WO2006092855A1 - 電圧制御発振器 - Google Patents

電圧制御発振器 Download PDF

Info

Publication number
WO2006092855A1
WO2006092855A1 PCT/JP2005/003477 JP2005003477W WO2006092855A1 WO 2006092855 A1 WO2006092855 A1 WO 2006092855A1 JP 2005003477 W JP2005003477 W JP 2005003477W WO 2006092855 A1 WO2006092855 A1 WO 2006092855A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
controlled oscillator
circuit
input
output
Prior art date
Application number
PCT/JP2005/003477
Other languages
English (en)
French (fr)
Inventor
Hiroyuki Mizutani
Satoshi Hamano
Masaomi Tsuru
Kenji Kawakami
Moriyasu Miyazaki
Original Assignee
Mitsubishi Denki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Denki Kabushiki Kaisha filed Critical Mitsubishi Denki Kabushiki Kaisha
Priority to PCT/JP2005/003477 priority Critical patent/WO2006092855A1/ja
Priority to JP2007505805A priority patent/JP4607176B2/ja
Priority to PCT/JP2005/020524 priority patent/WO2006092890A1/ja
Publication of WO2006092855A1 publication Critical patent/WO2006092855A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/35Details of non-pulse systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/32Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S13/34Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • H03B5/08Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance
    • H03B5/12Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device
    • H03B5/1203Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device the amplifier being a single transistor
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • H03B5/08Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance
    • H03B5/12Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device
    • H03B5/1231Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device the amplifier comprising one or more bipolar transistors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • H03B5/08Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance
    • H03B5/12Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device
    • H03B5/1237Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device comprising means for varying the frequency of the generator
    • H03B5/124Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device comprising means for varying the frequency of the generator the means comprising a voltage dependent capacitance
    • H03B5/1243Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device comprising means for varying the frequency of the generator the means comprising a voltage dependent capacitance the means comprising voltage variable capacitance diodes
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • H03B5/08Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance
    • H03B5/12Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device
    • H03B5/1296Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device the feedback circuit comprising a transformer

