WO2006088241A1 - ポリ乳酸の製造方法 - Google Patents

ポリ乳酸の製造方法 Download PDF

Info

Publication number
WO2006088241A1
WO2006088241A1 PCT/JP2006/303347 JP2006303347W WO2006088241A1 WO 2006088241 A1 WO2006088241 A1 WO 2006088241A1 JP 2006303347 W JP2006303347 W JP 2006303347W WO 2006088241 A1 WO2006088241 A1 WO 2006088241A1
Authority
WO
WIPO (PCT)
Prior art keywords
poly
lactic acid
acid
weight
emulsion
Prior art date
Application number
PCT/JP2006/303347
Other languages
English (en)
French (fr)
Inventor
Yoshiharu Kimura
Original Assignee
Teijin Limited
Musashino Chemical Laboratory, Ltd.
Mutual Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Limited, Musashino Chemical Laboratory, Ltd., Mutual Corporation filed Critical Teijin Limited
Priority to CA002598470A priority Critical patent/CA2598470A1/en
Priority to EP06714487A priority patent/EP1849833A4/en
Priority to US11/884,267 priority patent/US20080161505A1/en
Priority to JP2007503801A priority patent/JPWO2006088241A1/ja
Publication of WO2006088241A1 publication Critical patent/WO2006088241A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/04Polyesters derived from hydroxycarboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D167/00Coating compositions based on polyesters obtained by reactions forming a carboxylic ester link in the main chain; Coating compositions based on derivatives of such polymers
    • C09D167/04Polyesters derived from hydroxycarboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/04Polyesters derived from hydroxy carboxylic acids, e.g. lactones
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H19/00Coated paper; Coating material
    • D21H19/10Coatings without pigments
    • D21H19/14Coatings without pigments applied in a form other than the aqueous solution defined in group D21H19/12
    • D21H19/20Coatings without pigments applied in a form other than the aqueous solution defined in group D21H19/12 comprising macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds

Definitions

  • the present invention relates to a method for producing polylactic acid and a film thereof.
  • polylactic acid has a melting point of 1
  • lactic acid which is a raw material for polylactic acid, is obtained from renewable resources such as plants, and is highly expected from the point of not using dry resources such as petroleum.
  • Patent Document 1 and 2 As a coating agent for coating the surface of a molded product of polylactic acid, it is preferable to use a biodegradable material, and a coating agent containing a polylactic acid aqueous emulsion has been proposed (Patent Document) 1 and 2).
  • stereocomplex polylactic acid having a high melting point can be obtained by mixing poly-L-lactic acid and poly-D-lactic acid.
  • a method for producing stereocomplex polylactic acid a method in which poly-L-lactic acid and poly-D-lactic acid are dissolved in a solvent such as black mouth form has been proposed (Non-Patent Document 1).
  • the stereocomplex polylactic acid produced by the above method is difficult to dissolve in various solvents, it is difficult to produce a coating agent, and this is applied to the surface of the molded product because the stereocomplex polylactic acid tends to precipitate. Have difficulty. Also, there are safety and environmental problems due to the use of solvents such as black mouth form.
  • Patent Document 1 Japanese Patent Laid-Open No. 2 0 3-3 2 1 6 0 0
  • Patent Document 2 Japanese Patent No. 3 6 1 6 4 6 5
  • Non-Patent Document 1 Hideto Tsuji, Yoshito Tsuji, “Polylactic acid medicine / formulations / environment” 1 for the sake of high polymer publication, 1 9 9 7 DISCLOSURE OF THE INVENTION
  • the purpose of the present invention is to produce a polylactic acid containing a stereocomplex that is superior in heat resistance and strength without using harmful solvents. It is to provide a method of manufacturing. Another object of the present invention is to provide a method for producing a film excellent in heat resistance and strength without using a harmful solvent. Another object of the present invention is to provide an aqueous emulsion of polylactic acid which does not contain a harmful solvent and is suitable for the production of polylactic acid containing a stereocomplex, and a coating agent containing the same.
  • the present inventor examined a method of forming a stereocomplex by mixing poly (L_lactic acid) and poly (D-lactic acid) under extremely mild conditions without using a solvent. As a result, it was found that a stable mixed emulsion can be obtained by mixing an aqueous emulsion of poly-L-lactate with an aqueous emulsion of poly-D-lactic acid. Furthermore, the present invention was completed by finding that a stereocomplex was formed in the process of drying the mixed emulsion.
  • the present invention comprises steps (1) of preparing an aqueous emulsion of poly-L-lactic acid and an aqueous emulsion of poly-D-lactic acid, respectively.
  • the present invention comprises steps (1) of preparing an aqueous emulsion of poly 1-lactic acid and an aqueous emulsion of poly 1-lactic acid, respectively.
  • Step (2) that mixes both to make a mixed emulsion
  • the present invention relates to an aqueous emulsion of poly-L-lactate and an aqueous solution of poly-D-lactic acid. It includes a mixed emulsion containing an emulsion and a coating agent containing a mixed emulsion.
  • polylactic acid produced by the production method of the present invention When polylactic acid produced by the production method of the present invention is measured by DSC, it has a melting point peak of 200 ° C. or higher, which is much higher than that of normal polylactic acid.
  • polylactic acid having significantly higher heat resistance than poly 1-L-lactic acid (or poly 1-D-lactic acid) is provided.
  • the film formed from only the aqueous emulsion of poly-L-lactic acid (or poly-D-lactic acid) has a low strength and is easily peeled off as a powder from the surface of the substrate.
  • the film manufactured in is strong and can be peeled off while maintaining the film shape.
  • FIG. 1 is a diagram showing the results of DSC analysis of the film obtained in Example 1.
  • 2 is an AFM observation of the film obtained in Example 1.
  • the method for producing polylactic acid according to the present invention comprises the steps of preparing an aqueous emulsion of poly-L-monolactic acid and an aqueous emulsion of poly-D-lactic acid (1), and mixing both to form a mixed emulsion (2) ), And dry the mixed emulsion Step (3).
  • Step (1) is a step of preparing an aqueous emulsion of poly-L-lactate and an aqueous emulsion of poly-D-lactate, respectively.
  • Poly-L monolactic acid and poly-D-lactic acid are substantially composed of L monolactic acid units and D-lactic acid units represented by the following formulae.
  • the poly-L-lactic acid is preferably composed of 90 to 100 mol%, more preferably 95 to 100 mol%, and still more preferably 98 to 100 mol%, of monolactic acid units.
  • the Examples of other units include D-lactic acid units and copolymer component units other than lactic acid.
  • the D-lactic acid unit and the copolymer component unit other than lactic acid are preferably 0 to 10 mol%, more preferably 0 to 5 mol%, and still more preferably 0 to 2 mol%.
  • Poly 1-D-lactic acid is composed of 90-: L 0 0 mol%, preferably 95-100 mol%, more preferably 98-100 mol% of 0-lactic acid units.
  • Other units include L monolactic acid units and copolymer component units other than lactic acid.
  • L Monolactic acid units and copolymer component units other than lactic acid are 0 to 10 mol%, preferably 0 to 5 mol%, more preferably 0 to 2 mol%.
  • the copolymer component unit includes units derived from dicarboxylic acid, polyhydric alcohol, hydroxycarboxylic acid, lactone, etc. having functional groups capable of forming two or more ester bonds, and various polyesters and various polyethers composed of these various components. Units derived from various polycarbonates are exemplified.
  • dicarboxylic acid examples include succinic acid, adipic acid, azelaic acid, sepacic acid, terephthalic acid, and isophthalic acid.
  • polyhydric alcohol Aliphatic polyhydric alcohols such as ethylene glycol, propylene glycol, butanediol, pentanediol, hexanediol, octanediol, glycerin, sorbitan, neopentyl glycol, diethylene glycol, triethylene glycol, polyethylene glycol, and polypropylene glycol Or aromatic polyhydric alcohols obtained by adding ethylene oxide to bisphenol.
  • Examples of the hydroxycarboxylic acid include daricholic acid and hydroxybutyric acid.
  • Examples of the lactone include glycolide, ⁇ -force prolactone glycolide, ⁇ -force prolactone, iS_propiolacton, (5-butyrolactone, 3- or arbutyrolactone, pivalolactone, ⁇ -valerolactone, and the like.
  • the weight average molecular weight (Mw) of poly-L-monolactic acid and poly-mono-D-lactic acid is preferably 5, 0 0 to 1, 0 0 0, 0 0 0, more preferably 1 0, 0 0 0 to 2 0
  • the molecular weight distribution is preferably in the range of 1.5 to 2.5, and more preferably in the range of 1.5 to 1.8.
  • the weight average molecular weight is a standard polystyrene equivalent weight average molecular weight measured by gel permeation chromatography (GPC) using chloroform as an eluent.
  • Poly-L-lactic acid and poly-D-lactic acid can be produced by known methods.
  • L- or D-lactide can be produced by heating and ring-opening polymerization in the presence of a metal polymerization catalyst.
  • low-molecular-weight polylactic acid containing a metal polymerization catalyst is crystallized, it can be produced by solid phase polymerization by heating under reduced pressure or in an inert gas stream.
  • it can be produced by a direct polymerization method in which lactic acid is dehydrated and condensed in the presence of an organic solvent Z in the absence of Z.
  • the polymerization reaction can be carried out in a conventionally known reaction vessel.
  • a vertical reaction vessel equipped with a high-viscosity stirring blade such as a helical rib blade can be used alone or in parallel.
  • Alcohol may be used as a polymerization initiator. Such alcohol is preferably non-volatile without inhibiting the polymerization of polylactic acid.
  • decanol, dodecanol, tetradecanol, hexadecanol, octadecanol and the like are preferred. It can be used appropriately.
  • a relatively low molecular weight lactic acid polyester obtained by the above-described ring-opening polymerization method or direct polymerization method of lactic acid is used as a prepolymer.
  • the prepolymer is preferably crystallized in advance in the temperature range of the glass transition temperature (T g) or higher and lower than the melting point (Tm) from the viewpoint of preventing fusion.
  • the crystallized prepolymer is filled in a fixed vertical reaction vessel or a reaction vessel in which the vessel itself rotates, such as a tumbler or kiln, and has a melting point (Tg) above the glass transition temperature (Tg) of the prepolymer. Heated to a temperature range below Tm).
  • an aqueous emulsion is prepared for each of poly-L-lactic acid and poly-D-lactic acid.
  • An aqueous emulsion of poly-L-lactic acid can be prepared by dissolving poly-L-lactic acid in an organic solvent, adding an emulsifier and water, mixing, and then removing the organic solvent.
  • any solvent that can dissolve and swell each of poly-L-lactic acid and poly-D-lactic acid can be used.
  • toluene, chloroform, methylene chloride, dichloroethane, tetrachloroethane examples thereof include ethyl acetate, hexafluoroisopropanol, etc., or a mixture of two or more.
  • the organic solvent is preferably used in an amount of 80 to 1,000 parts by weight, and more preferably 100 to 500 parts by weight with respect to 100 parts by weight of poly-L monolactic acid.
  • a nonionic surfactant or an ionic surfactant can be used as the emulsifier.
  • ionic surfactants include fatty acid salts, ether carbonates, alkenyl succinates, alkyl sulfates, alkylpolyoxyethylene phosphates, (meth) acrylic acid polymers, maleic acid polymers, and naphthalene.
  • anionic emulsifiers such as lefine sulfonic acid, alkyl sulfate, alkyl phenyl sulfate, polyoxyethylene alkyl ether sulfate, dimethylaminoethyl methacrylate, jetylaminoethyl methacrylate, dimethylaminopropyl methacrylate Dimethylaminoethyl acrylate, Jetylaminoethyl acrylate, Dimethylaminopropyl acrylate, Dimethylaminomethyl methacrylamide, Dimethylaminoethyl methacrylamide, Dimethylaminopropyl methacrylate, Dimethylaminomethyl acrylamide, Di Cationic acryl-
  • alkyl halides for example, dimethylaminoethyl methyl chloride salt of methyl methacrylate, dimethylaminoethyl dimethyl sulfate methacrylate, dimethylaminopropyl chloro methacrylate acetate, etc.
  • Cationic emulsifiers such as quaternary ammonium salts, polyoxyethylene alkyl ethers, polyoxyethylene alkylphenyl ethers, polyoxyethylene alkylamine:!: Monotel, polyoxyethylene fatty acid esters, sorbitan fatty acids Examples include esters, polyoxyethylene sorbitan fatty acid esters, and sucrose fatty acid esters. Among them, nonionic emulsifiers such as polyoxyethylene lauryl ether and polyoxyethylene sorbene fatty acid ester, and various other known emulsifiers can be used.
  • an anionic emulsifier and a nonionic emulsifier it is preferable to use an anionic emulsifier.
  • the amount of the emulsifier is preferably 0.1 to 40 parts by weight, more preferably 1 to 30 parts by weight with respect to 100 parts by weight of poly-L-lactic acid.
  • Water is preferably used in an amount of 50 to; 100 parts by weight of L-lactic acid, more preferably 10 to 100 parts by weight, more preferably 1 to 100 parts by weight.
  • a method for producing an aqueous emulsion a general method can be used. For example, after mixing polylactic acid, an emulsifier, and a solvent, a method of mixing with water with stirring using an appropriate mixer can be used. it can.
  • An aqueous emulsion of poly-D-lactic acid can be prepared in the same manner as an aqueous emulsion of poly-L-lactic acid.
  • the resulting aqueous emulsion is in the form of oZw and has an average particle size of preferably 0.05 to 2 m, more preferably 0.07 to 0.5 m.
  • Step (2) is a step of preparing a mixed emulsion by mixing an aqueous emulsion of poly-L_? L acid and an aqueous emulsion of poly-D-lactic acid.
  • the weight ratio between the former and the latter is such that the ratio of the weight of poly-L-lactic acid in the former to the weight of poly-D-lactic acid in the latter (LZD) is preferably 40Z60-60Z40, more preferably It is 45-55-55Z45.
  • the resulting aqueous emulsion has an average particle size in the form of o / w, preferably 0.05 to 2 zm, more preferably 0.07 to 0.5 m.
  • Step (3) is a step of drying the mixed emulsion.
