WO2006090869A1 - 次亜塩素酸又は亜塩素酸を主成分とした殺菌水の生成方法及び装置 - Google Patents

次亜塩素酸又は亜塩素酸を主成分とした殺菌水の生成方法及び装置 Download PDF

Info

Publication number
WO2006090869A1
WO2006090869A1 PCT/JP2006/303528 JP2006303528W WO2006090869A1 WO 2006090869 A1 WO2006090869 A1 WO 2006090869A1 JP 2006303528 W JP2006303528 W JP 2006303528W WO 2006090869 A1 WO2006090869 A1 WO 2006090869A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
aqueous solution
acid
pressure vessel
hypochlorous acid
Prior art date
Application number
PCT/JP2006/303528
Other languages
English (en)
French (fr)
Inventor
Tatsuo Okazaki
Yoshinori Ota
Hiroshi Teranishi
Original Assignee
Veeta Inc.
Apro Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Veeta Inc., Apro Co., Ltd. filed Critical Veeta Inc.
Publication of WO2006090869A1 publication Critical patent/WO2006090869A1/ja
Priority to US11/843,445 priority Critical patent/US20080017588A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/50Treatment of water, waste water, or sewage by addition or application of a germicide or by oligodynamic treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/76Treatment of water, waste water, or sewage by oxidation with halogens or compounds of halogens
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/467Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction
    • C02F1/4672Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electrooxydation
    • C02F1/4674Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electrooxydation with halogen or compound of halogens, e.g. chlorine, bromine
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/66Treatment of water, waste water, or sewage by neutralisation; pH adjustment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/06Controlling or monitoring parameters in water treatment pH