Definitions

  • the present invention relates to a voltage controlled oscillator used for communication and radar.
  • Patent Document 1 Japanese Patent Laid-Open No. 8-146125
  • Patent Document 2 Japanese Utility Model Publication No. 1 78415
  • Patent Document 3 Japanese Patent Application Laid-Open No. 61-141218
  • a voltage controlled oscillator forms a tuning circuit using a varactor diode, and outputs a signal having an oscillation frequency different from the magnitude of the control voltage Vin. Since the junction capacitance Cj of the inductor diode has non-linear characteristics with respect to the control voltage Vin, the relationship between the oscillation frequency F and the control voltage Vin cannot be linear.
  • the conventional technology uses a PLL (Phase Locked Loop) and memory to improve the linearity of the voltage controlled oscillator, but the configuration of the PLL and memory is complicated. In addition, the equipment becomes large, and there is a problem that is suitable for lowering the price especially for consumer use in high frequency applications such as millimeter wave band.
  • PLL Phase Locked Loop
  • the linearity of the voltage controlled oscillator is improved by converting the input voltage into the control voltage of the voltage controlled oscillator whose oscillation frequency is linear, and MMI C (Monolithic Microwave The purpose is to propose a voltage-controlled oscillator that can be integrated with Integrated Circuits).
  • the voltage controlled oscillator according to the present invention is a combination of a plurality of diodes and a plurality of resistors, and converts the slope of the input / output characteristics into a plurality of stages to convert the output which is nonlinear and continuous with the input voltage.
  • a voltage conversion circuit that outputs voltage, a high-frequency cutoff circuit that passes only a low-frequency component of the converted voltage output from the voltage conversion circuit and blocks an oscillation frequency component, and a conversion that is input via the high-frequency cutoff circuit
  • a tuning circuit having a variable capacitance diode diode for setting the oscillation frequency based on the voltage, and an active element for oscillation, and an oscillation frequency linear to the input voltage based on the output of the tuning circuit. And an active circuit for outputting numbers.
  • the input voltage is converted into the control voltage of the voltage controlled oscillator whose oscillation frequency is linear.
  • FIG. 1 is a circuit diagram showing a configuration of a voltage controlled oscillator according to Embodiment 1 of the present invention
  • FIG. 2 A diagram showing the current-voltage characteristics in the forward direction of the diode generically referring to the diode 4 la-4 lc in FIG.
  • FIG. 3 is a diagram showing input / output characteristics of the voltage conversion circuit 30 of FIG.
  • FIG. 4 is a circuit diagram showing a configuration of a voltage controlled oscillator according to Embodiment 2 of the present invention
  • FIG. 5 is a diagram showing input / output characteristics of the voltage conversion circuit 30 of FIG.
  • FIG. 6 is a circuit diagram showing a configuration of a voltage controlled oscillator according to Embodiment 3 of the present invention.
  • FIG. 7 is a graph showing input / output characteristics of the voltage conversion circuit 30 in FIG.
  • FIG. 8 is a circuit diagram showing a configuration of a voltage controlled oscillator according to Embodiment 4 of the present invention.
  • FIG. 9 is a circuit diagram showing a configuration of a voltage controlled oscillator according to a fifth embodiment of the present invention.
  • FIG. 10 is a circuit diagram showing a configuration of a voltage controlled oscillator according to a sixth embodiment of the present invention.
  • FIG. 11 is a circuit diagram showing a configuration of a voltage controlled oscillator according to a seventh embodiment of the present invention.
  • FIG. 12 is a circuit diagram showing a configuration of a voltage controlled oscillator according to an eighth embodiment of the present invention.
  • FIG. 13 is a circuit diagram showing a configuration of a voltage controlled oscillator according to the ninth embodiment of the present invention.
  • FIG. 1 is a circuit diagram showing a configuration of the voltage controlled oscillator according to the first embodiment of the present invention.
  • the voltage-controlled oscillator shown in Fig. 1 is a combination of multiple diodes and multiple resistors, and the output voltage that is nonlinear and continuous with respect to the input voltage Vin by changing the slope of the input / output characteristics in multiple stages is used as the conversion voltage.
  • High-frequency cutoff circuit 60 that passes only the low-frequency component of the conversion voltage output from voltage conversion circuit 30 and blocks the oscillation frequency component, and conversion that is input via high-frequency cutoff circuit 60
  • a tuning circuit 20 having a variable capacitance diode diode 21 for setting the oscillation frequency based on the voltage Vt, and an oscillation active element, and linear with respect to the input voltage based on the output of the tuning circuit 20
  • an active circuit 10 that outputs an oscillation frequency F.
  • the voltage conversion circuit 30 is connected in series with a plurality of diodes 41a to 41c that are sequentially connected in series with the anode terminal facing the input terminal 51 between the input terminal 51 and the output terminal 52.
  • the first resistor 32 is connected in parallel to a connection body of a plurality of diodes 41a to 41c, and the second resistor 31 is provided between the output terminal 52 and the ground.
  • Figure 2 shows diodes 41a-41c collectively, and the forward current vs. voltage characteristics of diode 41. Indicates.
  • the voltage indicated by VI in Fig. 2 is called the rising voltage of the diode 41.
  • the input voltage Vin is gradually increased from 0, and the impedance of the diode 41a is assumed to be sufficiently high until it reaches a voltage Va close to three times the rising voltage VI of the diode 41a. Therefore, it can be approximated that the equivalent circuit between terminals 51 and 52 is only resistor 32.
  • FIG. 3 shows input / output characteristics of the voltage conversion circuit 30 in FIG.
  • the characteristic of the voltage conversion circuit 30 necessary for making the VF characteristic of the voltage controlled oscillator linear is indicated by a dotted line A.
  • the values of resistors 31 and 32 are adjusted so that the slope in each section divided by voltage Va of input voltage Vin matches the slope of nonlinear and continuous characteristic A.
  • the value of voltage Va can be changed by changing the number N of connected diodes, and various characteristics can be approximated.
  • Embodiment 2 by converting the actually input voltage Vin to the control voltage of the voltage controlled oscillator such that the oscillation frequency F is linear, By improving the linearity and using only diodes, resistors, and elements that can be created on MMICs, it becomes possible to integrate them into the same MMIC as a conventional voltage-controlled oscillator. It can also be applied not only to MMICs, but also to voltage controlled oscillators using discrete components. Furthermore, since only a diode and a resistor are used, there is an advantage that it is not necessary to use an external power source like an op amp. [0018] Embodiment 2.
  • FIG. 4 is a circuit diagram showing a configuration of the voltage controlled oscillator according to the second embodiment of the present invention.
  • the same components as those in the first embodiment shown in FIG. The voltage controlled oscillator according to the second embodiment shown in FIG. 4 differs from the configuration of the first embodiment shown in FIG. 1 in the configuration of the voltage conversion circuit 30.
  • the anode terminal is sequentially connected in series between the input terminal 51 and the output terminal 52 with the anode terminal facing the input terminal 51 side.
  • FIG. 5 shows the input / output characteristics of the voltage conversion circuit 30 in FIG.
  • the impedance after the diode 41d can be considered sufficiently high, so that the equivalent circuit between the terminals 51 and 52 is only the resistor 35. Therefore, the relationship between the input voltage Vin and the conversion voltage Vt has a constant slope
  • the impedance begins to flow through the diode 41d. Since the impedance after the diode 41c remains sufficiently high, the equivalent circuit between the terminals 51 and 52 is the resistor 34, This is the combined resistance Ra of the series resistance Rs of 35 and the diode 41. Therefore, the relationship between the input voltage Vin and the conversion voltage Vt has a constant slope ⁇ 2 determined by the size of the resistor 31 and the combined resistor Ra.
  • the slopes j8 1, ⁇ 2, ⁇ 3, and j8 4 in the sections divided by the voltages Va, Vb, Vc, and Vd of the input voltage Vin are expressed as VF characteristics of the voltage controlled oscillator Voltage converter circuit 30 required for linearizing the characteristics of the I4A slope [to match the values of resistors 31, 32, 33, 34, 35 By determining this, it becomes possible to improve the linearity of the VF characteristics of the voltage controlled oscillator.
  • the linearity of the oscillation frequency with respect to the input voltage is converted by converting the actually input voltage Vin into the control voltage of the voltage controlled oscillator such that the oscillation frequency F is linear.
  • FIG. 6 is a circuit diagram showing a configuration of the voltage controlled oscillator according to the third embodiment of the present invention.
  • the same components as those in the first embodiment shown in FIG. The voltage controlled oscillator according to the third embodiment shown in FIG. 6 differs from the configuration of the first embodiment shown in FIG. 1 in the configuration of the voltage conversion circuit 30.
