JP6253221B2 - 接合継ぎ目を監視する光学測定装置、ならびに同測定装置を備える接合ヘッド及びレーザ溶接ヘッド - Google Patents

接合継ぎ目を監視する光学測定装置、ならびに同測定装置を備える接合ヘッド及びレーザ溶接ヘッド Download PDF

Info

Publication number
JP6253221B2
JP6253221B2 JP2012135356A JP2012135356A JP6253221B2 JP 6253221 B2 JP6253221 B2 JP 6253221B2 JP 2012135356 A JP2012135356 A JP 2012135356A JP 2012135356 A JP2012135356 A JP 2012135356A JP 6253221 B2 JP6253221 B2 JP 6253221B2
Authority
JP
Japan
Prior art keywords
optical
light
workpiece
measuring device
beam path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012135356A
Other languages
English (en)
Other versions
JP2013036981A (ja
Inventor
ヨアキム シュワルツ
ヨアキム シュワルツ
Original Assignee
プレシテック カーゲー
プレシテック カーゲー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by プレシテック カーゲー, プレシテック カーゲー filed Critical プレシテック カーゲー
Publication of JP2013036981A publication Critical patent/JP2013036981A/ja
Application granted granted Critical
Publication of JP6253221B2 publication Critical patent/JP6253221B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/03Observing, e.g. monitoring, the workpiece
    • B23K26/032Observing, e.g. monitoring, the workpiece using optical means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • G01B11/0608Height gauges

