WO2006082817A1 - Capacitor and wiring board incorporating same - Google Patents

Capacitor and wiring board incorporating same Download PDF

Info

Publication number
WO2006082817A1
WO2006082817A1 PCT/JP2006/301587 JP2006301587W WO2006082817A1 WO 2006082817 A1 WO2006082817 A1 WO 2006082817A1 JP 2006301587 W JP2006301587 W JP 2006301587W WO 2006082817 A1 WO2006082817 A1 WO 2006082817A1
Authority
WO
WIPO (PCT)
Prior art keywords
capacitor
substrate
lower electrode
electrode
layer
Prior art date
Application number
PCT/JP2006/301587
Other languages
French (fr)
Japanese (ja)
Inventor
Yasuhiro Ishii
Tooru Mori
Akinobu Shibuya
Shintaro Yamamichi
Kazuhiro Baba
Hidenori Kawahara
Original Assignee
Nec Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nec Corporation filed Critical Nec Corporation
Priority to JP2007501575A priority Critical patent/JP5061895B2/en
Publication of WO2006082817A1 publication Critical patent/WO2006082817A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/33Thin- or thick-film capacitors 
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/16Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor
    • H05K1/162Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor incorporating printed capacitors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0137Materials
    • H05K2201/0175Inorganic, non-metallic layer, e.g. resist or dielectric for printed capacitor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0137Materials
    • H05K2201/0179Thin film deposited insulating layer, e.g. inorganic layer for printed capacitor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/095Conductive through-holes or vias
    • H05K2201/09509Blind vias, i.e. vias having one side closed
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/095Conductive through-holes or vias
    • H05K2201/09563Metal filled via

Definitions

  • the present invention relates to a capacitor that can be mounted on a wiring board and a wiring board that incorporates the capacitor.
  • a capacitor is one of the most frequently used components that make up an electronic circuit. Therefore, if the capacitor can be built in an electronic circuit board, a particularly large effect can be expected in reducing the board area.
  • a capacitor using a dielectric having a high dielectric constant is attracting attention as a capacitor that can be built in an electronic circuit board in recent years because the capacitor per unit area is high and the capacitor element can be made thinner than a chip component. ing.
  • a rigid substrate such as a silicon substrate or a glass substrate
  • the rigid substrate is excellent in surface flatness and heat resistance, but is thin and thin. Then, there is a problem that handling after processing and thinning becomes difficult.
  • a flexible substrate such as a resin substrate has a problem of low heat resistance, but can be easily thinned and grounded, and is suitable as a capacitor substrate.
  • Patent Document 1 Japanese Patent Laid-Open No. 7-22725 discloses a ceramic or resin. A technique for forming a capacitor on the surface of an insulating substrate is disclosed.
  • Patent Document 2 Japanese Patent Laid-Open No. 2000-357631 discloses a technique for forming a capacitor on a flexible substrate via a metal oxide adhesive film and a metal adhesive film.
  • Patent Document 3 Japanese Patent Laid-Open No.
  • Patent Document 4 Japanese Patent Laid-Open No. 2000-277922
  • Patent Document 5 Japanese Patent Laid-Open No. 2001-77539
  • Patent Document 6 Japanese Patent Publication No. 2001-160672 discloses a technique for forming a capacitor with a thick film.
  • Patent Document 7 Japanese Patent Laid-Open No.
  • a lower electrode is formed on an organic multilayer substrate, a valve metal film is formed on the lower electrode, and an anode oxidation treatment is performed on the valve metal film.
  • anodic oxide film and forming an upper electrode on the anodic oxide film is disclosed.
  • the dielectric thin film can be formed at a low temperature, so that the dielectric thin film can be formed on a resin substrate such as a printed circuit board.
  • Patent Document 1 Japanese Patent Laid-Open No. 7-22725
  • Patent Document 2 JP 2000-357631 A
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2004-56097
  • Patent Document 4 Japanese Patent Laid-Open No. 2000-277922
  • Patent Document 5 Japanese Patent Laid-Open No. 2001-77539
  • Patent Document 6 Japanese Unexamined Patent Publication No. 2001-160672
  • Patent Document 7 Japanese Patent Laid-Open No. 2002-100533
  • barium titanate having a relative dielectric constant exceeding 100 at room temperature by a method such as sputtering, CVD, or sol-gel.
  • a thin film made of (BaTiO 3) or lead zirconate titanate (Pb (Zr, Ti) 0) is formed.
  • the present invention has been made in view of a serious problem, and in a capacitor built in a wiring board, the adhesion strength among the substrate, the lower electrode, the dielectric film, and the upper electrode constituting the capacitor.
  • An object of the present invention is to provide a capacitor and a printed wiring board incorporating the capacitor.
  • a capacitor according to the present invention includes a substrate, a lower electrode formed on the substrate, a dielectric film formed on the lower electrode, and an upper electrode formed on the dielectric film.
  • Another capacitor according to the present invention includes a substrate made of a resin, a lower electrode formed on the substrate, a dielectric film formed on a part of the lower electrode, and the dielectric An upper electrode formed on the film, and a resin insulating layer provided on the substrate so as to cover the lower electrode, the dielectric film, and the stacked body having the upper electrode force, A hole penetrating the laminate is formed in a part of the laminate, the insulating layer is embedded in the hole, and the insulating layer is in contact with the substrate at the bottom of the hole.
  • the substrate and the insulating layer are both formed by grease, the adhesion strength between the substrate and the insulating layer is high.
  • a hole is formed in the laminate, and the insulating layer is in contact with the substrate at the bottom of the hole, so that the insulating layer is firmly bonded to the substrate at this portion.
  • the lower electrode, the dielectric film, and the upper electrode are sandwiched between the substrate and the insulating layer bonded to each other, so that the adhesion between the substrate, the lower electrode, the dielectric film, and the upper electrode is good. It is.
  • the hole may be formed in a part of a region where the lower electrode, the dielectric film, and the upper electrode are stacked in the stacked body.