  • the voltage conversion circuit 30 of the voltage controlled oscillator according to the third embodiment shown in FIG. 6 is serially connected in series between the input terminal 51 and the output terminal 52 with the anode terminal facing the input terminal 51 side.
  • a plurality of parallel resistors 32-35 connected between the anode terminal and the output terminal 52, respectively, and a resistor 31 provided between the output terminal 52 and the ground They are organized.
  • FIG. 7 shows the input / output characteristics of the voltage conversion circuit 30 in FIG.
  • the basic operation is the same as in the first and second embodiments. However, in the configuration shown in FIG. 6, since there are locations where a plurality of diodes are connected in series between the terminals in the voltage conversion circuit 30, the input voltage that changes the slope of the input / output characteristics of the voltage conversion circuit 30 Can be set freely. The number of combinations of diodes and resistors It can be set arbitrarily depending on the shape of the similar curve.
  • the third embodiment by converting the actually input voltage Vin to the control voltage of the voltage controlled oscillator so that the oscillation frequency F is linear, the voltage Vin with respect to the input voltage Vin of the oscillation frequency F
  • the voltage Vin By improving the linearity and using only diodes, resistors, and elements that can be created on MMICs, it is possible to integrate them with the same MMIC as a conventional voltage-controlled oscillator. It is also applicable to voltage controlled oscillators using discrete components as well as MMICs. Furthermore, since only a diode and a resistor are used, there is an advantage that it is not necessary to use an external power source like an op amp.
  • FIG. 8 is a circuit diagram showing a configuration of the voltage controlled oscillator according to the fourth embodiment of the present invention.
  • the voltage controlled oscillator according to the fourth embodiment shown in FIG. 8 differs from the configuration of the third embodiment shown in FIG. 6 in that a spiral inductor 61 is loaded as a high-frequency cutoff circuit 60.
  • this Embodiment 4 is a force that shows an example in which a spiral inductor 61 is used as the high-frequency cutoff circuit 60, compared to the configuration of Embodiment 3 shown in FIG. The same applies to the configurations of Forms 1 and 2.
  • the basic operation of the voltage controlled oscillator according to the fourth embodiment is the same as that of the third embodiment.
  • an inductor such as a spiral inductor 61 as the high frequency cutoff circuit 60, it becomes high impedance at high frequency, and only the low frequency component can be passed and the oscillation frequency component can be cut off.
  • the spiral inductor 61 has the effect that it can be easily realized on the M MIC.
  • FIG. 9 is a circuit diagram showing a configuration of the voltage controlled oscillator according to the fifth embodiment of the present invention.
  • the voltage controlled oscillator according to the fifth embodiment shown in FIG. 9 differs from the configuration of the third embodiment shown in FIG. 6 in that a resistor 62 is loaded as the high-frequency cutoff circuit 60.
  • This Embodiment 5 is similar to FIG.
  • the example in which the resistor 62 is used as the high-frequency cutoff circuit 60 is shown for the configuration of the third embodiment shown in FIG. 1, but the same applies to the configurations of the first and second embodiments shown in FIGS. Can be implemented.
  • the basic operation of the voltage controlled oscillator according to the fifth embodiment is the same as that of the third embodiment.
  • the oscillation frequency component can be cut off by using the resistor 62 as the high frequency cut-off circuit 60.
  • the resistor 62 has an effect that it can be easily realized on the MMIC.
  • FIG. 10 is a circuit diagram showing a configuration of the voltage controlled oscillator according to the sixth embodiment of the present invention.
  • the voltage controlled oscillator according to Embodiment 6 shown in FIG. 10 is loaded with a low-pass filter (LPF) 63 as a high-frequency cutoff circuit 60 compared to the configuration of Embodiment 3 shown in FIG. The difference is! /.
  • LPF low-pass filter
  • this Embodiment 6 is a force that shows an example in which a low-pass filter 63 is used as the high-frequency cutoff circuit 60, compared to the configuration of Embodiment 3 shown in FIG. The same can be applied to the configurations of the first and second embodiments shown.
  • the basic operation of the voltage controlled oscillator according to the sixth embodiment is the same as that of the third embodiment.
  • LPF63 as the high-frequency cutoff circuit 60
  • the oscillation frequency component is cut off while suppressing the power loss of the low-frequency component, compared to using the inductor 61 according to the fourth embodiment shown in FIG. It becomes possible.
  • an FM modulated signal is input to the voltage controlled oscillator of the present invention, it is necessary to pass the modulation frequency component.
  • LPF63 as the high frequency cutoff circuit 60, the power of the modulation frequency component can be obtained. It is possible to block the oscillation frequency component while suppressing loss.
  • LPF 63 has the effect that it can be easily realized on MMIC!
  • FIG. 11 is a circuit diagram showing a configuration of the voltage controlled oscillator according to the seventh embodiment of the present invention.
  • the voltage controlled oscillator according to the seventh embodiment shown in FIG. 11 includes all elements constituting the voltage controlled oscillator according to the third embodiment shown in FIG.
  • the interruption circuit 60, the tuning circuit 20, and the active circuit 10 are formed on the same substrate 70 by the same semiconductor process.
  • This Embodiment 7 can be similarly applied to the configurations of other Embodiments 1 and 2, 4 and 6 applied to the configuration of Embodiment 3 shown in FIG.
  • the basic operation of the voltage controlled oscillator according to the seventh embodiment is the same as that of the third embodiment.
  • FIG. 12 is a circuit diagram showing a configuration of the voltage controlled oscillator according to the eighth embodiment of the present invention.
  • the voltage controlled oscillator according to the eighth embodiment shown in FIG. 12 includes a plurality of diodes of the voltage conversion circuit 30, the high frequency cutoff circuit 60, the tuning circuit 20 and the voltage controlled oscillator according to the third embodiment shown in FIG.
  • the active circuit 10 are formed on the same first substrate 70 by the same semiconductor process, and only the plurality of resistors of the voltage conversion circuit 30 are formed on another second substrate 80.
  • the second substrates 70 and 80 are connected by wires.
  • the eighth embodiment is applied to the configuration of the third embodiment shown in FIG. 6. The same can be applied to the configurations of the other first and second, fourth and sixth embodiments. .
  • the basic operation of the voltage controlled oscillator according to the eighth embodiment is the same as that of the third embodiment. However, only the diodes of the active circuit unit 10, the tuning circuit unit 20, the high-frequency cutoff circuit 60, and the voltage conversion circuit unit 30 are formed on the substrate 70 by the same semiconductor process, and the resistance of the voltage conversion circuit unit 30 is different from the substrate 80. By creating the above, it is possible to change the resistance value after mounting the resistor, and it is possible to flexibly cope with the characteristics of the oscillation circuit section.
  • FIG. 13 is a circuit diagram showing a configuration of the voltage controlled oscillator according to the ninth embodiment of the present invention.
  • the voltage controlled oscillator according to the ninth embodiment shown in FIG. 13 includes a high frequency cutoff circuit 60, a tuning circuit 20, and an active circuit 10 that constitute the voltage controlled oscillator according to the third embodiment shown in FIG.
  • the process creates on the same first substrate 70 and the voltage Only the conversion circuit 30 is formed on another second substrate 80, and the first and second substrates 70 and 80 are connected by a single wire.
  • this Embodiment 9 is applied to the configuration of Embodiment 3 shown in FIG. 6 and can be similarly applied to the configurations of other Embodiments 1 and 2, 4 and 6 .
  • the basic operation of the voltage controlled oscillator according to the ninth embodiment is the same as that of the third embodiment.
  • the active circuit unit 10, the tuning circuit unit 20, and the high-frequency cutoff circuit 60 are formed on the substrate 70 by the same semiconductor process, and the voltage conversion circuit unit 30 is formed on another substrate 80.
  • the diode used for 30 can be formed using a semiconductor process different from the active element used for the active circuit section 10 and the varactor diode used for the tuning circuit section 20.
  • diodes having different semiconductor processes can be mixed in the voltage conversion circuit unit 30.
  • the resistance value can be changed after the resistor is mounted, and it is possible to flexibly cope with the characteristics of the oscillation circuit section.
  • An analog voltage conversion circuit consisting of a diode and a resistor is connected in front of a voltage-controlled oscillator with a non-linear V—F characteristic to improve the linearity of the V—F characteristic and can be integrated as an MMIC.
  • a voltage-controlled oscillator can be provided and applied to FM-CW radar equipment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Inductance-Capacitance Distribution Constants And Capacitance-Resistance Oscillators (AREA)

