WO2006090685A1 - 固体酸化物形燃料電池およびその運転方法 - Google Patents
固体酸化物形燃料電池およびその運転方法 Download PDFInfo
- Publication number
- WO2006090685A1 WO2006090685A1 PCT/JP2006/303026 JP2006303026W WO2006090685A1 WO 2006090685 A1 WO2006090685 A1 WO 2006090685A1 JP 2006303026 W JP2006303026 W JP 2006303026W WO 2006090685 A1 WO2006090685 A1 WO 2006090685A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- fuel cell
- fuel
- gas
- power generation
- reformer
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04694—Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
- H01M8/04746—Pressure; Flow
- H01M8/04776—Pressure; Flow at auxiliary devices, e.g. reformer, compressor, burner
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04223—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
- H01M8/04268—Heating of fuel cells during the start-up of the fuel cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04313—Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
- H01M8/0432—Temperature; Ambient temperature
- H01M8/04365—Temperature; Ambient temperature of other components of a fuel cell or fuel cell stacks
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04313—Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
- H01M8/0432—Temperature; Ambient temperature
- H01M8/04373—Temperature; Ambient temperature of auxiliary devices, e.g. reformers, compressors, burners
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04313—Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
- H01M8/04537—Electric variables
- H01M8/04544—Voltage
- H01M8/04559—Voltage of fuel cell stacks
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04313—Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
- H01M8/04537—Electric variables
- H01M8/04604—Power, energy, capacity or load
- H01M8/04619—Power, energy, capacity or load of fuel cell stacks
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04694—Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
- H01M8/04746—Pressure; Flow
- H01M8/04753—Pressure; Flow of fuel cell reactants
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/06—Combination of fuel cells with means for production of reactants or for treatment of residues
- H01M8/0606—Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
- H01M8/0612—Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
- H01M8/0625—Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material in a modular combined reactor/fuel cell structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/12—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
- H01M2008/1293—Fuel cells with solid oxide electrolytes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04007—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
- H01M8/04014—Heat exchange using gaseous fluids; Heat exchange by combustion of reactants
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04007—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
- H01M8/04014—Heat exchange using gaseous fluids; Heat exchange by combustion of reactants
- H01M8/04022—Heating by combustion
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04007—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
- H01M8/04037—Electrical heating
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04694—Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
- H01M8/04746—Pressure; Flow
- H01M8/04768—Pressure; Flow of the coolant
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Definitions
- the present invention relates to a solid oxide fuel cell, and more particularly to a method of operating a fuel cell at start-up or stop.
- the solid oxide fuel cell has been developed as a third-generation power generation fuel cell, and three types are currently known: a cylindrical type, a monolith type, and a flat plate type.
- Each of these solid oxide fuel cells has a laminated structure in which a solid electrolyte layer made of an oxide ion conductor is sandwiched between an air electrode layer (force sword) and a fuel electrode layer (anode) from both sides.
- a flat plate type a plurality of power generation cells and separators each having a stacked body strength are alternately stacked to form a stack and housed in a housing.
- an oxidant gas oxygen
- a fuel gas H, CO, CH, etc.
- the fuel electrode layer is a porous layer so that the reaction gas can reach the interface with the solid electrolyte layer.
- oxygen supplied to the air electrode layer side reaches the vicinity of the interface with the solid electrolyte layer through pores in the air electrode layer, and receives electrons from the air electrode layer in this portion. It is ionized by the acid ion (O 2 —).
- the oxide ions diffuse and move in the solid electrolyte layer by directing the fuel electrode layer.
- the oxide ions that have reached the vicinity of the interface with the fuel electrode layer react with the fuel gas at this portion to generate reaction products (H 0, CO, etc.), and the fuel electrode layer is electrically charged.
- Electrons generated by such an electrode reaction can be taken out as an electromotive force by an external load on another route.
- an inert gas for example, nitrogen gas
- purging was performed to maintain the polar atmosphere in a reduced state (see, for example, Patent Document 2).
- the power generation performance is extremely lowered.
- the solid oxide fuel cell has an extremely high operating temperature of 600 to 1000 ° C. Therefore, rapid start-up and rapid stop are difficult, and it takes a long time to start Z-stop.
- the electrode is easy to oxidize, and the sealless structure that does not have a gas leak prevention seal on the outer periphery of the power generation cell makes it easier for external oxygen-containing gas to enter the battery. Purge, and the amount of nitrogen gas used increases proportionally as fuel cells become larger.
- Patent Document 1 JP-A-8-162137
- Patent Document 2 JP-A-2-244559
- a first object of the present invention is to generate a reducing reformed gas containing hydrogen from the initial stage of startup by heating a reformer and a steam generator in a fuel module with a heating device at the time of startup.
- the present invention provides a solid oxide fuel cell capable of rapid start-up while supplying the purge gas to the fuel electrode side of the power generation cell, and its operation method. Nitrogen used for the prevention of wrinkles is completely eliminated.
- a second object of the present invention is to provide a method of operating a fuel cell that enables a temperature raising operation and a temperature lowering operation at the time of starting and stopping without providing a separate purge gas supply system.
- a third object of the present invention is to provide a fuel cell power generator and an operation stop method capable of purging without separately providing a purge gas supply system.
- the solid oxide fuel cell according to the first aspect of the present invention comprises a plurality of power generation cells to form a fuel cell assembly, which is housed in a housing.
- a reformer, or a reformer and a steam generator are provided in the housing.
- at least a heating device for heating the reformer is provided.
- the above-described fuel cell assembly is a fuel cell stack in which a plurality of power generation cells and separators are alternately stacked, such as a flat plate type fuel cell, or a plurality of power generations, such as a cylindrical fuel cell.
- a bundle or the like in which cells are assembled and connected via connecting members (interconnectors).
- heating device for example, an electric heater or a combustion panner can be used.
- a combustion catalyst for burning the reformed gas released from the fuel cell assembly or a heater for reformed gas ignition may be disposed in the peripheral portion of the fuel cell assembly. desirable.
- solid oxide fuel cell for example, a solid oxide fuel cell having a sealless structure in which the remaining gas is combusted outside the fuel cell assembly without being used for power generation reaction is used. It is possible that
- the solid oxide fuel cell operating method comprises a plurality of power generation cells configured to form a fuel cell assembly, which is housed in a housing.
- a method for operating a solid oxide fuel cell in which a reformed gas is supplied into the fuel cell assembly during operation to generate a power generation reaction comprising a reformer, a steam generator, and a heating device.
- a reformer is heated by the heating device, and fuel gas and water vapor generated by the steam generator are supplied to the heated reformer to reform the reformed gas mainly composed of hydrogen.
- the reformed gas is supplied to the fuel cell assembly to raise the temperature of the fuel cell assembly while keeping the fuel electrode of the power generation cell in a reduced state.
- the hydrogen-based reformed gas supplied to the fuel cell assembly is released from the fuel cell assembly and burned to form the fuel. It is desirable to raise the temperature of the battery assembly.
- a reformer or a steam generator in which a heating device is installed is installed in a housing in which the fuel cell assembly is accommodated, and these reformers are reformed when the fuel cell is started. Since the heater and steam generator are heated by the heating device, the hydrogen-based reformed gas obtained by the reforming reaction is supplied to the inside of the fuel cell assembly immediately after startup, and nitrogen gas is used. It is possible to keep the fuel electrode side of the power generation cell in a reduced state. Furthermore, the fuel cell assembly can be heated in a short time by burning the remaining reformed gas in the vicinity of the fuel cell assembly, so that the fuel cell can be rapidly started.
- the reformer and the steam generator in the housing are heated by the combustion heat, so that heating by a heating device at the time of start-up becomes unnecessary.
- a heating device for example, when an electric heater is used as the heating device, power consumption can be greatly reduced.
- the method of operating the fuel cell according to the second aspect of the present invention reforms raw fuel with a reformer and supplies reformed gas to a power generation cell to generate power.
- a method of operating a fuel cell that performs operation wherein a partial acid generator is operated at the reformer at the start of operation.
- a partial acid generator is operated at the reformer at the start of operation.
- the fuel cell operating method includes a reformer, reforms the raw fuel with the reformer, and supplies the reformed gas to the power generation cell.
- a method of operating a fuel cell that performs a power generation operation When the operation is stopped, the reformer generates a reducing gas containing hydrogen by a partial oxidation reforming reaction or an autothermal reforming reaction to generate a power generation cell.
- the temperature of the fuel cell is lowered while maintaining the atmosphere of the fuel electrode in a reduced state.
- the fuel cell for example, a solid oxide fuel cell having a sealless structure in which the remaining gas is burned outside the fuel cell assembly, which is not used for the power generation reaction, can be used. It is.
- the reforming reaction occurs in the reformer due to the partial oxidation reaction at the start Z stop or the heat generated by the autothermal reaction, and the reduction includes hydrogen.
- the gas is generated and this reducing gas is supplied to the fuel electrode, the fuel electrode of the power generation cell can be maintained in a reduced state. Can be prevented and the life can be extended.
- the fuel cell operation stop method supplies fuel gas to the fuel electrode layer side and supplies oxidant gas to the air electrode layer side.
- the supply amount of the hydrogen or hydrocarbon fuel is reduced so that the cell voltage of the fuel cell becomes 0.5 V or higher when the stack temperature is 300 ° C. I hope that.
- the fuel electrode layer side may be oxidized and deteriorate, but the cell voltage will not rise until the stack temperature drops to about 300 ° C.
- the fuel electrode layer side can be kept in a reduced state.
- the amount of water supply is reduced so that the water vapor temperature of the water is 200 ° C or higher. Is desirable.
- the water vapor temperature is 200 ° C or lower when the water supply is stopped, the water vapor temperature drops to 100 ° C all at once, making it difficult to continuously generate water vapor. As a result, liquid water is supplied into the cell, and the cell may be deteriorated or cracked. For this reason, the water vapor temperature when water supply is stopped needs to be 200 ° C or higher.
- the fuel cell power generation device includes a fuel cell that outputs electric power according to a fuel gas supply amount and an oxidant gas supply amount, and supplies fuel gas to the fuel cell.
- the fuel cell for example, it is possible to use a solid oxide fuel cell having a sealless structure in which residual gas that has not been used in the power generation reaction is released from the outer periphery of the power generation cell.
- the fuel electrode layer is reduced by supplying the fuel cell with a reduced flow rate of water and hydrogen or hydrocarbon fuel. As a result, it is possible to prevent the oxidation of the power generation cell and the accompanying deterioration in the performance of the power generation cell in the temperature increasing / decreasing cycle, and to extend the life.
- FIG. 1 is a diagram showing a schematic internal configuration of a solid oxide fuel cell according to a first embodiment to which the present invention is applied.
- FIG. 2 is a diagram showing a gas flow during operation of the fuel cell stack.
- FIG. 3 is a diagram showing a state in which a heating device is installed with respect to the reformer and the steam generator.
- FIG. 4 is a diagram showing an installation state different from that of FIG. 3 of the heating device for the reformer and the steam generator.
- FIG. 5 is a diagram showing a schematic internal configuration of a solid oxide fuel cell according to a second embodiment to which the present invention is applied.
- FIG. 6 is a diagram showing the internal arrangement of a solid oxide fuel cell according to a second embodiment to which the present invention is applied.
- FIG. 7 is a diagram showing a main configuration of the fuel cell stack of FIG.
- FIG. 8 is a diagram showing a schematic configuration of a fuel cell power generator according to a third embodiment to which the present invention is applied.
- FIG. 9 is a diagram showing a configuration of a solid oxide fuel cell stack used in the fuel cell power generator of FIG.
- FIG. 10 is a diagram showing an operation stop control mode according to the present invention. Explanation of symbols
- Heating device electric heater, combustion panner
- Combustion means (combustion catalyst, auxiliary electric heater)
- This first embodiment corresponds to the first aspect of the present invention.
- Fig. 1 shows the internal schematic configuration of a solid oxide fuel cell to which the present invention is applied
- Fig. 2 shows the gas flow during operation in the fuel cell stack
- Figs. 3 and 4 show the reformer and water vapor. Indicate the installation status of the heating device for the generator!
- the solid oxide fuel cell (fuel cell module) of this embodiment is When the fuel cell stack 1 that has a housing 20 (can) having a heat insulating material (not shown) for heat insulation on the inner wall and that generates a power generation reaction in the center of the housing 20 is disposed, In addition, a reformer 21, a steam generator 22, and the like are disposed around the fuel cell stack 1.
- the reformer 21 is filled with a Ni (nickel) -based or Ru (ruthenium) -based reforming catalyst for hydrocarbons, and the hydrocarbon fuel gas supplied from an external force is mainly hydrogen. The fuel gas can be reformed.
- the steam generator 22 is a heat exchanger for obtaining the high-temperature steam necessary for the reforming reaction, and can absorb more exhaust heat of the fuel cell stack 1, for example, as shown in FIGS. In addition, it is disposed at a position facing the center of the fuel cell stack, and high-temperature steam is guided to the reformer 21 through the steam introduction pipe 17.
- the fuel cell stack 1 includes a power generation cell 5 in which a fuel electrode layer 3 and an air electrode layer 4 are disposed on both surfaces of a solid electrolyte layer 2, and a fuel electrode current collector 6 disposed outside the fuel electrode layer 3.