Definitions

  • the present invention relates to a method and an apparatus for producing sterilizing water containing hypochlorous acid or hypochlorous acid as a main component.
  • hypochlorous acid or chlorite sterilizing water mainly composed of hypochlorous acid or chlorite is harmless to human body and exhibits excellent bactericidal effect.
  • concentration of free chloric acid is adjusted to about 200 ppm by diluting hypochlorous acid sodium with water
  • the pH of the aqueous sodium hypochlorite solution is about 8.6, and the aqueous sodium hypochlorite solution is about 8.6.
  • About 10% of hypochlorous acid is contained in it.
  • the following methods are known as methods for producing sterilizing water containing hypochlorous acid or chloric acid as a main component.
  • the first method is to mix aqueous solution of sodium hypochlorite (hypo) and acid (diluted hydrochloric acid) such as hydrochloric acid (JP Publication 2004-35037, JP Publication 2005- 161142, JP Publication See 200 ⁇ -349382).
  • the second is a method in which hydrochloric acid is directly electrolyzed to obtain sterilizing water containing hypochlorous acid as a main component.
  • the third method is a method of producing an aqueous solution of sodium hypochlorite on the positive electrode side by inserting sodium chloride in an electrolysis tank equipped with a diaphragm between the positive electrode and the negative electrode and performing electrolysis (JP JP See H03-258392).
  • the fourth is a method of producing a hypochlorous acid aqueous solution by electrolyzing a mixed aqueous solution of hydrochloric acid and sodium chloride (see JP-H06-99174). [0 0 0 4]
  • the first method described above that is, the mixing method of mixing an aqueous solution of sodium hypochlorite and an acid
  • it has an advantage, it is difficult to control the amount of acid added, for example, if the amount of acid is too large, the pH will drop sharply and enter the gasification region of pH 3 or less, chlorine gas, etc. And chlorine dioxide gas are generated.
  • commercially available germicides and bleaches that contain sodium hypochlorite are marked with a notice in the container that they are prohibited to use with acid. There is.
  • an aqueous solution of sodium chloride is placed in an electrolysis tank in which no diaphragm is present between the positive electrode and the negative electrode, and high concentration is achieved.
  • the hypochlorous acid sodium is formed and then diluted with dilution water to produce germicidal water containing hypochlorous acid as the main component.
  • dilute hydrochloric acid is added so that pH adjustment is automatically performed when sodium hypochlorite is produced by electrolysis, but it is assumed that sterile water of a desired pH is produced.
  • the concentration of dilute hydrochloric acid needs to be strictly adjusted.
  • the sterile water mainly composed of hypochlorous acid or hypochlorous acid generated by the above-mentioned method is opened by opening a stop valve or faucet of a sterile water outflow pipe connected to a sterilizing water generator for producing the same.
  • Used see JP Patent Publication 2004-181445.
  • the amount of sterile water used varies, such as opening the faucet slightly and continuing to use an extremely small amount, or using the faucet fully open.
  • the amount of sterilizing water produced in the sterilizing water generator can not be maintained constant, which causes the difficulty in maintaining the pH and concentration constant. For this reason, it was thought that an accumulator and a storage tank for storing the generated sterilizing water were necessary as ancillary facilities of the sterilizing water generator. [0 0 0 8]
  • An object of the present invention is to provide a method and apparatus for producing sterile water mainly composed of hypochlorous acid or chlorous acid at a stable pH.
  • a further object of the present invention is to provide a method and apparatus for producing sterile water mainly composed of hypochlorous acid or chlorous acid which can prevent the pH from falling to the gasification region of pH 3 or less. It is to do.
  • a further object of the present invention is a method for producing sterilizing water capable of stably maintaining the pH of high concentration hypochlorous acid or disinfecting water mainly containing chlorous acid without the need for special control. And providing the device.
  • a further object of the present invention is to provide a sterilizing device capable of producing sterilizing water mainly composed of hypochlorous acid or chlorous acid while suppressing fluctuation of pH of the sterilizing water without being affected by the mode of use of the sterilizing water. It is an object of the present invention to provide a water generation method and apparatus.
  • the present invention mainly uses hypochlorous acid or chlorous acid by adjusting the pH of an aqueous solution of sodium hypochlorite or an aqueous solution of sodium chlorite using carbon dioxide as a starting point. And producing germicidal water.
  • the embodiment of the present invention will be described below by using a sodium hypochlorite aqueous solution as a representative example, but the same applies to a sodium chloride aqueous solution. [0 0 1 4]
  • an aqueous solution of sodium hypochlorite solution may be dispersed in a gas phase region of a container filled with carbon dioxide gas or supplied to a liquid phase portion to An aqueous solution of acid sodium may be bubbled.
  • a method of spraying an aqueous solution of sodium hypochlorite in the gas phase region it may be sprayed like a shower, or it may be sprayed or sprayed using a nozzle.
  • the solubility of carbon dioxide is affected by the size of the particles and surface area. This property can be used to adjust the pH of sterile water.
  • the aqueous solution of sodium hypochlorite may be supplied to the liquid phase region.
  • the pH of the sterilizing water can be adjusted by adjusting the flow rate of the sodium hypochlorite aqueous solution to be dispersed in the gas phase region and the flow rate of the sodium hypochlorite aqueous solution supplied to the liquid phase region.
  • An acid other than carbonic acid may be additionally used to form hypochlorous acid or hypochlorous acid-based sterilizing water. This additional acid may be simultaneously with or after contacting the sodium hypochlorite water solution with carbon dioxide gas. ⁇ 0 0 1 7 ⁇
  • this pressure vessel can function as an accumulator.
  • diluting and using the generated sterilizing water dilute the sterilizing water while suppressing the pH fluctuation of the sterilizing water by using the carbonated water generated by contacting the carbon dioxide and water at the site. be able to.
  • FIG. 1 is a whole block diagram of the sterilizing water production
  • FIG. 2 is a schematic block diagram of the first embodiment shown in FIG.
  • FIG. 3 is a schematic block diagram of a sterilizing water generator of the second embodiment.
  • FIG. 4 is a schematic block diagram of the sterilizing water generating apparatus of the third embodiment.
  • FIG. 5 is a schematic block diagram of the sterile water producing system of the fourth embodiment.
  • FIG. 6 is a schematic block diagram of the sterile water producing system of the fifth embodiment.
  • FIG. 7 is a schematic block diagram of a modification of the fifth embodiment shown in FIG.
  • FIG. 8 is a schematic block diagram of the sterile water producing system of the sixth embodiment.
  • FIG. 9 is a schematic block diagram of the kill-water generation apparatus of the seventh embodiment.
  • FIG. 10 is a schematic block diagram of the sterile water producing system of the eighth embodiment.
  • FIG. 11 is a schematic view of a sterilizing water generator according to a ninth embodiment.
  • FIG. 12 is a whole block diagram of the sterile water production
  • FIG. 13 is a schematic block diagram of the sterile water producing system of the first embodiment.
  • FIG. 14 is a schematic view of a sterilizing water generator according to a first embodiment of the present invention.
  • FIG. 15 is a schematic block diagram of the sterilizing water generator of the 13th embodiment.
  • FIG. 16 is a schematic block diagram of the sterile water producing system of the fourteenth embodiment.
  • FIG. 17 is a schematic view of a sterilizing water generator of the fifteenth embodiment.
  • FIG. 18 is a cross-sectional view for explaining one mode of spraying an aqueous solution of sodium hypochlorite or water in a pressure vessel.
  • FIG. 19 is a cross-sectional view for explaining another embodiment of spraying an aqueous solution of sodium hypochlorite or water in a pressure vessel.
  • FIG. 20 is a cross-sectional view for explaining yet another embodiment of spraying an aqueous solution of sodium hypochlorite or water in a pressure vessel.
  • FIG. 21 is a figure for demonstrating one aspect for bubbling in a pressure vessel.
  • FIG. 22 is a figure for demonstrating the other aspect for bubbling in a pressure vessel.
  • FIG. 23 is a view for explaining yet another embodiment for bubbling in a pressure vessel. '
  • FIG. 1 First embodiment (FIG. 1, FIG. 2):
  • FIG. 1 shows a sterilizing water generating apparatus according to the first embodiment
  • FIG. 2 schematically shows the structure of this apparatus.
  • Reference numeral 1 is a raw water supply pipe, which can include tap water, well water and seawater as a raw water source.
  • the raw water supply pipe 1 is provided with a check valve 2, a motorized open / close valve 3, a pump 4 and a flow meter 5.
  • pump 4 for pumping raw water may be omitted when using raw water that has been pumped like tap water.
  • Reference code 7 is a raw material storing sodium hypochlorite aqueous solution.
  • Tank 8 is a pump.
  • the sodium hypochlorite aqueous solution in the raw material tank 7 is sent to the addition unit 10 via the flow path switching bubble 9 and mixed with the raw water.
  • the sodium hypochlorite aqueous solution diluted to the desired concentration by mixing with the raw water is supplied to the upper space 14 of the pressure vessel 13 (pressure tank) through the raw material supply pipe 12.
  • Reference numeral 15 is a carbon dioxide gas cylinder. Carbon dioxide gas of carbon dioxide (CO 2 ) bomb 15 is supplied to the pressure vessel 13 through a carbon dioxide gas supply pipe 17 by opening the manual valve 16. Reference numerals 18 and 19 are both pressure reducing valves, and carbon dioxide gas of about 1 to 3 kg / cm 2 is supplied to the pressure vessel 13 using these two pressure reducing valves 18 and 19.
  • Reference numeral 20 is a motorized open / close valve, 21 is a check valve, 22 is a pressure gauge, and 23 is a branch portion. Carbon dioxide is introduced into the pressure vessel 13 through a gas guiding pipe 24. Also, the pressure in the pressure vessel 13 is detected by the pressure gauge 22.
  • Reference numeral 25 is a float
  • reference numeral 26 is a magnet attached to the float 25.
  • the magnet 26 and the light switch 2 7-30 constitute a water level detection means for detecting the water level of the pressure volume 13.
  • a water level monitoring pipe such as transparent glass, is provided extending up and down outside pressure vessel 13 and the level of the flow we installed inside this water level monitoring pipe is detected You may do it. [0 0 2 3]
  • a discharge pipe 31 is connected to the bottom of the pressure vessel 13.
  • Reference numeral 32 denotes a first branch part, the discharge pipe 31 is connected to the first and second pipes 33 and 34, and the first pipe 33 is connected to the aforementioned branch part 23. It is done.
  • Reference numeral 35 is a motorized open / close valve.
  • the discharge pipe 31 is preferably a small diameter pipe or a throttle 42 is preferably provided. [0 0 2 4]
  • the second piping 34 is branched into a sterilizing water delivery pipe 37 and a drainage pipe 38 at a second branch 36.
  • Reference numeral 39 is a manual or electric on / off valve provided on the sterilizing water delivery pipe 37
  • 40 is an electrically operated on / off valve provided on the drainage pipe 38.
  • a sterilizing water delivery pipe 3 7 is provided with a flow passage switching valve, and the drainage mode in which the drainage pipe 38 is opened by the flow passage switching valve, and sterilizing water delivery. It may be switched from the sterilizing water use mode in which one pipe 37 is opened.
  • a partition 43 is provided on the top of the pressure vessel 13, and a plurality of small holes 44 are formed in the partition 43.
  • the partition 43 divides the upper space 14 to which the sodium hypochlorite aqueous solution is supplied, and the main space 45 to which carbon dioxide gas is supplied through the gas guiding pipe 24. Next, the operation of the sterilizing water generator will be described.
  • a sodium hypochlorite aqueous solution adjusted to a predetermined concentration is dispersed in a pressure vessel 13 filled with carbon dioxide gas in a predetermined range of pressure
  • carbon dioxide gas is dissolved in an aqueous solution of sodium hypochlorite. It is possible to adjust the degree of carbon dioxide gas dissolution depending on the mode of dispersion of the sodium hypochlorite aqueous solution, that is, the degree of atomization of the sodium hypochlorite aqueous solution, that is, the size of the surface area.
  • the carbon dioxide gas dissolves more when the atomization is performed by the spray nozzle.
  • the pressure in the pressure vessel 13 is set high, carbon dioxide gas dissolves more than when the pressure is set low.
  • valve 20 associated with the supply of carbon dioxide gas and the valve 39 associated with the sterile water delivery pipe 37 are closed together.
  • (2) The valve 35 associated with the first pipe 33 and the valve 40 associated with the drain pipe 38 are both opened.
  • an aqueous solution of sodium hypochlorite is supplied to the upper space 14, and the sodium hypochlorite is vigorously injected into the main space 45 through the small holes 44.
  • the water streams of hypochlorous acid sodium injected from the plurality of small holes 44 are collided with each other to atomize. [0 0 2 8]
  • the flow rate of the raw water for diluting the aqueous solution of sodium hypochlorite is measured by the flow meter 5, and the sodium hypochlorite aqueous solution having a predetermined concentration is obtained according to the flow rate.
  • the aqueous solution of sodium chlorate is sent to the adding section 10 by the pump 8 and mixed with the raw water, and the aqueous solution of sodium hypochlorite adjusted to the predetermined concentration according to the purpose of use is supplied through the raw material supply pipe 12 to the pressure vessel. It is supplied to 13 ⁇ 0 0 2 9 ⁇
  • the discharge pipe 31 connected to the bottom of the pressure vessel 13 is provided with the restriction 42, the water level of the pressure vessel 13 receiving the aqueous solution of sodium hypochlorite rises. As the water level rises, the air in the pressure vessel 13 enters into the gas guiding pipe 24 and passes through the branch 23, the first pipe 33, the second pipe 34, the water pipe 38 and the outside. Released into
  • the first pipe 33 involved in discharging the air in the pressure vessel 13 to the outside Valve 35 is closed.
  • the valve 20 related to the supply of carbon dioxide gas is opened, and the relatively low pressure carbon dioxide gas decompressed using the carbon dioxide gas cylinder 15 through the two pressure reducing valves 18 and 19 is a gas guiding pipe 24 Is supplied to pressure vessel 13 through Such control is performed by a controller outside the figure.
  • an on-off valve for air removal is provided at the top of the pressure vessel 13 or in the vicinity thereof, and the air removal valve is opened.
  • the air in the pressure vessel 13 may be discharged to the outside.
  • the air in the pressure vessel 13 escapes that is, when the water level of the pressure vessel 13 rises and the uppermost limit 30 detects the water level
  • the above-mentioned air removal valve is closed. It is also good. According to this, the pipe 33 for exhaust and the valve 35 can be omitted.
  • the pressure in the pressure vessel 13 is monitored by the pressure gauge 22 and when the pressure in the pressure vessel 13 exceeds a predetermined value or when the third limit switch 2 9 detects the water level.
  • the pump 4 of the raw water supply pipe 1 is stopped, and preferably, the valve 3 of the raw water supply pipe 1 is closed.
  • a blue lamp (not shown) is turned on to indicate that preparation is complete and sterile water is ready to use at any time.
  • the aqueous solution of sodium hypochlorite is dispersed in an atomized state in the interior of the pressure vessel 13 filled with carbon dioxide gas, so that the carbon dioxide gas is dissolved in the aqueous solution of sodium hypochlorite.
  • the pH is automatically adjusted to lower the pH of the aqueous solution of sodium hypochlorite to the acid side, thereby producing sterilizing water mainly composed of hypochlorous acid.
  • carbonic acid water in which carbon dioxide gas is dissolved in water is weakly acidic, there is no possibility that the pH of the sterilizing water produced in the pressure vessel 13 filled with carbon dioxide gas will fall to a strongly acidic area.
  • sodium bicarbonate is known as a drug that exerts a buffering action, and the sensitivity to acid can be reduced by adding sodium bicarbonate to an aqueous solution of sodium hypochlorite, but sodium bicarbonate
  • the disadvantage is that the carbon dioxide gas is released constantly and the buffer action is reduced, which requires an operation or a device for regularly or constantly replenishing the sodium hydrogen carbonate.
  • the sterilizing water is generated in the pressure vessel 13 filled with carbon dioxide gas, There is no need for any work or equipment.
  • the sterilizing water generator switches to an operation mode in which sterile water that has been pH-adjusted by dissolving carbon dioxide can be used at any time.
  • the sterilizing water delivery 1 pipe 3 7 manual or motorized valve 3 9 is opened and the sterilizing water is used through the pipe 3 7, the water level in the pressure vessel 13 drops.
  • the motorized open / close valve 3 is opened in relation to the raw water supply pipe 1 and the operation of the pump 4 is resumed.
  • the aqueous solution of sodium hypochlorite diluted with water is supplied to the pressure vessel 13.
  • the concentration of the aqueous solution of sodium hypochlorite supplied to the pressure vessel 13 is determined by adding the aqueous solution of sodium hypochlorite in the raw material mixture 7 to the raw water through the addition unit 10, depending on the amount of addition. It is adjustable.
  • the valve 20 related to the carbon dioxide gas supply pipe 17 is opened and carbon dioxide gas is supplied to the pressure vessel 13 Ru. This causes the pressure in the pressure vessel 13 to rise, and the rise in internal pressure lowers the water level. Then, when the second limit switch 28 detects the water level, the valve 20 related to the carbon dioxide gas supply is closed, and the supply of carbon dioxide gas to the pressure vessel 13 is stopped.
  • the carbon dioxide gas in the pressure vessel 13 is absorbed by the aqueous solution of sodium hypochlorite injected into the pressure vessel 13, whereby the internal pressure in the pressure vessel 13 gradually decreases.
  • the pressure in pressure vessel 13 is maintained within a certain range and the level of the sterilizing water is within a certain range, that is, second and third limiters 2. Maintained in the range of 8 and 2 9 By the way, if the pressure in the pressure vessel 13 becomes too high, the dissolution of carbon dioxide gas becomes active in the pressure vessel 13 and the carbon dioxide gas is dissolved more than necessary.
  • the pH of the sterilizing water may fluctuate.
  • the raw water supply pump 4 is stopped and preferably the valve 3 is closed to make the pressure vessel Stop the supply of sodium hypochlorite aqueous solution to 13. Then, when the water level in the pressure vessel 13 drops due to the use of sterilizing water and the second light switch is detected by the second light switch 2 8, the pump 4 starts operation again and the electrically operated open valve 3 is opened to make the raw water
  • the water level in the pressure vessel 13 is maintained within a certain range by resuming the supply of water. That is, the water level of the sterilizing water in the pressure vessel 13 is maintained within a certain range by repeating the supply and stop of the sodium hypochlorite aqueous solution to the pressure vessel 13 according to the use condition of the sterilizing water. .
  • the pressure vessel 13 that uses carbon dioxide gas to generate sterile water mainly composed of hypochlorous acid functions as an accumulator.
  • the water level in the pressure vessel 13 rises abnormally and the internal pressure in the pressure vessel 13 does not exceed the predetermined value even if the uppermost limit switch 30 detects the water level. It is preferable to issue an alarm and / or turn on a red lamp (not shown) to draw attention because it is considered that the gas cylinder 15 has been emptied. Of course, it is preferable to issue a warning also when the pressure gauge 22 detects that the pressure in the pressure vessel 13 has dropped abnormally.
  • the pump 4 when the pressure in the pressure vessel 13 exceeds the predetermined pressure, the pump 4 is stopped and preferably the on-off valve 3 is closed to stop the supply of the raw water.
  • the pump 4 may be stopped and preferably the electric switching valve 3 may be closed to stop the supply of the raw water.
  • the flow path switching valve 9 provided in the adding unit 10 be switched, for example, at regular time intervals to return the aqueous solution of sodium hypochlorite pumped from the raw material tank 7 to the raw material tank 7 to the raw material tank 7 .
