WO2006090671A1 - 粒状物体の検査方法及びその方法を実施する検査装置 - Google Patents

粒状物体の検査方法及びその方法を実施する検査装置 Download PDF

Info

Publication number
WO2006090671A1
WO2006090671A1 PCT/JP2006/302973 JP2006302973W WO2006090671A1 WO 2006090671 A1 WO2006090671 A1 WO 2006090671A1 JP 2006302973 W JP2006302973 W JP 2006302973W WO 2006090671 A1 WO2006090671 A1 WO 2006090671A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference point
extracted
area
reference points
region
Prior art date
Application number
PCT/JP2006/302973
Other languages
English (en)
French (fr)
Inventor
Oscar Vanegas
Mitsuru Shirasawa
Original Assignee
Matsushita Electric Works, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2005048033A external-priority patent/JP4639841B2/ja
Priority claimed from JP2005048032A external-priority patent/JP4639840B2/ja
Application filed by Matsushita Electric Works, Ltd. filed Critical Matsushita Electric Works, Ltd.
Priority to CN2006800056176A priority Critical patent/CN101175990B/zh
Priority to KR1020077019019A priority patent/KR100929475B1/ko
Priority to EP06714113A priority patent/EP1852693A4/en
Priority to US11/816,536 priority patent/US7916949B2/en
Publication of WO2006090671A1 publication Critical patent/WO2006090671A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/85Investigating moving fluids or granular solids
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61JCONTAINERS SPECIALLY ADAPTED FOR MEDICAL OR PHARMACEUTICAL PURPOSES; DEVICES OR METHODS SPECIALLY ADAPTED FOR BRINGING PHARMACEUTICAL PRODUCTS INTO PARTICULAR PHYSICAL OR ADMINISTERING FORMS; DEVICES FOR ADMINISTERING FOOD OR MEDICINES ORALLY; BABY COMFORTERS; DEVICES FOR RECEIVING SPITTLE
    • A61J3/00Devices or methods specially adapted for bringing pharmaceutical products into particular physical or administering forms
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/9508Capsules; Tablets
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T1/00General purpose image data processing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/60Analysis of geometric attributes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/60Type of objects
    • G06V20/66Trinkets, e.g. shirt buttons or jewellery items
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30108Industrial image inspection