  • the mixed emulsion may be subjected to a drying process from any state. For example, when it is used as a coating film, it may be dried after being applied, and in other cases, a mold that can maintain a form according to the application, It is also possible to dry in a container. Drying may be performed under conditions that can remove the solvent and water as a dispersion medium, but may be performed, for example, at room temperature and atmospheric pressure. On the other hand, heat treatment may be performed at a temperature exceeding the glass transition temperature of the particles. In that case, stereocomplex polylactic acid having a stronger surface can be obtained.
  • poly-L-monolactic acid and poly-D-lactic acid are present, and it is considered that a stereocomplex is formed in the drying process to remove water.
  • the stereocomplex refers to a crystal structure in which poly 1 L-lactic acid and poly 1 D-lactic acid are alternately arranged in a spiral. Stereocomplex is formed because the interaction between poly-L-monolactic acid and poly-D-lactic acid is stronger between L bodies or between D bodies.
  • poly-L-lactic acid and poly-D-lactic acid are separated by the action of emulsifier.
  • the helix of poly-L monolactic acid and poly-D-lactic acid interact with each other by the action of the remaining emulsifier. It is considered that a stereo complex is formed when both approaches.
  • the content of stereocomplex in the obtained polylactic acid is preferably 50% or more, more preferably 70% or more.
  • the obtained polylactic acid has a melting peak ratio of 195 ° C or higher of the melting peak in the temperature rising process, preferably 50% or higher, more preferably 60% or higher, in differential scanning calorimetry (DSC) measurement.
  • DSC differential scanning calorimetry
  • the melting point is in the range of 195 to 250 ° C, more preferably in the range of 200 to 220 ° C.
  • the melting enthalpy is 20 JZg or more, preferably 30 J / g or more. Specifically, in differential scanning calorimetry (DSC) measurement, the percentage of melting peak at 195 ° C or higher in the melting peak in the heating process is 50% or higher, and the melting point is 195 to 250 ° C.
  • the melting enthalpy is preferably 20 JZg or more.
  • the resulting polylactic acid has a weight average molecular weight of preferably 5,000 to 1,000,000, more preferably 10,000 to 200,000.
  • the weight average molecular weight is a standard polystyrene equivalent weight average molecular weight value by gel permeation chromatography (GPC) measurement using black mouth form as an eluent.
  • GPC gel permeation chromatography
  • the method for producing a film of the present invention comprises the steps (1) of preparing an aqueous emulsion of poly-L monolactic acid and an aqueous emulsion of poly-D-lactic acid, respectively.
  • Step (2) that mixes both to make a mixed emulsion
  • steps (1) and (2) are the same as the method for producing polylactic acid described above.
  • steps (1) and (2) are the same as the method for producing polylactic acid described above.
  • steps (1) and (2) are the same as the method for producing polylactic acid described above.
  • steps (1) and (2) are the same as the method for producing polylactic acid described above.
  • steps (1) and (2) are the same as the method for producing polylactic acid described above.
  • steps (1) and (2) are the same as the method for producing polylactic acid described above.
  • steps (1) and (2) are the same as the method for producing polylactic acid described above.
  • Application (3-i) can be performed by casting a mixed emulsion onto a substrate.
  • Casting can be performed by a method of extruding mixed emulsion from a die, a doctor blade method, a spin coating method, or the like.
  • substrates include glass plates, metal plates, and synthetic resin plates.
  • Drying (3-i i) can also be performed at room temperature and atmospheric pressure.
  • the thickness of the film obtained by this method is preferably 5 to 200 m, more preferably 10 to 100 m. Therefore, the thickness of the mixed emulsion applied on the substrate can also be adjusted in consideration of the amount of polylactic acid in the mixed emulsion.
  • the film contains a stereocomplex polylactic acid, similar to the polylactic acid described above, and has the same thermal properties as measured by weight average molecular weight and DSC.
  • the mixed emulsion of the present invention contains an aqueous emulsion of poly-L-lactic acid and an aqueous emulsion of poly-D-lactic acid.
  • Each aqueous emulsion contains poly-L-lactic acid (or poly-D-lactic acid), an emulsifier and water.
  • Poly L-lactic acid (or poly D-lactic acid) and emulsifier are as described in the section of polylactic acid production method.
  • the whey agent is preferably contained in an amount of 0.1 to 40 parts by weight, more preferably 1 to 30 parts by weight, based on 100 parts by weight of polylactic acid.
  • Water is preferably 100-part by weight with respect to 100 parts by weight of poly-L-lactic acid (or poly-D-lactic acid), and more preferably 100-1,000 parts by weight. Contains 500 parts by weight.
  • the weight ratio (L / D) of poly-L-lactic acid to poly-D-lactic acid in the mixed emulsion is preferably 4 0 Z 6 0 to 6 0 Z40, more preferably 4 5/5 5 to 5 5 Z4 5.
  • the mixed emulsion is in the form of o Zw and has an average particle size of preferably 0.05 to 2 m, more preferably 0.07 to 0.5 m.
  • the mixed emulsion can be produced by a step (1) of preparing an aqueous emulsion of poly-L-lactic acid and an aqueous emulsion of poly-D-lactic acid, respectively, and a step (2) of mixing both to form a mixed emulsion.
  • Step (1) and step (2) are as described in the section of the method for producing polylactic acid.
  • the coating agent of the present invention contains the aforementioned mixed emulsion.
  • the mixed emulsion contains poly L-lactic acid aqueous emulsion and poly D-lactic acid aqueous emulsion.
  • the coating agent of the present invention is characterized in that a stereocomplex is not formed at the time of application and a stereocomplex is formed at the time of drying after application. That is, a stereocomplex can be formed in situ. Therefore, it has the advantages of being easy to apply and having good storage stability.
  • the coating agent may contain a polymer emulsion, a resin emulsion, and a rubber latex. These components are preferably contained in an amount of 5 to 200 parts by weight per 100 parts by weight of the mixed emulsion. In addition, various known additives such as thickeners, antifoaming agents, antioxidants, ultraviolet absorbers, water resistant agents, preservatives, antifungal agents, pigments, dyes, etc. may be appropriately contained as necessary. Good. These components are preferably contained in an amount of 0.1 to 20 parts by weight with respect to 100 parts by weight of the mixed emulsion. Example
  • Mw weight average molecular weight
  • GPC-11 manufactured by Shodex was used, sample 5 Omg was dissolved in 5 ml of black mouth form, and developed at 40 ° C.
  • the weight average molecular weight (Mw) was calculated as a polystyrene equivalent value.
  • Thermal characteristics were measured using DSC-60 differential scanning calorimeter DSC manufactured by Shimadzu Corporation. The measurement was performed by raising the temperature of Sample 1 Omg to a room temperature of 250 ° C at a heating rate of 10 ° CZ in a nitrogen atmosphere. In the first scan, the homocrystal melting temperature (Tmh), the homocrystal melting heat (AHmh), and the stereo complex crystal melting The solution temperature (Tms) and stereo complex crystal heat of fusion (AHms) were measured.
  • Stereocomplex content (xc (SO) was calculated as follows: The heat of fusion (AHmh 0) of 100% crystallized polylactic acid was 203.4 J / g, 100% crystallized. The heat of fusion of the polylactic acid stereocomplex body ( ⁇ ms O) — 142 JZg, from the heat of fusion of the homocrystal actually obtained from DS C ( ⁇ Hmh) and the heat of heat of fusion of the stereocomplex crystallization (AHms), Calculated by the formula.
  • ⁇ c (SO (%) 1 OOx [(AHms / AHmsO) / (AHmh / AHmhO + AHms / AHmsO)]
  • the ratio (%) of the melting peak above 195 ° C was calculated from the melting peak area above 195 ° C (high temperature) and the melting peak area at 140 to 180 ° C (low temperature) by the following formula.
  • R195 or higher (%) A195 or higher Z (A195 or higher + A140 to 180) xl 00
  • the optical purity was determined from the composition ratio of L-lactic acid and D-lactic acid, which constitutes poly-L-l-lactic acid and poly-D-lactic acid.
  • 5 g of 5 M sodium hydroxide and 2.5 ml of isopropanol were added to 1 g of the sample, hydrolyzed with heating and stirring at 40 ° C, and neutralized with 1 M sulfuric acid.
  • the concentration was adjusted by diluting 1 ml of the neutralized solution 25 times.
  • HPL C the detection peak area of L-lactic acid and D-lactic acid at UV light UV254 nm was measured, and the weight ratio [L] (%) of L-lactic acid constituting the polylactic acid polymer was determined. From the weight ratio [D] (%) of D-lactic acid, the optical purity (%) was calculated by the following formula.
  • LC-1 6A manufactured by Shimadzu Corporation, UV detector; SPD-6 AV, column manufactured by Shimadzu Corporation; column; SUMI CHI RAL OA- 5000 (Sumika Chemical Analysis Center Co., Ltd.) ), ImM copper sulfate aqueous solution was used as the eluent, and the flow rate was 1.0 ml / min 40 ° C.
  • Wide-angle X-ray diffraction is filled with Ni using a Rigaku X-ray diffractometer RI NT-2100 FSL and RI NT2000 X-ray generator (generated at 40 kV, 3 OmA). Evening Cu—K ⁇ ray (wavelength: 0.1542 nm) 2 2 ⁇ angle 2 from 6 ° to 40 ° per minute. I went there.
  • the height image of the film surface was measured in the sunset mode using an atomic force microscope (AFM) manufactured by Shimadzu Corporation.
  • AFM atomic force microscope
  • solution (L 1) an aqueous emulsion of poly (L) monolactic acid having a solid content of 10% and an average particle size of 0.3 m
  • the obtained solution (L 1) and solution (D1) were mixed at a weight ratio of 1: 1 to obtain a mixed emulsion.
  • the mixed emulsion is cast on a substrate, dried at room temperature, and a 35 mm thick film.
  • Got Irum (El).
  • the Mw of the film (El) is 21,000.
  • the film (E 1) was subjected to DSC measurement, wide-angle X-ray diffraction (WAXS) measurement, and atomic force microscope (AFM) measurement.
  • WAXS wide-angle X-ray diffraction
  • AFM atomic force microscope
  • FIG. 1 shows the results of DSC measurement.
  • the solid line in Fig. 1 is the D S C chart for film (E 1).
  • the dotted line in FIG. 1 is a DS C chart of the film (C 1) obtained in Comparative Example 1.
  • the melting point of the film (C 1) is about 170 ° C, whereas the melting point of the film (E 1) is 209.4 ° C.
  • a film having high heat resistance can be obtained. I understand that.
  • the stereocomplex content of film (E 1) was 76.1% and the proportion of melting peaks above 195 ° C was 69.1%.
  • the WAXS measurement of film (E 1) shows diffraction peaks at 20 °, 12 °, 21 °, and 24 °, and crystal diffraction peaks of poly (L-monolactic acid) appearing at 18.5 ° and 22.5 °. It was confirmed that a stereo complex was formed.
  • Figure 2 shows the results of A FM measurement on the surface of film (E 1). It can be seen that the film (E 1) has a smooth surface structure.
  • solution (L2) poly L-lactic acid emulsion having a solid content of 10% and an average particle size of 0.3 m
  • the obtained solution (L2) and solution (D2) were mixed at a weight ratio of 1: 1 to obtain a mixed emulsion.
  • the mixed emulsion was cast on a substrate and dried to obtain a film (E2).
  • the 1 ⁇ of film (E2) was 73,000.
  • the stereocomplex content of film (E2) was 73.2%, and the percentage of melting peaks above 195 ° C was 66.3%.
  • Example 1 Only the liquid L obtained in Example 1 was cast on a substrate and dried to obtain a poly-L-lactic acid film (C1).
  • the results of DSC measurement of film (C 1) are shown in Figure 1 (dotted line).
  • the melting point of the film (C 1) was 172.3 ° C.
  • polylactic acid and a film thereof can be obtained without using a harmful solvent.
  • polylactic acid excellent in heat resistance and strength and a film thereof can be obtained.
  • a coating film of polylactic acid containing a stereocomplex and having high heat resistance can be formed.
  • the coating agent of the present invention is excellent in biodegradability, it has an environmental effect that it can be applied to a biodegradable molded product and the coating film can be biodegraded at the same time.
  • Industrial applicability The method and coating agent of the present invention can be used for surface coating of paper materials such as paper packs, cardboards and paper bags, and molded products of biodegradable plastics.
  • the polylactic acid containing the stereocomplex of the present invention can be suitably used for films, coatings, adhesives, paints, binders, protective films and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Dispersion Chemistry (AREA)
  • Biological Depolymerization Polymers (AREA)
  • Paints Or Removers (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