  • air bubbles generated in the hypochlorous acid sodium feed path from the raw material tank 7 to the addition portion 10 can be removed.
  • the amount of the aqueous solution of sodium hypochlorite added to the raw water at the addition part 10 is not only controlled according to the flow rate of the raw water, but it is adjusted and the amount thereof is adjusted and supplied to the pressure vessel 13 It is preferred to be able to change the concentration.
  • this sodium hypochlorite aqueous solution concentration (change the concentration target value) is performed, the valve of drain pipe 38 is stopped while stopping the use of the sterilizing water generated in pressure vessel 13 for a predetermined time.
  • the second embodiment shows an example of mixing an inorganic acid such as hydrochloric acid or sulfuric acid other than carbonic acid or an acid such as acetic acid or an organic acid such as lactic acid (typically, hydrochloric acid diluted with water). Specifically, prepare an additional raw material tank 50 containing an acid such as dilute hydrochloric acid, and this additional raw material tank
  • the acid of 50 is fed into the raw material feed pipe 12 or the raw water feed pipe 1 by the additional pump 51 and mixed with the aqueous solution of sodium hypochlorite in the additional addition part 52, whereby the pressure vessel 13 is fed. PH adjustment of sodium hypochlorite aqueous solution is performed.
  • This pH adjustment may be carried out in the pressure vessel 13 prior to the final pH adjustment with carbon dioxide, and may be preconditioning to bring the pH of the aqueous sodium hypochlorite solution to, for example, weak alkali, preferably neutral. Or the sodium hypochlorite aqueous solution may be adjusted to the target final pH (eg, pH 6).
  • the preparation of sodium hypochlorite aqueous solution using a sexible component (typically hydrochloric acid) excluding carbonated water and the desired target with an acidic component (typically hydrochloric acid) excluding carbonated water In this specification, this will be referred to as pH-assisted adjustment, including both adjustments to lower the pH to near the final pH.
  • the pH adjustment of the sodium hypochlorite aqueous solution was performed using carbon dioxide gas.
  • pH adjustment using only carbon dioxide gas is carried out while using the produced sterilizing water on the spot, for example, while producing sterilizing water at a site where a large amount of food such as vegetables and meat is washed. It is suitable in the aspect to be used.
  • the sterilizing water contains dilute hydrochloric acid
  • the third embodiment is also a modification of the second embodiment described above.
  • the addition portion 10 to which the sodium hypochlorite aqueous solution is added and the additional addition portion 5 2 to which the acid is added are disposed in series.
  • the additive portion 10 and the additional additive portion 52 may be arranged in parallel (Fig. 4). That is, sodium hypochlorite aqueous solution and dilute hydrochloric acid are separately added to raw water, and then mixed to perform pH-assisted adjustment of sodium hypochlorite aqueous solution, and after performing this pH-assisted adjustment. Supply the sodium hypochlorite aqueous solution to the pressure vessel 13
  • the fourth embodiment is also a modification of the third embodiment described above.
  • pH auxiliary adjustment of the aqueous solution of sodium hypochlorite is performed before being supplied to the pressure vessel 13.
  • the predetermined concentration is adjusted.
  • the dilute hydrochloric acid may be fed directly to pressure vessel 13 using an alternative path 55.
  • Hydrochloric acid may be supplied to the liquid phase portion of the pressure vessel 13 as a mode of supplying hydrochloric acid to the pressure vessel 13.
  • hydrochloric acid is dispersed or applied to the upper portion of the pressure vessel 13.
  • hydrochloric acid is sprayed or sprayed so as to collide with the aqueous solution of sodium hypochlorite sprayed or sprayed into the pressure vessel 13.
  • sterile water may be generated in a pressure vessel 13 filled with carbon dioxide gas while pH-adjusting is adjusted by mixing an aqueous solution of sodium hypochlorite and dilute hydrochloric acid.
  • FIG. 6, FIG. 7 Fifth embodiment (FIG. 6, FIG. 7):
  • the raw material tank 7 (Fig. 1 etc.) containing an aqueous solution of sodium hypochlorite was used.
  • an aqueous solution of sodium hypochlorite is generated just before being supplied to the pressure vessel 13
  • the generated aqueous solution of sodium hypochlorite may be supplied to the pressure vessel 13.
  • Reference numerals 60 in FIG. 6 and FIG. 7 indicate sodium hypochlorite generator. '
  • the hypochlorous acid sodium generator 60 in FIG. 6 is configured of a non-diaphragm electrolysis tank 61.
  • the sodium hypochlorite generator 60 of FIG. 7 is equipped with a diaphragm 62. It consists of the electrolyzed tank 63.
  • reference numeral 65 indicates a tank containing an aqueous solution of sodium chloride
  • 66 indicates a pump
  • 67 indicates a branch pipe branched from the raw water supply pipe 1.
  • An aqueous solution of sodium chloride aqueous solution containing sodium chloride aqueous solution and pumped by a pump 66 is mixed with raw water at an addition part 68, and the concentration thereof is diluted to a predetermined concentration, and then the electrolysis tank 61 is prepared. 6 Supply to 3
  • the sodium hypochlorite aqueous solution produced in the non-diaphragm electrolysis tank 61 (FIG. 6) is mixed with the raw water in the addition section 10 and adjusted to a predetermined concentration, and then supplied to the pressure vessel 13.
  • the membrane electrolysis tank 6 3 (FIG. 7) after the electrolyzed water discharged from the anode side and the electrolyzed water discharged from the cathode side are merged, After being mixed with it and adjusted to a predetermined concentration, it is supplied to the pressure vessel 13. However, part of the electrolytic water discharged from the negative side may be discarded instead of using all the water.
  • the pressure vessel 13 is supplied with hypochlorous acid sodium immediately before or in the same manner as illustrated in FIGS. It is possible to produce sterilizing water in a pressure vessel 13 filled with carbon dioxide gas while adjusting the pH by mixing diluted acid solution (typically diluted hydrochloric acid) when injecting in 3 Needless to say.
  • diluted acid solution typically diluted hydrochloric acid
  • FIG. 8 Sixth embodiment (FIG. 8): In this sixth embodiment, as can be understood from FIG. 8, the pH of the aqueous solution of sodium hypochlorite in the pressure vessel 13 is lowered by publishing carbon dioxide gas, and the hypochlorous acid is mainly used. An example of producing germicidal water is shown.
  • Reference numeral 70 in FIG. 8 is a bubble generator typically made of a porous material.
  • the aqueous solution of sodium hypochlorite may be injected or sprayed to the top of the pressure vessel 13 as in the first embodiment etc.
  • the pressure vessel 1 3 It may be supplied to the bottom of the liquid, that is, the liquid phase part.
  • the pH-assisted adjustment may be performed by mixing diluted hydrochloric acid in the same manner as illustrated in FIGS.
  • relief valve 71 is opened, and is sent to junction 73 by pump 72.
  • the carbon dioxide gas discharged from the pressure vessel 13 and the carbon dioxide gas sent out from the gas cylinder 15 merge and are again sent to the bubble generator 70 through the pipe 74.
  • fine bubbles of carbon dioxide gas are generated in the liquid phase (sterilized water) in the pressure vessel 13.
  • the carbon dioxide gas is dissolved in the aqueous solution of sodium hypochlorite in the pressure vessel 13 by the publication of the carbon dioxide gas to adjust the pH of the sterilizing water.
  • FIG. 9 Seventh embodiment (FIG. 9):
  • the seventh embodiment shown in FIG. 9 is characterized in the means for maintaining the water level in the pressure vessel 13 within a predetermined range.
  • This water level maintenance means is constituted by the first electric flow rate adjusting valve 80 provided on the raw water supply pipe 1 and the second electric flow rate adjusting valve 8 1 provided on the discharge side of the pressure vessel 13. .
  • the second flow rate adjustment valve 81 operates to reduce the flow rate, and the sterilization discharged from the pressure vessel 13 is performed. Reduce the water flow rate.
  • the water level in pressure vessel 13 rises and the third limit switch 2 9 detects the water level
  • the flow adjustment valve 81 on the discharge side returns to the original open position so that a large amount of sterilizing water can be discharged from the pressure vessel 13 while the first flow provided to the raw water supply pipe 1
  • the volume adjustment valve 80 operates to reduce the flow rate and reduce the amount of sodium hypochlorite aqueous solution supplied to the pressure vessel 13. By executing this control, the water level in the pressure vessel 13 can be maintained between the second and third limit switches 2 8 and 2 9. [0 0 6 5]
  • the discharge side (2) The flow rate adjustment valve 81 alone can maintain the water level in the pressure vessel 13 within a certain range.
  • the water level in the pressure vessel 13 is designed to rise with both the first and second flow control valves 80, 81 fully open. It is possible to maintain the water level within a certain range only by the first flow control valve 80 on the raw water side.
  • the eighth embodiment shown in FIG. 10 shows a preferred embodiment suitable for use by diluting the concentration of the sterilizing water generated in the pressure vessel 13 with the raw water.
  • a raw water distribution pipe 85 is connected between the raw water supply pipe 1 and the sterilizing water delivery pipe 3 7. As a result, a part of the raw water is added to the sterilizing water generated in the pressure vessel 13 so that the concentration of the sterilizing water can be diluted.
  • Reference numerals 8 6 and 8 7 in FIG. 10 are pressure reducing valves, and 8 8 is a check valve.
  • the amount of raw water to be added to the sterilizing water delicate tube 37 can be adjusted at the merging section 89, whereby sterilizing water having a desired concentration can be used.
  • the ninth embodiment shown in FIG. 11 presents another example suitable for diluting and using the sterilizing water produced in the pressure vessel 13. It is something that
  • a second pressure vessel having substantially the same configuration as this one.
  • the second pressure vessel 90 produces carbonated water.
  • the bactericidal water is diluted using this carbonated water, and the sterilized water diluted to a predetermined concentration with this carbonated water is used.
  • a light switch (water level sensor) 2 7 to 30 is installed, and like the first pressure vessel 13, the second and third limit Water level is maintained between switches 2 8 and 2 9.
  • the carbonated water produced in the second pressure vessel 90 is discharged from the discharge pipe 91 and added to the sterilizing water at the junction 89.
  • the amount of this addition, that is, the dilution degree of the sterilizing water is adjusted at the junction 89.
  • reference numerals 9 3 and 9 4 denote pressure reducing valves
  • 9 5 denotes a motorized on-off valve.
  • an aqueous solution of sodium hypochlorite was added to the raw water supplied through the raw water supply pipe 1 at the addition portion 10 to generate an aqueous sodium hypochlorite solution having a desired concentration.
  • the pressure vessel 13 After being supplied to the pressure vessel 13 through the raw material supply pipe 12, the pressure vessel 13 is divided into first and second branch pipes 100, 101 from which the raw material supply pipe 12 is branched.
  • An aqueous solution of sodium hypochlorite is supplied via the mixture.
  • the distribution ratio to the first and second branch pipes 1 0 0 and 1 0 1 can be arbitrarily adjusted by the distribution valve 1 0 2. [0 0 7 3]
  • the first branch pipe 100 is supplied to the aforementioned upper space 14 of the pressure vessel 13 and injected or dispersed into the main space 45 through the small holes 44.
  • the second branch pipe 101 is connected to the main space 45 of the pressure vessel 13 and flows down as a water stream.
  • Reference numeral 1 0 3 of 12 is a pH measuring device. By the way, it is possible to substantially know the concentration of carbonated water by detecting the dissolved gas contained in the carbonated water, and indirectly to know the pH of the sterilized water. 3 may be replaced with a dissolved carbon dioxide concentration meter that detects the concentration of dissolved and carbon dioxide gas in the sterilizing water.
  • the pressure vessel 1 3 By changing the ratio of the amount of the sodium hypochlorite aqueous solution to be dispersed or sprayed into the pressure vessel 13 and the amount of the solution flowing down into the pressure vessel 13 as a water flow by means of the distribution valve 102, the pressure vessel 1 3 It is possible to change the degree to which the aqueous solution of sodium hypochlorite contacts carbon dioxide gas. And thereby, feedback control can be performed so that the pH of the sterilizing water in the pressure vessel 13 becomes a target value.
  • the detected value from pH meter 103 can be used, for example, if the detected pH is “6” If the size is also large, the pH of the sterilizing water can be lowered to approach the target value by increasing the flow rate ratio of the sodium hypochlorite aqueous solution injected into the pressure vessel 13 through the first branch pipe 100. On the other hand, if the detected pH is smaller than "6", the pH ratio of the sterilizing water is raised by reducing the flow rate ratio of the aqueous solution of sodium hypochlorite injected into the pressure vessel 13 through the first branch pipe 100. It can approach the target value. Such control is performed by the controller outside the figure.
  • the distribution valve 102 may be made of manual pulp.
  • the ratio of the flow rate of the sodium hypochlorite aqueous solution to be sprayed or sprayed into the pressure vessel 13 to the flow rate of the solution flowing down into the pressure vessel 13 is practically fixed. .
  • the eleventh embodiment of FIG. 13 is also a modification of the tenth embodiment (FIG. 12) described above.
  • the second branch pipe 101 is opened at the upper part of the main space 45 of the pressure vessel 13.
  • the second branch is taken as the second branch.
  • Pressure tube 1 0 1 The lower part of the force container 13 is opened at the liquid phase.
  • the tenth embodiment of FIG. 14 is the same as the tenth embodiment (FIG. 12) and the first embodiment described above.
  • the distribution valve 102 is disposed downstream of the addition unit 10.
  • the addition unit 10 is provided in the first embodiment (FIG. 14).
  • a distribution valve 102 is disposed upstream of the source to supply raw water to the pressure vessel 13.
  • raw water is supplied to the lower part, ie, liquid phase area of the bottom container 13 of the tank 13, but it is supplied to the top of the pressure container 13 as in the 10th embodiment.
  • Raw water may be allowed to flow in a stream.
  • the 13th embodiment shows an example of controlling the pH of the sterilizing water by adding an aqueous solution of sodium hypochlorite to the sterilizing water mainly composed of hypochlorous acid which is produced in the pressure vessel 13.
  • a distribution valve 102 is disposed downstream of the addition unit 10, and a portion of the hypochlorous acid sodium aqueous solution after concentration adjustment passes through a first branch pipe 100 and a pressure vessel. The remaining portion of the aqueous solution of sodium hypochlorite after concentration adjustment and injection is supplied to the sterilizing water discharge side.
  • Reference numeral 105 indicates a mixing unit, and the sterilizing water produced in the pressure vessel 13 is discharged from the pressure vessel 13, and then an aqueous solution of sodium hypochlorite is added in the mixing unit 105.
  • the pH can be finely adjusted by adding an aqueous solution of sodium hypochlorite before using it to sterile water which has been pH-adjusted using carbon dioxide gas.
  • the pH of the sterilizing water can be made to match the desired target value.
  • This 14th embodiment is also a modified example of the 13th embodiment (FIG. 15) described above.
  • Figure 16 the distribution valve 102 is disposed upstream of the addition unit 10, a part of the raw water is supplied to the sterilizing water discharge side, and the sterilizing water generated in the pressure vessel 13 is After being discharged from the container 13, raw water is added in the mixing unit 105.
  • This configuration is substantially the same as the configuration of the eighth embodiment (FIG. 10) described above, and the concentration of the sterilizing water produced in the pressure vessel 13 is diluted with the raw water, whereby the sterilizing water is The pH can be finely adjusted.
  • the pH of the sterilized water after addition of the raw water is detected by a pH meter 103, and the amount of raw water addition is controlled by comparing the detected pH with a target value.
  • pressure vessel 13 is supplied with only raw water. That is, the sodium hypochlorite aqueous solution is not added to the raw water supply pipe 1.
  • the other configuration related to the pressure vessel 13 is the same as that of the first embodiment (FIG. 13), and carbon dioxide gas is supplied to the pressure vessel 13 and the water level in the pressure vessel 13 is It is maintained in a certain range. [0 0 8 4]
  • a portion of the raw water is sprayed or injected into the pressure vessel 13 through the first branch pipe 100.
  • the remainder of the raw water is supplied to the lower part of the pressure vessel 13, ie, the liquid phase area, through the second branch pipe 101.
  • the ratio of distribution to the first branch pipe 100 and the second branch pipe 101 can be adjusted using the distribution valve 102, whereby the concentration of the carbonated water produced in the pressure vessel 13 can be adjusted. Can be adjusted.
  • the carbonated water produced in the pressure vessel 13 is taken out, and the pH of the aqueous solution of sodium hypochlorite is adjusted by using the taken-out carbonated water to generate sterilizing water, so that the concentration of the carbonated water is controlled.
  • PH measuring instrument 1 0 3 mentioned above It may be constituted by a dissolved carbon dioxide concentration sensor.
  • sterilizing water having a pH of 6.5 to 7 is preferable for meat
  • sterilizing water having a pH of 5 to 6 is considered preferable for vegetables.
  • the concentration of carbonated water can be adjusted, and the pH of the sterilized water can be controlled by mixing the adjusted carbonated water with an aqueous solution of sodium hypochlorite, whereby the meat is sterilized. It is possible to improve the flexibility of using treatment and sterilizing treatment of vegetables. [0 0 8 7]
  • the pH of carbonated water may be controlled by increasing or decreasing the pressure in the pressure vessel 13.
  • an acid such as hydrochloric acid is used.
  • PH-assisted adjustment may be performed using (typically an acid diluted with water).
  • the small holes 44 are provided to face each other in the radial direction, whereby each small hole 4 is formed. It is good to atomize by making the liquids (sodium hypochlorite aqueous solution or raw water) injected from 4 collide with each other. Atomization can efficiently dissolve carbon dioxide gas. Further, as shown in FIG. 19, the axial direction of the small holes 44 may be inclined so that the liquids jetted from the plurality of small holes 44 adjacent to each other collide with each other. Also, instead of the small holes 44, injection nozzles 110 may be provided. Such small holes 44 and injection nozzles 110 may be attached directly to the side wall of the pressure vessel 13.
  • FIG. 21 shows the bubble generator 70 composed of, for example, a porous sintered member or a nozzle, and this bubble generator 70 is An example of direct attachment to the lower sidewall of the pressure vessel 13 is shown.
  • Fig. 2 2 shows the porous A bubble generator 70 made of material is shown.
  • FIG. 23 shows an example of supplying carbon dioxide gas to a box equipped with a plate provided with many fine holes to generate fine bubbles.
  • an aqueous solution of sodium hypochlorite or an aqueous solution of sodium hypochlorite which is an alkaline aqueous solution
  • a disinfectant water containing hypochlorous acid or hypochlorous acid as a main component by pH adjustment of carbon dioxide gas can be generated.
  • the pH of this sterilizing water is not only stable, but also it can be prevented from entering a strongly acidic region to suppress the generation of chlorine gas.
  • the pressure vessel 13 functions as an accumulator, it is not necessary to separately install an accumulator and a tank for temporarily storing sterilizing water.
  • the present invention is most preferably applied to the production of germicidal water (weak acid) having a high content of hypochlorous acid or hypochlorous acid, but generally it is generally a germicidal water having a pH of about 5 to about 8. Applicable to the generation of germicidal water (weak acid) having a high content of hypochlorous acid or hypochlorous acid, but generally it is generally a germicidal water having a pH of about 5 to about 8. Applicable to the generation of germicidal water (weak acid) having a high content of hypochlorous acid or hypochlorous acid, but generally it is generally a germicidal water having a pH of about 5 to about 8. Applicable to the generation of germicidal water (weak acid) having a high content of hypochlorous acid or hypochlorous acid, but generally it is generally a germicidal water having a pH of about 5 to about 8. Applicable to the generation of germicidal water (weak acid) having a high