  • the dielectric film and the upper electrode are disposed in the vicinity of the joint between the substrate and the insulating layer, the adhesion between the substrate, the lower electrode, the dielectric film and the upper electrode is further improved. .
  • the lower electrode, the dielectric film, and the upper electrode are each divided into a plurality of portions by the holes, and adjacent portions of the lower electrode are connected to each other.
  • the adjacent portions of the upper electrode are preferably connected to each other.
  • the holes may be formed in a lattice shape when viewed from a direction perpendicular to the surface of the substrate, and the shape of each part of the lower electrode, the dielectric film, and the upper electrode may be rectangular.
  • the holes may be formed such that at least one of the portions of the lower electrode, the dielectric film, and the upper electrode has a hexagonal shape, and each of the portions may have a honeycomb shape. Arranged in !!
  • a wiring board according to the present invention includes a core substrate and the capacitor provided on at least one surface of the core substrate. As a result, even after the process of incorporating the capacitor into the wiring board, interfacial delamination does not occur between the substrate, the lower electrode, the dielectric film, and the upper electrode in the capacitor.
  • the wiring board according to the present invention has an insulating film provided so as to cover the capacitor, and a surface wiring provided on the surface of the insulating film, and the lower electrode of the capacitor is the
  • the capacitor is connected to a part of the surface wiring, and the upper electrode of the capacitor is connected to another part of the surface wiring that is insulated from the part.
  • the wiring board according to the present invention has an inner layer wiring provided in a region where the capacitor is not provided between the core substrate and the insulating film, and the lower electrode.
  • a first through hole and a second through hole are respectively formed in a part of the region immediately above the part and the other part of the inner layer wiring in the film, and the lower electrode includes the first conductor layer, A part of the inner layer wiring is connected to a part of the surface wiring through the first through-hole, and the upper electrode includes the second conductor layer, another part of the inner layer wiring, the It is preferable to be connected to the other part of the surface wiring via the second through hole.
  • the insulating layer is firmly bonded to the substrate at the bottom of the hole formed in the multilayer body, and thus the adhesion strength between the substrate, the lower electrode, the dielectric film, and the upper electrode is high.
  • a capacitor can be obtained.
  • FIG. 1 (a) is a plan view showing a capacitor according to a first embodiment of the present invention, and (b) is a cross-sectional view taken along the line AA ′ shown in (a).
  • FIG. 2 (a) is a plan view showing a printed wiring board according to a comparative example outside the scope of the present invention, and (b) is a cross-sectional view taken along line BB ′ shown in (a).
  • FIG. 3 (a) is a plan view showing a capacitor according to a second embodiment of the present invention, and (b) is a cross-sectional view taken along the line CC ′ shown in (a).
  • FIG. 4 (a) is a plan view showing a capacitor according to a third embodiment of the present invention, and (b) is (a
  • FIG. 5 is a cross-sectional view taken along line EE ′ shown in FIG. 4 (a).
  • FIG. 6 (a) to (c) are plan views showing a capacitor according to a fourth embodiment of the present invention for each layer.
  • FIGS. 7A to 7C are plan views showing capacitors according to the present embodiment for each layer.
  • FIG. 8 (a) is a plan view showing the capacitor according to the present embodiment for each layer, and FIG. It is sectional drawing by the FF 'line shown.
  • FIG. 9 (a) to (c) are plan views showing a method of manufacturing a capacitor according to the present embodiment in the order of steps.
  • FIG. 10 (a) is a plan view showing a capacitor according to a modification of the fourth embodiment
  • FIG. 10 (b) is a cross-sectional view taken along line GG ′ shown in FIG.
  • FIG. 11] (a) to (c) are plan views showing a method of manufacturing a capacitor according to this modification in the order of steps.
  • FIG. 12] (a) to (c) are plan views showing the method of manufacturing a capacitor according to this modification in the order of the steps, and show the next step of FIG. 11 (c).
  • FIG. 13 is a cross-sectional view showing a printed wiring board according to a fifth embodiment of the present invention.
  • FIG. 14 is a cross-sectional view showing a printed wiring board according to a sixth embodiment of the present invention.
  • FIG. 1A is a plan view showing the capacitor according to the present embodiment
  • FIG. 1B is a cross-sectional view taken along the line AA ′ shown in FIG.
  • the capacitor according to the present embodiment is provided with a substrate 1 made of resin and having a thickness of, for example, 10 to 60 / ⁇ , for example, 20 to 50 m. It has been.
  • a lower electrode 2 made of a metal or an alloy is provided on the substrate 1.
  • the shape of the lower electrode 2 is rectangular.
  • a dielectric film 3 made of an inorganic material for example, an oxide having a bottom bumskite structure, is provided in a part of the region on the lower electrode 2.
  • metal or An upper electrode 4 made of an alloy is provided on the dielectric film 3.
  • the dielectric film 3 and the upper electrode 4 are rectangular.
  • a laminated body 8 is constituted by the lower electrode 2, the dielectric film 3 and the upper electrode 4.
  • An insulating layer 5 is provided so as to cover the laminated body 8.
  • the insulating layer 5 is for protecting the lower electrode 2, the dielectric film 3 and the upper electrode 4, and is formed of a resin having good adhesion to the substrate 1.
  • Two openings 7a and 7b are formed in regions of the insulating layer 5 that are separated from each other.
  • the opening 7a is formed in a part of the region directly above the lower electrode 2 and excluding the region directly above the dielectric film 3, and the lower electrode 2 is exposed at the bottom of the opening 7a.
  • the opening 7b is formed in a part of the region directly above the upper electrode 4, and the upper electrode 4 is exposed at the bottom of the opening 7b.
  • the shapes of the openings 7a and 7b are rectangular, the longitudinal directions thereof are the same as each other, and the openings 7a and 7b are along the direction (short direction) perpendicular to the longitudinal direction. Are arranged.
  • a voltage is applied from the external circuit between the lower electrode 2 and the upper electrode 4 through the openings 7a and 7b. At this time, the dielectric film 3 functions as a capacitive insulating film.
