WO2006090873A1 - 燃料電池型酵素センサー - Google Patents

燃料電池型酵素センサー Download PDF

Info

Publication number
WO2006090873A1
WO2006090873A1 PCT/JP2006/303575 JP2006303575W WO2006090873A1 WO 2006090873 A1 WO2006090873 A1 WO 2006090873A1 JP 2006303575 W JP2006303575 W JP 2006303575W WO 2006090873 A1 WO2006090873 A1 WO 2006090873A1
Authority
WO
WIPO (PCT)
Prior art keywords
enzyme
fuel cell
glucose
electrode
sensor
Prior art date
Application number
PCT/JP2006/303575
Other languages
English (en)
French (fr)
Inventor
Koji Sode
Original Assignee
Ultizyme International Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ultizyme International Ltd. filed Critical Ultizyme International Ltd.
Priority to JP2007504832A priority Critical patent/JPWO2006090873A1/ja
Publication of WO2006090873A1 publication Critical patent/WO2006090873A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/001Enzyme electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/16Biochemical fuel cells, i.e. cells in which microorganisms function as catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to an enzyme sensor.
  • an enzyme is immobilized on the surface of an electrode such as an oxygen electrode or a hydrogen peroxide electrode, and the concentration of a compound that is a substrate of the enzyme is determined based on the enzyme reaction. It is a sensor to detect as.
  • the number of diabetic patients tends to increase year by year. Diagnosis of diabetes and the home management of patients are very important. Therefore, glucose sensors that can measure blood glucose level easily and quickly have been developed.
  • glucose oxidase As a glucose sensor element, glucose oxidase (GOD) is most often used.
  • the GOD glucose detection principle includes an oxygen electrode type that detects oxygen consumed in the oxidation reaction of GOD glucose, or a hydrogen peroxide electrode type that detects peroxyhydrogen generated.
  • oxygen electrode type that detects oxygen consumed in the oxidation reaction of GOD glucose
  • hydrogen peroxide electrode type that detects peroxyhydrogen generated.
  • mediator-type sensors have been developed since the 1980s that use various electron mediators to lower the applied potential.
  • GDH glucose dehydrogenase
  • PQQ GDH coenzyme-linked PQQ glucose dehydrogenase
  • a throw-away glucose sensor In a normal self blood glucose diagnostic device, a throw-away glucose sensor is used.
  • a blood sample obtained by self-collection is added to a sensor chip, and the sensor chip is inserted into a sensor body including a power source to which a potential can be applied.
  • Not suitable for monitoring In a recently developed continuous glucose monitoring system, the so-called Continuous Glucose Monitoring System (CGMS), a conventional enzyme sensor chip is attached to the body surface, and the sensor body including the power supply is fixed to the body. The purpose is to measure blood sugar.
  • CGMS Continuous Glucose Monitoring System
  • the fuel cell type glucose sensor is an enzyme fuel cell using glucose oxidase or glucose dehydrogenase as an anode, and using pyriluvate oxidase and laccase as a cathode.
  • This type of sensor does not require a potentiostat circuit to measure the electromotive force generated by passing the electrons generated by the enzyme reaction at the anode to the enzyme that performs the reduction reaction with a force sword.
  • the electromotive force of the fuel cell depends on the concentration of dalcose in the measurement cell, and the glucose concentration can be measured by measuring the electromotive force.
  • the electron transfer from the enzyme to the electrode is carried out via an artificial electron acceptor, a coenzyme or a metal complex dissolved in the measurement solution. Has been done.
  • the electron transfer from the enzyme to the electrode is performed through a polymer containing an electron acceptor such as an artificial electron acceptor, a coenzyme, or a metal complex as a constituent component. It has been broken. For this reason, the characteristics of the electrode are limited by the stability and solubility of the electron acceptor, and there is a drawback that the measurement background increases due to the reaction between the impurities and the electron acceptor.
  • an enzyme sensor chip is attached to the body surface, so that it can be used as an implantable fuel cell type enzyme sensor for the purpose of constantly measuring blood glucose. Applicability was limited.
  • Non-patent literature l Katz et al, J. Am. Chem. So 2001, 123, 10752-10753
  • an object of the present invention is to develop a “direct electron transfer type” fuel cell type enzyme sensor that does not require an electron acceptor.
  • the present invention uses a protein having an electron transfer function, and does not require the use of an artificial electron acceptor, a coenzyme, or a metal complex for electron transfer, and is a direct electron transfer fuel cell.
  • I will provide a.
  • electrons generated by an enzyme reaction can be transferred to an electrode via a protein having an electron transfer function, and the electrons can be transferred to an external electron acceptor with a force sword.
  • the present invention also provides a new principle of an enzyme sensor that can continuously measure the substrate concentration using the electromotive force of a direct electron transfer fuel cell as an index.
  • the present invention further transmits the signal of the electromotive force of the direct electron mobile fuel cell to the outside wirelessly using the transmitter, receives the signal of the electromotive force using the receiver, and then receives the received signal. It provides a new wireless enzyme sensor based on the principle of converting power signals into substrate concentrations and displaying them on a display.
  • the present invention relates to an anode on which an enzyme having oxidoreductase activity, a protein having a function of transmitting electrons generated by the enzyme reaction to an electrode, and a chemistry for reducing an oxidant.
  • an enzyme fuel cell comprising a force sword characterized by containing a catalyst, a metal catalyst, a biocatalyst, or a combination thereof.
  • the enzyme fuel cell of the present invention is a direct electron transfer enzyme fuel cell. It can be said that the battery.
  • electrons generated by the enzyme reaction on the anode are transferred to the electrode through a protein having an electron transfer function to generate electric power, and therefore depend on the concentration of the substance to be measured. The potential changes.
  • the enzyme used in the anode of the present invention is preferably an acid reductase.
  • a glucose acid enzyme is a glucose dehydrase enzyme.
  • a particularly preferred enzyme is glucose dehydrogenase containing pyroguchi quinolinine quinone (PQQ) or flavin adenyl dinucleotide (FAD) as a coenzyme.
  • the protein having an electron transfer function used in the present invention is preferably a cytochrome.
  • cytochrome C subunit of glucose dehydrogenase using cytochrome B562 or FAD as a coenzyme is particularly preferred.
  • the protein having an electron transfer function is present in the form of an enzyme subunit on the anode.
  • the glucose dehydrogenase complex with FAD as a coenzyme used in the following examples is composed of glucose dehydrogenase, coenzyme FAD, and electron carrier. It is a composite containing a certain cytochrome C subunit.
  • Such an enzyme complex has both a function as an oxidoreductase and an electron transfer function, and is particularly preferable for use on the anode in the present invention.
  • the enzyme on the anode itself further has an electron transfer function. That is, an enzyme having both an acid reductase activity and a function of transmitting electrons generated by the enzyme reaction to the electrode is immobilized on the anode.
  • an enzyme having both an acid reductase activity and a function of transmitting electrons generated by the enzyme reaction to the electrode is immobilized on the anode.
  • An example of such an enzyme is a fusion protein of PQQGDH and cytochrome (WO2005 / 03080 7).
  • the present invention provides a fuel cell type enzyme sensor characterized in that the concentration of a substrate for an enzyme reaction is measured using the electromotive force of the enzyme fuel cell of the present invention described above as an index.
  • the direct electron transfer type enzyme sensor of the present invention measures a target substance on the principle that the electromotive force of the direct electron transfer type enzyme fuel cell changes depending on the substance to be measured.
  • the electromotive force value is wireless from the transmission circuit.
  • the electromotive force value is amplified by an amplifier, is transmitted to the outside by radio circuit power, and is received by a receiving circuit.
  • it is composed of a disposable sensor chip comprising an enzyme fuel cell and a radio wave transmitter for transmitting the electromotive force of the enzyme fuel cell, and an external controller / power source for performing radio wave reception, signal conversion and display.
  • An enzyme sensor system can be constructed. The invention's effect
  • the present invention provides a novel principle of an enzyme sensor that can continuously measure the concentration of a substrate wirelessly and does not include a power source.
  • FIG. 1 shows a block diagram of a fuel cell type wireless enzyme sensor of the present invention.
  • FIG. 2 is a block diagram of a fuel cell type wireless enzyme sensor (including a signal amplifier (amplifier)) of the present invention.
  • FIG. 3 shows the glucose concentration dependence of the output of the enzyme fuel cell of the present invention.
  • FIG. 4 shows a schematic diagram of the principle of a direct electron transfer enzyme fuel cell.
  • FIG. 5 shows the glucose concentration dependence of the output of the enzyme fuel cell of the present invention.
  • FIG. 6 shows a schematic diagram of the principle of a direct electron transfer enzyme fuel cell.
  • FIG. 7 shows the glucose concentration dependence of the output of a direct electron transfer enzyme fuel cell.
  • FIG. 8 shows the glucose concentration dependence of the electromotive force of an enzyme fuel cell type enzyme sensor.
  • FIG. 9 shows the glucose concentration dependence of the electromotive force of an enzyme fuel cell type enzyme sensor.
  • FIG. 10 shows the glucose concentration dependence of the electromotive force of an enzyme fuel cell type enzyme sensor.
  • FIG. 11 shows the glucose concentration dependence of the electromotive force of an enzyme fuel cell type enzyme sensor.
  • FIG. 12 shows a change in voltage accompanying the addition of glucose.
  • FIG. 13 shows the glucose concentration dependence of the output voltage of the enzyme sensor.
  • FIG. 14 shows a change in voltage accompanying glucose supplementation.
  • FIG. 15 shows a change in voltage with the addition of glucose.
  • FIG. 16 shows the glucose concentration dependence of the output voltage of the enzyme sensor.
  • FIG. 17 shows a change in voltage accompanying glucose supplementation.
  • FIG. 18 shows the glucose concentration dependence of the output voltage of the enzyme sensor.
  • FIG. 19 shows a structure of a small electrode in which a needle-shaped anode and a force sword are integrally molded.
  • FIG. 20 is an enlarged view of the anode electrode part of the electrode shown in FIG.
  • FIG. 21 shows a structure of a small electrode in which a thin anode and a force sword are integrally formed.
  • FIG. 22 shows an example of measuring the substrate concentration in the intercellular fluid using an enzyme fuel cell.
  • FIG. 23 shows an example of use of a fuel cell type wireless enzyme sensor in blood glucose level monitoring.
  • Figure 24 shows an example of the use of a fuel cell type wireless enzyme sensor in animal experiments.
  • the present invention relates to an enzyme fuel cell for transferring electrons generated by an enzyme reaction to an electrode via a protein having an electron transfer function, and a concentration of a substrate for an enzyme reaction using the electromotive force of the enzyme fuel cell as an index.
  • a fuel cell type enzyme sensor is provided.
  • various acid reductases can be used.
  • alcohols that use FAD as a coenzyme glucose, cholesterol, fructosylamine, glycerin, uric acid oxidase
  • alcohols that use FAD as a coenzyme dalcose
  • glycerin dehydrogenase alcohols that use PQQ as a coenzyme
  • glucose And glycerin dehydrogenase when glucose is to be measured, a glucose dehydrogenase that uses darcosoxyenzyme or FAD or PQQ as a coenzyme is desired.
  • These enzymes can be microorganisms that produce the enzyme, cellular force isolated or purified enzymes Even enzymes produced recombinantly in E. coli, etc.
  • the fuel cell of the present invention is an enzyme fuel cell characterized in that a protein having an electron transfer function is fixed to an anode together with an oxidase or a dehydrase enzyme.