Definitions

  • the present invention relates to a granular object inspection method for inspecting a granular object such as a solid medicine and an inspection apparatus for performing the method.
  • image data obtained by performing data processing such as binarization on an image of a medicine imaged by an imaging means such as a CCD camera.
  • the image is processed to determine the area, perimeter, and complexity of the object in the image, and based on the area and complexity, it is determined whether the object in the image is a drug. I was asking for it.
  • Complexity is a value obtained by dividing the square of the circumference by the area.
  • FIG. 13 As shown in (a), there is a groove force on one side of the drugs 10a and 10b, and when such drugs 10a and 10b force stand up as shown in Fig. Since the dent appears, the circumference of the drug cannot be recognized correctly, and the number of drugs cannot be counted correctly.
  • An object of the present invention is to provide a method for inspecting granular objects that can accurately count the number of granular objects, and an inspection apparatus that implements the method.
  • an imaging region including a granular object to be inspected is imaged, and the granular shape is digitized in a digital image obtained by digitizing the pixel value of each pixel of the captured image.
  • a granular object for inspecting a granular object existing in the imaging area by separating each object area from the lump area.
  • a second extraction process for extracting, from a plurality of reference points existing in the target area, a reference point having a minimum count value by the counting process as a reference point; Reference point force extracted by the second extraction process Selects all reference points that can be seen through the target area, and creates a granular area that connects the selected reference point and the reference point to each other.
  • the number of reference points extracted by repeatedly executing the second to fourth extraction processes is counted as the number of granular objects.
  • the object region corresponding to the granular object can be separated one by one in the digital image, and the number of extracted reference points can be obtained even when a plurality of granular objects are in contact with or overlapped with each other.
  • the number of granular objects can be accurately counted.
  • the target region extracted by the first extraction process for each of the plurality of reference points extracted by the second to fourth extraction processes by the image processing unit is further performed to extract all reference points that can see only one of the reference points through the region as reference point belonging reference points belonging to the reference point, and An area surrounded by all the connected line segments that generate the connected line segment connecting the reference point and all the reference point belonging reference points belonging to the above-mentioned reference point extracted by the fifth extraction process. May be the object region of the granular object corresponding to the reference point. As a result, an area closer to the actual granular object area can be extracted as the object area.
  • each of a plurality of reference points extracted by repeatedly executing the second to fourth extraction processes is subjected to the fifth extraction process. It may be generated by connecting two of the reference point belonging reference points that belong to the extracted reference point. As a result, a region closer to the actual granular object region can be extracted as the object region.
  • a reference point excluding the reference point belonging reference point extracted in the fifth extraction process is extracted as an undetermined reference point from all the reference points.
  • the sixth extraction process can be performed, and the unidentified reference point extracted in the sixth extraction process can be seen through the region of the target area extracted by the first extraction process.
  • the target object region is determined as the object region corresponding to the unidentified reference point, and the reference point corresponding to the determined object region, the reference point belonging reference point, and the unidentified reference point are connected to each other. May be generated. As a result, a region closer to the actual granular object region can be extracted as the object region.
  • the image processing unit is formed by forming a plurality of search lines that are undetermined by the unexamined reference point force extracted in the sixth extraction process at a substantially constant angle.
  • the areas until each search line intersects the connected line segment connecting two of the reference point belonging reference points belonging to the reference point extracted by the fifth extraction process are crossed. It can also be added to the object region corresponding to the connecting line segment.
  • the object region to which the unidentified reference point belongs can be determined as the object region closest to the unidentified reference point, and the region closer to the actual granular object region can be extracted as the object region.
  • the present invention provides the first extraction process for each of a plurality of reference points extracted by the image processing unit repeatedly performing the second to fourth extraction processes. Only one point of the reference point can be seen through the extracted region of the target region, and a reference point on the opposite side of the reference point across the center of the target region is shaped A seventh extraction process for extracting as a determination point is further performed, and a gap between a shape determination point corresponding to one of the reference points extracted by the seventh extraction process and a shape determination point corresponding to another reference point is determined. If at least a part of each connecting line segment passes outside the target area, it is determined that the plurality of reference points belong to different granular objects, and belong to the determined different granular objects.
  • the above image processing unit does not extract the shape determination point even by the seventh extraction process. It can be determined that the points belong to the same granular object, and the number of granular objects can be accurately identified without being erroneously identified as two granular objects.
  • the maximum distance between a point on the contour line forming the first region extracted by the eighth extraction process and the first connecting line segment, and the eighth extraction process are used for extraction. If the distance difference between the point on the contour line forming the second region and the maximum distance between the second connecting line segment is shorter than the predetermined reference distance, the two reference points It may be determined that the particles belong to different granular objects. As a result, the time required for the arithmetic processing can be shortened as compared with the case where the areas of the first region and the second region are directly obtained.
  • the shape determination point having the longest distance from the corresponding reference point may be selected from among the plurality of shape determination points, and the second connecting line segment may be formed using the selected shape determination point. Thereby, the calculation time required for the determination process can be further shortened.
  • the present invention supports an imaging unit that captures an imaging region including a granular object to be inspected, and a granular object in a digital image obtained by digitizing the pixel value of each pixel of the image of the imaging unit.
  • an image processing unit having means for separating individual object areas from the mass area when a plurality of object areas are in contact with each other to form one mass area.
  • First extracting means for extracting the block region from the digital image as a target region for image processing;
  • Setting means for setting a plurality of reference points in a distributed manner along the outline of the target area inside the target area extracted by the first extracting means;
  • Counting means for counting the number of other reference points that can be seen from the reference point through the region of the target area for each of the reference points set by the above;
  • Second extraction means for extracting, from a plurality of reference points existing in the target area, a reference point having a minimum count value by the counting means as a reference point;
  • Reference point force extracted by the second extraction means Selects all reference points that can be seen through the target area, and creates a granular area formed by connecting the selected reference point and the reference point to each other.
  • Third extraction means for extracting the object area as an object area; target area force extracted by the third extraction means; fourth extraction means for extracting an area excluding the object area as a new target area;
  • Means for counting the number of granular objects based on the number of reference points extracted by repeatedly using the second to fourth extraction means are provided. Therefore, even when a plurality of granular objects are in contact with each other or overlapping, the number of granular objects can be accurately counted based on the number of extracted reference points.
  • FIG. 1 is a schematic configuration diagram of a granular object inspection method device according to a first embodiment of the present invention.
  • FIG. 2 (a), (b), and (c) are explanatory diagrams of the image processing method described above.
  • FIG. 3 (a) and (b) are explanatory views of the image processing method described above.
  • 4 (a) and 4 (b) are explanatory views of an image processing method by the granular object inspection apparatus according to Embodiment 2 of the present invention.
  • FIG. 5 is an explanatory diagram of an image processing method by the granular object inspection device according to the third embodiment of the present invention.
  • 6A and 6B are explanatory diagrams of an image processing method by the granular object inspection apparatus according to Embodiment 4 of the present invention.
  • FIG. 7 is an explanatory diagram showing the results of the image processing described above.
  • FIGS. 8A and 8B are explanatory diagrams of an image processing method by the granular object inspection apparatus according to the fifth embodiment of the present invention.
  • FIG. 9 is an explanatory diagram of an image processing method by the granular object inspection device according to the sixth embodiment of the present invention.
  • FIG. 10 is an explanatory view of an image processing method by the granular object inspection device according to the seventh embodiment of the present invention.
  • FIG. 11 is an explanatory diagram of an image processing method by a granular object inspection device according to an eighth embodiment of the present invention.
  • FIG. 12 (a), (b), and (c) are images of granular objects to be inspected, and when two granular objects are placed on the inspection table in contact or overlapped with each other.
  • FIG. 13 (a) and (b) are images of a granular object to be inspected, and an example when the granular object having a groove on one side is placed on an inspection table in an upright state.
  • FIG. 13 is images of a granular object to be inspected, and an example when the granular object having a groove on one side is placed on an inspection table in an upright state.
  • FIG. 1 shows a schematic configuration of a granular object inspection apparatus according to the present embodiment.
  • This granular object inspection device has an inspection table 1 on which the granular object to be inspected (drugs 10a and 10b) is placed, and an imaging device that is installed above the inspection table 1 and images the drugs 10a 'and 10b.
  • Means 2 for example, a CCD camera
  • an illumination device that is arranged on the same side as the imaging means 2 with respect to the examination table 1 and irradiates the granular object placed on the examination table 1 with light 3.
  • An image storage unit 4 for storing a binarized image obtained by binarizing the grayscale information of the image signal captured by the image processing unit with an appropriate threshold, and image processing for the binary image stored in the image storage unit 4;
  • An image processing unit 5 that separates into object regions corresponding to individual granular objects, and an inspection determination unit 6 that counts the number of granular objects based on the number of object regions separated by the image processing unit 5 are provided.
  • the image storage unit 4, the image processing unit 5, and the inspection determination unit 6 constitute an image processing / inspection determination unit 7.
  • the light irradiated from the lighting device 3 increases the luminance difference between the background portion and the portion corresponding to the medicines 10a and 10b.
  • the surface of the examination table 1 has low light reflectivity, and when the illumination device 3 irradiates the examination table 1 with light, the portions of the drugs 10a and 10b are bright in the image captured by the imaging means 2.
  • the background part (the surface of the inspection table 1) appears. in this way A relatively large luminance difference is generated between the contours of the medicines 10a and 10b and the background.
  • the image data of the grayscale image may be stored in the image storage unit 4 by binarizing the image signal picked up by the image pickup means 2 but not by binarizing the image signal.
  • this grayscale image it is possible to improve the determination accuracy because differential processing or the like can be applied.
  • a binary image obtained by binarizing an image signal picked up by the image pickup means 2 is a digital image having only binary values of pixel values 0 and 1, and an image storage unit having RAM power. Stored in 4.
  • the image storage unit 4 is not only used as a storage area for binary images, but also used as a storage area for work in various image processing described later.
  • the binary image stored in the image storage unit 4 is input to the image processing unit 5 and subjected to image processing described below. Then, the image processing unit 5 recognizes the shapes of the drugs 10a and 10b, and the examination determination unit 6 identifies the number of the drugs 10a and 10b based on the recognition result.
  • a monitor device such as a CRT or a liquid crystal display is connected to the image processing unit 5.
  • an image captured by the imaging means 2 a binary image binarized by a binarization processing unit (not shown), a recognition result by the image processing unit 5, and the like are displayed.
  • the method for inspecting a granular object includes, for example, placing a plurality of medicines 10a and 10b to be packaged in one packing bag on the inspection table 1 and using the imaging means 2 From the images of a plurality of medicines 10a and 10b to be imaged, it is judged whether or not the force of the medicines 10a and 10b placed on the examination table 1 is the correct number.
  • the drugs 10a and 10b whose final number has been determined are packaged in a single package using packaging materials.
  • the packaging material is transparent or translucent and the drugs 10a and 10b are imaged by the imaging means 2, the outlines of the drugs 10a and 10b are recognized in the same way as when packaging with the packaging material is not performed. If an image that can be obtained is obtained, the medicines 10a and 10b previously wrapped with a packaging material may be placed on the examination table 1 and imaged.
  • Fig. 2 (a) shows two round tablets (drugs 10a and 10b) force when the drugs 10a and 10b are placed on the examination table 1 with some of them overlapping each other.
  • storage part 4 is illustrated.
  • this binary image one continuous area (hereinafter referred to as a lump area A1) corresponding to the two drugs 10a and 10b is shown.
  • object areas areas corresponding to the individual drugs 10a and 10b
  • the image processing unit 5 performs a first extraction process for extracting the block area A1 as a target area for image processing from the binary image stored in the image storage unit 4. Then, a setting process is performed in which appropriate pixels in the vicinity of the extracted outline of the lump area A1 are set as reference points.
  • the reference points are distributed at substantially constant intervals inside the lump area A1 and above the outline of the lump area A1 or within a few pixels inside the outline of the lump area A1. Is set as follows.
  • FIG. 2 (c) illustrates a binary image stored in the image storage unit 4 when a single circular tablet (drug 10a) is imaged.
  • a mass area A2 an area (referred to as a mass area A2) corresponding to one medicine 10a is shown.
  • the image processing unit 5 sets all reference points (for example, PI, P2, P3, P4, ⁇ 5,%) Distributed along the outline of the block region A2, and sets each reference point ( ⁇ 1 ⁇ ) are connected to each other (eg, S (1—20), S (2—10), S (3—15), S (5—30)...;) To do.
  • the image processing unit 5 performs a counting process for counting the number of connected line segments in which the pixel values (0 or 1) of the pixels on the connected line segments all have the same value. As a result, at each reference point, the number of other reference points that can be seen through the reference point force mass region A2 is counted.
  • arbitrary reference points set in the above-described block region A2 are set as a reference point Pm and a reference point Pn, and a line segment connecting the reference point Pn and the reference point Pm is a connected line segment S (mn ).
  • this connection line segment S (mn) passes through the area of the mass area A2, the pixel values of the pixels on the connection line segment S (mn) all become the same value (0 or 1).
  • By comparing the pixel values of each pixel on the line segment it is determined whether or not the force passes only within the connected line segment S (m ⁇ n) 1S lump area A2.
  • the image processing unit 5 first performs the lump area.
  • a plurality of reference points are distributed at substantially constant intervals along the contour of A1.
  • the image processing unit 5 uses the other reference points (for example, P32, P28, P10, P25, ⁇ 21,...) For all reference points (for example, PI, P2, P3, P11, ⁇ 12). )
  • S (2-28), S (3—10), S (ll—25), S ( 12— 21) forms.
  • some connected line segments for example, the line segment S (3-10)) pass outside the mass area A1.
  • the count value the number of other reference points that the image processing unit 5 can see through each of the plurality of reference points existing in the region of the block region A1 through the region of the reference point force region A1.
  • the reference point for example, reference points P5, P6, P25, P30, etc.
  • the count value of the reference point near the overlapping portion of the medicines 10a and 10b is smaller than the reference point in the other part.
  • the image processing unit 5 performs a counting process for obtaining a count value for each of a plurality of reference points existing in the target area (lumb area A1), and uses the count value obtained by the count process.
  • the image processing unit 5 extracts, from a plurality of reference points in the block area A1, a reference point having a minimum count value (see Table 1) by the counting process as a reference point.
  • a second extraction process is performed.
  • the image processing unit 5 extracts the reference point P3 as a reference point. Note that, as a result of the counting process, there may be a case where there are a plurality of reference points whose numerical values are minimum values at the reference points of the same granular object or the reference points of different granular objects.
  • the image processing unit 5 arbitrarily selects any one of the reference points having the smallest count value, and this is extracted as a reference point, and the extracted reference point is processed as described later. I do. The result is the same no matter which point is used as the reference point and the number of granular objects is counted.
  • the image processing unit 5 has the lump area A2 set to 1. It is determined that there are two granular objects, the subsequent processing is terminated, and the number of granular objects corresponding to the lump area A2 is determined as one.
  • the image processing unit 5 can see through the region of the lump area A1 from the reference point P3 as shown in FIG. 3 (a). All reference points (for example, PI, P2, P4 to P7, P15 to P45) are selected, and a connecting line segment connecting the reference point P3 and the selected reference point is formed. Then, the image processing unit 5 performs a third extraction process for extracting an area surrounded by these connecting line segments as an object area B1 corresponding to one granular object (see FIG. 3B).
  • All reference points for example, PI, P2, P4 to P7, P15 to P45
  • the image processing unit 5 performs a fourth extraction process of removing the object region B1 from the mass region A1 and extracting the region as a new target region A3 (not shown), and this target region Among the reference points present in A3 (for example, P8, ⁇ 9 ⁇ ), the reference point with the smallest count value (see Table 1) by the above counting process (referred to here as reference point P10) This reference point P10 is extracted as a new reference point.