  • a part of the region excluding the region immediately below the dielectric film 3 in the lower electrode 2 is formed in a slit-like hole. 6 is formed.
  • the hole 6 is formed at a position opposite to the opening 7b when viewed from the opening 7a, and the longitudinal direction of the hole 6 is the same as the longitudinal direction of the openings 7a and 7b.
  • the lower electrode 2 is not provided, and the substrate 1 is exposed.
  • the insulating layer 5 is embedded in the hole 6.
  • the insulating layer 5 is in direct contact with the substrate 1 at the bottom of the hole 6.
  • the ratio of the area of the hole 6 to the total area of the lower electrode 2, that is, the area including the hole 6 is, for example, 1 to 25%, for example, 5 to 10%.
  • the ratio of the area of the hole 6 to the total area of the lower electrode 2 is less than 1%, the above-described substrate 1, lower electrode 2, and dielectric film The effect of improving the adhesion at the interface between 3 and the upper electrode 4 is small.
  • the ratio is preferably 1 to 25%, more preferably 5 to 10%.
  • the substrate 1 and the insulating layer 5 are both made of resin, and the adhesion strength between the substrate 1 and the insulating layer 5 is high. For this reason, the substrate 1 and the insulating layer 5 are firmly bonded to each other in the hole 6, and the laminated body including the lower electrode 2, the dielectric film 3 and the upper electrode 4 is bonded to the substrate 1 and the insulating layer 5. Is sandwiched between. Thus, between the substrate 1 and the lower electrode 2, between the lower electrode 2 and the dielectric film 3, between the dielectric film 3 and the upper electrode 4, and between the upper electrode 4 and the insulating layer 5. The adhesion strength can be increased.
  • a hole 6 penetrating a part of the lower electrode 2 is formed, and the substrate 1 that is a flexible substrate and the insulating layer 5 made of resin are directly connected through the hole 6. It is attached.
  • the capacitor according to the present embodiment can withstand the external force applied in the process of incorporating the capacitor in the printed board.
  • the dielectric film 3 is formed of an oxide having a bottom bskite structure, the capacitance value is high.
  • FIG. 2 (a) is a plan view showing a capacitor according to a comparative example that is out of the range force of the present invention
  • FIG. 2 (b) is a cross-sectional view taken along line BB ′ shown in FIG. 2 (a).
  • the adhesion strength between the substrate 1 and the insulating layer 5 is weak.
  • the substrate 1 and the lower electrode 2 and the lower electrode 2 and the dielectric film are reduced.
  • adhesion strength between the dielectric film 3 and the upper electrode 4, and between the upper electrode 4 and the insulating layer 5 are also low.
  • the present invention is not limited to this, and a plurality of holes 6 may be formed.
  • the lower electrode 2 is formed of a single layer film has been shown.
  • the present invention is not limited to this, and the deformation of the substrate 1 after the formation of the dielectric film 3 is suppressed.
  • the lower electrode 2 is formed of a three-layer film in which an adhesive conductive material layer, a highly elastic conductive material layer and an oxidation-resistant conductive material layer are laminated in order from the substrate 1 side, or four or more layers including this three-layer film. Form with a multilayer film.
  • FIG. 3A is a plan view showing the capacitor according to this embodiment
  • FIG. 3B is a cross-sectional view taken along the line CC ′ shown in FIG.
  • the same components as those shown in FIGS. 1 (a) and (b) are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the lower electrode 2 is provided on the substrate 1, and a partial region on the lower electrode 2 is provided.
  • a dielectric film 3 is provided, and an upper electrode 4 is provided on the dielectric film 3.
  • one hole 6 is formed in the same manner as in the first embodiment.
  • an interlayer insulating film 9 made of an insulating material, for example, photosensitive polyimide is provided so as to cover the lower electrode 2, the dielectric film 3 and the upper electrode 4.
  • an interlayer insulating film 9 made of an insulating material, for example, photosensitive polyimide is provided so as to cover the lower electrode 2, the dielectric film 3 and the upper electrode 4.
  • three openings 10a, 10b and 10c are formed.
  • the opening 10a is formed in a part of the region directly above the lower electrode 2 and not provided with the dielectric film 3, and the opening 10b is formed in the hole 6 and in the region immediately above it.
  • the opening 10c is formed immediately above the upper electrode 4.
  • the openings 10a to 10c are arranged in a line in this order.
  • a thick film electrode 11 made of, for example, Cu or Au force is provided inside and directly above the opening 10a, and is connected to the lower electrode 2 at the bottom of the opening 10a.
  • a thin film electrode 12 made of, for example, Cu, Au, or Ni is provided in the opening 10c and directly above, and is connected to the upper electrode 4 at the bottom of the opening 10c.
  • the thin film electrode 12 extends on the interlayer insulating film 9 from the region directly above the opening 10c in a direction away from the opening 10b.
  • a thick film electrode 13 made of, for example, Cu or Au is provided in a part of the region on the interlayer insulating film 9 except for the region directly above the upper electrode 4, and is in contact with the extending portion of the thin film electrode 12.
  • the force that the lower electrode 2 is also provided in the region immediately below the thick film electrode 13 The portion of the lower electrode 2 that is disposed immediately below the thick film electrode 13 is disposed in the region immediately below the upper electrode 4 in the lower electrode 2. It is insulated from the part.
  • the thin film electrode 12 and the thick film electrode 13 are insulated from the lower electrode 2 by the interlayer insulating film 9.
  • an insulating layer 5 is provided so as to cover the laminated body 8, the interlayer insulating film 9, the thick film electrode 11, the thin film electrode 12, and the thick film electrode 13 provided on the substrate 1.
  • the insulating layer 5 is formed of a resin having good adhesion to the substrate 1.
  • An insulating layer 5 is buried inside the opening 10b formed in the interlayer insulating film 9, and is in direct contact with the substrate 1 at the bottom of the opening 10b, that is, at the bottom of the hole 6. Thus, the substrate 1 is firmly bonded to the insulating layer 5 in the hole 6.