Abstract

 入力電圧を、発振周波数が線形になるような電圧制御発振器の制御電圧に変換して、電圧制御発振器の線形性を改善し、かつMMICと一体化可能にする。  複数のダイオードと複数の抵抗との組合せでなり、入出力特性の傾きを複数段階に変化させて入力電圧に対し非線形でかつ連続した出力を変換電圧として出力する電圧変換回路30と、その変換電圧の低周波成分のみを通過させ発振周波数成分を遮断する高周波遮断回路60と、高周波遮断回路を介した変換電圧に基づいて発振周波数を設定するための容量可変のバラクタダイオードをもつ同調回路20と、発振用の能動素子を有し、同調回路の出力に基づいて入力電圧に対し線形な発振周波数を出力する能動回路10とを備える。

Description

明 細 書
電圧制御発振器
技術分野
[0001] この発明は、通信やレーダに用いられる電圧制御発振器に関するものである。
背景技術
[0002] 従来、 FM— CW (Frequency Modulated Continuous Wave)レーダ装置に用いられ る電圧制御発振器の発振周波数を補正するために、メモリを用いて周波数制御電圧 の設定を行う手法が提案されている (例えば、特許文献 1参照)。
[0003] また、ダイオードと抵抗を含む電圧変 を電圧制御発振器の入力に接続すること により、電圧-発振周波数の直線性を改善するものがある (例えば、特許文献 2参照) 。さらに、ダイオードと抵抗を含む歪補正回路を電圧制御発振器の入力に接続する ことにより、電圧-発振周波数の直線性を改善するものがある(例えば、特許文献 3参 照)。
[0004] 特許文献 1 :特開平 8— 146125号公報
特許文献 2:実開平 1 78415号公報
特許文献 3 :特開昭 61— 141218号公報
発明の開示
発明が解決しょうとする課題
[0005] 一般に、電圧制御発振器はバラクタダイオードを用いて同調回路を構成し、制御電 圧 Vinの大きさに対して異なる発振周波数の信号を出力する。ノ ラクタダイオードの 接合容量 Cjは制御電圧 Vinに対して非線形の特性を持っため、発振周波数 Fとその 制御電圧 Vinとの関係は線形にはならな 、。
[0006] 一方、レーダ装置などで FM変調をする際には電圧制御発振器の発振周波数 Fと 制御電圧 Vinの線形性が問題となる。例えば、 FM— CWレーダなどで非線形の特性 を持つ電圧制御発振器を用いると、距離精度、速度精度の劣化につながる。
[0007] 従来技術では、この問題を解決するために、 PLL (Phase Locked Loop)やメモリを 用いて、電圧制御発振器の線形性を改善しているが、 PLLやメモリは構成が複雑で かつ装置が大型になり、特にミリ波帯などの高周波アプリケーションにおける民生用 途にお!/ヽて低価格化には向かな ヽと ヽぅ問題がある。
[0008] 従って、この発明では、入力電圧を、発振周波数が線形になるような電圧制御発振 器の制御電圧に変換することにより、電圧制御発振器の線形性を改善し、かつ MMI C (Monolithic Microwave Integrated Circuits)と一体化可能な構成の電圧制御発振 器を提案することを目的とする。
課題を解決するための手段
[0009] この発明に係る電圧制御発振器は、複数のダイオードと複数の抵抗との組合せで なり、入出力特性の傾きを複数段階に変化させて入力電圧に対し非線形でかつ連 続した出力を変換電圧として出力する電圧変換回路と、前記電圧変換回路から出力 される変換電圧の低周波成分のみを通過させ発振周波数成分を遮断する高周波遮 断回路と、前記高周波遮断回路を介した入力される変換電圧に基づいて発振周波 数を設定するための容量可変のノ ラクタダイオードをもつ同調回路と、発振用の能動 素子を有し、前記同調回路の出力に基づいて前記入力電圧に対し線形な発振周波 数を出力する能動回路とを備えたものである。
発明の効果
[0010] この発明によれば、電圧変換回路の入出力特性の傾きを複数段階に変化させて、 入力電圧を、発振周波数が線形になるような電圧制御発振器の制御電圧に変換す ることにより、発振周波数の入力電圧に対する線形性を改善し、かつダイオードと抵 抗という MMIC上で作成可能な素子のみを用いることにより、 MMICに一体化するこ とが可能となる。また、 MMICのみならず、ディスクリート部品を用いた電圧制御発振 器にも適用可能である。さらに、ダイオードと抵抗のみを用いているため、オペアンプ のように外部電源を用いることを必要としな ヽと 、う利点がある。
図面の簡単な説明
[0011] [図 1]この発明の実施の形態 1に係る電圧制御発振器の構成を示す回路図、
[図 2]図 1のダイオード 4 la— 4 lcを総称したダイオードの順方向の電流 電圧特性を 示す図、
[図 3]図 1の電圧変換回路 30の入出力特性を示す図、 [図 4]この発明の実施の形態 2に係る電圧制御発振器の構成を示す回路図、
[図 5]図 4の電圧変換回路 30の入出力特性を示す図、
[図 6]この発明の実施の形態 3に係る電圧制御発振器の構成を示す回路図、
[図 7]図 6の電圧変換回路 30の入出力特性を示す図、
[図 8]この発明の実施の形態 4に係る電圧制御発振器の構成を示す回路図、
[図 9]この発明の実施の形態 5に係る電圧制御発振器の構成を示す回路図、
[図 10]この発明の実施の形態 6に係る電圧制御発振器の構成を示す回路図、
[図 11]この発明の実施の形態 7に係る電圧制御発振器の構成を示す回路図、
[図 12]この発明の実施の形態 8に係る電圧制御発振器の構成を示す回路図、
[図 13]この発明の実施の形態 9に係る電圧制御発振器の構成を示す回路図である。 発明を実施するための最良の形態
[0012] 実施の形態 1.
図 1は、この発明の実施の形態 1に係る電圧制御発振器の構成を示す回路図であ る。図 1に示す電圧制御発振器は、複数のダイオードと複数の抵抗との組合せでなり 、入出力特性の傾きを複数段階に変化させて入力電圧 Vinに対し非線形でかつ連 続した出力を変換電圧として出力する電圧変換回路 30と、電圧変換回路 30から出 力される変換電圧の低周波成分のみを通過させ発振周波数成分を遮断する高周波 遮断回路 60と、高周波遮断回路 60を介した入力される変換電圧 Vtに基づいて発振 周波数を設定するための容量可変のノ ラクタダイオード 21をもつ同調回路 20と、発 振用の能動素子を有し、同調回路 20の出力に基づいて入力電圧に対し線形な発振 周波数 Fを出力する能動回路 10とを備えている。
[0013] ここで、電圧変換回路 30は、入力端子 51と出力端子 52との間にアノード端子を入 力端子 51側に向けて順次直列接続された複数のダイオード 41a— 41cと、直列接続 された複数のダイオード 41a— 41cの接続体に並列接続された第 1の抵抗 32と、出 力端子 52とグランドとの間に設けられた第 2の抵抗 31とから構成されている。
[0014] 次に動作を説明する。ここでは、ダイオードの数 N = 3の場合について説明をする 力 任意の数について成り立つものである。
図 2に、ダイオード 41 a— 41 cを総称してダイオード 41の順方向の電流 電圧特性 を示す。図 2中の VIで示される電圧をダイオード 41の立ち上がり電圧と呼ぶ。図 1の 電圧変換回路 30において、入力電圧 Vinを 0から徐々に大きくしていき、ダイオード 41aの立ち上がり電圧 VIの 3倍に近い電圧 Vaに達するまでは、ダイオード 41aのィ ンピーダンスが十分高いと仮定できるため、端子 51、 52間の等価回路は抵抗 32の みであると近似できる。ここで、抵抗 31の大きさを Rl、抵抗 32の大きさを R2とすると 、入力電圧 Vinと変換電圧 Vtの間には、 Vt=RlZ (Rl +R2) 'Vinの関係が成り立 つ。