本発明の目的は、有害な溶剤を用いることなく耐熱性および強度に優れたポリ乳酸およびそのフィルムを製造する方法を提供することにある。本発明の他の目的は、有害な溶剤を含有せず、ポリ乳酸の製造に適した、ポリ乳酸の水性エマルジョンおよびそれを含有するコーティング剤を提供することにある。本発明は、ポリ-L-乳酸の水性エマルジョンとポリ-D-乳酸の水性エマルジョンとをそれぞれ調製するステップ(1)、両者を混合し混合エマルジョンとするステップ(2)、および混合エマルジョンを乾燥させるステップ(3)、を含むポリ乳酸の製造方法である。

Description

ポリ乳酸の製造方法
技術分野
本発明は、 ポリ乳酸およびそのフィルムの製造方法に関する。
背景技術
近年、 自然環境保護の観点から、 自然環境中で分解する脂肪族ポリエステルな 細 1
どの生分解性ポリマーの研究が活発に行われている。 特に、 ポリ乳酸は融点が 1 書
3 0〜1 8 0 °Cと十分に高く、 しかも透明性に優れるため、 包装材料などの用途 に使用されている。 またポリ乳酸の原料となる乳酸は、 植物等の再生可能資源か ら得られ、 石油等の枯渴資源を使用しない点からも大いに期待されている。
ポリ乳酸の成形品の表面をコーティングするコ一ティング剤としては、 やはり 生分解性の材料を用いることが好ましく、 ポリ乳酸水性ェマルジョンを含有して なるコ一ティング剤が提案されている (特許文献 1および 2 )。
一方、 ポリ一 L—乳酸およびポリ— D—乳酸を混合することにより、 融点の高 いステレオコンプレックスポリ乳酸が得られることが知られている。 ステレオコ ンプレックスポリ乳酸を製造する方法として、 ポリ一 L—乳酸およびポリ— D— 乳酸をクロ口ホルム等の溶剤に溶解させ生成させる方法が提案されている (非特 許文献 1 )。
しかし、 上記方法で生成させたステレオコンプレックスポリ乳酸は各種の溶媒 に溶解しにくいためコーティング剤の製造が難しく、 また、 これを成形品表面に 塗布するのは、 ステレオコンプレックスポリ乳酸が沈殿しやすいため困難である。 またクロ口ホルム等の溶剤を用いることによる安全上、 環境上の問題点がある。
(特許文献 1 ) 特開 2 0 0 3— 3 2 1 6 0 0号公報
(特許文献 2 ) 特許第 3 6 1 6 4 6 5号公報
(非特許文献 1 ) 辻秀人 ·筏義人著、 「ポリ乳酸一医療 ·製剤 ·環境 のために一」、 高分子刊行会、 1 9 9 7年 発明の開示 ' 本発明の目的は、 有害な溶剤を用いることなく耐熱性および強度に優れた、 ス テレオコンプレックスを含有するポリ乳酸を製造する方法を提供することにある。 また本発明の目的は、 有害な溶剤を用いることなく耐熱性および強度に優れたフ イルムを製造する方法を提供することにある。 本発明の他の目的は、 有害な溶剤 を含有せず、 ステレオコンプレックスを含有するポリ乳酸の製造に適した、 ポリ 乳酸の水性エマルジョンおよびそれを含有するコーティング剤を提供することに ある。
本発明者は、 溶剤を使用せず、 きわめて温和な条件でポリ一 L _乳酸とポリ— D—乳酸とを混合し、 ステレオコンプレックスを形成させる方法を検討した。 そ の結果、 ポリ一 L一乳酸の水性ェマルジヨンとポリ一 D—乳酸の水性ェマルジョ ンとを混合すると、 安定な混合ェマルジョンが得られることを見出した。 さらに、 該混合エマルジョンを乾燥させる過程で、 ステレオコンプレックスが形成される ことを見出し本発明を完成した。
即ち、 本発明は、 ポリ— L—乳酸の水性ェマルジヨンとポリ— D—乳酸の水性 ェマルジヨンとをそれぞれ調製するステップ (1 )、
両者を混合し混合ェマルジヨンとするステップ (2 )、 および
混合ェマルジヨンを乾燥させるステップ (3 )、
を含むポリ乳酸の製造方法である。
また本発明は、 ポリ一 L—乳酸の水性ェマルジヨンとポリ一 D—乳酸の水性ェ マルジヨンとをそれぞれ調製するステップ (1 )、
両者を混合し混合ェマルジヨンとするステップ ( 2 )、
基板に混合ェマルジヨンを塗布するステップ (3— i ) および
塗布された混合ェマルジヨンを乾燥させるステップ (3— i i )、
を含むフィルムの製造方法である。
さらに本発明は、 ポリ一 L一乳酸の水性ェマルジヨンとポリ一 D—乳酸の水性 ェマルジョンとを含有する混合ェマルジョン並びに混合ェマルジョンを含有する コーティング剤を包含する。
本発明の製造方法で製造されたポリ乳酸を D S Cで測定すると、 通常のポリ乳 酸よりはるかに高い、 2 0 0 °C以上の融点のピークを有する。 即ち本発明方法に よれば、 ポリ一 L—乳酸 (またはポリ一 D—乳酸) に比べ、 格段に耐熱性の高い ポリ乳酸が提供される。
また、 ポリ一 L—乳酸 (またはポリ—D—乳酸) の水性ェマルジョンのみから 形成されるフィルムは強度が弱くて基板の表面から粉状となって剥がれ落ちやす いのに対して、 本発明方法で製造されたフィルムは強度が高く、 フィルム形状を 保ったまま剥がすことが可能である。
本発明の製造方法では、 混合ェマルジヨン中では、 ポリ— L—乳酸とポリ— D 一乳酸とは、 乳化剤の作用もあってほとんど混合しない。 しかしながら、 混合ェ マルジヨンを基板に塗布した後、 乾燥、 熱処理する過程で両者の混合が生じ、 ス テレオコンプレックスが形成される。 ステレオコンプレックスは、 ポリ— L—乳 酸 (またはポリ一 D—乳酸) と比較して高い融点を有しているため、 ポリ乳酸の 融点を上げることができ、 耐熱性や強度を向上させることができるものと考えら れる。 図面の簡単な説明
図 1 実施例 1で得られたフィルムの D S C分析の結果を示す図である。 図 2 実施例 1で得られたフィルムの A F M観察図である。 発明を実施するための最良の形態
以下、 本発明の実施の形態について説明する。
<ポリ乳酸の製造方法〉
本発明のポリ乳酸の製造方法は、 ポリ一 L一乳酸の水性ェマルジョンとポリ一 D—乳酸の水性ェマルジヨンとを、 それぞれ調製するステップ (1 )、 両者を混 合し混合ェマルジヨンとするステップ (2 )、 および混合ェマルジヨンを乾燥さ せるステップ (3 ) を含む。
〔ステップ (1 )〕
ステップ (1 ) は、 ポリ— L一乳酸の水性ェマルジヨンとポリ一 D—乳酸の水 性ェマルジョンとを、 それぞれ調製するステップである。
(ポリ一 L—乳酸、 ポリ—D—乳酸)
ポリ— L一乳酸およびポリ— D—乳酸は、 下記式で表される L一乳酸単位およ び D—乳酸単位から実質的になる。
Figure imgf000005_0001
ポリ一 L—乳酸は、 好ましくは 9 0〜 1 0 0モル%、 より好ましくは 9 5〜 1 0 0モル%、 さらに好ましくは 9 8〜1 0 0モル%のし一乳酸単位から構 成される。 他の単位としては、 D—乳酸単位、 乳酸以外の共重合成分単位が 挙げられる。 D—乳酸単位、 乳酸以外の共重合成分単位は、 好ましくは 0〜 1 0モル%、 より好ましくは 0〜5モル%、 さらに好ましくは 0〜 2モル% である。
ポリ一D—乳酸は、 9 0〜: L 0 0モル%、 好ましくは 9 5〜1 0 0モル%、 さらに好ましくは 9 8〜1 0 0モル%の0—乳酸単位から構成される。 他の 単位としては、 L一乳酸単位、 乳酸以外の共重合成分単位が挙げられる。 L 一乳酸単位、 乳酸以外の共重合成分単位は、 0〜 1 0モル%、 好ましくは 0 〜5モル%、 さらに好ましくは 0〜2モル%である。
共重合成分単位は、 2個以上のエステル結合形成可能な官能基を持つジカ ルボン酸、 多価アルコール、 ヒドロキシカルボン酸、 ラクトン等由来の単位 およびこれら種々の構成成分からなる各種ポリエステル、 各種ポリエーテル、 各種ポリカーボネート等由来の単位が例示される。
ジカルボン酸としては、 コハク酸、 アジピン酸、 ァゼライン酸、 セパシン 酸、 テレフタル酸、 イソフタル酸等が挙げられる。 多価アルコールとしては エチレングリコール、 プロピレングリコ一ル、 ブタンジォ一ル、 ペンタンジ オール、 へキサンジオール、 オクタンジオール、 グリセリン、 ソルビタン、 ネオペンチルグリコール、 ジエチレングリコール、 トリエチレングリコール、 ポリエチレングリコール、 ポリプロピレングリコール等の脂肪族多価アルコ ール等あるいはビスフエノールにェチレンォキシドを付加させたものなどの 芳香族多価アルコール等が挙げられる。 ヒドロキシカルボン酸として、 ダリ コール酸、 ヒドロキシ酪酸等が挙げられる。 ラクトンとしては、 グリコリド、 ε —力プロラクトングリコリド、 ε—力プロラクトン、 iS _プロピオラク卜 ン、 (5—ブチロラクトン、 3—またはァーブチロラクトン、 ピバロラクトン、 δ—バレロラクトン等が挙げられる。
ポリ— L一乳酸およびポリ一 D—乳酸の重量平均分子量 (Mw) は、 好ましく は 5, 0 0 0〜1, 0 0 0, 0 0 0、 より好ましくは 1 0 , 0 0 0〜2 0 0 , 0 0 0であり、 その分子量分布が 1 . 5から 2 . 5の範囲であることが好ましく、 より好ましくは 1 . 5から 1 . 8の範囲である。 重量平均分子量は溶離液にク ロロホルムを用いたゲルパーミエーシヨンクロマトグラフィー (G P C ) 測 定による標準ポリスチレン換算の重量平均分子量値である。
ポリ— L—乳酸およびポリ— D—乳酸は、 公知の方法で製造することができる。 例えば、 L一または D—ラクチドを金属重合触媒の存在下、 加熱し開環重合させ 製造することができる。 また、 金属重合触媒を含有する低分子量のポリ乳酸を結 晶化させた後、 減圧下または不活性ガス気流下で加熱し固相重合させ製造するこ とができる。 さらに、 有機溶媒の存在 Z非存在下で、 乳酸を脱水縮合させる直接 重合法で製造することができる。
重合反応は、 従来公知の反応容器で実施可能であり、 例えばヘリカルリポン翼 等、 高粘度用攪拌翼を備えた縦型反応容器を単独、 または並列して使用すること ができる。
重合開始剤としてアルコールを用いてもよい。 かかるアルコールとしては、 ポ リ乳酸の重合を阻害せず不揮発性であることが好ましく、 例えばデカノ一ル、 ド デカノ一ル、 テトラデカノ一ル、 へキサデカノ一ル、 ォクタデカノールなどを好 適に用いることができる。
固相重合法では、 前述した開環重合法や乳酸の直接重合法によって得られた、 比較的低分子量の乳酸ポリエステルをプレボリマーとして使用する。 プレボリマ 一は、 そのガラス転移温度 (T g ) 以上、 融点 (Tm) 未満の温度範囲にて予め 結晶化させることが、 融着防止の面から好ましい形態と言える。 結晶化させたプ レポリマーは固定された縦型反応容器、 或いはタンブラ一やキルンの様に容器自 身が回転する反応容器中に充填され、 プレボリマ一のガラス転移温度 (T g) 以 上融点 (Tm) 未満の温度範囲に加熱される。 重合温度は、 重合の進行に伴い段 階的に昇温させても何ら問題はない。 また、 固相重合中に生成する水を効率的に P余去する目的で前記反応容器類の内部を減圧することや、 加熱された不活性ガス 気流を流通する方法も好適に併用される。