Description

本発明は、接合継ぎ目を監視する光学測定装置、ならびに同測定装置を備える接合ヘッド及びレーザ溶接ヘッドに関する。
接合ヘッドは、ワークピース内の間隙、又は2つのワークピース間を接合することに利用でき、この接合処理によって接合継ぎ目が作製される。接合処理を目的として、レーザ溶接ヘッドを利用することができ、ワークピースは、例えば、ワークを溶接又ははんだ付けして、間隙を接合するレーザビームを用いて加工される。また、ガス金属アーク溶接ヘッドを利用して、ワークピース内の間隙を接合することができる。最後に、接合すべきワークピースを、一方のワークピースに塗布された接着ビードを用いて接着することも可能であり、この接着ビードにより、もう一方のワークピースとの接着が為される。これら全ての処理において、作製された溶接継ぎ目又ははんだ付け継ぎ目の品質を監視する必要がある。したがって、レーザ等を用いて形成される溶接接続、金属不活性ガス接続、又は金属活性ガス接続は、全面検査の対象でなければならない。更に、接着ビードには、接着前の検査が行われる。肉盛溶接部は、更なる加工の前に検査されなければならない。製造速度の高速化と、誤差許容値の厳格化とが相まって、接続部を高速且つ非接触で測定及び検査できる光学測定及び検査システムが利用されるようなっている。
下記特許文献1は、互いに連結されたワークピース部品が、センサユニットから所定の距離で、案内ユニットを利用して保持される検査装置を開示している。継ぎ目調査ユニットは、光センサを含み、その光センサの測定領域内に継ぎ目が配置される。また、前記検査装置は、センサの下流に接続されて、継ぎ目の位置についての情報を提供する評価ユニットも含む。
CMOSマトリクスカメラとして実現でき、測定領域が、実質的に継ぎ目の幅に合わせて調整される2Dセンサは、継ぎ目の位置についての情報に応じて、2Dセンサの測定領域の中心と継ぎ目の中心とが一致するように、アクチュエータを利用して位置決めされる。また、継ぎ目の位置についての情報に応じて、3D継ぎ目輪郭センサが、継ぎ目の中心と測定領域の中心とが一致するようにアクチュエータによって位置決めされる。この場合、3D継ぎ目輪郭センサは、光ビーム三角測量法と組み合わされた光切断処理に従って動作する。
下記特許文献2は、加工ヘッド内に異なる複数のセンサを組み込む実施例を開示している。この場合は、第1ワークピース領域が、加工前に第1センサにおいて画像化され、第2ワークピース領域の画像が、加工ヘッドによる加工後に第2センサにおいて画像化される。両方のセンサが三角測量ラインの画像を取り込み、下流の処理ユニットがその画像を評価する。したがって、作業は、加工前、すなわち接合位置の取り込み前、及び加工後、すなわち溶接又ははんだ付け継ぎ目の画像データの同時評価中に複数のセンサを用いて実行される。この場合、各センサは、それぞれ独自の物体領域を記録し、その後でこれらの記録が互いに独立して評価される。
下記特許文献3は、レーザ加工処理中にワークピースから放出された放射の空間分解評価を開示しており、この評価では、異なる波長領域に対してそれぞれ異なるセンサが利用される。
したがって、三次元測定と組み合わせて行う、接合継ぎ目内の非常に小さい局部障害の障害検出を前進速度から独立して行うためには、まず、局部障害を捉えて継ぎ目の長さ及び位置を測定し、更に、隆起、窪み、及び省略可能である端縁のずれ等、接合継ぎ目の幾何学的データを特定して、ISO範囲に準拠していることを確認しなければならない。このため、接合継ぎ目の継ぎ目容積を更に測定する必要がある。これは、単独の測定値、例えば、窪みは、継ぎ目の断面について何の情報も提供しないためである。また、接続位置の周囲でワークピースを測定する必要がある。
幾何学的データの測定には、接合継ぎ目の高速3D測定が必要であり、局部障害の特定には、極めて高い解像度、及び高速の同時対物移動を用いたグレースケール画像の評価が必要である。
三角測量ラインを利用して物体領域を取り込み、例えば、溶接加工の後で、加工された物体領域を取り込むためには、全く異なるセンサ及び画像特性が必要である。三角測量を利用して溶接継ぎ目を高速走査し、同様の入射光を利用してこの走査領域を記録するには、異なるデータ転送速度とセンサ特性とが必要とされる。
独立して考察される2つの方法の場合、表面の最適な空間表現というものは存在しない。取得されるのは、表面のテクスチャを視覚化した二次元画像、又はテクスチャについての情報を含まないトポグラフ画像のいずれかである。
ドイツ特許公開第195 05 832号明細書 国際公開第2005/095043号明細書 米国特許公開2010/0134628号明細書
したがって、本発明は、接合継ぎ目を監視する光学測定装置において、接合継ぎ目の高速3D測定と、極めて高い解像度及び高速の同時対物移動を用いた局部障害の特定とを共に実現する光学測定装置、及びこのような測定装置を備える接合ヘッド又はレーザ溶接ヘッドを開発するという目的に基づく。
この目的は、請求項1に係る光学測定装置、請求項13に係る接合ヘッド、及び請求項15に係るレーザ溶接ヘッドによって達成される。本発明の有利な実施形態及び発展例は、従属請求項に提示される。
したがって、本発明によれば、ワークピース内の接合領域を監視する光学測定装置が提供され、前記測定装置は、接合対象であるワークピースの方向に光扇(light fan)を投射して、接合対象であるワークピース上の接合領域内に、その接合領域内の接合継ぎ目と交差する三角測量光ラインを生成することに適した第1光源を備える少なくとも一つの光切断装置と、接合対象であるワークピースの接合領域を均一に照光する第2光源を備える照光装置と、を含む。前記光学測定装置は、接合継ぎ目上に投影された三角測量光ラインの空間分解画像を生成する、第1測定ビーム経路を有する第1光センサと、接合継ぎ目の空間分解画像を生成するする、第2測定ビーム経路を有する第2光センサとを更に含む。ここで、第2測定ビーム経路は、第1測定ビーム経路内に同軸結合され、第1光センサの読み取り速度が1kHzを超える一方で、第2光センサの読み取り速度は500Hz未満である。ただし、第1光センサの読み取り速度が3kHzを超え、第2光センサの読み取り速度が100Hz未満であることも好ましい。
このように、本発明によれば、光学測定装置が提供され、この光学測定装置を利用して、ワークピース内の接合継ぎ目、より具体的には溶接継ぎ目を光学的に測定することができ、この測定装置は、オンライン監視、又は形成された接合継ぎ目の事後検査のいずれかに利用される。本発明によれば、光学測定装置は、例えば、本例でのCMOSカメラ等、2つの空間分解センサを有し、これらのセンサは、それぞれ固有の画像生成特性及び読み取り速度に応じて、2つの異なる目的に合わせて調整される。したがって、第1光センサは、ワークピース上に投影された三角測量光ラインの画像を記録し、第2センサは、接合継ぎ目内の障害の位置を特定するためのグレースケール画像を記録する。2つのセンサのセンサ領域への結像は、共通の対物レンズと、それぞれ個別に対応付けられた接眼レンズとを用いて行われる。これにより、極めて小型で堅牢な測定装置を作製することが可能になり、この装置において、センサは、互いに対して空間的に固定されて、二次元グレースケール値画像及びレーザ三角測量ラインの輪郭を評価することによって、接合継ぎ目の三次元マッピング図を生成するように配置される。
このように、本発明によれば、高解像度と、広い対物視野と、広いダイナミックレンジと、高い物体認識率と、全く異なるセンサ特性を用いた、異なる又は同一の物体領域の評価と、ワークピースの空間特性及びテクスチャ特性の視覚化とを同時に実現できる光学測定装置が作製される。
第1測定ビーム経路が第2測定ビーム経路と同軸結合される簡単な実施例では、第2光センサの第2測定ビーム経路が、第1ビームスプリッタによって、第1光センサの第1測定ビーム経路と同軸結合されて、第1光センサ及び第2光センサが共通の対物レンズを利用すると有利である。
ワークピース及び接合継ぎ目上に投影された三角測量レーザラインの深い焦点深度を実現するためには、第2光センサの検知表面と、少なくとも一つの光切断装置からワークピース上に投影される光扇とが、接合継ぎ目と交差する三角測量光ラインの画像についてシャインプルークの条件を満たすように、互いに整列されると特に有利である。