  • the image processing unit 5 selects all reference points (for example, P8, P9, ⁇ 10 ⁇ ) that can be seen from the reference point P10 through the target area A1.
  • a connecting line segment that connects the selected reference point and the reference point P10 to each other is formed.
  • an area surrounded by these connecting line segments is extracted as an object area B2 corresponding to one object (see FIG. 3 (b)).
  • the combined region of the object regions Bl and B2 is substantially equal to the lump region A1.
  • the image processor 5 performs reference point extraction processing.
  • the inspection determination unit 6 determines the number of extracted reference points (two in the present embodiment) as the number of granular objects existing in the lump area A1.
  • the image processing unit 5 extracts the reference point having the smallest count value among the reference points existing in the target region as the reference point (second extraction process), and this reference point Force Extract the region that is formed by connecting the reference point and the reference point that can be seen through the target region as the object region (third extraction process), and then remove the object region from the target region as the new target region.
  • the object areas Bl and B2 can be separated one by one from the lump area A1, and even if multiple granular objects overlap, they are extracted. The number of granular objects can be accurately counted based on the number of reference points.
  • Embodiment 2 of the present invention A granular object inspection method according to Embodiment 2 of the present invention and an inspection apparatus that performs the method will be described.
  • the configuration of the inspection apparatus is the same as that of the first embodiment, and the same components as those of the first embodiment are denoted by the same reference numerals as those described in the first embodiment, and the description thereof is omitted (hereinafter referred to as the first embodiment). The same).
  • the object region Bl shown in FIG. 3B includes not only the region corresponding to the medicine 10a but also the region corresponding to the medicine 10b. That is, in the image processing method described in the first embodiment, a region that is far from the actual object region of the medicines 10a and 10b is extracted.
  • the image processing unit 5 can extract an object region close to the actual regions of the medicines 10a and 10b by performing image processing described later. As a result, the number of granular materials can be counted more accurately.
  • the image processing unit 5 is the same as that described in the first embodiment.
  • Two reference points P3 and P10 are extracted by performing the second to fourth extraction processes.
  • the image processing unit 5 passes only one of the reference points (either P3 or P10) for each reference point (P3 or P10) through all the reference point force areas in the region.
  • Reference points that can be seen Are extracted, and a fifth extraction process is performed in which all the extracted reference points are used as reference point belonging reference points.
  • the image processing unit 5 forms two connecting line segments respectively connecting the reference point and the reference points P3 and P10 for all the reference points in the block region A1.
  • this reference point is determined to be a reference point through which only one reference point can be seen.
  • the reference point where only one reference point P3 and P10 corresponding to each of drugs 10a and 10b can be seen is the drug 10a , 10b exists around the overlapping part (hidden part of lump area A1).
  • the image processing unit 5 extracts the reference point PI, P2, P4, P5, P28, P29 as the reference point belonging reference point G1 for the reference point P3, and the reference point P10. Extracts the reference points P8, P9, Pl1, P12, P24, and P25 as the reference point belonging reference point G2.
  • the image processing unit 5 After extracting the reference point belonging reference points Gl and G2 belonging to the respective reference points P3 and P10, as shown in FIG. 4 (b), the image processing unit 5 refers to the reference point P3 and the reference point belonging reference. Connecting line segments connecting to point G1 (for example, S (3-1), S (3- 2), S (3-4), S (3-5), S (3-2) 8), S (3-29)) are formed, and these connected segments are extracted as the substance region B3 of the drug 10a corresponding to the reference point P3.
  • point G1 for example, S (3-1), S (3- 2), S (3-4), S (3-5), S (3-2) 8), S (3-29)
  • the reference point belonging reference point G1 which can only be seen through one of the reference points P3, is used by the image processing unit 5 as a reference point of the granular object to which the reference point P3 belongs.
  • the connecting line segment connecting to the reference point belonging reference point G1 is extracted as the object region corresponding to the reference point P3.
  • the same process is performed for the other reference point P10, and an object region corresponding to the reference point P10 is extracted.
  • the image processing unit 5 can extract a region close to the actual granular object region of the medicines 10a and 10b as the object region.
  • a granular object inspection method according to Embodiment 3 of the present invention and an inspection apparatus for performing the method will be described.
  • two image processing units 5 are provided.
  • the second to fourth extraction processes described in the first embodiment are repeatedly executed to extract two reference points P3 and P10, and then the second embodiment.
  • the reference point belonging reference points Gl and G2 belonging to the respective reference points P3 and P10 are extracted by the fifth extraction process described in the above.
  • the image processing unit 5 generates, for one reference point P3, a connecting line segment that connects the reference point P3 and all of the reference points belonging to the reference point belonging reference point G1. Then, an area (referred to as B5) surrounded by these connecting line segments is extracted as an object area of the medicine 10a corresponding to the reference point P3. For the other reference point P10, a connecting line segment connecting the reference point P10 and all the reference points belonging to the reference point belonging reference point G2 is generated, and an area surrounded by these connecting line segments (B6 )) As the object region of the medicine 10b corresponding to the reference point P10. Thereby, it is possible to extract a region closer to the actual region of the medicines 10a and 10b as the object region than in the second embodiment.
  • a granular object inspection method according to Embodiment 4 of the present invention and an inspection apparatus for performing the method will be described.
  • portions where the drugs 10a and 10b are in contact with each other or overlap are extracted as object regions.
  • the non-overlapping part was not extracted as an object area.
  • object regions B5 and B6 are extracted only in overlapping portions among regions corresponding to the respective drugs 10a and 10b. Regions CI and C2 were not extracted as object regions.
  • the image processing unit 5 extracts the object regions B5 and B6 by the method described in the third embodiment, two regions that do not belong to the object regions B5 and B6 (undecided regions CI , C2) is extracted as an undistinguished reference point. Then, the following processing is performed on the reference points in the object regions B5 and B6 from the reference points of the unidentified reference points extracted by the sixth extraction processing. For example, as shown in FIG. 6 (b), the image processing unit 5 starts from the unidentified reference points (for example, P30, P3 1, P32, P33, ⁇ 34%) In the undecided region C1.
  • the unidentified reference points for example, P30, P3 1, P32, P33, ⁇ 34
  • a connecting line segment is formed connecting the unidentified reference point of the object and the reference points in the object regions B5 and B6 (for example, ⁇ 1 ). It is detected which object region the connecting line segment to pass first passes. Then, the image processing unit 5 determines the object region through which the connecting line segment starting from each unidentified reference point first passes as the object region to which the unidentified reference point belongs. For example, two connecting line segments (for example, S (30-1), S) connecting the reference point P30 in the object region B5, B6 to the reference point PI, P11 in the undecided region C1. When (30-9) ...) is formed, any connecting line segment passes through the object region B5 first, so the image processing unit 5 determines that the reference point P30 belongs to the object region of the medicine 10a. It is judged that.
  • the image processing unit 5 performs the above processing on all the unidentified reference points in the undetermined areas CI and C2, so that all the unidentified reference points are objects of any granular object. Determine if it belongs to an area. Then, the object region B5 or B6 includes an area surrounded by a connecting line segment connecting each unidentified reference point and the reference point in the object region through which the unidentified reference point first passes. Regions B5 and B6 can be brought close to the regions corresponding to the actual drugs 10a and 10b.
  • the image processing unit 5 includes individual unidentified reference points extracted by the above processing and individual unidentified reference points belonging to the same object area of the granular object as the unidentified reference points.
  • Object areas extracted by the processing method of the second embodiment are formed by forming connecting line segments that are connected to each other and extracting regions surrounded by these connecting line segments as object regions B7 and B8 corresponding to the respective drugs.
  • a region obtained by combining B5 and B6 and the newly extracted object regions B7 and B8 may be extracted as object regions B9 and B10 (see FIG. 7).
  • a region close to the regions 10a and 10b can be extracted as an object region.
  • a granular object inspection method according to Embodiment 5 of the present invention and an inspection apparatus that performs the method will be described.
  • the present embodiment is different from the image processing method of the fourth embodiment described above in the method for obtaining the object region to which the unidentified reference point belongs.
  • the object region that can be seen from the unidentified reference point extracted in the sixth extraction process is set as the object region to which the unidentified reference point belongs.
  • a plurality of search lines for example, LI, L2 L8 extending radially from a certain unidentified reference point Pn are omitted.
  • a certain angle (eg, about 45 degrees) Form with.
  • the image processing unit 5 includes a connecting line segment connecting a plurality of search lines extending to the radial stripe between the reference point and the reference point belonging reference point extracted in the fifth extraction process belonging to the reference point, The area until the first intersection is determined as the area belonging to the object area corresponding to the first connecting line segment.
  • the image processing unit 5 does not extract only the connection line segment connecting the reference point and the reference point belonging reference point belonging to the reference point as the object region, and the unidentified reference point and the connection line segment.
  • the image processing unit 5 forms a plurality of search lines extending radially from a certain unidentified reference point Pn at a substantially constant angle, but part of the plurality of search lines ( For example, L1) is radiated from the reference point Pn to the opposite side of the object region, so it does not intersect the connecting line segment. Therefore, in the image processing unit 5, as shown in FIG.
  • the search lines LI, L3 When incident on the contour line LO of A1, the search lines LI and L3 are reflected at an exit angle substantially the same as the incident angles ⁇ 1 and ⁇ 3, and the reflected search lines Ll ′ and L3 ′ are the first connecting line segments that intersect.
  • the region up to may be determined as the object region to which the connecting line segment belongs.
  • the region up to the contour LO side with respect to the unidentified reference point Pn can be extracted as the object region, and the region closer to the actual granular object region can be extracted as the object region.
  • a granular object inspection method according to Embodiment 6 of the present invention and an inspection apparatus for performing the method will be described.
  • an area closer to the actual area of the medicines 10a and 10b can be extracted as the physical areas B5, B6, and the like. it can.
  • Each created search line intersects first And the identification number of the object region to which the connected line segment belongs is assigned to the search line and stored in the image storage unit 4. After that, ID numbers are assigned to all search lines. For each reference point, the image processing unit 5 examines the identification number assigned to an odd number of search lines starting from the reference point, and the object region with the largest identification number is the object region to which the reference point belongs. Judge that there is.
  • the image processing unit 5 determines that this reference point P27 belongs to the object region B5. The image processing unit 5 performs the above-described determination process for each reference point existing in the intermediate area C3.
  • a granular object inspection method according to Embodiment 7 of the present invention and an inspection apparatus that performs the method will be described.
  • the number of granular objects can be accurately counted even when a plurality of granular objects to be inspected overlap or are in contact with each other.
  • the image processing unit 5 performs the above-described implementation.
  • the image processing shown in the form is performed, a part of the contour line is dented, so two reference points are extracted.
  • the image processing unit 5 can determine the exact number of granular objects even when the medicine 10a is standing.
  • the reference points P3 and P10 are extracted by repeatedly executing the second to fourth extraction processes described in the first embodiment.
  • a reference point for example, P1, ⁇ 2
  • Force in the area of the lump area A1 is processed as described below. That is, for each of a plurality of reference points (P3 or P10), the image processing unit 5 passes the reference point (P3 or P3 or P10) from the plurality of reference points P in the block region A1 through the region of the block region A1. Extract all reference points that can only be seen through (P10), and extract the reference points that are on the opposite side of the reference point across the center of the block area A1 as the shape determination points. The extraction process is performed.
  • a reference point group consisting of reference points PI, P2, P4, and P5 on the reference point P3 side (reference point group C4 and And a reference point group (reference point group C5) composed of reference points P26, P27, and P28 on the opposite side across the central portion of the lump area A1 is extracted.
  • the image processing unit 5 extracts reference points P26, P27, and P28 belonging to the reference point group C4 as shape determination points.
  • reference point group C3 a reference point group consisting of reference points P8, P9, Pl1, and P12 on the reference point P10 side
  • reference point group C4 a reference point group consisting of reference points P23, P24, and P25 on the opposite side across the center of the mass area A1
  • Reference points P23, P24, and P25 belonging to C4 are extracted as shape determination points.
  • the shape determination point (P26, P27 or P28) corresponding to the reference point P3 and the reference point P10 A connecting line segment is formed connecting the shape determination points (P23, P24 or P25).
  • the pixel value of the background portion in the binary image is 0 and the pixel value of the drug portion is 1
  • a part of the connecting line segment connecting the reference points P3 and P10 is outside the region of the block region A1. Therefore, there is a part where the pixel value at both ends (reference points P3, P10) of the connecting line segment is 1 and the pixel value of the middle part is 0.
  • the two drugs 10a and 10b are overlapped or contacted.
  • the connecting line segment S (24-29) passes outside the block area A1
  • the pixel value at both ends of the connecting line segment is 1, and the intermediate pixel value is 0.
  • the image processing unit 5 forms a connecting line segment by connecting between the shape determination points corresponding to the two reference points, and at least a part of this connecting line segment passes outside the area of the lump area A1. If so, these two It can be determined that the reference points belong to different granular objects.
  • the image processing unit 5 can extract two reference points P3 and P10 by the above-described image processing. Even if the shape determination points are searched for the reference points P3 and P10, the reference points P3 and P10 can be seen from the reference point on the opposite side of the reference points P3 and P10 across the center of the lump area A1. Since it is possible, shape determination points are not extracted. As described above, when the determination condition that a part of the connecting line segment connecting the shape determination points passes the outer region of the block region A1 is not satisfied, the image processing unit 5 determines that the two reference points P3 and P10 are Judged as a reference point belonging to the same granular object. As a result, even if two reference points are extracted due to the standing of the granular object, the image processing unit 5 does not erroneously detect that two granular objects exist. Can be counted correctly.
  • the image processing unit 5 connects the connection line segment (referred to as the first connection line segment Sa) connecting the two reference points P3 and P10 and the lump area A1.
  • a connecting line segment (the second connecting line segment Sb) connecting the area surrounded by the contour line (referred to as the first area Da) and the shape determination points P29 and P24 corresponding to the reference points P3 and P10, respectively.
  • the second area Db the area surrounded by the outline of the block area A1 (referred to as the second area Db) is performed.
  • the areas of the first region Da and the second region Db are substantially equal.
  • the image processing unit 5 compares the area of the first region Da and the area of the second region Db, and determines whether the difference between the two is smaller than the predetermined reference area! Can be determined whether or not the force belongs to different granular objects.
  • the image processing unit 5 has the areas of the first region Da and the second region Db. It takes a relatively long time to calculate Therefore, the calculation time can be shortened by the following processing as compared with the case of obtaining the area value. As shown in FIG. 11 (b), the image processing unit 5 also draws a dotted force on the contour line surrounding the first region Da to the first connection line segment Sa, so that it is on the first connection line segment Sa and the contour line.
  • the maximum distance from the point (maximum distance E1) is calculated, and the point force on the contour line surrounding the second region Db is also perpendicular to the second connecting line segment Sb, and the second connecting line segment Sb and the point on the contour line
  • the maximum distances El and E2 are substantially equal.
  • the image processing unit 5 compares the maximum distances El and E2, and determines whether or not the two reference points belong to different granular objects depending on whether or not the distance difference between the two is shorter than a predetermined reference distance. Can be determined. Thus, even if two reference points are extracted due to the standing of the granular object, the image processing unit 5 does not erroneously detect that two granular objects exist. In addition, the inspection determination unit 6 can accurately count the number of granular objects based on the number of reference points belonging to different granular objects.
  • a plurality of shape determination points are extracted for each of the reference points P3 and P10.
  • the above-described determination process may be performed for all shape determination points. Since the determination process is performed a plurality of times, the time required for the calculation process increases. Therefore, the image processing unit 5 performs the above-described determination processing only for the shape determination point having the maximum distance value with respect to the reference points P3 and P10 among the plurality of shape determination points extracted for the reference points P3 and P10. Is preferably performed. As a result, the calculation time required for the determination process can be shortened.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Theoretical Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Analytical Chemistry (AREA)
  • Pathology (AREA)
  • Quality & Reliability (AREA)
  • Multimedia (AREA)
  • Geometry (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Image Analysis (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Image Processing (AREA)