  • a combination of cytochrome B562 and glucose dehydrogenase using PQQ as a coenzyme is mentioned as a protein having an electron transfer function.
  • a dehydrogenase capable of directly transferring electrons to and from an electrode, such as an enzyme having a cytochrome electron transfer subunit, can be said to be an enzyme having both an acid reduction function and an electron transfer function.
  • Such an enzyme can constitute an anode without the addition of an electron transfer protein.
  • the force sword is equipped with a catalyst for reducing an oxidizing agent such as oxygen or ABTS.
  • the catalyst acts to oxidize the electron obtained by the enzyme reaction to the artificial electron acceptor and oxidize it on the electrode, and a chemical catalyst, a metal catalyst, a biocatalyst, and a combination force thereof are also selected.
  • biocatalysts enzymes used in force swords include 1S pyruvate and laccase, which are not particularly limited.
  • the catalyst may be a metal such as platinum.
  • Electrode materials for the anode and the force sword carbon electrodes, gold electrodes, platinum electrodes and the like can be used.
  • the enzyme in order to fix the enzyme to the electrode, the enzyme may be directly mixed with an electrode material such as carbon paste and attached to the electrode.
  • an immobilized enzyme may be prepared using a general enzyme immobilization method and mounted on the electrode.
  • Enzyme immobilization methods include, for example, cross-linking treatment with a bi-crosslinking reagent such as dartalaldehyde, inclusion in a synthetic polymer such as a photo-crosslinking polymer, a conductive polymer or an acid-reducing polymer, or a natural polymer matrix For example, fixing.
  • the enzyme thus prepared is mixed with a carbon paste, and optionally mixed with the carbon paste and further subjected to crosslinking treatment, and then the mixture is fixed on an electrode composed of carbon, gold, platinum, or the like.
  • a protein having an electron transfer function can be simultaneously immobilized on the electrode.
  • glucose dehydrogenase with PQQ as a coenzyme and cytochrome B562 are mixed, and this is further mixed with carbon paste and then frozen. dry. This is mounted on a carbon electrode and immersed in an aqueous solution of dartalaldehyde in this state to cross-link proteins to produce an enzyme electrode.
  • an oxidase or a dehydrogenase having a target substance to be measured as a substrate is fixed to the anode electrode. Constructing a battery by connecting a variable resistor between the anode and force sword, and measuring the concentration of the substrate by measuring the current or voltage obtained when a sample containing the substrate to be measured is added I can do it.
  • the electromotive force changes depending on the substrate concentration depending on the sample addition, and the concentration of the substrate can be measured by measuring the electromotive force. That is, the correlation between the electromotive force and the substrate concentration is recorded for a substrate having a known concentration in advance, and a calibration curve is created based on the correlation. Next, the substrate concentration in the test sample can be measured by comparing the electromotive force observed when the test sample with an unknown concentration is added to the calibration curve.
  • the present invention further provides a new wireless enzyme sensor based on the principle of the direct electron transfer fuel cell of the present invention described above.
  • this wireless enzyme sensor an electromotive force signal of a direct electron transfer fuel cell is transmitted wirelessly to the outside using a transmitting device, an electromotive force signal is received using a receiving device, and the received electromotive force signal is received. Is converted to substrate concentration and displayed on the display.
  • the outline of the configuration of the wireless enzyme sensor of the present invention is shown in FIGS.
  • the wireless module used in the present invention includes a transmitter that transmits radio waves and a receiver that receives radio waves, and preferably uses a small module.
  • the ARS Ni3 system is particularly preferred.
  • the enzyme fuel cell and the wireless module are directly connected, and the electromotive force of the enzyme fuel cell is input to the transmitter.
  • an amplifier can be added between the enzyme fuel cell and the wireless module for the purpose of signal amplification.
  • the signal transmitted / received between the wireless modules is preferably an electromotive force.
  • the sensor chip of the fuel cell type enzyme sensor can be composed of a fuel cell and a transmitter. Is possible.
  • FADGDH is mixed with carbon paste. After freeze-drying, fill the surface of the carbon paste electrode and cross-link with 1% dartalaldehyde to prepare the anode with immobilized enzyme.
  • a platinum electrode is used for the force sword.
  • the electromotive force changes in a concentration-dependent manner. Input the electromotive force as a signal to the transmitter, transmit device force Transfer the electromotive force to the external receiver by radio wave, and then use the calibration curve from the electromotive force value received by the external receiver in the test sample The dulcose concentration of can be measured.
  • FIG. 19 shows a structure of a small electrode for an enzyme fuel cell in which a needle-shaped anode and a force sword are integrally formed, and an enlarged view of the anode electrode portion is shown in FIG.
  • This electrode can be prepared by mixing an enzyme and carbon paste or platinum-supporting carbon, and attaching it to the tip of the anode electrode using a Nafion membrane that is an ion exchange membrane.
  • FIG. 21 shows the structure of a small electrode for an enzyme fuel cell in which a thin anode and a force sword are integrally molded. This electrode can be prepared by applying an ink containing platinum-supporting carbon, naphthion and enzyme on the electrode.
  • FIG. 22 shows an example of measuring the substrate concentration in the intercellular fluid using an enzyme fuel cell.
  • the electrode for the enzyme fuel cell integrated with the anode Z-force sword is inserted into the intercellular fluid phase, and the electrode and the data transmitter attached thereto are fixed to the skin surface with tape.
  • the substrate concentration in the intercellular fluid can be measured.
  • FIG. 23 shows an example of use of a fuel cell type wireless enzyme sensor in blood glucose level monitoring.
  • the enzyme fuel cell and the transmitter according to the present invention are fixed to the skin of the subject, and electromotive force data detected by the electrode is sent to the external receiver.
  • the external receiver converts the received data, processes it, and displays it on the monitor.
  • FIG. 24 shows a use example in an animal experiment of a fuel cell type wireless enzyme sensor.
  • An enzyme fuel cell was constructed using a glucose dehydrogenase complex (FAD-GDH-CytC) with FAD as a coenzyme at the anode and pyruvate oxidase as a force sword.
  • a thermostable glucose dehydrogenase complex using FAD as a coenzyme was prepared according to a conventional method, and fixed to the anode electrode.
  • the enzyme used was recombinantly produced using E. coli.
  • Glucose dehydrogenase complex 20U (290 g) was mixed with 20 mg of carbon paste and lyophilized. After thoroughly mixing this, the surface of the carbon paste electrode filled with about 40 mg of carbon paste was filled and polished on filter paper.
  • the electrodes were stirred in lOOmM potassium phosphate buffer (ppb) (pH 7.0) containing 1% glutaraldehyde for 30 minutes at room temperature and then in 10 mM Tris buffer (pH 7.0) for 20 minutes. Stir at room temperature. These electrodes were stirred in lOOmM p .pb (pH 7.0) for 1 hour or more at room temperature. This electrode was stored at 4 ° C in lOOmM ppb (pH 7.0) except during measurement.
  • ppb potassium phosphate buffer
  • the anode reaction solution was lOO mM ppb (pH 7.0) 9700 ⁇ 200 mM m-PMS ⁇ 1 (final concentration; 2 mM) and 2M glucose (final concentration; 40 mM) to make a total volume of 10 ml.
  • the force sword electrode was prepared by mixing Myrothecium sp.-derived pyrilbin oxidase (BOD) (provided by Amano Enzyme) with 20 mg of carbon paste and freeze-drying. The amount of enzyme used was 50 U. After this was mixed well, it was filled only on the surface of a carbon paste electrode that had already been filled with about 40 mg of carbon paste, and was polished on filter paper.
  • BOD Myrothecium sp.-derived pyrilbin oxidase
  • the sword reaction solution was lOOmM ppb (pH 7.0) 9800 ⁇ 25 mM ABTS 200 ⁇ ⁇ (final concentration: 0.5 mM) and the total amount was used as lOmM.
  • Each electrode and reaction solution are anodes
  • Each cell and power sword was set in a separate constant temperature cell, and a battery was constructed by connecting both cells with a salt bridge (2.17 M KCl solution solidified with 30% agarose).
  • a variable resistor and digital multimeter were connected between each electrode. The measurement was performed at 25 ° C. The load was changed stepwise from 1 ⁇ to 1 ⁇ with a variable resistor, and the current and voltage values obtained at that time were measured with a digital multimeter.
  • the anode, force sword and digital multimeter were connected in series when measuring the current value and connected in parallel when measuring the voltage.
  • the electric power was obtained by the product of the current value and the voltage value.
  • Figure 3 shows the dependence of the output and power of this battery on the coarse course. Electric power was obtained by adding glucose.
  • an enzyme fuel cell can be produced by using a glucose dehydrogenase complex containing FAD as a coenzyme for the anode and using pyruvic acid oxidase for the power sword.
  • FAD- GDH- CvtC Bilirubin hatched fuel ⁇ glucose dehydrogenase complex (FAD-GDH-CytC) with FAD as coenzyme is used as anode, and pyruvate is used as force sword
  • FAD-GDH-CytC glucose dehydrogenase complex
  • pyruvate is used as force sword
  • a direct electron transfer enzyme fuel cell was constructed without adding an electron acceptor to the anode.
  • a thermostable dalcose dehydrogenase complex using FAD as a coenzyme was prepared according to a conventional method, and an anode electrode was fixed. The enzyme used was recombinantly produced using E. coli.
  • Glucose dehydrogenase complex 20U (290 ⁇ g) was mixed with 20 mg of carbon paste and lyophilized.
  • the surface of the carbon paste electrode filled with about 40 mg of carbon paste was filled in advance and polished on filter paper.
  • These electrodes were stirred in lOOmM ppb (pH 7.0) containing 1% glutaraldehyde for 30 minutes at room temperature, and further stirred in 10 mM Tris buffer (pH 7.0) for 20 minutes at room temperature. These electrodes were stirred in lOOmM ppb (pH 7.0) for 1 hour or more at room temperature. This electrode was stored at 4 ° C in lOOmM ppb (pH 7.0) except during measurement.
  • the anode reaction solution was mixed with 10 OmM ppb (pH 7.0) 9700 ⁇ 200 mM m-PMS 100 / z 1 (final concentration; 2 mM) and 2 M dalcose (final concentration; 40 mM) to make a total volume of 10 ml.
  • the force sword electrode was prepared by mixing Myrothecium sp.-derived bilirubin oxidase (BOD) (provided by Amano Enzyme) with 20 mg of carbon paste and lyophilized. The amount of enzyme used was 50 U. After mixing this well, only on the surface of the carbon paste electrode that is already filled with about 40mg of carbon paste. Filled and polished on filter paper.
  • the anode, force sword and digital multimeter were connected in series when measuring the current value and connected in parallel when measuring the voltage.
  • the electric power was obtained by the product of the current value and the voltage value.
  • Fig. 4 shows the principle of the “direct electron transfer type” enzyme fuel cell.
  • Figure 5 shows the glucose dependence of the output and power of this battery. Electric power was obtained by adding glucose. In this way, the glucose dehydrogenase complex with FAD as a coenzyme is used for the anode, and the pyruvate zyme enzyme is used for the power sword, so that an electron acceptor is not added to the anode.
  • a fuel cell can be created.
  • Glucose dehydrogenase complex (FAD-GDH-CytC) with FAD as coenzyme is used as anode, platinum wire electrode is used as force sword, and electron acceptor is not added to measurement cell.
  • An enzyme fuel cell was constructed.
  • a thermostable darcos dehydrogenase complex using FAD as a coenzyme was prepared according to a conventional method, and an anode electrode was fixed. The enzyme used was recombinantly produced using E. coli.
  • Glucose dehydrogenase complex 1000 U was mixed with 20 mg of carbon paste and lyophilized. After this was mixed well, it was filled on the surface of a carbon paste electrode pre-filled with about 40 mg of carbon paste and polished on filter paper.