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

炭酸ガスボンベ15から減圧弁18,19を介して減圧した炭酸ガスが圧力容器13に供給される。圧力容器13には、所望の濃度の次亜塩素酸ナトリウム水溶液が原料供給管12を通じて供給される。原料供給管12は分配バルブ102を介して第1分岐管100と第2分岐管101に接続されている。原料供給管12を通る次亜塩素酸ナトリウム水溶液は、その一部が第1分岐管100を通じて圧力容器13の気相領域に散布され、残部が第2分岐管101を通じて圧力容器13の液相領域に供給される。圧力容器13は水位維持機構25~29が設けられて一定の半に水位が維持される。圧力容器13で生成した殺菌水は、絞り42を含む吐出管31を通じて取り出され、殺菌水のpHはpHセンサによって検知され、目的のpHと一致するように分配バルブ102が制御される。

Description

明 細 書
次亜塩素酸又は亜塩素酸を主成分とした殺菌水の生成方法及び装置
【 0 0 0 1】
技術分野
本発明は次亜塩素酸又は亜塩素酸を主成分とした殺菌水の生成方法及び装置に 関する。
【 0 0 0 2】
背景技術
次亜塩素酸又は亜塩素酸を主成分とした殺菌水は人体に無害であり且つ優れた 殺菌効果を発揮することが周知である。 例えば次亜塩素酸ナトリゥムを水で希釈 して遊離塩素酸-濃度を約 2 0 0 ppm に調整したときの次亜塩素酸ナトリウム水 溶液の pHは約 8.6であり、 この次亜塩素酸ナトリゥム水溶液中に次亜塩素酸が 約 10 %含まれている。 次亜塩素酸の含有比率は pH に依存し、 pH=約 5の弱酸 性領域で次亜塩素酸が約 1 0 0 %になることが知られている。
【 0 0 0 3】
次亜塩素酸又は 塩素酸を主成分とした殺菌水の生成方法として以下の方法が 知られている。 第 1は.、 次亜 (亜) 塩素酸ナトリゥム水溶液と、 塩酸などの酸 (希 釈した塩酸) とを混合する方法である (JP 公開 2004-35037 号、 JP 公開 2005- 161142号、 JP公開 200^-349382号参照)。 第 2は、 塩酸を直接電気分解し て次亜塩素酸を主成分とする殺菌水を得る方法である。 第 3は、 プラス極とマイ ナス極との間に隔膜を備えた電気分解槽に塩酸ナトリゥムを入れて電気分解す ることにより プラス極側に次亜塩酸水溶液を生成する方法である (JP 公開 H03-258392号参照)。 第 4は、 塩酸と塩化ナトリウムとの混合水溶液を電気分解 して次亜塩素酸水溶液を生成する方法である (JP公開 H06-99174号参照)。 【 0 0 0 4】
上述した第 1の方法、 つまり次亜 (亜) 塩素酸ナトリウム水溶液と酸とを混合 する混合法は; 手軽に、 次亜塩素酸又は亜塩素酸を主成分とした殺菌水を生成で きるという利点を備えているが、 添加する酸の量の制御が難しく、 例えば僅かで も酸の量が多すぎると急激に pH が低下して pH 3以下のガス化領域に入ってし まい、 塩素ガスや二酸化塩素ガスが発生するという問題を有している。 この問題 を端的に表す例として、 次亜塩素酸ナトリゥムを含有した市販の殺菌剤や漂白剤 には、 その容器に、 「酸と一緒に使用することを禁止する」 旨の注意書きが付さ れている。
【 0 0 0. 5】
上述した第 2、 第 3の電気分解による方法では、 次亜塩素酸の含有比率が高い pH 5近傍に電解条件を規定しょうとすると微妙な装置の制御が必要となり、 この ことから、 電解条件を pH 7近傍まで拡大して装置の制御を行っているのが実状 である。
【 0 0 0 6】
上記第 4の電気分解による方法では、 JP公開 H06-99174号に開示のように、 プラス極とマイナス極との間に隔膜が存在していない電気分解槽に塩化ナトリウ ム水溶液を入れて高濃度の次亜塩素酸ナトリゥムを生成した後に希釈水で希釈す ることにより、 次亜塩素酸を主成分とした殺菌水が生成される。 この第 4の方法 では、 電気分解により次亜塩素酸ナトリウムが生成されるときに自動的に pH調 整が行われるように希塩酸が添加されるが、 所望の pHの殺菌水を生成しょうと すると、 希塩酸の濃度を厳格に調整する必要がある。 他方、 所望の濃度の殺菌水 を生成しょうとすると、 希塩酸の量を調整する必要がある。 この第 4の方法を実 施する装置は、 濃度と pH を共に所望の値にするのに非現実的な制御が必要とな り、 このことから夕一ゲッ トとする pHの範囲を広く設定しているのが実状であ る。
【 0 0 0 7】
上述した方法により生成された次亜塩素酸又は亜塩素酸を主成分とした殺菌水 は、 これを生成する殺菌水生成装置に接続された殺菌水流出配管の先止めバルブ や蛇口を開けることにより使用される (JP特許公開 2004- 181445号参照)。 例え ば、 蛇口を僅かに開いて極端に少ない量を使用し続けたり、 蛇口を全開にして使 用したりと、 使用する殺菌水の量は様々である。 このことから、 殺菌水生成装置 における殺菌水の生成量を一定に維持することができず、 このことが pH及び濃 度を一定に維持するのを困難にしている原因になっている。 このため、 殺菌水生 成装置の付帯設備として、 アキュームレータや、 生成した殺菌水を蓄える貯水夕 ンクが必要であると考えられていた。 【 0 0 0 8】
発明の開示
本発明の目的は、 安定した pHの、 次亜塩素酸又は亜塩素酸を主体とした殺菌 水の生成方法及び装置を提供することにある。
【 0 0 0 9】
本発明の更なる目的は、 pH 3以下のガス化領域まで pHが低下するのを防止す ることのできる次亜塩素酸又は亜塩素酸を主体とした殺菌水の生成方法及び装 置を提供することにある。
【 0 0 1 0】
本発明の更なる目的は、 特別な制御を行う必要無しに、 高濃度の次亜塩素酸又 は亜塩素酸を主体とした殺菌水の pHを安定的に維持することのできる殺菌水生 成方法及び装置を提供することにある。
【 0 0 1 1】
本発明の更なる目的は、 殺菌水の使用態様の影響を受けることなく、 殺菌水の pH の変動を抑えながら次亜塩素酸又は亜塩素酸を主体とした殺菌水を生成する ことのできる殺菌水生成方法及び装置を提供することにある。
【 0 0 1 2】
本発明は、 基本的には、 炭酸ガスを起点として、 この炭酸ガスを使って次亜塩 素酸ナトリゥム水溶液又は亜塩素酸ナトリゥム水溶液の pH を調整して次亜塩素 酸又は亜塩素酸を主体とした殺菌水を生成することを特徴とする。
【 0 0 1 3】 "
具体的な態様として、 炭酸ガスと次亜塩素酸ナトリゥム水溶液又は亜塩素酸ナ トリゥム水溶液とを直接的に接触させる第 1の態様と、 炭酸ガスと水とを接触さ せて炭酸水を作り、 この炭酸水を次亜塩素酸ナトリゥム水溶液又は亜塩素酸ナト リウム水溶液に添加する第 2の態様とを含む。 すなわち、 炭酸ガスを水又は次亜 塩素酸ナトリゥム水溶液又は亜塩素酸ナトリウム水溶液と接触させて炭酸ガス を溶解させることで、 次亜塩素酸ナトリゥム水溶液又は亜塩素酸ナトリゥム水溶 液の pH調整に寄与させるものである。 以下に代表例として次亜塩素酸ナトリウ ム水溶液で本発明の実施の形態を説明するが、 亜塩素酸ナトリゥム水溶液に対し ても同様である。 【 0 0 1 4】
例えば、 炭酸ガスと次亜塩素酸ナトリゥム水溶液とを接触させる例としては、 炭酸ガスを充填した容器の気相領域に次亜塩素酸ナトリウム水溶液を散布した り液相部分に供給して次亜塩素酸ナトリゥム水溶液をバプリングすればよい。 気 相領域に次亜塩素酸ナトリゥム水溶液を散布する方法として、 シャワーのように 散布してもよいし、 ノズルを使って噴霧又は噴射してもよいが、 散布する次亜塩 素酸ナトリゥム水溶液の粒子や表面積の大小によって炭酸ガスの溶解度が左右 される。 この特性を使って殺菌水の pH調整することができる。
【 0 0 1 5】
また、 炭酸ガスを充填した容器の気相領域に次亜塩素酸ナトリゥム水溶液を散 布するのに加えて液相領域に次亜塩素酸ナトリウム水溶液を供給するようにし てもよい。 気相領域に散布する次亜塩素酸ナトリウム水溶液の流量と、 液相領域 に供給する次亜塩素酸ナトリウム水溶液の流量とを調整することで、殺菌水の pH 調整することができる。
【 0 0 1 6】
次亜塩素酸又は亜塩素酸を主体とした殺菌水を生成するのに、 付加的に、 炭酸 を除く酸を使うようにしてもよい。 この付加的な酸は、 次亜塩素酸ナトリウム水 溶液を炭酸ガスと接触させるのと同時でもよいし、 その後でも前でもよい。 【 0 0 1 7】
上記容器として、 水位を一定の範囲に維持する機構を備えた圧力容器を使った 場合には、 この圧力容器がアキュームレータとして機能させることができる。 生 成した殺菌水を希釈して使用する場合に、 現場で、 炭酸ガスと水とを接触させて 生成した炭酸水を使うことで、 殺菌水の pHの変動を抑えつつ殺菌水を希釈化す ることができる。
【 0 0 1 8】
本発明の上述した目的及び効果は、 添付の図面を参照した本発明の好ましい実 施例の詳細な説^から明らかになろう。
図面の簡単な説明
図 1は第 1実施例の殺菌水生成装置の全体構成図である。
図 2は図 1に図示の第 1実施例の概略構成図である。 図 3は第 2実施例の殺菌水生成装置の概略構成図である。
図 4は第 3実施例の殺菌水生成装置の概略構成図である。
図 5は第 4実施例の殺菌水生成装置の概略構成図である。
図 6は第 5実施例の殺菌水生成装置の概略構成図である。
図 7は、 図 6に図示の第 5実施例の変形例の概略構成図である。
図 8は第 6実施例の殺菌水生成装置の概略構成図である。
図 9は第 7実施例の殺齒水生成装置の概略構成図である。
図 1 0は第 8実施例の殺菌水生成装置の概略構成図である。
図 1 1は第 9実施例の殺菌水生成装置の概略構成図である。
図 1 2は第 1 0実施例の殺菌水生成装置の全体構成図である。
図 1 3は第 1 1実施例の殺菌水生成装置の概略構成図である。
図 1 4は第 1 2実施例の殺菌水生成装置の概略構成図である。
図 1 5は第 1 3実施例の殺菌水生成装置の概略構成図である。
図 1 6は第 1 4実施例の殺菌水生成装置の概略構成図である。
図 1 7は第 1 5実施例の殺菌水生成装置の概略構成図である。
図 1 8は圧力容器内に次亜塩素酸ナトリゥム水溶液又は水を散布する一つの態 様を説明するための断面図である。
図 1 9は圧力容器内に次亜塩素酸ナトリゥム水溶液又は水を散布する他の態様 を説明するための断面図である。
図 2 0は圧力容器内に次亜塩素酸ナトリゥム水溶液又は水を散布する更に他の 態様を説明するための断面図である。
図 2 1は圧力容器内でバブリングするための一つの態様を説明するための図で ある。
図 2 2は圧力容器内でバブリングするための他の態様を説明するための図であ る。
図 2 3は圧力容器内でバブリングするための更に他の態様を説明するための図 である。 '
【 0 0 1 9】
発明を実施するための最良の形態
以下に、 次亜塩素酸を主体とした殺菌水を生成する例を説明するが、 亜塩素酸 を主体とした殺菌水の生成にも同様に適用可能である。
【 0 0 2 0】
第 1実施例 (図 1、 図 2 ) :
図 1は第 1実施例の殺菌水生成装置を示し、 この装置の構成を模式的に図示し たのが図 2である。 参照符号 1は原水供給管であり、 原水源として水道水、 井戸 水、 海水を挙げることができる。 原水供給管 1には、 逆止弁 2、 電動式の開閉バ ルブ 3、 ポンプ 4、 流量計 5が設けられている。 なお、 原水を圧送するためのポ ンプ 4は、水道水のように圧送されて来た原水を使用する場合には省いてもょレ 参照符号 7は、 次亜塩素酸ナトリウム水溶液を貯留した原料タンク、 8はポンプ である。 原料タンク 7内の次亜塩素酸ナトリウム水溶液は、 流路切り換えバブル 9を介して添加部 1 0に送られて原水と混合される。 原水と混合することにより 所望の濃度に希釈された次亜塩素酸ナトリウム水溶液は、 原料供給管 1 2を通じ て圧力容器 1 3 (圧力タンク) の上部空間 1 4に供給される。
【 0 0 2 1】
参照符号 1 5は炭酸ガスボンベであり、 炭酸ガス (C〇2) ボンべ 1 5の炭酸ガ スは手動バルブ 1 6を開けることにより炭酸ガス供給管 1 7を通じて圧力容器 1 3に供給される。 参照符号 1 8、 1 9は共に減圧弁であり、 この 2つの減圧弁 1 8、 1 9を使って約 1 〜 3 kg/cm 2の炭酸ガスが圧力容器 1 3に供給される。 参照 符号 2 0は電動開閉バルブ、 2 1は逆止弁、 2 2は圧力計、 2 3は分岐部であり、 炭酸ガスは、 ガス誘導管 2 4を通じて圧力容器 1 3に投入される。 また、 圧力容 器 1 3内の圧力は圧力計 2 2によって検知される。
【 0 0 2 2】