Abstract

 粒状物体の検査方法及びその方法を実施する検査装置において、検査対象である薬剤10a,10bを撮像し、この撮像された画像の各画素の画素値をデジタル化し、デジタル画像内の薬剤10a,10bに対応する塊領域の輪郭線に沿って複数の参照点を分散し、個々の参照点から、塊領域内を通して見通すことができる他の参照点の数を計数し、計数値が最小の参照点を基準点として抽出して、この基準点の数を粒状物体の個数として計数する。これにより、検査対象である複数の粒状物体が重なったり、接触している場合、及び、片面に溝がある薬剤が起立している場合でも、正確に粒状物体の個数を計数することができる。

Description

明 細 書
粒状物体の検査方法及びその方法を実施する検査装置
技術分野
[0001] 本発明は、固形の薬剤のような粒状物体の検査を行う粒状物体の検査方法及びそ の方法を実施する検査装置に関する。
背景技術
[0002] 一般に、病院などの医療施設において、複数の薬剤を患者に投与する場合には、 患者が服用する薬剤の種類や個数を間違えないよう、 1回に服用する薬剤は、包装 材で一纏めに分包した状態で患者に提供される。間違った薬剤の用量や飲み合わ せは、深刻な副作用を引き起こす可能性があり、これを防止するため、薬剤の仕分け や分包作業は人手で行うことが義務づけられている。し力しながら、人手による仕分 け作業や分包作業によっても、ミスの発生する可能性はある。それゆえ、従来より、分 包された薬剤の種類や数量を検査する粒状物体の検査装置が提供されて ヽる (例え ば、特公平 4 17665号公報参照)。
[0003] 特公平 4— 17665号公報に示される粒状物体の検査装置では、 CCDカメラ等の 撮像手段によって撮像された薬剤の画像に、二値化等のデータ処理を施して得られ た画像データを画像処理し、画像中の物体の面積、周長、及び複雑度を求め、面積 及び複雑度をもとに画像中の物体が薬剤であるカゝ否かを判定して、薬剤の個数を求 めていた。なお、複雑度とは周長の 2乗を面積で除した値である。
発明の開示
[0004] し力しながら、分包された複数個の薬剤の一部が部分的に重なった状態で撮像さ れた場合、前述した粒状物体の検査装置では、個数の計数値が不正確になるという 問題があった。例えば、図 12 (a)に示されるように、検査台 1に載置された 2個の薬剤 10a, 10bが接触している場合、又は、同図(b) (c)に示されるように、 2個の薬剤 10a , 10bが重なっている場合、特許文献 1に示される粒状物体の検査装置は、物体の 面積及び複雑度をもとに画像中の物体が薬剤であるカゝ否かを判定しているので、面 積や周長を正しく検出できず、薬剤の判定を正確に行うことができな力つた。また、図 13 (a)に示されるように、薬剤 10a, 10bの片面に溝力あり、このような薬剤 10a, 10b 力 同図(b)に示されるように起立していると、輪郭の一部に凹みが現れるため、薬剤 の周長を正しく認識することができず、薬剤の個数を正しく計数できな 、可能性があ つた o
[0005] 上記問題を解決するために、薬剤を上側から撮像するだけではなぐ複数の方向 力 撮像する方法が考えられる。しかし、この方法は撮像手段を複数設置するか、又 は、撮像手段を複数の撮影位置に移動させる機構を必要とするため、コストアップを 招くという問題がある。
[0006] また、検査台を振動させる等により薬剤同士の重なりや接触等を無くした後、薬剤 を撮像して画像処理を行う方法も考えられる。しかし、この方法は検査台を振動させ る機構等を必要とするため、コストアップを招くと 、う問題がある。
[0007] 本発明は、上記問題を鑑みてなされたものであり、検査対象の粒状物体が重なつ たり、接触している場合でも、また、片面に溝がある薬剤が起立している場合でも、粒 状物体の個数を正確に計数できる粒状物体の検査方法及びその方法を実施する検 查装置を提供することを目的とする。
[0008] 本発明の粒状物体の検査方法は、検査対象である粒状物体を含む撮像領域を撮 像し、この撮像した画像の各画素の画素値をデジタルィ匕したデジタル画像内で、粒 状物体に対応する物体領域が複数個接触して 1つの塊領域を形成する場合に、該 塊領域から個々の前記物体領域を分離することにより、撮像領域内に存在する粒状 物体を検査する粒状物体の検査方法であって、
前記デジタル画像から前記塊領域を画像処理の対象領域として抽出する第 1の抽 出処理と、
前記第 1の抽出処理により抽出された対象領域の内側で該対象領域の輪郭線に 沿って複数の参照点を分散して設定する設定処理と、
前記により設定された個々の参照点について、該参照点力 前記対象領域の領域 内を通して見通すことができる他の参照点の数を計数する計数処理と、
前記対象領域に存在する複数の参照点から、前記計数処理による計数値が最小 の参照点を基準点として抽出する第 2の抽出処理と、 前記第 2の抽出処理により抽出された基準点力 前記対象領域の領域内を通して 見通すことができる参照点を全て選択し、選択された参照点及び前記基準点の間を 互いに結んでできる領域を粒状物体の物体領域として抽出する第 3の抽出処理と、 前記第 3の抽出処理により抽出された対象領域から前記物体領域を除いた領域を 新たな対象領域として抽出する第 4の抽出処理と、を備え、
前記第 2乃至第 4の抽出処理を繰り返し実行することにより抽出された基準点の数 を粒状物体の個数として計数するものである。
[0009] これにより、デジタル画像内で、粒状物体に対応する物体領域を一つずつ分離す ることができ、複数の粒状物体が、接触又は重なっている場合でも、抽出された基準 点の数をもとに粒状物体の個数を正確に計数することができる。
[0010] また、本発明は、上記の画像処理部が、前記第 2乃至第 4の抽出処理により抽出さ れた複数の基準点の各々について、前記第 1の抽出処理により抽出された対象領域 の領域内を通して、上記の基準点の内の 1点のみを見通すことができる全ての参照 点を当該基準点に属する基準点所属参照点として抽出する第 5の抽出処理をさらに 行い、また、前記基準点と前記第 5の抽出処理により抽出された上記の基準点に属 する全ての基準点所属参照点とをそれぞれ結ぶ連結線分を生成し、生成された全て の連結線分で囲まれる領域を上記の基準点に対応する粒状物体の物体領域として もよい。これにより、実際の粒状物体の領域により近い領域を物体領域として抽出す ることがでさる。
[0011] また、上記の連結線分の作成において、前記第 2乃至第 4の抽出処理を繰り返し実 行することにより抽出された複数の基準点の各々について、前記第 5の抽出処理によ り抽出された当該基準点に属する全ての基準点所属参照点の内の 2点を相互に結 ぶことにより生成してもよい。これにより、実際の粒状物体の領域にさらに近い領域を 物体領域として抽出することができる。
[0012] また、上記の連結線分の作成において、前記の全ての参照点から、前記第 5の抽 出処理で抽出された基準点所属参照点を除いた参照点を未判別参照点として抽出 する第 6の抽出処理を行い、この第 6の抽出処理で抽出された当該未判別参照点か ら、前記第 1の抽出処理により抽出された対象領域の領域内を通して見通すことがで きる物体領域を当該未判別参照点に対応する物体領域として決定し、決定された物 体領域に対応する基準点と基準点所属参照点と未判別参照点との内の 2点を相互 に結ぶことにより生成してもよい。これにより、実際の粒状物体の領域により近い領域 を物体領域として抽出することができる。
[0013] また、本発明は、画像処理部が、前記第 6の抽出処理で抽出された未判別参照点 力 放射状にのびる複数本の探索ラインを略一定の角度をおいて形成し、形成され た各探索ラインが前記第 5の抽出処理により抽出された当該基準点に属する全ての 基準点所属参照点の内の 2点を相互に結んだ連結線分と交差するまでの領域を交 差した連結線分に対応する物体領域に加えることもできる。これにより、未判別参照 点が属する物体領域を、この未判別参照点に最も近い物体領域として判断すること ができ、実際の粒状物体の領域にさらに近い領域を物体領域として抽出することが できる。
[0014] また、本発明は、上記の画像処理部が、前記第 2乃至第 4の抽出処理を繰り返し実 行することにより抽出された複数の基準点の各々について、前記第 1の抽出処理によ り抽出された対象領域の領域内を通して、前記基準点の 1点のみを見通すことができ 、且つ、前記の対象領域の中央部を挟んで前記基準点と反対側にある参照点を形 状判定点として抽出する第 7の抽出処理をさらに行い、何れかの基準点に対応する 前記第 7の抽出処理により抽出された形状判定点と他の基準点に対応する形状判 定点との間をそれぞれ結ぶ連結線分のうち、少なくとも一部が上記の対象領域の領 域外を通る場合には、前記の複数の基準点が異なる粒状物体に属すると判定し、判 定された異なる粒状物体に属する基準点の数をもとに粒状物体の個数を計数しても よい。これにより、片面に溝があるような粒状物体が立っている場合であっても、上記 の画像処理部は、前記第 7の抽出処理によっても形状判定点が抽出されないことか ら、 2つの基準点は同一の粒状物体に属するものと判断することができ、粒状物体の 個数が 2個であると誤識別されることなく粒状物体の個数を正確に識別することがで きる。
[0015] 上記のように、片面に溝があるような粒状物体が立っていて、前記第 2乃至第 4の抽 出処理により基準点が 2つ抽出された場合でも、これら 2つの基準点が同一の粒状物 体に属するものと判断することを可能とする画像処理方法においては、上記の画像 処理部が、前記第 2乃至第 4の抽出処理を繰り返し実行することにより抽出された何 れかの基準点と他の 1つの基準点との間を結ぶことにより作成される第 1連結線分と 前記輪郭線とで囲まれる領域を第 1領域として抽出し、前記 2つの基準点に対応する 第 7の抽出処理により抽出された各々の形状判定点の間を結ぶことにより作成される 第 2連結線分と前記輪郭線とで囲まれる領域を第 2領域として抽出する第 8の抽出処 理をさらに行い、抽出された第 1領域と第 2領域との面積差が所定の基準面積よりも 小さい場合は、当該 2つの基準点が異なる粒状物体に属すると判定し、判定された 異なる粒状物体に属する基準点の数をもとに粒状物体の個数を計数してもよい。
[0016] また、前記第 8の抽出処理により抽出された第 1領域を形成する輪郭線上の点と前 記第 1連結線分との間の最大距離と、前記第 8の抽出処理により抽出された第 2領域 を形成する輪郭線上の点と前記第 2連結線分との間の最大距離と、の距離差を求め 、この距離差が所定の基準距離よりも短い場合は、当該 2つの基準点が異なる粒状 物体に属すると判定してもよい。これにより、第 1領域及び第 2領域の面積を直接求 める場合よりも、演算処理に必要な時間を短縮することができる。
[0017] また、前記第 2乃至第 4の抽出処理を繰り返し実行することにより抽出された基準点 について、前期第 7の抽出処理により抽出された形状判定点が複数抽出された場合 は、これらの複数の形状判定点の中から、対応する基準点との距離が最も長い形状 判定点を選択し、選択された形状判定点を用いて上記の第 2連結線分を形成しても よい。これにより、判定処理に必要な演算時間をより短縮することができる。
[0018] さらに、本発明は、検査対象である粒状物体を含む撮像領域を撮像する撮像手段 と、撮像手段の画像の各画素の画素値をデジタルィ匕したデジタル画像内で粒状物 体に対応する物体領域が複数個接触して 1つの塊領域を形成する場合に前記塊領 域から個々の前記物体領域を分離する手段を有した画像処理部と、を備えた粒状物 体の検査装置であって、
前記画像処理部は、
前記デジタル画像から前記塊領域を画像処理の対象領域として抽出する第 1の抽 出手段と、 前記第 1の抽出手段により抽出された対象領域の内側で該対象領域の輪郭線に 沿って複数の参照点を分散して設定する設定手段と、
前記により設定された個々の参照点について該参照点から前記対象領域の領域 内を通して見通すことができる他の参照点の数を計数する計数手段と、
前記対象領域に存在する複数の参照点から前記計数手段による計数値が最小の 参照点を基準点として抽出する第 2の抽出手段と、
前記第 2の抽出手段により抽出された基準点力 前記対象領域の領域内を通して 見通すことができる参照点を全て選択し、選択された参照点及び前記基準点の間を 互いに結んでできる領域を粒状物体の物体領域として抽出する第 3の抽出手段と、 前記第 3の抽出手段により抽出された対象領域力 前記物体領域を除いた領域を 新たな対象領域として抽出する第 4の抽出手段と、
前記第 2乃至第 4の抽出手段を繰り返し用いることにより抽出された基準点の数をも とに粒状物体の個数を計数する手段と、を備えたものである。これにより、複数の粒 状物体が接触又は重なっている場合でも、抽出された基準点の数をもとに粒状物体 の個数を正確に計数することができる。
図面の簡単な説明
[図 1]本発明の実施形態 1に係る粒状物体の検査方装置の概略構成図。
[図 2] (a) (b) (c)は、同上の画像処理方法の説明図。
[図 3] (a) (b)は、同上の画像処理方法の説明図。
[図 4] (a) (b)は、本発明の実施形態 2に係る粒状物体の検査装置による画像処理方 法の説明図。
[図 5]本発明の実施形態 3に係る粒状物体の検査装置による画像処理方法の説明図
[図 6] (a) (b)は、本発明の実施形態 4に係る粒状物体の検査装置による画像処理方 法の説明図。
[図 7]同上の画像処理の結果を示す説明図である。
[図 8] (a) (b)は、本発明の実施形態 5に係る粒状物体の検査装置による画像処理方 法の説明図。 [図 9]本発明の実施形態 6に係る粒状物体の検査装置による画像処理方法の説明図
[図 10]本発明の実施形態 7に係る粒状物体の検査装置による画像処理方法の説明 図。
[図 11]本発明の実施形態 8に係る粒状物体の検查装置による画像処理方法の説明 図。
[図 12] (a) (b) (c)は、検查対象である粒状物体の画像であって、 2個の粒状物体が 接触又は重なった状態で検査台上に載置されたときの例を示す図。
[図 13] (a) (b)は、検查対象である粒状物体の画像であって、片面に溝がある粒状物 体が起立した状態で検査台上に載置されたときの例を示す図。
発明を実施するための最良の形態
] (実施形態 1)
以下、実施形態 1に係る粒状物体の検査方法及びその方法を実施する検查装置 について説明する。図 1は、本実施形態に係る粒状物体の検査装置の概略構成を 示す。この粒状物体の検查装置は、検査対象である粒状物体 (薬剤 10a, 10bとする )を载置する検査台 1と、検査台 1の上方に設置され、薬剤 10a', 10bを撮像する撮像 手段 2 (例えば、 CCDカメラ)と、検査台 1に対して撮像手段 2と同じ側に配置され、検 査台 1に載置した粒状物体に光を照射する照明装置.3と、撮像手段 2によって撮像さ れた画像信号の濃淡情報を適宜の閾値で二値化した二値化画像を記憶する画像記 憶部 4と、画像記憶部 4に記憶された二値画像を画像処理して、個々の粒状物体に 対応する物体領域に分離する画像処理部 5と、画像処理部 5により分離された物体 領域の数をもとに粒状物体の個数を計数する検査判定部 6と、を備える。そして、上 記の画像記憶部 4と画像処理部 5と検査判定部 6とは画像処理'検査判定部 7を構成 する。
] 照明装置 3から照射される光により、背景部分と薬剤 10a, 10bに対応する部分との 輝度差が大きくなる。また、検査台 1の表面は、光の反射率が低くなつていて、照明 装置 3が検査台 1に光を照射すると、撮像手段 2によって撮像される画像では、薬剤 10a、 10bの部分が明るぐ背景 (検查台 1の表面)の部分が喑く現される。このように 、薬剤 10a, 10bの輪郭と背景との間には比較的大きな輝度差が生じ、撮像手段 2か ら出力される画像信号の濃淡情報に関する信号値を二値化することで、薬剤 10a, 1 Obの輪郭と背景とを容易に分離することができる。また、撮像手段 2で撮像された画 像信号を二値化せず、 AZD変換により多値化することで、濃淡画像の画像データを 画像記憶部 4に記憶させてもよい。この濃淡画像を用いる場合には、微分処理などを 適用することができるため、判定精度を向上させることが可能となる。