(水性ェマルジヨン)
ステップ (1 ) では、 ポリ— L—乳酸とポリ一 D—乳酸とのそれぞれについて 水性ェマルジョンを調製する。 ポリ _ L一乳酸の水性ェマルジョンは、 ポリ— L —乳酸を有機溶剤に溶解させ、 乳化剤と水とを加え混合した後、 有機溶剤を除去 することにより調製することができる。
有機溶剤としてはポリ— L—乳酸、 ポリ— D—乳酸それぞれを溶解、 膨潤でき る溶媒であれば用いることができるが、 たとえばトルエン、 クロ口ホルム、 塩 化メチレン、 ジクロロェタン、 テトラクロロェタン、 酢酸ェチル、 へキサフ ルォロイソプロパノール等の単独あるいは 2種以上混合したものが挙げられ る。 有機溶剤は、 ポリ— L一乳酸 1 0 0重量部に対して、 好ましくは 8 0〜1, 0 0 0重量部、 より好ましくは 1 0 0〜5 0 0重量部用いる。
乳化剤として、 ノニオン性の界面活性剤や、 イオン性の界面活性剤を用いるこ とができる。 イオン性の界面活性剤としてはたとえば、 脂肪酸塩、 エーテルカル ボン酸塩、 アルケニルコハク酸塩、 硫酸アルキル塩、 リン酸アルキルポリオキシ エチレン塩、 (メタ) アクリル酸重合物、 マレイン酸重合物、 ナフタレンスルホ ン酸塩のホルマリン縮合物、 ナフタレンスルホン酸ホルムアルデヒド縮合物の塩、 ポリオキシエチレンアルキルェ一テルスルホコハク酸のハーフエステル、 0;—才 レフインスルホン酸、 アルキルサルフェート、 アルキルフエ二ルサルフェート、 ポリオキシエチレンアルキルエーテルサルフェートなどの各種ァニオン性乳化剤 や、 メ夕クリル酸ジメチルアミノエチル、 メ夕クリル酸ジェチルアミノエチル、 メタクリル酸ジメチルァミノプロピル、 アクリル酸ジメチルアミノエチル、 ァク リル酸ジェチルアミノエチル、 アクリル酸ジメチルァミノプロピル、 ジメチルァ ミノメチルメタクリルアミド、 ジメチルアミノエチルメタクリルアミド、 ジメチ レアミノプロピルメ夕クリルアミド、 ジメチルァミノメチルアクリルアミド、 ジ メチルアミノエチルアクリルアミド、 ジメチルァミノプロピルアクリルアミド等 のカチォン性ァクリル系モノマーや、 これら力チオン性ァクリル系モノマーにハ ロゲン化アルキル、 ジアルキル硫酸、 モノクロル酢酸等を反応して得られる、 例 えばメ夕クリル酸ジメチルアミノエチルメチルクロライド塩、 メタクリル酸ジェ チルアミノエチルジメチル硫酸塩、 メタクリル酸ジメチルァミノプロピルクロル 酢酸塩等の 4級アンモニゥム塩等のカチオン性乳化剤、 ポリオキシエチレンアル キルエーテル類、 ポリオキシエチレンアルキルフエ二ルェ一テル類、 ポリオキシ エチレンアルキルァミン:!:一テル、 ポリオキシエチレン脂肪酸エステル、 ソルビ タン脂肪酸エステル、 ポリオキシエチレンソルビタン脂肪酸エステル、 ショ糖脂 肪酸エステル等が挙げられる。 中でも、 ポリオキシエチレンラウリルエーテルや ポリオキシエチレンソルビ夕ン脂肪酸エステル等のノニオン性乳化剤、 その他公 知の各種乳化剤を用いることができる。 特にァニオン性乳化剤およびノニオン性 乳化剤を用いることが好ましく、 ァニオン性乳ィ匕剤を用いる方がより好ましい。 乳化剤の使用量は、 ポリ一 L—乳酸 1 0 0重量部に対して、 好ましくは 0 . 1〜 4 0重量部、 より好ましくは 1〜3 0重量部である。 水は、 ポリ— L—乳酸 1 0 0重量部に対して、 好ましくは 5 0〜; L 0 , 0 0 0 重量部、 より好ましくは 1 0 0〜1, 5 0 0重量部用いる。 水性ェマルジヨンの 製造法としては、 一般的な手法によって行うことができるが、 たとえば、 ポリ乳 酸と乳化剤、 溶媒を混合した後に適切なミキサーを用いて攪拌しながら水と混合 する方法をとることができる。
混合は、 攪拌機で混合した後、 ホモジナイザーや超音波攪拌装置により行うこ とが好ましい。 有機溶剤の除去は、 減圧下で行うことができる。 ポリ— D—乳酸 の水性エマルジョンもポリ一 L—乳酸の水性ェマルジョンと同様に調製すること ができる。 得られる水性ェマルジヨンは、 oZwの形態で、 平均粒子径が、 好ま しくは 0. 05〜2 m、 より好ましくは 0. 07〜0. 5 mである。
〔ステップ (2)〕
ステップ (2) は、 ポリ一 L_?L酸の水性ェマルジヨンと、 ポリ一 D—乳酸の 水性ェマルジョンとを混合して混合エマルジョンを調製するステップである。 前 者と後者との重量比は、 前者中のポリ—L一乳酸の重量と、 後者中のポリ一 D— 乳酸の重量の比 (LZD) が、 好ましくは 40Z60〜60Z40、 より好まし くは 45ノ 55〜55Z45である。 得られる水性ェマルジヨンは、 o/wの形 態で、 平均粒子径が、 好ましくは 0. 05〜2 zm、 より好ましくは 0. 07〜 0. 5 mである。
〔ステップ (3)〕
ステップ (3) は、 混合エマルジョンを乾燥させるステップである。 混合エマ ルジョンはいかなる状態から乾燥過程にかけてもよいが、 たとえば、 塗膜として 利用する場合には塗布した後に乾燥してもよいし、 その他の場合には用途に応じ た形態を保持できる型や、 容器の中で乾燥させることもよい。 乾燥は、 溶媒、 分 散媒である水が除去できる条件であればよいが、 たとえば室温、 大気圧下で行う こともできる。 一方、 粒子のガラス転移温度を越える温度で熱処理を行ってもよ レ^ その場合には、 さらに強固な表面を持つステレオコンプレックスポリ乳酸を 得ることができる。
混合ェマルジヨン中には、 ポリ一 L一乳酸およびポリ— D—乳酸が存在し、 水 分を除去する乾燥過程で、 ステレオコンプレックスが形成されるものと考えられ る。 ステレオコンプレックスとは、 ポリ一 L—乳酸およびポリ一 D—乳酸のそれ ぞれが螺旋を形成して交互に配置された結晶構造のことをいう。 ステレオコンプ レックスは、 ポリ一 L一乳酸とポリ _ D—乳酸との間の相互作用が L体間若しく は D体間よりも強いことから形成されるものである。 混合ェマルジョンの状態で は、 乳化剤の作用もあってポリ一 L一乳酸およびポリ一 D -乳酸がそれぞれ分離 してミセルを形成し、 両者があまり交じり合わないが、 混合ェマルジヨンを乾燥 させる際に、 残存する乳化剤の作用によってポリー L一乳酸およびポリ— D—乳 酸のそれぞれのヘリックスが相互作用して、 両者が接近した際にステレオコンプ レックスを構成するものと考えられる。
得られるポリ乳酸中のステレオコンプレックスの含有率は、 好ましくは 50% 以上、 より好ましくは 70%以上である。 得られるポリ乳酸は、 示差走査熱量 計 (DSC) 測定において、 昇温過程における融解ピークのうち、 195°C以上 の融解ピークの割合が、 好ましくは 50%以上、 より好ましくは 60%以上であ る。
融点は、 195〜250°Cの範囲、 より好ましくは 200〜220°Cの範囲で ある。 融解ェンタルピーは、 20 JZg以上、 好ましくは 30 J/g以上である。 具体的には、 示差走査熱量計 (DSC) 測定において、 昇温過程における融解ピ ークのうち、 195 °C以上の融解ピークの割合が 50%以上であり、 融点が 19 5〜250°Cの範囲にあり、 融解ェンタルピーが 20 JZg以上であることが好 ましい。
得られるポリ乳酸の重量平均分子量は、 好ましくは 5, 000〜1, 000, 000、 より好ましくは 10, 000〜200, 000である。 重量平均分 子量は溶離液にクロ口ホルムを用いたゲルパーミエ一シヨンクロマトグラフ ィ一 (GPC) 測定による標準ポリスチレン換算の重量平均分子量値である。 くフィルムの製造方法 >
本発明のフィルムの製造方法は、 ポリ— L一乳酸の水性ェマルジョンとポリ― D -乳酸の水性ェマルジヨンとをそれぞれ調製するステップ ( 1 )、
両者を混合し混合ェマルジヨンとするステップ (2)、
基板に混合ェマルジヨンを塗布するステップ (3— i) および
塗布された混合ェマルジヨンを乾燥させるステップ (3— i i)、
を含む。
本発明のフィルムの製造方法において、 ステップ (1) および (2) は、 前述 のポリ乳酸の製造方法と同じである。 本発明のフィルムの製造方法においては、 基板上に混合ェマルジヨンを塗布するステップ (3— i ) および塗布された混合 ェマルジヨンを乾燥させるステップ (3— i i ) を含む。
塗布 (3— i ) は、 混合ェマルジヨンを基板上にキャストして行うことができ る。 キャストは、 ダイから混合ェマルジヨンを押し出す方法、 ドクターブレード 法、 スピンコート法などで行うことができる。 基板として、 ガラス板、 金属板、 合成樹脂板などがある。 乾燥 (3— i i ) は、 室温、 大気圧下で行うこともでき る。
本方法で得られるフィルムの厚さは、 好ましくは 5〜2 0 0 m、 より好まし くは 1 0〜1 0 0 mである。 従って、 基板上に塗布する混合ェマルジヨンの厚 さも、 混合ェマルジヨン中のポリ乳酸量を考慮して調節することができる。 フィ ルムは、 前述のポリ乳酸と同様にステレオコンプレックスポリ乳酸を含有し、 重量平均分子量、 D S Cにより測定される熱的性質も同様である。
<混合エマルジョン >
本発明の混合ェマルジョンは、 ポリ— L—乳酸の水性ェマルジョンとポリ— D —乳酸の水性ェマルジヨンとを含有する。 各水性ェマルジヨンは、 ポリ— L—乳 酸 (またはポリ一 D—乳酸)、 乳化剤および水を含有する。 ポリ一 L一乳酸 (ま たはポリ一 D—乳酸)、 乳化剤は、 ポリ乳酸の製造方法の項で述べた通りである。 乳ィ匕剤は、 ポリ乳酸 1 0 0重量部に対して、 好ましくは 0. 1〜4 0重量部、 よ り好ましくは 1〜3 0重量部含有する。 水は、 ポリ一 L—乳酸 (またはポリ— D —乳酸) 1 0 0重量部に対して、 好ましくは 5 0〜: L 0 , 0 0 0重量部、 より好 ましくは 1 0 0〜 1 5 0 0重量部含有する。
混合ェマルジヨン中のポリ—L—乳酸と、 ポリ—D—乳酸との重量比 (L/ D) は、 好ましくは 4 0 Z 6 0〜6 0 Z4 0、 より好ましくは 4 5 / 5 5〜5 5 Z4 5である。 混合ェマルジヨンは、 o Zwの形態で、 平均粒子径が、 好ましく は 0. 0 5〜2 m、 より好ましくは 0 . 0 7〜0. 5 mである。
混合ェマルジヨンは、 ポリ _ L—乳酸の水性ェマルジヨンとポリ— D—乳酸の 水性ェマルジヨンとをそれぞれ調製するステップ (1 ) および両者を混合し混合 ェマルジヨンとするステップ (2 ) により製造することができる。 ステップ (1) およびステップ (2) は、 ポリ乳酸の製造方法の項で説明した通りである。 <コ一ティング剤 >