[0015] 入力電圧 Vinをさらに大きくし、端子 51と 52の間に力かる電圧が Vaより大きくなると 、つまり、 R2/ (R1 +R2) 'Vin>Vaとなると、ダイオード 41a、 41b、 41cに流れる電 流も増加し、端子 51と 52の間の合成抵抗を Raとすると、 Ra = 3 -R2-Rs/ (R2 + 3 - Rs)で表される。ここで、 Rsはダイオード 41a、 41b、 41cの直列抵抗である。このとき 、 Vinと Vtとの関係は、 Vt=RlZ (Rl +Ra) 'Vinとなる。ただし、スィッチを用いて 抵抗を切り換える方法と異なり、上記 2つの状態の境目に不連続部がないのも利点 の一つである。
[0016] 図 3に、図 1中の電圧変換回路 30の入出力特性を示す。図 3において、電圧制御 発振器の V— F特性を線形にするために必要な、電圧変換回路 30の特性を点線 Aで 示す。ここで、入力電圧 Vinの電圧 Vaで分割されたそれぞれの区間における傾きを 、非線形でかつ連続した特性 Aの傾きに合うように、抵抗 31、 32の値を
選択することで、電圧 Vaの前後で電圧変換回路 30の入出力特性の傾きを 2段階に 変化させることが可能となる。また、接続するダイオードの数 Nを変化させることにより 電圧 Vaの値を変化させることができ、様々な特性への近似が可能になる。
[0017] 従って、実施の形態 1によれば、実際に入力する電圧 Vinを、発振周波数 Fが線形 になるような電圧制御発振器の制御電圧に変換することにより、発振周波数 Fの入力 電圧 Vinに対する線形性を改善し、かつダイオードと抵抗と!/ヽぅ MMIC上で作成可 能な素子のみを用いることにより、従来の電圧制御発振器と同じ MMICに一体ィ匕す ることが可能となる。また、 MMICのみならず、ディスクリート部品を用いた電圧制御 発振器にも適用可能である。さらに、ダイオードと抵抗のみを用いているため、ォペア ンプのように外部電源を用いることを必要としな 、と 、う利点もある。 [0018] 実施の形態 2.
図 4は、この発明の実施の形態 2に係る電圧制御発振器の構成を示す回路図であ る。図 4に示す実施の形態 2に係る電圧制御発振器において、図 1に示す実施の形 態 1の構成と同一部分は同一符号を付し、その説明は省略する。図 4に示す実施の 形態 2に係る電圧制御発振器は、図 1に示す実施の形態 1の構成と電圧変換回路 3 0の構成が異なる。
[0019] すなわち、図 4に示す実施の形態 2に係る電圧制御発振器の電圧変換回路 30は、 入力端子 51と出力端子 52との間にアノード端子を入力端子 51側に向けて順次直列 接続された複数のダイオード 41a— 41dと、各ダイオード 41a— 41dのアノード端子と 出力端子 52との間にそれぞれ接続された複数の並列抵抗 32— 35と、出力端子 52 とグランドとの間に設けられた抵抗 31とから構成されている。
[0020] 次に動作を説明する。ここでは、ダイオードの数 N=4の場合について説明をする 力 任意の数について成り立つものである。
図 5に、図 4中の電圧変換回路 30の入出力特性を示す。入力電圧 Vinが 0く Vin く Vaの場合、ダイオード 41d以降はインピーダンスが十分高いとみなせるため、端子 51、 52間の等価回路は抵抗 35のみとなる。従って、入力電圧 Vinと変換電圧 Vtの 関係は、抵抗 31と抵抗 35の大きさで決まる一定の傾き |8 1を持つ。
[0021] 入力電圧 Vinが Vaく Vinく Vbの場合、ダイオード 41dに電流が流れ始める力 ダ ィオード 41c以降はインピーダンスが十分高いままであるため、端子 51、 52間の等 価回路は抵抗 34、 35とダイオード 41の直列抵抗 Rsの合成抵抗 Raとなる。従って、 入力電圧 Vinと変換電圧 Vtの関係は、抵抗 31と合成抵抗 Raの大きさで決まる一定 の傾き β 2を持つ。
[0022] 以下同様に、入力電圧 Vinが大きくなるとダイオード 41b、 41aの順に立ち上がり、 入力電圧 Vinと変換電圧 Vtの関係は、抵抗 31と端子 51、 52間の合成抵抗の大きさ で決まる一定の傾き β 3、 β 4をそれぞれ持つ。
[0023] ここで、入力電圧 Vinの電圧 Va、 Vb、 Vc、 Vdで分割されたそれぞれの区間におけ る傾き j8 1、 β 2、 β 3、 j8 4を、電圧制御発振器の V— F特性を線形にするために必 要な電圧変換回路 30の特' I4Aの傾さ【こ合うよう【こ、抵抗 31、 32、 33、 34、 35の値を 決定することにより、電圧制御発振器の V— F特性の線形性向上を図ることが可能と なる。
[0024] 従って、実施の形態 2によれば、実際に入力する電圧 Vinを、発振周波数 Fが線形 になるような電圧制御発振器の制御電圧に変換することにより、発振周波数の入力 電圧に対する線形性を改善し、かつダイオードと抵抗と!/、う MMIC上で作成可能な 素子のみを用いることにより、従来の電圧制御発振器と同じ MMICに一体ィ匕すること が可能となる。また、 MMICのみならず、ディスクリート部品を用いた電圧制御発振器 にも適用可能である。さらに、ダイオードと抵抗のみを用いているため、オペアンプの ように外部電源を用いることを必要としな 、と 、う利点もある。
[0025] 実施の形態 3.
図 6は、この発明の実施の形態 3に係る電圧制御発振器の構成を示す回路図であ る。図 6に示す実施の形態 3に係る電圧制御発振器において、図 1に示す実施の形 態 1の構成と同一部分は同一符号を付し、その説明は省略する。図 6に示す実施の 形態 3に係る電圧制御発振器は、図 1に示す実施の形態 1の構成と電圧変換回路 3 0の構成が異なる。
[0026] すなわち、図 6に示す実施の形態 3に係る電圧制御発振器の電圧変換回路 30は、 入力端子 51と出力端子 52との間にアノード端子を入力端子 51側に向けて順次直列 接続された複数のダイオード 41a— 41fと、 1または複数直列接続されたダイオードの 各アノード端子、つまりダイオード 41aのアノード端子、ダイオード 41bのアノード端子 、ダイオード 41cと 41dの接続体のダイオード 41dのアノード端子、ダイオード 41eと 4 Ifの接続体のダイオード 41fのアノード端子と出力端子 52との間にそれぞれ接続さ れた複数の並列抵抗 32— 35と、出力端子 52とグランドとの間に設けられた抵抗 31 とカゝら構成されている。
[0027] 次に動作を説明する。図 7に、図 6中の電圧変換回路 30の入出力特性を示す。基 本的な動作は、実施の形態 1及び 2と同様である。ただし、図 6に示す構成では、電 圧変換回路 30中の各端子間に複数のダイオードが直列に接続された個所があるた め、電圧変換回路 30の入出力特性の傾きを変化させる入力電圧を自由に設定する ことが可能となる。ダイオードと抵抗の組み合わせの数についてはその目的とする近 似曲線の形によって任意に設定可能である。
[0028] 従って、実施の形態 3によれば、実際に入力する電圧 Vinを、発振周波数 Fが線形 になるような電圧制御発振器の制御電圧に変換することにより、発振周波数 Fの入力 電圧 Vinに対する線形性を改善し、かつダイオードと抵抗と!/ヽぅ MMIC上で作成可 能な素子のみを用いることにより、従来の電圧制御発振器と同じ MMICに一体ィ匕す ることが可能となる。また、 MMICのみならず、ディスクリート部品を用いた電圧制御 発振器にも適用可能である。さらに、ダイオードと抵抗のみを用いているため、ォペア ンプのように外部電源を用いることを必要としな 、と 、う利点もある。
[0029] 実施の形態 4.