[0022] 撮像手段 2によって撮像された画像信号をニ値ィ匕して得た二値画像は、画素値が 0と 1との二値のみ力 なるデジタル画像であり、 RAM力 なる画像記憶部 4に格納 される。なお、画像記憶部 4は、二値画像の記憶領域として用いられるだけではなぐ 後述する各種の画像処理において、作業用の記憶領域としても用いられる。画像記 憶部 4に記憶された二値画像は、画像処理部 5に入力され、以下に説明する画像処 理が施される。そして、画像処理部 5において、薬剤 10a, 10bの形状の認識が行わ れ、その認識結果をもとに、検査判定部 6が薬剤 10a, 10bの個数を識別する。また、 画像処理部 5には、 CRTや液晶ディスプレイ等カゝらなるモニタ装置(図示せず)が接 続される。このモニタ装置には、撮像手段 2で撮像された画像や、二値化処理部(図 示せず)で二値化した二値画像や、画像処理部 5による認識結果等が表示される。
[0023] 本実施形態に係る粒状物体の検査方法は、例えば、 1つの分包袋に分包するため の複数個の薬剤 10a, 10bを検査台 1上に載置して、撮像手段 2により撮像される複 数個の薬剤 10a, 10bの画像から、検査台 1上に載置された薬剤 10a, 10bの個数が 正しい個数である力否かを判断するものである。最終的に個数の判断がなされた薬 剤 10a, 10bは、包装材によって 1包みに包装される。包装材の材質が透明又は半 透明であって、薬剤 10a, 10bを撮像手段 2で撮像したときに、包装材による包装を 行っていない場合と同様に、薬剤 10a, 10bの輪郭を認識することができる画像を得 られる場合には、予め包装材で包装した薬剤 10a, 10bを検査台 1に載置して撮像し てもよい。
[0024] 次に、本実施形態に係る粒状物体の検査方法にお!、て、画像処理部 5の画像処 理方法を具体例を挙げて説明する。図 2 (a)は、円形の 2個の錠剤 (薬剤 10a, 10b) 力 薬剤 10a, 10bの一部が互いに重なった状態で検査台 1上に載置された場合に おける、画像記憶部 4に記憶される二値画像を例示している。この二値画像では、 2 つの薬剤 10a, 10bに対応する連続した 1つの領域 (以下、塊領域 A1という)が現さ れている。このような場合に、薬剤 10a, 10bの個数を計数するためには、二値画像 中の塊領域 A1から、個々の薬剤 10a, 10bに対応する領域 (以下、物体領域という) を分離する必要がある。
[0025] まず、画像処理部 5では、画像記憶部 4に記憶された二値画像から、塊領域 A1を 画像処理の対象領域として抽出する第 1の抽出処理が行われる。そして、抽出された 塊領域 A1の輪郭線の近傍にある適宜の画素を参照点として設定する設定処理が行 われる。この参照点は、塊領域 A1の内側であって、塊領域 A1の輪郭線の上の部位 に、又は塊領域 A1の輪郭線に対して数画素内側の部位に、略一定の間隔で分散 するように設定される。
[0026] ここで、薬剤 10aに他の薬剤が接触したり、重なったりすることなぐ 1個の薬剤 10a のみが、検査台 1上に載置された場合を例に挙げる。図 2 (c)は、円形の 1個の錠剤( 薬剤 10a)を撮像した場合における、画像記憶部 4に記憶される二値画像を例示して いる。この二値画像では、 1つの薬剤 10aに対応する領域 (塊領域 A2とする)が現さ れている。まず、画像処理部 5は、塊領域 A2の輪郭線に沿って分散させた全ての参 照点(例えば、 PI, P2, P3, P4, Ρ5· ··)を設定し、各々の参照点(Ρ1· ··)の間を相 互に結ぶ連結線分(例えば、 S (1— 20) , S (2— 10) , S (3— 15) , S (5— 30)…;)を 作成する。そして、画像処理部 5は、この連結線分上の各画素の画素値 (0又は 1)が 、全て同じ値となる連結線分の数を計数する計数処理を行う。これにより、各々の参 照点において、当該参照点力 塊領域 A2の領域内を通して見通すことができる他 の参照点の数が計数される。
[0027] ここで、上記の塊領域 A2に設定された任意の参照点を参照点 Pm及び参照点 Pn とし、参照点 Pnと参照点 Pmとの間を結ぶ線分を連結線分 S (m-n)とする。この連 結線分 S (m-n)力 塊領域 A2の領域内を通っている場合、連結線分 S (m— n)上 の各画素の画素値は全て同じ値 (0又は 1)となるので、線分上の各画素の画素値を 比較することによって、連結線分 S (m—n) 1S 塊領域 A2内のみを通っている力否か が判断される。なお、多値画像の場合には、連結線分上の画素の画素値がある設定 範囲内の濃度値であれば、同じ塊領域 A2の内側領域のみを通過して 、ると判断さ れる。図 2(c)の f列によると、 S(l— 20), S(2— 10), S(3— 15), S(5— 30)···は、 全て塊領域 A2の内側領域のみを通過していると判断される。そして、全ての参照点 において、当該参照点から塊領域 A2の領域内を通して見通せる他の参照点の数は 、同じ値 (参照点 P1 · "の総数を kとすると (k— 1)個)となる。
[0028] 一方、図 2(b)に示すように、部分的に重なった 2個の薬剤 10a, 10bで塊領域 A1 が形成されている場合においても、画像処理部 5は、まず、塊領域 A1の輪郭線に沿 つて複数個の参照点を略一定の間隔で分散して配置する。次に、画像処理部 5は、 全ての参照点(例えば、 PI, P2, P3, P11, Ρ12···)について、他の参照点(例えば 、 P32, P28, P10, P25, Ρ21···)との間をネ目互に結ぶ連結線分(f列えば、、 S(l— 3 2), S(2-28), S(3— 10), S(ll— 25), S (12— 21) ···)を形成する。この場合、 一部の連結線分 (例えば、線分 S (3— 10))は塊領域 A1の領域外を通過する。すな わち、画像処理部 5が、塊領域 A1の領域内に存在する複数の参照点の各々につい て、当該参照点力 塊領域 A1の領域内を通して見通すことができる他の参照点の 数 (以下、計数値という)を計数したとき、薬剤 10a, 10bの重なり部分の近傍にある参 照点(例えば、参照点 P5, P6, P25, P30等)には、輪郭線の窪んでいる部分が影と なって、塊領域 A1の領域内を通して見通すことができない参照点が存在する。その ため、薬剤 10a, 10bの重なり部分の近傍にある参照点の計数値は、他の部位にあ る参照点に比べて少なくなる。
[0029] 従って、画像処理部 5は、対象領域 (塊領域 A1)の領域内に存在する複数の参照 点の各々について、計数値を求める計数処理を行い、計数処理により得られた計数 値を画像記憶部 4に記憶させる。下記の表 1は、図 2(b)のように分散配置された個 々の参照点につ 、ての計数値の一例を示して 、る。
[0030] [表 1]
Figure imgf000012_0001
前述の計数処理の後、画像処理部 5では、塊領域 A1の領域内にある複数の参照 点から、計数処理による計数値 (表 1参照)が最小となる参照点を基準点として抽出 する第 2の抽出処理が行われる。図 2 (b)に示す例では、表 1より、参照点 P3の計数 値が最も少なくなるので、画像処理部 5は、参照点 P3を基準点として抽出する。なお 、計数処理の結果、同じ粒状物体の参照点、又は、異なる粒状物体の参照点で、計 数値が共に最小値となる複数の参照点が存在する場合も考えられる。この場合、画 像処理部 5は、計数値が最小の参照点の中から、何れか 1つの参照点を任意に選択 して、これが基準点として抽出され、抽出された基準点について後述の処理を行う。 どの点を基準点として粒状物体の個数を計数しても、結果は同じになる。一方、上記 の計数処理の結果、全ての参照点における計数値が同じになった場合、例えば、図 2 (c)に例示される場合には、画像処理部 5は、この塊領域 A2が 1つの粒状物体であ ると判断し、以後の処理を終了し、塊領域 A2に対応する粒状物体の個数を 1個と判 断する。
[0032] 次に、上記第 2の抽出処理により基準点 P3が抽出されると、図 3 (a)のように、画像 処理部 5では、この基準点 P3から塊領域 A1の領域内を通して見通せる全ての参照 点(例えば、 PI, P2, P4〜P7, P15〜P45)を選択し、基準点 P3と選択された参照 点の間を互いに結ぶ連結線分を形成する。そして、画像処理部 5は、これらの連結 線分で囲まれる領域を 1つの粒状物体に対応する物体領域 B1として抽出する第 3の 抽出処理を行う(図 3 (b)参照)。
[0033] 続 、て、画像処理部 5は、塊領域 A1から物体領域 B1を除 、た領域を新たな対象 領域 A3 (図示せず)として抽出する第 4の抽出処理を行い、この対象領域 A3に存在 する複数の参照点(例えば、 P8, Ρ9· ··)の中から、上記の計数処理による計数値 (表 1参照)が最小となる参照点(ここでは、参照点 P10とする)を選択し、この参照点 P10 を新たな基準点として抽出する。新たな基準点 P10が抽出されると、画像処理部 5で は、この基準点 P10から対象領域 A1の領域内を通して見通せる参照点(例えば、 P 8, P9, Ρ10· ··)を全て選択し、選択された参照点と基準点 P10の間とを互いに結ん でできる連結線分を形成する。そして、これらの連結線分で囲まれる領域を 1つの物 体に対応する物体領域 B2として抽出する(図 3 (b)参照)。このとき、物体領域 Bl, B 2を合わせた領域は、塊領域 A1とほぼ等しくなる。また、塊領域 A1から物体領域 B1 , B2を除いた領域には参照点が存在しなくなる。画像処理部 5は、基準点の抽出処 理を終了し、検査判定部 6では、抽出された基準点の数 (本実施形態では 2個)を塊 領域 A1内に存在する粒状物体の個数として判断する。
[0034] 上記のように、画像処理部 5が、対象領域内に存在する参照点の中で、計数値が 最小の参照点を基準点として抽出し (第 2の抽出処理)、この基準点力 対象領域の 領域内を通して見通せる参照点及び基準点の間を互いに結んでできる領域を物体 領域として抽出し (第 3の抽出処理)、対象領域から物体領域を除いた領域を新たな 対象領域として抽出する処理 (第 4の抽出処理)を繰り返し実行することで、塊領域 A 1から物体領域 Bl, B2を一つずつ分離することができ、複数の粒状物体が重なって いる場合でも、抽出された基準点の数をもとに、粒状物体の個数を正確に計数するこ とがでさる。
[0035] (実施形態 2)
本発明の実施形態 2に係る粒状物体の検査方法及びその方法を実施する検査装 置について説明する。なお、検査装置の構成は実施形態 1と同様であり、実施形態 1 と共通する構成要素には、実施形態 1に記載の符号と同一の符号を付して、その説 明は省略する(以下、同様)。
[0036] 前述した実施形態 1では、基準点を抽出した後、この基準点力 見通せる参照点と 基準点とを結ぶ連結線分で囲まれた領域を物体領域として抽出した。そのため、図 3 (b)に示される物体領域 Blには、薬剤 10aに対応する領域のみならず、薬剤 10bに 対応する領域が含まれている。すなわち、実施形態 1で説明した画像処理方法では 、実際の薬剤 10a, 10bの物体領域とは掛け離れた領域が抽出されている。しかし、 本実施形態によれば、画像処理部 5が、後述の画像処理を行うことによって、実際の 薬剤 10a, 10bの領域に近い物体領域を抽出することができる。これにより、粒状物 体の個数をより正確に計数することができる。
[0037] 本実施形態では、まず、図 4 (a)〖こ示されるよう〖こ、 2個の薬剤 10a, 10bが重なって いる場合において、画像処理部 5が、実施形態 1で説明した第 2乃至第 4の抽出処理 を行うことによって、 2個の基準点 P3, P10を抽出する。そして、画像処理部 5は、個 々の基準点(P3又は P10)について、領域内の全ての参照点力 領域内を通して、 当該基準点の内の 1点のみ(P3又は P10のいずれか)を見通すことができる参照点 を全て抽出し、抽出された全ての参照点を基準点所属参照点とする第 5の抽出処理 を行う。具体的には、画像処理部 5は、塊領域 A1内にある全ての参照点について、 当該参照点と基準点 P3, P10とをそれぞれ結ぶ 2本の連結線分を形成して、 2本の 連結線分の内の 1本だけ、連結線分上の各画素の画素値が同じ値となっていれば、 この参照点は、一方の基準点しか見通すことができない参照点であると判断する。こ こで、 2個の薬剤 10a, 10b力 図 4 (a)のように重なっている場合、薬剤 10a, 10bに それぞれ対応する基準点 P3, P10を 1つしか見通せない参照点は、薬剤 10a, 10b が重なり合つている部分 (塊領域 A1の隠れた部分)の周辺に存在することになる。例 えば、図 4 (a)においては、画像処理部 5では、基準点 P3については参照点 PI, P2 , P4, P5, P28, P29を基準点所属参照点 G1として抽出し、基準点 P10については 参照点 P8, P9, Pl l, P12, P24, P25を基準点所属参照点 G2として抽出する。
[0038] 各々の基準点 P3, P10に属する基準点所属参照点 Gl, G2の抽出処理後、図 4 ( b)に示されるように、画像処理部 5は、基準点 P3と基準点所属参照点 G1との間をそ れぞれ結ぶ連結線分(例えば、 S (3— 1) , S (3- 2) , S (3— 4) , S (3— 5) , S (3— 2 8) , S (3— 29) )を形成し、これらの連結線分を基準点 P3に対応した薬剤 10aの物 体領域 B3として抽出する。また、基準点 P10についても同様に、基準点 P10と基準 点所属参照点 G2との間をそれぞれ結ぶ連結線分 S (10— 8) , S (10— 9) , S (10— 11) , S (10— 12) , S (10— 24) , S (10— 25)を形成し、これらの連結線分を基準点 P10に対応した薬剤 10bの物体領域 B4として抽出する。
[0039] このように、一方の基準点 P3しか見通すことができない基準点所属参照点 G1は、 この基準点 P3が属する粒状物体の参照点として、画像処理部 5が、基準点 P3と対 応する基準点所属参照点 G1との間を結ぶ連結線分を基準点 P3に対応する物体領 域として抽出する。他方の基準点 P10についても同様の処理を行い、基準点 P10に 対応する物体領域として抽出する。これにより、画像処理部 5は、薬剤 10a, 10bの実 際の粒状物体の領域に近い領域を物体領域として抽出することができる。
[0040] (実施形態 3)
本発明の実施形態 3に係る粒状物体の検査方法及びその方法を実施する検査装 置について説明する。本実施形態では、図 5に示されるように、画像処理部 5は、 2個 の薬剤 10a, 10bが重なっている場合に、実施形態 1で説明した第 2乃至第 4の抽出 処理を繰り返し実行することにより 2個の基準点 P3, P10を抽出し、その後、実施形 態 2で説明した第 5の抽出処理により、各基準点 P3, P10にそれぞれ属する基準点 所属参照点 Gl, G2を抽出する。
[0041] 次に、画像処理部 5は、一方の基準点 P3について、基準点 P3と基準点所属参照 点 G 1の内の全ての参照点とを互!ヽに結ぶ連結線分を生成し、これらの連結線分で 囲まれる領域 (B5とする)を基準点 P3に対応する薬剤 10aの物体領域として抽出す る。また、他方の基準点 P10については、基準点 P10と基準点所属参照点 G2の内 の全ての参照点とを互いに結ぶ連結線分を生成し、これらの連結線分で囲まれる領 域 (B6とする)を基準点 P10に対応する薬剤 10bの物体領域として抽出する。これに より、前述の実施形態 2よりも、実際の薬剤 10a, 10bの領域に近い領域を物体領域 として抽出することが可能となる。
[0042] (実施形態 4)