本発明のコーティング剤は、 前述の混合ェマルジヨンを含有する。 混合エマル ジョンは、 ポリ一 L—乳酸の水性ェマルジヨンとボリ一 D—乳酸の水性ェマルジ ヨンとを含有する。 本発明のコーティング剤は、 塗布時にはステレオコンプレツ クスが形成されておらず、 塗布後の乾燥の際にステレオコンプレックスが形成さ れるという特徴を有する。 即ち、 その場で (in situ) ステレオコンプレックス を形成させることができる。 従って、 塗布し易く、 保存性が良好であるという利 点を有する。
コーティング剤は、 ポリマ一ェマルジヨン、 樹脂エマルジョンおよびゴム系ラ テックスを含有していてもよい。 これらの成分は、 混合ェマルジヨン 100重量 部に対して、 好ましくは 5〜200重量部含有する。 その他、 必要に応じて、 増 粘剤、 消泡剤、 酸化防止剤、 紫外線吸収剤、 耐水化剤、 防腐剤、 防錡剤、 顔料、 染料等の各種公知の添加剤を適宜含有してもよい。 これらの成分は、 混合エマル ジョン 100重量部に対して、 好ましくは 0. 1〜20重量部含有する。 実施例
以下、 実施例により本発明を詳述する。 実施例において物性の測定は以下の方 法により行った。
(1) 重量平均分子量 (Mw) の測定
重量平均分子量 (Mw) は、 ショーデックス製 GPC— 11を使用し、 サンプ ル 5 Omgを 5m 1のクロ口ホルムに溶解させ、 40°Cのクロ口ホルムにて展開 した。 重量平均分子量 (Mw)、 はポリスチレン換算値として算出した。
(2) 熱的特性
熱的特性は、 (株)島津製作所製 DSC—60示差走査熱量測定計 DSCを用い て測定した。 測定は、 試料 1 Omgを窒素雰囲気下、 昇温速度 10°CZ分で室温 力 250°Cまで昇温させる方法により行った。 第一スキャンでは、 ホモ結晶融 解温度 (Tmh)、 ホモ結晶融解熱 (AHmh)、 ステレオコンプレックス結晶融 解温度 (Tms)、 ステレオコンプレックス結晶融解熱 (AHms) を測定した。
(3) ステレオコンプレックス含有率 (x c (SO) は、 以下のように求めた。 100 %結晶化したポリ乳酸のホモ結晶融解熱 (AHmh 0) を— 203. 4 J /g、 100%結晶化したポリ乳酸ステレオコンプレックス体結晶融解熱 (ΔΗ ms O) を— 142 JZgとして、 DS Cから実際に得られたホモ結晶融解熱 (△Hmh)、 ステレオコンプレックス結晶化熱融解熱 (AHms) より、 下記 式によって算出した。
χ c (SO (%) = 1 OOx [ (AHms/AHmsO) / (AHmh/AHmhO+AHms/AHmsO) ]
(4) 195 °C以上の融解ピークの割合 (R195以上)
195 °C以上の融解ピ一クの割合 (%) は、 195°C以上 (高温) の融解ピー ク面積と 140〜180°C (低温) 融解ピーク面積から以下の式により算出した。
R195以上 (%) =A195以上 Z (A195以上 + A140〜180) xl 00
R195以上: 195 以上の融解ピークの割合
A195以上: 195°C以上の融解ピーク面積
A140〜180: 140〜180°Cの融解ピーク面積
(5) 光学純度 (%) '
ポリ一 L一乳酸、 ポリ— D—乳酸を構成する L—乳酸と D—乳酸の構成比率か ら光学純度を求めた。 試料 1 gに 5 M水酸ナトリウム 5 m 1とィソプロパノール 2. 5 m 1を添加し、 40 °Cで加熱攪拌しながら加水分解した後に 1 M硫酸で中 和した。 中和液 lmlを 25倍に希釈することで濃度を調整した。 これを HPL Cにて、 紫外光 UV254 nmでの L—乳酸と D—乳酸との検出ピーク面積を測 定し、 ポリ乳酸重合体を構成する L一乳酸の重量比率 [L] (%) と D—乳酸の 重量比率 [D] (%) とから光学純度 (%), を下記式によって算出した。
なお、 HPLC装置として、 ポンプ; (株)島津製作所製 LC一 6A、 UV検出 器; (株)島津製作所製 SPD— 6 AV、 カラム; SUMI CHI RAL OA— 5000 ((株) 住化分析センタ一) を使用し、 溶離液には ImM硫酸銅水溶液 を用い、 流速 1. 0ml /mi n 40 °Cで測定した。
光学純度 (%) = 100 X [L] Z ([L] + [D]) (または 10 Ox [D] Z ([L] + [D])
(6) 広角 X線回折 (WAXS) 測定
広角 X線回折 (WAXS) は、 (株) リガク製の X線回折装置 R I NT— 21 00 FSLと R I NT2000 X線発生器 (40 k V、 3 OmAで発生) を 用いて、 N iでフィル夕一した Cu— K α線 (波長: 0. 1542 nm) で 2 Θ角 6° から 40° まで毎分 2。 で行った。
(7) 原子間力顕微鏡 (AFM) 測定
フィルム表面の高低イメージは、 (株)島津製作所製の原子間力顕微鏡 (AF M) を用いて夕ッピンダモードで測定を行った。
実施例 1
(ポリ一 L一乳酸の水性ェマルジョンの調製)
ポリ—L—乳酸 (PLLA:分子量 =20, 100) 100部を、 トルエン 4 00部中で 100°Cに加熱し、 約 1時間溶解した後、 80°Cまで冷却した。 次い で乳化剤としてポリオキシエチレンアルキルエーテルスルホコハク酸 2ナ卜リゥ ム塩を固形分換算で 20部および水 1, 000部を添加し、 75°Cにて 1時間、 強撹拌して予備乳化を行った。 得られた予備乳化物に超音波を 1時間以上かけ、 乳ィ匕物を得た。 次いで、 エバポレ一夕一を用いて乳化物中のトルエンを減圧留去 し、 固形分 10%、 平均粒子径 0. 3 mのポリ一 L一乳酸の水性エマルジョン を得た (以下、 溶液 (L 1) という)。
(ポリ一 D—乳酸の水性ェマルジョンの調製)
ポリ一 D—乳酸 (PDLA:分子量 =22, 200) を用いた以外は同じ操作 を繰り返し、 固形分 10%、 平均粒子径 0. 3 /xmのポリ一D—乳酸の水性エマ ルジョンを得た (以下、 溶液 (D 1) という)。
(混合ェマルジヨンの調製)
得られた溶液 (L 1) および溶液 (D1) を重量比 1 : 1で混合し、 混合エマ ルジョンを得た。
(塗布、 乾燥)
混合エマルジョンを基板上にキャストし、 室温で乾燥させ、 厚み 35 のフ イルム (E l) を得た。 フィルム (El) の Mwは 21, 000である。
(フィルム (E 1) の物性)
フィルム (E 1) について DSC測定、 広角 X線回折 (WAXS) 測定および 原子間力顕微鏡 (AFM) 測定を行った。
DS C測定の結果を図 1に示す。 図 1中の実線は、 フィルム (E 1 ) の D S C チャートである。 図 1中の点線は、 比較例 1で得られたフィルム (C 1) の DS Cチャートである。 フィルム (C 1) の融点が約 170°Cであるのに対し、 フィ ルム (E 1) の融点は 209. 4°Cであり、 本発明によれば、 耐熱性の高いフィ ルムが得られることが分かる。 フィルム (E 1) のステレオコンプレックスの含 有率は、 76. 1%、 195°C以上の融解ピークの割合は 69. 1%であった。 また、 フィルム (E 1) の WAXS測定では、 20角 12° 、 21° および 2 4° に回折ピークが見られ、 18. 5° と 22. 5° に現れるポリ一 L一乳酸 の結晶回折ピークと異なっており、 ステレオコンプレックスが形成されたことが 確認された。
フィルム (E 1) の表面の A FM測定結果を図 2に示す。 フィルム (E 1) は 平滑な表面構造を有することが分かる。
実施例 2
(ポリ一 L—乳酸の水性ェマルジョンの調製)
ポリ—L—乳酸 (PLLA:分子量 =71, 000) を 100部、 100°Cに てトルエン (460部) に溶解した後、 80°Cまで冷却し、 乳化剤 (ポリオキシ エチレンアルキルエーテルスルホコハク酸、 20部) および蒸留水 (1, 000 部)を加えた。 そして 75°Cにて 1時間攪拌して予備乳化を行った後、 1時間以 上超音波をかけながら乳化を行った。 その後、 エバポレー夕一にて減圧蒸留を行 い、 固形分 10%、 平均粒子 0. 3 mのポリ一 L—乳酸ェマルジヨンを得た (以下、 溶液 (L2) という)。
(ポリ一 D—乳酸の水性ェマルジョンの調製)
ポリ— D—乳酸 (PDLA:分子量 =75, 000) を用いた以外は同じ操作 を繰り返し、 固形分 10%、 平均粒子径 0. 3 mのポリ一 D—乳酸の水性エマ ルジョンを得た (以下、 溶液 (D2) という)。
(混合ェマルジヨンの調製)
得られた溶液 (L2) および溶液 (D2) を重量比 1 : 1で混合し、 混合エマ ルジョンを得た。
(塗布、 乾燥)
混合ェマルジヨンを基板上にキャストして乾燥させ、 フィルム (E2) を得た。 フィルム (E2) の1^ は73, 000であった。 フィルム (E2) のステレオ コンプレックスの含有率は、 73. 2%、 195°C以上の融解ピークの割合は 6 6. 3%であった。
比較例 1
実施例 1で得た L液だけを、 基板上にキャストして乾燥させ、 ポリ一 L—乳酸 のフィルム (C1) を得た。 フィルム (C 1) の DSC測定の結果を図 1 (点 線) に示す。 フィルム (C 1) の融点は 172. 3°Cであった。
実施例 1で得られたフィルム (E1) と比較例 1で得られたフィルム (C 1) を水の中に静置したところ、 フィルム (C 1) は粉状に剥がれ落ちたのに対して、 フィルム (E1) は形状に変化を生じなかった。 このことより、 ステレオコンプ レックス形成により、 ポリ乳酸フィルムの強度が向上されたことが分かる。 発明の効果
本発明方法によれば、 有害な溶剤を用いることなくポリ乳酸およびそのフィル ムが得られる。 本発明方法によれば、 耐熱性および強度に優れたポリ乳酸および そのフィルムが得られる。
本発明の混合ェマルジョンおよびそれを含有するコ一ティング剤によれば、 ス テレオコンプレックスを含有し、 耐熱性の高いポリ乳酸の塗膜を形成させること ができる。 また本発明のコーティング剤は、 生分解性に優れるため生分解性成形 品に塗布と、 塗膜も同時に生分解されるという環境上の効果がある。 産業上の利用可能性 本発明方法およびコーティング剤は、 紙パック、 ダンボール、 紙袋等の紙素材 や、 生分解性プラスチックの成形品等の表面被覆に用いることができる。 本発明 のステレオコンプレックスを含有するポリ乳酸は、 フィルム、 コーティング、 接 着剤、 塗料、 バインダー、 保護膜などに好適に用いることができる。