図 8は、この発明の実施の形態 4に係る電圧制御発振器の構成を示す回路図であ る。図 8に示す実施の形態 4に係る電圧制御発振器において、図 6に示す実施の形 態 3の構成と同一部分は同一符号を付し、その説明は省略する。図 8に示す実施の 形態 4に係る電圧制御発振器は、図 6に示す実施の形態 3の構成に対し、高周波遮 断回路 60としてスパイラルインダクタ 61を装荷している点が異なる。なお、この実施 の形態 4は、図 6に示す実施の形態 3の構成に対し、高周波遮断回路 60として、スパ イラルインダクタ 61を用いた例を示している力 図 1及び図 4に示す実施の形態 1及 び 2の構成に対しても同様に実施できる。
[0030] この実施の形態 4に係る電圧制御発振器の基本的な動作は、実施の形態 3と同様 である。ただし、高周波遮断回路 60として、インダクタ、例えばスパイラルインダクタ 6 1を用いることにより、高周波でハイインピーダンスとなり、低周波成分のみ通過させ 発振周波数成分を遮断することが可能となる。カロえて、スパイラルインダクタ 61は、 M MIC上で容易に実現可能であると!/、う効果を奏する。
[0031] 実施の形態 5.
図 9は、この発明の実施の形態 5に係る電圧制御発振器の構成を示す回路図であ る。図 9に示す実施の形態 5に係る電圧制御発振器において、図 6に示す実施の形 態 3の構成と同一部分は同一符号を付し、その説明は省略する。図 9に示す実施の 形態 5に係る電圧制御発振器は、図 6に示す実施の形態 3の構成に対し、高周波遮 断回路 60として抵抗 62を装荷している点が異なる。なお、この実施の形態 5は、図 6 に示す実施の形態 3の構成に対し、高周波遮断回路 60として、抵抗 62を用いた例を 示しているが、図 1及び図 4に示す実施の形態 1及び 2の構成に対しても同様に実施 できる。
[0032] この実施の形態 5に係る電圧制御発振器の基本的な動作は、実施の形態 3と同様 である。ただし、高周波遮断回路 60として、抵抗 62を用いることにより、発振周波数 成分を遮断することが可能となる。カ卩えて、抵抗 62は、 MMIC上で容易に実現可能 であるという効果を奏する。
[0033] 実施の形態 6.
図 10は、この発明の実施の形態 6に係る電圧制御発振器の構成を示す回路図で ある。図 10に示す実施の形態 6に係る電圧制御発振器において、図 6に示す実施の 形態 3の構成と同一部分は同一符号を付し、その説明は省略する。図 10に示す実 施の形態 6に係る電圧制御発振器は、図 6に示す実施の形態 3の構成に対し、高周 波遮断回路 60として低域通過フィルタ(LPF: Low Pass Filter) 63を装荷して!/、る点 が異なる。なお、この実施の形態 6は、図 6に示す実施の形態 3の構成に対し、高周 波遮断回路 60として、低域通過フィルタ 63を用いた例を示している力 図 1及び図 4 に示す実施の形態 1及び 2の構成に対しても同様に実施できる。
[0034] この実施の形態 6に係る電圧制御発振器の基本的な動作は、実施の形態 3と同様 である。ただし、高周波遮断回路 60として LPF63を用いることにより、図 8に示す実 施の形態 4に係るインダクタ 61を用いるのに比べて、低周波数成分の電力損失を抑 制しつつ発振周波数成分を遮断することが可能となる。カロえて、この発明の電圧制 御発振器に FM変調を施した信号を入力する場合、変調周波数成分を通過させる必 要があるが、高周波遮断回路 60として LPF63を用いることにより、変調周波数成分 の電力損失を抑制しつつ発振周波数成分を遮断することが可能となる。さらに、 LPF 63は、 MMIC上で容易に実現可能であると!/、う効果を奏する。
[0035] 実施の形態 7.
図 11は、この発明の実施の形態 7に係る電圧制御発振器の構成を示す回路図で ある。図 11に示す実施の形態 7に係る電圧制御発振器は、図 6に示す実施の形態 3 に係る電圧制御発振器を構成するすべての要素、つまり電圧変換回路 30、高周波 遮断回路 60、同調回路 20および能動回路 10を同一の半導体プロセスにより同一の 基板 70上に作成したものである。なお、この実施の形態 7は、図 6に示す実施の形態 3の構成に対し適用したものである力 他の実施の形態 1と 2、 4一 6の構成に対して も同様に実施できる。
[0036] この実施の形態 7に係る電圧制御発振器の基本的な動作は、実施の形態 3と同様 である。ただし、電圧制御発振器を構成するすべての要素を同一の半導体プロセス で作成し一枚の基板上に作成することにより、回路を小型化することが可能となり、加 えて各構成要素の実装の工程を削減することが可能となるという効果を奏する。
[0037] 実施の形態 8.
図 12は、この発明の実施の形態 8に係る電圧制御発振器の構成を示す回路図で ある。図 12に示す実施の形態 8に係る電圧制御発振器は、図 6に示す実施の形態 3 に係る電圧制御発振器を構成する電圧変換回路 30の複数のダイオードと、高周波 遮断回路 60と、同調回路 20と、能動回路 10とを同一の半導体プロセスにより同一の 第 1の基板 70上に作成すると共に、電圧変換回路 30の複数の抵抗のみを別の第 2 の基板 80上に作成し、第 1と第 2の基板 70と 80をワイヤーで接続したものである。な お、この実施の形態 8は、図 6に示す実施の形態 3の構成に対し適用したものである 力 他の実施の形態 1と 2、 4一 6の構成に対しても同様に実施できる。
[0038] この実施の形態 8に係る電圧制御発振器の基本的な動作は、実施の形態 3と同様 である。ただし、能動回路部 10と同調回路部 20と高周波遮断回路 60と電圧変換回 路部 30のダイオードのみを基板 70上に同一の半導体プロセスで作成し、電圧変換 回路部 30の抵抗は別基板 80上に作成することにより、抵抗値を抵抗の実装後に変 更することが可能となり、発振回路部の特性に柔軟に対応することが可能となるという 効果を奏する。
[0039] 実施の形態 9.
図 13は、この発明の実施の形態 9に係る電圧制御発振器の構成を示す回路図で ある。図 13に示す実施の形態 9に係る電圧制御発振器は、図 6に示す実施の形態 3 に係る電圧制御発振器を構成する高周波遮断回路 60と、同調回路 20と、能動回路 10とを同一の半導体プロセスにより同一の第 1の基板 70上に作成すると共に、電圧 変換回路 30のみを別の第 2の基板 80上に作成し、第 1と第 2の基板 70と 80をワイヤ 一で接続したものである。なお、この実施の形態 9は、図 6に示す実施の形態 3の構 成に対し適用したものである力 他の実施の形態 1と 2、 4一 6の構成に対しても同様 に実施できる。
[0040] この実施の形態 9に係る電圧制御発振器の基本的な動作は、実施の形態 3と同様 である。ただし、能動回路部 10と同調回路部 20と高周波遮断回路 60のみを基板 70 上に同一の半導体プロセスで作成し、電圧変換回路部 30は別基板 80上に作成する ことにより、電圧変換回路部 30に用いるダイオードを、能動回路部 10に用いる能動 素子や同調回路部 20に用いるバラクタダイオードとは異なる半導体プロセスを用い て作成することが可能となる。さらに、電圧変換回路部 30中に半導体プロセスの異な るダイオードを混在させることが可能となる。カロえて、実施の形態 8と同様、抵抗値を 抵抗の実装後に変更することが可能となり、発振回路部の特性に柔軟に対応するこ とが可能となるという効果を奏する。
産業上の利用可能性
[0041] 非線形な V— F特性を持つ電圧制御発振器の前段に、ダイオードと抵抗からなるァ ナログ電圧変換回路を接続して V— F特性の線形生を向上し、 MMICとして一体ィ匕 可能な電圧制御発振器を提供でき、 FM— CWレーダ装置に適用できる。