  • Electrodes were stirred in lOOmM ppb (pH 7.0) containing 1% glutaraldehyde for 30 minutes at room temperature, and further stirred in 10 mM Tris buffer (pH 7.0) for 20 minutes at room temperature. These electrodes were stirred in lOOmM ppb (pH 7.0) for 1 hour or more at room temperature. This electrode was stored at 4 ° C in lOOmM ppb (pH 7.0) except during measurement. A platinum electrode with a diameter of 3 mm was used as the force sword electrode. Anode and force sword electrode is lOOmM ppb (pH7.0) 10ml The battery was built in a constant temperature cell filled with Figure 6 shows the outline of the equipment.
  • the measurement was performed at 25 ° C. Also, the load was changed stepwise from 1 ⁇ to 1 ⁇ with a variable resistor, and the current and voltage values obtained at that time were measured with a digital multimeter.
  • the anode, force sword and digital multimeter were connected in series when measuring the current value and connected in parallel when measuring the voltage.
  • the electric power was obtained by the product of the current value and the voltage value.
  • Figure 7 shows the output of this battery and the output of this battery. Electric power was obtained by adding glucose. In this way, the glucose dehydrogenase complex with FAD as a coenzyme is used as the anode, and the platinum electrode is used as the force sword, so that no electron acceptor is added to the measurement cell, and the “direct electron transfer type” enzyme fuel is used. You can create a battery.
  • FAD- GDH- Cvt direct lightning early-type enzyme fueled lightning with a mesh mesh lightning
  • Direct electron transfer enzyme that uses FAD-coenzyme glucose dehydrogenase complex (FAD-GDH-CytC) as anode, platinum mesh electrode as force sword, and does not add electron acceptor to measurement cell
  • a fuel cell was constructed.
  • a thermostable glucose dehydrogenase complex using FAD as a coenzyme was prepared according to a conventional method, and an anode electrode was fixed.
  • the enzyme used was recombinantly produced using E. coli.
  • Glucose dehydrogenase complex 1000 U was mixed with 20 mg of carbon paste and lyophilized. After thoroughly mixing this, the surface of a carbon paste electrode pre-filled with about 40 mg of carbon paste was filled and polished on a filter paper.
  • Electrodes were stirred in lOOmM ppb (pH 7.0) containing 1% glutaraldehyde for 30 minutes at room temperature, and further stirred in 10 mM Tris buffer (pH 7.0) for 20 minutes at room temperature. These electrodes were stirred in lOOmM ppb (pH 7.0) for 1 hour or more at room temperature. This electrode was stored at 4 ° C in lOOmM ppb (pH 7.0) except during measurement. A platinum mesh electrode was used as the force sword electrode. The anode and force sword electrode were set in a constant temperature cell filled with 10 ml of lOOmM ppb (pH 7.0) to construct a battery.
  • Example 1 Using the enzyme fuel cell prepared in Example 1, an enzyme sensor was constructed and a dalucose was measured.
  • the enzyme fuel cell prepared in Example 1 was loaded with a resistance value (40 kQ), and the glucose concentration at the anode was increased gradually by OmM force, and the voltage value obtained for each glucose concentration was measured with a digital multimeter. did.
  • Figure 8 shows the dependence of the current, voltage, and power on the glucose concentration of a cell in which 20 U of the Darcos dehydrogenase catalytic subunit with FAD as a coenzyme is immobilized.
  • An electromotive force was obtained by adding glucose, and the potential increased depending on the concentration of dalcose.
  • the glucose concentration in the test sample can be measured from the electromotive force of the enzyme fuel cell.
  • Example 2 Using the enzyme fuel cell prepared in Example 2, the construction of the enzyme sensor and the measurement of dalcose were performed.
  • the enzyme fuel cell prepared in Example 2 was loaded with a resistance value (40 kQ), and the glucose concentration at the anode was increased stepwise by OmM force, and the voltage value obtained for each glucose concentration was measured with a digital multimeter. did.
  • Figure 9 shows the dependence of the current, voltage, and power on the glucose concentration of the battery with the 500U Dalcos dehydrogenase catalytic subunit using FAD as a coenzyme.
  • An electromotive force was obtained by adding glucose, and the potential increased depending on the concentration of dalcose.
  • the glucose concentration in the test sample can be measured from the electromotive force of the enzyme fuel cell.
  • FAD- GDH- CvtC Direct lightning using wire lightning pole Of enzyme sensor and glucose measurement
  • Example 3 Using the enzyme fuel cell prepared in Example 3, the construction of an enzyme sensor and the measurement of dalcose were performed.
  • the enzyme fuel cell created in Example 3 was loaded with a resistance value (40 kQ), and the glucose concentration at the anode was gradually increased by OmM force, and the voltage value obtained for each glucose concentration was measured with a digital multimeter. did.
  • Figure 10 shows the glucose concentration dependence of the current, voltage, and power of a cell with 1000 U of the Darcos dehydrogenase catalytic subunit with FAD as a coenzyme.
  • An electromotive force was obtained by adding glucose, and the potential increased depending on the glucose concentration.
  • the glucose concentration in the test sample can be measured from the electromotive force of the enzyme fuel cell.
  • Example 4 Using the enzyme fuel cell prepared in Example 4, an enzyme sensor was constructed and a dalucose measurement was performed.
  • the enzyme fuel cell created in Example 4 was loaded with a resistance value (40 kQ), and the glucose concentration at the anode was gradually increased by OmM force, and the voltage value obtained for each glucose concentration was measured with a digital multimeter. did.
  • Figure 11 shows the glucose concentration dependence of the current, voltage, and power of a battery with 1000 U of the Darcos dehydrogenase catalytic subunit with FAD as a coenzyme.
  • An electromotive force was obtained by adding glucose, and the potential increased depending on the glucose concentration.
  • the glucose concentration in the test sample can be measured from the electromotive force of the enzyme fuel cell.
  • a wireless glucose sensor that combines the direct electron transfer enzyme fuel cell type enzyme sensor constructed in Example 5 and a wireless system to measure glucose went.
  • Ni3 (ARS) was used for the wireless system.
  • the anode and force sword of the direct electron transfer enzyme fuel cell type enzyme sensor constructed in Example 5 were connected to the base board of the wireless system Ni3 (ARS) and transmitted at a frequency of 303.825 MHz.
  • the received signal was connected to Ni3 with Dock Yard, and numerical data was transferred to the PC.
  • Fig. 12 (a) shows the concentration dependence of the change in voltage due to glucose addition when the glucose concentration at the anode of the enzyme battery is increased stepwise by OmM and the voltage value obtained at each glucose concentration is measured with a digital multimeter. ).
  • Figure 12 (b) shows the signal sent wirelessly using Ni3. As shown in Fig. 12 (b), it was shown that the change in voltage due to glucose addition was transmitted to the outside wirelessly via the wireless system Ni3.
  • Figure 13 shows the dependence of the battery voltage on the Darcose concentration as received by the digital multimeter and the external receiver circuit. As shown in Fig. 13, the voltage value increased by the addition of dulcose was also obtained in the external receiver.
  • the voltage output of the enzyme fuel cell can be directly connected via the wireless system, and can be wirelessly transmitted to the external receiving device to measure the concentration of the dalcose in the test sample.
  • Enzyme fuel mine, type wireless glucose sensor structure and glucose tHil A wireless glucose sensor was constructed by combining the direct electron transfer enzyme fuel cell type enzyme sensor constructed in Example 7 and the wireless system. Measurements were taken. Ni3 (ARS) was used for the wireless system. The anode and force sword of the direct-electron transfer enzyme fuel cell type enzyme sensor constructed in Example 7 were connected to the base board of the wireless system Ni3 (ARS) and transmitted at a frequency of 303.825 MHz. The received signal was connected to Ni3 with Dock Yard, and numerical data was transferred to the PC. Fig.
  • FIG. 14 (a) shows the concentration dependence of the change in voltage due to glucose addition when the glucose concentration at the anode of the enzyme battery was increased stepwise by OmM and the voltage value obtained at each glucose concentration was measured with a digital multimeter. ).
  • Figure 14 (b) shows the signal sent wirelessly using Ni3. As shown in Fig. 14 (b), it was shown that the change in voltage due to the addition of glucose was transmitted wirelessly via the wireless system Ni3.
  • a direct glucose transfer enzyme fuel cell type enzyme sensor constructed in Example 7 and a wireless glucose sensor that combines a wireless system and an amplifier were constructed, Glucose was measured.
  • Ni3 (ARS) was used for the wireless system.
  • an operational amplifier was installed, and the 10 Board (ARS) was connected to Ni3 to amplify the input signal 10 times.
  • the anode and force sword of the direct electron transfer enzyme fuel cell type enzyme sensor constructed in Example 7 were connected to the amplifier, and the output of the amplifier was connected to the base board of the wireless system Ni3 (ARS). Transmitted at a frequency.
  • the received signal was connected to Ni3 with Dock Yard, and numerical data was transferred to the computer.
  • Fig. 15 (b) shows the signals sent wirelessly using Ni3.
  • Fig. 15 (b) it was shown that the change in voltage caused by the addition of glucose was transmitted to the outside wirelessly via the wireless system Ni3.
  • Figure 16 shows the dependence of the battery voltage on the dalcose concentration received by the digital multimeter and the external receiver circuit. As shown in Fig. 16, the voltage value increased by the addition of dull course was also obtained by the external receiver. In this way, the voltage output of the enzyme fuel cell is amplified by an amplifier, directly connected via a wireless system, and transmitted to an external receiver wirelessly, thereby measuring the glucose concentration in the test sample. it can.
  • Enzyme fuel storm pond type enzyme sensor Construction of wireless glucose sensor combined with wireless system and amplifier and measurement of glucose
  • a direct glucose transfer enzyme fuel cell type enzyme sensor constructed in Example 8 was combined with a wireless system and an amplifier to construct a wireless glucose sensor, and glucose was measured.
  • Ni3 (ARS) was used for the wireless system.
  • an operational amplifier was installed, and the 10 Board (ARS) was connected to Ni3 to amplify the input signal 10 times.
  • the anode and force sword of the direct electron transfer enzyme fuel cell type enzyme sensor constructed in Example 8 were connected to the amplifier, and the output of the amplifier was connected to the base board of the wireless system Ni3 (ARS). Transmitted at a frequency.
  • the received signal was connected to Ni3 with Dock Yard, and numerical data was transferred to the computer. Increase the glucose concentration at the anode of the enzyme battery step by step with OmM force.
  • Figure 17 (a) shows the concentration dependence of the change in voltage associated with the addition of glucose when the voltage value obtained with the glucose concentration is measured with a digital multimeter.
  • Figure 17 (b) shows the signal sent wirelessly using Ni3. As shown in Fig. 17 (b), it was shown that the voltage change due to the addition of dulcose was transmitted to the outside wirelessly via the wireless system Ni3.
  • Fig. 18 shows the dependence of the battery voltage on the dalcose concentration received by the digital multimeter and the external receiver circuit. As shown in Fig. 18, the voltage value increased by the addition of dull course was also obtained by the external receiver.
  • the obtained signal intensity was three times that of Example 11, a high electromotive force was obtained by increasing the surface area of platinum of the force sword.
  • the voltage output of the enzyme fuel cell is amplified by an amplifier, connected directly via a wireless system, and then transmitted wirelessly to an external receiving device, whereby the glucose concentration in the test sample can be determined. It can be measured.
  • the enzyme fuel cell type enzyme sensor of the present invention is useful for blood glucose level measurement, and is particularly useful for blood glucose level monitoring by a wireless system.