接合継ぎ目の品質の最適な評価を行うためには、光測定装置が、画像処理ユニットを更に含むと特に有利であり、この画像処理ユニットは、三角測量光ラインの輪郭を評価することによって得られるトポグラフ画像のグリッドモデル上に、第2光センサからの画像データの画像を形成して、三次元接合継ぎ目の算出モデル図を生成する。
第1光センサが線形特性を有し、第2光センサが線形対数特性を有すると更に好ましい。
それぞれの目的に適合する最適な方式で第1光センサ及び第2光センサを調整するためには、第1光センサの検知領域には、第1測定ビーム経路を利用して縮小画像が形成され、第2光センサの検知領域には、第2測定ビーム経路を利用して実質的に等尺の画像が形成されると好都合である。
特に、レーザ溶接加工を監視する際に望ましくない光を遮断する目的については、光学帯域フィルタが、第1光センサ及び第2光センサの上流で、第1測定ビーム経路及び第2測定ビーム経路内に配設されると有利であり、この光学帯域フィルタの通過波長範囲は、光切断装置の第1光源の発光波長及び少なくとも一つの照光装置の第2光源の発光波長に合わせて調整される。
最適に照光して、その結果、接合継ぎ目の表面構造の高解像度を得るには、少なくとも一つの照光装置が、少なくとも一つの第1照光モジュール及び少なくとも一つの第2照光モジュールを含み、少なくとも一つの第1照光モジュールが、対物レンズの光軸に対して小さい角度で接合領域を照光するように構成され、少なくとも一つの第2照光モジュールが、対物レンズの光軸に対して広い角度で照光するように構成されると好都合である。
ここで、小さい角度で照光する少なくとも一つの第1照光モジュール、及び大きい角度で照光する少なくとも一つの第2照光モジュールは制御装置に接続されると有利であり、この制御装置は、少なくとも一つの第1照光モジュールと少なくとも一つの第2照光モジュールとを異なる期間に別々に駆動することによって、暗視野照明と明視野照明とを交番させる、又は、明視野照明と暗視野照明の光度の相対比率を設定する。
処理において、少なくとも一つの照光装置は、LEDモジュールとして実施されてパルス方式で動作する少なくとも一つの照光モジュールを含むと有利である。
ここで、少なくとも一つの光切断装置の第1光源は、ダイオードレーザを含むと好都合である。
本発明によれば、更に、本発明に係る測定装置を採用した接合装置を利用してワークピースを接合する接合ヘッドが提供される。
この場合、接合装置は、レーザ溶接装置、ガス金属アーク溶接装置、又は接着ビード装置であると好都合であり得る。
本発明によれば、更に、レーザビームを利用してワークピースを溶接するレーザ溶接ヘッドが提供され、前記レーザ溶接ヘッドは、内部にレーザビームのビーム経路が構成され、接合領域において、接合対象であるワークピースの接合位置にレーザビームを集束させる集束光学系を有するハウジングと、光学測定装置とを含み、少なくとも一つの光切断装置は、接合対象であるワークピース上に投射された光扇が集束光学系の光軸に対して所定の角度になるように、ハウジングに固定的に接続され、第1測定ビーム経路及び第2測定ビーム経路は、第2ビームスプリッタによって、レーザビーム経路内に同軸結合される。
本発明の第1例示的実施形態に係る光学測定装置の極めて簡略な模式図である。 本発明の第2例示的実施形態に係る光学測定装置の極めて簡略な模式図である。 本発明の第1例示的実施形態に係る光学測定装置を備えるレーザ溶接ヘッドの極めて簡略な模式図である。 本発明の第2例示的実施形態に係る光学測定装置を備えるレーザ溶接ヘッドの極めて簡略な模式図である。 ワークピース上の、接合処理中の接合領域を模式的に示す斜視図である。 本発明の一例示的実施形態に係る少なくとも一つの照光装置の極めて簡略な模式図である。
次に、図面に基づいて、本発明について詳しく説明する。
互いに対応する構成要素は、図面の各種の図において同一の参照番号で示す。
本発明の第1例示的実施形態に係る光学装置100を極めて簡略化した模式図を図1Aに示す。光学測定装置100は、ワークピース16において、被接合領域12及び接合継ぎ目14を含む接合領域10(図3)を接合処理中に監視するために設けられる。ただし、光学測定装置100は、既に完成した接合継ぎ目14を検査することにも対応できる。この場合、接合領域10は接合継ぎ目14のみを有する。
光学測定装置100は、接合対象であるワークピース16の方向に光扇22を投射して、接合対象であるワークピース16の接合領域10内に三角測量光ライン24を形成することに適した第1光源20を備える少なくとも一つの光切断装置18を含み、前述の三角測量光ライン24は、接合継ぎ目14を交差する。また、光学測定装置100は、接合対象であるワークピース16の接合領域10を均一に照光する第2光源28を備える少なくとも一つの照光装置26を含む。本発明に係る光学測定装置100は、第1測定ビーム経路32を介してワークピース16及び接合継ぎ目14に照射された光ライン24の画像を空間分解方式で生成する第1光センサ30と、第2測定ビーム経路36を介して、ワークピース16の表面に接合領域10、より具体的には接合継ぎ目14の画像を空間分解方式で生成する第2光センサ34とを含む。ここで、第1及び第2光センサ30,34は、CCDマトリクスカメラセンサとして、特にCMOSカメラセンサとして実施されると好ましい。
第1光センサ30及び第2光センサ34における画像生成は、これらの第1光センサ30及び第2光センサ34で共用して使用される対物レンズ38を介すると共に、第1光センサ30の測定方向上流側に配設される第1接眼レンズ40、及び第2光センサ34の測定方向上流側に配設される第2接眼レンズ42を介して行われる。ここで、第2光センサ34の第2測定ビーム経路36は、第1ビームスプリッタ43によって、第1光センサ30の第1測定ビーム経路32内に同軸結合される。また、第1光学フィルタ44及び第2光学フィルタ46が、第1光センサ30及び第2光センサ34の前方にそれぞれ設けられてもよい。これらのフィルタの機能については後で詳細に説明する。ここで、光学フィルタ44,46は、各測定ビーム経路32,36において、第1ビームスプリッタ43と、対応する光センサ30,34との間に配置することができ、これらの光学フィルタは、第1ビームスプリッタ43と接眼レンズ40,42の間に配置されると好ましい。
図1Bに、本発明の第2例示的実施形態に係る光学測定装置200を極めて簡略化した模式図を示す。この光測定装置200が本発明の第1例示的実施形態に係る光学測定装置100と異なるのは、第1光センサ30の検知領域が第1測定ビーム経路32に対して垂直に配置されておらず、この検知領域は、むしろ三角測量光ライン24の画像についてシャインプルークの条件が満たされるように、光学系38,43,40、及び光切断装置18の光扇22の向きに合わせて調整される点である。これについても後で詳しく説明する。
本発明によれば、ワークピース16内の接合領域10を監視する光学測定装置100又は200が提供されるのみならず、本発明に係る光学測定装置100又は200を採用した接合ヘッドも提供される。例として挙げると、本発明に係る接合ヘッドは、具体的にはレーザ溶接ヘッド300(例えば、図2A及び図2Bに示したようなもの)、ガス金属アーク溶接ヘッド、又は接着ビードヘッドとして具現できる。一般に、接合ヘッドは、単一のワークピース、又は2つの異なるワークピースの接合継ぎ目を作製することに利用できる各種の装置を意味するものと理解されたい。ここで、接合継ぎ目14は、複数のワークピースを接続する継ぎ目であり得るが、接着ビードヘッドでは、ワークピースに接着ビードを付着させ、付着処理中に、本発明に係る光学測定装置100,200を利用してその接着ビードの品質を検査することも実現可能である。検査後に、付着済みの接着ビードに第2のワークピースを張り付けて、結合対象であるワークピースに押し付けることで、接着結合部が形成される。