  • the insulating layer 5 has two openings 7a and 7b.
  • the opening 7a is formed immediately above the thick film electrode 11, and the thick film electrode 11 is exposed at the bottom.
  • the opening 7b is formed in the region immediately above the thick film electrode 13, and the thick film electrode 13 is exposed at the bottom.
  • the thick film electrode 11 passes through the insulating layer 5 and the opening 10a of the interlayer insulating film 9 and is connected to the lower electrode 2, and the thick film electrode 13 passes through the insulating layer 5.
  • the thin film electrode 12 is connected to the upper electrode 4 through the opening 10 c of the interlayer insulating film 9.
  • the thick film electrodes 11 and 13 connect the lower electrode 2 and the upper electrode 4 to an external circuit (not shown). Then, a voltage is applied between the lower electrode 2 and the upper electrode 4 from the external circuit via the thick film electrodes 11 and 13.
  • Other configurations in the present embodiment are the same as those in the first embodiment described above.
  • the thin film electrode 12 as described above connects the upper electrode 4 to the thick film electrode 13. Further, the interlayer insulating film 9 ensures insulation between the upper electrode 4 and the lower electrode 2 of the capacitor and insulation between the upper electrode 4, the thin film electrode 12, the thick film electrode 13 and the lower electrode 2. It is for doing. Note that the interlayer insulating film 9 may be formed of an inorganic material.
  • FIG. 4 (a) shows the key according to this embodiment.
  • FIG. 5B is a cross-sectional view taken along line DD ′ shown in FIG. 5A
  • FIG. 5 is a cross-sectional view taken along line EE ′ shown in FIG. 4A.
  • the same components as those shown in FIGS. 3 (a) and (b) are denoted by the same reference numerals, and detailed description thereof is omitted. To do.
  • the capacitor according to the present embodiment has holes 6 in the lower electrode 2 in the multilayer body 8 as compared with the second embodiment described above.
  • the dielectric film 3 and the upper electrode 4 are formed in the laminated region, and the holes 6 are formed in a lattice shape, for example, a cross shape in a plan view.
  • the body film 3, the upper electrode 4 and the thin film electrode 12 are each divided into four parts, but are different.
  • the lower electrode 2 is divided into three regions along the direction from the region immediately below the thick film electrode 11 to the region immediately below the thick film electrode 13.
  • the dielectric film 3 and the upper electrode 4 are not provided above the region including the region immediately below the thick film electrode 11, and this region is connected to the thick film electrode 11.
  • the dielectric film 3 and the upper electrode 4 are not provided above the region of the lower electrode 2 including the region immediately below the thick film electrode 13, and this region is separated from the other two regions. Yes.
  • a dielectric film 3 and an upper electrode 4 are provided above the region of the lower electrode 2 disposed between the two regions described above. This region is continuous with the region including the region immediately below the thick film electrode 11 described above. This area is divided into four parts by a cross-shaped hole 6. In plan view, the shape of each part is a rectangle. Between the crossing portion and the outer end portion of the cross-shaped hole 6 and between each portion, there is a bridge portion 14 that extends each partial force of the lower electrode 2 and connects adjacent portions. As a result, the four portions of the lower electrode 2 are connected to each other via the bridge portion 14 at the crossing portion and the outer end portion. In addition, the dielectric film 3 and the upper electrode 4 are divided into four parts by the cross-shaped holes 6, respectively, and the parts are not connected to each other. In plan view, the dielectric film 3 and the upper electrode 4 are rectangular.
  • the thin film electrode 12 is provided in a region including a region immediately above the dielectric film 3 and the upper electrode 4, and is divided into four parts by a cross-shaped hole 6, but between each part and Between the thick film electrode 13, a bridge portion 15 in which each partial force extends is provided. Bridge part 15 is arranged in a region immediately above the bridge portion 14 provided between the portions of the lower electrode 2 in the bridge portion 14. Thereby, each part of the thin film electrode 12 is connected to the thick film electrode 13 via the bridge part 15. Therefore, the portions of the upper electrode 4 connected to the portions of the thin film electrode 12 are also connected to each other and to the thick film electrode 13.
  • Other configurations in the present embodiment are the same as those in the second embodiment described above.
  • the hole 6 is formed in a region where the lower electrode 2, the dielectric film 3 and the upper electrode 4 are stacked in the stacked body 8, the substrate 1 and the insulating layer 5 A lower electrode 2, a dielectric film 3, and an upper electrode 4 are disposed in the vicinity of the coupling portion. For this reason, the adhesion between the substrate lower electrode 2, the dielectric film 3, and the upper electrode 4 is further improved as compared with the second embodiment described above. Further, since the hole 6 is formed in a cross shape, the lower electrode 2, the dielectric film 3, and the upper electrode 4 are each divided into four portions having a relatively small area. As a result, between the substrate 1 and the lower electrode 2, between the lower electrode 2 and the dielectric film 3, between the dielectric film 3 and the upper electrode 4, and between the upper electrode 4 and the insulating layer 5. The adhesion of the material becomes stable and good.
  • the shape force of the hole 6 is shown as an example of a cross having two slit-like partial forces orthogonal to each other in plan view, but the present invention is not limited to this.
  • the shape of the hole 6 may be a lattice shape having a plurality of slit-like partial forces that are orthogonal to each other in plan view.
  • a cross-shaped slit is an example of a lattice-shaped slit.
  • FIG. 6 (a) to (c), Fig. 7 (a) to (c) and FIG. 8 (a) are plan views showing the capacitor according to the present embodiment for each layer in the order of lower layer side force, and FIG. 8 (b) is taken along the line FF ′ shown in FIG. 8 (a). It is sectional drawing.
  • Fig. 7 (a) to (c) and Fig. 8 (a) and (b) the same components as shown in Fig. 3 (a) and (b) are used.
  • the same reference numerals are given to the constituent elements, and detailed description thereof will be omitted.