Abstract

 酸化還元酵素活性を有する酵素と、その酵素反応により生じた電子を電極に伝達する機能を有する蛋白質とが固定されているアノードと、 酸化剤を還元するための化学触媒、金属触媒、生体触媒またはそれらの組み合わせを含むことを特徴とするカソードと、 から構成されることを特徴とする酵素燃料電池が開示される。また、本発明の酵素燃料電池の起電力を指標として酵素反応の基質の濃度を測定することを特徴とする、燃料電池型酵素センサー、特にワイヤレス型酵素センサーが開示される。      

Description

明 細 書
燃料電池型酵素センサー
技術分野
[0001] 本発明は、酵素センサーに関する。
背景技術
[0002] 酵素センサーとは、酸素電極、過酸化水素電極等の電極表面上に酵素が固定ィ匕 されており、その酵素反応に基づいて、酵素の基質である化合物の濃度を電極の信 号として検出するセンサーである。糖尿病患者は年々増加する傾向にあり、糖尿病 の診断や、患者の在宅管理が非常に重要であるため、血糖値を簡便かつ迅速に測 定しうるグルコースセンサーが開発されている。
[0003] グルコースセンサー素子としては、グルコースォキシダーゼ(GOD)が最もよく用い られている。 GODのグルコースの検出原理としては、 GODのグルコースの酸化反応 の際に消費される酸素を検出する酸素電極型、または生成される過酸ィ匕水素を検出 する過酸化水素電極型がある。しかしこれらの方法では高い印加電位のため、測定 値が血液中の他の酸ィ匕還元物質に影響を受ける。このため、 1980年代からは様々 な電子メディエーターを用いて印加電位をさげる、メディエーター型のセンサーが開 発されてきている。
[0004] GODは、溶存酸素濃度が高くなると電子をメディエーターではなく酸素にも渡して しまうため、正確な測定ができない。そこで、溶存酸素濃度に影響されないメディエー ター型の理想的なセンサー素子として、グルコース脱水素酵素(GDH)が注目される ようになった。 GDHのなかでも、補酵素結合型の PQQグルコース脱水素酵素(PQQ GDH)は、触媒活性が高ぐターンオーバー数が高いため、フエナジンメトサルフエ ートなどのメディエーターを用いた場合、応答電流値が高ぐ応答時間もはやい。つ まり、正確で迅速な測定が可能である。また、補酵素結合型であるため反応溶液中 に高価な補酵素を添加する必要がない。さらに、酵素が水溶性であれば緩衝溶液中 に界面活性剤が不要であり、取り扱いが容易であるという利点があるため、 Acinetob acter calcoaceticus由来の水溶性 PQQGDH (PQQGDH— B)はグルコースセ ンサ一の素子として非常に理想的である。
[0005] これらの酸化還元酵素を酵素電極に応用する場合、酵素反応の結果還元する電 子受容体を再酸ィヒするために一定の電位を印加する必要があり、そのための外部か らの電力供給が不可欠である。さらに電位を加えるために、酵素反応の結果生じた 還元物質の他、例えば生体中に存在する種々の化合物が電極上で酸化され、夾雑 シグナルを呈すると 、う問題もある。
[0006] 通常の自己血糖診断装置では、使 、捨て型のグルコースセンサーが用いられて ヽ る。このセンサーでは、自己採血により得た血液試料をセンサーチップに添加し、そ のセンサーチップを電位が印加できる電源を含むセンサー本体に差込むことにより、 血糖値を計測するため、常時、血糖値をモニタリングするには適さない。また、最近 開発されてきた連続グルコースモニタリングシステム、いわゆる Continuous Glucose Monitoring System (CGMS)においては、従来の酵素センサーチップを体表に装着 し、電源を含むセンサー本体を身体に固定することで、常時、血糖を測定することを 目的としている。しかし、今までに製品化されている CGMSでは、センサー本体に電 源ならびにポテンシヨスタツト回路を設けることが必要なことから、原理的に微細化す ることは困難である。
[0007] ポテンシヨスタツト回路を必要としな 、燃料電池型グルコースセンサーが提案されて いる。燃料電池型グルコースセンサーは、グルコース酸ィ匕酵素もしくはグルコース脱 水素酵素をアノードに用い、ピリルビン酸酸化酵素、ラッカーゼをカソードに用いた酵 素燃料電池である。このタイプのセンサーは、アノードでの酵素反応によって生じる 電子を力ソードで還元反応を行う酵素に渡すことにより生じる起電力を測定するため 、ポテンシヨスタツト回路を必要としない。燃料電池の起電力は測定セル内のダルコ ース濃度に依存しており、起電力を測定することによりグルコース濃度を測定すること ができる。
[0008] しかし、現在までに報告されている燃料電池型グルコースセンサーにおいては、酵 素から電極への電子移動は、測定溶液中に溶解している人工電子受容体、補酵素 、金属錯体を介して行われている。もしくは酵素から電極への電子移動は、人工電子 受容体、補酵素、金属錯体などの電子受容体を構成成分に含むポリマーを介して行 われている。このため、電子受容体の安定性や溶解性により電極の特性が制限され 、夾雑物と電子受容体との反応により測定のバックグラウンドが高くなるという欠点が ある。さらに電子受容体はインビボでの使用に適していないため、酵素センサーチッ プを体表に装着して、常時、血糖を測定することを目的としている体内埋込型の燃料 電池型酵素センサーへの適用が制限されて 、た。
非特許文献 l : Katz et al, J.Am.Chem.So 2001, 123, 10752- 10753
発明の開示
発明が解決しょうとする課題
[0009] したがって、本発明は、電子受容体を必要としない"直接電子伝達型"の燃料電池 型酵素センサーを開発することを目的とする。 課題を解決するための手段
[0010] 本発明は、電子伝達機能を有する蛋白質を利用することにより、電子伝達のために 人工電子受容体、補酵素または金属錯体を利用することを必要としな 、直接電子移 動型燃料電池を提供する。本発明の直接電子移動型燃料電池では、酵素反応によ り生じた電子を、電子伝達機能を有する蛋白質を介して電極に移動させて、電子を 力ソードで外部電子受容体に渡すことができる。本発明はまた、直接電子移動型燃 料電池の起電力を指標として連続的に基質の濃度が計測できる酵素センサーの新 しい原理を提供する。本発明はさらに、直接電子移動型燃料電池の起電力のシグナ ルを送信装置を用いて外部に無線で送信し、この起電力のシグナルを受信装置を 用いて受信し、次に、受信した起電力のシグナルを基質濃度に変換し、ディスプレイ に表示する、 t 、う原理に基づく新 、ワイヤレス酵素センサーを提供する。
[0011] 本発明は、酸化還元酵素活性を有する酵素と、その酵素反応により生じた電子を 電極に伝達する機能を有する蛋白質とが固定されているアノードと、酸化剤を還元す るための化学触媒、金属触媒、生体触媒またはそれらの組み合わせを含むことを特 徴とする力ソードとから構成される酵素燃料電池を提供する。
[0012] 本発明においては、アノード上に電子伝達機能を有する蛋白質を用いることにより 、アノードでの酵素反応により生じた電子を他の電子受容体を介することなく電極に 伝達することができる。すなわち、本発明の酵素燃料電池は直接電子移動型酵素燃 料電池ということができる。本発明の酵素燃料電池では、アノード上の酵素反応によ り生じた電子を、電子伝達機能を有する蛋白質を介して電極に移動させ、電力を発 生するため、測定対象物質濃度に依存して電位が変化する。
[0013] 本発明のアノードにおいて用いられる酵素は、好ましくは酸ィ匕還元酵素であり、特 にグルコースを計測対象とする場合は、グルコース酸ィ匕酵素ある 、はグルコース脱水 素酵素である。特に好ましい酵素は、補酵素としてピロ口キノリニンキノン (PQQ)ある いはフラビンアデ-ンジヌクレオチド (FAD)を含むグルコース脱水素酵素である。
[0014] 本発明において用いられる、電子伝達機能を有する蛋白質は、好ましくはチトク口 ムである。特に好ましくはチトクロム B562、もしくは FADを補酵素とするグルコース脱 水素酵素のチトクロム Cサブユニットである。
[0015] 本発明の 1つの好ましい態様においては、電子伝達機能を有する蛋白質はァノー ド上の酵素のサブユニットの形で存在する。例えば、下記の実施例において用いら れる、 FADを補酵素とするグルコース脱水素酵素複合体 (FAD-GDH-CytC)は、グ ルコース脱水素酵素と、補酵素である FADと、電子伝達体であるチトクロム Cサブュ ニットとを含む複合体である。このような酵素複合体は、酸化還元酵素としての機能と 電子伝達機能とを兼ね備えており、本発明にお 、てアノード上で用いるのに特に好 ましい。
[0016] また別の好ましい態様においては、アノード上の酵素はそれ自体さらに電子伝達機 能をも有する。すなわち、アノード上には、酸ィ匕還元酵素活性とその酵素反応により 生じた電子を電極に伝達する機能との両方を有する酵素が固定化されている。この ような酵素の例としては、 PQQGDHとチトクロームとの融合蛋白質 (WO2005/03080 7)が挙げられる。
[0017] さらに別の観点においては、本発明は、上述の本発明の酵素燃料電池の起電力を 指標として酵素反応の基質の濃度を測定することを特徴とする燃料電池型酵素セン サーを提供する。本発明における直接電子移動型酵素センサーは、直接電子移動 型酵素燃料電池の起電力が測定対象物質に依存して変化することを原理として対 象物質を測定する。
[0018] 好ましくは、本発明の燃料電池型酵素センサーは、起電力値が発信回路から無線 で外部に発信され、受信回路により受信されるワイヤレス型の酵素センサーである。 ワイヤレス型の酵素センサーの好ましい態様においては、起電力値はアンプにより増 幅されて発信回路力 無線で外部に発信され、受信回路により受信される。本発明 にしたがって、酵素燃料電池と酵素燃料電池の起電力を送信する電波送信部から 構成される使い捨てセンサーチップと、電波受信、信号変換および表示を行う外部コ ントローラ/電源部とから構成される酵素センサーシステムを構築することができる。 発明の効果
[0019] 本発明によりワイヤレスで連続的に基質の濃度が計測できかつ、電源を含まない酵 素センサーの新 、原理が提供される。
図面の簡単な説明
[0020] [図 1]図 1は、本発明の燃料電池型ワイヤレス酵素センサーのブロック図を表す。
[図 2]図 2は、本発明の燃料電池型ワイヤレス酵素センサー (信号増幅部 (アンプ)を 含む)のブロック図を表す。
[図 3]図 3は、本発明の酵素燃料電池の出力のグルコース濃度依存性を示す。
[図 4]図 4は、直接電子移動型酵素燃料電池の原理概略図を示す。
[図 5]図 5は、本発明の酵素燃料電池の出力のグルコース濃度依存性を示す。
[図 6]図 6は、直接電子移動型酵素燃料電池の原理概略図を示す。
[図 7]図 7は、直接電子移動型酵素燃料電池の出力のグルコース濃度依存性を示す
[図 8]図 8は、酵素燃料電池型酵素センサーの起電力のグルコース濃度依存性を示 す。
[図 9]図 9は、酵素燃料電池型酵素センサーの起電力のグルコース濃度依存性を示 す。
[図 10]図 10は、酵素燃料電池型酵素センサーの起電力のグルコース濃度依存性を 示す。
[図 11]図 11は、酵素燃料電池型酵素センサーの起電力のグルコース濃度依存性を 示す。
[図 12]図 12は、グルコース添加に伴う電圧の変化を示す。 [図 13]図 13は、酵素センサーの出力電圧のグルコース濃度依存性を示す。
[図 14]図 14は、グルコース添カ卩に伴う電圧の変化を示す。
[図 15]図 15は、グルコース添加に伴う電圧の変化を示す。
[図 16]図 16は、酵素センサーの出力電圧のグルコース濃度依存性を示す。
[図 17]図 17は、グルコース添カ卩に伴う電圧の変化を示す。
[図 18]図 18は、酵素センサーの出力電圧のグルコース濃度依存性を示す。
[図 19]図 19は、針状のアノードと力ソードとを一体型に成形した小型電極の構造を示 す。
[図 20]図 20は、図 19に記載の電極のアノード電極部の拡大図を示す。
[図 21]図 21は、薄型のアノードと力ソードとを一体型に成形した小型電極の構造を示 す。
[図 22]図 22は、酵素燃料電池を用いた細胞間出液中の基質濃度測定の例を示す。
[図 23]図 23は、燃料電池型ワイヤレス酵素センサーの血糖値モニタリングにおける 使用例を示す。
[図 24]図 24は、燃料電池型ワイヤレス酵素センサーの動物実験における使用例を示 す。
発明を実施するための最良の形態
[0021] 本発明は、酵素反応により生じた電子を電子伝達機能を有する蛋白質を介して電 極に移動させる酵素燃料電池、ならびにこの酵素燃料電池の起電力を指標として酵 素反応の基質の濃度を測定することを特徴とする燃料電池型酵素センサーを提供す る。
[0022] 本発明のアノードに固定ィ匕する酵素としては、種々の酸ィ匕還元酵素を用いることが できる。例えば FADを補酵素とするアルコール、グルコース、コレステロール、フルク トシルァミン、グリセリン、尿酸の酸化酵素、 FADを補酵素とするアルコール、ダルコ ース、グリセリンの脱水素酵素、 PQQを補酵素とするアルコール、グルコース、グリセ リンの脱水素酵素などがあげられる。特にグルコースを測定対象とする場合はダルコ 一ス酸ィ匕酵素や FADもしくは PQQを補酵素とするグルコース脱水素酵素が望ま ヽ 。これらの酵素は、該酵素を産生する微生物、細胞力 単離精製した酵素でもよぐ 大腸菌などで組換え生産された酵素でもよ 、。