図2A及び図2Bに、本発明に係る接合ヘッドを極めて単純化した図を示す。この接合ヘッドは、レーザ溶接ヘッド300として具現され、第1例示的実施形態に係る本発明の光学測定装置100、又は第2例示的実施形態に係る本発明の光学測定装置200を利用する。
ワークピース16において接合位置48(図3)での溶接工程又ははんだ付け工程を実行できるようにするため、レーザ加工機械から到来するワークレーザビーム50は、レーザ溶接ヘッド300のハウジング52からワークピース16に向けて送り出され、集束レンズ54によって、光軸Lによって示されるようにワークピース16上に集束される。接合領域10内の接合位置48に集束されたワークレーザビーム50のレーザ光が、ワークピース16、又は連結すべき複数のワークピースの材料を溶かし、その結果、ワークピース16、又は複数の異なるワークピースの溶接を実現できる。ただし、ワークピース16、又は異なる複数のワークピースのはんだ付けを行うことも可能である。
ワークレーザビーム50は、光ファイバ56を通ってレーザ溶接ヘッド300に送られる。このレーザ溶接ヘッド300において、光ファイバ56のファイバ端は、ファイバホルダ58内で保持される。光ファイバ56のファイバ端において顕現するレーザビーム50は、コリメータ光学系60を用いて平行にされて、第2ビームスプリッタ62に送られる。この第2ビームスプリッタ62は、集束レンズ54の方向にレーザビーム52を偏向させる。
図2A及び図2Bに示した本発明の例示的実施形態において、少なくとも一つの光切断装置18及び少なくとも一つの照光装置26は、レーザ溶接ヘッド300のハウジング52に取り付けられ、この光切断装置18は、接合対象のワークピース16上に投射された光扇22が集束レンズ54の光軸Lに対して所定の角度になるように、ハウジング52に固定的に接続されると好ましい。第1光センサ30の第1測定ビーム経路32及び第2光センサ34の第2測定ビーム経路36は、第2ビームスプリッタ62によって、ワークレーザビーム50のビーム経路内に同軸結合される。
図2A及び図2Bに示したような光学測定装置100又は200を本発明に従ってレーザ溶接ヘッド300に組み込んだ結果として、接合継ぎ目14のオンライン監視を実行できるようになる。この接合継ぎ目14は、本例において、ワークレーザビーム50によって形成される溶接継ぎ目である。
本発明に係る光学測定装置100,200、及びその測定装置を採用した接合ヘッド又はレーザ溶接ヘッド300は、後述するように、接合継ぎ目14を検査又は測定することに特に有利に適合する。
本発明に係る光学測定装置100,200では、三角測量法による接合継ぎ目14の三次元測定、及び接合継ぎ目14の表面の二次元画像形成という2つの光学測定方法が、極めて適切な方式で組み合わされるが、これは、各測定方法に合わせて調整された異なる特性を持つ2つの光センサ(第1光センサ30及び第2光センサ34)が、共通の光学系を有するセンサシステム内に収容されるためである。まず、少なくとも一つの光切断装置18及び第1光センサ30を備える3D測定システムについて説明する。
図2A、図2B、及び図3に示すように、少なくとも一つの光扇22が、少なくとも一つの光切断装置18によってワークピース16の方向に投射されて、ワークピース16上に、接合継ぎ目14と交差する光ライン24を投影させる。光パワーが50mWから100mWで、波長が660nmであるダイオードレーザは、光扇装置18の第1光源20として好ましく利用される。本明細書において、第1光学フィルタ44は、光学帯域フィルタとして具現され、伝播波長通過範囲は、光切断装置18の第1光源20の発光波長に合わせて調整される。光学帯域フィルタ44の波長通過範囲の半値全幅(FWHM:Full Width at Half Maximum)は、100ナノメートル未満であると好ましく、50ナノメートル未満であると特に好ましく、20ナノメートル未満であると更に一層好ましい。第1光学帯域フィルタ44は、ファブリペローフィルタ又はファブリペローのエタロンであると好ましく、このタイプのフィルタでは、特定の周波数範囲の電磁波が通過し、残りの周波数成分は干渉によって相殺される。多重量子井戸構造を持つAlGaInPレーザダイオードは、635ナノメートルから670ナノメートルの間の波長領域に発光極大を有しており、このレーザダイオードも第1光源20の更に他の光源として適している。したがって、例えば、658ナノメートルの発光波長、及び60mWの発光強度を持つレーザダイオードを利用することができる。このように、光学帯域通過部として具現される第1光学フィルタ44を利用した結果、ワークピース上に投影された三角測量光ライン24のみが、第1光センサ30の検知領域に結像され、望ましくない光の影響、特に、ワークレーザビームの反射や、レーザ溶接工程の場合にワークピースに形成される溶融池の反射が概ね排除される。
図1A、図1B、及び図3に更に示すように、光扇22の平面は、対物レンズ38の光軸、又は集束レンズ54の光軸Lと平行ではない。接合処理中、ワークピース表面は、概ねワークレーザビーム50用の集束レンズ54の光軸Lに対して垂直、又は対物レンズ38の光軸に対して垂直に保持されるため、ワークピース16の表面との垂直偏向レベルは、図3に示すように、ワークピース表面上のレーザ光ライン24の水平偏向に至る。したがって、このいわゆる三角測量法の結果、光扇22とワークピース表面と間の角度が判れば、ワークピースに複数の平行な光扇を投射することによって、又は走査中に三角測量光ライン24を利用して高さプロファイルデータを定期的に取り込んでバッファリンクすることによって、接合継ぎ目14の高さプロファイルを生成することができる。図1Bに記載した本発明の実施形態において、第1光センサ30の検知面は、三角測量光ライン24が常に検知領域上で合焦して結像するように、光扇22の平面に合わせて調整される。このことは、光学要素38、43、及び40を考慮することで、第1光センサ30の検知領域の平面と光扇22の平面とがいわゆるシャインプルークの条件を満たすことによって達成される。シャインプルークの条件が満たされる、すなわち、所望の物体平面(光扇22の平面に相当)の画像が最大の鮮明度で形成されるのは、物体平面、対物平面、及び画像平面(第1光センサ30の検知領域の平面に相当)が共通の線上で交差する場合である。したがって、本発明の第2例示的実施形態に係る測定装置200の場合、第1センサセンサ30の検知領域が、接眼レンズ40に対して若干傾斜して配置されることで、レーザ光ライン24は、接合継ぎ目14の高さプロファイルがどのようなものであっても、最適な鮮明度で、第1光センサ30の検知領域に空間分解方式で結像され、その結果、接合継ぎ目14の高さプロファイルを更に高い精度で測定することが可能になる。
第1光センサ30は、一つ以上の三角測量ライン24を素早く取り込むように、画像記録速度が更に最適化され、その結果、接合継ぎ目14の高さプロファイルの二次元評価が高速の接合速度で実行可能になる。この場合、第1光センサ30の読み取り速度は、1kHzを上回ると好ましく、2kHzを上回ると更に好ましく、3kHzを上回るとより一層好ましく、特に、読み取り速度は、最大で3.5kHzの走査速度である。このため、非常に高速で空間分解を行う第1センサ30は線形特性を有することが好ましい。レーザライン24に必要なのは、ほぼ不変の光度で可視化されることのみであるので、レーザライン24の画像形成に広いダイナミックレンジは必要ないため、前述の特性は、三角測量センサとしての用途に何らかの制約を課すものではない。線形特性を持つセンサの場合、最大で毎秒600メガバイトのデータ転送速度を実現できる。レーザ溶接の場合の一般的な溶接継ぎ目は、2〜3mmの幅を有する。一般的に利用される三角測量レーザラインは約30μmの幅であるため、サイズが3対1に縮小される画像形成で十分である。
したがって、約10mmのセンサ幅を有する1インチセンサの場合は、10mm×10mmの検知領域に30mm×30mmの対物視野で画像を生成できる。600ピクセル×150ピクセルの関連画像領域(ROI:Relevant Image Region)寸法の場合は、三角測量について最大3.5kHzの走査速度になる。三角測量ライン24は、FPGA(Field−Programmable Gate Array(フィールドプログラマブルゲートアレイ))毎に、画像から直接取り出すことができる。このため、トポグラフ画像のみが評価装置に伝送される。したがって、この方式で走査される物体領域は18mm×4.5mmである。合計で1000ピクセルになる第1光センサ30の全センサ幅を利用することで、幅が30mmの物体領域を走査及び測定することができる。また、図1Bに示した本発明の第2例示的実施形態に係る第1光センサ30の構成の場合は、シャインプルークの条件が維持されるため、三角測量画像の形成に、深い焦点深度が得られる。
下記において、少なくとも一つの照光装置26及び第2光センサ34を備え、接合継ぎ目14の二次元画像を生成する2D測定システムについて更に詳しく説明する。
第2光センサ34は、グレースケール画像の取り込み用に最適化されたグレースケール画像センサであると好ましい。したがって、本発明によれば、1:1の画像比を選択して、第2光センサ34の検知領域に接合継ぎ目14の画像を生成するが、この選択は、可能な場合に、接合継ぎ目14内の小さい障害を検出可能にすることも同様に目的として為される。通常は、5mm×5mmの対物視野が走査される。第2光センサ34のデータ転送速度は、検査前進速度、又は接合速度における物体領域の十分な重畳が保証される程度に十分に高速でなければならない。このことは、毎秒250mmの検査速度例の場合に、フレームレートが毎秒50フレームであることを意味する。この場合、第2光センサ34の読み取り速度は、500Hz未満であると好ましく、200Hzであると更に好ましく、100Hz未満であると更に一層好ましい。第2光センサ34は、線形対数特性を有すると好ましく、これは、その広いダイナミックレンジの結果として、溶接継ぎ目又ははんだ付け継ぎ目の反射特性を最適な方式で十分に発揮するためである。少なくとも一つの照光装置26による接合領域10の均一な照光は、発光ダイオードとして具現される第2光源28を用いて行われることが好ましい。ここで、照射光の入射方向は、対応する用途に応じて調整することができる。発光ダイオード28の波長は、好ましくは、620ナノメートルである。光学帯域通過フィルタとして具現される第2光学フィルタ46を用いることによって、第2光源28からのダイオード発光の成分のみが、第2光センサ34の検知領域に結像する。第1光学フィルタ44に関する前述の説明は、第2光学フィルタ46の特性にも当てはまるものとする。高い照明光度を実現するため、少なくとも一つの照光装置26の第2光源28は、パルス方式で動作することができ、この目的に合わせて、LEDモジュールが好ましく利用される。
図4に示すように、4つの照光モジュール又はLEDモジュール26a,26a’,26b,26b’を利用して、接合継ぎ目14を最適に照光することができる。ここで、2つの照光モジュール26a及び26a’は、対物レンズ38の光軸、すなわち集束レンズ54の光軸Lに対して小さい角度で照光するように設けられ、他の2つの照光モジュール26b及び26b’は、対物レンズ38の光軸、すなわち集束レンズ54の光軸に対して大きい角度で照光するように設けられる。本明細書において、小さい角度は、1°から45°の間、特に1°から30°の間の角度を意味するものと理解されたい。また、大きい角度は、45°から89°の間、特に45°から65°の間の角度を意味するものと理解されたい。処理において、接合継ぎ目14は、その輪郭に沿って両側からそれぞれ照光されると好ましい。したがって、一方側において、接合継ぎ目14は、照光モジュール26aによって光軸Lに対して小さい角度で照光されると共に、照光モジュール26bによって光軸Lに対して大きい角度で照光され、接合継ぎ目14の他方側において、照光モジュール26a’によって光軸Lに対して小さい角度で、照光モジュール26b’によって光軸Lに対して大きい角度で照光されるため、接合継ぎ目14の最適な照光が実現する。
光軸Lに対して小さい角度での第1照光モジュール26a,26a’の出力パワー、及び光軸Lに対して大きい角度での第2照光モジュール26b,26b’の出力パワーは、制御装置(図示せず)を用いて互いに独立して設定することができる。このため、暗視野照明と明視野照明の切り替えが可能であるが、照明タイプの一方又は他方の割合を相応に大きくすることもできる。
本発明によれば、測定装置100又は200は、画像処理ユニットを更に備え、この画像処理ユニットは、三角測量光ライン24の輪郭を評価することによって取得したトポグラフ画像のグリッドモデル上に、第2光センサ34から得た画像データの画像を生成して、三次元接合継ぎ目14の算出モデル図を作成する。この目的を達成するために、既知のマッピング技術を利用できる。したがって、本方法は、二次元情報及び三次元情報の最適な同時表示を実現する。拡張された3Dグリッドモデルの図を回転又は変形することによって、空間情報と共に、接合継ぎ目14の表面を確認して評価することができる。
したがって、本発明によれば、接合処理中に、被接合領域12及び接合継ぎ目14を有するワークピース16内の接合領域10を監視する測定装置が作製され、この測定装置において、最適なセンサ特性及び光学画像形成特性の両方が、三角測量用途及びグレースケール画像評価のために一つのセンサシステム内に統合される。可能な限り高速のセンサが三角測量に利用される一方で、可能な限り良好な信号対雑音比と広いダイナミックレンジとを持つセンサがグレースケール画像評価に利用される。非常に小さい障害を可視化できるようにするためには、1:1の画像生成がグレースケール画像に必要とされる。
レーザライン24は、通常、一般的なピクセルサイズでは集束できないため、三角測量センサは、縮小画像形成が行えればよい。三角測量センサ30は、3kHzを超える画像データで動作することができ、グレースケール画像センサは、一般に、100Hzまでの範囲で動作する。したがって、第1光センサ30の読み取り速度は、1kHzを上回ることが好ましく、第2光センサの読み取り速度は、500Hz未満であると好ましい。また、本発明の測定装置100,200に、互いに異なる第1光センサ30と第2光センサ34とを設けたことで、露出時間、ダイナミックレンジ、特性値、及び他のセンサ特性を、それぞれ対応する目的に合わせて調整することができる。
本発明に係る測定装置100,200は、複数の適応分野で利用することができる。したがって、測定装置100,200を利用して、例えば、溶接端を識別して溶接レーザを案内すること、品質に対する要望が非常に高い場合に、全てのタイプの溶接接合部の品質を検査すること、接着ビードの品質を検査すること、形状を測定して表面を監視すると同時に、表面の組成を検査すること、及びワークピースの2D及び3D測定を行うことができる。
ユーザは、この斬新なセンサシステムを用いることによって、一般に認められた光切断方法に係る必要な3D測定を非常に高い周波数で実行できると共に、グレースケール画像評価を平行して実施することができる。また、前記ユーザは、大きい物体領域を介した三角測量方法を用いて、接合位置48に隣接した領域を測定することもできる。ユーザは、深い焦点深度を得ると同時に、グレースケール画像の評価に必要な画像鮮明度を得る。データの融合後に、検査対象又は監視対象である接合継ぎ目14のテクスチャについての最適な空間表現がユーザに提示される。障害の横方向の範囲は、センサ前進速度とは完全に独立している。
10 接合領域、12 被接合領域、14 接合継ぎ目、16 ワークピース、20 第1光源、22 光扇、24 三角測量光ライン、26 照光装置、26a,26a’ 第1照光モジュール、26b,26b’ 第2照光モジュール、28 第2光源、30 第1光センサ、32 第1測定ビーム経路、34 第2光センサ、36 第2測定ビーム経路、38 対物レンズ、40 第1接眼レンズ、42 第2接眼レンズ、43 第1ビームスプリッタ、44 第1光学フィルタ、46 第2光学フィルタ、48 接合位置、50 ワークレーザビーム、52 ハウジング、54 集束光学系、56 光ファイバ、58 ファイバホルダ、60 コリメータ光学系、62 第2ビームスプリッタ、100,200 光学測定装置、300 レーザ溶接ヘッド、L 光軸。

Claims (13)

  1. ワークピース(16)内の接合領域(10)を監視する光学測定装置(100,200)であって、
    −接合対象であるワークピース(16)の方向に光扇(22)を投射して、前記接合対象であるワークピース(16)上の前記接合領域(10)内に、その接合領域(10)内の接合継ぎ目(14)と交差する三角測量光ライン(24)を生成することに適した第1光源(20)を備える少なくとも一つの光切断装置(18)と、
    −第2光源(28)を備える照光装置(26)と、
    −前記接合継ぎ目(14)に投影された三角測量光ライン(24)の空間分解画像を生成する、第1測定ビーム経路を有する第1光センサ(30)と、
    −前記接合継ぎ目(14)の空間分解画像を生成する、第2測定ビーム経路(36)を有する第2光センサ(34)と、を含み、
    前記第2測定ビーム経路(36)は、前記第1測定ビーム経路(32)内に同軸結合され、
    前記第1光センサ(30)および前記第2光センサ(34)は、共通の対物レンズ(38)を利用し、
    前記光学測定装置(100,200)はさらに、
    −前記接合対象であるワークピース(16)の前記接合領域(10)を、前記対物レンズ(38)の光軸(L)に対して小さい角度で均一に照光する、少なくとも一つの第1照光モジュール(26a,26a’)と、
    −前記接合対象であるワークピース(16)の前記接合領域(10)を、前記対物レンズ(38)の光軸(L)に対して大きい角度で均一に照光する、少なくとも一つの第2照光モジュール(26b,26b’)と、
    −前記少なくとも一つの第1照光モジュール(26a,26a’)と、前記少なくとも一つの第2照光モジュール(26b,26b’)とを異なる期間に個別に駆動することで、暗視野照明と明視野照明とを交番させる、又は明視野照明の光度と暗視野照明の光度の相対比率を設定する、制御装置と、を含み、
    前記照光装置(26)は、前記少なくとも一つの第1照光モジュール(26a,26a’)と前記少なくとも一つの第2照光モジュール(26b,26b’)とを含み、
    前記第1光センサ(30)の読み取り速度が1kHzを超え、前記第2光センサ(34)の読み取り速度が500Hz未満である、光学測定装置(100,200)。
  2. 前記第1光センサ(30)の読み取り速度が3kHを超え、前記第2光センサ(34)の読み取り速度が100Hz未満である、請求項1に記載の光学測定装置(100,200)。
  3. 前記第2光センサ(34)の前記第2測定ビーム経路(36)は、第1ビームスプリッタ(43)によって、前記第1光センサ(30)の前記第1測定ビーム経路(32)内に同軸結合される、請求項1又は2に記載の光学測定装置(100,200)。
  4. 前記第2光センサ(34)の検知表面と、前記少なくとも一つの光切断装置(18)からワークピースに投影される光扇(22)とが、前記接合継ぎ目(14)と交差する三角測量光ライン(24)の画像についてシャインプルークの条件を満たすように、互いに整列される、請求項1から3のいずれか1つに記載の光学測定装置(100,200)。
  5. 画像処理ユニットを更に含み、前記画像処理ユニットは、前記三角測量光ライン(24)の輪郭を評価することによって得られるトポグラフ画像のグリッドモデル上に、前記第2光センサ(34)からの画像データの画像を形成して、三次元接合継ぎ目(14)の算出モデル図を生成する、請求項1から4のいずれか1つに記載の光学測定装置(100,200)。
  6. 前記第1光センサ(30)は線形特性を有し、前記第2光センサ(34)は線形対数特性を有する、請求項1から5のいずれか1つに記載の光学測定装置(100,200)。
  7. 前記第1光センサ(30)の検知領域には、前記第1測定ビーム経路(32)を利用して縮小画像が形成され、前記第2光センサ(34)の検知領域には、前記第2測定ビーム経路(36)を利用して実質的に等尺の画像が形成される、請求項1から6のいずれか1つに記載の光学測定装置(100,200)。
  8. 光学帯域フィルタ(44,46)が、前記第1光センサ(30)及び前記第2光センサ(34)の上流側で、前記第1測定ビーム経路(32)及び前記第2測定ビーム経路(36)内に配設され、前記光学帯域フィルタの通過波長範囲は、前記光切断装置(18)の第1光源(20)、及び前記少なくとも一つの照光装置(26)の第2光源(28)の発光波長に合わせて調整される、請求項1から7のいずれか1つに記載の光学測定装置(100,200)。
  9. 前記少なくとも一つの第1照光モジュール(26a,26a’)と前記少なくとも一つの第2照光モジュール(26b,26b’)は、LEDモジュールとして具現されてパルス方式で動作する、請求項1から8のいずれか1つに記載の光学測定装置(100,200)。
  10. 前記少なくとも一つの光切断装置(18)の前記第1光源(20)はダイオードレーザを含む、請求項1から9のいずれか1つに記載の光学測定装置(100,200)。
  11. 接合装置を利用してワークピースを接合する接合ヘッドであって、請求項1から10のいずれか1つに記載の光学測定装置(100,200)を含む、接合ヘッド。
  12. 前記接合装置は、レーザ溶接装置(300)、ガス金属アーク溶接装置、又は接着ビード装置である、請求項11に記載の接合ヘッド。
  13. レーザビーム(50)を利用してワークピース(16)を溶接するレーザ溶接ヘッド(300)であって、
    −内部に前記レーザビーム(50)のビーム経路が構成され、接合領域(10)において、接合対象である前記ワークピース(16)の接合位置(48)に前記レーザビーム(50)を集束させる集束光学系(54)を有するハウジング(52)と、
    請求項1から1のいずれか1つに記載の光学測定装置(100,200)と、を含み、
    前記少なくとも一つの光切断装置(18)は、前記接合対象である前記ワークピース(16)上に投影された光扇(22)が前記集束光学系(54)の光軸(L)に対して所定の角度になるように、前記ハウジング(52)に固定的に接続され、
    前記第1測定ビーム経路(32)及び前記第2測定ビーム経路(36)は、第2ビームスプリッタ(62)によって、前記光軸(L)内に同軸結合される、レーザ溶接ヘッド(300)。
JP2012135356A 2011-06-17 2012-06-15 接合継ぎ目を監視する光学測定装置、ならびに同測定装置を備える接合ヘッド及びレーザ溶接ヘッド Active JP6253221B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102011104550.7 2011-06-17
DE102011104550.7A DE102011104550B4 (de) 2011-06-17 2011-06-17 Optische Messvorrichtung zur Überwachung einer Fügenaht, Fügekopf und Laserschweißkopf mit der selben

Publications (2)

Publication Number Publication Date
JP2013036981A JP2013036981A (ja) 2013-02-21
JP6253221B2 true JP6253221B2 (ja) 2017-12-27

Family

ID=47228431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012135356A Active JP6253221B2 (ja) 2011-06-17 2012-06-15 接合継ぎ目を監視する光学測定装置、ならびに同測定装置を備える接合ヘッド及びレーザ溶接ヘッド

Country Status (3)

Country Link
US (1) US10166630B2 (ja)
JP (1) JP6253221B2 (ja)
DE (1) DE102011104550B4 (ja)

Families Citing this family (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE0950604A1 (sv) * 2009-08-24 2010-06-22 Esab Ab Anordning och förfarande för automatisk flersträngssvetsning
JP2013545613A (ja) 2010-09-25 2013-12-26 クィーンズ ユニバーシティー アット キングストン 材料の改変のためのコヒーレント撮像およびフィードバック制御のための方法およびシステム
US10124410B2 (en) 2010-09-25 2018-11-13 Ipg Photonics Corporation Methods and systems for coherent imaging and feedback control for modification of materials
US9573215B2 (en) 2012-02-10 2017-02-21 Illinois Tool Works Inc. Sound-based weld travel speed sensing system and method
TWI460394B (zh) * 2012-07-20 2014-11-11 Test Research Inc 三維影像量測裝置
WO2014116334A2 (en) * 2013-01-08 2014-07-31 United Technologies Corporation Remote feature measurement
DK2972479T3 (da) * 2013-03-13 2020-11-30 Ipg Photonics Canada Inc Fremgangsmåder og systemer til beskrivelse af laserbearbejdningsegenskaber ved at måle keyholedynamik ved hjælp af interferometri
US11090753B2 (en) 2013-06-21 2021-08-17 Illinois Tool Works Inc. System and method for determining weld travel speed
DE102013214174B3 (de) * 2013-07-19 2015-01-08 Trumpf Werkzeugmaschinen Gmbh + Co. Kg Verfahren zum Ermitteln eines Verschleißzustands einer Schneiddüse und Laserbearbeitungsmaschine zur Durchführung des Verfahrens
JP6299111B2 (ja) * 2013-08-28 2018-03-28 オムロン株式会社 レーザ加工装置
JP6336735B2 (ja) * 2013-11-11 2018-06-06 第一実業ビスウィル株式会社 外観検査装置
CN103743751A (zh) * 2014-01-15 2014-04-23 唐山英莱科技有限公司 基于折射式双路会聚可调光路的无坡口对接焊缝检测系统
US20150212598A1 (en) * 2014-01-28 2015-07-30 Pixart Imaging Inc. Dual mode optical navigation device and mode switching method thereof
CN103954216B (zh) * 2014-05-13 2017-04-12 清华大学 基于球面光源的强镜面反射工件细窄坡口检测装置及方法
US9335157B2 (en) * 2014-10-14 2016-05-10 Electronics For Imaging, Inc. Differential lighting
US9686517B2 (en) * 2014-12-15 2017-06-20 Test Research, Inc. Optical system and image compensating method of optical apparatus
DE102015201689A1 (de) * 2015-01-30 2016-08-04 Mahle International Gmbh Vorrichtung zum Laserstrukturieren von Naben von Ventiltriebbauteilen
ES2919139T3 (es) * 2015-02-04 2022-07-22 Syntegon Tech K K Dispositivo de inspección y sistema de inspección
CN106148946A (zh) * 2015-04-28 2016-11-23 东台精机股份有限公司 激光熔覆工具头及其加工表面感测方法
DE102015209862B4 (de) 2015-05-29 2022-03-03 Bayerische Motoren Werke Aktiengesellschaft Verfahren zur Analyse eines Funktionsbereichs eines Werkstücks und Verwendung von IR-Thermografie
DE102015007142A1 (de) * 2015-06-02 2016-12-08 Lessmüller Lasertechnik GmbH Messvorrichtung für ein Laserbearbeitungssystem und Verfahren zum Durchführen von Positionsmessungen mittels eines Messstrahls auf einem Werkstück
KR101713728B1 (ko) * 2015-07-31 2017-03-09 현대자동차 주식회사 루프 레이저 브레이징 시스템용 브레이징 어셈블리
KR101703599B1 (ko) * 2015-07-31 2017-02-07 현대자동차 주식회사 루프 레이저 브레이징 시스템
DE102015115270A1 (de) * 2015-09-10 2017-03-16 Laser Zentrum Hannover E.V. Verfahren zur Herstellung einer Schweißverbindung in einem Fügespalt und Prozessbeobachtungsvorrichtung
DE102016102492B4 (de) 2016-02-12 2021-10-07 Precitec Gmbh & Co. Kg Verfahren und Vorrichtung zum Überwachen einer Fügenaht sowie Laserbearbeitungskopf
EP4043829A1 (en) * 2016-09-20 2022-08-17 CertainTeed Gypsum, Inc. Method of preparing a surface
US20180185959A1 (en) * 2017-01-03 2018-07-05 General Electric Company System and methods for fabricating a component based on local thermal conductivity of a build material
DE102017102762B4 (de) 2017-02-13 2023-06-15 Precitec Gmbh & Co. Kg Verfahren zum Erkennen von Fügepositionen von Werkstücken und Laserbearbeitungskopf mit einer Vorrichtung zur Durchführung dieses Verfahrens
DE102017104047A1 (de) 2017-02-27 2018-08-30 Universität Kassel Verfahren und Vorrichtung zur Prüfung von Fügeverbindungen
CN106990112B (zh) * 2017-03-14 2019-07-26 清华大学 基于多视觉信息融合的多层多道焊接轨迹检测装置及方法
CN107138857B (zh) * 2017-05-08 2019-03-05 广东工业大学 一种双激光束自动补偿同步校形与强化装置及方法
US10712151B2 (en) * 2017-05-15 2020-07-14 Precitec Gmbh & Co. Kg Sensor device for determining alignment/misalignment of a laser beam relative to a gas nozzle of a laser machining head
DE102017126786A1 (de) * 2017-11-14 2019-05-16 Technische Universität Hamburg-Harburg Vorrichtung und Verfahren zum Bestimmen einer Position und/oder Ausrichtung eines Werkstücks
DE102017130909A1 (de) * 2017-12-21 2019-06-27 Weber Maschinenbau Gmbh Breidenbach Optische Messeinrichtung
EP3581881A1 (de) * 2018-06-15 2019-12-18 Hexagon Technology Center GmbH Oberflächenvermessung mittels angeregter fluoreszenz
WO2020031406A1 (ja) * 2018-08-07 2020-02-13 パナソニックIpマネジメント株式会社 レーザ加工装置
JP6907277B2 (ja) 2018-08-30 2021-07-21 コグネックス・コーポレイション 歪みが低減された物体の3次元再構成を生成するための方法及び装置
CN111122568B (zh) 2018-11-01 2022-04-22 华中科技大学苏州脑空间信息研究院 一种高通量光学层析成像方法及成像系统
DE102018129425B4 (de) 2018-11-22 2020-07-30 Precitec Gmbh & Co. Kg System zur Erkennung eines Bearbeitungsfehlers für ein Laserbearbeitungssystem zur Bearbeitung eines Werkstücks, Laserbearbeitungssystem zur Bearbeitung eines Werkstücks mittels eines Laserstrahls umfassend dasselbe und Verfahren zur Erkennung eines Bearbeitungsfehlers eines Laserbearbeitungssystems zur Bearbeitung eines Werkstücks
WO2020190686A1 (en) 2019-03-15 2020-09-24 Certainteed Gypsum, Inc. Method of characterizing a surface texture and texture characterization tool
US11122257B2 (en) * 2019-05-23 2021-09-14 Sri International HDR image capture and display system for enhanced real-time welding visualization and assistance
JP6984988B1 (ja) * 2019-06-28 2021-12-22 清華大学Tsinghua University 溶接ビード成形制御装置及び方法
US11396057B2 (en) 2019-07-02 2022-07-26 Servo-Robot Inc. Twin laser camera assembly
DE102019006705B4 (de) * 2019-09-25 2021-05-27 Visiontools Bildanalyse Systeme Gmbh Verfahren und Anordnung zur Kontrolle von Fügenähten
DE102020122924A1 (de) 2020-09-02 2022-03-03 Precitec Gmbh & Co. Kg Verfahren zum Analysieren einer Werkstückoberfläche für einen Laserbearbeitungsprozess und eine Analysevorrichtung zum Analysieren einer Werkstückoberfläche
CN112857213A (zh) * 2020-12-31 2021-05-28 佛山英智莱科技有限公司 基于双色光源分离技术检测高反光无间隙焊缝的传感器
DE102022101379B4 (de) * 2022-01-21 2023-08-24 Precitec Gmbh & Co. Kg Laserbearbeitungskopf und laserbearbeitungssystem mit entsprechendem laserbearbeitungskopf
CN116673597B (zh) * 2023-07-28 2023-10-13 清华大学 用于双v复合型坡口的激光线图像特征提取系统及方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0774724B2 (ja) * 1985-08-30 1995-08-09 富士通株式会社 被検物検査方法
DE19505832C2 (de) 1995-02-21 1996-12-05 Thyssen Stahl Ag Optische Prüfeinrichtung zur Online-Bewertung von Schweiß- oder Lötnähten
GB9515311D0 (en) * 1995-07-26 1995-09-20 3D Scanners Ltd Stripe scanners and methods of scanning
JPH106006A (ja) * 1996-06-25 1998-01-13 Kawasaki Steel Corp アーク溶接監視方法及び装置
US6236454B1 (en) * 1997-12-15 2001-05-22 Applied Materials, Inc. Multiple beam scanner for an inspection system
ATE506138T1 (de) * 2001-11-15 2011-05-15 Precitec Vision Gmbh & Co Kg VERFAHREN UND VORRICHTUNG ZUR ERFASSUNG DER NAHTQUALITÄT EINER SCHWEIßNAHT BEI DER SCHWEIßUNG VON WERKSTÜCKEN
JP2004007413A (ja) * 2002-03-28 2004-01-08 Hiroyuki Ogino 画像入力装置及びその方法
JP4258401B2 (ja) * 2004-02-24 2009-04-30 アイシン精機株式会社 凹凸面の表面欠陥検査装置
CA2463409A1 (en) * 2004-04-02 2005-10-02 Servo-Robot Inc. Intelligent laser joining head
CN101947159B (zh) 2005-08-25 2012-02-08 卡尔蔡司医疗技术股份公司 由附属部分和医疗仪器构成的系统
EP1949026B1 (de) * 2005-11-14 2010-01-06 Precitec Vision GmbH & Co. KG Verfahren und vorrichtung zur bewertung von fügestellen von werkstücken
DE102006004919A1 (de) * 2006-02-01 2007-08-16 Thyssenkrupp Steel Ag Laserstrahlschweißkopf
JP5357030B2 (ja) * 2006-09-06 2013-12-04 プレシテック ヴィジョン ゲーエムベーハー ウント コンパニー カーゲー 溶接時に溶接品質を光学的に判定するための方法および装置
WO2008052591A1 (de) 2006-11-04 2008-05-08 Trumpf Werkzeugmaschinen Gmbh + Co.Kg Verfahren und vorrichtung zur prozessüberwachung bei der materialbearbeitung
DE102009018464B4 (de) * 2009-04-22 2014-10-30 Leuze Electronic Gmbh + Co. Kg Optischer Sensor
DE102009042986B3 (de) * 2009-09-25 2011-03-03 Precitec Kg Schweißkopf und Verfahren zum Fügen eines Werkstücks
FR2955763B1 (fr) * 2010-02-02 2012-03-09 Commissariat Energie Atomique Sonde optique peroperatoire bi-spectrale