Claims

請 求 の 範 囲
1. ポリ一 L—乳酸の水性ェマルジヨンとポリ一 D—乳酸の水性ェマルジョン とをそれぞれ調製するステップ (1)、
両者を混合し混合ェマルジヨンとするステップ (2)、 および
混合ェマルジヨンを乾燥させるステップ (3)、
を含むポリ乳酸の製造方法。
2. ポリ _ L—乳酸の水性ェマルジョンが、 ポリ— L一乳酸 100重量部に対 し、 水 50〜10, 000重量部を含有し、 ポリ一 D—乳酸の水性ェマルジヨン が、 ポリ一 D—乳酸 100重量部に対し、 水 50〜 10, 000重量部を含有す る請求項 1記載の方法。
3. ポリ一 L—乳酸およびポリー D—乳酸の重量平均分子量が、 それぞれ 5 , 000〜1, 000, 000である請求項 1記載の方法。
4. 得られたポリ乳酸の示差走査熱量計 (DSC) で測定した融点が、 195 〜250°Cである請求項 1記載の方法。
5. ポリ一 L—乳酸の水性ェマルジヨンとポリ一 D—乳酸の水性ェマルジョン とをそれぞれ調製するステップ (1)、
両者を混合し混合ェマルジヨンとするステップ (2)、
基板に混合ェマルジヨンを塗布するステップ (3— i) および
塗布された混合ェマルジヨンを乾燥させるステップ (3— i i)、
を含むフィルムの製造方法。
6. ポリ— L一乳酸の水性ェマルジョンが、 ポリ— L一乳酸 100重量部に対 し、 水 50〜10, 000重量部を含有し、 ポリ一 D—乳酸の水性ェマルジヨン が、 ポリ一 D—乳酸 100重量部に対し、 水 50〜 10, 000重量部を含有す る請求項 5記載の方法。
7. ポリ一 L一乳酸およびポリ— D—乳酸の重量平均分子量が、 それぞれ 5 , 000〜1, 000, 000である請求項 5記載の方法。
8. フィルムの示差走査熱量計 (DSC) で測定した融点が、 195〜25 0 °Cである請求項 5記載の方法。
9. ポリ— L—乳酸の水性ェマルジヨンとポリ—D—乳酸の水性ェマルジヨン とを含有する混合ェマルジョン。
10. ポリ— L—乳酸の水性ェマルジョンが、 ポリ— L—乳酸 100重量部に 対し、 水 50〜: L 0, 000重量部を含有し、 ポリ一 D—乳酸の水性ェマルジョ ンが、 ポリ一 D—乳酸 100重量部に対し、 水 50〜; L 0, 000重量部を含有 する請求項 9記載の混合ェマルジョン。
11. ポリ一 L _乳酸およびポリ— D—乳酸の重量平均分子量が、 それぞれ 5 , 000〜1, 000, 000である請求項 9記載の混合ェマルジヨン。
12. 請求項 9記載の混合ェマルジョンを含有するコーティング剤。
PCT/JP2006/303347 2005-02-20 2006-02-17 ポリ乳酸の製造方法 WO2006088241A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CA002598470A CA2598470A1 (en) 2005-02-20 2006-02-17 Process for producing polylactic acid
EP06714487A EP1849833A4 (en) 2005-02-20 2006-02-17 METHOD FOR MANUFACTURING POLYLACTIC ACID
US11/884,267 US20080161505A1 (en) 2005-02-20 2006-02-17 Method of Manufacturing Polyactic Acid
JP2007503801A JPWO2006088241A1 (ja) 2005-02-20 2006-02-17 ポリ乳酸の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-080382 2005-02-20
JP2005080382 2005-02-20