[0023] 本発明の燃料電池は、電子伝達機能を有する蛋白質が、酸化酵素あるいは脱水 素酵素と共にアノードに固定されていることを特徴とする酵素燃料電池である。典型 的には電子伝達機能を有する蛋白質としてチトクロム B562と、 PQQを補酵素とする グルコース脱水素酵素との組み合わせが挙げられる。また、シトクローム電子伝達サ ブユニットを有する酵素などの、電極と直接電子移動を行える脱水素酵素は、酸ィ匕 還元機能と電子伝達機能を合わせて有する酵素であるということができる。このような 酵素は、電子伝達蛋白質を別途添加しないでアノードを構成できる。
[0024] 力ソードには、酸素または ABTS等の酸化剤を還元するための触媒が装着されて いる。触媒は、酵素反応により得られた電子を人工電子受容体に渡し、これを電極上 で酸化するよう作用し、化学触媒、金属触媒、生体触媒およびそれらの組み合わせ 力も選択される。力ソードに用いる生体触媒 (酵素)の例としては、特に限定されない 1S ピリルビン酸ィ匕酵素やラッカーゼが挙げられる。あるいは触媒は白金などの金属 でもよい。
[0025] アノードおよび力ソードの電極材料としては炭素電極、金電極、白金電極などを用 いることがでさる。
[0026] 本発明において酵素を電極に固定するためには、酵素をそのままカーボンペースト などの電極材料と混合して電極に装着すればよい。あるいは一般の酵素固定化方法 を用いて固定ィ匕酵素を調製し、これを電極上に装着してもよい。酵素の固定化方法 としては、例えば、ダルタルアルデヒドなどの二架橋性試薬による架橋処理、光架橋 性ポリマーや導電性ポリマーや酸ィ匕還元ポリマーなどの合成ポリマーあるいは天然 高分子マトリックス中への包括固定などがあげられる。このようにして調製した酵素を カーボンペーストと混合し、場合によりカーボンペーストと混合した後にさらに架橋処 理した後に、この混合物をカーボンあるいは金、あるいは白金などで構成される電極 上に固定する。
[0027] また、電極上に酵素を固定するときに、電子伝達機能を有する蛋白質を同時に電 極上に固定することも可能である。例えば、 PQQを補酵素とするグルコース脱水素 酵素とチトクロム B562とを混合し、これをさらにカーボンペーストと混合した後に凍結 乾燥する。これをカーボン電極上に装着し、その状態でダルタルアルデヒド水溶液に 浸し、蛋白質を架橋し、酵素電極を作成する。
[0028] 本発明の酵素燃料電池においては、計測すべき対象物質を基質とする酸化酵素 あるいは脱水素酵素がアノード電極に固定されている。アノードと力ソード間を可変 抵抗器でつないで電池を構築し、測定対象基質を含む試料を添加したときに得られ る電流値あるいは電圧値を計測することにより、その基質の濃度を測定することがで きる。
[0029] 特に、試料添カ卩によって、基質濃度依存的に起電力が変化し、この起電力を測定 することで、該基質の濃度を計測できる。すなわち、あらかじめ既知の濃度の基質に ついて、起電力と基質濃度との相関を記録し、それにもとづく校正曲線を作成する。 次に、未知の濃度の被検試料を添加したときに観測される起電力を校正曲線と比較 することにより、被検試料中の基質濃度を測定できる。
[0030] 本発明はさらに、上述の本発明の直接電子移動型燃料電池の原理に基づく新しい ワイヤレス酵素センサーを提供する。このワイヤレス酵素センサーでは、直接電子移 動型燃料電池の起電力のシグナルを送信装置を用いて外部に無線で送信し、受信 装置を用いて起電力のシグナルを受信し、受信した起電力のシグナルを基質濃度に 変換し、ディスプレイに表示する。本発明のワイヤレス酵素センサーの構成の概略を 図 1および図 2に示す。本発明において用いるワイヤレスモジュールは、電波を送信 する送信機と受信する受信機力 構成されるものであり、好ましくは小型のものを用 いる。特に好ましくは、 ARS社の Ni3システムである。酵素燃料電池とワイヤレスモジュ ールを直接つなぎ、酵素燃料電池の起電力を送信機に入力する。また、酵素燃料電 池とワイヤレスモジュールの間に、信号の増幅を目的としてアンプを増結することがで きる。
[0031] 本発明においては、好ましくはワイヤレスモジュール間で送受信される信号は起電 力である。ワイヤレスモジュールに入力される信号を変換せず、外部受信部において 基質濃度に変換することにより、燃料電池型酵素センサーのセンサーチップを燃料 電池と送信機で構成することができ、装置の小型化が可能である。
[0032] たとえば、グルコースを計測する場合には、 FADGDHをカーボンペーストと混合し て凍結乾燥後、カーボンペースト電極の表面に充填し、 1%ダルタルアルデヒドで架 橋処理して、酵素が固定されたアノードを調製する。力ソードには白金電極を用いる 。両極間を可変抵抗器でつないで電池を構築し、グルコースを含む被検試料を添カロ すると、濃度依存的に起電力が変化する。起電力を送信装置にシグナルとして入力 し、送信装置力 外部受信装置に電波により起電力を転送し、次に外部受信装置で 受け取つた起電力の値から、校正曲線を用 、て被検試料中のダルコース濃度を計 測できる。
[0033] 本発明の酵素燃料電池および燃料電池型酵素センサーの応用の具体例を図 19 —24に示す。図 19は、針状のアノードと力ソードとを一体型に成形した酵素燃料電 池用の小型電極の構造を示し、そのアノード電極部の拡大図を図 20に示す。この電 極は、酵素とカーボンペーストまたは白金担持カーボンを混合し、イオン交換膜であ るナフイオン (Nafion)膜を用いてアノード電極の先端部に装着することにより作成す ることができる。また、図 21は、薄型のアノードと力ソードとを一体型に成形した酵素 燃料電池用の小型電極の構造を示す。この電極は、白金担持カーボンとナフイオン と酵素とを含むインクを電極上に塗布することにより作成することができる。
[0034] 図 22は、酵素燃料電池を用いた細胞間出液中の基質濃度測定の例を示す。ァノ ード Z力ソード一体型の酵素燃料電池用電極を細胞間出液相中に挿入し、電極とこ れに取り付けられたデーター送信機をテープで皮膚表面に固定する。電極で検出さ れる起電力のデーターを送信機を介して外部受信機に送信し、さらにデーターを変 換、処理することにより、細胞間出液中の基質濃度を測定することができる。図 23は 、燃料電池型ワイヤレス酵素センサーの血糖値モニタリングにおける使用例を示す。 本発明にしたがう酵素燃料電池と送信機を被験者の皮膚に固定し、電極で検出され る起電力のデーターを外部受信機に送る。外部受信機では、受け取ったデーターを 変換、処理して、モニターに表示する。血糖値の値が予め設定した値を超えたときに 警告音を発生するように設定してもよい。図 24は、燃料電池型ワイヤレス酵素センサ 一の動物実験における使用例を示す。本発明にしたがう小型の燃料電池型酵素セ ンサ一とデーター送信機とを実験動物の皮膚に固定し、電極で検出される起電力の データーを外部受信機に送ることにより、実験動物の血糖値を連続的にモニタリング することができる。
[0035] 本明細書において明示的に引用される全ての特許および参考文献の内容は全て 本明細書の一部としてここに引用する。また,本出願が有する優先権主張の基礎とな る出願である日本特許出願 2005— 50737号の明細書および図面に記載の内容は 全て本明細書の一部としてここに引用する。
実施例
[0036] 以下に実施例により本発明をより詳細に説明するが,これらの実施例は本発明の 範囲を制限するものではな 、。
[0037] ¾細
FAD- GDH-CvtC ビリルビン酸酴化酵素 用いた酵素燃料雷湘,
FADを補酵素とするグルコース脱水素酵素複合体 (FAD-GDH-CytC)をアノード に用い、ピリルビン酸酸ィ匕酵素を力ソードに用いて酵素燃料電池を構築した。 FAD を補酵素とする耐熱性のグルコース脱水素酵素複合体を常法に従!ヽ調製し、ァノー ド電極に固定した。酵素は大腸菌を用いて組換え生産したものを用いた。グルコース 脱水素酵素複合体 20U (290 g)をカーボンペースト 20mgと混合し凍結乾燥した。こ れをよく混合した後、あら力じめカーボンペーストが約 40mg充填されたカーボンぺー スト電極の表面に充填し、濾紙上で研磨した。これらの電極を、 1%のグルタルアルデ ヒドを含む lOOmM リン酸カリウムバッファ(p.p.b.) (pH7.0)中で 30分室温で撹拌し、さ らに 10mM Trisバッファ (pH7.0)中で 20分室温で攪拌した。これらの電極は lOOmM p .p.b. (pH7.0)中で 1時間以上室温で撹拌した。この電極は測定時以外は lOOmM p. p.b. (pH7.0)中で、 4°Cで保存した。アノード反応液は lOOmM p.p.b. (pH7.0) 9700 μ 200mM m-PMS ΙΟΟ 1 (終濃度; 2mM)、 2M グルコース (終濃度; 40mM)を混合 し全量を 10mlとした。力ソード電極は Myrothecium sp.由来ピリルビン酸化酵素(Bilir ubin Oxidase; BOD) (天野ェンザィム社提供)をカーボンペースト 20mgと混合し凍 結乾燥した。用いる酵素量は 50Uとした。これをよく混合した後、すでにカーボンぺー ストが約 40mg充填されたカーボンペースト電極の表面だけに充填し、濾紙上で研磨 した。力ソード反応溶液は lOOmM p.p.b. (pH7.0) 9800 μ 25mM ABTS 200 μ \ ( 終濃度; 0.5mM)を混合し全量を lOmMとして用いた。各電極と反応溶液を、アノード および力ソードのそれぞれについて別の恒温セルにセットし、両セル間を塩橋(2.17 M KC1溶液を 30%ァガロースで固めたもの)でつないで電池を構築した。各電極間 には可変抵抗器、デジタルマルチメータを接続した。測定は 25°Cで行なった。また可 変抵抗器にて負荷を 1 Ωから 1Μ Ωまで段階的に変化させ、そのとき得られる電流値と 電圧値をデジタルマルチメータで測定した。アノードおよび力ソードとデジタルマルチ メータは電流値測定の際には直列に、電圧測定の際には並列につないで測定した。 電力は電流値と電圧値の積によって求めた。図 3に本電池の出力ならびに電力のグ ルコース依存性を示す。グルコースの添カ卩により電力が得られた。このように FADを 補酵素とするグルコース脱水素酵素複合体をアノードに用い、ピリルビン酸酸化酵素 を力ソードに用いることで酵素燃料電池を作成できる。
実飾 12
FAD- GDH- CvtC ビリルビン 酴化 ま 用いた き燃料 湘, FADを補酵素とするグルコース脱水素酵素複合体 (FAD-GDH-CytC)をアノード に用い、ピリルビン酸酸ィ匕酵素を力ソードに用いて、アノードに電子受容体を添加し な ヽ直接電子移動型酵素燃料電池を構築した。 FADを補酵素とする耐熱性のダル コース脱水素酵素複合体を常法に従い調製し、アノード電極を固定した。酵素は大 腸菌を用いて組換え生産したものを用いた。グルコース脱水素酵素複合体 20U (290 μ g)をカーボンペースト 20mgと混合し凍結乾燥した。これをよく混合した後、あらかじ めカーボンペーストが約 40mg充填されたカーボンペースト電極の表面に充填し、濾 紙上で研磨した。これらの電極を、 1%のグルタルアルデヒドを含む lOOmM p.p.b.(pH 7.0)中で 30分室温で撹拌し、さらに 10mM Trisバッファ (pH7.0)中で 20分室温で攪拌 した。これらの電極は lOOmM p.p.b.(pH7.0)中で 1時間以上室温で撹拌した。この電 極は測定時以外は lOOmM p.p.b.(pH7.0)中で、 4°Cで保存した。アノード反応液は 10 OmM p.p.b.(pH7.0) 9700 μ 200mM m-PMS 100 /z 1(終濃度; 2mM)、 2Mダルコ一 ス (終濃度; 40mM)を混合し全量を 10mlとした。力ソード電極は Myrotheciumsp.由来ビ リルビン酸化酵素(Bilirubin Oxidase;BOD) (天野ェンザィム社提供)をカーボンぺ 一スト 20mgと混合し凍結乾燥した。用いる酵素量は 50Uとした。これをよく混合した後 、すでにカーボンペーストが約 40mg充填されたカーボンペースト電極の表面だけに 充填し、濾紙上で研磨した。力ソード反応溶液は lOOmM p.p.b. (pH7.0) 9800 1、 25mM ABTS 1 (終濃度; 0.5mM)を混合し全量を lOmMとして用いた。各電極 および反応溶液を、アノードおよび力ソードのそれぞれにつ 、て別の恒温セルにセッ トし、両セル間を塩橋(2.17M KC1溶液を 30%ァガロースで固めたもの)でつないで 電池を構築した。各電極間には可変抵抗器、デジタルマルチメータを接続した。測 定は 25°Cで行なった。また可変抵抗器にて負荷を 1 Ωから 1M Ωまで段階的に変化さ せ、そのとき得られる電流値と電圧値をデジタルマルチメータで測定した。アノードお よび力ソードとデジタルマルチメータは電流値測定の際には直列に、電圧測定の際 には並列につないで測定した。電力は電流値と電圧値の積によって求めた。 "直接 電子移動型"の酵素燃料電池の原理図を図 4に示す。図 5に本電池の出力ならびに 電力のグルコース依存性を示す。グルコースの添カ卩により電力が得られた。このよう に FADを補酵素とするグルコース脱水素酵素複合体をアノードに用い、ピリルビン酸 酸ィ匕酵素を力ソードに用いることでアノードに電子受容体を添加しない"直接電子移 動型"の酵素燃料電池を作成できる。
実飾 13
FAD- GDH- Cvt 白余ワイヤー雷 用いた直接雷早 型酵素燃料雷湘,