  • the lower electrode 2 is formed on the substrate 1.
  • the lower electrode 2 is patterned in the shape described below. That is, the lower electrode 2 includes two rectangular areas 2a and 2b and three hexagonal areas 2c arranged between the rectangular area 2a and the rectangular area 2b. Further, the lower electrode 2 includes a bridge portion 14 that connects between the rectangular region 2a and the one hexagonal region 2c closest to the rectangular region 2a and between the three hexagonal regions 2c. Thus, the rectangular region 2a and the hexagonal region 2c are connected to each other, and the rectangular region 2b is insulated from the rectangular region 2a and the hexagonal region 2c.
  • a dielectric film 3 is formed on the hexagonal region 2 c of the lower electrode 2. That is, the dielectric film 3 is divided into three hexagonal regions that are regular hexagons in plan view.
  • an upper electrode 4 is formed on the dielectric film 3. That is, the upper electrode 4 is divided into three hexagonal regions that are regular hexagons in plan view.
  • a laminated body 8 is formed by the lower electrode 2, the dielectric film 3 and the upper electrode 4. Thereby, the laminate 8 is divided into three units having a regular hexagonal shape in plan view.
  • an interlayer insulating film 9 is formed on the substrate 1 so as to cover the stacked body 8. Openings 10a to lOd are formed in the interlayer insulating film 9.
  • One opening 10a is formed in the region directly above the rectangular region 2a of the lower electrode 2, and the shape thereof is rectangular in plan view. In the opening 10a, the rectangular region 2a of the lower electrode 2 is exposed.
  • the opening 10b has one location directly above the region surrounded by the three hexagonal regions 2c, and one location directly above the region surrounded by the two hexagonal regions 2c and the rectangular region 2b. It is formed and its shape reflects the shape of the region. In the opening 10b, the substrate 1 is exposed.
  • the opening 10b corresponds to the hole 6 in the first to third embodiments described above.
  • a total of three openings 10c are formed in the region immediately above the three hexagonal regions 2c, that is, the region directly above the upper electrode 4, and the shape thereof is circular in plan view. Open The upper electrode 4 is exposed at the mouth portion 10c.
  • One opening 10d is formed in a region immediately above the rectangular region 2b of the lower electrode 2, and the shape thereof is rectangular in plan view. In the opening 10d, the rectangular region 2b of the lower electrode 2 is exposed! /.
  • a thin film electrode 12 is formed on the interlayer insulating film 9.
  • the shape of the thin film electrode 12 is almost the same as the shape of the lower electrode 2 in plan view.
  • the force is just above the bridge portion 14 (see FIG. 6 (a)) that connects the hexagonal region 2c of the lower electrode 2 to the rectangular region 2a.
  • the thin film electrode 12 is not formed in the region.
  • the portion 12c of the thin film electrode 12 disposed immediately above the upper electrode 4 is directly above the force rectangular region 2a connected to the portion 12b disposed immediately above the rectangular region 2b of the lower electrode 2. It is not connected to the part 12a located in the area.
  • the thin film electrode 12 is embedded in the openings 10a, 10c and 10d (see FIG.
  • the portion 12a of the thin film electrode 12 is connected to the rectangular region 2a and the hexagonal region 2c (see FIG. 6 (a)) of the lower electrode 2 through the opening 10a, and the portion 12b of the thin film electrode 12 is It is connected to the upper electrode 4 through the portion 12c and the opening 10c.
  • the thin film electrode 12 is not embedded in the opening 10b of the interlayer insulating film 9.
  • thick film electrodes 11 and 13 are formed in a region immediately above the portion 12a and a region directly above the portion 12b of the thin film electrode 12, respectively.
  • the thick film electrode 11 is connected to the rectangular region 2a and the hexagonal region 2c (see FIG. 6 (a)) of the lower electrode 2 via the portion 12a of the thin film electrode 12 and the opening 10a.
  • 13 is connected to the upper electrode 4 through the portion 12b, the portion 12c, and the opening 10c of the thin film electrode 12.
  • the insulating layer 5 is formed so as to cover the multilayer body 8, the interlayer insulating film 9, the thin film electrode 12, and the thick film electrodes 11 and 13. Has been.
  • the insulating layer 5 is embedded in the opening 10 b of the interlayer insulating film 9, contacts the substrate 1, and adheres to the substrate 1.
  • the insulating layer 5 is also bonded to the substrate 1 around the interlayer insulating film 9. Openings 7a and 7b are formed in portions of the insulating layer 5 corresponding to the regions immediately above the thick film electrodes 11 and 13, respectively. For this reason, the thick film electrode 11 is exposed in the opening 7a, and the thick film electrode 13 is exposed in the opening 7b.
  • the capacitors shown in FIGS. 8 (a) and (b) are configured.
  • the capacitor according to this embodiment includes three capacitors 8 each having a regular hexagonal shape in plan view, as compared with the third embodiment described above. The difference is that it is divided into units.
  • Other configurations in the present embodiment are the same as those in the third embodiment described above.
  • FIGS. 9A to 9C are plan views showing the method of manufacturing a capacitor according to this embodiment in the order of the steps.
  • FIGS. 9 (a) to 9 (c) After the steps shown in FIGS. 9 (a) to 9 (c), FIGS. 6 (c), 7 (a), 7 (c), and 08 (a) are performed. The process shown continues.
  • a lower electrode layer 2d (see FIG. 9 (c)) and a dielectric layer are formed on the entire surface of the substrate 1 made of resin (see FIG. 8 (b)). 3a (see FIG. 9B) and the upper electrode layer 4a are formed in this order.
  • the upper electrode layer 4a is patterned to form the upper electrode 4.
  • the upper electrode 4 is divided into three hexagonal regions that are regular hexagons in plan view.
  • the dielectric layer 3a is exposed in a region other than the upper electrode 4.
  • the dielectric layer 3 a is patterned to form the dielectric film 3 directly below the upper electrode 4.
  • the dielectric film 3 is divided into three hexagonal regions that are regular hexagons in plan view.