参照符号 2 5はフロートであり、 参照符号 2 6は、 フロート 2 5に取付けられ たマグネッ トである。 圧力容器 1 3の側壁には、 上下に離置した 4つのリミッ ト スィッチ 2 7 〜 3 0が設けられ、 この 4つのリミツ トスイッチ 2 7 ~ 3 0で圧力 容器 1 3内の水位を検知する。 これらマグネッ ト 2 6、 リミツ トスイッチ 2 7 - 3 0は、 圧力容 1 3の水位を検知する水位検知手段を構成するものである。 圧 力容器 1 3の水位を検知する他の例として、 圧力容器 1 3の外部に上下に延びる 例えば透明ガラスのような水位監視管を設け、 この水位監視管に内装したフロー 卜のレベルを検知するようにしてもよい。 【 0 0 2 3】
圧力容器 1 3の底部には吐出管 3 1が接続されている。 参照符号 3 2は第 1分 岐部であり、 前記吐出管 3 1は第 1、 第 2の配管 3 3 、 3 4に接続され、 第 1配 管 3 3は、 前述した分岐部 2 3に接続されている。 参照符号 3 5は電動開閉バル ブである。上記吐出管 3 1は小径管で構成するか絞り 4 2を設けるのが好ましレ 【 0 0 2 4】
第 2配管 3 4は第 2分岐部 3 6で殺菌水デリバリ一管 3 7 と排水管 3 8に分岐 されている。 参照符号 3 9は、 殺菌水デリバリー管 3 7に設けられた手動又は電 動の開閉バルブであり、 4 0は、 排水管 3 8に設けられた電動式の開閉バルブで ある。 この排水管 3 8の開閉バルブ 4 0に代えて、 殺菌水デリバリ一管 3 7に流 路切換バルブを設け、 この流路切換バルブによって、 排水管 3 8が開通する排水 態様と、 殺菌水デリバリ一管 3 7が開通する殺菌水使用態様とを切り換えるよう にしてもよい。
【 0 0 2 5】
圧力容器 1 3の上部には隔壁 4 3が設けられ、 隔壁 4 3には複数の小孔 4 4が 形成されている。 隔壁 4 3は、 次亜塩素酸ナトリウム水溶液が供給される上部空 間 1 4と、 ガス誘導管 2 4を通じて炭酸ガスが供給されるメイン空間 4 5とを区 画する。 次に殺菌水生成装置の動作を説明する。
【 0 0 2 6】
第 1実施例の殺菌水生成装置の動作の概要を説明すると、 所定の範囲の圧力の 炭酸ガスで充満した圧力容器 1 3に、 所定の濃度に調整した次亜塩素酸ナトリウ ム水溶液を散布することで、 次亜塩素酸ナトリウム水溶液に炭酸ガスを溶解させ るようになっている。 次亜塩素酸ナ卜リウム水溶液の散布の態様、 つまり次亜塩 素酸ナトリゥム水溶液の微粒化の程度つまり表面積の大小によって炭酸ガスの溶 解の程度を調整することできる。 例えば、 次亜塩素酸ナトリウム水溶液をシャヮ —のように散布した場合と、噴霧ノズルを使って微粒化した場合とを比較すれば、 噴霧ノズルで微粒'化した方が炭酸ガスが多く溶解する。 また、 圧力容器 1 3内の 圧力を高く設定した場合には、 低い圧力に設定した場合に比べて、 炭酸ガスが多 く溶解する。 これらのことは設計事項であり、 仮に飽和レベルまで炭酸ガスが溶 解したとしても、 炭酸水が圧力容器 1 3内の殺菌水が強酸性領域に入ることはな い。
【 0 0 2 7】
準備モード :
(1)炭酸ガスの供給に関連したバルブ 2 0及び殺菌水デリバリー管 3 7に関連し たバルブ 3 9は共に閉じられる。 他方、 (2)第 1配管 3 3に関連したバルブ 3 5及 び排水管 3 8に関連したバルブ 4 0は共に開かれる。 次いで、 次亜塩素酸ナトリ ゥム水溶液が上部空間 1 4に供給され、 この次亜塩素酸ナトリゥムは小孔 4 4を 通じてメイン空間 4 5に勢いよく噴射される。 好ましくは、 複数の小孔 4 4から 噴射された次亜塩素酸ナトリゥムの水流を互いに衝突させて微粒化するのがよい。 【 0 0 2 8】
次亜塩素酸ナトリゥム水溶液を希釈する原水の流量は流量計 5により計測され、 その流量に応じて、 所定の濃度の次亜塩素酸ナトリウム水溶液となるように、 原 料夕ンク 7中の次亜塩素酸ナトリゥム水溶液がポンプ 8により添加部 1 0に送ら れて原水と混合され、 そして、 使用目的に合致した所定の濃度に調整された次亜 塩素酸ナトリゥム水溶液が原料供給管 1 2を通じて圧力容器 1 3に供給される。 【 0 0 2 9】
圧力容器 1 3の底部に接続した吐出管 3 1に絞り 4 2が設けられているため、 次亜塩素酸ナトリゥム水溶液の供給を受ける圧力容器 1 3の水位は上昇する。 水 位の上昇に伴って圧力容器 1 3内の空気はガス誘導管 2 4の中に入り、 分岐部 2 3、 第 1配管 3 3、 第 2配管 3 4、 配水管 3 8を通って外部に放出される。
【 0 0 3 0】
水位の上昇によってフロート 2 5が上昇して最上位に位置するリミッ トスィッ チ 3 0が水位を検知すると、 圧力容器 1 3中の空気を外部に排出するのに関与し た第 1配管 3 3のバルブ 3 5が閉じられる。 他方、 炭酸ガスの供給に関連したバ ルブ 2 0が開放されて、 炭酸ガスボンベ 1 5から 2つの減圧弁 1 8 、 1 9を使つ て減圧した比較的低圧の炭酸ガスがガス誘導管 2 4を通じて圧力容器 1 3に供給 される。 このような制御は、 図外のコントローラによって行われる。
【 0 0 3 1】
なお、 準備モードで、 圧力容器 1 3内の空気を外部に排出するのに、 圧力容器 1 3の頂部又はその近傍に抜気用の開閉バルブを設けて、 この抜気用バルブを開 いて圧力容器 1 3内の空気を外部に排出してもよい。 そして、 圧力容器 1 3中の 空気が抜けたとき、 つまり、 圧力容器 1 3の水位が上昇して最上位リミッ トスィ ツチ 3 0が水位を検知したときに上記抜気用バルブを閉じるようにしてもよい。 これによれば、 排気用の配管 3 3及びバルブ 3 5は省略することができる。
【 0 0 3 2】
炭酸ガスの供給を受けて圧力容器 1 3内の圧力が上昇すると、 圧力容器 1 3内 の水位は次第に低下する。 水位が低下して第 2番目のリミッ トスィツチ 2 8が水 位を検知すると、 炭酸ガスの供給に関連したバルブ 2 0 と、 排水管 3 8のバルブ 4 0が閉じられる。 これにより水位は再び上昇を開始する。
【 0 0 3 3】
圧力容器 1 3内の圧力は圧力計 2 2によって監視されており、 圧力容器 1 3内 の圧力が所定の値を超えたとき又は第 3番目のリミッ トスィッチ 2 9が水位を検 知したときに原水供給管 1のポンプ 4が停止され、 また、 好ましくは原水供給管 1のバルブ 3が閉じられる。 以上で、 準備が完了し、 殺菌水を何時でも使える状 態になったことを知らせるために、 例えば青ランプ (図示せず) を点灯する。 【 0 0 3 4】
上述した準備モードで、 炭酸ガスで充満した圧力容器 1 3の内部に、 次亜塩素 酸ナトリゥム水溶液を微粒化した状態で散布することから、 この次亜塩素酸ナト リゥム水溶液に炭酸ガスが溶解して、 次亜塩素酸ナトリゥム水溶液の pH を酸性 側に低下させる pH 自動調整が行われ、 これにより次亜塩素酸を主体とした殺菌 水を生成することができる。 そして、 炭酸ガスが水に溶解した炭酸水は弱酸性で あることから、 炭酸ガスが充満した圧力容器 1 3で生成した殺菌水は、 その pH が強酸性領域まで低下する虞は無い。
【 0 0 3 5】
ちなみに、緩衝作用を発揮する薬剤として炭酸水素ナトリウムが知られており、 この炭酸水素ナトリゥムを次亜塩素酸ナトリゥム水溶液に添加することで酸に対 する感受性を低下させることができるが、 炭酸水素ナトリウムは炭酸ガスを絶え 間なく放出して緩衝作用が低下するという欠点があり、 このため炭酸水素ナトリ ゥムを定期的又は常に補充する作業又は装置が必要となる。 これに対して、 実施 例では、 炭酸ガスが充満している圧力容器 1 3内で殺菌水を生成するため、 上述 した作業や装置は不要である。
【 0 0 3 6】
運用モ一ド :
上述した準備モードが完了すると、 殺菌水生成装置は、 炭酸ガスの溶解によつ て pH調整された殺菌水を何時でも使うことができる運用モードに切り替わる。 殺菌水デリバリ一管 3 7の手動又は電動バルブ 3 9が開放されて殺菌水デリバリ —管 3 7を通じて殺菌水が使用されると、 圧力容器 1 3内の水位が下がる。 第 2 番目のリミツ トスイッチ 2 8が水位を検知すると、 原水供給管 1に関連して電動 開閉バルブ 3が開放され且つポンプ 4の運転が再開されて、 圧力容器 1 3に、 所 望の濃度に希釈された次亜塩素酸ナトリゥム水溶液が圧力容器 1 3に供給される。 この圧力容器 1 3に供給される次亜塩素酸ナトリゥム水溶液の濃度は、 原料夕ン ク 7内の次亜塩素酸ナトリゥム水溶液を添加部 1 0を介して原水に添加する、 そ の添加量によって調整可能である。
【 0 0 3 7】
圧力容器 1 3内の水位が上昇して、 第 3のリミッ トスィッチ 2 9が水位を検知 すると、 炭酸ガス供給管 1 7に関連したバルブ 2 0が開いて炭酸ガスが圧力容器 1 3に供給される。 これにより圧力容器 1 3内の圧力が上昇し、 この内圧の上昇 によって水位が下がる。 そして、 第 2番目のリミッ トスィッチ 2 8が水位を検知 すると、 炭酸ガス供給に関連したバルブ 2 0が閉じて、 圧力容器 1 3に対する炭 酸ガスの供給が停止される。 圧力容器 1 3内の炭酸ガスは、 圧力容器 1 3内に噴 射された次亜塩素酸ナトリゥム水溶液によって吸収され、 これにより圧力容器 1 3内の内圧は徐々に低下する。
【 0 0 3 8】
圧力容器 1 3に対する炭酸ガスの供給と停止を繰り返すことにより、 圧力容器 1 3内の圧力が一定の範囲に維持されると共に殺菌水の水位が一定の範囲つまり 第 2、 第 3のリミッ トスィッチ 2 8と 2 9との範囲に維持される。 ちなみに、 圧 力容器 1 3内の圧力が高くなりすぎると、 圧力容器 1 3内で炭酸ガスの溶解が活 発になり、 必要以上に炭酸ガスが溶解することに伴って圧力容器 1 3内の殺菌水 の pHが変動する虞がある。
【 0 0 3 9】 また、 この運用モー ドで、 例えば手動あるいは電動開閉バルブ 3 9を絞ったり 閉じたりして殺菌水の使用量が減少すると、 圧力容器 1 3から吐出される殺菌水 よりも圧力容器 1 3に供給される次亜塩素酸ナトリゥム水溶液の供給量の方が多 くなり、.バルブ 2 0を開放して炭酸ガスを供給しているにも関わらず、 圧力容器 1 3内の水位の上昇を伴いながら圧力容器 1 3内の圧力が上昇することになる。 圧力容器 1 3の内圧は圧力計 2 2によって検知され、 圧力容器 1 3の内圧が所定 の値を超えた場合には、 原水供給用ポンプ 4を停止すると共に好ましくはバルブ 3を閉じて圧力容器 1 3に対する次亜塩素酸ナトリゥム水溶液の供給を停止する。 そして、 殺菌水の使用により圧力容器 1 3内の水位が下がって第 2番目のリミツ トスイッチ 2 8が水位を検知したら再びポンプ 4の運転を開始すると共に電動開 閉バルブ 3を開放して原水の供給を再開することにより圧力容器 1 3内の水位は 一定の範囲に維持される。 すなわち、 殺菌水の使用状態に応じて、 圧力容器 1 3 に対する次亜塩素酸ナトリゥム水溶液の供給及び停止を繰り返すことにより、 圧 力容器 1 3内の殺菌水の水位は一定の範囲に維持される。
[ 0 0 4 0】
したがって、 僅かな量の殺菌水を使用し続けたり、 殺菌水の使用及び中止を頻 繁に繰り返す使用態様であっても、 別途、 アキュ一ムレー夕のような設備を追加 しなくても、 安定的に殺菌水を生成することができる。 つまり、 炭酸ガスを使つ て次亜塩素酸を主体とする殺菌水を生成する圧力容器 1 3はアキュームレータと して機能する。
【 0 0 4 1】
なお、 例えば、 圧力容器 1 3内の水位が異常に上昇して、 最上位のリミットス イッチ 3 0が水位を検知しても圧力容器 1 3内の内圧が所定値を超えない場合に は、 炭酸ガスボンベ 1 5が空になったことが考えられるため警報を発する及び/ 又は赤ランプ(図示せず)を点灯して注意を促すようにするのが好ましい。勿論、 圧力容器 1 3内の圧力が異常に低下したことを圧力計 2 2で検知した場合も警告 を発するのが好ましい。
【 0 0 4 2】
上記の実施例では、 圧力容器 1 3内の圧力が所定の圧力を超えるとポンプ 4を 停止すると共に好ましくは開閉バルブ 3を閉じて原水の供給を停止したが、 変形 例として、 第 3番目のリミッ トスィッチ 2 9と最上位のリミツ トスイッチ 3 0 と の間に追加のリミッ トスィッチ (図示せず) を設置して、 この追加のリミッ トス ィッチが水位を検知したら、 ポンプ 4を停止すると共に好ましくは電動開閉バル ブ 3を閉じて原水の供給を停止するようにしてもよい。
【 0 0 4 3】