FADを補酵素とするグルコース脱水素酵素複合体 (FAD-GDH-CytC)をアノード に用い、力ソードに白金ワイヤー電極を用い、測定セルに電子受容体を添カ卩しない" 直接電子移動型"酵素燃料電池を構築した。 FADを補酵素とする耐熱性のダルコ一 ス脱水素酵素複合体を常法に従い調製し、アノード電極を固定した。酵素は大腸菌 を用いて組換え生産したものを用いた。グルコース脱水素酵素複合体 1000Uをカー ボンペースト 20mgと混合し凍結乾燥した。これをよく混合した後、あらかじめカーボン ペーストが約 40mg充填されたカーボンペースト電極の表面に充填し、濾紙上で研磨 した。これらの電極を、 1%のグルタルアルデヒドを含む lOOmM p.p.b. (pH7.0)中で 30 分室温で撹拌し、さらに 10mM Trisバッファ (pH7.0)中で 20分室温で攪拌した。これら の電極は lOOmM p.p.b. (pH7.0)中で 1時間以上室温で撹拌した。この電極は測定 時以外は lOOmM p.p.b. (pH7.0)中で、 4°Cで保存した。力ソード電極は直径 3mmの 白金電極を用いた。アノードならびに力ソード電極は lOOmM p.p.b. (pH7.0) 10ml で満たした恒温セルにセットし、電池を構築した。装置の概略を図 6に示す。測定は 2 5°Cで行なった。また可変抵抗器にて負荷を 1 Ω力も 1Μ Ωまで段階的に変化させ、そ のとき得られる電流値と電圧値をデジタルマルチメータで測定した。アノードおよび力 ソードとデジタルマルチメータは電流値測定の際には直列に、電圧測定の際には並 列につないで測定した。電力は電流値と電圧値の積によって求めた。図 7に本電池 の出力ならびに本電池の出力を示す。グルコースの添カ卩により電力が得られた。この ように FADを補酵素とするグルコース脱水素酵素複合体をアノードに用い、白金電 極を力ソードに用いることで測定セルに電子受容体を添加しな 、"直接電子移動型" の酵素燃料電池を作成できる。
実施例 4
FAD- GDH- Cvt έΐ余メッシュ雷 用いた直接雷早 型酵素燃料雷湘,
FADを補酵素とするグルコース脱水素酵素複合体 (FAD-GDH-CytC)をアノード に用い、力ソードに白金メッシュ電極を用い、測定セルに電子受容体を添カ卩しない直 接電子移動型酵素燃料電池を構築した。 FADを補酵素とする耐熱性のグルコース 脱水素酵素複合体を常法に従い調製し、アノード電極を固定した。酵素は大腸菌を 用いて組換え生産したものを用いた。グルコース脱水素酵素複合体 1000Uをカーボ ンペースト 20mgと混合し凍結乾燥した。これをよく混合した後、あらかじめカーボンぺ 一ストが約 40mg充填されたカーボンペースト電極の表面に充填し、濾紙上で研磨し た。これらの電極を、 1%のグルタルアルデヒドを含む lOOmM p.p.b. (pH7.0)中で 30 分室温で撹拌し、さらに 10mM Trisバッファ (pH7.0)中で 20分室温で攪拌した。これら の電極は lOOmM p.p.b. (pH7.0)中で 1時間以上室温で撹拌した。この電極は測定 時以外は lOOmM p.p.b. (pH7.0)中で、 4°Cで保存した。力ソード電極は白金メッシュ 電極を用いた。アノードならびに力ソード電極は lOOmM p.p.b. (pH7.0) 10mlで満た した恒温セルにセットし、電池を構築した。可変抵抗器にて抵抗値の負荷 40k Ωをか け、アノードのグルコース濃度を OmM力も段階的に増加させ、各グルコース濃度にて 得られる電流値、電圧値をデジタルマルチメータで測定して電力を算出した。ダルコ ースの添カ卩により電力が得られた。実施例 3で用いた白金電極よりも表面積の大きい 白金メッシュ電極を力ソードに用いることにより、力ソードでの反応速度を向上させ、 実施例 3と比較して高 、電力が得られた。このように FADを補酵素とするグルコース 脱水素酵素複合体をアノードに用い、白金メッシュ電極を力ソードに用いることで測 定セルに電子受容体を添加しない"直接電子移動型"の酵素燃料電池を作成できる
[0041] 実施例 5
FAD-GDH-CvtCとピリルビン酸酸化酵素を用いた酵素燃料電池に某づく酵素セン サ一の構築およびグルコースの計測
実施例 1で作成した酵素燃料電池を利用して、酵素センサーの構築およびダルコ ースの計測を行った。実施例 1で作成した酵素燃料電池に抵抗値 (40k Q)の負荷を かけ、アノードのグルコース濃度を OmM力も段階的に増カロさせ、各グルコース濃度に て得られる電圧値をデジタルマルチメータで測定した。 FADを補酵素とするダルコ一 ス脱水素酵素触媒サブユニット 20Uを固定した電池の電流、電圧ならびに電力のグ ルコース濃度依存性を図 8に示す。グルコースの添カ卩により起電力が得られ、ダルコ ース濃度依存的に電位が増カロした。このように本酵素燃料電池の起電力から被検試 料中のグルコース濃度を計測できる。
[0042] 実施例 6
FAD- GDH- CvtC ビリルビン 酴化 ま 用いた き燃料 湘,に づ〈酵素センサーの構签およびグルコースの tHil
実施例 2で作成した酵素燃料電池を利用して、酵素センサーの構築およびダルコ ースの計測を行った。実施例 2で作成した酵素燃料電池に抵抗値 (40k Q)の負荷を かけ、アノードのグルコース濃度を OmM力も段階的に増カロさせ、各グルコース濃度に て得られる電圧値をデジタルマルチメータで測定した。 FADを補酵素とするダルコ一 ス脱水素酵素触媒サブユニット 500Uを固定した電池の電流、電圧ならびに電力のグ ルコース濃度依存性を図 9に示す。グルコースの添カ卩により起電力が得られ、ダルコ ース濃度依存的に電位が増カロした。このように本酵素燃料電池の起電力から被検試 料中のグルコース濃度を計測できる。
[0043] 実施例 7
FAD- GDH- CvtC ワイヤー雷極を用いた直接雷 移動型酵素燃料雷湘,に某 づく酵素センサーの構築およびグルコースの計測
実施例 3で作成した酵素燃料電池を利用して、酵素センサーの構築およびダルコ ースの計測を行った。実施例 3で作成した酵素燃料電池に抵抗値 (40k Q)の負荷を かけ、アノードのグルコース濃度を OmM力も段階的に増カロさせ、各グルコース濃度に て得られる電圧値をデジタルマルチメータで測定した。 FADを補酵素とするダルコ一 ス脱水素酵素触媒サブユニット 1000Uを固定した電池の電流、電圧ならびに電力の グルコース濃度依存性を図 10に示す。グルコースの添カ卩により起電力が得られ、グ ルコース濃度依存的に電位が増加した。このように本酵素燃料電池の起電力から被 検試料中のグルコース濃度を計測できる。
[0044] 実施例 8
FAD- GDH-Cvt 白余メッシュ雷 用いた直接雷早移動型酵素燃料雷湘,に づ 〈酵素センサーの構签およびグルコースの tHil
実施例 4で作成した酵素燃料電池を利用して、酵素センサーの構築およびダルコ ースの計測を行った。実施例 4で作成した酵素燃料電池に抵抗値 (40k Q)の負荷を かけ、アノードのグルコース濃度を OmM力も段階的に増カロさせ、各グルコース濃度に て得られる電圧値をデジタルマルチメータで測定した。 FADを補酵素とするダルコ一 ス脱水素酵素触媒サブユニット 1000Uを固定した電池の電流、電圧ならびに電力の グルコース濃度依存性を図 11に示す。グルコースの添カ卩により起電力が得られ、グ ルコース濃度依存的に電位が増加した。このように本酵素燃料電池の起電力から被 検試料中のグルコース濃度を計測できる。
[0045] 実施例 9
酵素燃料電池型ワイヤレス型グルコースセンサーの構築およびグルコースの計測 実施例 5で構築した直接電子移動型酵素燃料電池型の酵素センサーとワイヤレス システムを組み合わせたワイヤレス型グルコースセンサーを構築し、グルコースの計 測を行った。ワイヤレスシステムは Ni3 (ARS社)を用いた。実施例 5で構築した直接電 子移動型酵素燃料電池型の酵素センサーのアノードならびに力ソードをワイヤレスシ ステム Ni3 (ARS社)の Base Boardに接続し、 303.825MHzの周波数で発信した。受信 したシグナルは Ni3に Dock Yardを接続し、パソコン上に数値データーを転送した。 酵素電池のアノードのグルコース濃度を OmM力 段階的に増加させ、各グルコース 濃度にて得られる電圧値をデジタルマルチメータで測定したときのグルコース添加に 伴う電圧の変化の濃度依存性を図 12 (a)に示す。また、 Ni3を用いて無線で送られて きたシグナルを図 12 (b)に示す。図 12 (b)に示すようにグルコースの添カ卩による電圧 の変化はワイヤレスシステム Ni3を介して無線で外部に送信されることが示された。ま た、デジタルマルチメータならびに外部受信回路で受信したで電池の電圧のダルコ ース濃度依存性を図 13に示す。図 13に示すようにダルコースの添加により増加する 電圧値は外部受信装置でも得られた。このように、本酵素燃料電池の電圧出力をヮ ィャレスシステムを介して直接接続して 、な 、外部受信装置に無線で送信し、被検 試料中のダルコース濃度を計測できる。
[0046] 実施例 10
酵素燃料雷湘,型ワイヤレス型グルコースセンサーの構签およびグルコースの tHil 実施例 7で構築した直接電子移動型酵素燃料電池型の酵素センサーとワイヤレス システムを組み合わせたワイヤレス型グルコースセンサーを構築し、グルコースの計 測を行った。ワイヤレスシステムは Ni3 (ARS社)を用いた。実施例 7で構築した直接電 子移動型酵素燃料電池型の酵素センサーのアノードならびに力ソードをワイヤレスシ ステム Ni3 (ARS社)の Base Boardに接続し、 303.825MHzの周波数で発信した。受信 したシグナルは Ni3に Dock Yardを接続し、パソコン上に数値データーを転送した。 酵素電池のアノードのグルコース濃度を OmM力 段階的に増加させ、各グルコース 濃度にて得られる電圧値をデジタルマルチメータで測定したときのグルコース添加に 伴う電圧の変化の濃度依存性を図 14 (a)に示す。また、 Ni3を用いて無線で送られて きたシグナルを図 14 (b)に示す。図 14 (b)に示すようにグルコースの添カ卩による電圧 の変化はワイヤレスシステム Ni3を介して無線で外部に送信されることが示された。
[0047] 実施例 11
酵素燃料電池型酵素センサーとワイヤレスシステムおよびアンプを組み合わせたワイ ャレス型グルコースセンサーの構築およびグルコースの計測
実施例 7で構築した直接電子移動型酵素燃料電池型の酵素センサーとワイヤレス システムならびにアンプを組み合わせたワイヤレス型グルコースセンサーを構築し、 グルコースの計測を行った。ワイヤレスシステムは Ni3 (ARS社)を用いた。入力シグナ ルを増幅するためにオペアンプを搭載して 、る 10 Board (ARS社)を Ni3に連結し、入 力シグナルを 10倍増幅した。実施例 7で構築した直接電子移動型酵素燃料電池型 の酵素センサーのアノードならびに力ソードをアンプに接続し、アンプの出力をワイヤ レスシステム Ni3 (ARS社)の Base Boardに接続し、 303.825MHzの周波数で発信した 。受信したシグナルは Ni3に Dock Yardを接続し、パソコン上に数値データーを転送 した。酵素電池のアノードのグルコース濃度を OmM力 段階的に増加させ、各ダルコ ース濃度にて得られる電圧値をデジタルマルチメータで測定したときのグルコース添 加に伴う電圧の変化の濃度依存性を図 15 (a)に示す。また、 Ni3を用いて無線で送ら れてきたシグナルを図 15(b)に示す。図 15(b)に示すようにグルコースの添カ卩による電 圧の変化はワイヤレスシステム Ni3を介して無線で外部に送信されることが示された。 また、デジタルマルチメータならびに外部受信回路で受信したで電池の電圧のダル コース濃度依存性を図 16に示す。図 16に示すようにダルコースの添カ卩により増加す る電圧値は外部受信装置でも得られた。このように、本酵素燃料電池の電圧出力を アンプで増幅し、ワイヤレスシステムを介して直接接続して 、な 、外部受信装置に無 線で送信することで、被検試料中のグルコース濃度を計測できる。
実施例 12
酵素燃料雷池型酵素センサー ワイヤレスシステムおよびアンプ み合わせたワイ ャレス型グルコースセンサーの構築およびグルコースの計測
実施例 8で構築した直接電子移動型酵素燃料電池型の酵素センサーとワイヤレス システムならびにアンプを組み合わせたワイヤレス型グルコースセンサーを構築し、 グルコースの計測を行った。ワイヤレスシステムは Ni3 (ARS社)を用いた。入力シグナ ルを増幅するためにオペアンプを搭載して 、る 10 Board (ARS社)を Ni3に連結し、入 力シグナルを 10倍増幅した。実施例 8で構築した直接電子移動型酵素燃料電池型 の酵素センサーのアノードならびに力ソードをアンプに接続し、アンプの出力をワイヤ レスシステム Ni3 (ARS社)の Base Boardに接続し、 303.825MHzの周波数で発信した 。受信したシグナルは Ni3に Dock Yardを接続し、パソコン上に数値データーを転送 した。酵素電池のアノードのグルコース濃度を OmM力 段階的に増加させ、各ダルコ ース濃度にて得られる電圧値をデジタルマルチメータで測定したときのグルコース添 加に伴う電圧の変化の濃度依存性を図 17 (a)に示す。また、 Ni3を用いて無線で送ら れてきたシグナルを図 17(b)に示す。図 17(b)に示すようにダルコースの添加による電 圧の変化はワイヤレスシステム Ni3を介して無線で外部に送信されることが示された。 また、デジタルマルチメータならびに外部受信回路で受信したで電池の電圧のダル コース濃度依存性を図 18に示す。図 18に示すようにダルコースの添カ卩により増加す る電圧値は外部受信装置でも得られた。また得られたシグナル強度は実施例 11と比 較して 3倍になったことから力ソードの白金の表面積を広くすることにより、高い起電力 が得られた。このように、本酵素燃料電池の電圧出力をアンプで増幅し、ワイヤレスシ ステムを介して直接接続して 、な 、外部受信装置に無線で送信することで、被検試 料中のグルコース濃度を計測できる。
産業上の利用可能性
本発明の酵素燃料電池型酵素センサーは、血糖値の測定に有用であり、特にワイ ャレスシステムによる血糖値のモニタリングに有用である。