- a large number of single cells 10 are stacked in the vertical direction, each consisting of an air current collector 7 disposed outside the air electrode layer 4 and a separator 8 disposed outside each current collector 6, 7.
- the solid electrolyte layer 2 is composed of a stable zirconia (YSZ) or the like supplemented with yttria
- the fuel electrode layer 3 is a metal such as Ni or Co, or It is composed of cermets such as Ni—YSZ and Co—YSZ
- the air electrode layer 4 is composed of LaMnO, LaCoO, etc.
- the anode current collector 6 is composed of a sponge-like porous sintered metal plate such as a Ni-based alloy
- the cathode current collector 7 is composed of a sponge-like porous sintered metal plate such as an Ag-based alloy.
- the separator 8 is made of stainless steel or the like.
- the separator 8 has a function of electrically connecting the power generation cells 5 and supplying a reaction gas to the power generation cells 5.
- the fuel gas (reformed gas) is supplied to the outer periphery of the separator 8.
- the fuel gas passage 11 In the center of the surface of the separator 8 facing the fuel electrode current collector 6 of the separator 8 11a, the fuel gas passage 11 also discharges the force, and the oxidant gas is introduced from the outer peripheral surface of the separator 8 and the separator 8 air
- An oxidant gas passage 12 that discharges from substantially the center 12a of the surface facing the electrode current collector 7 is provided.
- the fuel cell stack 1 extends in the stacking direction as shown in FIG.
- a fuel gas hold 13 and an oxidant gas hold 14 are formed, and a fuel gas introduction pipe 15 from the reformer 21 is connected to the fuel gas hold ⁇ 3 to provide an oxidant gas.
- An oxidant gas introduction pipe 16 derived from the outside is connected to the work hold 14.
- This solid oxide fuel cell has a sealless structure in which a gas leakage prevention seal is not provided on the outer periphery of the power generation cell 5, and during operation, as shown in FIG.
- a fuel electrode layer is formed by diffusing fuel gas (reformed gas) and oxidant gas (air) supplied to the power generation cell 5 through the agent gas passage 12 toward the outer periphery of the power generation cell 5.
- 3 and air electrode layer 4 are distributed over the entire surface with a good distribution to generate a power generation reaction, and surplus gas (exhaust gas) that has not been consumed by the power generation reaction is also freely generated in the outer periphery of the power generation cell 5 in the housing 20. Released.
- an exhaust port 20a for exhausting the exhaust gas in the housing to the outside of the housing.
- the above-described reformer 21 and the steam generator 22 are provided with the heating device 24, so that the reformer 21 and the steam generator 22 can be heated by heat conduction. /! An electric heater or a combustion pan is used as the heating device 24.
- FIG. 3 and FIG. 4 show the attachment of the heating device 24 when an electric heater is used as the heating device 24.
- Fig. 3 shows the case where a plate heater is used, which is attached to the outer surface of each of the box-shaped reformer 21 and the steam generator 22 facing the side surface of the fuel cell stack 1.
- the reformer 21 and the steam generator 22 are heated from the outside by direct heat.
- Fig. 4 shows the case where a noisy heater is used, and a plurality (two) are arranged in the longitudinal direction in the reformer 21 and the steam generator 22, respectively.
- the vessel 22 is heated from the inside.
- a combustion catalyst 23 is provided as a combustion means for promoting combustion of surplus gas (reformed gas) released from the outer periphery of the fuel cell stack 1 at two locations in the vicinity of the fuel cell stack 1. Arranged along the stacking direction.
- a combustion catalyst 23 for example, a thin plate-shaped honeycomb catalyst and Pt, Pd, etc. supported on an alumina carrier can be used.
- an ignition heater or an igniter for igniting and burning the released surplus gas can be disposed at an appropriate position near the fuel cell stack.
- the combustion catalyst 23 and the ignition heater igniter can be used in combination. In any case, these combustion means are extremely effective for promptly igniting and burning the reformed gas released from the fuel cell stack 1 and heating the entire stack efficiently and uniformly.
- the heating device 24 is operated to heat and raise the temperature of the reformer 21 and the steam generator 22 by heat conduction, and the fuel gas (hydrocarbon) from the outside through the fuel gas introduction pipe 15 System fuel), oxidant gas (air) through the oxidant gas introduction pipe 16, and water (heat exchanged once to be high temperature water) through the water supply pipe 18, respectively. Supply in the module.
- the reformer 21 and the steam generator 22 are heated by heat conduction from the outer surface (in the case of FIG. 3) or from the inside (in the case of FIG. 4) by the heating device 24.
- the temperature is raised to a temperature capable of reforming in a few minutes, and the steam generator 22 generates high-temperature steam.
- the hydrocarbon fuel gas joins and mixes with the high-temperature steam from the steam generator 22 guided by the steam introduction pipe 17, and becomes a mixed gas.
- the hydrocarbon-based fuel gas is reformed into a hydrogen-based fuel gas by the action of the hydrocarbon reforming catalyst.
- This reforming reaction is an endothermic reaction, and high heat (650 to 800 ° C.) necessary for the reforming reaction is obtained by receiving direct heat from the attached heating device 24.
- the reformed gas generated in the reformer 21 is guided to the fuel gas hold 13 in the fuel cell stack 1 and is introduced into each separator 8 through the hold 13. And acid These reaction gases together with the air introduced through the inert gas carrier 14 pass through the separators 8 so as to diffuse from the substantially central portion of the power generation cell 5 toward the outer periphery.
- This reformed gas is a reducing gas containing hydrogen, and can maintain the fuel electrode side of the power generation cell 5 in a reduced state.
- the excess hydrogen-based surplus gas that has not been used for the power generation reaction is discharged as it is from the outer periphery of the fuel cell stack 1 and quickly ignited by the combustion means (combustion catalyst, ignition heater igniter). 'Burn.
- the reformed gas mainly composed of hydrogen obtained by the reforming reaction immediately after start-up can be supplied into the fuel cell stack, and the reformed gas composed mainly of hydrogen in the vicinity of the stack.
- the fuel cell stack By burning the fuel cell stack, the fuel cell stack can be heated and raised in a short time, thereby enabling rapid start-up of the fuel cell.
- the time to start power generation (rated operation) can be greatly reduced to 3 hours or less compared to the conventional 8 hours.
- the conventional introduction of nitrogen gas to prevent oxidation nitrogen purge
- installation of nitrogen gas cylinders and piping equipment for that purpose can be omitted. Cost can be reduced.
- the heating device 24 may be operated for about 30 minutes after the start of operation. As a result, for example, when an electric heater is used as the heating device 24, power consumption can be significantly reduced.
- This second embodiment corresponds to the second aspect of the present invention.
- FIG. 5 shows a schematic internal configuration of a solid oxide fuel cell to which the present invention is applied
- FIG. 6 shows an internal arrangement
- FIG. 7 shows a main configuration of the fuel cell stack.
- the solid oxide fuel cell according to the present embodiment has a housing 120 (can body) having an inner wall provided with a heat insulating material (not shown). Inside the housing 120 A fuel cell stack 101 for generating a power generation reaction is disposed in the center.
- this fuel cell stack 101 includes a power generation cell 105 in which a fuel electrode 103 and an air electrode 104 are arranged on both surfaces of a solid electrolyte 102, and a fuel electrode current collector outside the fuel electrode 103.
- a power generation cell 105 in which a fuel electrode 103 and an air electrode 104 are arranged on both surfaces of a solid electrolyte 102, and a fuel electrode current collector outside the fuel electrode 103.
- 106, an air electrode current collector 107 outside the air electrode 104, and a number of separators 108 outside the current collectors 106 and 107 are stacked in order in the vertical direction.
- the solid electrolyte 102 is composed of a stable zirconium oxide (YSZ) or the like to which yttria is added, the fuel electrode 103 is composed of a metal such as Ni or a cermet such as Ni—YSZ, and the air electrode 104 is composed of LaMnO, LaCoO.
- the anode current collector 106 is a sponge-like porous material such as Ni.
- the cathode current collector 107 is made of a sponge-like porous sintered metal plate such as Ag, and the separator 108 is made of stainless steel or the like.
- the separator 108 has a function of electrically connecting the power generation cells 105 and supplying a reaction gas to the power generation cells 105.
- the separator 108 supplies the fuel gas supplied from the fuel gas holder 113 to the separator 108.
- the fuel gas passage 111 introduced from the outer peripheral surface and discharged from the substantially central portion facing the anode current collector 106 of the separator 108 and the oxidant gas supplied from the oxidant gas holder 114 are supplied to the outer peripheral surface of the separator 108.
- an oxidant gas passage 112 that is discharged from substantially the center of the surface of the separator 108 facing the air electrode current collector 107.
- the fuel cell stack 101 has a sealless structure in which a gas leakage prevention seal is not provided on the outer peripheral portion of the power generation cell 105.
- the fuel gas and the oxidant gas (air) discharged from the oxidant gas passage 112 toward the power generation cell 105 through the substantially central force of the separator 108 are diffused toward the outer periphery of the power generation cell 105 and the fuel electrode 103 and the air. It spreads over the entire surface of the pole 104 with a good distribution to generate a power generation reaction, and unburned gas that was not consumed by the power generation reaction is also freely released to the outside of the power generation cell 105 (inside, Uzing 120) It comes to be. The released unburned gas is burned around the fuel cell stack 101.
- the housing 120 includes a reformer 121, a steam generator 122, a combustion catalyst 123, an auxiliary electric heater 124, and a heating temperature 126 etc. are arranged. As shown in Fig. Two of these members are arranged opposite to each other with the fuel cell stack 101 in the center interposed therebetween.
- the reformer 121 is filled with a hydrocarbon catalyst, and reforms a hydrocarbon-based fuel (raw fuel) introduced from the outside into a fuel gas mainly composed of hydrogen. Further, the reformer 121 incorporates a heater 125 (or igniter) for starting partial oxidation, which will be described later.
- a fuel gas supply pipe 115 and an air supply pipe 117 from the outside are connected to the inlet side of the reformer 121, and a fuel gas marker 113 in the fuel cell stack 101 is connected to the outlet side via a pipe 109. It is connected to the. Further, an oxidant gas supply pipe 116 from the outside is connected to the oxidizing gas gas holder 114 in the fuel cell stack 101, and at the time of start-up, city gas, LPG, etc. are connected to the fuel gas supply pipe 115. The hydrocarbon fuel is introduced, and air is introduced into the air supply pipe 117 and the oxidant gas supply pipe 116.
- the steam generator 122 is a heat exchanger that uses the exhaust heat from the fuel cell stack 101 as a heat source to obtain high-temperature steam necessary for the above-described reforming reaction, and a water supply pipe 118 is connected to the inlet side. At the same time, the outlet side is connected to the fuel gas supply pipe 115 described above by a water vapor introduction pipe 119. During the power generation operation, the high-temperature steam from the steam generator 122 is introduced into the fuel gas supply pipe 115 through the steam introduction pipe 119.
- the combustion catalyst 123 is disposed as a combustion means for unburned gas released from the fuel cell stack 101, and is disposed along the stacking direction.
- a thin plate-shaped Hercam catalyst and Pt (platinum), Pd (palladium) or the like supported on an alumina can be used.
- an auxiliary electric heater 124 and the like are provided as a means for burning unburned gas.
- the combustion catalyst 123 and the auxiliary electric heater 124 may be used in combination. Is possible. In any case, by these combustion means, the unburned gas is quickly ignited and burned around the stack, and the entire stack is heated efficiently and uniformly.
- a portion of the hydrocarbon fuel is burned to produce nitrogen and water (steam), and at this time, combustion heat, steam during combustion, and combustion ( That is, a reforming reaction occurs with the remaining hydrocarbon fuel not subjected to the partial oxidation reaction), and a reducing gas is generated by hydrogen and nitrogen (partial oxidation reforming reaction).
- the reducing gas in the reformer 121 is supplied into the power generation cell 105 through the pipe 109, the fuel gas manifold 113, and the like, so that the fuel electrode atmosphere can be maintained in the reduced state immediately after the start-up.
- unburned gas emitted from the outer periphery of the fuel cell stack 101 having a sealless structure is combusted around the stack by the action of the combustion catalyst (if necessary, the auxiliary electric heater 124 is operated.
- the fuel cell stack 101 is heated from the outer periphery by the radiant heat to raise the temperature.
- the stack temperature rises, the amount of air supplied to the reformer 121 is gradually reduced, and steam is supplied from the steam generator 122, so that the stack temperature reaches the operating temperature of 500 ° C.
- the stack temperature reaches the operating temperature of 500 ° C.
- it shifts to steam reforming with hydrocarbon fuel and steam (autothermal reforming reaction).
- the reducing gas containing hydrogen is generated in the reformer 121 and supplied to the power generation cell 105, the reduction state of the fuel electrode atmosphere is continuously maintained.
- the steam gas from the steam generator 122 and the fuel gas supply pipe 115 mixed gas of a high-power hydrocarbon fuel are supplied to the reformer 121, and the steam reforming is performed in the reformer 121.