  • the upper electrode layer 2d is exposed in a region other than the dielectric film 3.
  • the lower electrode layer 2d (see FIG. 9 (c)) is patterned to form the lower electrode 2.
  • the lower electrode 2 as described above includes two rectangular regions 2a and 2b, three hexagonal regions 2c arranged between the rectangular regions 2a and 2b, and a bridge portion. It has 14.
  • a laminated body 8 is formed by the lower electrode 2, the dielectric film 3 and the upper electrode 4.
  • an interlayer insulating film 9 is formed on the substrate 1 so as to cover the stacked body 8, and openings 10 a to 10 d are formed in the interlayer insulating film 9.
  • the rectangular region 2a of the lower electrode 2 is exposed in the opening 10a
  • the substrate 1 is exposed in the opening 10b
  • the upper electrode 4 is exposed in the opening 10c
  • the lower electrode 2 is exposed in the opening 10d.
  • the rectangular area 2b is exposed.
  • a plating seed layer (not shown) is formed on the entire surface such as on the substrate 1 and the interlayer insulating film 9. To do.
  • This seed layer is patterned into a thin film electrode 12 in a later step.
  • a resist is formed on the plating seed layer and patterned. Using the patterned resist as a mask, plating is performed using the plating seed layer to form the portion 12a of the thin film electrode 12.
  • Thick film electrodes 11 and 13 are formed in the region immediately above the planned region and the region directly above the region where the portion 12b is to be formed, respectively.
  • the plating seed layer is patterned to form the thin film electrode 12.
  • the shape of the thin-film electrode 12 is almost the same as the shape of the lower electrode 2, but the shape of the bridge portion 14 (see FIG. 6 (a)) that connects the hexagonal region 2c of the lower electrode 2 to the rectangular region 2a.
  • the thin film electrode 12 is not formed in the upper region.
  • the thin film electrode 12 is embedded in the openings 1 Oa, 10c and 10d (see FIG. 7A) of the interlayer insulating film 9.
  • the thin-film electrode 12 is not buried in the opening 10b of the interlayer insulating film 9, and the substrate 1 remains exposed in the opening 10b.
  • the thick film electrode 11 is connected to the rectangular region 2a and the hexagonal region 2c (see FIG. 6 (a)) of the lower electrode 2 through the portion 12a of the thin film electrode 12 and the opening 10a. Is connected to the upper electrode 4 through the portion 12b, the portion 12c, and the opening 10c of the thin film electrode 12.
  • the substrate 1 On the substrate 1, the laminated body 8, the interlayer insulating film 9, the thin film electrode 12, and the thick film electrodes 11 and 13 are covered. Insulating layer 5 is formed. At this time, the insulating layer 5 is embedded in the opening 10b of the interlayer insulating film 9 and adhered to the substrate 1. The insulating layer 5 is also bonded to the substrate 1 around the interlayer insulating film 9. Then, openings 7a and 7b are formed in portions of the insulating layer 5 corresponding to the regions immediately above the thick film electrodes 11 and 13, respectively. As a result, the thick film electrode 11 is exposed in the opening 7a, and the thick film electrode 13 is exposed in the opening 7b. As a result, the capacitor shown in FIGS. 8A and 8B is manufactured.
  • the insulating layer 5 is adhered to the substrate 1 in the opening 10b in addition to the periphery of the interlayer insulating film 9, the adhesion between the substrate 1 and the insulating layer 5 is maintained. High strength. Therefore, the lower electrode 2, the dielectric film 3 and the upper electrode 4 arranged between the substrate 1 and the insulating layer 5, the substrate 1 and the lower electrode 2, the upper electrode 4 and the insulating layer 5 Excellent adhesion between the two.
  • the shape of each unit of the laminated body 8 is a hexagonal shape compared to the third embodiment described above, it is applied to the laminated body 8 when the substrate 1 is bent in all directions. Stress can be relieved. For this reason, the resistance of the lower electrode 2, the dielectric film 3, and the upper electrode 4 with respect to the bending of the substrate 1 in all directions can be enhanced. Operations and effects other than those described above in the present embodiment are the same as those in the third embodiment described above.
  • each unit of the laminated body 8 is a regular hexagon
  • the present invention is not limited to this, and the shape of each part is other than a regular hexagon. It may be a regular polygon or a polygon other than a regular polygon.
  • FIG. 10 (a) is a plan view showing a capacitor according to this modification
  • FIG. 10 (b) is a sectional view taken along line GG ′ shown in FIG. 10 (a).
  • FIGS. 10 (a) and (b) the same components as those shown in FIGS. 3 (a) and (b) are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the capacitor according to the present modification has a larger number of units of the multilayer body 8 than the capacitor according to the above-described fourth embodiment.
  • each unit is arranged in the form of a hard cam. That is, in a plan view, a plurality of regular hexagonal units are arranged in a close-packed manner along three directions intersecting each other at an angle of 60 °.
  • Other configurations of the present modification are the same as those of the fourth embodiment described above.
  • FIGS. 12 (a) to (c) are plan views showing a method of manufacturing a capacitor according to this modification in the order of the steps.
  • a lower electrode layer 2d (see FIG. 11 (c))
  • a dielectric layer 3a (see FIG. 11 (b)) are formed on the entire surface of the substrate 1 (see FIG. 10 (b)).
  • the upper electrode layer 4a are formed in this order.
  • the upper electrode layer 4a is patterned to form the upper electrode 4.
  • the upper electrode 4 has a regular hexagonal shape in plan view and is divided into eight hexagonal regions arranged in a honeycomb shape and two regions that are bisected into two hexagonal regions. At this time, the dielectric layer 3a is exposed in a region other than the upper electrode 4. Next, as shown in FIG. 11 (c), the dielectric layer 3a is patterned to form the dielectric film 3. The dielectric film 3 is disposed immediately below the upper electrode 4. At this time, the upper electrode layer 2d is exposed in a region other than the dielectric film 3.