本発明の実施形態 4に係る粒状物体の検査方法及びその方法を実施する検査装 置について説明する。前述した実施形態 2、 3の画像処理方法は、薬剤 10a, 10bが 互いに接触したり、重なっている部分は物体領域として抽出される。しかし、重なりの 無い部分は、物体領域として抽出されな力つた。例えば、実施形態 3の画像処理方 法では、図 6 (a)に示すように、個々の薬剤 10a, 10bにそれぞれ対応する領域のうち 、重なっている部分にのみ物体領域 B5, B6が抽出され、領域 CI, C2は物体領域と して抽出されな力つた。
[0043] そこで、本実施形態では、画像処理部 5が、実施形態 3で説明した方法により物体 領域 B5, B6を抽出した後に、物体領域 B5, B6に属さない 2つの領域 (未判定領域 CI, C2とする)中の参照点を未判別参照点として抽出する第 6の抽出処理を行う。 そして、この第 6の抽出処理により抽出された未判別参照点の各々の参照点から、物 体領域 B5, B6中の参照点に対して、以下のような処理を行なう。例えば、図 6 (b)に 示すように、画像処理部 5が、未判定領域 C1中の未判別参照点(例えば、 P30, P3 1, P32, P33, Ρ34· ··)を始点として、これらの未判別参照点と物体領域 B5, B6内 の参照点 (例えば、 Ρ1· ··)との間を結ぶ連結線分を形成し、未判別参照点を始点と する連結線分が、何れの物体領域を最初に通過するかを検出する。そして、画像処 理部 5は、各未判別参照点を始点とする連結線分が最初に通過する物体領域をそ の未判別参照点が属する物体領域として判断する。例えば、未判定領域 C1内の参 照点 P30を始点として、物体領域 B5, B6内の参照点 PI, P11との間を結ぶ 2本の 連結線分 (例えば、 S (30— 1) , S (30— 9) · ··)を形成した場合、何れの連結線分も 物体領域 B5を先に通るので、画像処理部 5は、この参照点 P30が、薬剤 10aの物体 領域に属する参照点であると判断する。
[0044] 画像処理部 5は、上記の処理を未判定領域 CI, C2内の全ての未判別参照点に対 して実行することにより、全ての未判別参照点が、何れの粒状物体の物体領域に属 するかを判断する。そして、個々の未判別参照点と当該未判別参照点が最初に通過 した物体領域中の参照点との間を結ぶ連結線分で囲まれる領域を上記物体領域 B5 又は B6に含めることによって、物体領域 B5, B6を実際の薬剤 10a, 10bに対応する 領域に近付けることができる。
[0045] また、画像処理部 5は、上記の処理により抽出された個々の未判別参照点と、当該 未判別参照点と同一の粒状物体の物体領域に属する個々の未判別参照点と、を互 いに結ぶ連結線分を形成し、これらの連結線分で囲まれる領域を各々の薬剤に対応 する物体領域 B7, B8として抽出して、実施形態 2の処理方法で抽出された物体領 域 B5, B6と、新たに抽出された物体領域 B7, B8とを合わせた領域を物体領域 B9, B10として抽出してもよく(図 7参照)、前述の実施形態 3よりも、更に実際の薬剤 10a , 10bの領域に近い領域を物体領域として抽出することができる。
[0046] (実施形態 5)
本発明の実施形態 5に係る粒状物体の検査方法及びその方法を実施する検査装 置について説明する。本実施形態は、前述した実施形態 4の画像処理方法と比べて 、未判別参照点の属する物体領域を求める方法が異なっている。実施形態 4の画像 処理方法では、前述の第 6の抽出処理で抽出された未判別参照点から見通せる物 体領域を、この未判別参照点が属する物体領域としている。一方、本実施形態の画 像処理方法では、図 8 (a)に示すように、まず、ある未判別参照点 Pnから放射状に伸 びる複数本の探索ライン (例えば、 LI, L2 L8)を略一定の角度 (例えば、約 45度) で形成する。そして、画像処理部 5は、放射条に伸びる複数の探索ラインが、基準点 とこの基準点に属する第 5の抽出処理で抽出された基準点所属参照点との間を結ぶ 連結線分と、最初に交差するまでの領域を最初に交差した連結線分に対応する物 体領域に属する領域として判断する。これにより、画像処理部 5は、基準点とこの基 準点に属する基準点所属参照点との間を結ぶ連結線分だけを物体領域として抽出 するのではなぐ未判別参照点と上記連結線分との間の領域も物体領域として抽出 することができる。
[0047] なお、画像処理部 5は、ある未判別参照点 Pnから放射状に伸びる複数本の探索ラ インを略一定の角度をおいて形成しているが、複数本の探索ラインの一部(例えば、 L1)は参照点 Pnから物体領域と反対側に放射されるため、上記連結線分と交差す ることはない。そこで、画像処理部 5では、図 8 (b)に示すように、連結線分と交差する ことがない探索ライン (例えば、 LI, L3とする)については、探索ライン LI, L3が、塊 領域 A1の輪郭線 LOに入射すると、この探索ライン LI, L3を入射角度 θ 1, Θ 3と略 同じ出射角度で反射させ、反射した探索ライン Ll ', L3'が、最初に交差した連結線 分までの領域を、その連結線分が属する物体領域として判断させてもよい。このよう に、より多くの探索ラインで物体領域を抽出することによって、実際の粒状物体の形 状により近い領域を物体領域として抽出することが可能となる。また、この処理方法に よれば、未判別参照点 Pnに対して輪郭線 LO側の領域まで物体領域として抽出でき 、実際の粒状物体の領域により近い領域を物体領域として抽出することができる。
[0048] (実施形態 6)
本発明の実施形態 6に係る粒状物体の検査方法及びその方法を実施する検査装 置について説明する。前述した実施形態 2乃至 5の画像処理方法では、実施形態 1 で説明した画像処理方法に比べて、実際の薬剤 10a, 10bの領域に近い領域を物 体領域 B5, B6等として抽出することができる。しかし、薬剤 10a, 10bの重なり部分、 例えば、物体領域 B5, B6の中間領域(図 9に示される C3)は、何れの物体領域 B5, B6に属しているのかを判断することが困難である。そこで、本実施形態では、まず、 画像処理部 5が、中間領域 C3内に存在する個々の参照点力 放射状に延びる奇数 本の探索ラインを生成する。そして、作成された個々の探索ラインが、最初に交差す る連結線分を求め、その連結線分が属する物体領域の識別番号を当該探索ライン に割り付けて画像記憶部 4に記憶させる。その後、全ての探索ラインについて識別番 号の割付処理を行う。画像処理部 5は、個々の参照点について、当該参照点を始点 とする奇数本の探索ラインに割り付けられた識別番号を調べ、最も多 、識別番号の 物体領域が当該参照点の属する物体領域であると判断する。
[0049] 例えば、図 9に示される中間領域 C3中の参照点 P27から、放射状にのびる 5本の 探索ラインを生成する。そして、各探索ラインに物体領域 B5, B6の識別番号を割り 付けると、 5本の検索ラインのうち、物体領域 B5の識別番号が割り付けられる探索ラ インの数が、物体領域 B6の識別番号が割り付けられる探索ラインの数よりも多くなる 。この場合、画像処理部 5は、この参照点 P27は物体領域 B5に属していると判断す る。また、画像処理部 5は、中間領域 C3内に存在する個々の参照点について、上記 の判定処理を行う。そして、物体領域 B5又は B6に属する参照点及び基準点の内の 2つを結ぶ連結線分を生成し、これらの連結線分で囲まれる領域を粒状物体に対応 する物体領域として抽出し直す。これにより、物体領域 B5, B6の中間領域 C3におい ても、何れの物体領域 B5, B6に属しているのかを判断することができる。
[0050] (実施形態 7)
本発明の実施形態 7に係る粒状物体の検査方法及びその方法を実施する検査装 置について説明する。前述の実施形態 1乃至 6によれば、検査対象である複数の粒 状物体が重なったり、接触している場合でも、粒状物体の個数を正確に計数すること ができる。し力し、図 13 (a)のように、薬剤 10a, 10bの片面に溝が形成されていて、 これらの薬剤 10a, 10bが起立している場合に、画像処理部 5が、前述の実施形態で 示した画像処理を行うと、輪郭線の一部に凹みができるため、基準点が 2つ抽出され てしまう。例えば、実施形態 1のように、基準点の個数だけから粒状物体の数を識別 した場合、薬剤 10aが立っていると 2個の粒状物体が存在すると誤検出される可能性 がある。しかし、本実施形態によれば、薬剤 10aが立っていても、画像処理部 5は、正 確な粒状物体の数を判断することができる。
[0051] 本実施形態では、図 10 (a)に示されるように、まず、実施形態 1において説明した 第 2乃至第 4の抽出処理を繰り返し実行することにより、基準点 P3及び P10を抽出す る。抽出された基準点 P3, P10の各々について、塊領域 A1の領域内にある参照点( 例えば、 P1, Ρ2· ··)力 後述の処理を行う。すなわち、画像処理部 5は、複数の基準 点(P3又は P10)の各々について、塊領域 A1内にある複数の参照点 Pの中から、塊 領域 A1の領域内を通して、当該基準点(P3又は P10)しか見通すことができ参照点 を全て抽出し、抽出された参照点の中で塊領域 A1の中央部を挟んで当該基準点と 反対側にある参照点を形状判定点として抽出する第 7の抽出処理を行う。
[0052] 例えば、基準点 P3については、基準点 P3のみを見通すことができる参照点として 、基準点 P3側にある参照点 PI, P2, P4, P5からなる参照点群 (参照点群 C4とする )と、塊領域 A1の中央部を挟んで反対側にある参照点 P26, P27, P28からなる参 照点群 (参照点群 C5とする)と、が抽出される。そして、画像処理部 5は、参照点群 C 4に属する参照点 P26, P27, P28を形状判定点として抽出する。同様に、基準点 P 10についても、この基準点 P10のみを見通せる参照点として、基準点 P10側にある 参照点 P8, P9, Pl l, P12からなる参照点群 (参照点群 C3とする)と、塊領域 A1の 中央部を挟んで反対側にある参照点 P23, P24, P25からなる参照点群 (参照点群 C4とする)とが抽出される力 画像処理部 5では、参照点群 C4に属する参照点 P23 , P24, P25を形状判定点として抽出する。
[0053] 前述の第 7の抽出処理により各基準点に対応する形状判定点が抽出された後、基 準点 P3に対応する形状判定点(P26、 P27又は P28)と、基準点 P10に対応する形 状判定点(P23、 P24又は P25)の間を結ぶ連結線分が形成される。ここで、二値画 像における背景部分の画素値を 0、薬剤部分の画素値を 1とすると、基準点 P3, P10 の間を結ぶ連結線分は、その一部が塊領域 A1の領域外を通るため、連結線分の両 端 (基準点 P3, P10)の画素値は 1で、中間部の画素値が 0となる部分がある。同様 に、基準点 P3, P10にそれぞれ対応する形状判定点の間を結ぶ連結線分 (例えば、 線分 S (24— 29) )を形成すると、 2つの薬剤 10a, 10bが重なっていたり、接触してい る場合には、連結線分 S (24— 29)の一部が塊領域 A1の領域外を通過するため、 連結線分の両端の画素値は 1で、中間部の画素値が 0となる部分がある。このように 、画像処理部 5は、 2つの基準点に対応する形状判定点の間を結んで連結線分を形 成し、この連結線分の少なくとも一部が塊領域 A1の領域外を通っていれば、この 2つ の基準点が異なる粒状物体に属する基準点であると判断することができる。
[0054] 一方、図 10 (b)のように、 1つの薬剤 10aが立っている場合、画像処理部 5は、前述 の画像処理によって 2つの基準点 P3, P10を抽出することができる力 個々の基準 点 P3, P10について形状判定点を探索しても、塊領域 A1の中央部を挟んで基準点 P3, P10と反対側にある参照点からは基準点 P3, P10の両方を見通すことが可能な ので、形状判定点は抽出されない。このように、形状判定点の間を結ぶ連結線分の 一部が、塊領域 A1の外側領域を通過するという判定条件が成立しない場合、画像 処理部 5は、 2つの基準点 P3, P10が同一の粒状物体に属する基準点であると判断 する。これにより、粒状物体が立っていることにより、 2つの基準点が抽出された場合 であっても、画像処理部 5は、 2つの粒状物体が存在すると誤検出することはなぐ粒 状物体の個数を正しく計数することができる。
[0055] (実施形態 8)
本発明の実施形態 8に係る粒状物体の検査方法及びその方法を実施する検査装 置について説明する。本実施形態における画像処理方法は、実施形態 7で説明した 画像処理方法と比べて、抽出された基準点が異なる粒状物体に属するもの力否かを 判定する方法が異なっている。本実施形態において、画像処理部 5は、図 11 (a)に 示すように、 2つの基準点 P3, P10の間を結ぶ連結線分 (第 1連結線分 Saとする)と 塊領域 A1の輪郭線とで囲まれる領域 (第 1領域 Daとする)と、基準点 P3, P10にそ れぞれ対応する形状判定点 P29, P24の間を結ぶ連結線分 (第 2連結線分 Sbとする )と塊領域 A1の輪郭線とで囲まれる領域 (第 2領域 Dbとする)と、を抽出する第 8の抽 出処理を行う。図 11 (a)の例のように 2個の薬剤 10a, 10bが重なっている場合には、 第 1領域 Daと第 2領域 Dbとの面積は略等しくなる。
[0056] 一方、前述した図 10 (b)のように、片面のみに溝が形成された薬剤 10aが立ってい る場合、第 1連結線分 Saと輪郭線とで囲まれる第 1領域 Daは存在するが、第 2領域 Dbに相当する領域は存在しない。従って、画像処理部 5は、第 1領域 Daの面積と第 2領域 Dbの面積と比較し、両者の差が所定の基準面積よりも小さ!/、か否かで 2つの 基準点 P3, P10が異なる粒状物体に属している力否かを判定することができる。
[0057] なお、本実施形態では、画像処理部 5が、第 1領域 Daと第 2領域 Dbの面積の面積 を演算するのに比較的長い時間を要する。そこで、以下の処理により、面積値を求め る場合よりも演算時間を短縮することができる。画像処理部 5は、図 11 (b)に示される ように、第 1領域 Daを囲む輪郭線上の点力も第 1連結線分 Saに垂線を下ろして、第 1連結線分 Saと輪郭線上の点との最大距離 (最大距離 E1とする)を求めるとともに、 第 2領域 Dbを囲む輪郭線上の点力も第 2連結線分 Sbに垂線を下ろして、第 2連結 線分 Sbと輪郭線上の点との最大距離 (最大距離 E2とする)を求めると、 2個の薬剤 1 Oa, 10bが重なっている場合は最大距離 El, E2が略等しくなる。
[0058] 一方、図 4 (b)のように片面のみに溝が形成された薬剤 10aが立っている場合、第 1 連結線分 Saと輪郭線とで囲まれる第 1領域 Daは存在するが、第 2領域 Dbに相当す る領域は存在しなくなる。従って、画像処理部 5では、最大距離 El, E2を比較し、両 者の距離差が所定の基準距離よりも短いか否かで 2つの基準点が異なる粒状物体 に属している力否かを判定することができる。これにより、粒状物体が立っていること により、 2つの基準点が抽出された場合であっても、画像処理部 5は、 2つの粒状物 体が存在すると誤検出することはない。また、検査判定部 6は、異なる粒状物体に属 する基準点の数をもとに粒状物体の個数を正確に計数することができる。
[0059] なお、本実施形態では、各基準点 P3, P10について、それぞれ複数の形状判定点 が抽出される。ここで、全ての形状判定点について、前述の判定処理を行ってもよい 1S 複数回の判定処理が行われるため、演算処理に要する時間が長くなる。従って、 画像処理部 5は、各基準点 P3, P10について抽出された複数の形状判定点の内、 基準点 P3, P10との距離値が最大となる形状判定点のみについて、前述の判定処 理を行うのが好ましい。これにより、判定処理に必要な演算時間を短縮することがで きる。
[0060] また、本出願は、日本国特許出願 2005— 048032号及び日本国特許出願 2005 — 048033号に基づいており、その特許出願の内容は、参照によって本出願に組み 込まれる。