- a reformed gas rich in hydrogen is generated by the quality reaction, and this reformed gas is supplied to each power generation cell 105, whereby a power generation reaction occurs in the fuel cell stack 101.
- the supply of air to the reformer 121 through the air supply pipe 117 is stopped.
- the supply of reformed gas to the fuel cell stack 101 is stopped when the temperature is lowered when the operation is stopped.
- the hydrocarbon fuel supply is gradually reduced in the reformer 121 even during the temperature lowering process.
- the reformer when the temperature rises at the start of operation and when the temperature decreases at the time of operation stop, the reformer is heated by the heat generated by the partial oxidation reaction or autothermal reaction. A reforming reaction is then generated, and a reducing gas containing hydrogen generated by these reactions is supplied to the fuel electrode, enabling a purge to maintain the fuel electrode 103 of the power generation cell 105 in a reduced state. As a result, the oxidation of the power generation cell 105 and the accompanying performance deterioration of the power generation cell 105 in the heating / cooling cycle can be prevented, and the life can be extended.
- the temperature of the fuel cell stack 101 including the reformer 121 is promoted by the heat of combustion. Start-up time can be shortened.
- the solid oxide fuel cell having a sealless structure requires a long time for starting and stopping at a high operating temperature, and an external oxygen-containing gas easily enters the inside of the cell. For this reason, a large amount of purge is required when starting Z is stopped, but the operation method of the present invention that does not require purging with an inert gas is extremely effective for such a fuel cell. .
- This third embodiment corresponds to the third aspect of the present invention.
- a third embodiment of the present invention will be described with reference to the drawings.
- FIG. 8 shows a schematic configuration of a fuel cell power generator to which the present invention is applied
- FIG. 9 shows a configuration of a fuel cell stack used in the fuel cell power generator
- FIG. 10 shows a shutdown control mode of the present invention. Show.
- the fuel cell power generator of the present embodiment has a solid oxide fuel cell 201 (fuel cell stack 201) that generates a direct current output according to the fuel gas supply amount and the air supply amount. ), Fuel reformer 215, etc., which reforms a mixed gas of fuel gas (for example, methane gas, city gas) and water vapor into a hydrogen-rich gas and supplies it to the fuel cell stack 201 is housed in a heat insulating housing
- the fuel cell module 210 and the fuel cell module 210 are disposed around the fuel cell module 210.
- the fuel gas blower 221, the desulfurizer 223, each fuel gas supply pipe, and the like are used to introduce the fuel gas into the fuel reformer 215.
- the fuel cell system consists of a fuel supply system 240, an air blower, air supply piping, etc., and supplies an oxidant gas (air) to the fuel cell stack 201. It consists of an air supply system 230, a feed water pump 225, and a water supply pipe. Water ( This water is not shown in the fuel cell module, and is converted into water vapor by the water vapor generator), and the direct current output from the fuel cell stack 201 is converted into alternating current output.
- An inverter 224 that supplies AC power Pa to an external load (not shown), a control unit 220 that controls the flow rate of each of the air supply system 230, the fuel supply system 240, and the water supply system 250, and the like.
- control unit 220 sends cell voltage information V, stack temperature information Tl, and water vapor temperature information sent from detectors (not shown) disposed at appropriate positions in the fuel cell power generator. ⁇ 2, Output power information Various detection information such as Pa is input.
- the fuel cell stack 201 includes a power generation cell 205 in which a fuel electrode layer 203 and an air electrode layer 204 are disposed on both surfaces of a solid electrolyte layer 202, and an outer side of the fuel electrode layer 203.
- a single cell 209 composed of a fuel electrode current collector 206 arranged on the outside, an air electrode current collector 207 arranged outside the air electrode layer 204, and a separator 208 arranged outside each current collector 206, 207.
- a large number of layers are stacked in the vertical direction.
- the solid electrolyte layer 202 is composed of a stable zirconia (YSZ) with yttria
- the fuel electrode layer 203 is made of a metal such as Ni or Co.
- the air electrode layer 204 is composed of LaMnO, LaCoO, etc.
- the fuel electrode current collector 206 is composed of a sponge-like porous sintered metal plate such as a Ni-based alloy
- the air electrode current collector 207 is composed of a sponge-like porous sintered metal plate such as an Ag-based alloy.
- the separator 208 is made of stainless steel or the like!
- the separator 208 has a function of electrically connecting the power generation cells 205 and supplying a reaction gas to the power generation cells 205.
- the separator 208 also introduces fuel gas into the outer peripheral surface force of the separator 208.
- the fuel electrode passage 211 that discharges from the substantially central portion 211a of the surface of the separator 208 facing the anode 206 and the oxidant gas is introduced from the outer peripheral surface of the separator 208, and the cathode current collector of the separator 208
- An oxidant gas passage 212 that discharges from a substantially central portion 212a of the surface facing 207 is provided.
- a fuel gas hold 217 and an oxidant gas hold 218 extending in the stacking direction. Gas is circulated and air to which external force is supplied circulates in the hold 218, and is introduced into the gas passages 211 and 212 of each of the generators 208 from each of the gas ska S maroonoled 217 and 218. It is discharged from the discharge ports 211a and 212a and distributed to the electrodes of each power generation cell.
- a pair of end plates 208a and 208b made of stainless steel or the like are disposed at both ends of the fuel cell stack 201, and the generated power of the fuel cell stack 201 can be taken out through the end plates 208a and 208b. It's like! /
- this fuel cell stack 201 employs a sealless structure in which a gas leak prevention seal is not intentionally provided on the outer periphery of the power generation cell 205, and the surplus gas that is not consumed by the power generation reaction during operation is used. (High-temperature exhaust gas) is also freely released into the housing by the outer peripheral force of the power generation cell 205. The high-temperature exhaust gas discharged into the internal space of the housing will be discharged out of the module through the upper exhaust hole!
- This operation stop control is performed by the control unit 220 based on the various detection information (V, Pa, Tl, ⁇ 2, etc.) input to the various detector forces.
- the operation stop control shown in FIG. 10 is performed in a state where the flow rate of air supplied to the fuel cell stack 201 is maintained at a constant flow rate.
- the left vertical axis represents the supply of fuel gas (methane)
- the amount of water and the amount of water used as a water vapor source are shown.
- each of methane and water supplied to the fuel cell module 210 is obtained.
- the battery output is reduced from lkW to OW in about 4 hours while reducing the flow rate of the battery (output reduction period), and then the stack temperature is reduced from about 700 ° C to less than 300 ° C in about 15 hours.