Claims

請求の範囲
[I] 酸化還元酵素活性を有する酵素と、その酵素反応により生じた電子を電極に伝達す る機能を有する蛋白質とが固定されているアノードと、
酸化剤を還元するための化学触媒、金属触媒、生体触媒またはそれらの組み合わ せを含むことを特徴とする力ソードと、
から構成される酵素燃料電池。
[2] 請求項 1に記載の酵素燃料電池において、電子伝達機能を有する蛋白質が前記酵 素のサブユニットの形で存在する酵素燃料電池。
[3] 請求項 1—2のいずれかに記載の酵素燃料電池において、前記サブユニットがチトク ロム Cサブユニットである酵素燃料電池。
[4] 請求項 1 3の 、ずれかに記載の酵素燃料電池にお!、て、電子伝達機能を有する 蛋白質がチトクロム B562である酵素燃料電池。
[5] 酸化還元酵素活性とその酵素反応により生じた電子を電極に伝達する機能とを有す る蛋白質が固定されているアノードと、
酸化剤を還元するための化学触媒、金属触媒、生体触媒またはそれらの組み合わ せを含むことを特徴とする力ソードと、
から構成される酵素燃料電池。
[6] 請求項 1 5のいずれかに記載の酵素燃料電池において、酵素がグルコースを基質 とする酵素である酵素燃料電池。
[7] 請求項 6に記載の酵素燃料電池において、酵素がグルコース脱水素酵素であること を特徴とする酵素燃料電池。
[8] 請求項 6に記載の酵素燃料電池において、酵素がグルコース酸ィ匕酵素であることを 特徴とする酵素燃料電池。
[9] 請求項 1— 8の 、ずれかに記載の酵素燃料電池にお!、て、酵素が補酵素としてピロ 口キノリンキノンを保有することを特徴とする酵素燃料電池。
[10] 請求項 1 9の 、ずれかに記載の酵素燃料電池にお!、て、酵素が補酵素としてフラ ビンアデ-ンジヌクレオチド (FAD)を保有することを特徴とする酵素燃料電池。
[I I] 酵素反応の基質の濃度を、請求項 1 10の 、ずれかに記載の酵素燃料電池の起電 力を指標として測定することを特徴とする燃料電池型酵素センサー。
[12] 請求項 11記載の燃料電池型酵素センサーにおいて、起電力値が発信回路から無 線で外部に発信され、受信回路により受信されることを特徴とするワイヤレス型酵素 センサー。
[13] 請求項 11記載の燃料電池型酵素センサーにおいて、アンプにより増幅された起電 力値が発信回路力 無線で外部に発信され、受信回路により受信されることを特徴と するワイヤレス型酵素センサー。
PCT/JP2006/303575 2005-02-25 2006-02-27 燃料電池型酵素センサー WO2006090873A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007504832A JPWO2006090873A1 (ja) 2005-02-25 2006-02-27 燃料電池型酵素センサー