添加部 1 0に設けた流路切り換えバルブ 9は、 例えば、 一定時間毎に切り換え 操作して、 原料夕ンク 7からポンプ 8で汲み上げた次亜塩素酸ナトリゥム水溶液 を原料タンク 7に戻すのがよい。 これにより原料タンク 7から添加部 1 0に至る 次亜塩素酸ナトリゥム供給経路に発生した気泡を除去することができる。
【 0 0 4 4】
添加部 1 0で原水に添加する次亜塩素酸ナトリゥム水溶液の量を原水の流量に 応じて制御するだけでなく、 その量を調整して圧力容器 1 3に供給する次亜塩素 酸ナトリゥム水溶液の濃度を変更できるようにするのが好ましい。 この次亜塩素 酸ナトリウム水溶液の濃度 (濃度目標値の変更) の操作を行った場合には、 所定 時間、 圧力容器 1 3で生成した殺菌水の使用を停止しながら排水管 3 8のバルブ
4 0を開いて圧力容器 1 3の殺菌水を廃棄しながら装置の自動運転を行うのがよ い。
【 0 0 4 5】
以下に図 3以降を参照して様々な実施例について説明する。 なお、 上記第 1実 施例と同一の要素には同一の参照符号を付すことにより、 その説明を省略し、 以 下に各実施例の特徴部分を中心に説明する。
【 0 0 4 6】
第 2実施例 (図 3 ) :
第 2実施例は、 炭酸を除く、 塩酸、 硫酸などの無機酸又は酢酸、 乳酸などの有 機酸などの酸(典型的には水で希釈した塩酸)を混合する例を示す。具体的には、 希塩酸などの酸を入れた追加の原料タンク 5 0を用意し、 この追加の原料タンク
5 0の酸を追加のポンプ 5 1で原料供給管 1 2又は原水供給管 1に送り込んで追 加の添加部 5 2で次亜塩素酸ナトリゥム水溶液と混合させ、 これにより圧力容器 1 3に供給する次亜塩素酸ナトリゥム水溶液の事前の pH調整が行われる。
【 0 0 4 7】 この pH調整は、 圧力容器 1 3で炭酸ガスによる最終的な pH調整の前段階で 行う、 次亜塩素酸ナトリウム水溶液の pHを例えば弱アルカリ、 好ましくは中性 にする予備調整であってもよいし、 次亜塩素酸ナトリウム水溶液を目的とする最 終的な pHの近く (例えば pH 6 ) まで下げる調整であってもよい。 このように、 炭酸水を除く 性成分 (典型的には塩酸) を使った次亜塩素酸ナトリウム水溶液 の予備調整及び炭酸水を除く酸性成分 (典型的には塩酸) を使って目的とする最 終的な pH近傍まで pHを低下させる調整の両者を含めて、 この明細書では、 pH 補助調整と呼ぶことにする。
【 0 0 4 8】
すなわち、 前述した第 1実施例 (図 1、 図 2 ) では、 炭酸ガスを使って次亜塩 素酸ナトリウム水溶液の pH調整を行った。 この第 1実施例のように、 炭酸ガス だけを使った pH調整は、 生成した殺菌水をその場で使用する、 例えば野菜や肉 などの食材を大量に洗浄する現場で殺菌水を生成しながら使用する態様では好適 である。
【 0 0 4 9】
これに対して、 第 2実施例 (図 3 ) のように希塩酸などの酸と炭酸ガスとの組 み合わせで次 ffi塩素酸ナトリゥム水溶液の pH調整を行うことは、 例えば殺菌水 を空間殺菌に使用する場合に好適である。 具体的に説明すると、 空間殺菌では、 典型的には^菌水を圧縮エアーで 2流体噴霧するか超音波振動を使って微粒化し た後に散布されるが、 2流体噴霧においては問題ないが、 超音波振動で微粒化す るときに溶存炭酸ガスがガス化して殺菌水から抜け出てしまい、 殺菌水から炭酸 ガスが抜け出ることにより殺菌水の pHが高くなつてしまう虞がある。 これに対 して、 殺菌水に希塩酸が含まれていると、 炭酸ガスが抜け出た後の殺菌水の pH が上昇してアル力リになってしまうのを塩酸によって抑えることが可能になる。 このことは、 生成した殺菌水を長期に亘つて保存する場合にも同様であり、 保存 中の殺菌水から炭酸ガスが抜け出たとしても、 殺菌水がアル力リ液になってしま うのを塩酸によって抑えることができる。 したがって、 塩酸を殺菌水に含有させ ることで殺菌水の pHを安定化させることができるという利点がある。
【 0 0 5 0】
第 3実施例 (図 4 ) : 第 3実施例は、 上述した第 2実施例の変形例でもある。 上述した第 2実施例で は、 次亜塩素酸ナトリウム水溶液を添加する添加部 1 0 と、 酸を添加する追加の 添加部 5 2 とを直列に配置したが、 この第 3実施例で例示するように、 添加部 1 0と、 追加の添加部 5 2 とを並列に配置してもよい (図 4 )。 すなわち、 原水に対 して、 次亜塩素酸ナトリウム水溶液と希塩酸とを別々に添加し、 その後、 混合し て次亜塩素酸ナトリゥム水溶液の pH補助調整を行い、 この pH補助調整を行つ た後の次亜塩素酸ナトリウム水溶液を圧力容器 1 3に供給するようにしてもょレ
【 0 0 5 1】
第 4実施例 (図 5 ) :
第 4実施例は、 上述した第 3実施例の変形例でもある。 上述した第 3実施例で は、 圧力容器 1 3に供給する前に、 次亜塩素酸ナトリゥム水溶液の pH補助調整 を行うようにしたが、 この第 4実施例で例示するように、 所定の濃度まで希釈し た塩酸を別の経路 5 5を使って圧力容器 1 3に直接的に供給してもよい。 この圧 力容器 1 3に、 塩酸を供給する態様として、 圧力容器 1 3の液相部分に塩酸を供 給するようにしてもよいが、 好ましくは、 塩酸を圧力容器 1 3の上部に散布又は 噴射して微粒化するのがよく、 最も好ましくは、 圧力容器 1 3の中に散布又は噴 射する次亜塩素酸ナトリゥム水溶液と衝突するように、塩酸を散布又は噴射して、 圧力容器 1 3のガス領域で、 次亜塩素酸ナトリゥム水溶液と希釈塩酸とを混合し て pH補助調整しつつ、 炭酸ガスが充満した圧力容器 1 3で殺菌水を生成するよ うにしてもよい。
【 0 0 5 2】
第 5実施例 (図 6、 図 7 ) :
前述した第 1実施例などでは、 次亜塩素酸ナトリゥム水溶液を入れた原料タン ク 7 (図 1など) を使用したが、 圧力容器 1 3に供給する直前に次亜塩素酸ナト リゥム水溶液を生成し、 生成した次亜塩素酸ナトリゥム水溶液を圧力容器 1 3に 供給するようにしてもよい。 図 6、 図 7の参照符号 6 0は次亜塩素酸ナトリウム 生成装置を示す。 '
【 0 0 5 3】
図 6の次亜塩素酸ナトリゥム生成装置 6 0は、 無隔膜の電気分解槽 6 1で構成 されている。 他方、 図 7の次亜塩素酸ナトリウム生成装置 6 0は、 隔膜 6 2を備 えた電気分解槽 6 3で構成されている。
【 0 0 5 4】
図 6、図 7の参照符号 6 5は塩化ナトリゥム水溶液入りタンク、 6 6はポンプ、 6 7は原水供給管 1から分岐した分岐管である。 塩化ナトリゥム水溶液入り夕ン ク 6 5からポンプ 6 6で汲み上げた塩化ナ卜リゥム水溶液は添加部 6 8で原水と 混合されて、 その濃度を所定の濃度に希釈化した後に電気分解槽 6 1 、 6 3に供 給される。
【 0 0 5 5】
無隔膜電気分解槽 6 1 (図 6 ) で生成された次亜塩素酸ナトリウム水溶液は、 添加部 1 0で原水と混合されて所定の濃度に調整した後に圧力容器 1 3に供給さ れる。
【 0 0 5 6】
有隔膜電気分解槽 6 3 (図 7 ) では、 一般的に、 陽極側から排出される電気分 解水と、 陰極側から排出される電気分解水とを合流した後に、 添加部 1 0で原水 と混合されて所定の濃度に調整した後に圧力容器 1 3に供給される。 しかし、 陰 極側から排出される電気分解水の全てを使わずに、 その一部を廃棄するようにし てもよい。
【 0 0 5 7】
なお、 図 6、 図 7では、 流量計 5の下流側で原水の一部を電気分解槽 6 1 、 6 3に供給するようにしてあるが、 原水の全てを電気分解槽 6 1 、 6 3に供給する ようにしてもよい。 この場合に、 流量計 5で計測した原水の流量に応じた電圧を 電気分解槽 6 1 、 6 3に印加するようにしてもよい。
【 0 0 5 8】
図 6、 図 7に図示した、 この第 5実施例においても、 図 3〜図 5に例示したの と同様の方法で、 圧力容器 1 3に次亜塩素酸ナトリゥムを供給する直前又は圧力 容器 1 3内で噴射するときに希釈酸溶液 (典型的には希釈塩酸) を混合して pH 補助調整しつつ、 炭酸ガスが充満した圧力容器 1 3で殺菌水を生成するようにし てもよいことは言うまでもない。
【 0 0 5 9】
第 6実施例 (図 8 ) : この第 6実施例は、 図 8から理解できるように、 炭酸ガスをパブリングするこ とにより圧力容器 1 3内の次亜塩素酸ナトリゥム水溶液の pH を下げて、 次亜塩 素酸を主体とした殺菌水を生成する例を示す。 図 8の 7 0は典型的には多孔質の 材料ゃノ.ズルで構成された気泡発生器である。
【 0 0 6 0】
炭酸ガスのバプリングによる pH調整を行う場合には、 次亜塩素酸ナトリウム 水溶液を、 第 1実施例などと同様に圧力容器 1 3の上部に噴射又は散布してもよ いが、 圧力容器 1 3の底部つまり液相部分に供給するようにしてもよい。 また、 この第 6実施例においても、 図 3〜図 5に例示したのと同様の方法で希釈塩酸を 混合して pH補助調整を行うようにしてもよいことは言うまでもない。
【 0 0 6 1】
図 8を参照して、 圧力容器 1 3内の圧力が所定値を超えるとリ リーフバルブ 7 1が開き、 ポンプ 7 2によって合流部 7 3に送られる。 この合流部 7 3で、 圧力 容器 1 3から吐出された炭酸ガスと、 ガスボンベ 1 5から送り出された炭酸ガス とが合流して、 配管 7 4を通じて再び気泡発生器 7 0に送られる。 これにより、 圧力容器 1 3内の液相 (殺菌水) 中に炭酸ガスの微細な気泡が生成される。 そし て、 この炭酸ガスのパブリングにより、 炭酸ガスが圧力容器 1 3内の次亜塩素酸 ナトリゥム水溶液に溶け込んで殺菌水の pH調整が行われる。
【 0 0 6 2】
第 7実施例 (図 9 ) :
図 9に図示の第 7実施例は、 圧力容器 1 3内の水位を所定の範囲に維持する手 段に特徴がある。 この水位維持手段は、 原水供給管 1に設けた第 1の電動式流量 調整バルブ 8 0と圧力容器 1 3の吐出側に設けた第 2の電動式流量調整バルブ 8 1 とで構成されている。
【 0 0 6 3】
圧力容器 1 3内の水位が下がって第 2番目のリミッ トスィッチ 2 8が水位を検 知すると、 第 2流量調整バルブ 8 1が作動して流量を絞り、 圧力容器 1 3からの 吐出される殺菌水の流量を小さくする。
【 0 0 6 4】
圧力容器 1 3内の水位が上昇して第 3番目のリミッ トスィッチ 2 9が水位を検 知すると、 吐出側の流量調整バルブ 8 1は原位置の開度に戻って圧力容器 1 3か ら多くの殺菌水が吐出できるようにする一方で、 原水供給管 1に設けた第 1の流 量調整バルブ 8 0が作動して流量を絞り、 圧力容器 1 3に供給する次亜塩素酸ナ トリウム水溶液の量を少なくする。 この制御を実行することで、 圧力容器 1 3内 の水位を第 2、第 3のリミッ トスィッチ 2 8 と 2 9の間に維持することができる。 【 0 0 6 5】
なお、 第 1、 第 2の流量調整バルブ 8 0 、 8 1が共に完全に開放している状態 で圧力容器 1 3内の水位が下降するように設計されている場合には、 吐出側の第 2流量調整バルブ 8 1だけで圧力容器 1 3内の水位を一定の範囲に維持すること ができる。 これとは反対に、 第 1、 第 2の流量調整バルブ 8 0 、 8 1が共に完全 に開放している状態で圧力容器 1 3内の水位が上昇するように設計されている場 合には、 原水側の第 1の流量調整バルブ 8 0だけで水位を一定の範囲に維持する ことが可能である。
【 0 0 6 6】
第 8実施例 (図 1 0 ) :
図 1 0に図示の第 8実施例は、 圧力容器 1 3で生成した殺菌水の濃度を原水で 希釈して使用するのに好適な具体例を提示するものである。
【 0 0 6 7】
図 1 0を参照して、 原水供給管 1 と殺菌水デリバリ一管 3 7 との間に原水分配 管 8 5が接続されている。 これにより、 原水の一部が、 圧力容器 1 3で生成した 殺菌水に添加されて、 殺菌水の濃度を希釈化することができる。 図 1 0の参照符 号 8 6 、 8 7は減圧弁であり、 8 8は逆止弁である。 殺菌水デリパリ一管 3 7に 添加する原水の量は合流部 8 9で調整可能であり、 これにより所望の濃度になつ た殺菌水を使用することができる。
【 0 0 6 8】
第 9実施例 (図 1 1 ) :
図 1 1に図示の第 9実施例は、 上記第 8実施例 (図 1 0 ) と同様に、 圧力容器 1 3で生成した殺菌水を希釈して使用するのに適した他の例を提示するものであ る。