  • the lower electrode layer 2d (see FIG. 11 (c)) is patterned, Lower electrode 2 is formed.
  • the lower electrode 2 has two rectangular regions 2a and 2b disposed so as to sandwich the region where the dielectric film 3 and the upper electrode 4 are sandwiched, and eight regions disposed immediately below the dielectric film 3.
  • a hexagonal region 2c is provided, and a bridge portion 14 is further provided.
  • a laminated body 8 is formed by the lower electrode 2, the dielectric film 3 and the upper electrode 4.
  • an interlayer insulating film 9 is formed on the substrate 1 so as to cover the stacked body 8, and openings 10 a to 10 d are formed in the interlayer insulating film 9.
  • the rectangular region 2a of the lower electrode 2 is exposed in the opening 10a
  • the substrate 1 is exposed in the opening 10b
  • the upper electrode 4 is exposed in the opening 10c
  • the lower electrode 2 is exposed in the opening 10d.
  • the rectangular area 2b of is exposed.
  • a plating seed layer (not shown) is formed on the entire surface such as on the substrate 1 and the interlayer insulating film 9. This seed layer is patterned into a thin film electrode 12 in a later step. A resist is formed on the plating seed layer and patterned. Using the patterned resist as a mask, plating is performed using the plating seed layer to form the portion 12a of the thin film electrode 12. Thick film electrodes 11 and 13 are formed in the region immediately above the planned region and the region directly above the region where the portion 12b is to be formed, respectively.
  • the plating seed layer is patterned to form the thin film electrode 12.
  • the shape of the thin-film electrode 12 is almost the same as the shape of the lower electrode 2, but the thin-film electrode 12 is placed in the region immediately above the hexagonal region 2c and the rectangular region 2a of the lower electrode 2. Do not form.
  • the thin film electrode 12 is embedded in the openings 10a, 10c and 10d (see FIG. 12B) of the interlayer insulating film 9.
  • the thin-film electrode 12 is not embedded in the opening 10b of the interlayer insulating film 9, and the substrate 1 remains exposed in the opening 10b.
  • the insulating layer 5 is formed so as to cover the multilayer body 8, the interlayer insulating film 9, the thin film electrode 12 and the thick film electrodes 11 and 13. To do. At this time, the insulating layer 5 is embedded in the opening 10b of the interlayer insulating film 9 and adhered to the substrate 1. The insulating layer 5 is also bonded to the substrate 1 around the interlayer insulating film 9. Then, openings 7a and 7b are formed in portions of the insulating layer 5 corresponding to the regions immediately above the thick film electrodes 11 and 13, respectively. As a result, the thick film electrode 11 is exposed at the opening 7a, and the thick film electrode 13 is exposed at the opening 7b.
  • the capacitor shown in FIGS. 10A and 10B is manufactured.
  • the number of units of the laminated body 8 is increased and arranged in the form of a hard cam, so that the resistance to stress is more excellent. Yes. Further, since the units of the laminated body 8 can be arranged in the closest packing, the area of the laminated body 8 per unit area can be increased, and the capacity density can be improved. Operations and effects other than those described above in the present modification are the same as those in the fourth embodiment described above.
  • FIG. 13 is a cross-sectional view showing a printed wiring board according to this embodiment.
  • the same components as those shown in FIGS. 3 (a) and 3 (b) are denoted by the same reference numerals, and detailed description thereof is omitted.
  • a core substrate 21 is provided, and inner layer wirings 22 are provided on the front surface and the back surface of the core substrate 21.
  • An adhesive layer 23 made of an adhesive or a resin is provided on the entire surface of the core substrate 21 so as to cover the inner layer wiring 22.
  • a capacitor 20 is provided on the adhesive layer 23.
  • the configuration of the capacitor 20 is the same as that of the capacitor 20 (see FIGS. 3A and 3B) according to the second embodiment described above.
  • the thin film electrode 12 of the capacitor 20 is not shown.
  • the substrate 1 of the capacitor 20 is bonded to the core substrate 21 by the adhesive layer 23.
  • a pre-preda 24 as an insulating film is laminated.
  • the pre-preda 24 may be a copper-clad laminate that does not include cloth.
  • a surface wiring 25 is provided on the surface of the pre-preda 24.
  • Vias 26a and 26b are formed in regions immediately above the thick film electrodes 11 and 13 of the capacitor 20 in the pre-preader 24 provided on the surface of the core substrate 21, respectively.
  • the vias 26a and 26b are, for example, laser vias.
  • a Cu plating layer 27 is provided on the inner surfaces of the vias 26a and 26b, and the insides of the vias 26a and 26b are hollow.
  • the Cu plating layer 27 is connected to the thick film electrode 11 or 13 and is connected to the surface wiring 25.
  • the thick film electrode 11 is connected to a part of the surface wiring 25 via the Cu plating layer 27 in the via 26a
  • the thick film electrode 13 is connected to the surface wiring 25 via the Cu plating layer 27 in the via 26b.
  • One part of the surface wiring 25 and the other part are insulated from each other.
  • the capacitor 20 in the multilayer body having the core substrate 21 and the pre-predator 24 force is disposed.
  • a through-through hole 28 is formed in a part of the unexposed region so as to penetrate the laminate.
  • a fitting electrode 29 is provided on the inner surface of the through hole 28, and the inside of the through hole 28 is a cavity.
  • the plating electrode 29 is connected to the surface wiring 25 and the inner layer wiring 22.
  • the surface layer wiring 25 is connected to the inner layer wiring 22 through the fitting electrode 29.
  • the thickness of the capacitor 20 is 20 to 100 ⁇ m, preferably 30 to 70 ⁇ m, and the thickness of the pre-preda 24 is 50 to 200 ⁇ m, preferably 60 to 120 ⁇ m. If the thickness of the pre-preda 24 is equal to or greater than the thickness of the capacitor 20, the printed wiring board according to the present embodiment can be technically realized. However, one of the features of the capacitor in this embodiment is that it is thinner than an SMD (Surface Mount Device). Therefore, in order to obtain this feature, it is desirable that the thicknesses of the capacitor 20 and the pre-preder 24 are within the above-mentioned range.