Claims

請求の範囲
[1] 検査対象である粒状物体を含む撮像領域を撮像し、この撮像した画像の各画素の 画素値をデジタル化したデジタル画像内で、粒状物体に対応する物体領域が複数 個接触して 1つの塊領域を形成する場合に、該塊領域から個々の前記物体領域を 分離することにより、撮像領域内に存在する粒状物体を検査する粒状物体の検査方 法であって、
前記デジタル画像から前記塊領域を画像処理の対象領域として抽出する第 1の抽 出処理と、
前記第 1の抽出処理により抽出された対象領域の内側で該対象領域の輪郭線に 沿って複数の参照点を分散して設定する設定処理と、
前記により設定された個々の参照点について、該参照点力 前記対象領域の領域 内を通して見通すことができる他の参照点の数を計数する計数処理と、
前記対象領域に存在する複数の参照点から、前記計数処理による計数値が最小 の参照点を基準点として抽出する第 2の抽出処理と、
前記第 2の抽出処理により抽出された基準点力 前記対象領域の領域内を通して 見通すことができる参照点を全て選択し、選択された参照点及び前記基準点の間を 互いに結んでできる領域を粒状物体の物体領域として抽出する第 3の抽出処理と、 前記第 3の抽出処理により抽出された対象領域から前記物体領域を除いた領域を 新たな対象領域として抽出する第 4の抽出処理と、を備え、
前記第 2乃至第 4の抽出処理を繰り返し実行することにより抽出された基準点の数 を粒状物体の個数として計数することを特徴とする粒状物体の検査方法。
[2] 前記第 2乃至第 4の抽出処理を繰り返し実行することにより抽出された複数の基準 点の各々について、前記第 1の抽出処理により抽出された対象領域の領域内を通し て前記基準点の内の 1点のみを見通すことができる全ての参照点を当該基準点に属 する基準点所属参照点として抽出する第 5の抽出処理をさらに備え、
前記第 2乃至第 4の抽出処理を繰り返し実行することにより抽出された基準点と前 記第 5の抽出処理により抽出された当該基準点に属する全ての基準点所属参照点と を相互に結ぶ連結線分を生成し、 前記により生成された全ての連結線分で囲まれる領域を当該基準点に対応する物 体領域とすることを特徴とする請求項 1に記載の粒状物体の検査方法
[3] 前記第 2乃至第 4の抽出処理を繰り返し実行することにより抽出された複数の基準 点の各々について、前記第 5の抽出処理により抽出された当該基準点に属する全て の基準点所属参照点の内の 2点を相互に結んで連結線分を生成することを特徴とす る請求項 2に記載の粒状物体の検査方法。
[4] 前記全ての参照点力 前記第 5の抽出処理で抽出された基準点所属参照点を除 いた参照点を未判別参照点として抽出する第 6の抽出処理をさらに備え、
前記第 6の抽出処理で抽出された当該未判別参照点から前記第 1の抽出処理によ り抽出された対象領域の領域内を通して見通すことができる物体領域を当該未判別 参照点に対応する物体領域として決定し、
前記により決定された物体領域に対応する基準点と基準点所属参照点と未判別参 照点との内の 2点を相互に結んで連結線分を生成することを特徴とする請求項 3に記 載の粒状物体の検査方法。
[5] 前記全ての参照点力 前記第 5の抽出処理で抽出された基準点所属参照点を除 いた参照点を未判別参照点として抽出する第 6の抽出処理をさらに備え、
前記第 6の抽出処理で抽出された未判別参照点から放射状にのびる複数本の探 索ラインを略一定の角度をお 、て形成し、
前記により形成された各探索ラインが前記第 5の抽出処理により抽出された当該基 準点に属する全ての基準点所属参照点の内の 2点を相互に結んだ連結線分と交差 するまでの領域を交差した連結線分に対応する物体領域に加えることを特徴とする 請求項 3に記載の粒状物体の検査方法。
[6] 前記全ての参照点力 前記第 5の抽出処理で抽出された基準点所属参照点を除 いた参照点を未判別参照点として抽出する第 6の抽出処理をさらに備え、
前記第 6の抽出処理で抽出された当該未判別参照点から前記第 1の抽出処理によ り抽出された対象領域の領域内を通して見通すことができる物体領域を当該未判別 参照点に対応する物体領域として決定し、
前記により決定された物体領域に対応する全ての基準点と基準点所属参照点と未 判別参照点の内の 2点を互いに結ぶ連結線分を生成することを特徴とする請求項 2 に記載の粒状物体の検査方法。
[7] 前記全ての参照点力 前記第 5の抽出処理で抽出された基準点所属参照点を除 いた参照点を未判別参照点として抽出する第 6の抽出処理をさらに備え、
前記第 6の抽出処理で抽出された未判別参照点から、放射状にのびる複数本の探 索ラインを略一定の角度をお 、て形成し、
前記により形成された各探索ラインが、前記第 2乃至第 4の抽出処理を繰り返し実 行することにより抽出された基準点と前記第 5の抽出処理により抽出された当該基準 点に属する全ての基準点所属参照点との内の 2点を相互に結んだ連結線分と交差 するまでの領域を交差した連結線分に対応する物体領域に加えることを特徴とする 請求項 2に記載の粒状物体の検査方法。
[8] 前記第 2乃至第 4の抽出処理を繰り返し実行することにより抽出された複数の基準 点の各々について、前記第 1の抽出処理により抽出された対象領域の領域内を通し て前記基準点のうちの 1点のみを見通すことができ、且つ、前記対象領域の中央部 を挟んで前記基準点と反対側にある参照点を形状判定点として抽出する第 7の抽出 処理をさらに備え、
何れかの基準点に対応する前記第 7の抽出処理により抽出された形状判定点と他 の基準点に対応する形状判定点との間をそれぞれ結ぶ連結線分のうち、少なくとも 一部が前記対象領域の領域外を通る場合には、当該複数の基準点が異なる粒状物 体に属すると判定し、
前記により判定された異なる粒状物体に属する基準点の数をもとに粒状物体の個 数を計数することを特徴とする請求項 1に記載の粒状物体の検査方法。
[9] 前記第 2乃至第 4の抽出処理を繰り返し実行することにより抽出された複数の基準 点の各々について、前記第 1の抽出処理により抽出された対象領域の領域内を通し て前記基準点のうちの 1点のみを見通すことができ、且つ、前記対象領域の中央部 を挟んで前記基準点と反対側にある参照点を形状判定点として抽出する第 7の抽出 処理と、
何れかの基準点と他の 1つの基準点との間を結ぶことにより作成される第 1連結線 分と前記輪郭線とで囲まれる領域を第 1領域として抽出し、前記 2つの基準点に対応 する前記第 7の抽出処理により抽出された各々の形状判定点の間を結ぶことにより 作成される第 2連結線分と前記輪郭線とで囲まれる領域を第 2領域として抽出する第 8の抽出処理と、をさらに備え、
前記第 8の抽出処理により抽出された第 1領域と第 2領域との面積差が所定の基準 面積よりも小さい場合は、当該 2つの基準点が異なる粒状物体に属すると判定し、 前記により判定された異なる粒状物体に属する基準点の数をもとに粒状物体の個 数を計数することを特徴とする請求項 1に記載の粒状物体の検査方法。
[10] 前記第 8の抽出処理により抽出された第 1領域を形成する輪郭線上の点と前記第 1 連結線分との間の最大距離と、前記第 8の抽出処理により抽出された第 2領域を形 成する輪郭線上の点と前記第 2連結線分との間の最大距離と、の距離差を求め、こ の距離差が所定の基準距離よりも短い場合は、当該 2つの基準点が異なる粒状物体 に属すると判定することを特徴とする請求項 9に記載の粒状物体の検査方法。
[11] 前記第 2乃至第 4の抽出処理を繰り返し実行することにより抽出された基準点につ いて、前記第 7の抽出処理により抽出された形状判定点が複数抽出された場合、こ れらの複数の前記形状判定点の中から対応する基準点との距離が最も長い形状判 定点を選択し、選択された形状判定点を用いて前記第 2連結線分を形成することを 特徴とする請求項 10に記載の粒状物体の検査方法。
[12] 前記第 2乃至第 4の抽出処理を繰り返し実行することにより抽出された基準点につ いて、前記第 7の抽出処理により抽出された形状判定点が複数抽出された場合、こ れら複数の前記形状判定点の中から対応する基準点との距離が最も長 ヽ形状判定 点を選択し、選択された形状判定点を用いて前記第 2連結線分を形成することを特 徴とする請求項 9に記載の粒状物体の検査方法。
[13] 検査対象である粒状物体を含む撮像領域を撮像する撮像手段と、撮像手段の画 像の各画素の画素値をデジタル化したデジタル画像内で粒状物体に対応する物体 領域が複数個接触して 1つの塊領域を形成する場合に前記塊領域から個々の前記 物体領域を分離する手段を有した画像処理部と、を備えた粒状物体の検査装置で あって、 前記画像処理部は、
前記デジタル画像から前記塊領域を画像処理の対象領域として抽出する第 1の抽 出手段と、
前記第 1の抽出手段により抽出された対象領域の内側で該対象領域の輪郭線に 沿って複数の参照点を分散して設定する設定手段と、
前記により設定された個々の参照点について該参照点から前記対象領域の領域 内を通して見通すことができる他の参照点の数を計数する計数手段と、
前記対象領域に存在する複数の参照点から前記計数手段による計数値が最小の 参照点を基準点として抽出する第 2の抽出手段と、
前記第 2の抽出手段により抽出された基準点力 前記対象領域の領域内を通して 見通すことができる参照点を全て選択し、選択された参照点及び前記基準点の間を 互いに結んでできる領域を粒状物体の物体領域として抽出する第 3の抽出手段と、 前記第 3の抽出手段により抽出された対象領域力 前記物体領域を除いた領域を 新たな対象領域として抽出する第 4の抽出手段と、
前記第 2乃至第 4の抽出手段を繰り返し実行することにより抽出された基準点の数 をもとに粒状物体の個数を計数する手段と、を備えたことを特徴とする粒状物体の検 查装置。
検査対象である粒状物体を含む撮像領域を撮像する撮像手段と、撮像手段の画 像の各画素の画素値をデジタル化したデジタル画像内で粒状物体に対応する物体 領域が複数個接触して 1つの塊領域を形成する場合に前記塊領域から個々の前記 物体領域を分離する手段を有した画像処理部と、を備えた粒状物体の検査装置で あって、
前記画像処理部は、
前記デジタル画像から前記塊領域を画像処理の対象領域として抽出する第 1の抽 出手段と、
前記第 1の抽出手段により抽出された対象領域の内側で該対象領域の輪郭線に 沿って複数の参照点を分散して設定する設定手段と、
前記により設定された個々の参照点について該参照点から前記対象領域の領域 内を通して見通すことができる他の参照点の数を計数する計数手段と、
前記対象領域に存在する複数の参照点から前記計数手段による計数値が最小の 参照点を基準点として抽出する第 2の抽出手段と、
前記第 2の抽出手段により抽出された基準点力 前記対象領域の領域内を通して 見通すことができる参照点を全て選択し、選択された参照点及び前記基準点の間を 互いに結んでできる領域を粒状物体の物体領域として抽出する第 3の抽出手段と、 前記第 3の抽出手段により抽出された対象領域力 前記物体領域を除いた領域を 新たな対象領域として抽出する第 4の抽出手段と、
前記第 2乃至第 4の抽出手段を繰り返し実行することにより抽出された複数の基準 点の各々について、前記第 1の抽出手段により抽出された対象領域の領域内を通し て前記基準点の内の 1点のみを見通すことができ、且つ、前記対象領域の中央部を 挟んで前記基準点と反対側にある参照点を形状判定点として抽出する第 7の抽出手 段と、
何れかの基準点に対応する前記第 7の抽出処理により抽出された形状判定点と他 の基準点に対応する形状判定点との間をそれぞれ結ぶ連結線分のうち、少なくとも 一部が前記対象領域の領域外を通る場合には、当該複数の基準点が異なる粒状物 体に属すると判定し、前記により判定された異なる粒状物体に属する基準点の数をも とに粒状物体の個数を計数する手段と、を備えたことを特徴とする粒状物体の検査 装置。
前記第 2乃至第 4の抽出手段を繰り返し実行することにより抽出された何れかの基 準点と他の 1つの基準点との間を結ぶことにより作成される第 1連結線分と前記輪郭 線とで囲まれる領域を第 1領域として抽出し、前記 2つの基準点に対応する前記第 7 の抽出処理により抽出された各々の形状判定点の間を結ぶことにより作成される第 2 連結線分と前記輪郭線とで囲まれる領域を第 2領域として抽出する第 8の抽出手段と 前記第 8の抽出手段により抽出された第 1領域と第 2領域との面積差が所定の基準 面積よりも小さい場合は、当該 2つの基準点が異なる粒状物体に属すると判定し、前 記により判定された異なる粒状物体に属する基準点の数をもとに粒状物体の個数を 計数する手段と、を備えたことを特徴とする請求項 14に記載の粒状物体の検査装置
PCT/JP2006/302973 2005-02-23 2006-02-20 粒状物体の検査方法及びその方法を実施する検査装置 WO2006090671A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2006800056176A CN101175990B (zh) 2005-02-23 2006-02-20 粒状物体的检查方法及实施该方法的检查装置
KR1020077019019A KR100929475B1 (ko) 2005-02-23 2006-02-20 입상물체의 검사방법 및 그 방법을 실시하는 검사장치
EP06714113A EP1852693A4 (en) 2005-02-23 2006-02-20 METHOD FOR EXAMINING GRANULAR MATERIAL AND EXAMINATION DEVICE FOR CARRYING OUT SAID METHOD
US11/816,536 US7916949B2 (en) 2005-02-23 2006-02-20 Method of inspecting granular material and inspection device for conducting that method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005-048033 2005-02-23
JP2005-048032 2005-02-23
JP2005048033A JP4639841B2 (ja) 2005-02-23 2005-02-23 粒状物体の検査方法及びそれを用いる検査装置
JP2005048032A JP4639840B2 (ja) 2005-02-23 2005-02-23 粒状物体の検査方法及びそれを用いる検査装置