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005050737 2005-02-25
JP2005-050737 2005-02-25

Publications (1)

Publication Number Publication Date
WO2006090873A1 true WO2006090873A1 (ja) 2006-08-31

Family

ID=36927503

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/303575 WO2006090873A1 (ja) 2005-02-25 2006-02-27 燃料電池型酵素センサー

Country Status (2)

Country Link
JP (1) JPWO2006090873A1 (ja)
WO (1) WO2006090873A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009037840A1 (ja) * 2007-09-18 2009-03-26 Tokyo University Of Agriculture And Technology 基質濃度の測定方法及びその装置
WO2010126139A1 (ja) * 2009-04-30 2010-11-04 池田食研株式会社 蛋白質性電子メディエータ
JP2010539515A (ja) * 2007-09-17 2010-12-16 レッド・アイボリー・エルエルシー 自己作動性信号発生検出装置及び方法
JP2011517039A (ja) * 2008-04-09 2011-05-26 ユニヴェルシテ ジョセフ フーリエ 歩留まりを高めたバイオ電池
JP2012034576A (ja) * 2010-08-03 2012-02-23 Kajima Corp 亜酸化窒素分解装置
JP2012039949A (ja) * 2010-08-19 2012-03-01 Aisin Seiki Co Ltd ピロロキノリンキノン依存性グルコースデヒドロゲナーゼ変異体、及びその利用
JP2012146566A (ja) * 2011-01-13 2012-08-02 Sony Corp タンパク質光電変換素子、光電変換システム、タンパク質光電変換素子の製造方法、光電変換システムの製造方法およびタンパク質固定化電極
JP2013522650A (ja) * 2010-03-22 2013-06-13 インパック ヘルス エルエルシー 自己完結型の体外診断装置
WO2017158866A1 (ja) * 2016-03-18 2017-09-21 シャープ株式会社 微生物燃料電池システム
JP2018036201A (ja) * 2016-09-01 2018-03-08 東洋インキScホールディングス株式会社 自己発電型センサー用電極ペースト組成物、自己発電型センサー用電極及び自己発電型センサー

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5450396A (en) * 1977-09-28 1979-04-20 Matsushita Electric Ind Co Ltd Enzyme electrode
JPH02253566A (ja) * 1989-03-28 1990-10-12 Komatsu Ltd グルコース生物電池及びグルコースセンサー
JPH10233226A (ja) * 1996-08-29 1998-09-02 Korea Advanced Inst Of Sci Technol 電子伝達媒介体を使用しない生物燃料電池
JPH10280182A (ja) * 1997-04-11 1998-10-20 Mitsubishi Heavy Ind Ltd タンパク質固定修飾電極
JP2002526137A (ja) * 1998-10-08 2002-08-20 メドトロニック ミニメド インコーポレイテッド 遠隔形質モニタシステム
WO2002073181A1 (fr) * 2001-03-13 2002-09-19 Koji Sode Electrode enzymatique
JP2003504621A (ja) * 1999-07-07 2003-02-04 コリア インスティテュート オブ サイエンス アンド テクノロジー 微生物の電気化学的濃化培養方法、並びに有機物質およびbod分析用バイオセンサー
JP2003527599A (ja) * 2000-03-17 2003-09-16 エフ.ホフマン−ラ ロシュ アーゲー 埋め込み型アナライトセンサー
WO2004061444A1 (ja) * 2002-12-20 2004-07-22 Arkray, Inc. 薄型分析用具
JP2004296099A (ja) * 2003-03-25 2004-10-21 Fuji Photo Film Co Ltd 酵素反応を利用した電気エネルギー発生・貯蔵方法および装置
JP2005003616A (ja) * 2003-06-13 2005-01-06 Hiroaki Suzuki センサ

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5450396A (en) * 1977-09-28 1979-04-20 Matsushita Electric Ind Co Ltd Enzyme electrode
JPH02253566A (ja) * 1989-03-28 1990-10-12 Komatsu Ltd グルコース生物電池及びグルコースセンサー
JPH10233226A (ja) * 1996-08-29 1998-09-02 Korea Advanced Inst Of Sci Technol 電子伝達媒介体を使用しない生物燃料電池
JPH10280182A (ja) * 1997-04-11 1998-10-20 Mitsubishi Heavy Ind Ltd タンパク質固定修飾電極
JP2002526137A (ja) * 1998-10-08 2002-08-20 メドトロニック ミニメド インコーポレイテッド 遠隔形質モニタシステム
JP2003504621A (ja) * 1999-07-07 2003-02-04 コリア インスティテュート オブ サイエンス アンド テクノロジー 微生物の電気化学的濃化培養方法、並びに有機物質およびbod分析用バイオセンサー
JP2003527599A (ja) * 2000-03-17 2003-09-16 エフ.ホフマン−ラ ロシュ アーゲー 埋め込み型アナライトセンサー
WO2002073181A1 (fr) * 2001-03-13 2002-09-19 Koji Sode Electrode enzymatique
WO2004061444A1 (ja) * 2002-12-20 2004-07-22 Arkray, Inc. 薄型分析用具
JP2004296099A (ja) * 2003-03-25 2004-10-21 Fuji Photo Film Co Ltd 酵素反応を利用した電気エネルギー発生・貯蔵方法および装置
JP2005003616A (ja) * 2003-06-13 2005-01-06 Hiroaki Suzuki センサ

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010539515A (ja) * 2007-09-17 2010-12-16 レッド・アイボリー・エルエルシー 自己作動性信号発生検出装置及び方法
US8252236B2 (en) 2007-09-18 2012-08-28 Bioengineering Laboratories, Llc Method for measuring substrate concentration and device for the same
CN101802601A (zh) * 2007-09-18 2010-08-11 究极酵素国际股份有限公司 基质浓度的测定方法和其装置
WO2009037840A1 (ja) * 2007-09-18 2009-03-26 Tokyo University Of Agriculture And Technology 基質濃度の測定方法及びその装置
US8642344B2 (en) 2007-09-18 2014-02-04 Bioengineering Laboratories, Llc Method for measuring substrate concentration
US8641972B2 (en) 2007-09-18 2014-02-04 Bioengineering Laboratories, Llc Device for measuring substrate concentration
JP2012255790A (ja) * 2007-09-18 2012-12-27 Tokyo Univ Of Agriculture & Technology 基質濃度の測定方法及びその装置
JP5051479B2 (ja) * 2007-09-18 2012-10-17 国立大学法人東京農工大学 基質濃度の測定方法及びその装置
JP2011517039A (ja) * 2008-04-09 2011-05-26 ユニヴェルシテ ジョセフ フーリエ 歩留まりを高めたバイオ電池
US8716442B2 (en) 2009-04-30 2014-05-06 Ikeda Food Research Co., Ltd. Protein electron mediator
JP2012132926A (ja) * 2009-04-30 2012-07-12 Ikeda Shokken Kk 蛋白質性電子メディエータ
WO2010126139A1 (ja) * 2009-04-30 2010-11-04 池田食研株式会社 蛋白質性電子メディエータ
US8969025B2 (en) 2009-04-30 2015-03-03 Panasonic Healthcare Holdings Co., Ltd. Protein electron mediator
JP5828554B2 (ja) * 2009-04-30 2015-12-09 池田食研株式会社 蛋白質性電子メディエータ
JP2013522650A (ja) * 2010-03-22 2013-06-13 インパック ヘルス エルエルシー 自己完結型の体外診断装置
JP2012034576A (ja) * 2010-08-03 2012-02-23 Kajima Corp 亜酸化窒素分解装置
JP2012039949A (ja) * 2010-08-19 2012-03-01 Aisin Seiki Co Ltd ピロロキノリンキノン依存性グルコースデヒドロゲナーゼ変異体、及びその利用
JP2012146566A (ja) * 2011-01-13 2012-08-02 Sony Corp タンパク質光電変換素子、光電変換システム、タンパク質光電変換素子の製造方法、光電変換システムの製造方法およびタンパク質固定化電極
WO2017158866A1 (ja) * 2016-03-18 2017-09-21 シャープ株式会社 微生物燃料電池システム
JP2018036201A (ja) * 2016-09-01 2018-03-08 東洋インキScホールディングス株式会社 自己発電型センサー用電極ペースト組成物、自己発電型センサー用電極及び自己発電型センサー

Also Published As

Publication number Publication date
JPWO2006090873A1 (ja) 2008-07-24

Similar Documents

Publication Publication Date Title
WO2006090873A1 (ja) 燃料電池型酵素センサー
Kakehi et al. A novel wireless glucose sensor employing direct electron transfer principle based enzyme fuel cell
US20180233761A1 (en) Self-charging implantable power source with biosensor functionality
JP2005501253A (ja) 自己動力供給式(self−powered)バイオセンサー
JP2005501253A5 (ja)
JP5325322B2 (ja) 基質濃度の測定方法及びその装置
KR100729307B1 (ko) 글루코스 탈수소효소를 이용한 글루코스 농도 측정방법 및글루코스 센서
US20170191105A1 (en) Enzyme electrode
JP2011242385A (ja) バイオセンサ
Yabuki et al. Preparation of a microperoxidase and ferrocene-immobilized polyion complex membrane for the detection of hydrogen peroxide
Sima et al. Screen-printed electrodes modified with HRP-zirconium alcoxide film for the development of a biosensor for acetaminophen detection
Jiang et al. Amperometric ethanol biosensor based on integration of alcohol dehydrogenase with Meldola's blue/ordered mesoporous carbon electrode
JP7032906B2 (ja) フラビン化合物を用いたグルコース酸化還元反応及びグルコース測定用組成物
JP5380888B2 (ja) グルコースの定量方法ならびに定量組成物
WO2005093400A1 (ja) 燃料電池型ワイヤレス酵素センサー
Wedge et al. Recent developments towards disposable screen-printed biosensors incorporating a carbon ink modified with the redox mediotor. Meldola's Blue
Radi et al. A Third‐Generation Hydrogen Peroxide Biosensor Based on Horseradish Peroxidase Covalently Immobilized on Electrografted Organic Film on Screen‐Printed Carbon Electrode
KR102488119B1 (ko) 바이오 센서 및 그의 제작 방법
Chen et al. Signal amplification of self-potential biosensor for glucose monitoring
Shimizu et al. Glucose monitoring by direct electron transfer needle-type miniaturized electrode
Ajo-Franklin et al. Creation of a Self-Powered, Real-Time Sensor for Therapeutics in Blood: from Protein Engineering to Electronic Integration
JP5925285B2 (ja) バイオセンサ
Correia et al. Nitrite biosensing using cytochrome c nitrite reductase: towards a disposable strip electrode
Sarreal et al. Dual Glucose and Lactate Electrochemical Biosensor
Rodrigues et al. NITRITE BIOSENSING WITH DISPOSABLE ELECTRODE STRIPS-A Preliminary Study

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007504832

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06714712

Country of ref document: EP

Kind code of ref document: A1