Also Published As

Publication number Publication date
US20120318775A1 (en) 2012-12-20
JP2013036981A (ja) 2013-02-21
US10166630B2 (en) 2019-01-01
DE102011104550A1 (de) 2012-12-20
DE102011104550B4 (de) 2014-04-30

Similar Documents

Publication Publication Date Title
JP6253221B2 (ja) 接合継ぎ目を監視する光学測定装置、ならびに同測定装置を備える接合ヘッド及びレーザ溶接ヘッド
US10092977B2 (en) Welding head and method for joining a workpiece
CA2792322C (en) Laser processing head and method for processing a workpiece by means of a laser beam
JP6754439B2 (ja) レーザビームによる接合中に接合継ぎ目を監視するための方法および装置
JP5357030B2 (ja) 溶接時に溶接品質を光学的に判定するための方法および装置
KR100922478B1 (ko) 작업편들 사이의 접합부를 검출하는 장치 및 방법과 그 방법의 이용
JP5312033B2 (ja) ワークピースの継ぎ目箇所を評価するための方法および装置
US9610729B2 (en) Device and method for performing and monitoring a plastic laser transmission welding process
JP7407828B2 (ja) 加工物をレーザビームによって加工するためのレーザ加工システムとレーザ加工システムを制御する方法
JPS60205212A (ja) 光学式の表面接近度測定装置
JP2009515705A5 (ja)
CN103857490A (zh) 用于识别激光加工过程期间缺陷的方法以及激光加工装置
WO2017145518A1 (ja) レーザ加工機における加工ノズル検査装置及び方法
CN101394966B (zh) 具有一具有至少两个镜区域和一个阴影区的反射镜的激光加工设备反射镜组件
US20230241710A1 (en) Method for Analyzing a Workpiece Surface for a Laser Machining Process and Analysis Device for Analyzing a Workpiece Surface
JP7123788B2 (ja) レーザ加工装置
JP7388917B2 (ja) レーザ加工装置
US20200038993A1 (en) Method for identifying joining points of workpieces and laser machining head comprising a device for carrying out this method
JP5733563B2 (ja) ワイヤーボンドの三次元位置決め方法及び装置
JP2011200931A (ja) 溶接ワーク形状計測装置
JPS62183969A (ja) 溶接位置検出装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150605

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160531

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20160826

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20161025

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170509

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171128

R150 Certificate of patent or registration of utility model

Ref document number: 6253221

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250