- the present invention is a purge process for avoiding the oxidation and depletion phenomenon of the fuel electrode layer by maintaining the fuel electrode layer side in a reduced state in a high temperature atmosphere during the output reduction period to the temperature drop period after the shutdown operation. .
- the operation stop control of the present embodiment continues to supply a small amount of methane and water to the fuel cell module 210 even when power generation is stopped, and generates water vapor using the heat capacity of the fuel cell module 210. Hydrogen is generated by the reforming reaction and a mixed gas with water vapor is supplied to the fuel electrode layer side so that the reducing property of the fuel electrode layer is maintained.
- control unit 220 controls the operation of the fuel gas blower 221 (control valve is acceptable) and the feed water pump 225 (control valve is acceptable). This can be done by controlling.
- the fuel electrode layer containing Ni as the main component may be oxidized by the heat and NiO may be generated. Therefore, such an acid-sodium reduction reaction in the fuel electrode layer significantly reduces the performance of the power generation cell. Therefore, until the stack temperature T1 drops to about 300 ° C, it is necessary to gradually reduce the methane flow rate so that the cell voltage V does not fall below 0.5V, as shown in Fig. 10. Thereby, the fuel electrode layer side can be kept in a reduced state.
- the stack voltage may be monitored instead of the cell voltage V!
- the temperature of water vapor is maintained at 200 ° C or higher when water supply is stopped Thus, it is necessary to reduce the amount of water supplied. This is because when the water vapor temperature falls below 200 ° C, the water vapor temperature drops to 100 ° C all at once, making it difficult for water vapor to be continuously generated. This is because water is supplied, which may cause deterioration and cracking of the cell.
- the fuel cell when power generation is stopped, the fuel cell is supplied in a high temperature atmosphere after power generation is stopped by supplying water and fuel gas while reducing the flow rates of water and fuel gas. Therefore, it is possible to prevent the degradation of the power generation cell performance and the accompanying power cell performance deterioration during the heating / cooling cycle, and to extend the service life. Since the conventional method does not require purging with an inert gas, it is not necessary to provide a purge gas supply system including an inert gas cylinder (for example, a nitrogen cylinder), and the maintenance work can be simplified. The device itself can be miniaturized.
- the operating temperature is as high as 600 to: LOOO ° C, so it is not possible to lower the stack temperature in a short time when the heat capacity of the module such as metal or ceramic is large during the temperature drop period. During this period, the high-temperature atmosphere can be continued.
- the oxygen-containing gas outside in the fuel cell module
- the force that requires a reliable purge process when the operation is stopped The operation stop method of the present invention that does not require purging with an inert gas is extremely effective for such a high-temperature operation type fuel cell.
- the reformer and the steam generator in the fuel module are heated by the heating device, so that a reducing reformed gas containing hydrogen at the initial stage of start-up is generated.
- a solid oxide fuel cell capable of rapid start-up while supplying this purge gas to the fuel electrode side of the power generation cell and an operation method thereof.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Fuel Cell (AREA)
Abstract
本発明の課題は、燃料電池の急速起動を可能にすること、並びに、パージ用ガスの供給系を別途設けずに起動・停止時の昇温動作および降温動作を可能にすることである。本発明に係る固体酸化物形燃料電池においては、ハウジング(20)内に改質器(21)、または改質器(21)と水蒸気発生器(22)が設置されると共に、少なくとも前記改質器(21)を加熱する加熱装置(24)が配設されている。また、本発明に係る燃料電池の運転方法では、運転開始または運転停止の際に、改質器(121)にて部分酸化改質反応またはオートサーマル改質反応により水素を含む還元ガスを生成して発電セルの燃料極側に供給することにより、燃料極雰囲気を還元状態に維持しつつ、前記燃料電池を昇温または降温させる。
Description
明 細 書
固体酸化物形燃料電池およびその運転方法
技術分野
[0001] 本発明は、固体酸化物形燃料電池に関し、特に、起動時や停止時における燃料電 池の運転方法に関するものである。 背景技術
[0002] 上記固体酸化物形燃料電池は、第三世代の発電用燃料電池として開発が進んで おり、現在、円筒型、モノリス型、および平板積層型の 3種類が知られている。これら 固体酸化物形燃料電池は、何れも酸化物イオン伝導体から成る固体電解質層を両 側から空気極層 (力ソード)と燃料極層(アノード)で挟み込んだ積層構造を有し、例 えば、平板積層型の場合、この積層体力ゝら成る発電セルとセパレータを交互に複数 積層してスタック化し、ハウジング内に収納することによりモジュールィ匕したものである
[0003] 固体酸化物形燃料電池では、反応用ガスとして空気極層側に酸化剤ガス (酸素) が供給され、燃料極層側に燃料ガス (H 、 CO、 CH等)が供給される。空気極層と
2 4
燃料極層は、反応用ガスが固体電解質層との界面に到達することができるよう、何れ も多孔質の層とされている。
[0004] 発電セル内において、空気極層側に供給された酸素は、空気極層内の気孔を通つ て固体電解質層との界面近傍に到達し、この部分で空気極層から電子を受け取って 酸ィ匕物イオン (O2—)にイオンィ匕される。この酸ィ匕物イオンは、燃料極層に向力つて固 体電解質層内を拡散移動する。燃料極層との界面近傍に到達した酸ィ匕物イオンは、 この部分で、燃料ガスと反応して反応生成物 (H 0、 CO等)を生じ、燃料極層に電
2 2
子を放出する。
このような電極反応で生じた電子は、別ルートの外部負荷にて起電力として取り出 すことができる。
[0005] ところで、上記した固体酸化物形燃料電池を含む従来公知の燃料電池を運転 (発 電)する場合は、燃料電池スタック (特に発電セル)を各燃料電池の作動温度に予熱
する必要がある。これは、発電セルでの電気化学反応を活性化するためである(特許 文献 1参照)。
[0006] 従来は、運転開始の際に燃料電池スタックを昇温する場合、電気ヒータやパーナ 等の加熱装置を燃料電池スタックの周辺に配置し、加熱装置からの輻射熱によりスタ ック表面を加熱する方法が行われていた。しかしながら、この輻射熱を利用した予熱 方法は、昇温時間が長ぐ発電運転までに長時間を要する (例えば、 8時間程度)と いう問題があった。カロえて、電気ヒータによる昇温の場合は電力消費が極めて大きく なり、燃料電池の発電前に余分な電力を消費してしまうという問題もあった。
[0007] ところで、係る燃料電池では、運転開始時および運転停止時における、昇温 Z降 温過程において、微量水素を含む不活性ガス (例えば、窒素ガス)を発電セルに供 給することで燃料極雰囲気を還元状態に維持する、所謂、パージを行っていた (例え ば、特許文献 2参照)。
これは、起動 Z停止時の高温状態において、燃料電池の内部に残留する酸素によ つて燃料極が酸ィ匕するのを防止するためである。燃料極が酸化されることにより、発 電性能は極端に低下してしまう。
[0008] 特に、固体酸化物形燃料電池では、作動温度が 600〜1000°Cと極めて高いため 、急速起動や急速停止は困難であって、起動 Z停止のために長い時間を要すること から燃料極が酸化され易ぐまた、発電セルの外周部にガス漏れ防止シールを設け ないシールレス構造では、外部の酸素含有ガスが電池内部に侵入し易くなつており、 このため、起動 Z停止時には大量のパージが必要であり、また、燃料電池の大型化 に伴い、使用する窒素ガスの量も比例的に増加する。
[0009] 従来では、パージのために、別途、専用のガスボンベを装備して燃料ガス供給経路 にパージ用の窒素ガスと水素を供給することが専ら行われており、このため、ガスボン ベや窒素ガスの供給経路を含め、燃料電池装置全体が大型化すると共に、そのため のメンテナンス作業も煩雑ィ匕するという問題があった。
特許文献 1 :特開平 8— 162137号公報
特許文献 2:特開平 2— 244559号公報
発明の開示
[0010] 本発明の第 1の目的は、起動時に燃料モジュール内の改質器や水蒸気発生器を 加熱装置により加熱することにより、起動初期の段階から水素を含む還元性の改質 ガスを生成し、発電セルの燃料極側にこのパージガスを給配しつつ急速起動を可能 とした固体酸化物形燃料電池およびその運転方法を提供すること、さらに、この運転 方法により、これまで燃料極の酸ィ匕防止のために使用されていた窒素を全く無くすこ とである。
[0011] 本発明の第 2の目的は、別途パージ用ガスの供給系を設けずに起動'停止時の昇 温動作および降温動作を可能とする燃料電池の運転方法を提供することである。
[0012] 本発明の第 3の目的は、別途パージ用ガスの供給系を設けることなくパージを行う ことができる燃料電池発電装置および運転停止方法を提供することである。
[0013] [本発明の第 1の態様]
上記第 1の目的を達成するため、本発明の第 1の態様に係る固体酸化物形燃料電 池は、複数の発電セルを集合して燃料電池集合体を構成し、ハウジング内に収納す ると共に、運転時に前記燃料電池集合体の内部に改質ガスを供給して発電反応を 生じさせる固体酸ィ匕物形燃料電池において、前記ハウジング内に改質器、または改 質器と水蒸気発生器を設置すると共に、少なくとも前記改質器を加熱する加熱装置 を配設したことを特徴として ヽる。
ここで、上述の燃料電池集合体とは、平板積層型の燃料電池のように、複数の発電 セルとセパレータを交互に積層した燃料電池スタックや、円筒型の燃料電池のように 、複数の発電セルを接続部材 (インターコネクタ)を介して集合 ·接続したバンドル等 をいう。
[0014] 前記加熱装置としては、例えば、電気ヒータ、または燃焼パーナを用いることが可能 である。
[0015] また、前記燃料電池集合体の周辺部には、当該燃料電池集合体から放出される改 質ガスを燃焼するための燃焼触媒、または改質ガス着火用のヒータを配設することが 望ましい。
[0016] 前記固体酸ィ匕物形燃料電池としては、例えば、発電反応に使用しな 、残余のガス を燃料電池集合体の外で燃焼させるシールレス構造の固体酸化物形燃料電池を用
いることが可能である。
[0017] また、本発明の第 1の態様に係る固体酸ィ匕物形燃料電池の運転方法は、複数の発 電セルを集合して燃料電池集合体を構成し、ハウジング内に収納すると共に、運転 時に前記燃料電池集合体の内部に改質ガスを供給して発電反応を生じさせる固体 酸ィ匕物形燃料電池の運転方法であって、改質器と水蒸気発生器と加熱装置を備え 、燃料電池起動時に、前記加熱装置により少なくとも前記改質器を加熱し、加熱され た前記改質器に燃料ガスと前記水蒸気発生器力ゝらの水蒸気を供給して水素主成分 の改質ガスを発生し、改質ガスを前記燃料電池集合体に供給して前記発電セルの 燃料極を還元状態に保ちつつ前記燃料電池集合体の温度を上昇させることを特徴 としている。
[0018] 上記固体酸ィヒ物形燃料電池の運転方法においては、前記燃料電池集合体に供 給した水素主成分の改質ガスを燃料電池集合体カゝら放出し、燃焼して前記燃料電 池集合体の温度を上昇させることが望まし 、。
[0019] 本発明の第 1の態様によれば、燃料電池集合体が収納されるハウジング内に加熱 装置を設置した改質器や水蒸気発生器を設置し、燃料電池の起動時に、これら改質 器や水蒸気発生器を加熱装置にて加熱するようにしたので、起動直後から改質反応 により得られた水素主成分の改質ガスを燃料電池集合体の内部に供給し、窒素ガス を使用することなく発電セルの燃料極側を還元状態に保つことが可能になる。さらに 、燃料電池集合体の近傍にぉ ヽて残余の改質ガスを燃焼することにより燃料電池集 合体を短時間で加熱することができるため、燃料電池の急速起動が可能となる。 また、一旦、上記燃焼反応が開始すると、その燃焼熱によってハウジング内の改質 器や水蒸気発生器が加熱されるため、起動時のような加熱装置による加熱は必要な くなる。これにより、加熱装置として、例えば、電気ヒータを用いた場合の電力消費を 大幅に削減することができる。