Publications (1)

Publication Number Publication Date
WO2006088241A1 true WO2006088241A1 (ja) 2006-08-24

Family

ID=36916627

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/303347 WO2006088241A1 (ja) 2005-02-20 2006-02-17 ポリ乳酸の製造方法

Country Status (7)

Country Link
US (1) US20080161505A1 (ja)
EP (1) EP1849833A4 (ja)
JP (1) JPWO2006088241A1 (ja)
KR (1) KR20070105990A (ja)
CN (1) CN101124280A (ja)
CA (1) CA2598470A1 (ja)
WO (1) WO2006088241A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006307195A (ja) * 2005-03-31 2006-11-09 Sanyo Chem Ind Ltd 樹脂粒子
JP2008062588A (ja) * 2006-09-09 2008-03-21 Tohcello Co Ltd ポリ乳酸系積層体
JP2008062589A (ja) * 2006-09-09 2008-03-21 Tohcello Co Ltd ポリ乳酸系離型フィルム
JP2008195838A (ja) * 2007-02-14 2008-08-28 Nk Research:Kk 架橋されたポリ乳酸フィルムの製造方法およびコーティング剤。
WO2011142283A1 (ja) * 2010-05-10 2011-11-17 国立大学法人群馬大学 ポリ乳酸微粒子の製造方法、ポリ乳酸微粒子、並びにこれを用いた結晶核剤、成形体、及び表面改質剤
WO2013108884A1 (ja) * 2012-01-20 2013-07-25 国立大学法人大阪大学 コンプレックスポリマーの製造方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0703761D0 (en) 2007-02-27 2007-04-04 Tate & Lyle Plc Polylactic acid stereocomplex
KR101241014B1 (ko) 2011-07-29 2013-03-11 한국기술교육대학교 산학협력단 용액캐스팅 법을 이용한 폴리유산 스테레오컴플렉스 제조방법
NL2014862B1 (en) 2015-05-27 2017-01-31 Csk Food Enrichment Bv Cheese coating.
NL2014860B1 (en) * 2015-05-27 2017-01-31 Csk Food Enrichment Bv Cheese coating.
IT202000028640A1 (it) * 2020-11-26 2022-05-26 Consiglio Nazionale Ricerche Dispersioni acquose di polimeri biodegradabili prive di alogeni e procedimento per la loro preparazione
CN113956505B (zh) * 2021-11-03 2023-05-16 海南赛诺实业有限公司 一种聚乳酸乳液、其制备方法及应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001011294A (ja) * 1999-07-02 2001-01-16 Miyoshi Oil & Fat Co Ltd 生分解性樹脂水系分散体及び生分解性複合材料
JP2003096285A (ja) * 2001-09-27 2003-04-03 Toray Ind Inc ポリ乳酸樹脂組成物、その製造方法および成形品
JP2004323640A (ja) * 2003-04-23 2004-11-18 Sumitomo Seika Chem Co Ltd ポリ乳酸水性分散液の製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4981696A (en) * 1986-12-22 1991-01-01 E. I. Du Pont De Nemours And Company Polylactide compositions
JP3616465B2 (ja) * 1996-10-01 2005-02-02 ミヨシ油脂株式会社 生分解性エマルジョン
US6143276A (en) * 1997-03-21 2000-11-07 Imarx Pharmaceutical Corp. Methods for delivering bioactive agents to regions of elevated temperatures
JP3775668B2 (ja) * 2002-04-30 2006-05-17 荒川化学工業株式会社 ポリ乳酸水性エマルジョン、その製造法および当該ポリ乳酸水性エマルジョンを含有するコーティング剤
JP2004026876A (ja) * 2002-06-21 2004-01-29 Mitsui Chemicals Inc ブロック共重合ポリ乳酸及びその製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001011294A (ja) * 1999-07-02 2001-01-16 Miyoshi Oil & Fat Co Ltd 生分解性樹脂水系分散体及び生分解性複合材料
JP2003096285A (ja) * 2001-09-27 2003-04-03 Toray Ind Inc ポリ乳酸樹脂組成物、その製造方法および成形品
JP2004323640A (ja) * 2003-04-23 2004-11-18 Sumitomo Seika Chem Co Ltd ポリ乳酸水性分散液の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1849833A4 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006307195A (ja) * 2005-03-31 2006-11-09 Sanyo Chem Ind Ltd 樹脂粒子
JP2008062588A (ja) * 2006-09-09 2008-03-21 Tohcello Co Ltd ポリ乳酸系積層体
JP2008062589A (ja) * 2006-09-09 2008-03-21 Tohcello Co Ltd ポリ乳酸系離型フィルム
JP2008195838A (ja) * 2007-02-14 2008-08-28 Nk Research:Kk 架橋されたポリ乳酸フィルムの製造方法およびコーティング剤。
WO2011142283A1 (ja) * 2010-05-10 2011-11-17 国立大学法人群馬大学 ポリ乳酸微粒子の製造方法、ポリ乳酸微粒子、並びにこれを用いた結晶核剤、成形体、及び表面改質剤
JPWO2011142283A1 (ja) * 2010-05-10 2013-07-22 国立大学法人群馬大学 ポリ乳酸微粒子の製造方法、ポリ乳酸微粒子、並びにこれを用いた結晶核剤、成形体、及び表面改質剤
JP5652831B2 (ja) * 2010-05-10 2015-01-14 国立大学法人群馬大学 ポリ乳酸微粒子の製造方法、ポリ乳酸微粒子、並びにこれを用いた結晶核剤、成形体、及び表面改質剤
WO2013108884A1 (ja) * 2012-01-20 2013-07-25 国立大学法人大阪大学 コンプレックスポリマーの製造方法
JPWO2013108884A1 (ja) * 2012-01-20 2015-05-11 国立大学法人大阪大学 コンプレックスポリマーの製造方法

Also Published As

Publication number Publication date
EP1849833A1 (en) 2007-10-31
CA2598470A1 (en) 2006-08-24
US20080161505A1 (en) 2008-07-03
EP1849833A4 (en) 2010-08-11
CN101124280A (zh) 2008-02-13
JPWO2006088241A1 (ja) 2008-07-10
KR20070105990A (ko) 2007-10-31

Similar Documents

Publication Publication Date Title
WO2006088241A1 (ja) ポリ乳酸の製造方法
Jeong et al. Mechanical properties and cytotoxicity of PLA/PCL films
García et al. Biodegradable materials from grafting of modified PLA onto starch nanocrystals
ES2688444T3 (es) Método de fabricación de un artículo a partir de una composición que comprende PHA y PBS
Coativy et al. Microwave synthesis and melt blending of glycerol based toughening agent with poly (lactic acid)
JP2003096285A (ja) ポリ乳酸樹脂組成物、その製造方法および成形品
Singh et al. Mechanical properties and morphology of polylactide, linear low‐density polyethylene, and their blends
CA2844896A1 (en) Polymer product, polymer compact, polymer compact for medical use, toner, and polymer composition
JP2013503921A (ja) ポリマー/熱可塑性デンプン組成物
Adami et al. PLA–PEG copolymers micronization by supercritical assisted atomization
Zhang et al. Inducing stereocomplex crystals by template effect of residual stereocomplex crystals during thermal annealing of injection-molded polylactide
TW201022341A (en) Production of polyhydroxyalkanoate foam
JP2004161802A (ja) 生分解性ポリエステル系樹脂組成物およびその製造方法
Pereira et al. Bronsted acidic ionic liquids: New transesterification agents for the compatibilization of polylactide/ethylene-co-vinyl acetate blends
JP2008063456A (ja) ポリ乳酸の製造方法
WO2014161810A1 (en) Composition for the preparation of a nanostructured biodegradable polymeric material, the material obtained and its applications
Li et al. The crystallization behavior of biodegradable polymer in thin film
Li et al. Simultaneous improvement of the foaming property and heat resistance in polylactide via one-step branching reaction initiated by cyclic organic peroxide
Liu et al. Non-isothermal crystallization kinetics of biodegradable poly (butylene succinate-co-diethylene glycol succinate) copolymers
Bibi et al. Novel strategy of lactide polymerization leading to stereocomplex polylactide nanoparticles using supercritical fluid technology
Mincheva et al. Preparation of narrowly dispersed stereocomplex nanocrystals: a step towards all-poly (lactic acid) nanocomposites
EP3071624A1 (en) Polymer product and production method thereof, and molded product
Martins et al. A versatile filler in polyhydroxyalcanoates filaments for FDM: A diverse panorama for pullulan application
ES2628608T3 (es) Copolímeros de bloque que incluyen polilactida
Boissé et al. PLLA crystallization in linear AB and BAB copolymers of L-lactide and 2-dimethylaminoethyl methacrylate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020077018268

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2007503801

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11884267

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2006714487

Country of ref document: EP

Ref document number: 2598470

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 200680005508.4

Country of ref document: CN

Ref document number: 3619/CHENP/2007

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 2006714487

Country of ref document: EP