Claims

請求の範囲
[1] 複数のダイオードと複数の抵抗との組合せでなり、入出力特性の傾きを複数段階に 変化させて入力電圧に対し非線形でかつ連続した出力を変換電圧として出力する 電圧変換回路と、
前記電圧変換回路から出力される変換電圧の低周波成分のみを通過させ発振周 波数成分を遮断する高周波遮断回路と、
前記高周波遮断回路を介した入力される変換電圧に基づいて発振周波数を設定 するための容量可変のバラクタダイオードをもつ同調回路と、
発振用の能動素子を有し、前記同調回路の出力に基づいて前記入力電圧に対し 線形な発振周波数を出力する能動回路と
を備えた電圧制御発振器。
[2] 請求項 1に記載の電圧制御発振器にお!、て、
前記電圧変換回路は、入力端子と出力端子との間にアノード端子を前記入力端子 側に向けて順次直列接続された複数のダイオードと、直列接続された複数のダイォ ードの接続体に並列接続された第 1の抵抗と、前記出力端子とグランドとの間に設け られた第 2の抵抗とから構成された
ことを特徴とする電圧制御発振器。
[3] 請求項 1に記載の電圧制御発振器にお!、て、
前記電圧変換回路は、入力端子と出力端子との間にアノード端子を前記入力端子 側に向けて順次直列接続された複数のダイオードと、各ダイオードのアノード端子と 出力端子との間にそれぞれ接続された複数の並列抵抗と、前記出力端子とグランド との間に設けられた抵抗とから構成された
ことを特徴とする電圧制御発振器。
[4] 請求項 1に記載の電圧制御発振器にお!、て、
前記電圧変換回路は、入力端子と出力端子との間にアノード端子を前記入力端子 側に向けて順次直列接続された複数のダイオードと、 1または複数直列接続されたダ ィオードのアノード端子と出力端子との間にそれぞれ接続された複数の並列抵抗と、 前記出力端子とグランドとの間に設けられた抵抗とから構成された ことを特徴とする電圧制御発振器。
[5] 請求項 1に記載の電圧制御発振器にお!、て、
前記高周波遮断回路として、インダクタを装荷した
ことを特徴とする電圧制御発振器。
[6] 請求項 1に記載の電圧制御発振器にお!、て、
前記高周波遮断回路として、抵抗を装荷した
ことを特徴とする電圧制御発振器。
[7] 請求項 1に記載の電圧制御発振器にお!、て、
前記高周波遮断回路として、低域通過フィルタを装荷した
ことを特徴とする電圧制御発振器。
[8] 請求項 1から 7までの 、ずれか 1項に記載の電圧制御発振器にお!、て、
電圧制御発振器を構成するすべての要素を同一の半導体プロセスにより同一の基 板上に作成した
ことを特徴とする電圧制御発振器。
[9] 請求項 1から 7までの 、ずれか 1項に記載の電圧制御発振器にお!、て、
前記電圧変換回路の複数のダイオードと、前記高周波遮断回路と、前記同調回路 と、前記能動回路とを同一の半導体プロセスにより同一の第 1の基板上に作成すると 共に、前記電圧変換回路の複数の抵抗のみを別の第 2の基板上に作成し、前記第 1 と第 2の基板をワイヤーで接続した
ことを特徴とする電圧制御発振器。
[10] 請求項 1から 7までの 、ずれか 1項に記載の電圧制御発振器にお!、て、
前記高周波遮断回路と、前記同調回路と、前記能動回路とを同一の半導体プロセ スにより同一の第 1の基板上に作成すると共に、前記電圧変換回路のみを別の第 2 の基板上に作成し、前記第 1と第 2の基板をワイヤーで接続した
ことを特徴とする電圧制御発振器。
PCT/JP2005/003477 2005-03-02 2005-03-02 電圧制御発振器 WO2006092855A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2005/003477 WO2006092855A1 (ja) 2005-03-02 2005-03-02 電圧制御発振器
JP2007505805A JP4607176B2 (ja) 2005-03-02 2005-11-09 電圧制御発振器
PCT/JP2005/020524 WO2006092890A1 (ja) 2005-03-02 2005-11-09 電圧制御発振器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2005/003477 WO2006092855A1 (ja) 2005-03-02 2005-03-02 電圧制御発振器