[0020] [本発明の第 2の態様]
前述した第 2の目的を達成するため、本発明の第 2の態様に係る燃料電池の運転 方法は、改質器で原燃料を改質すると共に、改質ガスを発電セルに供給して発電運 転を行う燃料電池の運転方法であって、運転開始の際、前記改質器にて部分酸ィ匕
改質反応またはオートサーマル改質反応により水素を含む還元ガスを生成して発電 セルの燃料極側に供給することにより、燃料極雰囲気を還元状態に維持しつつ、前 記燃料電池を昇温させることを特徴として 、る。
[0021] 上記燃料電池の運転方法においては、前記燃料電池より放出された未燃焼の燃 流ガスを燃焼手段にて燃焼させ、その燃焼熱を昇温に利用することが望ましい。
[0022] また、本発明の第 2の態様に係る燃料電池の運転方法は、改質器を備え、この改 質器で原燃料を改質すると共に、改質ガスを発電セルに供給して発電運転を行う燃 料電池の運転方法であって、運転停止の際、前記改質器にて部分酸化改質反応ま たはオートサーマル改質反応により水素を含む還元ガスを生成して発電セルの燃料 極側に供給することにより、燃料極雰囲気を還元状態に維持しつつ、前記燃料電池 を降温させることを特徴として 、る。
[0023] 上記燃料電池の運転方法においては、前記燃料電池の温度が少なくとも 300°C以 下になるまで燃料極雰囲気を還元状態に維持することが望ましい。
[0024] また、前記燃料電池としては、例えば、発電反応に使用しな!ヽ残余のガスを燃料電 池集合体の外で燃焼させるシールレス構造の固体酸化物形燃料電池を用いることが 可能である。
[0025] 本発明の第 2の態様に係る運転方法では、起動 Z停止時の部分酸化反応、或い はオートサーマル反応に伴う発熱により改質器において改質反応が生じ、水素を含 む還元ガスが生成されると共に、この還元ガスが燃料極に供給されることにより、発電 セルの燃料極を還元状態に維持できるため、昇降温サイクルにおける発電セルの酸 化やそれに伴う発電セルの性能劣化が防止でき、高寿命化が図れる。
カロえて、従来のような大量の窒素ガスを用いたパージが不要であるから、例えば、 窒素ボンべ等を含むパージ用ガス供給系を設ける必要が無くなり、メンテナンス作業 を簡略化できる。
また、燃料電池より放出された未燃ガスを燃焼手段にて燃焼すると、燃焼の熱によ り改質器を含む燃料電池の昇温が促進され、これにより、起動時間の短縮が図れる ようになる。
[0026] [本発明の第 3の態様]
前述した第 3の目的を達成するため、本発明の第 3の態様に係る燃料電池の運転 停止方法は、燃料極層側へ燃料ガスを供給し、空気極層側へ酸化剤ガスを供給して 発電反応を生じさせる燃料電池の運転停止方法であって、発電停止の際に、前記燃 料電池に水、および水素または炭化水素系燃料の流量を減少させながら供給するこ とにより、燃料極層側を還元状態に保持しつつ、スタック温度を低下させることを特徴 としている。
この方法は、発電停止以降も少量の水と燃料ガスの供給を継続しつつ、燃料電池 の熱容量を利用して水蒸気を生成し、改質ガスと水蒸気の混合ガスを燃料極に供給 することにより還元性を保持するものである。
[0027] 上記燃料電池の運転停止方法においては、スタック温度が 300°Cの時に前記燃料 電池のセル電圧が 0. 5V以上となるように、前記水素または炭化水素系燃料の供給 量を減少させることが望まし 、。
スタックの温度が 300°C以上で燃料ガスの供給を停止すると、燃料極層側が酸化さ れ、劣化してしまう虞があるが、スタック温度が 300°C程度に低下するまではセル電 圧が 0. 5Vを下回らないように燃料ガスを徐々に減少していくことにより、燃料極層側 を還元状態に保持しておくことができる。
[0028] また、上記燃料電池の運転停止方法においては、前記燃料電池への水の供給停 止時に、当該水による水蒸気温度が 200°C以上であるように水の供給量を減少させ ることが望ましい。
水の供給を停止した時に水蒸気温度が 200°C以下であると、水蒸気の温度は一気 に 100°Cまで低下し、水蒸気の連続的な発生が難しくなる。その結果、セル内に液 体水が供給され、セルの劣化や割れが発生する虞がある。このため、水の供給停止 時の水蒸気温度は 200°C以上とする必要がある。
[0029] また、本発明の第 3の態様に係る燃料電池発電装置は、燃料ガス供給量と酸化剤 ガス供給量に応じて電力を出力する燃料電池と、当該燃料電池に燃料ガスを供給す る燃料供給系と、酸化剤ガスを供給する酸化剤ガス供給系と、水を供給する水供給 系と、これら各系を制御して、上述した運転停止制御を行う制御部とを備えることを特 徴としている。
[0030] 前記燃料電池としては、例えば、発電反応に使用されなかった残余のガスを発電 セルの外周部より放出するシールレス構造の固体酸ィ匕物形燃料電池を用いることが 可能である。
[0031] 本発明の第 3の態様によれば、発電停止の際に、燃料電池に水、および水素また は炭化水素系燃料の流量を減少させて供給することにより、燃料極層の還元性を保 持することができ、これにより、昇降温サイクルにおける発電セルの酸ィ匕やそれに伴う 発電セルの性能劣化が防止でき、高寿命化が図れる。
カロえて、従来の不活性ガスによるパージは不要であるから、不活性ガスボンべ(例 えば、窒素ボンべ)を含むパージ用ガス供給系を設ける必要が無くなり、メンテナンス 作業を簡略化できると共に、装置自体を小型化できる。
図面の簡単な説明
[0032] [図 1]図 1は、本発明が適用された第 1実施形態の固体酸化物形燃料電池の内部概 略構成を示す図である。
[図 2]図 2は、燃料電池スタックにおける運転時のガスの流れを示す図である。
[図 3]図 3は、改質器および水蒸気発生器に対する加熱装置の設置状態を示す図で ある。
[図 4]図 4は、改質器および水蒸気発生器に対する加熱装置の図 3とは別の設置状 態を示す図である。
[図 5]図 5は、本発明が適用された第 2実施形態の固体酸化物形燃料電池の内部概 略構成を示す図である。
[図 6]図 6は、本発明が適用された第 2実施形態の固体酸化物形燃料電池の内部配 置を示す図である。
[図 7]図 7は、図 5の燃料電池スタックの要部構成を示す図である。
[図 8]図 8は、本発明が適用された第 3実施形態の燃料電池発電装置の概略構成を 示す図である。
[図 9]図 9は、図 8の燃料電池発電装置に用いる固体酸化物形燃料電池スタックの構 成を示す図である。
[図 10]図 10は、本発明による運転停止制御形態を示す図である。
符号の説明
[0033] 1 燃料集合体 (燃料電池スタック)
5 発電セル
8 セパレータ
20 ハウジング
21 改質器
22 水蒸気発生器
23 燃焼触媒
24 加熱装置 (電気ヒータ、燃焼パーナ)
103 燃料極
105 発電セル
121 改質器
123、 124 燃焼手段 (燃焼触媒、補助用電気ヒータ)
201 燃料電池 (燃料電池スタック)
203 燃料極層
204 空気極層
220 制御部
230 酸化剤ガス供給系
240 燃料供給系
250 水供給系
発明を実施するための最良の形態
[0034] [第 1実施形態]
この第 1実施形態は、本発明の第 1の態様に対応するものである。
以下、図 1〜図 4に基づいて本発明の第 1実施形態を説明する。
図 1は本発明が適用された固体酸化物形燃料電池の内部概略構成を示し、図 2は 燃料電池スタックにおける運転時のガスの流れを示し、図 3、図 4は改質器および水 蒸気発生器に対する加熱装置の設置状態を示して!/ヽる。
[0035] 図 1に示すように、本実施形態の固体酸化物形燃料電池 (燃料電池モジュール)は
、内壁に保温用の断熱材(図示せず)を配したハウジング 20 (缶体)を有し、このハウ ジング 20内の中央に発電反応を生じさせる燃料電池スタック 1が配設されていると共 に、この燃料電池スタック 1の周辺部に改質器 21や水蒸気発生器 22等が配設され ている。
[0036] 改質器 21内には炭化水素用の Ni (ニッケル)系、或いは、 Ru (ルテニウム)系の改 質触媒が充填されており、外部力 供給される炭化水素系燃料ガスを水素主体の燃 料ガスに改質することができる。
水蒸気発生器 22は、上記改質反応に必要な高温水蒸気を得るための熱交換器で あって、燃料電池スタック 1の排熱をより多く吸収できるよう、例えば、図 3、図 4に示す ように、燃料電池スタックの中央部に対面する位置に配設されており、水蒸気導入管 17を介して高温水蒸気を改質器 21に誘導する。
[0037] 上記燃料電池スタック 1は、固体電解質層 2の両面に燃料極層 3と空気極層 4を配 した発電セル 5と、燃料極層 3の外側に配した燃料極集電体 6と、空気極層 4の外側 に配した空気極集電体 7と、各集電体 6、 7の外側に配したセパレータ 8とで構成され る単セル 10を縦方向に多数積層して構成されて 、る。
[0038] 上記構造の単セル 10において、固体電解質層 2はイットリアを添カ卩した安定ィ匕ジル コ-ァ (YSZ)等で構成され、燃料極層 3は Ni、 Co等の金属、あるいは Ni— YSZ、 C o—YSZ等のサーメットで構成され、空気極層 4は LaMnO 、 LaCoO等で構成され
3 3
、燃料極集電体 6は Ni基合金等のスポンジ状の多孔質焼結金属板で構成され、空 気極集電体 7は Ag基合金等のスポンジ状の多孔質焼結金属板で構成され、セパレ ータ 8はステンレス等で構成されて 、る。
[0039] 上記セパレータ 8は、発電セル 5間を電気的に接続すると共に、発電セル 5に対し て反応用ガスを供給する機能を有するもので、燃料ガス(改質ガス)をセパレータ 8の 外周面力 導入してセパレータ 8の燃料極集電体 6に対向する面のほぼ中央部 11a 力も吐出する燃料ガス通路 11と、酸化剤ガスをセパレータ 8の外周面から導入してセ パレータ 8の空気極集電体 7に対向する面のほぼ中央 12aから吐出する酸化剤ガス 通路 12を有する。
[0040] また 燃料電池スタック 1の内部には、図 1に示すように、スタック積層方向に延びる
燃料ガス用マ-ホールド 13と酸化剤ガス用マ-ホールド 14が形成されており、燃料 ガス用マ-ホールド丄 3には改質器 21からの燃料ガス導入管 15が接続され、酸化剤 ガス用マ-ホールド 14には外部から誘導された酸化剤ガス導入管 16が接続されて いる。
[0041] この固体酸化物形燃料電池は、発電セル 5の外周部にガス漏れ防止シールを設け ないシールレス構造とされており、運転時には、図 2に示すように、燃料ガス通路 11 および酸化剤ガス通路 12を通してセパレータ 8の略中心部力も発電セル 5に向けて 供給される燃料ガス (改質ガス)および酸化剤ガス (空気)を、発電セル 5の外周方向 に拡散させながら燃料極層 3および空気極層 4の全面に良好な分布で行き渡らせて 発電反応を生じさせると共に、発電反応で消費されなかった余剰ガス (排ガス)を発 電セル 5の外周部力もハウジング 20内に自由に放出するようになっている。ハウジン グ 20の上部には、ハウジング内の排ガスをノヽウジング外に排出するための排気口 20 aが設けてある。
[0042] ところで、本実施形態では、上記した改質器 21および水蒸気発生器 22に加熱装 置 24が付設されており、改質器 21や水蒸気発生器 22を熱伝導により加熱できるよう になって!/、る。加熱装置 24として電気ヒータや燃焼パーナが用いられる。
[0043] 図 3、図 4に加熱装置 24として電気ヒータを用いた場合の加熱装置 24の取り付けを 示す。
図 3は、プレート状ヒータを用いた場合で、このプレート状ヒータが燃料電池スタック 1の側面に対面する各々箱形の改質器 21や水蒸気発生器 22の外側面に取り付け られており、その直射熱により改質器 21や水蒸気発生器 22を外面より加熱するよう になっている。
また、図 4は、ノイブ状ヒータを用いた場合で、改質器 21内や水蒸気発生器 22内 に縦方向にそれぞれ複数本 (2本)配設されており、改質器 21や水蒸気発生器 22を 内部より加熱するようになっている。
尚、図 3、図 4では、燃料電池スタック 1の周辺に改質器 21と水蒸気発生器 22が、 それぞれ 2基づつ燃料電池スタック 1を挟んで対向設置されており、それぞれに、加 熱装置 24が付設されている。
[0044] また、燃料電池スタック 1の近傍の 2箇所に、燃料電池スタック 1の外周部より放出さ れた余剰ガス (改質ガス)の燃焼を促進するための燃焼手段として、燃焼触媒 23がス タック積層方向に沿って配設されている。この燃焼触媒 23は、例えば、薄板状のハ 二カム触媒を用いて、 Pt、 Pd等をアルミナ担体に担持したものを使用することができ る。
また、図示しないが、余剰ガスの燃焼手段として、上記燃焼触媒 23に替え、放出さ れた余剰ガスに着火して燃焼させる着火ヒータやィグナイタを燃料電池スタック近傍 の適所に配設することもできる。或いは、これら燃焼触媒 23と着火ヒータ'ィグナイタ を併用することもできる。何れにしても、これらの燃焼手段は、燃料電池スタック 1より 放出された改質ガスを迅速に着火 ·燃焼させ、スタック全体を効率良ぐ且つ、均一 に加熱するのに極めて有効である。
[0045] 次ぎに、上記構成から成る固体酸化物形燃料電池の運転方法を説明する。
[0046] 燃料電池の起動と同時に、加熱装置 24を作動し、改質器 21および水蒸気発生器 22を熱伝導により加熱'昇温させると共に、外部より燃料ガス導入管 15を通して燃料 ガス (炭化水素系燃料)を、酸化剤ガス導入管 16を通して酸化剤ガス (空気)を、また 、水供給管 18を通して水 (外部で一旦熱交換され、高温水となっている)を、それぞ れ燃料電池モジュール内に供給する。改質器 21および水蒸気発生器 22は、加熱装 置 24により外面(図 3の場合)、または内部(図 4の場合)より熱伝導にて加熱されるこ とにより、改質器 21は僅か数分で改質可能な温度にまで昇温し、水蒸気発生器 22 は高温水蒸気を発生する。
[0047] 炭化水素系の燃料ガスは燃料ガス導入管 15内において、水蒸気導入管 17にて誘 導された水蒸気発生器 22からの高温水蒸気と合流 '混合し、混合ガスとなって改質 器 21に誘導され、改質器 21内において炭化水素用の改質触媒の作用により炭化水 素系の燃料ガスは水素主体の燃料ガスに改質される。この改質反応は吸熱反応で あって、改質反応に必要な高熱(650〜800°C)は、付設の加熱装置 24からの直射 熱を受熱して得られる。
[0048] 改質器 21で発生した改質ガスは、燃料電池スタック 1内の燃料ガス用マ-ホールド 13に誘導され、当マ-ホールド 13を通して各セパレータ 8に導入される。そして、酸
ィ匕剤ガス用マ-ホールド 14を通して導入される空気とともにこれら反応用ガスが、各 セパレータ 8内を通過して発電セル 5の略中心部から外周方向に拡散するように流れ る。この改質ガスは水素を含む還元性ガスであり、発電セル 5の燃料極側を還元状態 に保つことができる。
そして、発電反応に使用されなかった水素主成分の余剰ガスは、そのまま燃料電 池スタック 1の外周部から外へ放出し、上記した燃焼手段 (燃焼触媒、着火ヒータ 'ィ グナイター)により速やかに着火'燃焼する。
[0049] このように、本発明では、起動直後から改質反応により得られた水素主成分の改質 ガスを燃料電池スタック内部に供給できると共に、スタック近傍において、この水素主 成分の改質ガスを燃焼することにより燃料電池スタックを短時間で加熱'昇温すること ができ、これにより、燃料電池の急速起動が可能となる。
因みに、発電開始 (定格運転)までの時間は、従来の 8時間に対し 3時間以下と大 幅に短縮できる。加えて、従来のような、運転開始時に必要とされる酸化防止のため の窒素ガスのスタック内導入(窒素パージ)が不要となり、そのための窒素ガスボンベ の設置や配管設備を省略することができ、コストダウンが図れる。
[0050] また、一旦、上記燃焼反応が開始すると、その燃焼熱によって近傍の改質器 21や 水蒸気発生器 22が加熱されるため、起動時に用いた加熱装置 24による加熱は不要 となる。
本実施形態では、加熱装置 24は運転開始後の 30分程度作動すれば良い。これに より、加熱装置 24として、例えば、電気ヒータを用いた場合の電力消費を大幅に削減 することができる。
[0051] [第 2実施形態]
この第 2実施形態は、本発明の第 2の態様に対応するものである。
以下、図 5〜図 7に基づいて本発明の第 2実施形態を説明する。
図 5は本発明が適用された固体酸化物形燃料電池の内部概略構成を示し、図 6は 内部配置を示し、図 7は燃料電池スタックの要部構成を示して 、る。
[0052] 図 5、図 6に示すように、本実施形態の固体酸化物形燃料電池は、内壁に断熱材( 図示せず)を付装したハウジング 120 (缶体)を有し、この断熱ハウジング 120内の中
央に発電反応を生じさせる燃料電池スタック 101が配設されている。
[0053] この燃料電池スタック 101は、図 7に示すように、固体電解質 102の両面に燃料極 1 03および空気極 104を配した発電セル 105と、燃料極 103の外側の燃料極集電体 1 06と、空気極 104の外側の空気極集電体 107と、各集電体 106、 107の外側のセパ レータ 108を順番に縦方向に多数積層した構造を有する。
[0054] 固体電解質 102はイットリアを添加した安定ィ匕ジルコユア (YSZ)等で構成され、燃 料極 103は Ni等の金属あるいは Ni—YSZ等のサーメットで構成され、空気極 104は LaMnO 、 LaCoO等で構成され、燃料極集電体 106は Ni等のスポンジ状の多孔