【 0 0 6 9】 図 1 1を参照して、 次亜塩素酸を主体とした殺菌水を生成するための第 1の圧 力容器 1 3の他に、 これと実質的に同じ構成の第 2の圧力容器 9 0が設置され、 この第 2の圧力容器 9 0で炭酸水が生成される。 そして、 この炭酸水を使って殺 菌水を希.釈して、 この炭酸水で所定濃度まで希釈した殺菌水を使用するようにな つている。 このように炭酸水を使って殺菌水を希釈することで、 殺菌水を希釈化 することに伴う pHの変動を抑えることができる。
【 0 0 7 0】
炭酸水を生成する第 2の圧力容器 9 0には、 リミツ トスイッチ (水位センサ) 2 7〜 3 0が設置されて、 第 1の圧力容器 1 3と同様に、 第 2、 第 3のリミッ ト スィッチ 2 8 と 2 9の間に水位が維持される。 第 2圧力容器 9 0で生成された炭 酸水は、 吐出管 9 1から排出されて合流部 8 9で殺菌水に添加される。 この添加 の量つまり殺菌水の希釈度は合流部 8 9で調整するようになっている。 図中、 参 照符号 9 3、 9 4は減圧弁、 9 5は電動式開閉バルブである。
【 0 0 7 1】
第 1 ◦実施例 (図 1 2 ) :
上述した第 1乃至第 9実施例では、 炭酸ガスを使って殺菌水の pH を調整する ことを提案した。 これらの提案を更に前進させたのが、 この第 1 0実施例 (図 1 2 ) である。 したがって、 この第 1 0実施例は、 上述した第 1乃至第 9実施例に 対して同様に適用可能である。
【 0 0 7 2】
図 1 2を参照して、 原水供給管 1を通じて供給される原水に対して、 添加部 1 0で次亜塩素酸ナトリゥム水溶液が添加されて所望の濃度の次亜塩素酸ナトリウ ム水溶液を生成した後に、原料供給管 1 2を通じて圧力容器 1 3に供給されるが、 この圧力容器 1 3には、 原料供給管 1 2を分岐した第 1、 第 2の分岐管 1 0 0、 1 0 1を介して次亜塩素酸ナトリゥム水溶液が供給される。 第 1、 第 2の分岐管 1 0 0 , 1 0 1への分配割合は分配バルブ 1 0 2によって任意に調整可能である。 【 0 0 7 3】
第 1分岐管 1 0 0は、 圧力容器 1 3の前述した上部空間 1 4に供給されて小孔 4 4を通じてメイン空間 4 5に噴射又は散布される。他方、第 2分岐管 1 0 1は、 圧力容器 1 3のメイン空間 4 5に接続され、 水流となって流れ落ちる。 なお、 図 1 2の参照符号 1 0 3は pH測定器である。 ところで、 炭酸水に含まれる溶存ガ スを検知することで炭酸水の濃度を実質的に知ることができ、 これにより殺菌水 の pH を間接的に知ることができることから、 この pH測定器 1 0 3を、 殺菌水 中の溶存.炭酸ガスの濃度を検出する溶存炭酸ガス濃度計で置換してもよい。
【 0 0 7 4】
分配バルブ 1 0 2によって、 圧力容器 1 3の内部に散布又は噴射する次亜塩素 酸ナトリウム水溶液の量と、 圧力容器 1 3内に水流として流下させる量の比率を 変えることで、 圧力容器 1 3内で次亜塩素酸ナトリゥム水溶液が炭酸ガスと接触 する程度を変化させることができる。 そして、 これにより圧力容器 1 3内の殺菌 水の pHが目標値となるようにフィードバック制御することができる。
【 0 0 7 5】
例えば、 圧力容器 1 3を使って生成する殺菌水の pH を 「6」 に設定したので あれば、 pH測定器 1 0 3からの検出値を使って、 例えば、 検出した pHが 「6」 よりも大きければ第 1分岐管 1 0 0を通じて圧力容器 1 3内に噴射する次亜塩素 酸ナトリゥム水溶液の流量割合を増やすことで、 殺菌水の pHを下げて目標値に 近づけることができる。 他方、 検出した pHが 「 6」 よりも小さければ第 1分岐 管 1 0 0を通じて圧力容器 1 3内に噴射する次亜塩素酸ナトリゥム水溶液の流量 割合を減らすことで、 殺菌水の pHを上げて目標値に近づけることができる。 こ のような制御は、 図外のコントローラによって行われる。
【 0 0 7 6】
勿論のことであるが、 例えば分配バルブ 1 0 2を手動式のパルプで構成しても よい。 この場合には、 圧力容器 1 3の内部に散布又は噴射する次亜塩素酸ナトリ ゥム水溶液の流量と、 圧力容器 1 3内に水流として流下させる流量との比率は実 質的に固定となる。 このことは、 以下の図 1 3〜図 1 6を参照した第 1 1実施例 乃至第 1 4実施例でも同様である。
【 0 0 7 7】
第 1 1実施例 (図' 1 3 ) :
図 1 3の第 1 1実施例は、上述した第 1 0実施例(図 1 2 )の変形例でもある。 上記の第 1 0実施例 (図 1 2 ) では、 第 2分岐管 1 0 1を圧力容器 1 3のメイン 空間 4 5の上部に開口させたが、 この第 1 1実施例では、 第 2分岐管 1 0 1を圧 力容器 1 3の下部つまり液相部分に開口してある。
【 0 0 7 8】
第 1 2実施例 (図 1 4 ) :
図 1 4の第 1 2実施例は、 上述した第 1 0実施例 (図 1 2 ) 及び第 1 1実施例
(図 1 3 ) の変形例でもある。 上述した第 1 0実施例及び第 1 1実施例では添加 部 1 0の下流に分配バルブ 1 0 2を配置させてあるが、 この第 1 2実施例 (図 1 4 ) では、 添加部 1 0の上流に分配バルブ 1 0 2を配置して、 原水を圧力容器 1 3に供給するようにしてある。 なお、 図 1 4には、 原水を庄カ容器 1 3の下部つ まり液相領域に供給するようにしてあるが、 第 1 0実施例のように、 圧力容器 1 3の上部に供給して、 原水を水流状態で流れ落とすようにしてもよい。 この第 1 2実施例においても、 任意に設定した目標 pH となるように圧力容器 1 3で生成 する殺菌水の pHを制御することができる。
【 0 0 7 9】
第 1 3実施例 (図 1 5 ) :
この第 1 3実施例は、 圧力容器 1 3で生成した、 次亜塩素酸を主体とした殺菌 水に次亜塩素酸ナトリゥム水溶液を添加することで殺菌水の pH を制御する例を 示す。 図 1 5を参照して、 分配バルブ 1 0 2は添加部 1 0の下流に配置され、 濃 度調整後の次亜-塩素酸ナトリゥム水溶液の一部が第 1分岐管 1 0 0を通じて圧力 容器 1 3内に噴射又は散布され、 濃度調整後の次亜塩素酸ナトリウム水溶液の残 部が殺菌水吐出側に供給される。 参照符号 1 0 5は混合部を示し、 圧力容器 1 3 で生成された殺菌水は、 圧力容器 1 3から吐出された後に、 混合部 1 0 5で次亜 塩素酸ナトリゥム水溶液が添加される。
【 0 0 8 0】
このように、 炭酸ガスを使って pH調整された殺菌水に対して、 これを使用前 に次亜塩素酸ナトリゥム水溶液を添加することで pHの微調整を行うことができ、 次亜塩素酸ナトリゥム水溶液を添加する量を制御することで殺菌水の pHを所望 の目標値に一致さ'せることができる。
【 0 0 8 1】
第 1 4実施例 (図 1 6 ) :
この第 1 4実施例は、 上述した第 1 3実施例 (図 1 5 ) の変形例でもある。 図 1 6を参照して、 分配バルブ 1 0 2は添加部 1 0の上流に配置され、 原水の一部 が殺菌水吐出側に供給されて、 圧力容器 1 3で生成された殺菌水は、 圧力容器 1 3から吐出された後に、 混合部 1 0 5で原水が添加される。 この構成は、 前述し た第 8実施例 (図 1 0 ) の構成と実質的に同じであり、 圧力容器 1 3で生成した 殺菌水の濃度を原水を使って希釈化し、 これにより殺菌水の pH を微調整するこ とができる。 原水を添加した後の殺菌水の pHは pH測定器 1 0 3によって検出 され、 検出した pHと目標値とを対比して原水を添加する量が制御される。
【 0 0 8 2】
第 1 5実施例 (図 1 7 ) :
前述した第 1乃至第 1 4実施例では、 次亜塩素酸を主体とした殺菌水を圧力容 器 1 3の中で生成することを提案した。 これに対して、 この第 1 5実施例では、 炭酸水を次亜塩素酸ナトリゥム水溶液に添加することによって、 次亜塩素酸を主 体とした殺菌水を生成することを提案するものである。
【 0 0 8 3】
図 1 5を参照して、 圧力容器 1 3には原水だけが供給される。 つまり、 原水供 給管 1には、 次亜塩素酸ナトリウム水溶液が添加されない。 この圧力容器 1 3に 関連した他の構成は、 第 1 1実施例 (図 1 3 ) と同様であり、 圧力容器 1 3には 炭酸ガスが供給され、 また、 圧力容器 1 3内の水位が一定の範囲に維持される。 【 0 0 8 4】
原水の一部は、 第 1分岐管 1 0 0を通じて圧力容器 1 3内に散布又は噴射され る。 原水の残部は、 第 2分岐管 1 0 1を通じて圧力容器 1 3の下部つまり液相領 域に供給される。 第 1分岐管 1 0 0と第 2分岐管 1 0 1に分配する割合は分配バ ルブ 1 0 2を使って調整可能であり、 これにより圧力容器 1 3内に生成される炭 酸水の濃度を調整することができる。
【 0 0 8 5】
そして、 圧力容器 1 3で生成した炭酸水を取り出して、 この取り出した炭酸水 を使って次亜塩素酸ナトリゥム水溶液の pH を調整して殺菌水を生成することか ら、炭酸水の濃度の制御を介して殺菌水の pHを制御することができる。つまり、 殺菌水の pHは pH計測器 1 0 3で計測され、 計測した pHが所望の目標値とな るように、 分配バルブ 1 0 2の制御が実行される。 PH 計測器 1 0 3は前述した ように溶存炭酸ガス濃度センサで構成してもよい。
【 0 0 8 6】
例えば、 肉や野菜の洗浄に殺菌水を使用する場合に、 肉では pH6.5~ 7の殺菌 水が好ま.しく、 野菜では pH 5 ~ 6の殺菌水が好ましいと考えられている。 この ような場合に、 炭酸水の濃度を調整して、 調整後の炭酸水を次亜塩素酸ナトリウ ム水溶液と混合させることで殺菌水の pHを制御することができ、 これにより、 肉の殺菌処理と野菜の殺菌処理との使い分けの自在性を向上することができる。 【 0 0 8 7】
この第 1 5実施例 (図 1 7 ) の変形例として、 圧力容器 1 3内の圧力を上下さ せることにより、 炭酸水の pH を制御するようにしてもよい。 また、 勿論、 この 第 1 5実施例においても、 図 3乃至図 5を参照して説明したように塩酸などの酸
(典型的には水で希釈した酸) を使った pH補助調整を行ってもよい。
【 0 0 8 8】
以上、 様々な実施例を説明したが、 これら各実施例に含まれる要素を組み合わ せることができることは言うまでもなく、 また、 本発明は、 当業者が予測可能な 様々な変形例を排除するものではないことは言うまでもない。
【 0 0 8 9】
例えば、圧力容器 1 3に次亜塩素酸ナトリゥムゃ原水を散布又は噴射するのに、 図 1 8に示すように、 小孔 4 4を径方向に互いに対向して設け、 これにより各小 孔 4 4から噴射された液体 (次亜塩素酸ナトリウム水溶液又は原水) を互いに衝 突させることにより微粒化するのがよい。 微粒化により炭酸ガスを効率良く溶解 することができる。また、図 1 9に示すように、互いに隣接した複数の小孔 4 4、 4 4から噴射される液体同士が互いに衝突するように、 小孔 4 4の軸線方向を傾 斜させてもよい。 また、 小孔 4 4の代わりに、 噴射ノズル 1 1 0を設けるように してもよい。 このような小孔 4 4や噴射ノズル 1 1 0は圧力容器 1 3の側壁に直 接的に取り付けるようにしてもよい。
【 0 0 9 0】
また、 図 8 (第 6実施例) で採用した気泡発生器 7 0に関し、 図 2 1は、 気泡 発生器 7 0を例えば多孔の焼結部材ゃノズルで構成し、 この気泡発生器 7 0を圧 力容器 1 3の下部の側壁に直接的に取り付けた例を示している。 図 2 2は、 多孔 材料からなる気泡発生器 7 0を示している。 図 2 3は、 微細な孔を数多く設けた プレートを備えたボックスに炭酸ガスを供給して、 微細な気泡を生成する例を示 している。
【 0 0 9. 1】
如上の実施例によれば、 アル力リ性である次亜塩素酸ナトリゥム水溶液や亜塩 素酸ナトリゥム水溶液が炭酸ガスの pH調整作用によって次亜塩素酸又は亜塩素 酸を主成分とする殺菌水を生成することができる。 また、 この殺菌水の pHは安 定しているだけでなく、 強酸性領域に入ることを防止して塩素ガスの発生を抑制 することができる。 また、 圧力容器 1 3はアキュームレータとして機能すること から、 別途、 アキュームレータや殺菌水を一時的に貯蔵するタンクを設置する必 要もない。
【 0 0 9 2】
本発明は、 最も好適には次亜塩素酸又は亜塩素酸が含有率が高い殺菌水 (弱酸 性) を生成するのに適用されるが、 一般的には pH約 5〜約 8の殺菌水の生成に 適用可能である。

Claims

請 求 の 範 囲
1 . 炭酸ガスを溶解して炭酸水を生成し、 該炭酸水を次亜塩素酸ナトリウム水 溶液又は亜塩素酸ナトリゥム水溶液に添加することにより殺菌水を生成すること を特徴と.する次亜塩素酸又は亜塩素酸を主体とした殺菌水の生成方法。
2 . 炭酸ガスを溶解して炭酸水を生成すると当時に、 該炭酸水を次亜塩素酸ナ トリゥム水溶液又は亜塩素酸ナトリゥム水溶液に添加して殺菌水を生成する、 請 求の範囲第 1項に記載の次亜塩素酸又は亜塩素酸を主体とした殺菌水の生成方法。
3 . 次亜塩素酸ナトリウム水溶液又は亜塩素酸ナトリウム水溶液に、 炭酸を除 く酸を更に添加する、 請求の範囲第 1項に記載の次亜塩素酸又は亜塩素酸を主体 とした殺菌水の生成方法。
4 . 水位を一定の範囲に維持可能な圧力容器で炭酸ガスと水とを接触させるこ とにより前記炭酸水を生成し、 該圧力容器から炭酸水を取り出す管路に添加部を 設け、 該添加部で前記炭酸水を次亜塩素酸ナトリゥム水溶液又は亜塩素酸ナトリ ゥム水溶液に添加して殺菌水を生成する、 請求の範囲第 1項に記載の次亜塩素酸 又は亜塩素酸を主体とした殺菌水の生成方法。
5 . 次亜塩素酸ナトリウム水溶液又は亜塩素酸ナトリウム水溶液に、 炭酸を除 く酸を更に添加する、 請求の範囲第 4項に記載の次亜塩素酸又は亜塩素酸を主体 とした殺菌水の生成方法。
6 . 前記圧力容器に水を散布することにより該圧力容器内の炭酸ガスと水とを 接触させる、 請求の範囲第 4項に記載の次亜塩素酸又は亜塩素酸を主体とした殺 菌水の生成方法。
7 . 前記圧力容器に水を散布するのに加えて、 散布しないで前記圧力容器内に 水を供給して該圧力容器内の炭酸水の濃度を調整する、 請求の範囲第 4項に記載 の次亜塩素酸又は亜塩素酸を主体とした殺菌水の生成方法。
8 . 記圧力容器に水を散布するのに加えて、 散布しないで前記圧力容器内に水 を供給して該圧力容器内の炭酸水の濃度を制御することのより殺菌水の pH を制 御する、 請求の範囲第 7項に記載の次亜塩素酸又は亜塩素酸を主体とした殺菌水 の生成方法。
9 . 炭酸ガスを充填した容器に次亜塩素酸ナトリゥム水溶液又は亜塩素酸ナト リゥム水溶液を散布することにより殺菌水を生成することを特徴とする次亜塩素 酸又は亜塩素酸を主体とした殺菌水の生成方法。
1 0 . 次亜塩素酸ナトリゥム水溶液又は亜塩素酸ナトリゥム水溶液を前記容器 内に散布する前段階で、 次亜塩素酸ナトリゥム水溶液又は亜塩素酸ナトリウム水 溶液に、 .炭酸を除く酸を添加する、 請求の範囲第 9項に記載の次亜塩素酸又は亜 塩素酸を主体とした殺菌水の生成方法。
1 1 . 前記容器に、 炭酸を除く酸を添加する、 請求の範囲第 9項に記載の次亜 塩素酸又は亜塩素酸を主体とした殺菌水の生成方法。
1 2 . 次亜塩素酸ナトリゥム水溶液又は亜塩素酸ナトリゥム水溶液を前記容器 内に散布すると同時に、 炭酸を除く酸を前記圧力容器内に散布する、 請求の範囲 第 1 1項に記載の次亜塩素酸又は亜塩素酸を主体とした殺菌水の生成方法。
1 3 . 前記炭酸を除く酸を、 前記容器内に散布中の次亜塩素酸ナトリウム水溶 液又は亜塩素酸ナトリゥム水溶液に衝突させる、 請求の範囲第 1 2項に記載の次 亜塩素酸又は亜塩素酸を主体とした殺菌水の生成方法。
1 4 . 前記圧力容器に次亜塩素酸ナトリゥム水溶液又は亜塩素酸ナトリゥム水 溶液水を散布するのに加えて、 散布しないで前記圧力容器内に次亜塩素酸ナトリ ゥム水溶液又は亜塩素酸ナ卜リゥム水溶液水を供給して、 前記圧力容器内で生成 する殺菌水の pH を調整する、 請求の範囲第 9項に記載の次亜塩素酸又は亜塩素 酸を主体とした殺菌水の生成方法。
1 5 . 前記圧力容器に散布する次亜塩素酸ナトリゥム水溶液又は亜塩素酸ナト リウム水溶液水の流量と、 散布しないで前記圧力容器内に供給する次亜塩素酸ナ トリゥム水溶液又は亜塩素酸ナトリゥム水溶液水の流量との流量比を制御して前 記圧力容器内で生成する殺菌水の pH を制御する、 請求の範囲第 1 4項に記載の 次亜塩素酸又は亜塩素酸を主体とした殺菌水の生成方法。
1 6 . 前記容器内の殺菌水に水を添加して、 該容器内で生成する殺菌水の濃度 を調整する、 請求の範囲第 9項に記載の次亜塩素酸又は亜塩素酸を主体とした殺 菌水の生成方法。 .
1 7 . 前記容器内の殺菌水に水を添加して、 該容器内で生成する殺菌水の pH を調整する、 請求の範囲第 9項に記載の次亜塩素酸又は亜塩素酸を主体とした殺 菌水の生成方法。
1 8 . 前記容器から取り出した殺菌水に次亜塩素酸ナトリゥム水溶液又は亜塩 素酸ナトリゥム水溶液を添加して殺菌水の pHを調整する、 請求の範囲第 9項に 記載の次亜塩素酸又は亜塩素酸を主体とした殺菌水の生成方法。
1 9 . 容器に収容した次亜塩素酸ナトリゥム水溶液又は亜塩素酸ナトリゥム水 溶液を炭.酸ガスでバブリングして殺菌水を生成することを特徴とする次亜塩素酸 又は亜塩素酸を主体とした殺菌水の生成方法。
2 0 . 前記容器に収容した次亜塩素酸ナトリウム水溶液又は亜塩素酸ナトリウ ム水溶液に、 炭酸を除く酸が添加されている、 請求の範囲第 1 9項に記載の次亜 塩素酸又は亜塩素酸を主体とした殺菌水の生成方法。
2 1 . 一定の範囲の水位を維持可能な圧力容器内で炭酸ガスと次亜塩素酸ナト リゥム水溶液又は亜塩素酸ナトリゥム水溶液とを接触させることにより殺菌水を 生成することを特徴とする次亜塩素酸又は亜塩素酸を主体とした殺菌水の生成方 法。
2 2 . 前記圧力容器から殺菌水を取り出す管路に添加部を設け、 該添加部で次 亜塩素酸ナトリウム水溶液又は亜塩素酸ナトリウム水溶液を添加して殺菌水の pH を調整する、 請求の範囲第 2 1項に記載の次亜塩素酸又は亜塩素酸を主体と した殺菌水の生成方法。
2 3 . 前記添加部で添加する次亜塩素酸ナトリウム水溶液又は亜塩素酸ナトリ ゥム水溶液の量を制御することで殺菌水の pHを制御する、 請求の範囲第 2 2項 に記載の次亜塩素酸又は亜塩素酸を主体とした殺菌水の生成方法。
2 4 . 前記圧力容器から殺菌水を取り出す管路に添加部を設け、 該添加部で水 を添加して殺菌水の濃度を調整する、 請求の範囲第 2 1項に記載の次亜塩素酸又 は亜塩素酸を主体とした殺菌水の生成方法。
2 5 . 前記圧力容器から殺菌水を取り出す管路に添加部を設け、 該添加部で水 を添加して殺菌水の pH を調整する、 請求の範囲第 2 1項に記載の次亜塩素酸又 は亜塩素酸を主体とした殺菌水の生成方法。
2 6 . 前記添加部で添加する水の量を制御することで殺菌水の pHを制御する、 請求の範囲第 2 5項に記載の次亜塩素酸又は亜塩素酸を主体とした殺菌水の生成 方法。
2 7 . 第 1の容器と第 2の容器とを用意し、
前記第 1の容器で炭酸ガスと水とを接触させて炭酸水を生成し、 前記第 2の容器で炭酸ガスと次亜塩素酸ナトリゥム水溶液又は亜塩素酸ナトリ ゥム水溶液とを接触させて殺菌水を生成し、
前記第 2の圧力容器から取り出した殺菌水の濃度を前記第 1の圧力容器から取 り出した炭酸水で希釈して殺菌水の濃度を調整することを特徴とする次亜塩素酸 又は亜塩素酸を主体とした殺菌水の生成方法。
2 8 . 次亜塩素酸ナトリゥム水溶液又は亜塩素酸ナトリゥム水溶液に酸を添加 することにより、 次亜塩素酸又は亜塩素酸を主体とした殺菌水を生成する方法に おいて、
前記次亜塩素酸ナトリゥム水溶液又は亜塩素酸ナトリゥム水溶液に添加する酸 が、 炭酸を除く酸と、 殺菌水を生成する現場で炭酸ガスと水を接触させることに より生成した炭酸水とからなることを特徴とする次亜塩素酸又は亜塩素酸を主体 とした殺菌水の生成方法。
2 9 . 水位を一定の範囲に維持する水位維持機構を備えた圧力容器と、 該圧力容器に炭酸ガスを供給する炭酸ガス供給手段と、
前記圧力容器に次亜塩素酸ナトリゥム水溶液又は亜塩素酸ナトリゥム水溶液を 散布する薬剤散布手段と、
前記圧力容器内の内圧を一定の範囲に維持する内圧維持機構とを有し、 前記圧力容器内で、 次亜塩素酸ナトリゥム水溶液又は亜塩素酸ナトリゥム水溶 液を散布して炭酸ガスと接触させることにより、 次亜塩素酸又は亜塩素酸を主体 とした殺菌水を生成する殺菌水生成装置。
3 0 . 次亜塩素酸ナトリゥム水溶液又は亜塩素酸ナトリゥム水溶液を散布しな いで前記圧力容器内に供給する薬剤供給手段を更に有する、 請求の範囲第 2 9項 に記載の殺菌水生成装置。
PCT/JP2006/303528 2005-02-23 2006-02-21 次亜塩素酸又は亜塩素酸を主成分とした殺菌水の生成方法及び装置 WO2006090869A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/843,445 US20080017588A1 (en) 2005-02-23 2007-08-22 Method and Apparatus For Producing Sterile Water Containing Hypochlorus or Chlorous Acid As a Major Component

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005084767 2005-02-23
JP2005-084767 2005-02-23
JP2005084747 2005-02-23
JP2005-084747 2005-02-23

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/843,445 Continuation US20080017588A1 (en) 2005-02-23 2007-08-22 Method and Apparatus For Producing Sterile Water Containing Hypochlorus or Chlorous Acid As a Major Component

Publications (1)

Publication Number Publication Date
WO2006090869A1 true WO2006090869A1 (ja) 2006-08-31

Family

ID=36927500

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/303528 WO2006090869A1 (ja) 2005-02-23 2006-02-21 次亜塩素酸又は亜塩素酸を主成分とした殺菌水の生成方法及び装置

Country Status (4)

Country Link
US (1) US20080017588A1 (ja)
KR (1) KR20070114119A (ja)
TW (1) TW200640801A (ja)
WO (1) WO2006090869A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006263701A (ja) * 2005-02-23 2006-10-05 Tatsuo Okazaki 微量吐水可能な炭酸ガス含有殺菌水生成方法および装置
WO2009018961A1 (de) * 2007-08-07 2009-02-12 Fresenius Medical Care Deutschland Gmbh Verfahren und vorrichtung zum konstanthalten eines ph-wertes einer medizinischen flüssigkeit beim ablassen aus einem behälter
CN103027073A (zh) * 2013-01-05 2013-04-10 马惠祥 一种不需要电源的弱酸性次氯酸消毒液的生成装置
JP2020171263A (ja) * 2019-04-12 2020-10-22 大宮高圧有限会社 高機能殺菌すすぎ水及びすすぎ方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5122912B2 (ja) * 2007-10-25 2013-01-16 サントリーホールディングス株式会社 炭酸飲料の製造方法
TWI478875B (zh) * 2008-01-31 2015-04-01 Solvay 使水性組成物中之有機物質降解之方法
US8257722B2 (en) 2008-09-15 2012-09-04 Cv Ingenuity Corp. Local delivery of water-soluble or water-insoluble therapeutic agents to the surface of body lumens
JP5237913B2 (ja) * 2009-09-27 2013-07-17 株式会社微酸性電解水研究所 イオン交換による分子状次亜塩素酸溶液の調製法及び分子状次亜塩素酸溶液
JP5627877B2 (ja) * 2009-11-18 2014-11-19 サントリーホールディングス株式会社 炭酸飲料の製造方法
US20110135562A1 (en) * 2009-11-23 2011-06-09 Terriss Consolidated Industries, Inc. Two stage process for electrochemically generating hypochlorous acid through closed loop, continuous batch processing of brine
DE102013208774A1 (de) * 2013-05-13 2014-11-13 Bwt Ag Verfahren und Anlage zur Chlorung von Wasser
FR3029123A1 (fr) * 2014-12-02 2016-06-03 Air Liquide France Ind Utilisation du couplage hypochlorites/co2 pour le lavage de produits alimentaires et notamment de vegetaux
KR101899898B1 (ko) * 2017-01-09 2018-09-18 김재량 차아염소산을 이용한 살균 탈취 설비 및 이를 이용한 살균 탈취 방법
EP3431444B1 (de) * 2017-07-21 2019-08-28 Michael Scheideler Verfahren zur reinigung und/oder desinfektion von rohrleitungen und/oder zur desinfektion von trinkwasser
CN113201756A (zh) * 2021-05-08 2021-08-03 潍坊思源环保设备有限公司 一种家用微酸性消毒机及其使用方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1024294A (ja) * 1996-05-10 1998-01-27 Hoshizaki Electric Co Ltd 弱酸性の塩素系殺菌水の製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3943261A (en) * 1973-09-18 1976-03-09 The Coca-Cola Company Process for water disinfection and carbonation
MXPA03006370A (es) * 2001-01-16 2004-12-02 Tomco2 Equipment Company Sistema de manejo de agentes patogenos.

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1024294A (ja) * 1996-05-10 1998-01-27 Hoshizaki Electric Co Ltd 弱酸性の塩素系殺菌水の製造方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006263701A (ja) * 2005-02-23 2006-10-05 Tatsuo Okazaki 微量吐水可能な炭酸ガス含有殺菌水生成方法および装置
WO2009018961A1 (de) * 2007-08-07 2009-02-12 Fresenius Medical Care Deutschland Gmbh Verfahren und vorrichtung zum konstanthalten eines ph-wertes einer medizinischen flüssigkeit beim ablassen aus einem behälter
JP2010535550A (ja) * 2007-08-07 2010-11-25 フレゼニウス メディカル ケアー ドイチュラント ゲゼルシャフト ミット ベシュレンクテル ハフツング コンテナからの流出の際に薬液のpHを一定に保つための方法及び装置
US8486272B2 (en) 2007-08-07 2013-07-16 Fresenius Medical Care Deutschland Gmbh Method and device for maintaining a constant pH value of a medical liquid during the dispensing thereof from a container
CN103027073A (zh) * 2013-01-05 2013-04-10 马惠祥 一种不需要电源的弱酸性次氯酸消毒液的生成装置
CN103027073B (zh) * 2013-01-05 2014-09-03 马惠祥 一种不需要电源的弱酸性次氯酸消毒液的生成装置
JP2020171263A (ja) * 2019-04-12 2020-10-22 大宮高圧有限会社 高機能殺菌すすぎ水及びすすぎ方法
JP7324483B2 (ja) 2019-04-12 2023-08-10 大宮高圧有限会社 高機能殺菌すすぎ水及びすすぎ方法

Also Published As

Publication number Publication date
KR20070114119A (ko) 2007-11-29
US20080017588A1 (en) 2008-01-24
TW200640801A (en) 2006-12-01

Similar Documents

Publication Publication Date Title
WO2006090869A1 (ja) 次亜塩素酸又は亜塩素酸を主成分とした殺菌水の生成方法及び装置
JP5360634B2 (ja) 炭酸ガス含有濃度制御が可能な炭酸ガス含有殺菌水生成方法および装置
JPH1099864A (ja) 滅菌溶液を製造するための方法及び装置
KR101045056B1 (ko) 살균수 제조장치
CN108722212B (zh) 含有应用气体的纳米泡沫水发生装置
JP4150533B2 (ja) 殺菌水の製造装置
WO2016029682A1 (zh) 一种无动力承压式二氧化氯自动发生混合消毒装置
KR101162535B1 (ko) 소독부산물이 생성되지 않는 친환경 살균소독제인 이산화염소수의 제조장치
JP2013071103A (ja) 電解水生成装置及び電解水生成方法
CN101124169A (zh) 以次氯酸或者亚氯酸为主要成分的杀菌水的生成方法及其装置
KR20110113487A (ko) 고농도의 차아염소산수 제조장치 및 제조방법
KR100884330B1 (ko) 순수한 이산화염소수 제조 장치 및 이산화염소수 제조 방법
KR101696649B1 (ko) 순수한 이산화염소 발생장치 및 그 방법
JP2005349382A (ja) 炭酸ガス充填タンクによる高濃度殺菌水生成方法及び装置
KR101139917B1 (ko) 살균수 제조장치 및 제조방법
US20040011642A1 (en) Ozone water producing apparatus and gas-liquid mixture producing apparatus
KR20090048153A (ko) 이종 액체 혼합 장치 및 이를 이용한 전해소독수 제조장치
JP2006263701A (ja) 微量吐水可能な炭酸ガス含有殺菌水生成方法および装置
JP2018202363A (ja) 除菌水生成装置
JP5991619B2 (ja) オゾン水生成装置
JP2010221180A (ja) オゾン水生成装置及びオゾン水生成方法
JP4360502B1 (ja) オゾン水生成装置
JP2013094747A (ja) オゾン液生成器及びオゾン液生成方法
JP2006223690A (ja) 殺菌水生成方法及び装置
KR101402369B1 (ko) 회전 분사 노즐을 이용한 고농도 기액 혼합장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020077018105

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 200680005492.7

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 11843445

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 11843445

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 06714667

Country of ref document: EP

Kind code of ref document: A1