Publications (1)

Publication Number Publication Date
WO2006090671A1 true WO2006090671A1 (ja) 2006-08-31

Family

ID=36927311

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/302973 WO2006090671A1 (ja) 2005-02-23 2006-02-20 粒状物体の検査方法及びその方法を実施する検査装置

Country Status (5)

Country Link
US (1) US7916949B2 (ja)
EP (1) EP1852693A4 (ja)
KR (1) KR100929475B1 (ja)
CN (1) CN101175990B (ja)
WO (1) WO2006090671A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010061646A (ja) * 2008-08-08 2010-03-18 Make Softwear:Kk 画像処理装置、画像出力装置、画像処理方法及びコンピュータプログラム
CN109073564A (zh) * 2016-04-22 2018-12-21 富士胶片株式会社 药剂监查装置及方法以及程序

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006090671A1 (ja) * 2005-02-23 2006-08-31 Matsushita Electric Works, Ltd. 粒状物体の検査方法及びその方法を実施する検査装置
JP4755714B2 (ja) * 2009-11-17 2011-08-24 株式会社湯山製作所 薬剤払出装置
JP5886209B2 (ja) * 2010-12-17 2016-03-16 パナソニックヘルスケアホールディングス株式会社 錠剤鑑査装置
KR102223436B1 (ko) * 2012-10-03 2021-03-05 가부시키가이샤 유야마 세이사쿠쇼 약제 감사 시스템, 권취 장치, 조출 장치 및 홀더
US9994347B2 (en) * 2013-02-20 2018-06-12 Yuyama Mfg. Co., Ltd. Medicine inspection device and medicine packaging system
JP6167053B2 (ja) * 2014-02-28 2017-07-19 富士フイルム株式会社 検査装置及び検査方法、並びに検査方法をコンピュータに実行させるプログラム
WO2019116543A1 (ja) * 2017-12-15 2019-06-20 日本たばこ産業株式会社 シガレットフィルタ検査方法、シガレットフィルタ検査装置、及びシガレットフィルタ検査プログラム
EP3922232B1 (en) * 2019-02-08 2022-11-23 FUJIFILM Toyama Chemical Co., Ltd. Medicine identification system, medicine identification device, medicine identification method, and program

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09231342A (ja) * 1996-02-26 1997-09-05 Sanyo Electric Co Ltd 錠剤検査方法及び装置
JP2004234132A (ja) * 2003-01-28 2004-08-19 Matsushita Electric Works Ltd 粒状物体の検査装置およびその検査方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3150730A (en) * 1960-03-23 1964-09-29 Wm Ainsworth & Sons Inc Balance
US4093941A (en) * 1976-12-09 1978-06-06 Recognition Equipment Incorporated Slope feature detection system
JPH0417665A (ja) 1990-05-10 1992-01-22 Kowa Eng Kk 銀白色装飾品
JP3438925B2 (ja) * 1993-12-28 2003-08-18 三洋電機株式会社 錠剤検査システム
US5978520A (en) * 1995-07-31 1999-11-02 Hitachi, Ltd. Method of recognizing image data and apparatus therefor
US5974174A (en) * 1996-09-26 1999-10-26 Victor Company Of Japan, Ltd. Picture-information processing apparatus
JP4037512B2 (ja) * 1997-04-15 2008-01-23 コニカミノルタビジネステクノロジーズ株式会社 画像読取装置
JP3557081B2 (ja) * 1997-08-29 2004-08-25 シーケーディ株式会社 捺印錠剤の外観検査方法と捺印錠剤の外観検査装置
WO2000033251A1 (fr) * 1998-11-30 2000-06-08 Yamatake Corporation Dispositif de reconnaissance de particules
US6307964B1 (en) * 1999-06-04 2001-10-23 Mitsubishi Electric Research Laboratories, Inc. Method for ordering image spaces to represent object shapes
US7110003B2 (en) * 2000-12-22 2006-09-19 Canon Kabushiki Kaisha Rendering objects
US6378572B1 (en) * 2001-03-28 2002-04-30 Siemens Corporate Research, Inc. Image processing system for inspection of tablets in slab filler packaging machines
KR100468857B1 (ko) * 2002-11-21 2005-01-29 삼성전자주식회사 2차원 형상에 대한 투사 불변형 표현자를 이용한핸드/아이 캘리브레이션 방법
WO2006090671A1 (ja) * 2005-02-23 2006-08-31 Matsushita Electric Works, Ltd. 粒状物体の検査方法及びその方法を実施する検査装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09231342A (ja) * 1996-02-26 1997-09-05 Sanyo Electric Co Ltd 錠剤検査方法及び装置
JP2004234132A (ja) * 2003-01-28 2004-08-19 Matsushita Electric Works Ltd 粒状物体の検査装置およびその検査方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010061646A (ja) * 2008-08-08 2010-03-18 Make Softwear:Kk 画像処理装置、画像出力装置、画像処理方法及びコンピュータプログラム
JP2013109788A (ja) * 2008-08-08 2013-06-06 Make Softwear:Kk 画像処理装置、画像処理方法及びコンピュータプログラム
CN109073564A (zh) * 2016-04-22 2018-12-21 富士胶片株式会社 药剂监查装置及方法以及程序
CN109073564B (zh) * 2016-04-22 2020-12-08 富士胶片富山化学株式会社 药剂监查装置及方法以及记录介质

Also Published As

Publication number Publication date
EP1852693A1 (en) 2007-11-07
KR20070103466A (ko) 2007-10-23
EP1852693A4 (en) 2010-05-26
US20090123056A1 (en) 2009-05-14
CN101175990B (zh) 2011-04-20
US7916949B2 (en) 2011-03-29
CN101175990A (zh) 2008-05-07
KR100929475B1 (ko) 2009-12-02

Similar Documents

Publication Publication Date Title
WO2006090671A1 (ja) 粒状物体の検査方法及びその方法を実施する検査装置
JP6369456B2 (ja) 薬剤鑑査装置、及び薬剤分包システム
JP5163985B2 (ja) 粒状物品種検査装置
JP3438925B2 (ja) 錠剤検査システム
CN107076677A (zh) 检查装置以及检查方法
JPS6362074A (ja) 三次元画像の連結成分抽出装置
US8331678B2 (en) Systems and methods for identifying a discontinuity in the boundary of an object in an image
EP3674696B1 (en) Medicine inspection assistance device, image processing device, image processing method, and non-transitory computer-readable recording medium
CA2914403A1 (en) System and method of using imprint analysis in pill identification
JP4300809B2 (ja) 粒状物体の検査装置およびその検査方法
KR101330567B1 (ko) 약품 적재함 내의 알약 영상 검출방법.
JP3976961B2 (ja) 物品の外観検査方法
JP4639841B2 (ja) 粒状物体の検査方法及びそれを用いる検査装置
JP4639840B2 (ja) 粒状物体の検査方法及びそれを用いる検査装置
CA3130044A1 (en) Feature point recognition system and recognition method
JP2017166957A (ja) 欠陥検出装置、欠陥検出方法およびプログラム
KR101150754B1 (ko) 영상처리를 이용한 약품상자 영역 검출 시스템 및 방법
Deepti Enhanced feature extraction technique for detection of pharmaceutical drugs
JP2001116534A (ja) 真円度判定方法、真円度演算装置及び記録媒体
JP7309017B1 (ja) 錠剤検査装置及び錠剤検査方法
JPH09288068A (ja) 外観検査装置
JP2893412B2 (ja) Icパッケージ検査システム
JPS61153507A (ja) 三次元形状認識装置
JPS6123950A (ja) 欠陥検出装置
JPH0894335A (ja) 画像処理検品装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680005617.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006714113

Country of ref document: EP

Ref document number: 11816536

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020077019019

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 2006714113

Country of ref document: EP