Publications (1)

Publication Number Publication Date
WO2006092855A1 true WO2006092855A1 (ja) 2006-09-08

Family

ID=36940901

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2005/003477 WO2006092855A1 (ja) 2005-03-02 2005-03-02 電圧制御発振器
PCT/JP2005/020524 WO2006092890A1 (ja) 2005-03-02 2005-11-09 電圧制御発振器

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/020524 WO2006092890A1 (ja) 2005-03-02 2005-11-09 電圧制御発振器

Country Status (2)

Country Link
JP (1) JP4607176B2 (ja)
WO (2) WO2006092855A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013510478A (ja) * 2009-11-09 2013-03-21 エプコス アクチエンゲゼルシャフト インピーダンス回路および信号変換のための方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013088380A (ja) * 2011-10-21 2013-05-13 Furukawa Co Ltd 携帯型放射線検出器

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4896837U (ja) * 1972-02-22 1973-11-16
JPS57178567A (en) * 1981-04-28 1982-11-02 Matsushita Electric Ind Co Ltd Function generator
JPS60232706A (ja) * 1984-04-23 1985-11-19 Yokogawa Hewlett Packard Ltd 変調信号発生用整形回路
JPS60233908A (ja) * 1984-05-07 1985-11-20 Maspro Denkoh Corp 電圧制御発振器
JPH0327115U (ja) * 1989-07-26 1991-03-19
JPH04261206A (ja) * 1991-01-18 1992-09-17 Mitsubishi Electric Corp 増幅器
JPH0525734U (ja) * 1991-09-10 1993-04-02 三菱電機株式会社 マイクロ波半導体モジユール
JPH05110432A (ja) * 1991-10-14 1993-04-30 Sharp Corp Pll周波数シンセサイザ
JP2002084135A (ja) * 2000-09-08 2002-03-22 Toyo Commun Equip Co Ltd 電圧制御型発振器

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4896837U (ja) * 1972-02-22 1973-11-16
JPS57178567A (en) * 1981-04-28 1982-11-02 Matsushita Electric Ind Co Ltd Function generator
JPS60232706A (ja) * 1984-04-23 1985-11-19 Yokogawa Hewlett Packard Ltd 変調信号発生用整形回路
JPS60233908A (ja) * 1984-05-07 1985-11-20 Maspro Denkoh Corp 電圧制御発振器
JPH0327115U (ja) * 1989-07-26 1991-03-19
JPH04261206A (ja) * 1991-01-18 1992-09-17 Mitsubishi Electric Corp 増幅器
JPH0525734U (ja) * 1991-09-10 1993-04-02 三菱電機株式会社 マイクロ波半導体モジユール
JPH05110432A (ja) * 1991-10-14 1993-04-30 Sharp Corp Pll周波数シンセサイザ
JP2002084135A (ja) * 2000-09-08 2002-03-22 Toyo Commun Equip Co Ltd 電圧制御型発振器

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013510478A (ja) * 2009-11-09 2013-03-21 エプコス アクチエンゲゼルシャフト インピーダンス回路および信号変換のための方法
US8965315B2 (en) 2009-11-09 2015-02-24 Epcos Ag Impedance circuit and method for signal transformation

Also Published As

Publication number Publication date
JPWO2006092890A1 (ja) 2008-08-07
WO2006092890A1 (ja) 2006-09-08
JP4607176B2 (ja) 2011-01-05

Similar Documents

Publication Publication Date Title
US8965315B2 (en) Impedance circuit and method for signal transformation
US6774736B1 (en) Voltage-controlled oscillator circuit for direct modulation
KR0184994B1 (ko) 능동 대역 통과 필터
US20140155003A1 (en) Quadrature hybrid coupler, amplifier, and wireless communication device
US6798678B2 (en) Frequency voltage converter
US8610477B2 (en) Wideband analog phase shifter
CN105790759B (zh) 用于压控振荡器的系统和方法
JPH07154182A (ja) アツテネータ回路
EP1143606A1 (en) Numerically controlled variable oscillator
JPH1056329A (ja) 周波数制御発振器
JP3956795B2 (ja) 変調機能付き電圧制御発振器
CN107040484A (zh) 混合模数脉宽调制器
US6784753B2 (en) Method for modulating an output voltage of a RF transmitter circuit, and RF transmitter circuit
WO2006092855A1 (ja) 電圧制御発振器
Vintola et al. Variable-gain power amplifier for mobile WCDMA applications
US7161437B2 (en) Voltage-controlled oscillator and quadrature modulator
CN100533982C (zh) 振荡电路
US20070237333A1 (en) FM transmitter using switched capacitor filter
KR20010007582A (ko) 송신회로 및 무선송신장치
US11201600B1 (en) Apparatus and methods for control and calibration of tunable filters
US7274276B2 (en) Amplifier circuit, gyrator circuit, filter device and method for amplifying a signal
JP4779305B2 (ja) 逓倍回路、発振回路、および無線通信装置
JP4704387B2 (ja) 電圧制御発振器
US7643808B2 (en) Device and method for mixing circuits
JP2005217562A (ja) 高周波電力増幅回路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

WWW Wipo information: withdrawn in national office

Country of ref document: RU

122 Ep: pct application non-entry in european phase

Ref document number: 05719792

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 5719792

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP