to each land or a specific land)
  • a storage unit for storing in advance a relational expression of the calibration value (calibration value) with the actual temperature of the solder applied to the solder.
  • the temperature level conversion circuit 28 calculates the temperature of the object to be heated based on the output signal of the preamplifier 14 and the relational expression, and generates a signal indicating the temperature.
  • the preset temperature Ts is set in advance in the volume 29, and the control unit 30 outputs the output signal of the temperature level conversion circuit 28 (corresponding to the temperature of the object to be heated) and the signal generated by the volume 29 ( Current corresponding to the set temperature Ts) is controlled so that the temperature of the object to be heated becomes the set temperature Ts.
  • the cylindrical lens can make the shape of the laser beam formed on the processed surface rectangular or the like, and the land and resin like FPIC or FPC. It can sufficiently handle soldering on the processed surface where the boards are lined up and resin bonding in rectangular or elliptical areas.
  • the shape of the laser beam formed on the processed surface can be arbitrarily enlarged / reduced by moving the focal position and the fixed position of the collimating lens 12 and the cylindrical lens 22 back and forth.
  • the aspect ratio of the shape can be arbitrarily changed.
  • a cylindrical lens may be disposed in place of the collimating lens 12, and a convex lens having a spherical aberration corrected such as an achromatic lens may be disposed in place of the cylindrical lens 22. That is, after changing the aspect ratio of the laser light with a cylindrical lens, the laser light with the changed aspect ratio is condensed with a convex lens so that the shape of the laser light formed on the processed surface is rectangular or the like. Also good. In this case as well, the shape of the laser beam formed on the processing surface can be arbitrarily enlarged / reduced by moving the focal position and fixed position of the cylindrical lens and convex lens back and forth, and the aspect of the shape of the laser beam can be reduced. The ratio can be changed arbitrarily.
  • FIG. 11 shows the configuration of the laser heating apparatus according to the fifth embodiment.
  • the same members as those described with reference to FIGS. 1, 8, 9, and 10 are denoted by the same reference numerals, and description thereof is omitted.
  • the laser heating apparatus returns the infrared ray radiated or reflected from the temperature observation region 25 to the optical fiber, and removes the light having the wavelength of the laser beam emitted from the temperature observation region 25 (infrared ray).
  • infrared rays are detected by an infrared sensor built in laser emitting section 1.
  • the optical fiber 11 has a core portion 31 and a cladding portion 32. Laser light is emitted from the core portion 31 of the optical fiber 11.
  • the folding mirror 33 is provided with a thin film coat or a thin film filter that reflects infrared rays and transmits visible light.
  • the folding mirror 33 receives the light emitted or reflected from the temperature observation region 25 via the cylindrical lens 22, reflects the infrared light and guides it to the collimating lens 12 and transmits the visible light to collect the light. Lead to.
  • the collimating lens 12 guides the infrared light reflected by the folding mirror 33 to the clad portion 32 of the optical fiber 11.
  • the laser emitting unit 1 includes an LD element 34, a condenser lens 35, a folding mirror 36, an infrared sensor 9, and a preamplifier 14.
  • the folding mirror 36 is provided with a thin film filter or a thin film coat that transmits infrared light but reflects light having a wavelength of laser light.
  • the folding mirror 36 reflects the laser light emitted from the LD element 34 and guides it to the condenser lens 35.
  • the condenser lens 35 guides the laser beam having the force of the folding mirror 36 to the core portion 31. In this way, the laser light emitted from the LD element 34 is coupled to the optical fiber 11.
  • the folding mirror 36 separates the infrared light having the wavelength of the laser light from the infrared light returned through the cladding portion 32 and guides the infrared light except the infrared light having the wavelength of the laser light to the light receiving surface 10 of the infrared sensor 9. .
  • an optical system that receives light emitted or reflected from the temperature observation region 25 and guides infrared light other than light having the wavelength of the laser light to the light receiving surface 10 of the infrared sensor 9 is 2 It consists of two folding mirrors 33 and 36 and a condenser lens 35.
  • a laser light cut filter may be installed between the folding mirror 36 and the light receiving surface 10 of the infrared sensor 9.
  • a cylindrical lens may be arranged instead of the collimating lens 12 and a convex lens may be arranged instead of the cylindrical lens 22.
  • FIG. 12 shows the configuration of the laser heating apparatus according to the sixth embodiment.
  • the same members as those described based on FIGS. 1 and 8 to 11 are denoted by the same reference numerals, and description thereof is omitted.
  • the laser heating apparatus in the sixth embodiment is different from the above-described fifth embodiment in that the shape of the laser light formed on the processed surface is made a rectangular shape by a scan mirror.
  • the processing surface is irradiated with laser light by line scanning or two-dimensional scanning to make the laser irradiation range on the processing surface rectangular or elliptical.
  • the scan mirror 37 is provided with a thin film coat or thin film filter that reflects infrared light and transmits visible light. Further, the scan mirror 37 can swing around the rotation shaft 38.
  • the scan mirror 37 reflects the laser light from the collimating lens 12 while reciprocating by a predetermined angle about the rotation shaft 38.
  • the laser beam reflected by the reciprocally oscillating scan mirror 37 is condensed by a condensing lens (a convex lens with a spherical aberration corrected such as an achromatic lens) 2 and the processed surface is irradiated with a line scan laser beam. Or 2D scan irradiation.
  • This line scan is a laser, and the area to be scanned in two dimensions is laser.
  • the irradiation range is 24.
  • two or more scan mirrors may be provided, and the processing surface may be irradiated with a line scan or a two-dimensional scan with a laser beam by reciprocating oscillation of each scan mirror.
  • the scan mirror 37 reflects the reflected infrared rays that are emitted from the temperature observation region 25 while reciprocating, and returns to the cladding portion 33 of the optical fiber 11 via the scan mirror 37.
  • an optical system that receives light emitted or reflected from the temperature observation region 25 and guides infrared light except the light having the wavelength of the laser light to the light receiving surface 10 of the infrared sensor 9 is a scanner.
  • FIG. 13 shows the configuration of the laser heating apparatus according to the seventh embodiment.
  • the same members as those described based on FIGS. 1 and 8 to 12 are denoted by the same reference numerals, and the description thereof is omitted.
  • the scan mirror 39 is provided with a thin film filter or thin film coat that transmits infrared rays but reflects light having the wavelength of the laser beam. Similarly to the sixth embodiment, the scan mirror 39 reflects the laser light from the collimating lens 12 while reciprocally swinging by a predetermined angle about the rotation shaft 38.
  • Infrared rays except for the laser light having the wavelength emitted from the temperature observation region 25 pass through the scan mirror 39, and the laser light cut filter 6 is collected by the condenser lens 8 in the same manner as in the second embodiment. Then, the light is guided to the light receiving surface 10 of the infrared sensor 9 through the visible light cut filter 7.
  • an optical system that receives light emitted or reflected from the temperature observation region 25 and guides infrared light other than light having the wavelength of the laser light to the light receiving surface 10 of the infrared sensor 9 is a scanner.
  • the laser heating apparatus can continuously monitor the amount of infrared rays emitted from the entire temperature observation region 25.
  • the laser heating apparatus is such that the surface to be irradiated is irradiated with a laser beam itself emitted from an LD element (laser diode) provided in a laser emitting section without using an optical fiber. Different from ⁇ 7.
  • FIG. 14 shows the configuration of the laser heating apparatus according to the eighth embodiment.
  • Fig. 14 (a) is a side view when the laser heating device is viewed from the SLOW direction of the laser beam
  • Fig. 14 (b) is a side view when the laser heating device is viewed from the direction orthogonal to the SLOW direction of the laser beam. It is a figure.
  • the same members as those described with reference to FIGS. 1 and 8 to 13 are denoted by the same reference numerals, and description thereof is omitted.
  • the LD element 40 emits a laser beam having a constant wavelength.
  • the laser light emitted from the LD element 40 is arranged in a direction that suppresses the spread in the FAST direction.
  • the cylindrical lens 41 makes the FAST direction of the laser light emitted from the LD element 40 parallel and low.
  • the half mirror 13 reflects the laser light 42 from the cylindrical lens 41.
  • the condensing lens 2 condenses the laser light from the half mirror 13. Due to the cylindrical lens 41 and the condensing lens, the shape of the laser beam formed on the processed surface becomes a rectangular shape or the like.
  • the eighth embodiment includes the cylindrical lens 41 and the condensing lens 2 as an optical system for making the laser irradiation range on the processed surface rectangular or elliptical.
  • the spread of the laser light emitted from the LD element 40 in the FAST direction is suppressed by the cylindrical lens 41, and then condensed by the condenser lens 2, so that the shape of the laser light formed on the processed surface is rectangular, etc.
  • the laser heating device has the above-mentioned point that the shape of the laser beam formed on the processed surface is rectangular or the like by using two LD elements (laser diodes) without using a condenser lens.
  • LD elements laser diodes
  • the laser heating apparatus according to the ninth embodiment, parts different from the above embodiments:! To 8 will be described. However, the description of the same parts as those in the first to eighth embodiments is omitted.
  • FIG. 15 shows the configuration of the laser heating apparatus according to the ninth embodiment.
  • Fig. 15 (a) is a side view of the laser heating device viewed from the SLOW direction of the laser beam.
  • FIG. 15 (b) is a side view of the laser heating device viewed from the direction orthogonal to the SLOW direction of the laser light, and shows the half mirror 13 and the collimating lens 43 extracted.
  • the same members as those described based on FIGS. 1 and 8 to 13 are denoted by the same reference numerals, and description thereof is omitted.
  • the laser emitting section includes two LD elements 40 and a heat sink 45.
  • the heat sink 45 is made of, for example, copper.
  • the two LD elements 40 are joined to the heat sink 45.
  • the two LD elements 40 are the same at a predetermined interval d so that the laser light is emitted from the end face of the heat sink 45 in the same direction and parallel to the optical axis. Arranged on a plane.
  • the collimating lens 43 is arranged in a direction to suppress the spread of the laser light emitted from the LD element 40 in the FAST direction.
  • the collimating lens 43 makes the FAST direction of the laser light emitted from the LD element 40 parallel or low spread.
  • the half mirror 13 reflects the laser beam 44 from the collimating lens 43.
  • LD element 40 (collimating lens 43
  • the laser power density distribution in the SLOW direction on the processed surface 46 can be made trapezoidal by adjusting the distance from the emission end) to the processed surface 46.
  • the temperature distribution in the SLOW direction on the processed surface 46 can be trapezoidal. This is due to the following reason.
  • the distance from the exit end of the collimating lens 43 to the processed surface 46 when the workpiece surface 46 is at each of the forces SA, B, and C is WDA, WDB, and WDC.
  • the half-value laser density in the SLOW direction on the machined surface 46 when the machined surface 46 is at positions A, B, and C is PA, PB, and PC, respectively.
  • the temperature distribution in the SLOW direction on the machined surface 46 when it is at the positions of SA, B, and C, respectively, is TA, TB, and TC.
  • Fig. 16 (a) two lasers are arranged in the same optical axis direction from the end face of the heat sink 45. Light is emitted in the SLOW direction (X direction) with a predetermined spread angle.
  • the FAST direction of the laser light (perpendicular to the paper surface in FIG. 16) is made parallel or low spread by the collimating lens 43.
  • the laser power density distribution is two trapezoidal power distributions at position A as shown in Fig. 16 (b). Position B Then some interference. As a result, at position B, the power at the center is low, but the temperature density distribution is uniform.
  • TOP HAT shape trapezoidal shape
  • the laser power density distribution becomes trapezoidal (TOP HAT shape) as shown in Fig. 16 (c).
  • TOP HAT shape trapezoidal
  • the temperature gradient during heating increases at the center.
  • uniform heating can be achieved without being affected by the difference in temperature gradient.
  • the laser beam is irradiated with two laser beams that suppress the spread in the FAST direction of the two laser beams that are also emitted by the power of the two LD elements (laser diodes).
  • An optical system for making the range rectangular or the like is configured by a collimating lens.
  • a cylindrical lens may be used instead of the collimating lens 43. It is also possible to provide two or more collimating lenses 43. Also, the number of LD elements may be two or more.
  • the laser heating apparatus is different from the above-described ninth embodiment in that the laser emission unit includes a collimator lens, an infrared sensor, a laser light cut filter, and a condenser lens.
  • the laser emission part of the laser heating apparatus according to the tenth embodiment will be described with reference to the drawings.
  • FIG. 17 (a) shows a top view of the laser emitting section in the tenth embodiment.
  • FIG. 17 (b) shows a front view of the laser emitting section in the tenth embodiment.
  • FIG. 17 (c) shows a top view of the laser emitting unit in Embodiment 10 with the top cover removed.
  • FIG. 17 (d) shows the shape of the laser beam formed on the processed surface in the tenth embodiment.
  • FIG. 17 (e) shows a transparent side view of the laser emitting section in the tenth embodiment.
  • FIG. 17 (f) shows the shape of the laser beam formed on the processed surface in the tenth embodiment.
  • the same members as those described based on FIGS. 1 and 8 to 16 are denoted by the same reference numerals, and description thereof is omitted.
  • the laser emitting unit 1 includes a holder 47 and an upper lid 48 of the holder 47. Inside the holder 47, a heat sink 45 in which two LD elements 40 are joined is installed.
  • the heat sink 45 includes a laser light cut filter 6, a condenser lens 8, an infrared sensor 9, and the like.
  • movable bodies 50 and 51 are installed inside the honoreda 47.
  • support portions for supporting the upper movable body 50 are provided on both side surfaces inside the holder 47.
  • the lower movable body 51 On the lower surface side of the upper movable body 50, the lower movable body 51 having a length and width smaller than those of the upper movable body 50 is fixed by two screws 49.
  • the lower movable body 51 moves in a seesaw shape with the protrusion 52 as a fulcrum by the tightening amount of the two screws 49.
  • a collimator lens 43 is joined to the lower movable body 51 so as to be positioned in front of the laser emission end face of the LD element 40.
  • the laser emitting unit 1 is configured so that the fixing position of the collimating lens 43 can be adjusted in the vertical direction with respect to the laser emitting end face of the LD element 40. Therefore, according to the laser emitting unit 1, the position of the laser irradiation range 24 can be arbitrarily changed.
  • the protrusion 52 may be provided on either the upper movable body 50 or the lower movable body 51.
  • the length of the upper movable body 50 in the front-rear direction is shorter than the length of the holder 47 in the front-rear direction.
  • Three screws 52 protruding from the front and rear end surfaces inside the holder 47 abut on the front and rear end surfaces of the upper movable body 50. Therefore, the upper movable body 50 moves in the front-rear direction of the holder 47 by the tightening amount of the three screws 52. Therefore, the fixing position of the collimating lens 43 can be adjusted in the front-rear direction of the holder 47 with the three screws 52.
  • the laser emitting section 1 has a configuration in which the fixing position of the collimating lens 43 can be adjusted in the front-rear direction with respect to the laser emitting end face of the LD element 40.
  • the number of screws 52 is not limited to three.
  • the aspect ratio of the shape (laser irradiation range) of the laser light formed on the processed surface 46 can be arbitrarily changed.
  • Figure 17 (f ) The aspect ratio of the laser irradiation range 24 can be changed to the laser irradiation range 24 indicated by the broken line.
  • the output end force of the collimating lens 43 can be adjusted to the machining surface 46, and the laser power density distribution in the SLOW direction on the machining surface 46 can be trapezoidal. can do.
  • the temperature distribution in the SLOW direction on the machined surface 46 can be trapezoidal.
  • the laser emitting section 1 includes a laser light cut filter 6, a condensing lens 8, and an infrared sensor 9, and can detect infrared rays emitted from the temperature observation region. It has become.
  • the condenser lens 8 is joined to a lens holder whose distance to the light receiving surface 10 of the infrared sensor 9 can be adjusted. Therefore, according to the laser emitting unit 1, the size of the temperature observation area can be arbitrarily changed. For example, as shown in Fig. 17 (f), it is possible to change the temperature observation area 25 from the temperature observation area 25 indicated by the solid line to the temperature observation area 25 indicated by the broken line.
  • a collimating lens 43 is provided as a lens for suppressing the spread of the laser light emitted from the LD element in the FAST direction.
  • a screw 49, movable bodies 50 and 51, a protrusion 52, and a screw 52 are provided as an adjustment mechanism that can be connected to the collimating lens 43 and can adjust the position of the collimating lens 43 with respect to the laser emission end face of the LD element.
  • a cylindrical lens may be used instead of the collimating lens 43. It is also possible to provide two or more collimating lenses 43. Also, the number of LD elements may be two or more.
  • a high gain amplifier is required as a preamplifier for amplifying the output signal level of the infrared sensor.
  • a high-grade operational amplifier is used as a high-gain amplifier or an operational amplifier with a temperature compensation function, the amplifier output changes drastically.
  • the laser beam itself is infrared, and the power of the laser beam for processing such as soldering is as strong as the W class. Therefore, even if a laser beam cut filter is provided, the weak infrared ray of the nW class is provided. Laser light is influenced as disturbance light in the infrared sensor that can be detected.
  • the amount of change in the output signal level of the infrared sensor immediately after laser irradiation is monitored, and whether or not the amount of change is greater than a preset amount of change.
  • the change amount of the output signal level of the infrared sensor reaches the set change amount, the emission of the laser beam is stopped or the laser beam is emitted intermittently with a predetermined laser power.
  • the configuration of the laser heating apparatus in the eleventh embodiment is the same as that in the fourth to tenth embodiments.
  • the configuration of the laser heating device in Embodiment 4 will be described as an example (see FIG. 10).
  • FIG. 18 (a) shows a graph of laser power P of laser light and elapsed time t.
  • FIG. 18 (b) shows a graph of the output signal level of the preamplifier 14 and the elapsed time t.
  • FIG. 18 (c) shows the difference between the output signal level of the preamplifier 14 and the elapsed time t with respect to the output signal level of the preamplifier 14 at time tO after the lapse of At from the laser irradiation start time ts.
  • a graph is shown.
  • the solid line shows the actual output signal level of the preamplifier 14 including the temperature draft and the amount of laser beam leakage detected.
  • the dotted line indicates the ideal output signal level of the preamplifier 14 that does not include the temperature draft and the leak detection of the laser beam.
  • tl represents the time required for the actual output signal level of the preamplifier 14 to reach the level PDs (corresponding to the set temperature Ts).
  • T2 indicates the time required for the output signal level of the ideal preamplifier 14 to reach the level PDs.
  • the output signal level of the preamplifier 14 at the laser irradiation start time ts has a temperature drift component.
  • ⁇ PD and laser light leakage detection ⁇ PDL are included, and the output signal of the ideal preamplifier 14 Greater than issue level. Therefore, even if the laser light oscillation is stopped when the output signal level of the preamplifier 14 reaches the level PDs (time tl), the time tl is the time t2 when the output signal level of the preamplifier 14 reaches the level PDs. It is off.
  • the control unit 30 outputs the output signal of the preamplifier 14 at time tO after At has elapsed from the laser irradiation start time ts.
  • the difference level ⁇ PD of the output signal level of the preamplifier 14 with respect to the level reaches the set change amount ⁇ PDs, the laser beam is stopped.
  • the control unit 30 sets the set change amount ⁇ PDs based on the signal level generated by the volume 29.
  • the difference level A PD is not affected by temperature drift, laser light leak detection, or the difference in the level of the laser power P s, and the difference level ⁇ PD changes from the 0 level to the set amount of change ⁇ PDs. Since the period until reaching (time t3) is a fixed time, the laser irradiation can be stably stopped.
  • the laser heating apparatus can detect the leak of the laser beam and cancel the temperature drift of the infrared sensor or the preamplifier, and can operate stably and with good reproducibility.
  • the PIN photodiode has a large dynamic range, an infrared signal that does not contain errors such as temperature drift can be monitored by monitoring the amount of change in the output signal level of the preamplifier even when there is a large amount of disturbance light from the laser beam.
  • a detection signal preamplifier output signal
  • the laser heating device can stably control the temperature of the object to be heated.
  • the laser heating apparatus and laser heating method according to the present invention detects temperature changes at the time of melting, such as solder resin at the processing point, and abnormal heat generation that is a sign of the occurrence of kogation, and the peripheral part is kogation.
  • soldering, resin bonding, resin marking, and soldering can be performed by laser light emitted from a semiconductor laser. Useful for laser heating and processing such as contact.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Human Computer Interaction (AREA)
  • Laser Beam Processing (AREA)
  • Radiation Pyrometers (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

 加工点にある半田や樹脂などの溶融時の温度変化やコゲが発生する兆候となる異常発熱を検出して、周辺部がコゲない半田付けや樹脂がコゲない樹脂接合などが可能となるレーザ加熱装置およびレーザ加熱方法を提供する。赤外線センサ9は、被加熱対象物である半田から放射される赤外線の分光放射輝度の積算値に基づく信号を生成する。まず、実際に半田付けを行う前に、赤外線センサ9の出力信号とマスタの半田の実測温度とのキャリブレーション値の関係式を予め求めておく。実際の半田付け時には、半田3から放射される赤外線を赤外線センサ9で受光して、赤外線センサ9の出力信号と前記関係式を基に半田3の温度を算出する。  

Description

明 細 書 レーザ加熱装置およびレーザ加熱方法
技術分野
[0001] 本発明は、例えば半導体レーザから出射されるレーザ光により、半田付けや、樹脂 接合、溶接などの加熱 ·加工処理を行うレーザ加熱装置およびレーザ加熱方法に関 する。
背景技術
[0002] 従来、レーザ光により、非接触な加熱'加工処理を行うレーザ加熱装置として、例え ば、複数のレーザダイオードを積み重ねてなるレーザダイオードモジュール(半導体 レーザアレイ)と、前記複数のレーザダイオードから出射されるレーザ光を視準化(平 行光化)するコリメートレンズと、視準化されたレーザ光を集光する集光レンズと、によ り構成されるものが提案されている(例えば、 JP2002— 9388A参照。)。この構成に より、従来のレーザ加熱装置は、集光レンズの焦点位置に置かれている被加熱対象 物に対して加熱 ·加工処理を行うことができる。
[0003] し力、しながら、レーザ光による加熱 ·加工処理では、レーザ照射を続ける限りどんど ん被加熱対象物の温度が上昇するが、上記従来のレーザ加熱装置の構成では、半 田付けや樹脂接合を行う際に被加熱対象物の温度測定をできず、半田の周辺部や 樹脂にコゲが発生する兆候となる異常発熱を検出できなかった。 発明の開示
発明が解決しょうとする課題
[0004] 本発明は、上記問題点に鑑み、加工点にある半田や樹脂などの溶融時の温度変 化やコゲが発生する兆候となる異常発熱を検出して、周辺部がコゲない半田付けや 樹脂がコゲない樹脂接合などが可能となるレーザ加熱装置およびレーザ加熱方法を 提供することを目的とする。
[0005] 上記目的を達成するために、本発明は、半田や樹脂などの被加熱対象物から放射 される赤外線の分光放射輝度の積算値に基づく信号を生成する赤外線センサを設 ける。そして、レーザ加熱 ·加工処理を行う前に、前記赤外線センサの出力信号とマ スタの被加熱対象物の実測温度とのキャリブレーション値の関係式を予め求める。そ して、実際のレーザ加熱'加工処理時には、前記赤外線センサの出力信号と前記関 係式を基に被加熱対象物の温度を算出する。
課題を解決するための手段
[0006] すなわち、請求項 1記載のレーザ加熱装置は、被加熱対象物に照射するレーザ光 を出射するレーザ出射部と、受光面で受光した赤外線の分光放射輝度の積算値に 基づいた信号を生成する赤外線センサと、前記被加熱対象物やその周辺部から放 射または反射される光を受光し、前記レーザ光の波長の光を除く赤外線を前記赤外 線センサの受光面へ導く光学系と、前記赤外線センサにより生成された信号のレべ ルと前記被加熱対象物の実測温度とのキャリブレーション値の関係式を予め格納す る格納部と、前記赤外線センサにより生成された信号と前記関係式を基に前記被加 熱対象物の温度を算出する温度測定部と、を備えたことを特徴とする。
[0007] また、請求項 2記載のレーザ加熱装置は、請求項 1記載のレーザ加熱装置であつ て、前記レーザ出射部は、 1. 6 μ ΐη以下の波長のレーザ光を出射することを特徴と する。
[0008] また、請求項 3記載のレーザ加熱装置は、請求項 1記載のレーザ加熱装置であつ て、前記赤外線センサは、 1. 2 x m以上の波長において感度がピークとなることを特 徴とする。
[0009] また、請求項 4記載のレーザ加熱装置は、請求項 1記載のレーザ加熱装置であつ て、前記光学系は、前記レーザ光の波長以上の長波長の赤外線を前記赤外線セン サの受光面へ導くことを特徴とする。
[0010] また、請求項 5記載のレーザ加熱装置は、請求項 2記載のレーザ加熱装置であつ て、前記光学系は、特定波長範囲の赤外線のみを透過することを特徴とする。
[0011] また、請求項 6記載のレーザ加熱装置は、請求項 1記載のレーザ加熱装置であつ て、前記被加熱対象物やその周辺部からの可視光を撮像する撮像装置をさらに備 えたことを特徴とする。
[0012] また、請求項 7記載のレーザ加熱装置は、請求項 1記載のレーザ加熱装置であつ て、温度測定を行う領域を特定するアパーチャを設けたことを特徴とする。 [0013] また、請求項 8記載のレーザ加熱装置は、請求項 1記載のレーザ加熱装置であつ て、前記赤外線センサは、 1. 2 μ ΐη以上の波長に対して 10%以上の相対感度を有 し、受光面で受光した赤外線の 10— 5W/ (cm2' sr' / m)以上の分光放射輝度の積 算値に基づレ、た信号を生成することを特徴とする。
[0014] また、請求項 9記載のレーザ加熱装置は、請求項 1記載のレーザ加熱装置であつ て、前記赤外線センサは、 InGaAsPINフォトダイオードであることを特徴とする。
[0015] また、請求項 10記載のレーザ加熱装置は、請求項 1記載のレーザ加熱装置であつ て、加工点におけるレーザ照射範囲がスポット状となることを特徴とする。
[0016] また、請求項 11記載のレーザ加熱装置は、請求項 1記載のレーザ加熱装置であつ て、加工面におけるレーザ照射範囲を長方形状ないし楕円形状にするための光学 系をさらに備えたことを特徴とする。
[0017] また、請求項 12記載のレーザ加熱装置は、請求項 1記載のレーザ加熱装置であつ て、前記レーザ出射部から出射された前記レーザ光を反射して、加工面に前記レー ザ光をラインスキャン照射ないし 2次元スキャン照射し、加工面におけるレーザ照射 範囲を長方形状ないし楕円形状にするためのスキャンミラーを少なくとも 1個以上さら に備えたことを特徴とする。
[0018] また、請求項 13記載のレーザ加熱装置は、請求項 1記載のレーザ加熱装置であつ て、前記レーザ出射部は前記レーザ光を出射する 2個以上のレーザダイオードを備 え、前記各レーザダイオードから出射される前記各レーザ光の FAST方向の広がりを 抑え、その広がりを抑えた前記各レーザ光により加工面におけるレーザ照射範囲を 長方形状ないし楕円形状にするための光学系をさらに備えた、ことを特徴とする。
[0019] また、請求項 14記載のレーザ加熱装置は、請求項 1記載のレーザ加熱装置であつ て、前記レーザ出射部は、前記レーザ光を出射する 2個以上のレーザダイオードと、 前記各レーザダイオードから出射される前記各レーザ光の FAST方向の広がりを抑 えるためのレンズと、前記レンズが接合され、前記各レーザダイオードのレーザ出射 端面に対する前記レンズの位置を調整可能な調整機構と、を備え、前記レンズから の前記各レーザ光により加工面におけるレーザ照射範囲を長方形状ないし楕円形 状にすることを特徴とする。 [0020] また、請求項 15記載のレーザ加熱装置は、請求項 1記載のレーザ加熱装置であつ て、前記赤外線センサの出力信号レベルの変化量が設定変化量に達すると、前記レ 一ザ出射部による前記レーザ光の出射を停止させるか、あるいは所定のレーザパヮ 一で前記レーザ光を断続的に出射させる制御部をさらに備えたことを特徴とする。
[0021] また、請求項 16記載のレーザ加熱方法は、被加熱対象物にレーザ光を照射して該 被加熱対象物を加熱するレーザ加熱方法であって、該被加熱対象物にレーザ光を 照射している間に、受光面で受光した赤外線の分光放射輝度の積算値に基づいた 信号を生成する赤外線センサの前記受光面へ、前記被加熱対象物やその周辺部か ら放射または反射される光のうちの前記レーザ光の波長の光を除く赤外線を導き、前 記赤外線センサにより生成された信号と、予め求めた前記被加熱対象物の実測温度 と前記赤外線センサにより生成された信号のレベルとのキャリブレーション値の関係 式と、を基に前記被加熱対象物の温度を算出する、ことを特徴とする。
[0022] また、請求項 17記載のレーザ加熱方法は、請求項 16記載のレーザ加熱方法であ つて、加工面に前記レーザ光をラインスキャン照射ないし 2次元スキャン照射し、加工 面におけるレーザ照射範囲を長方形状ないし楕円形状にすることを特徴とする。
[0023] また、請求項 18記載のレーザ加熱方法は、請求項 16記載のレーザ加熱方法であ つて、前記赤外線センサの出力信号レベルの変化量が設定変化量に達すると、前記 レーザ光の出射を停止させるか、あるいは所定のレーザパワーで前記レーザ光を断 続的に出射させることを特徴とする。
発明の効果
[0024] 本発明によれば、加工点の温度変化や、半田や樹脂などの溶融変化前後の急激 な温度変化、半田の周辺部や樹脂にコゲが発生する前後での急激な温度変化を検 出して、半田付けや樹脂接合等の所望の加工が行われたことの検出やコゲの発生 検出、コゲの発生防止などをすることができる。さらに、撮像装置により加工状態を観 察することもできる。また、アパーチャにより、被加熱対象物の周辺部の微小な特定 位置や被加熱対象物上の微小な特定位置の温度変化を検出して、その特定位置で のコゲの発生検出やコゲの発生防止などをすることができる。
[0025] また、レーザ照射範囲を長方形状ないし楕円形状にすることにより、 FPICや FPC 等のようにランドと樹脂基板が並んでいる加工面に対する半田付け等に十分に対応 できるようになる。
[0026] また、赤外線センサの出力信号レベルの変化量を監視することで、温度ドリフト等の 誤差を含まない赤外線センサの出力信号を得て、被加熱対象物の温度を安定に制 卸すること力 Sできる。
図面の簡単な説明
[0027] [図 1]本発明の実施の形態 1におけるレーザ加熱装置の構成を示す図である。
[図 2]本発明の実施の形態 1における InGaAsPINフォトダイオードの分光感度特性 を示す図である。
[図 3]光学部品材料の赤外線吸収特性を示す図である。
[図 4]黒体から放射する赤外線の分光放射輝度特性を示す図である。
[図 5]本発明の実施の形態 1における InGaAsPINフォトダイオードが検出する実用 放射輝度を示す図(加工点の温度が 227° Cの場合)である。
[図 6]本発明の実施の形態 1における InGaAsPINフォトダイオードが検出する実用 放射輝度を示す図(加工点の温度が 127° Cの場合)である。
[図 7]本発明の実施の形態 1における InGaAsPINフォトダイオードが検出する実用 放射輝度を示す図(加工点の温度が 327° Cの場合)である。
[図 8]本発明の実施の形態 2におけるレーザ加熱装置の構成を示す図である。
[図 9]本発明の実施の形態 3におけるレーザ加熱装置の構成を示す図である。
[図 10]本発明の実施の形態 4におけるレーザ加熱装置の構成を示す図である。
[図 11]本発明の実施の形態 5におけるレーザ加熱装置の構成を示す図である。
[図 12]本発明の実施の形態 6におけるレーザ加熱装置の構成を示す図である。
[図 13]本発明の実施の形態 7におけるレーザ加熱装置の構成を示す図である。
[図 14]本発明の実施の形態 8におけるレーザ加熱装置の構成を示す図である。
[図 15]本発明の実施の形態 9におけるレーザ加熱装置の構成を示す図である。
[図 16]本発明の実施の形態 9におけるレーザ加熱装置が加工面に形成するレーザ 光の形状 (レーザ照射範囲)を説明するための図である。
[図 17]本発明の実施の形態 10におけるレーザ加熱装置が備えるレーザ出射部の一 具体例を示す構成図である。
[図 18]本発明の実施の形態 11におけるレーザ加熱装置のレーザパワー制御を説明 するための図である。
[図 19]本発明の実施の形態 11におけるレーザ加熱装置のレーザパワー制御を説明 するための図である。
発明を実施するための最良の形態
[0028] 以下、本発明の実施の形態におけるレーザ加熱装置およびレーザ加熱方法につ いて、図面を交えて説明する。
[0029] 以下の実施の形態では、受光面で受光した赤外線の分光放射輝度の積算値に基 づいた信号を生成する赤外線センサを設ける。そして、レーザ加熱.加工処理を行う 前に、前記赤外線センサの出力信号とマスタの被加熱対象物の実測温度とのキヤリ ブレーシヨン値の関係式を予め求めておく。そして、実際のレーザ加熱'加工処理時 には、前記被加熱対象物やその周辺部から放射または反射される光のうちの前記レ 一ザ光の波長の光を除く赤外線を、前記赤外線センサの前記受光面へ導き、前記 赤外線センサにより生成された信号と予め求めた前記関係式とを基に前記被加熱対 象物の温度を算出する。
[0030] (実施の形態 1)
図 1に本実施の形態 1におけるレーザ加熱装置の構成を示す。レーザ加熱装置は
、被加熱対象物にレーザ光を照射して該被加熱対象物を加熱する。
[0031] 図 1において、レーザ出射部 1は、一定波長のレーザ光を出射する。レーザ出射部 は、例えば半導体レーザや半導体励起レーザを備える。ここでは波長が 920nmのレ 一ザ光を発振するレーザダイオードを備える場合を例に説明する。なお、無論、レー ザ光の波長は 920nmに限るものではなレ、。一般的にレーザダイオードのレーザ光の 波長は 1. 6 x m以下である。
[0032] 集光レンズ 2は、レーザ出射部 1からのレーザ光を集光して、集光位置に置かれた 被加熱対象物である半田 3を加熱する。半田 3はプリント基板 4のランド 5上に塗布さ れている。ここでは被加熱対象物が半田の場合を例に説明する。
[0033] 半田 3がレーザ照射により加熱されると、半田 3やその周辺部のランド 5やプリント基 板 4から赤外線が放射される。また、半田 3やその周辺部からは、照射されたレーザ 光や可視光などが反射される。レーザ光カットフィルタ 6は、半田 3などから放射また は反射された光を受光してレーザ光の波長(920nm)の光をカットする。可視光カット フイノレタ 7は、レーザ光カットフィルタ 6の透過光を受光して可視光をカットする。した 力 Sつて集光レンズ 8には、半田 3などから放射された赤外線のうちのレーザ光の波長 の光 (赤外線)を除く赤外線が入射される。
[0034] 集光レンズ 8は、可視光カットフィルタ 7の透過光を集光して、集光位置に置かれた 赤外線センサ 9の受光面 10へ、レーザ光の波長の光を除く赤外線を入射する。この ように、本実施の形態 1におけるレーザ加熱装置では、半田 3やその周辺部から放射 または反射される光を受光し、レーザ光の波長(920nm)の光を除く赤外線を赤外線 センサの受光面へ導く光学系が、レーザ光カットフィルタ 6と可視光カットフィルタ 7と 集光レンズ 8により構成される。なお、集光レンズ 8とレーザ光カットフィルタ 6と可視光 カットフィルタ 7の配置順は任意でよレ、。また、例えばレーザ光カットフィルタに代えて レーザ光の波長よりも長波長の光を透過するフィルタを用いるなどしてもよい。
[0035] 赤外線センサ 9は、受光面 10で受光した赤外線の分光放射輝度の積算値に基づ いた信号を生成する。ここでは赤外線センサとして、 2. 3 /i mの波長において感度が ピークとなる所定の感度範囲を有する InGaAsPINフォトダイオードを例に説明する。
[0036] また図示しないが、当該レーザ加熱装置は、赤外線センサ 9により生成された信号 のレベルと半田 3の実測温度とのキャリブレーション値(較正値)の関係式を予め格納 する格納部と、赤外線センサ 9により生成された信号と前記関係式を基に半田 3の温 度を算出する温度測定部であるマイクロ 'コンピュータを具備してレ、る。
[0037] 次に、図 2ないし図 7に示すグラフを用いて、本実施の形態 1における温度測定の 原理について説明する。図 2は、 2. 3 z mの波長において感度がピークとなる所定の 感度範囲を有する InGaAs ' PINフォトダイオードの分光感度特性を示す。図 2に示 すように、この InGaAs ' PINフォトダイオードは、 1. 2 x m〜2. の波長に対し て 10%以上の相対感度を有している。
[0038] 図 3は、集光レンズや後述するハーフミラー等に用いられる光学部品材料である B K7 (ホウケィ酸クラウン光学ガラス)や、合成石英、無水合成石英の透過率(赤外線 吸収特性)を示している。図 3において、実線は BK7の透過率のグラフを、一点鎖線 は合成石英の透過率のグラフを、破線は無水合成石英の透過率のグラフを示す。以 下、光学部品材料として BK7を用いた場合を例に説明を行う。
[0039] 図 4は、いわゆるプランクの放射則と呼ばれるもので、黒体から放射する赤外線の 分光放射輝度特性を示す。ここでは一例として、 0° C (273K)、測定下限温度近傍 の温度である 127° C (400K)、鉛フリー半田の融点近傍の温度である 227° C (50 OK)、鉛フリー半田の周辺部にコゲが発生する温度近傍の温度である 327° C (600 K)での分光放射輝度のグラフを示す。なお、グラフは放射輝度が 10_8W/ (cm2 ' s r' m)から上を表示している力 実用上はノイズの影響を回避するために 10_5W/ (cm2 ' sr- x m)以上を実用域として扱う。
[0040] 図 5ないし 7は、加工点(被カ卩熱対象物)の温度が 227° C、 127° C、 327° Cに おいて赤外線センサ(InGaAs 'PINフォトダイオード) 9が検出する実用放射輝度を 示している。図 5ないし 7において、破線は加工点から放射される赤外線の分光放射 輝度のグラフを示し、一点鎖線は集光レンズなどの光学部品材料である BK7を透過 した後の赤外線の分光放射輝度のグラフを示し、実線は赤外線センサ 9が検出する 赤外線の実用放射輝度のグラフを示す。
[0041] このように、赤外線センサ 9は、実際は図 2に示す分光感度特性と図 3に示す赤外 線吸収特性と図 4に示す分光放射輝度特性を掛け合わせた図 5ないし図 7に示す実 線を検出する。そして赤外線センサ 9は、この実線と 10_5W/ (cm2 ' sr' / m)のライ ンで囲まれる範囲の面積(受光面10で受光した赤外線の10_5 / (^112 ' 31:' /1 111) 以上の分光放射輝度の積算値)に基づいた信号レベルの信号を生成する。
[0042] 図 5ないし 7に示すように赤外線センサ 9の出力信号レベルは、 127° Cでは僅か であるが、 227° Cになると 5倍以上に増加し、さらに 327° Cでは 10倍以上に単調 増加している。
[0043] したがって、実際のレーザ加熱'加工処理を実施する前に、キャリブレーション用の 熱電対が埋め込まれたマスタの半田にレーザ照射し、赤外線センサ 9の出力信号レ ベルと熱電対の出力信号レベル (実測温度)とのキャリブレーション値の関係式を予 め求めておくことで、実際のレーザ加熱'加工処理中に半田 3の温度をほぼ正確に 測定することが可能となる。
[0044] なお、例えばレーザ光カットフィルタに代えて、レーザ光の波長よりも長波長の特定 波長範囲の光のみを透過可能な光学的バンドパスフィルタ(以下、 BPFと称す。)を 用いてもよぐ例えば赤外線センサ 9の受光面 10に BPFを配置する。 BPFを用レ、る 場合、 BPFの透過光を受光する赤外線センサとして、 BPFが透過する特定波長範囲 の光に対して実用感度を有する赤外線センサを用いる。この構成により、加工点(被 加熱対象物)が特定温度になったことを検出できるようになる。つまり、この構成によ れば、加工点が特定温度になったときに赤外線センサ 9の出力信号レベルが急激に 上昇するので、 BPFは特定温度を検出する場合に効果がある。
[0045] 例えば波長が 1064nmであって且つ半値幅が 10 μ mの狭帯域の赤外線のみを透 過する BPFは、加工点が約 200度近傍(半田の融点近傍の温度)になったことを検 出するのに有用であり、この温度をキープすることにより、確実に溶融して、しかも周 辺部がコゲない半田付けが実現できる。
[0046] また、図 4に示す分光放射輝度特性からわかるように、被加熱対象物の温度を 400 K以上において測定するには、赤外線センサは、 1. 2 /i m以上の波長において感度 力 Sピークとなる所定の感度範囲を有することが望ましい。
[0047] 以上のように、本実施の形態 1によれば、加工点(被加熱対象物)が 100度以上の 温度になると急激に増加する赤外線センサの出力信号レベルを捉えて、レーザ照射 中に上昇していく被加熱対象物の温度を 400K以上においてほぼ正確に測定するこ とができる。
[0048] したがって、加工点 (被加熱対象物)の温度変化や、半田や樹脂などの溶融変化 前後の急激な温度変化、半田の周辺部や樹脂にコゲが発生する前後での急激な温 度変化を検出して、半田付けや樹脂接合等の所望の加工が完了したことの検出ゃコ ゲの発生検出、コゲの発生防止をすることができる。
[0049] (実施の形態 2)
図 8に本実施の形態 2におけるレーザ加熱装置の構成を示す。但し、図 1に基づい て説明した部材と同一の部材には同一符号を付して、説明を省略する。
[0050] 図 8において、光ファイバ 11はレーザ出射部 1からのレーザ光を空中へ出射する。 コリメートレンズ 12は、光ファイバ 11からのレーザ光を平行光化する(以下、コリメート 光と称す。)。ハーフミラー 13には、コリメート光を反射し、半田 3やその周辺部である ランド 5やプリント基板 4から放射または反射される光を透過する薄膜フィルタが施さ れている。なお、例えば 920nm (レーザ光の波長の光)のみを反射する薄膜コートを 施したハーフミラーを用いてもよレ、。また、ハーフミラーに代えて、レーザ光より長波 長の特定波長範囲の赤外線のみを透過可能な折り返し BPFを配置してもよい。
[0051] 本実施の形態 2では、半田 3やその周辺部から放射または反射される光を受光し、 レーザ光の波長(920nm)の光を除く赤外線を赤外線センサ 9の受光面 10へ導く光 学系が、ハーフミラー 13とレーザ光カットフィルタ 6と可視光カットフィルタ 7と集光レン ズ 8により構成される。なお、集光レンズ 8とレーザ光カットフィルタ 6と可視光カットフィ ルタ 7の配置順は任意でょレ、。
[0052] プリアンプ 14は、赤外線センサ 9からの出力信号を増幅する。また、図示しないが、 当該レーザ加熱装置は、プリアンプ 14の出力信号レベルと半田 3の実測温度とのキ ヤリブレーシヨン値の関係式を予め格納する格納部を具備する。また、図示しないが 、メータ 15は、温度測定部として、プリアンプ 14の出力信号と前記関係式を基に半 田 3の温度を算出するマイクロ 'コンピュータを具備する。メータ 15は、マイクロ'コンビ ユータにより算出された測定温度を表示する。
[0053] また、当該レーザ加熱装置は、メータ 15からレーザ出射部 1へ検出信号が出力さ れる構成となっている。この構成によれば、例えば半田 3の溶融変化前後の急激な温 度変化が検出されたときにレーザパワーを低下させたり、半田 3の周辺部にコゲが発 生する前後での急激な温度変化が検出されたときにレーザ発振を停止させたりする こと力 Sでき、自動半田付け完了やコゲの発生防止を行うことができる。
[0054] 以上の構成によれば、メータ 15に表示された温度変化を観察することにより、半田 の溶融検出や、概算温度検出、コゲの発生検出を行うことができる。また上記したよう に自動半田付け完了やコゲの発生防止も行うことができる。なお、実施の形態 1と同 様に、赤外線センサ 9の受光面 10に、レーザ光より長波長の特定波長範囲の赤外線 のみを透過可能な BPFを配置してもよい。また、レーザ光を平行光化した場合につ いて説明をしたが、コリメートレンズの F値を調整して非コリメ一トにしても、光ファイバ の出射口とハーフミラー間の距離を短くすることで同様な効果が得られる。
[0055] (実施の形態 3)
図 9に本実施の形態 3におけるレーザ加熱装置の構成を示す。但し、図 1、 8に基 づいて説明した部材と同一の部材には同一符号を付して、説明を省略する。
[0056] 図 9において、ホットミラー 16は、集光レンズ 8を介してハーフミラー 13の透過光を 受光し、赤外線を反射して赤外線センサ 9の受光面 10へ導き、可視光を透過して第 2のレーザ光カットフィルタ 17へ導く。レーザ光カットフィルタ 17を介した可視光を受 光するカメラ (撮像装置) 18は、半田 3やその周辺部を撮像する。
[0057] 本実施の形態 3では、半田 3やその周辺部から放射または反射される光を受光し、 レーザ光の波長(920nm)の光を除く赤外線を赤外線センサ 9の受光面 10へ導くと ともに、可視光をカメラ 18へ導く光学系が、ハーフミラー 13と集光レンズ 8と 2つのレ 一ザ光カットフィルタ 6、 17とホットミラー 16により構成される。なお、レーザ光カツトフ ィルタ 6に代えてレーザ光の波長よりも長波長の光を透過するフィルタや BPFを用い てもよく、例えば赤外線センサ 9の受光面 10に BPFを配置する。
[0058] 当該レーザ加熱装置には、温度測定を行う位置を特定するアパーチャ 19が赤外 線センサ 9の受光面 10への光路軸 20近傍に取り付けられている。したがって、ァパ 一チヤ 19のサイズや形状、配置位置を変化させて、加工点検出視野 21を変えること により、半田 3の周辺の温度異常等を検出したり、レーザ照射範囲の特定部分の温 度を測定したりすることが可能となる。
[0059] 以上のように、本実施の形態 3によれば、赤外線センサ 9とカメラ 18を具備すること により、レーザ照射中に加工点の温度変化と同時に加工点の外観変化が観察できる 。また、アパーチャ 19の配置位置やサイズ変更等により、加工点の視野が変えられる ので、周辺部でのコゲの発生検出や微小な特定位置の温度変動の検出、コゲの発 生防止などをすることができる。
[0060] なお、赤外線センサ 9とカメラ 18の配置位置を反対にして、ホットミラーの代わりにコ 一ルドミラ一を用いてもよい。また、赤外線センサ 9とカメラ 18の配置位置を反対にし て、ホットミラーの代わりに、レーザ光より長波長の特定波長範囲の赤外線のみを透 過可能な折り返し BPFを配置してもよい。ホットミラーに代えて BPFを配置した場合、 カメラ 18には、 BPFで反射しレーザ光カットフィルタ 17を透過した後の可視光が入射 される。よって、カメラ 18は加工点を撮像できる。本実施の形態 3によれば、確実に溶 融して、し力も周辺部がコゲない半田付けがカメラで監視しながら実現できる。
[0061] なお、半田付けを例に説明してきたが、樹脂接合や、樹脂マーキング、 2つ以上の 樹脂接合を行う場合でも同様に実施可能である。また、赤外線センサとして InGaAs PINフォトダイオードを用いた力 1. 2 z m以上の波長において感度がピークとなる 赤外線センサであればよく、例えば化合物半導体などを用いてもょレ、。
[0062] また、ここでは説明の簡素化のため、各集光レンズやミラー等の光学部品として AR コート無しの 1. 7 x m以上の波長の赤外線を吸収する BK7を用いて説明した力 ク ラウンガラスやアクロマチックレンズであってもよレ、。特に、無水合成石英は、 InGaAs PINフォトダイオードの感度の限界点である 2. 7 μ m付近でも透過率の低下がなぐ SZN比を向上させることができ、好適である。また、赤外線センサの感度範囲の波 長に対する ARコートを施してもよい。
[0063] (実施の形態 4)
上記各実施の形態 1〜3におけるレーザ加熱装置では、加工点に形成されるレー ザ光の形状 (レーザ照射範囲)がスポット状 (真円状)に限定される。そのため、上記 各実施の形態:!〜 3におけるレーザ加熱装置では、 FPIC (field programmable i nterconnect component)や FPC (フレキシブノレプリント目 tif泉板)等のよつにランド と樹脂基板が並んでいる加工面への対応が十分ではない。
[0064] 本実施の形態 4では、加工面に形成されるレーザ光の形状を長方形状ないし楕円 形状 (以下、長方形状等と称す。 )にすることで、 FPICや FPC等のようにランドと樹脂 基板が並んでいる加工面に対する半田付け等に十分に対応できるようにする。
[0065] また、本実施の形態 4では、その長方形状等のレーザ照射範囲およびその周辺を 含む広い範囲を赤外線センサの検出範囲(温度観測域)にする。ステフアン'ボルッ マンの法則により赤外放射エネルギは温度の 4乗に比例して増加するので、赤外線 センサの温度観察域を広くすることで、その温度観察域で異常発熱が発生したときの 温度上昇を赤外線センサがいちはやく検知できるようになり、レーザパワーを低下さ せる等の制御がすばやくできるようになる。 [0066] 図 10 (a)に本実施の形態 4におけるレーザ加熱装置の構成を示す。但し、図 1、 8、 9に基づいて説明した部材と同一の部材には同一符号を付して、説明を省略する。
[0067] 本実施の形態 4におけるレーザ加熱装置は、加工面に形成されるレーザ光の形状 を長方形状等にするための光学系として、ハーフミラー 13と加工面の間に、集光レン ズに代えてシリンドリカルレンズを配置した点が前述の実施の形態 3と異なる。
[0068] 図 10 (a)において、シリンドリノレレンズ 22は、折り返しミラーであるハーフミラー 13に より反射されたレーザ光を受光して、加工面に長方形状等のレーザ光を形成する。こ こでは、被加熱対象物として、 FPIC23の各ランドに塗布された半田を例に説明を行 う。
[0069] 図 10 (b)は、レーザ加熱装置を y方向からみたときの側面図であり、コリメートレンズ
12とハーフミラー 13とシリンドリカルレンズ 22と FPIC23を抜粋して示している。また、 図 10 (c)は加工面に形成されるレーザ光の形状を示す上面図である。
[0070] 図 10 (b)、 (c)に示すように、シリンドリカルレンズ 22は、受光したスポット状 (真丸状 )のレーザ光をカ卩工面において長方形状ないし楕円形状 (レーザ照射範囲 24)にす る。
[0071] レーザ照射範囲 24の X方向の大きさは、シリンドリカルレンズ 22の加工面までの距 離を変化させることで調整できる。また、図 10 (c)に示すように、本実施の形態 4では 、レーザ照射範囲 24よりも広い範囲を温度観測域 25としている。
[0072] なお、コリメートレンズ 12の光ファイバ 11までの距離を調整することで、レーザ光の 広がり角を調整できる。また、後述するようにコリメートレンズ 12に代えてシリンドリカ ルレンズを配置する場合も、そのシリンドリカルレンズの光ファイバ 11までの距離を調 整することで、レーザ光の広がり角を調整できる。
[0073] 図 10 (a)において、折り返しミラー 26には、可視光を透過し、 2 x m近傍の赤外線 を反射する薄膜コートもしくは薄膜フィルタが施されている。折り返しミラー 26は、集 光レンズ 8 (アクロマチックレンズ等の球面収差補正された凸レンズ)を介してハーフミ ラー 13の透過光を受光し、 2 x m近傍の赤外線を反射して赤外線センサ 9の受光面 10へ導くとともに、可視光をカメラ(例えば CCDカメラの CCD面) 18へ導く。第 2のレ 一ザ光カットフィルタ 17を介した可視光を受光するカメラ 18は、加工面を歪みなく拡 大観察できる。
[0074] また、プリアンプ(増幅回路) 14はハイゲインアンプであり、赤外線センサ 9の出力 信号レベルを数百倍以上に増幅する。
[0075] 本実施の形態 4では、温度観測域 (被加熱対象物およびその周辺部) 25から放射 または反射される光を受光し、レーザ光の波長の光を除く赤外線を赤外線センサ 9の 受光面 10へ導くとともに、可視光をカメラ 18へ導く光学系が、ハーフミラー 13と集光 レンズ 8と折り返しミラー 26と 2つのレーザ光カットフィルタ 6、 17により構成される。
[0076] 続いて、本実施の形態 4におけるレーザ加熱装置のレーザパワー制御について説 明する。
[0077] 図 10 (a)において、被加熱対象物の温度が予め設定された設定温度 Tsとなるよう にレーザパワーを制御するレーザ制御装置 27は、レーザ出射部 1と、被加熱対象物 の温度を算出する温度レベル変換回路 (温度測定部) 28と、設定温度 Tsを設定する ためのボリューム 29と、レーザ出射部 1が備えるレーザダイオード (LD素子)へ供給 する電流を制御する制御部 30とを備える。また、レーザ制御装置 27は、図示しない 、プリアンプ 14の出力信号レベルと FPIC23の各ランドに塗布された半田の実測 温度(例えば各ランドに塗布された半田の実測温度の平均値や、特定のランドに塗 布された半田の実測温度など)とのキャリブレーション値 (較正値)の関係式を予め格 納する格納部を具備する。
[0078] 温度レベル変換回路 28は、プリアンプ 14の出力信号と前記関係式を基に被加熱 対象物の温度を算出して、その温度を示す信号を生成する。
[0079] ボリューム 29には設定温度 Tsが予め設定されており、制御部 30は、温度レベル変 換回路 28の出力信号 (被加熱対象物の温度に相当する)とボリューム 29により発生 する信号 (設定温度 Tsに相当する)とを基に、被加熱対象物の温度が設定温度 Tsと なるように、レーザ出射部 1へ供給する電流を制御する。
[0080] このように、本実施の形態 4によれば、シリンドリカルレンズにより、加工面に形成さ れるレーザ光の形状を長方形状等にすることができ、 FPICや FPC等のようにランドと 樹脂基板が並んでいる加工面における半田付けや、長方形領域ないし楕円形領域 の樹脂接合に対して十分に対応できるようになる。 [0081] なお、加工面に形成されるレーザ光の形状は、コリメートレンズ 12とシリンドリカルレ ンズ 22の焦点位置や固定位置を前後させることで、任意に拡大/縮小でき、また、 そのレーザ光の形状のアスペクト比を任意に変化させることができる。
[0082] また、コリメートレンズ 12に代えてシリンドリカルレンズを配置し、シリンドリカルレンズ 22に代えてアクロマチックレンズ等の球面収差補正された凸レンズを配置してもよい 。すなわち、まずシリンドリカルレンズによりレーザ光のアスペクト比を変化させた後、 そのアスペクト比が変化されたレーザ光を凸レンズで集光して、加工面に形成される レーザ光の形状を長方形状等にしてもよい。この場合も、シリンドリカルレンズと凸レ ンズの焦点位置や固定位置を前後させることで、加工面に形成されるレーザ光の形 状を任意に拡大/縮小でき、また、そのレーザ光の形状のアスペクト比を任意に変 化させることができる。
[0083] (実施の形態 5)
図 11に本実施の形態 5におけるレーザ加熱装置の構成を示す。但し、図 1、 8、 9、 10に基づいて説明した部材と同一の部材には同一符号を付して、説明を省略する。
[0084] 本実施の形態 5におけるレーザ加熱装置は、温度観測域 25から放射ないし反射さ れる赤外線を光ファイバへ戻し、温度観測域 25から放射されるレーザ光の波長の光 (赤外線)を除く赤外線を、レーザ出射部 1内蔵の赤外線センサにて検出する点が前 述の実施の形態 4と異なる。
[0085] 図 11において、光ファイバ 11はコア部 31とクラッド部 32を有する。光ファイバ 11の コア部 31からレーザ光が出射される。
[0086] 折り返しミラー 33には、赤外線を反射し、可視光を透過する薄膜コートもしくは薄膜 フィルタが施されている。折り返しミラー 33は、シリンドリカルレンズ 22を介して、温度 観測域 25から放射または反射される光を受光し、赤外線を反射してコリメートレンズ 1 2へ導くとともに、可視光を透過して集光レンズ 8へ導く。
[0087] コリメートレンズ 12は、折り返しミラー 33により反射された赤外線を光ファイバ 11の クラッド部 32へ導く。
[0088] 本実施の形態 5では、レーザ出射部 1は、 LD素子 34、集光レンズ 35、折り返しミラ 一 36、赤外線センサ 9、およびプリアンプ 14を備える。 [0089] 折り返しミラー 36には、赤外線を透過するが、レーザ光の波長の光は反射する薄 膜フィルタもしくは薄膜コートが施されている。折り返しミラー 36は、 LD素子 34から出 射されたレーザ光を反射して集光レンズ 35へ導く。集光レンズ 35は折り返しミラー 36 力 のレーザ光をコア部 31へ導く。このようにして、 LD素子 34から出射されたレーザ 光は光ファイバ 11に結合する。
[0090] 一方、折り返しミラー 36は、クラッド部 32を通って戻ってきた赤外線からレーザ光の 波長の赤外線を分離し、レーザ光の波長の赤外線を除く赤外線を赤外線センサ 9の 受光面 10へ導く。
[0091] 本実施の形態 4では、温度観測域 25から放射または反射される光を受光し、レー ザ光の波長の光を除く赤外線を赤外線センサ 9の受光面 10へ導く光学系が、 2つの 折り返しミラー 33、 36と集光レンズ 35により構成される。なお、折り返しミラー 36と赤 外線センサ 9の受光面 10の間にレーザ光カットフィルタを設置してもよい。また、実施 の形態 4と同様に、コリメートレンズ 12に代えてシリンドリカルレンズを配置し、シリンド リカルレンズ 22に代えて凸レンズを配置してもよい。
[0092] (実施の形態 6)
図 12に本実施の形態 6におけるレーザ加熱装置の構成を示す。但し、図 1、 8〜: 11 に基づいて説明した部材と同一の部材には同一符号を付して、説明を省略する。
[0093] 本実施の形態 6におけるレーザ加熱装置は、加工面に形成されるレーザ光の形状 をスキャンミラーにより長方形状等にする点が前述の実施の形態 5と異なる。すなわ ち、加工面にレーザ光をラインスキャン照射ないし 2次元スキャン照射し、加工面にお けるレーザ照射範囲を長方形状ないし楕円形状にする。
[0094] 図 12において、スキャンミラー 37には、赤外線を反射し、可視光を透過する薄膜コ ートもしくは薄膜フィルタが施されている。また、スキャンミラー 37は、回転軸 38を軸 に揺動可能である。スキャンミラー 37は、回転軸 38を軸に所定角度だけ往復揺動し ながら、コリメートレンズ 12からのレーザ光を反射する。この往復揺動しているスキヤ ンミラー 37により反射されたレーザ光を集光レンズ (アクロマチックレンズ等の球面収 差補正された凸レンズ) 2が集光して、加工面にレーザ光をラインスキャン照射ないし 2次元スキャン照射する。このラインスキャンなレ、し 2次元スキャンされる範囲がレーザ 照射範囲 24となる。
[0095] なお、スキャンミラーを 2個以上設けて、各スキャンミラーの往復揺動により、加工面 にレーザ光をラインスキャン照射ないし 2次元スキャン照射する構成にしてもよい。
[0096] また、スキャンミラー 37は、往復揺動しながら温度観測域 25から放射なレ、し反射さ れる赤外線を反射し、スキャンミラー 37を介して光ファイバ 11のクラッド部 33へ戻す
[0097] 本実施の形態 5では、温度観測域 25から放射または反射される光を受光し、レー ザ光の波長の光を除く赤外線を赤外線センサ 9の受光面 10へ導く光学系が、スキヤ ンミラー 37と折り返しミラー 36と集光レンズ 35により構成される。
[0098] なお、カメラ 18には、スキャンミラー 37の透過光が集光レンズ 8とレーザ光カットフィ ルタ 17を介して入射される。
[0099] (実施の形態 7)
図 13に本実施の形態 7におけるレーザ加熱装置の構成を示す。但し、図 1、 8〜: 12 に基づいて説明した部材と同一の部材には同一符号を付して、説明を省略する。
[0100] 図 13において、スキャンミラー 39には、赤外線を透過するがレーザ光の波長の光 は反射する薄膜フィルタもしくは薄膜コートが施されている。スキャンミラー 39は、実 施の形態 6と同様に、回転軸 38を軸に所定角度だけ往復揺動しながら、コリメ一トレ ンズ 12からのレーザ光を反射する。
[0101] 温度観測域 25から放射されるレーザ光の波長の光を除く赤外線は、スキャンミラー 39を通過し、前述の実施の形態 2と同様に、集光レンズ 8により、レーザ光カットフィ ルタ 6と可視光カットフィルタ 7を介して赤外線センサ 9の受光面 10へ導かれる。
[0102] 本実施の形態 7では、温度観測域 25から放射または反射される光を受光し、レー ザ光の波長の光を除く赤外線を赤外線センサ 9の受光面 10へ導く光学系が、スキヤ ンミラー 39とレーザ光カットフィルタ 6と可視光カットフィルタ 7と集光レンズ 8により構 成される。
[0103] このように、本実施の形態 7におけるレーザ加熱装置は、温度観測域 25全体から 放射される赤外線量を絶えず監視することができる。
[0104] (実施の形態 8) 本実施の形態 8におけるレーザ加熱装置は、光ファイバを用いることなぐレーザ出 射部が備える LD素子(レーザダイオード)から出射されるレーザ光そのものによりカロ 工面を照射する点が上記した実施の形態 1〜7と異なる。
[0105] 以下、本実施の形態 8におけるレーザ加熱装置について、上記各実施の形態 1〜 7と異なる部分を説明する。但し、上記各実施の形態 1〜7と同一の部分については 説明を省略する。
[0106] 図 14に本実施の形態 8におけるレーザ加熱装置の構成を示す。但し、図 14 (a)は レーザ加熱装置をレーザ光の SLOW方向からみたときの側面図であり、図 14 (b)は レーザ加熱装置をレーザ光の SLOW方向と直交する方向からみたときの側面図であ る。また、図 1、 8〜: 13に基づいて説明した部材と同一の部材には同一符号を付して 、説明を省略する。
[0107] 図 14 (a)、 (b)において、 LD素子 40は一定波長のレーザ光を出射する。ここでは は、 LD素子 40から出射されるレーザ光の FAST方向の拡がりを抑える方向に配置 される。シリンドリカノレレンズ 41は、 LD素子 40から出射されるレーザ光の FAST方向 を平行化なレ、し低広がりにする。
[0108] ハーフミラー 13はシリンドリカルレンズ 41からのレーザ光 42を反射する。集光レン ズ 2は、ハーフミラー 13からのレーザ光を集光する。シリンドリカルレンズ 41と集光レ ンズにより、加工面に形成されるレーザ光の形状は長方形状等となる。
[0109] このように、本実施の形態 8では、加工面におけるレーザ照射範囲を長方形状ない し楕円形状にするための光学系として、シリンドリカルレンズ 41と集光レンズ 2を備え る。すなわち、 LD素子 40から出射されるレーザ光の FAST方向の広がりをシリンドリ カルレンズ 41により抑えた後、集光レンズ 2により集光して、加工面に形成されるレー ザ光の形状を長方形状等にする。
[0110] (実施の形態 9)
本実施の形態 9におけるレーザ加熱装置は、集光レンズを用いることなぐ 2個の L D素子(レーザダイオード)により、加工面に形成されるレーザ光の形状を長方形状 等にする点が、前述の実施の形態 8と異なる。 [0111] 以下、本実施の形態 9におけるレーザ加熱装置について、上記各実施の形態:!〜 8と異なる部分を説明する。但し、上記各実施の形態 1〜8と同一の部分については 説明を省略する。
[0112] 図 15に本実施の形態 9におけるレーザ加熱装置の構成を示す。但し、図 15 (a)は レーザ加熱装置をレーザ光の SLOW方向からみたときの側面図である。また、図 15 (b)はレーザ加熱装置をレーザ光の SLOW方向と直交する方向からみたときの側面 図であり、ハーフミラー 13とコリメートレンズ 43を抜粋して示している。また、図 1、 8〜 13に基づいて説明した部材と同一の部材には同一符号を付して、説明を省略する。
[0113] 図 15 (a)において、レーザ出射部は 2個の LD素子 40とヒートシンク 45を備える。ヒ ートシンク 45は例えば銅製である。 2個の LD素子 40はヒートシンク 45に接合される。 図 15 (a)、(b)に示すように、 2個の LD素子 40は、ヒートシンク 45の端面からレーザ 光が同じ方向に光軸平行に出射されるように、所定の間隔 dにて同一平面上に配置 される。
[0114] コリメートレンズ 43は、 LD素子 40から出射されるレーザ光の FAST方向の拡がりを 抑える方向に配置される。コリメートレンズ 43は、 LD素子 40から出射されるレーザ光 の FAST方向を平行化ないし低広がりにする。ハーフミラー 13はコリメートレンズ 43 からのレーザ光 44を反射する。
[0115] このように 2個の LD素子を所定間隔 dにて同一平面上に配置し、レーザ光が同じ 方向に光軸平行に出射されるように構成した場合、 LD素子 40 (コリメートレンズ 43の 出射端)から加工面 46までの距離を調整することで、加工面 46における SLOW方向 のレーザパワー密度分布を台形状にすることができる。あるいは、加工面 46における SLOW方向の温度分布を台形状にすることができる。これは、以下の理由による。
[0116] 図 16において、カ卩工面 46力 SA、 B、 Cの各位置にある場合のコリメートレンズ 43の 出射端から加工面 46までの距離を WDA、 WDB、 WDCとする。また、加工面 46が A、 B、 Cの各位置にある場合の加工面 46における SLOW方向の半値のレーザパヮ 一密度をそれぞれ PA、 PB、 PCとする。また、カロ工面 46力 SA、 B、 Cの各位置にある 場合の加工面 46における SLOW方向の温度分布をそれぞれ TA、 TB、 TCとする。
[0117] 図 16 (a)に示すように、ヒートシンク 45の端面からは、同じ光軸方向に 2本のレーザ 光が SLOW方向(X方向とする)に所定の広がり角で出射される。レーザ光の FAST 方向(図 16紙面と垂直方向)は、コリメートレンズ 43により平行化ないし低広がりにさ れる。
[0118] ここでカ卩工面 46が位置 A力も位置 Bへ遠ざかると、図 16 (b)に示すように、レーザ パワー密度分布が、位置 Aでは 2つの台形パワー分布であったもの力 位置 Bでは 一部干渉する。その結果、位置 Bでは、中心部のパワーが低いが、温度密度分布が 均質になる。
[0119] この台形状 (TOP HAT状)の温度密度分布は、 FPICや FPC、ライン状樹脂接合 に極めて有効であり、温度密度分布が均質なため、中心部のこげやダメージ発生を 減らし、熱接合品質を向上させることができる。
[0120] さらに加工面 46が位置 Cになると、図 16 (c)に示すようにレーザパワー密度分布が 台形状 (TOP HAT状)になる。レーザパワー密度分布が台形状になると、加熱時 の温度勾配が中心部において高くなる。しかし、レーザ光の照射時間が短時間の場 合は温度勾配の差の影響を受けずに、均質な加熱ができる。
[0121] 本実施の形態 9では、 2個の LD素子(レーザダイオード)力も出射される 2本のレー ザ光の FAST方向の広がりを抑え、その広がりを抑えた 2本のレーザ光によりレーザ 照射範囲を長方形状等にするための光学系が、コリメートレンズにより構成される。
[0122] なお、コリメートレンズ 43に代えてシリンドリカルレンズを用いてもよレ、。また、コリメ 一トレンズ 43を 2個以上設けてもよレ、。また、 LD素子の数は 2個以上あってもよい。
[0123] (実施の形態 10)
本実施の形態 10におけるレーザ加熱装置は、レーザ出射部がコリメートレンズや、 赤外線センサ、レーザ光カットフィルタ、集光レンズを備える点が前述の実施の形態 9 と異なる。以下、本実施の形態 10におけるレーザ加熱装置のレーザ出射部について 、図面を交えて説明する。
[0124] 図 17 (a)は本実施の形態 10におけるレーザ出射部の上面図を示す。また、図 17 ( b)は本実施の形態 10におけるレーザ出射部の前面図を示す。また、図 17 (c)は本 実施の形態 10におけるレーザ出射部の上蓋を外した状態での上面図を示す。また、 図 17 (d)は本実施の形態 10における加工面に形成されるレーザ光の形状を示す。 また、図 17 (e)は本実施の形態 10におけるレーザ出射部の透視側面図を示す。ま た、図 17 (f)は本実施の形態 10における加工面に形成されるレーザ光の形状を示 す。但し、図 1、 8〜: 16に基づいて説明した部材と同一の部材には同一符号を付して 、説明を省略する。
[0125] 図 17に示すように、当該レーザ出射部 1は、ホルダ 47と、ホルダ 47の上蓋 48を備 える。ホルダ 47内部には、 2個の LD素子 40が接合されたヒートシンク 45が設置され る。ヒートシンク 45は、レーザ光カットフィルタ 6や、集光レンズ 8、赤外線センサ 9など を内蔵する。
[0126] また、ホノレダ 47内部には、可動体 50、 51が設置される。図示しないが、ホルダ 47 内側の両側面には、上側可動体 50を支持するための支持部が設けられている。
[0127] 上側可動体 50の下面側には、上側可動体 50よりも長さと幅が小さい下側可動体 5 1が 2つのネジ 49により固定される。下側可動体 51は、 2つのネジ 49のネジ締め量で 突起部 52を支点にシーソ状に動く。下側可動体 51には、コリメートレンズ 43が LD素 子 40のレーザ出射端面前方に位置するように接合されている。このように、当該レー ザ出射部 1は、コリメートレンズ 43の固定位置を LD素子 40のレーザ出射端面に対し 上下方向に調整可能な構成となっている。したがって、レーザ出射部 1によれば、レ 一ザ照射範囲 24の位置を任意に変化させることができる。なお、突起部 52は上側可 動体 50、下側可動体 51のいずれに設けてもよい。
[0128] また、上側可動体 50の前後方向の長さはホルダ 47の前後方向の長さよりも短ぐ 上側可動体 50とホルダ 47の前後の端面の間には隙間がある。上側可動体 50の前 後の端面には、ホルダ 47内側の前後の端面から突出する 3つのネジ 52が当接する 。よって、上側可動体 50は、 3つのネジ 52のネジ締め量でホルダ 47の前後方向に動 く。したがって、コリメートレンズ 43の固定位置は、 3つのネジ 52によりホルダ 47の前 後方向に調整可能である。このように、当該レーザ出射部 1は、コリメートレンズ 43の 固定位置を LD素子 40のレーザ出射端面に対し前後方向に調整可能な構成となつ ている。なお、ネジ 52の数は 3つに限定されるものではない。
[0129] したがって、当該レーザ出射部 1によれば、加工面 46に形成されるレーザ光の形 状(レーザ照射範囲)のアスペクト比を任意に変化させることができる。例えば図 17 (f )に示すように、レーザ照射範囲 24のアスペクト比を実線で示すレーザ照射範囲 24 力 破線で示すレーザ照射範囲 24へ変化させることができる。
[0130] さらに、当該レーザ出射部 1によれば、コリメートレンズ 43の出射端力 加工面 46ま での距離を調整することができ、加工面 46における SLOW方向のレーザパワー密度 分布を台形状にすることができる。あるいは、加工面 46における SLOW方向の温度 分布を台形状にすることができる。
[0131] また、当該レーザ出射部 1は、図 17に示すように、レーザ光カットフィルタ 6、集光レ ンズ 8、赤外線センサ 9を備え、温度観測域から放射される赤外線を検出可能な構成 となっている。また、集光レンズ 8は、赤外線センサ 9の受光面 10までの距離が調整 可能なレンズホルダに接合されている。よって、当該レーザ出射部 1によれば、温度 観測域のサイズを任意に変化させることができる。例えば図 17 (f)に示すように、温 度観測域 25を実線で示す温度観測域 25から破線で示す温度観測域 25へ変化させ ること力 Sできる。
[0132] 本実施の形態 10では、 LD素子から出射されるレーザ光の FAST方向の広がりを 抑えるためのレンズとしてコリメートレンズ 43を備える。また、コリメートレンズ 43が接 合され、 LD素子のレーザ出射端面に対するコリメートレンズ 43の位置を調整可能な 調整機構として、ネジ 49、可動体 50、 51、突起部 52、ネジ 52を備える。
[0133] なお、コリメートレンズ 43に代えてシリンドリカルレンズを用いてもよレ、。また、コリメ 一トレンズ 43を 2個以上設けてもよレ、。また、 LD素子の数は 2個以上あってもよい。
[0134] (実施の形態 11)
nWクラスの赤外線を通常の制御回路が動作する mVクラスの信号レベルにまで増 幅しょうとすると、赤外線センサの出力信号レベルを増幅するためのプリアンプとして ハイゲインアンプが必要となる。しかし、ハイゲインアンプとしてどんなに高級なオペ アンプを用いたり温度補償機能を備えたオペアンプを用いても、そのアンプ出力は 大きくドリフト変化する。
[0135] 上記各実施の形態:!〜 10では、赤外線センサの出力信号レベルやプリアンプの出 力信号レベルと実測温度とのキャリブレーション値(較正値)の関係式を予め求めて おくことで、温度を測定している。しかし、マスタの温度測定時と実際のレーザ加熱- 加工処理時とで環境が変化することにより、前記関係式のみでは正確な温度測定を 行えないおそれがある。
[0136] また、レーザ光自身が赤外線であり、半田付け等の加工用のレーザ光のパワーは Wクラスと強いので、レーザ光カットフィルタを設けていても、 nWクラスの微弱な赤外 線の検出が可能な赤外線センサにはレーザ光が外乱光として影響する。
[0137] そこで、本実施の形態 11では、レーザ照射直後からの赤外線センサの出力信号レ ベルの変化量を監視し、その変化量が予め設定された変化量よりも大きレ、か否かを 判定することで、赤外線センサの出力信号レベル (被加熱対象物の温度に相当する )が、設定温度 Tsに達したか否かを判定する。そして、赤外線センサの出力信号レべ ルの変化量が設定変化量に達すると、レーザ光の出射を停止させるか、あるいは所 定のレーザパワーでレーザ光を断続的に出射させる。
[0138] 本実施の形態 11におけるレーザ加熱装置の構成は、上記の実施の形態 4ないし 1 0と同じ構成である。ここでは、実施の形態 4におけるレーザ加熱装置の構成を例に 説明を行う(図 10参照。)。
[0139] 図 18 (a)にレーザ光のレーザパワー Pと経過時間 tのグラフを示す。また、図 18 (b) にプリアンプ 14の出力信号レベルと経過時間 tのグラフを示す。また、図 18 (c)にレ 一ザ照射開始時間 tsから A t経過後の時間 tOにおけるプリアンプ 14の出力信号レべ ルを基準としたプリアンプ 14の出力信号レベルの差分レベルと経過時間 tのグラフを 示す。
[0140] 図 18 (b)において、実線は、温度ドラフトとレーザ光のリーク検出分を含む実際の プリアンプ 14の出力信号レベルを示す。また、点線は、温度ドラフトとレーザ光のリー ク検出分を含まない理想的なプリアンプ 14の出力信号レベルを示す。また、図 18 (a )、(b)において、 tlは実際のプリアンプ 14の出力信号レベルがレベル PDs (設定温 度 Tsに相当する)に達する時間を示す。また、 t2は理想的なプリアンプ 14の出力信 号レベルがレベル PDsに達する時間を示す。
[0141] 図 18 (a)、 (b)に示すように、レーザパワー Psのレーザ光を時間 tsから照射したとき 、そのレーザ照射開始時間 tsのプリアンプ 14の出力信号レベルには、温度ドリフト分 Δ PDやレーザ光のリーク検出分 Δ PDLが含まれ、理想的なプリアンプ 14の出力信 号レベルよりも大きくなる。そのため、プリアンプ 14の出力信号レベルがレベル PDs に達した時点(時間 tl)でレーザ光の発振を停止しょうとしても、その時間 tlは理想 的なプリアンプ 14の出力信号レベルがレベル PDsに達する時間 t2からずれている。
[0142] そこで、本実施の形態 11におけるレーザ加熱装置では、制御部 30が、図 18 (c)に 示すように、レーザ照射開始時間 tsから A t経過後の時間 tOにおけるプリアンプ 14の 出力信号レベルを基準としたプリアンプ 14の出力信号レベルの差分レベル Δ PDが 設定変化量 Δ PDsに達するとレーザ光を停止させる。なお、制御部 30は、ボリューム 29により発生する信号レベルを基に設定変化量 Δ PDsを設定する。
[0143] 差分レベル A PDは、温度ドリフトやレーザ光のリーク検出、さらにはレーザパワー P sのレベルが異なることなどには影響されず、差分レベル Δ PDが 0レベルから設定変 化量 Δ PDsに達するまでの期間(時間 t3)はある定まった時間となるので、レーザ照 射を安定して停止させることができる。
[0144] なお、レーザ照射を停止させるだけでなぐ図 19に示すように、レーザパワー Ps以 下の所定のレーザパワーにて設定変化量 Δ PDsを基準に、レーザ発振を断続的に 行うようにしてもょレヽ(チヨッビング動作)。
[0145] このように、本実施の形態 11におけるレーザ加熱装置は、レーザ光のリーク検出や 、赤外線センサないしプリアンプの温度ドリフトをキャンセルして、安定に再現性良く 動作すること力 Sできる。
[0146] また、 PINフォトダイオードはダイナミックレンジが大きく取れるため、レーザ光による 大きな外乱光があってもプリアンプの出力信号レベルの変化量を監視することで、温 度ドリフト等の誤差を含まない赤外線検出信号 (プリアンプの出力信号)を得ることが できる。よって、当該レーザ加熱装置は、被加熱対象物の温度を安定に制御すること ができる。
産業上の利用可能性
[0147] 本発明に係るレーザ加熱装置およびレーザ加熱方法は、加工点にある半田ゃ榭 脂などの溶融時の温度変化やコゲが発生する兆候となる異常発熱を検出して、周辺 部がコゲない半田付けや樹脂がコゲない樹脂接合などが可能となり、例えば半導体 レーザ力 出射されるレーザ光により、半田付けや、樹脂接合、樹脂マーキング、溶 接などのレーザ加熱 ·加工処理を行うのに有用である。

Claims

請求の範囲
[1] 被加熱対象物に照射するレーザ光を出射するレーザ出射部と、
受光面で受光した赤外線の分光放射輝度の積算値に基づいた信号を生成する赤 外線センサと、
前記被加熱対象物やその周辺部から放射または反射される光を受光し、前記レー ザ光の波長の光を除く赤外線を前記赤外線センサの受光面へ導く光学系と、 前記赤外線センサにより生成された信号のレベルと前記被加熱対象物の実測温度 とのキャリブレーション値の関係式を予め格納する格納部と、
前記赤外線センサにより生成された信号と前記関係式を基に前記被加熱対象物の 温度を算出する温度測定部と、
を備えたことを特徴とするレーザ加熱装置。
[2] 前記レーザ出射部は、 1. 6 μ ΐη以下の波長のレーザ光を出射することを特徴とす る請求項 1記載のレーザ加熱装置。
[3] 前記赤外線センサは、 1. 2 / m以上の波長において感度がピークとなることを特徴 とする請求項 1記載のレーザ加熱装置。
[4] 前記光学系は、前記レーザ光の波長以上の長波長の赤外線を前記赤外線センサ の受光面へ導くことを特徴とする請求項 1記載のレーザ加熱装置。
[5] 前記光学系は、特定波長範囲の赤外線のみを透過することを特徴とする請求項 2 記載のレーザ加熱装置。
[6] 前記被加熱対象物やその周辺部からの可視光を撮像する撮像装置をさらに備え たことを特徴とする請求項 1記載のレーザ加熱装置。
[7] 温度測定を行う領域を特定するアパーチャを設けたことを特徴とする請求項 1記載 のレーザ加熱装置。
[8] 前記赤外線センサは、 1. 2 z m以上の波長に対して 10%以上の相対感度を有し、 受光面で受光した赤外線の 10_5W/ (cm2' sr' / m)以上の分光放射輝度の積算 値に基づいた信号を生成することを特徴とする請求項 1記載のレーザ加熱装置。
[9] 前記赤外線センサは、 InGaAsPINフォトダイオードであることを特徴とする請求項 1記載のレーザ加熱装置。
[10] 加工点におけるレーザ照射範囲がスポット状となることを特徴とする請求項 1記載の レーザ加熱装置。
[11] 加工面におけるレーザ照射範囲を長方形状ないし楕円形状にするための光学系 をさらに備えたことを特徴とする請求項 1記載のレーザ加熱装置。
[12] 前記レーザ出射部から出射された前記レーザ光を反射して、加工面に前記レーザ 光をラインスキャン照射ないし 2次元スキャン照射し、加工面におけるレーザ照射範 囲を長方形状ないし楕円形状にするためのスキャンミラーを少なくとも 1個以上さらに 備えたことを特徴とする請求項 1記載のレーザ加熱装置。
[13] 前記レーザ出射部は前記レーザ光を出射する 2個以上のレーザダイオードを備え 前記各レーザダイオードから出射される前記各レーザ光の FAST方向の広がりを 抑え、その広がりを抑えた前記各レーザ光により加工面におけるレーザ照射範囲を 長方形状ないし楕円形状にするための光学系をさらに備えた、
ことを特徴とする請求項 1記載のレーザ加熱装置。
[14] 前記レーザ出射部は、
前記レーザ光を出射する 2個以上のレーザダイオードと、
前記各レーザダイオードから出射される前記各レーザ光の FAST方向の広がりを 抑えるためのレンズと、
前記レンズが接合され、前記各レーザダイオードのレーザ出射端面に対する前記 レンズの位置を調整可能な調整機構と、を備え、
前記レンズからの前記各レーザ光により加工面におけるレーザ照射範囲を長方形 状ないし楕円形状にすることを特徴とする請求項 1記載のレーザ加熱装置。
[15] 前記赤外線センサの出力信号レベルの変化量が設定変化量に達すると、前記レ 一ザ出射部による前記レーザ光の出射を停止させるか、あるいは所定のレーザパヮ 一で前記レーザ光を断続的に出射させる制御部をさらに備えたことを特徴とする請 求項 1記載のレーザ加熱装置。
[16] 被加熱対象物にレーザ光を照射して該被加熱対象物を加熱するレーザ加熱方法 であって、該被加熱対象物にレーザ光を照射している間に、 受光面で受光した赤外線の分光放射輝度の積算値に基づいた信号を生成する赤 外線センサの前記受光面へ、前記被加熱対象物やその周辺部から放射または反射 される光のうちの前記レーザ光の波長の光を除く赤外線を導き、
前記赤外線センサにより生成された信号と、予め求めた前記被加熱対象物の実測 温度と前記赤外線センサにより生成された信号のレベルとのキャリブレーション値の 関係式と、を基に前記被加熱対象物の温度を算出する、
ことを特徴とするレーザ加熱方法。
[17] 加工面に前記レーザ光をラインスキャン照射ないし 2次元スキャン照射し、加工面 におけるレーザ照射範囲を長方形状ないし楕円形状にすることを特徴とする請求項 16記載のレーザ加熱方法。
[18] 前記赤外線センサの出力信号レベルの変化量が設定変化量に達すると、前記レ 一ザ光の出射を停止させるか、あるいは所定のレーザパワーで前記レーザ光を断続 的に出射させることを特徴とする請求項 16記載のレーザ加熱方法。
PCT/JP2006/304074 2005-03-04 2006-03-03 レーザ加熱装置およびレーザ加熱方法 WO2006093264A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007506018A JP5042013B2 (ja) 2005-03-04 2006-03-03 レーザ加熱装置
CN2006800028693A CN101107501B (zh) 2005-03-04 2006-03-03 激光加热装置及激光加热方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-059761 2005-03-04
JP2005059761 2005-03-04

Publications (1)

Publication Number Publication Date
WO2006093264A1 true WO2006093264A1 (ja) 2006-09-08

Family

ID=36941294

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/304074 WO2006093264A1 (ja) 2005-03-04 2006-03-03 レーザ加熱装置およびレーザ加熱方法

Country Status (3)

Country Link
JP (1) JP5042013B2 (ja)
CN (1) CN101107501B (ja)
WO (1) WO2006093264A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010520084A (ja) * 2007-03-02 2010-06-10 シデル パーティシペイションズ 赤外線放射によるプラスチック加熱の改善
EP2361714A1 (de) * 2010-02-26 2011-08-31 Reis Group Holding GmbH & Co. KG Verfahren und Anordnung zum Laserlöten
JP2013246133A (ja) * 2012-05-29 2013-12-09 Micronics Japan Co Ltd 接合パッド、プローブ組立体及び接合パッドの製造方法
JP2014155932A (ja) * 2013-02-14 2014-08-28 Toyota Motor Corp レーザ照射装置及びレーザ照射方法
JP2015530251A (ja) * 2012-08-09 2015-10-15 ロフィン−ラザーク アクチエンゲゼルシャフトRofin−Lasagag レーザビームを用いた被加工物の加工装置
WO2019176753A1 (ja) * 2018-03-13 2019-09-19 住友重機械工業株式会社 レーザパワー制御装置、レーザ加工装置及びレーザパワー制御方法
JP2021168344A (ja) * 2020-04-10 2021-10-21 株式会社ジャパンユニックス レーザーリフローハンダ付け方法及び装置
DE102020116394A1 (de) 2020-06-22 2021-12-23 Pac Tech - Packaging Technologies Gmbh Verfahren zur Überwachung eines Laserlötprozesses und Laserlötsystem
WO2022014382A1 (ja) * 2020-07-14 2022-01-20 株式会社東京精密 レーザ加工装置、ウェーハ加工システム及びレーザ加工装置の制御方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2527156A1 (en) * 2011-05-25 2012-11-28 RLS Merilna Tehnika D.O.O. Apparatus and method for writing a pattern in a substrate
CN103862136B (zh) * 2014-03-14 2015-08-12 吉林大学 熔焊过程的监测装置及监测方法
CN103895227A (zh) * 2014-03-26 2014-07-02 西安交通大学 一种3d打印激光束前置加热与监测装置
CN103838273B (zh) * 2014-03-26 2016-04-06 徐云鹏 一种用于液体分析的温度控制系统
TW201636144A (zh) * 2015-04-13 2016-10-16 翊鼎光電股份有限公司 雷射焊接裝置
CN105458730B (zh) * 2015-12-28 2018-01-23 哈尔滨理工大学 一种激光器固定装置及利用该装置实现温度自适应的方法
CN107552951A (zh) * 2017-09-01 2018-01-09 中国科学院长春光学精密机械与物理研究所 激光加热装置
KR102019853B1 (ko) 2017-12-14 2019-09-09 조국환 레이저 용착기의 모재 방사율이 반영되는 용착 온도 제어 시스템 및 그 제어방법
CN108311767B (zh) * 2017-12-18 2020-08-14 武汉凌云光电科技有限责任公司 一种基于红外测温可变发射率的激光焊接安全控制的方法及系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0839273A (ja) * 1994-07-30 1996-02-13 Nippei Toyama Corp レーザ加工方法
JP2003103382A (ja) * 2001-09-28 2003-04-08 Babcock Hitachi Kk レーザビーム照射位置設定方法
WO2003064140A2 (en) * 2002-01-28 2003-08-07 Boston Scientific Limited Apparatus and method for closed-loop control of laser welder for welding polymeric catheter components

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4647774A (en) * 1985-03-04 1987-03-03 Quantum Logic Corporation Pyrometer #2
JPH0655358B2 (ja) * 1988-04-26 1994-07-27 日本電気株式会社 レーザ溶接装置
US6128134A (en) * 1997-08-27 2000-10-03 Digital Optics Corporation Integrated beam shaper and use thereof
JP4220707B2 (ja) * 2002-02-26 2009-02-04 浜松ホトニクス株式会社 レーザ加工ヘッド
JP4100099B2 (ja) * 2002-08-30 2008-06-11 松下電器産業株式会社 モータシャフト溶接装置
JP2004322106A (ja) * 2003-04-21 2004-11-18 Sumitomo Heavy Ind Ltd レーザ加工方法およびレーザ加工装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0839273A (ja) * 1994-07-30 1996-02-13 Nippei Toyama Corp レーザ加工方法
JP2003103382A (ja) * 2001-09-28 2003-04-08 Babcock Hitachi Kk レーザビーム照射位置設定方法
WO2003064140A2 (en) * 2002-01-28 2003-08-07 Boston Scientific Limited Apparatus and method for closed-loop control of laser welder for welding polymeric catheter components

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010520084A (ja) * 2007-03-02 2010-06-10 シデル パーティシペイションズ 赤外線放射によるプラスチック加熱の改善
EP2361714A1 (de) * 2010-02-26 2011-08-31 Reis Group Holding GmbH & Co. KG Verfahren und Anordnung zum Laserlöten
US8698039B2 (en) 2010-02-26 2014-04-15 Reis Group Holding Gmbh & Co. Kg Method and arrangement for firm bonding of materials
JP2013246133A (ja) * 2012-05-29 2013-12-09 Micronics Japan Co Ltd 接合パッド、プローブ組立体及び接合パッドの製造方法
JP2015530251A (ja) * 2012-08-09 2015-10-15 ロフィン−ラザーク アクチエンゲゼルシャフトRofin−Lasagag レーザビームを用いた被加工物の加工装置
JP2014155932A (ja) * 2013-02-14 2014-08-28 Toyota Motor Corp レーザ照射装置及びレーザ照射方法
WO2019176753A1 (ja) * 2018-03-13 2019-09-19 住友重機械工業株式会社 レーザパワー制御装置、レーザ加工装置及びレーザパワー制御方法
JPWO2019176753A1 (ja) * 2018-03-13 2021-03-11 住友重機械工業株式会社 レーザパワー制御装置、レーザ加工装置及びレーザパワー制御方法
US11666987B2 (en) 2018-03-13 2023-06-06 Sumitomo Heavy Industries, Ltd. Laser power control device, laser machining device, and laser power control method
JP2021168344A (ja) * 2020-04-10 2021-10-21 株式会社ジャパンユニックス レーザーリフローハンダ付け方法及び装置
JP7075675B2 (ja) 2020-04-10 2022-05-26 株式会社ジャパンユニックス レーザーリフローハンダ付け方法及び装置
DE102020116394A1 (de) 2020-06-22 2021-12-23 Pac Tech - Packaging Technologies Gmbh Verfahren zur Überwachung eines Laserlötprozesses und Laserlötsystem
DE102020116394B4 (de) 2020-06-22 2022-03-24 Pac Tech - Packaging Technologies Gmbh Verfahren zur Überwachung eines Laserlötprozesses und Laserlötsystem
WO2022014382A1 (ja) * 2020-07-14 2022-01-20 株式会社東京精密 レーザ加工装置、ウェーハ加工システム及びレーザ加工装置の制御方法

Also Published As

Publication number Publication date
CN101107501A (zh) 2008-01-16
JPWO2006093264A1 (ja) 2008-08-07
CN101107501B (zh) 2011-07-27
JP5042013B2 (ja) 2012-10-03

Similar Documents

Publication Publication Date Title
JP5042013B2 (ja) レーザ加熱装置
JP6462140B2 (ja) 溶接シームの深さをリアルタイムで測定するための装置
JP4043859B2 (ja) 樹脂溶接装置及び樹脂溶接方法
US8450639B2 (en) Laser machining head with integrated sensor device for focus position monitoring
US5463202A (en) Laser machining apparatus and method
JP6253221B2 (ja) 接合継ぎ目を監視する光学測定装置、ならびに同測定装置を備える接合ヘッド及びレーザ溶接ヘッド
US9089926B2 (en) Process monitoring the processing of a material
US9610729B2 (en) Device and method for performing and monitoring a plastic laser transmission welding process
JP2008119716A (ja) レーザ加工装置およびレーザ加工装置における焦点維持方法
CN113365773B (zh) 用于工件的受控加工的方法和设备
KR20110098672A (ko) 재료들을 재료 결합식으로 연결하는 방법 및 장치
JP2013528495A (ja) レーザ切断ヘッドおよびレーザ切断ヘッドを用いて被加工物を切断する方法
JP2016524539A (ja) 高エネルギービームの焦点位置を決定する装置および方法
KR20150108820A (ko) 극자외 광원을 위한 열 모니터
TWI374787B (en) Method and apparatus for calibrating offset in laser scanning
JP2008119714A (ja) レーザ加工装置
JP7523088B2 (ja) レーザ加工装置
JP7504743B2 (ja) 材料加工用機械のレーザビームの伝播経路に沿って配置された光学素子の動作状態を検出する方法、当該方法を実行するためのシステム、及び当該システムを備えるレーザ加工機
JP4664718B2 (ja) レーザ加工装置及びその出力制御方法
JP2008122202A (ja) ビーム観察装置
JP2016155319A (ja) レーザ樹脂溶着方法及び装置
JP7308355B2 (ja) レーザ加工モニタ装置、レーザ加工モニタ方法、およびレーザ加工装置
JP7038323B2 (ja) レーザ発振器及びそれを用いたレーザ加工装置、レーザ発振器の点検方法
JP7308439B2 (ja) レーザ加工装置および光学調整方法
JP7098956B2 (ja) 光学非破壊検査方法及び光学非破壊検査装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007506018

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 200680002869.3

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06715157

Country of ref document: EP

Kind code of ref document: A1