3 3
質焼結金属板で構成され、空気極集電体 107は Ag等のスポンジ状の多孔質焼結金 属板で構成され、セパレータ 108はステンレス等で構成されている。
[0055] セパレータ 108は、発電セル 105間を電気的に接続すると共に、発電セル 105に 反応用ガスを供給する機能を有し、燃料ガスマ-ホールド 113より供給される燃料ガ スをセパレータ 108の外周面から導入してセパレータ 108の燃料極集電体 106に対 向するほぼ中央部から吐出する燃料ガス通路 111と、酸化剤ガスマ-ホールド 114 より供給される酸化剤ガスをセパレータ 108の外周面から導入してセパレータ 108の 空気極集電体 107に対向する面のほぼ中央部から吐出する酸化剤ガス通路 112を 備える。
[0056] また、燃料電池スタック 101は、発電セル 105の外周部にガス漏れ防止シールを設 けないシールレス構造とされており、運転時には、図 7に示すように、燃料ガス通路 1 11および酸化剤ガス通路 112を通してセパレータ 108の略中心部力も発電セル 10 5に向けて吐出される燃料ガスおよび酸化剤ガス (空気)を、発電セル 105の外周方 向に拡散させながら燃料極 103および空気極 104の全面に良好な分布で行き渡ら せて発電反応を生じさせると共に、発電反応で消費されなかった未燃のガスを発電 セル 105の外周部力も外 (ノ、ウジング 120内)に自由に放出するようになって 、る。尚 、放出未燃ガスは燃料電池スタック 101の周辺で燃焼させる。
[0057] また、ハウジング 120内には、燃料電池スタック 101の他、その周辺の適所に、改質 器 121を初めとして水蒸気発生器 122、燃焼触媒 123、補助用電気ヒータ 124、昇 温用パーナ 126等が配設されている。図 6に示すように、昇温用パーナ 126を除くこ
れらの部材は、中央の燃料電池スタック 101を挟んでそれぞれ 2基づつ対向配置さ れている。
[0058] 改質器 121内には炭化水素触媒が充填されており、外部から導入される炭化水素 系燃料 (原燃料)を水素主体の燃料ガスに改質する。また、この改質器 121には、後 述する部分酸化起動用のヒータ 125 (或いは、ィグナイタ)が内蔵されて 、る。
上記改質器 121の入口側には外部からの燃料ガス供給管 115、および空気供給 管 117が接続されていると共に、出口側は配管 109を介して燃料電池スタック 101内 の燃料ガスマ-ホールド 113に接続されている。また、燃料電池スタック 101内の酸 ィ匕剤ガスマ-ホールド 114には外部からの酸化剤ガス供給管 116が接続されて 、る そして、起動時には、燃料ガス供給管 115に都市ガスや LPG等の炭化水素燃料が 導入されると共に、空気供給管 117および酸化剤ガス供給管 116に空気が導入され るようになっている。
[0059] 水蒸気発生器 122は、燃料電池スタック 101からの排熱を熱源とし、上述の改質反 応に必要な高温水蒸気を得るための熱交換器で、入口側には給水管 118が接続さ れると共に、出口側は水蒸気導入管 119により上述の燃料ガス供給管 115に接続さ れている。発電運転中は、この水蒸気発生器 122からの高温水蒸気が水蒸気導入 管 119を介して燃料ガス供給管 115に導入される。
[0060] 燃焼触媒 123は、燃料電池スタック 101から放出される未燃ガスの燃焼手段として 配設されたもので、スタック積層方向に沿って配設されている。この燃焼触媒 123は 、例えば、薄板状のハ-カム触媒を用いて、 Pt (白金)や Pd (パラジウム)等をアルミ ナに担持したものを用いることができる。
また、本実施形態では、未燃ガスの燃焼手段としてこの燃焼触媒 123の他、補助用 電気ヒータ 124等も配設されており、これら燃焼触媒 123と補助用電気ヒータ 124を 併用することも勿論可能である。何れにしても、これらの燃焼手段により、未燃ガスは スタック周辺で迅速に着火'燃焼し、スタック全体が効率良く均一に加熱される。
[0061] 次ぎに、本発明による固体酸化物形燃料電池の運転方法の一実施形態を説明す る。
[0062] 上記構成の固体酸化物形燃料電池では、起動時 (運転開始時)、昇温用パーナ 1 26を着火して燃料電池スタック 101の昇温が開始される。この時、改質器 121におい ては、内蔵の部分酸ィ匕起動用ヒータ 125を作動すると共に、燃料ガス供給管 115か ら炭化水素燃料が、また、空気供給管 117から空気がそれぞれ改質器 121に導入さ れる。これら、炭化水素燃料と空気の混合ガスが部分酸ィ匕起動用ヒータ 125によって 着火され、改質器 121内において部分酸化反応を生じさせる。
[0063] この部分酸ィ匕反応では、炭化水素燃料の一部が燃焼して窒素と水 (水蒸気)が生 成されると共に、この際の燃焼熱と、燃焼の際の水蒸気と、燃焼 (すなわち、部分酸 化反応)に与らない残りの炭化水素燃料とで改質反応が生じ、水素と窒素による還元 ガスが生成される(部分酸化改質反応)。改質器 121内の還元ガスは、配管 109、燃 料ガスマ-ホールド 113等を介して発電セル 105内に供給され、よって、起動直後よ り燃料極雰囲気を還元状態に維持することができる。
他方、これと併行してシールレス構造で成る燃料電池スタック 101の外周部から放 出される未燃ガスが燃焼触媒の作用によってスタック周辺で燃焼し (必要であれば、 補助用電気ヒータ 124を作動しておく)、その輻射熱により燃料電池スタック 101を外 周部より加熱'昇温する。
[0064] そして、スタック温度が上昇するに連れて改質器 121への空気供給量を徐々に減 少していくと共に、水蒸気発生器 122から水蒸気を供給し、スタック温度が作動温度 の 500°C程度まで上昇した時、炭化水素燃料と水蒸気による水蒸気改質に移行する (オートサーマル改質反応)。この間も、改質器 121にて水素含有の還元ガスが生成 され、発電セル 105に供給されるため、燃料極雰囲気の還元状態は連続的に維持さ れている。
[0065] 昇温後の発電運転時は、水蒸気発生器 122からの水蒸気と燃料ガス供給管 115 力もの炭化水素燃料の混合ガスが改質器 121に供給され、改質器 121内において 水蒸気改質反応により水素豊富な改質ガスが生成されると共に、この改質ガスが各 発電セル 105に供給されることにより、燃料電池スタック 101において発電反応が生 じる。尚、発電運転時は、空気供給管 117による改質器 121への空気の供給は停止 されている。
[0066] 運転停止の際の降温時は、燃料電池スタック 101への改質ガスの供給は停止する 力 降温過程においても、炭化水素燃料の供給を徐々に減少していき、改質器 121 において上述の部分酸ィ匕改質反応またはオートサーマル改質反応を生じさせると共 に、スタック温度が少なくとも 300°C以下に低下するまで、これらの反応が継続されて 水素を含む還元ガスが発電セル 105に供給されることにより、燃料極雰囲気は還元 状態に維持される。
これは、運転停止後の高温雰囲気下(300°C以上)において、燃料極が還元状態 でなくなると、燃料極 103が酸ィ匕されるためである。従って、降温時はスタック温度が 300°C以下に低下するまで燃料極を還元状態に維持する必要がある。
[0067] 以上のように、本発明の運転方法によれば、運転開始の際の昇温時、および運転 停止の際の降温時に、部分酸化反応やオートサーマル反応に伴う発熱により改質器 にお 1ヽて改質反応を生じさせ、これらの反応により生成された水素を含む還元ガスを 燃料極に供給することにより、発電セル 105の燃料極 103を還元状態に維持するパ ージを可能とし、これにより、昇降温サイクルにおける発電セル 105の酸化やそれに 伴う発電セル 105の性能劣化が防止でき、高寿命化が図れるようになる。
カロえて、従来のような大量の窒素ガスを用いたパージが不要であるから、例えば、 窒素ボンべ等を含むパージ用ガス供給系を設ける必要が無くなり、メンテナンス作業 を簡略化できると共に、装置自体もシンプルになり小型化できる。
また、燃料電池スタック 101より放出された未燃ガスを燃焼触媒等の燃焼手段にて 燃焼すると、燃焼の熱により改質器 121を含む燃料電池スタック 101の昇温が促進さ れ、これにより、起動時間の短縮が図れるようになる。
[0068] 特に、シールレス構造の固体酸化物形燃料電池は、上述したように、作動温度が 高ぐ起動、停止に長い時間を要すること、外部の酸素含有ガスが電池内部に侵入 し易いこと、等の理由により、起動 Z停止時は大量のパージが必要とされているが、 不活性ガスによるパージを必要としない本発明の運転方法は、このような燃料電池に とって極めて有効である。
[0069] [第 3実施形態]
この第 3実施形態は、本発明の第 3の態様に対応するものである。
以下、図面に基づいて本発明の第 3実施形態を説明する。
図 8は本発明が適用された燃料電池発電装置の概略構成を示し、図 9は当燃料電 池発電装置で用いる燃料電池スタックの構成を示し、図 10は本発明の運転停止制 御形態を示している。
[0070] 本実施形態の燃料電池発電装置は、図 8に示すように、燃料ガス供給量と空気供 給量に応じて直流出力を発生する固体酸化物形燃料電池 201 (燃料電池スタック 2 01)、燃料ガス (例えば、メタンガス、都市ガス)と水蒸気の混合ガスを水素リッチなガ スに改質して燃料電池スタック 201に供給する燃料改質器 215等を断熱ハウジング 内に収納して構成した燃料電池モジュール 210、および、この燃料電池モジュール 2 10の周辺に配設され、燃料ガスブロア 221や脱硫器 223や各燃料ガス供給配管等 で構成されて燃料改質器 215に燃料ガスを導入する燃料供給系 240、空気ブロアや 空気供給配管等で構成されて燃料電池スタック 201に酸化剤ガス (空気)を供給する 空気供給系 230、給水ポンプ 225や水供給管から構成されて燃料電池モジュール 内に水(尚、この水は燃料電池モジュール内にぉ 、て図示しな!、水蒸気発生器によ り水蒸気となる)を導入する水供給系 250、燃料電池スタック 201からの直流出力を 交流出力に変換して交流電力 Paを外部負荷 (図示せず)に供給するインバータ 224 、上記した空気供給系 230、燃料供給系 240、水供給系 250の各系の流量を制御 する制御部 220等で構成されて 、る。
[0071] また、この制御部 220には、燃料電池発電装置内の適所に配設された各検出器( 図示せず)から送出される、セル電圧情報 V、スタック温度情報 Tl、水蒸気温度情報 Τ2、出力電力情報 Pa等の各種検知情報が入力されるようになって 、る。
[0072] ここで、上記燃料電池スタック 201は、図 9に示すように、固体電解質層 202の両面 に燃料極層 203と空気極層 204を配した発電セル 205と、燃料極層 203の外側に配 した燃料極集電体 206と、空気極層 204の外側に配した空気極集電体 207と、各集 電体 206、 207の外側に配したセパレータ 208とで構成した単セル 209を縦方向に 多数積層してスタック化したものである。
[0073] 単セル 209の構成要素の内、固体電解質層 202はイットリアを添カ卩した安定ィ匕ジル コ-ァ (YSZ)等で構成され、燃料極層 203は Ni、 Co等の金属または Ni— YSZ、 Co
YSZ等のサーメットで構成され、空気極層 204は LaMnO 、 LaCoO等で構成さ
3 3
れ、燃料極集電体 206は Ni基合金等のスポンジ状の多孔質焼結金属板で構成され 、空気極集電体 207は Ag基合金等のスポンジ状の多孔質焼結金属板で構成され、 セパレータ 208はステンレス等で構成されて!、る。
[0074] セパレータ 208は、発電セル 205間を電気的に接続すると共に、発電セル 205に 対して反応用ガスを供給する機能を有するもので、燃料ガスをセパレータ 208の外 周面力も導入してセパレータ 208の燃料極集電体 206に対向する面のほぼ中央部 2 11aから吐出する燃料ガス通路 211と、酸化剤ガスをセパレータ 208の外周面から導 入してセパレータ 208の空気極集電体 207に対向する面のほぼ中央部 212aから吐 出する酸化剤ガス通路 212を備えている。
[0075] 燃料電池スタック 201内には、積層方向に延びる燃料ガス用のマ-ホールド 217と 酸化剤ガス用のマ-ホールド 218が設けられており、マ-ホールド 217には改質され た燃料ガスが流通し、マ-ホールド 218には外部力も供給される空気が流通し、各ガ スカ Sマ-ホーノレド 217、 218より各セノ レータ 208の各ガス通路 211、 212に導入さ れ、各ガス吐出口 211a、 212aより吐出して各発電セルの各電極に分配'供給される ようになつている。燃料電池スタック 201の両端には、ステンレス等で成る一対の端板 208a, 208b力配設されており、燃料電池スタック 201の発電電力は、この端板 208 a、 208bを介して取り出すことができるようになって!/、る。
[0076] また、この燃料電池スタック 201は、発電セル 205の外周部にガス漏れ防止シール を敢えて設けないシールレス構造を採用しており、運転時には、発電反応で消費さ れな力つた余剰ガス(高温排ガス)を発電セル 205の外周部力もハウジング内に自由 に放出するようになっている。尚、ハウジングの内部空間に放出された高温度の排ガ スは上部排気穴よりモジュール外に排出されるようになって!/、る。
[0077] 次ぎに、図 10を参照して、上記構成の燃料電池発電装置の運転停止制御を説明 する。当運転停止制御は、上記した各種検出器力 入力された各種検知情報 (V、 P a、 Tl、 Τ2等)に基づいて上記制御部 220により行われる。
[0078] 図 10に示す運転停止制御は、燃料電池スタック 201に供給される空気流量を一定 流量に維持した状態で行われる。図 10において、左縦軸は燃料ガス (メタン)の供給
量および水蒸気源となる水の供給量を示し、右縦軸はスタック温度および電池出力 を示し、横軸は経過時間を示している。
[0079] 図 10に示すように、定格発電期間(出力 lkW、スタック温度 750°C)において、運 転停止操作が成されると、燃料電池モジュール 210に供給するメタンおよび水のそ れぞれの流量を減少させながら、約 4時間で電池出力を lkWから OWにまで低下さ せる(出力低下期間)と共に、その後、約 15時間でスタック温度を約 700°Cから 300 °C以下に低下させていく(降温期間)。本発明は、この運転停止操作後の出力低下 期間〜降温期間における高温雰囲気下において、燃料極層側を還元状態に保持す ることにより燃料極層の酸ィ匕現象を回避するパージ処理である。
すなわち、本実施形態の運転停止制御は、発電停止時にあっても、燃料電池モジ ユール 210に少量のメタンと水を供給し続け、燃料電池モジュール 210の熱容量を 利用して水蒸気を発生させると共に、改質反応により水素を生成して水蒸気との混合 ガスを燃料極層側に供給することにより、燃料極層の還元性を保持するようにしたも のである。
[0080] 尚、上記運転停止制御において、メタンや水の流量を変化させるには、制御部 220 により燃料ガスブロア 221 (制御弁でも良 、)や給水ポンプ 225 (制御弁でも良 、)の 動作を制御することにより行うことができる。
[0081] 上記運転停止制御において、メタンの流量については、スタック温度 T1が 300°Cの 時にセル電圧 Vが 0. 5V以上を維持して ヽるようにメタンの供給量を減少させて!/ヽく 必要がある。
これは、スタック温度 T1が 300°C以上の時にメタンの供給を停止すると、その熱によ り Niを主成分とする燃料極層が酸ィ匕され、 NiOが生成されてしまう虞があるからであ り、このような燃料極層の酸ィ匕還元反応は発電セルの性能を著しく低下させるもので ある。従って、スタック温度 T1が 300°C程度に低下するまでは、図 10に示すように、 セル電圧 Vが 0. 5Vを下回らないよう、メタンの流量を徐々に減少していく必要がある 。これにより、燃料極層側を還元状態に保持しておくことができる。尚、メタン流量の 制御にお 、ては、セル電圧 Vの代わりにスタック電圧を監視するようにしても良!、。
[0082] 一方、水の流量については、給水停止時に、水蒸気の温度が 200°C以上を維持す
るように、水の供給量を減少させていく必要がある。これは、水蒸気温度が 200°C以 下になると、水蒸気の温度は一気に 100°Cまで低下し、水蒸気の連続的な発生が難 しくなるためであり、その結果、セル内に水蒸気ではなく液体水が供給されることにな り、これにより、セルの劣化や割れが発生する虞があるためである。
[0083] 以上のように、本発明では、発電停止の際に、燃料電池に水、および燃料ガスの流 量を減少させながら供給することにより、発電停止後の高温雰囲気にあって燃料極 層側の還元性を保持することができ、これにより、昇降温サイクルにおける発電セル の酸ィ匕やそれに伴う発電セルの性能劣化を防止でき、高寿命化が図れるようになる カロえて、この運転停止方法では、従来の不活性ガスによるパージは不要であるから 、不活性ガスボンべ (例えば、窒素ボンべ)を含むパージ用ガス供給系を設ける必要 がー切無くなり、メンテナンス作業を簡略化できると共に、装置自体を小型化できる。
[0084] 特に、固体酸化物形燃料電池では、作動温度が 600〜: LOOO°Cと高いため、降温 期間において金属やセラミック等のモジュールの熱容量が大きぐ短時間でスタック 温度を下げることは不可能であり、その間、高温雰囲気が継続されること、シールレス 構造では、電池内圧力の低下により外部 (燃料電池モジュール内)の酸素含有ガス が電池内部に侵入し易いこと、等の理由により、運転停止時には確実なパージ処理 が要求される力 不活性ガスによるパージを必要としない本発明の運転停止方法は 、このような、高温作動型の燃料電池に対して極めて有効である。
産業上の利用可能性
[0085] 本発明によれば、起動時に燃料モジュール内の改質器や水蒸気発生器を加熱装 置により加熱することにより、起動初期の段階力 水素を含む還元性の改質ガスを生 成し、発電セルの燃料極側にこのパージガスを給配しつつ急速起動を可能とした固 体酸化物形燃料電池およびその運転方法を提供することができる。
また、別途パージ用ガスの供給系を設けずに起動 ·停止時の昇温動作および降温 動作を可能とする燃料電池の運転方法を提供することができる。
Claims
[1] 複数の発電セル^^合して燃料電池集合体を構成し、ハウジング内に収納すると 共に、運転時に前記燃料電池集合体の内部に改質ガスを供給して発電反応を生じ させる固体酸ィ匕物形燃料電池において、
前記ハウジング内に改質器、または改質器と水蒸気発生器を設置すると共に、少 なくとも前記改質器を加熱する加熱装置を配設したことを特徴とする固体酸化物形 燃料電池。
[2] 前記加熱装置として電気ヒータまたは燃焼パーナを用いることを特徴とする請求項 1に記載の固体酸化物形燃料電池。
[3] 前記燃料電池集合体の周辺部に、当該燃料電池集合体から放出される改質ガス を燃焼するための燃焼触媒、または改質ガス着火用のヒータを配設したことを特徴と する請求項 1に記載の固体酸化物形燃料電池。
[4] 前記固体酸化物形燃料電池は、発電反応に使用しない残余のガスを燃料電池集 合体の外で燃焼させるシールレス構造の固体酸ィ匕物形燃料電池であることを特徴と する請求項 1に記載の固体酸化物形燃料電池。
[5] 複数の発電セル^^合して燃料電池集合体を構成し、ハウジング内に収納すると 共に、運転時に前記燃料電池集合体の内部に改質ガスを供給して発電反応を生じ させる固体酸化物形燃料電池の運転方法であって、
改質器と水蒸気発生器と加熱装置を備え、
燃料電池起動時に、前記加熱装置により少なくとも前記改質器を加熱し、 加熱された前記改質器に燃料ガスと前記水蒸気発生器力ゝらの水蒸気を供給して水 素主成分の改質ガスを発生し、
改質ガスを前記燃料電池集合体に供給して前記発電セルの燃料極を還元状態に 保ちつつ前記燃料電池集合体の温度を上昇させることを特徴とする固体酸化物形
燃料電池の運転方法,
[6] 前記燃料電池集合体に供給した水素主成分の改質ガスを燃料電池集合体から放 出し、燃焼して前記燃料電池集合体の温度を上昇させることを特徴とする請求項 5に 記載の固体酸化物形燃料電池の運転方法。
[7] 改質器で原燃料を改質すると共に、改質ガスを発電セルに供給して発電運転を行 う燃料電池の運転方法であって、
運転開始の際、前記改質器にて部分酸ィ匕改質反応またはオートサーマル改質反 応により水素を含む還元ガスを生成して発電セルの燃料極側に供給することにより、 燃料極雰囲気を還元状態に維持しつつ、前記燃料電池を昇温させることを特徴とす る燃料電池の運転方法。
[8] 改質器を備え、この改質器で原燃料を改質すると共に、改質ガスを発電セルに供 給して発電運転を行う燃料電池の運転方法であって、
運転停止の際、前記改質器にて部分酸ィ匕改質反応またはオートサーマル改質反 応により水素を含む還元ガスを生成して発電セルの燃料極側に供給することにより、 燃料極雰囲気を還元状態に維持しつつ、前記燃料電池を降温させることを特徴とす る燃料電池の運転方法。
[9] 前記燃料電池の温度が少なくとも 300°C以下になるまで燃料極雰囲気を還元状態 に維持することを特徴とする請求項 8に記載の燃料電池の運転方法。
[10] 前記燃料電池より放出された未燃焼の燃流ガスを燃焼手段にて燃焼させ、その燃 焼熱を昇温に利用することを特徴とする請求項 7に記載の燃料電池の運転方法。
[11] 前記燃料電池は、反応に使用しない燃料を前記発電セルの外周部より放出して燃 焼させるシールレス構造の固体酸化物形燃料電池であることを特徴とする請求項 7
に記載の燃料電池の運転方法。
[12] 前記燃料電池は、反応に使用しない燃料を前記発電セルの外周部より放出して燃 焼させるシールレス構造の固体酸化物形燃料電池であることを特徴とする請求項 8 に記載の燃料電池の運転方法。
[13] 燃料極層側へ燃料ガスを供給し、空気極層側へ酸化剤ガスを供給して発電反応を 生じさせる燃料電池の運転停止方法であって、
発電停止の際に、前記燃料電池に水、および水素または炭化水素系燃料の流量 を減少させながら供給することにより燃料極層側を還元状態に保持しつつ、スタック 温度を低下させることを特徴とする燃料電池の運転停止方法。
[14] スタック温度が 300°Cの時に前記燃料電池のセル電圧が 0. 5V以上となるように、 前記水素または炭化水素系燃料の供給量を減少させることを特徴とする請求項 13 に記載の燃料電池の運転停止方法。
[15] 前記燃料電池への水の供給停止時に、当該水による水蒸気温度が 200°C以上で あるように水の供給量を減少させることを特徴とする請求項 13に記載の燃料電池の 運転停止方法。
[16] 燃料ガス供給量と酸化剤ガス供給量に応じて電力を出力する燃料電池と、当該燃 料電池に燃料ガスを供給する燃料供給系と、酸化剤ガスを供給する酸化剤ガス供給 系と、水を供給する水供給系と、これら各系を制御する制御部とを備え、
前記制御部は、発電停止の際に、前記各系を制御して、前記燃料電池に水、およ び水素または炭化水素系燃料の流量を減少させながら供給することにより、燃料極 層側を還元状態に保持しつつ、スタック温度を低下させる制御を行うことを特徴とす る燃料電池発電装置。
前記燃料電池は、発電反応に使用されなかった残余のガスを発電セルの外周部よ り放出するシールレス構造の固体酸ィ匕物形燃料電池であることを特徴とする請求項 1 6に記載の燃料電池発電装置。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/884,785 US20110076573A1 (en) | 2005-02-22 | 2006-02-21 | Solid Oxide Type Fuel Cell and Operating Method Thereof |
EP06714166A EP1852930B1 (en) | 2005-02-22 | 2006-02-21 | Solid oxide type fuel cell and operation method thereof |
Applications Claiming Priority (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005-045252 | 2005-02-22 | ||
JP2005045252 | 2005-02-22 | ||
JP2005115828A JP4961682B2 (ja) | 2005-04-13 | 2005-04-13 | 燃料電池発電装置および運転停止方法 |
JP2005-115828 | 2005-04-13 | ||
JP2005-319628 | 2005-11-02 | ||
JP2005319628A JP2007128717A (ja) | 2005-11-02 | 2005-11-02 | 燃料電池の運転方法 |
JP2006-043355 | 2006-02-21 | ||
JP2006043355A JP2006269419A (ja) | 2005-02-22 | 2006-02-21 | 固体酸化物形燃料電池および運転方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2006090685A1 true WO2006090685A1 (ja) | 2006-08-31 |
Family
ID=36927325
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2006/303026 WO2006090685A1 (ja) | 2005-02-22 | 2006-02-21 | 固体酸化物形燃料電池およびその運転方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20110076573A1 (ja) |
EP (3) | EP1852930B1 (ja) |
WO (1) | WO2006090685A1 (ja) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008177059A (ja) * | 2007-01-18 | 2008-07-31 | Nippon Oil Corp | 改質器システム、燃料電池システム、及びその運転方法 |
JP2008177058A (ja) * | 2007-01-18 | 2008-07-31 | Nippon Oil Corp | 改質器システム、燃料電池システム、及びその運転方法 |
JP2008198485A (ja) * | 2007-02-13 | 2008-08-28 | Nippon Oil Corp | 燃料電池システム |
WO2009031459A1 (en) | 2007-09-03 | 2009-03-12 | Honda Motor Co., Ltd. | Fuel cell system and method of operating the fuel cell system |
WO2009031458A1 (en) * | 2007-09-03 | 2009-03-12 | Honda Motor Co., Ltd. | Fuel cell system and method of operating the fuel cell system |
WO2009072416A1 (ja) * | 2007-12-04 | 2009-06-11 | Nippon Oil Corporation | 燃料電池システムとその起動方法 |
US20110027678A1 (en) * | 2008-04-01 | 2011-02-03 | Daimler Ag | Fuel cell system and method for operating a fuel cell system |
JP2011249160A (ja) * | 2010-05-27 | 2011-12-08 | Kyocera Corp | 燃料電池モジュールおよび燃料電池装置 |
US8927166B2 (en) | 2008-01-28 | 2015-01-06 | Jx Nippon Oil & Energy Corporation | Indirect internal reforming solid oxide fuel cell and method for shutting down the same |
Families Citing this family (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090253007A1 (en) * | 2008-04-04 | 2009-10-08 | Mergler Christopher M | Method and apparatus for anode oxidation prevention and cooling of a solid-oxide fuel cell stack |
US9118048B2 (en) | 2009-09-04 | 2015-08-25 | Lg Fuel Cell Systems Inc. | Engine systems and methods of operating an engine |
US9083020B2 (en) | 2009-09-04 | 2015-07-14 | Lg Fuel Cell Systems Inc. | Reducing gas generators and methods for generating reducing gas |
US8668752B2 (en) | 2009-09-04 | 2014-03-11 | Rolls-Royce Fuel Cell Systems (Us) Inc. | Apparatus for generating a gas which may be used for startup and shutdown of a fuel cell |
US9874158B2 (en) | 2009-09-04 | 2018-01-23 | Lg Fuel Cell Systems, Inc | Engine systems and methods of operating an engine |
US8597841B2 (en) | 2009-09-04 | 2013-12-03 | Lg Fuel Cell Systems Inc. | Method for generating a gas which may be used for startup and shutdown of a fuel cell |
US9178235B2 (en) | 2009-09-04 | 2015-11-03 | Lg Fuel Cell Systems, Inc. | Reducing gas generators and methods for generating a reducing gas |
US9140220B2 (en) | 2011-06-30 | 2015-09-22 | Lg Fuel Cell Systems Inc. | Engine systems and methods of operating an engine |
JP5542965B2 (ja) * | 2010-11-30 | 2014-07-09 | 京セラ株式会社 | 燃料電池システムおよびその運転方法 |
US9147888B2 (en) | 2011-06-15 | 2015-09-29 | Lg Fuel Cell Systems Inc. | Fuel cell system with interconnect |
US9525181B2 (en) | 2011-06-15 | 2016-12-20 | Lg Fuel Cell Systems Inc. | Fuel cell system with interconnect |
US9531013B2 (en) | 2011-06-15 | 2016-12-27 | Lg Fuel Cell Systems Inc. | Fuel cell system with interconnect |
US9281527B2 (en) | 2011-06-15 | 2016-03-08 | Lg Fuel Cell Systems Inc. | Fuel cell system with interconnect |
US20140308596A1 (en) * | 2011-11-09 | 2014-10-16 | Jx Nippon Oil & Energy Corporation | Method and device for stopping solid-oxide fuel cell system |
CN103918117A (zh) * | 2011-11-09 | 2014-07-09 | 吉坤日矿日石能源株式会社 | 固体氧化物燃料电池系统及其启动控制方法 |
JP5731357B2 (ja) * | 2011-11-09 | 2015-06-10 | Jx日鉱日石エネルギー株式会社 | 固体酸化物形燃料電池システム及びその起動制御方法 |
JP5934556B2 (ja) * | 2012-04-02 | 2016-06-15 | 大阪瓦斯株式会社 | 固体酸化物形燃料電池システム |
JP6100012B2 (ja) | 2013-02-06 | 2017-03-22 | 三菱日立パワーシステムズ株式会社 | 発電システム及び発電システムの運転方法 |
JP6101781B2 (ja) | 2013-02-25 | 2017-03-22 | 住友精密工業株式会社 | 燃料電池モジュール |
CN105359321A (zh) | 2013-03-15 | 2016-02-24 | Lg燃料电池系统股份有限公司 | 用于捕获铬而配置的燃料电池系统 |
CA2956069A1 (en) | 2014-07-21 | 2016-01-28 | Lg Fuel Cell Systems, Inc. | Composition for fuel cell electrode |
US10115973B2 (en) | 2015-10-28 | 2018-10-30 | Lg Fuel Cell Systems Inc. | Composition of a nickelate composite cathode for a fuel cell |
JP7555020B2 (ja) | 2019-07-19 | 2024-09-24 | パナソニックIpマネジメント株式会社 | 燃料電池システムおよび燃料電池システムの制御方法 |
DE102020119019A1 (de) | 2020-07-17 | 2022-01-20 | kraftwerk TUBES GmbH | Verfahren zum Starten einer Festoxid-Brennstoffzellenvorrichtung, Festoxid-Brennstoffzellenvorrichtung sowie Brennstoffzellen-Fahrzeug |
CN113707920B (zh) * | 2021-08-27 | 2022-10-11 | 中南大学 | 一种醇类重整燃料电池系统 |
WO2023144775A1 (en) * | 2022-01-27 | 2023-08-03 | Bloom Energy Corporation | Internal steam delivery system |
Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02244559A (ja) | 1989-03-17 | 1990-09-28 | Fuji Electric Co Ltd | 燃料電池の停止方法 |
EP0654838A1 (de) | 1993-11-24 | 1995-05-24 | Sulzer Innotec Ag | Einrichtung mit Hochtemperatur-Brennstoffzellen und Verfahren zum Anfahrbetrieb der Einrichtung |
JPH08162137A (ja) | 1994-12-09 | 1996-06-21 | Sanyo Electric Co Ltd | 燃料電池システム及びその起動方法 |
JP2000243423A (ja) * | 1999-02-22 | 2000-09-08 | Ishikawajima Harima Heavy Ind Co Ltd | 燃料電池のパージ方法 |
JP2001524739A (ja) * | 1997-11-20 | 2001-12-04 | シーメンス ウエスチングハウス パワー コーポレイション | 固体酸化物燃料電池発電装置用のカバーガス及び起動ガス供給システム |
US20030012997A1 (en) | 1994-08-08 | 2003-01-16 | Hsu Michael S. | Pressurized, integrated electrochemical converter energy system |
US20030054215A1 (en) | 2001-09-20 | 2003-03-20 | Honeywell International, Inc. | Compact integrated solid oxide fuel cell system |
US20030134174A1 (en) | 2000-12-28 | 2003-07-17 | Jun Akikusa | Fuel cell module and structure for gas supply to fuel cell |
JP2003282113A (ja) * | 2002-03-26 | 2003-10-03 | Toto Ltd | 固体酸化物燃料電池システム |
JP2004010411A (ja) * | 2002-06-05 | 2004-01-15 | Tokyo Gas Co Ltd | 改質器の起動運転方法 |
US20040048123A1 (en) | 2002-09-10 | 2004-03-11 | Kelly Sean M. | Solid-oxide fuel cell assembly having a convectively vented structural enclosure |
JP2004335162A (ja) * | 2003-05-01 | 2004-11-25 | Mitsubishi Materials Corp | 固体酸化物形燃料電池の運転方法 |
JP2005019036A (ja) * | 2003-06-24 | 2005-01-20 | Mitsubishi Materials Corp | 燃料電池 |
JP2005019035A (ja) * | 2003-06-24 | 2005-01-20 | Mitsubishi Materials Corp | 燃料電池 |
JP2005317405A (ja) * | 2004-04-30 | 2005-11-10 | Kyocera Corp | 燃料電池構造体の運転方法 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020006535A1 (en) * | 1996-11-01 | 2002-01-17 | Richard Woods | Integrated power module |
US6562496B2 (en) * | 2000-05-01 | 2003-05-13 | Delphi Technologies, Inc. | Integrated solid oxide fuel cell mechanization and method of using for transportation industry applications |
US6635370B2 (en) * | 2001-06-01 | 2003-10-21 | Utc Fuel Cells, Llc | Shut-down procedure for hydrogen-air fuel cell system |
ATE396509T1 (de) * | 2002-10-31 | 2008-06-15 | Matsushita Electric Ind Co Ltd | Verfahren zum betrieb eines brennstoffzellensystems und brennstoffzellensystem |
CA2562716C (en) * | 2004-04-15 | 2012-08-28 | Versa Power Systems, Ltd. | Fuel cell shutdown with steam purging |
-
2006
- 2006-02-21 WO PCT/JP2006/303026 patent/WO2006090685A1/ja active Application Filing
- 2006-02-21 EP EP06714166A patent/EP1852930B1/en not_active Not-in-force
- 2006-02-21 EP EP10194752A patent/EP2287954A3/en not_active Withdrawn
- 2006-02-21 EP EP09164506A patent/EP2101371A3/en not_active Withdrawn
- 2006-02-21 US US11/884,785 patent/US20110076573A1/en not_active Abandoned
Patent Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02244559A (ja) | 1989-03-17 | 1990-09-28 | Fuji Electric Co Ltd | 燃料電池の停止方法 |
EP0654838A1 (de) | 1993-11-24 | 1995-05-24 | Sulzer Innotec Ag | Einrichtung mit Hochtemperatur-Brennstoffzellen und Verfahren zum Anfahrbetrieb der Einrichtung |
US20030012997A1 (en) | 1994-08-08 | 2003-01-16 | Hsu Michael S. | Pressurized, integrated electrochemical converter energy system |
JPH08162137A (ja) | 1994-12-09 | 1996-06-21 | Sanyo Electric Co Ltd | 燃料電池システム及びその起動方法 |
JP2001524739A (ja) * | 1997-11-20 | 2001-12-04 | シーメンス ウエスチングハウス パワー コーポレイション | 固体酸化物燃料電池発電装置用のカバーガス及び起動ガス供給システム |
JP2000243423A (ja) * | 1999-02-22 | 2000-09-08 | Ishikawajima Harima Heavy Ind Co Ltd | 燃料電池のパージ方法 |
US20030134174A1 (en) | 2000-12-28 | 2003-07-17 | Jun Akikusa | Fuel cell module and structure for gas supply to fuel cell |
US20030054215A1 (en) | 2001-09-20 | 2003-03-20 | Honeywell International, Inc. | Compact integrated solid oxide fuel cell system |
JP2003282113A (ja) * | 2002-03-26 | 2003-10-03 | Toto Ltd | 固体酸化物燃料電池システム |
JP2004010411A (ja) * | 2002-06-05 | 2004-01-15 | Tokyo Gas Co Ltd | 改質器の起動運転方法 |
US20040048123A1 (en) | 2002-09-10 | 2004-03-11 | Kelly Sean M. | Solid-oxide fuel cell assembly having a convectively vented structural enclosure |
JP2004335162A (ja) * | 2003-05-01 | 2004-11-25 | Mitsubishi Materials Corp | 固体酸化物形燃料電池の運転方法 |
JP2005019036A (ja) * | 2003-06-24 | 2005-01-20 | Mitsubishi Materials Corp | 燃料電池 |
JP2005019035A (ja) * | 2003-06-24 | 2005-01-20 | Mitsubishi Materials Corp | 燃料電池 |
JP2005317405A (ja) * | 2004-04-30 | 2005-11-10 | Kyocera Corp | 燃料電池構造体の運転方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP1852930A4 |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008177059A (ja) * | 2007-01-18 | 2008-07-31 | Nippon Oil Corp | 改質器システム、燃料電池システム、及びその運転方法 |
JP2008177058A (ja) * | 2007-01-18 | 2008-07-31 | Nippon Oil Corp | 改質器システム、燃料電池システム、及びその運転方法 |
JP2008198485A (ja) * | 2007-02-13 | 2008-08-28 | Nippon Oil Corp | 燃料電池システム |
WO2009031459A1 (en) | 2007-09-03 | 2009-03-12 | Honda Motor Co., Ltd. | Fuel cell system and method of operating the fuel cell system |
WO2009031458A1 (en) * | 2007-09-03 | 2009-03-12 | Honda Motor Co., Ltd. | Fuel cell system and method of operating the fuel cell system |
US8557457B2 (en) | 2007-09-03 | 2013-10-15 | Honda Motor Co., Ltd. | Fuel cell system and method of operating the fuel cell system |
WO2009072416A1 (ja) * | 2007-12-04 | 2009-06-11 | Nippon Oil Corporation | 燃料電池システムとその起動方法 |
JP2009137778A (ja) * | 2007-12-04 | 2009-06-25 | Nippon Oil Corp | 燃料電池システムの起動方法 |
US8927166B2 (en) | 2008-01-28 | 2015-01-06 | Jx Nippon Oil & Energy Corporation | Indirect internal reforming solid oxide fuel cell and method for shutting down the same |
US9040206B2 (en) | 2008-01-28 | 2015-05-26 | Jx Nippon Oil & Energy Corporation | Indirect internal reforming solid oxide fuel cell and method for shutting down the same |
US20110027678A1 (en) * | 2008-04-01 | 2011-02-03 | Daimler Ag | Fuel cell system and method for operating a fuel cell system |
JP2011249160A (ja) * | 2010-05-27 | 2011-12-08 | Kyocera Corp | 燃料電池モジュールおよび燃料電池装置 |
Also Published As
Publication number | Publication date |
---|---|
EP2101371A3 (en) | 2009-09-30 |
US20110076573A1 (en) | 2011-03-31 |
EP2287954A3 (en) | 2011-03-02 |
EP2101371A2 (en) | 2009-09-16 |
EP1852930A4 (en) | 2008-08-27 |
EP2287954A2 (en) | 2011-02-23 |
EP1852930A1 (en) | 2007-11-07 |
EP1852930B1 (en) | 2012-01-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2006090685A1 (ja) | 固体酸化物形燃料電池およびその運転方法 | |
JP2006269419A (ja) | 固体酸化物形燃料電池および運転方法 | |
JP4906242B2 (ja) | 燃料電池の稼動停止方法 | |
JP2007128717A (ja) | 燃料電池の運転方法 | |
JP5122083B2 (ja) | 燃料電池発電装置及び制御プログラム並びに燃料電池発電装置の制御方法 | |
JP4750374B2 (ja) | 燃料電池構造体の運転方法 | |
JP2003132933A (ja) | 燃料電池 | |
JP2004319420A (ja) | 燃料電池及びその運転方法 | |
JP4745618B2 (ja) | 燃料電池構造体の運転方法 | |
JP4956946B2 (ja) | 燃料電池 | |
JP4654567B2 (ja) | 固体酸化物形燃料電池およびその運転方法 | |
JP4706190B2 (ja) | 固体酸化物形燃料電池 | |
JP4736309B2 (ja) | 固体電解質型燃料電池の運転開始時の予熱方法 | |
JP2000277139A (ja) | 燃料電池発電システム及びその運転方法 | |
JP2007080761A (ja) | 燃料電池およびその起動方法 | |
JP6374273B2 (ja) | 燃料電池モジュール | |
JP2009110970A (ja) | 燃料電池 | |
JP5248194B2 (ja) | 固体酸化物形燃料電池およびその起動方法 | |
JP2006086019A (ja) | 固体酸化物形燃料電池および運転開始時の予熱方法 | |
JP5440751B2 (ja) | 燃料電池システム | |
JP7033016B2 (ja) | 燃料電池モジュール | |
JP4461705B2 (ja) | 固体酸化物形燃料電池の運転方法 | |
JP2005019034A (ja) | 固体酸化物形燃料電池 | |
KR101173858B1 (ko) | 연료 전지 시스템의 개질기 및 이를 채용한 연료 전지시스템 | |
JP2010536120A (ja) | 改善されたガスのチャネル搬送および熱交換を有する固体酸化物燃料電池システム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2006714166 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 2006714166 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 11884785 Country of ref document: US |