  • SMD Surface Mount Device
  • the present embodiment it is possible to obtain a printed wiring board having a built-in capacitor 20 having good adhesion between the substrate 1, the lower electrode 2, the dielectric film 3, and the upper electrode 4.
  • the interface peeling between the substrate 1, the lower electrode 2, the dielectric film 3 and the upper electrode 4 in the capacitor 20 does not occur. For this reason, it is possible to prevent the occurrence of defects due to the interface peeling of the capacitor.
  • FIG. 14 is a cross-sectional view showing a printed wiring board according to this embodiment.
  • the same components as those shown in FIG. 13 are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the adhesive layer 23 is not provided. Also, vias 26a and 26b and through-through holes 28 (see Fig. 13) are formed!
  • an electrode 32 for connecting the inner layer wiring 22 to the surface wiring 25 is provided.
  • an inner layer pad 33 is provided in a region where the capacitor 20 is not disposed on the surface of the core substrate 21, and a through hole 34 is formed immediately above the inner layer pad 33 in the pre-preda 24.
  • the through hole 34 is formed by a laser, for example.
  • the inner layer pad 33 is exposed on the bottom of the through hole 3 4!
  • a fitting electrode 35 is provided on the inner surface of the through hole 34, and is connected to the surface wiring 25 via the fitting electrode 35 of the inner layer pad 33.
  • a paste layer 36 made of a conductive paste such as a silver paste is provided so as to connect the inner layer pad 33 to the thick film electrode 11 of the capacitor 20.
  • the thick film electrode 11 of the capacitor 20 is connected to a part of the surface wiring 25 via the paste layer 36, the inner layer pad 33, and the plating electrode 35.
  • a paste layer 37 made of a conductive paste such as a silver paste is provided so as to connect the thick film electrode 13 of the capacitor 20 to the inner layer wiring 22.
  • the thick film electrode 13 of the capacitor 20 is connected to the other part of the surface wiring 25 via the paste layer 37, the inner layer wiring 22, and the plating electrode 32.
  • the paste layers 36 and 37 also serve to fix the capacitor 20 to the core substrate 21.
  • Other configurations in the present embodiment are the same as those in the fifth embodiment described above.
  • the area of the printed wiring board is large compared to the fifth embodiment described above.
  • the through holes 31 and 34 are not formed in the region immediately above the capacitor 20. Therefore, the capacitor 20 is not damaged when the through holes 31 and 34 are formed.
  • the effects of the present embodiment other than those described above are the same as those of the fifth embodiment described above.
  • Example 1 is an example corresponding to the first embodiment described above.
  • Example 1 Is described with reference to Figs. 1 (a) and (b).
  • a commercially available polyimide film (thickness 50 m) was prepared as the substrate 1.
  • this polyimide film was loaded into a DC sputtering apparatus, and a Ti layer, a Mo layer, a Ti layer, and a Pt layer were formed in this order at room temperature by the DC sputtering method and laminated.
  • the thickness of each layer was Ti layer: 20 nm, Mo layer: 600 nm, Ti layer: 20 nm, and Pt layer: 200 nm.
  • Mo layer is a highly elastic conductive material layer
  • Pt layer is an acid-resistant conductive material layer
  • T-ring is an adhesive conductive material layer between the polyimide film and the Mo layer
  • an adhesion between the Mo layer and the Pt layer It is a conductive material layer.
  • the substrate 1 was loaded into an RF sputtering apparatus, and an SrTiO layer having a thickness of 500 nm was formed on the four-layer film by RF sputtering at a film formation temperature of 400 ° C.
  • board 1 again
  • the thickness was 200 ⁇ on the SrTiO layer at room temperature by DC sputtering.
  • a photoresist film is formed on the Pt layer by a photolithography method, the photoresist film is patterned, and the patterned photoresist film is used as a mask to perform Pt by ion beam etching or chemical etching. The layer was selectively removed by etching to form the desired pattern. Thereafter, the photoresist film was removed by an organic solvent and oxygen plasma treatment. Thereby, the upper electrode 4 was formed.
  • a photoresist film patterned into a desired shape is formed by a photolithography method, and the SrTiO layer is etched by a chemical etching method using this as a mask. Put it in the desired shape and then organic solvent
  • the photoresist film was removed by oxygen plasma treatment. Thereby, the dielectric film 3 was formed. Similarly, a pattern of a photoresist film was formed on the four-layer film, and the four-layer film was patterned by ion beam etching and chemical etching. Thereby, the lower electrode 2 was formed. At this time, a hole 6 was formed in a region outside the region immediately below the dielectric film 3 and the upper electrode 4 in the four-layer film. Then, the photoresist film was removed by organic solvent and oxygen plasma treatment.
  • This capacitor has a structure in which a through hole 6 is formed in the lower electrode 2 and the substrate 1 and the insulating layer 5 are directly bonded via the through hole 6. Is provided in the hole 6 in addition to the outer periphery of the capacitor, so that it is possible to improve the adhesion at each interface existing in the capacitor. For this reason, even if the area of the capacitor was 1. Om m X l. Although FIG. 1 shows a capacitor in which the hole 6 has a slit shape and one location, the same effect is obtained without being limited to the shape and number of the holes 6.
  • This Comparative Example 1 corresponds to the above-described comparative example.
  • the first comparative example will be described with reference to FIGS. 2 (a) and 2 (b).
  • the hole 6 was not formed and it was strong.
  • the other methods were the same as those in Example 1 described above.
  • the coupling portion is only the outer peripheral portion of the capacitor, and when the area of the capacitor exceeds 1. Omm X l. It happened easily.
  • Example 2 is an example corresponding to the second embodiment described above. Hereinafter, Example 2 will be described with reference to FIGS. 3 (a) and 3 (b).
  • the lower electrode 2, the dielectric film 3 and the upper electrode 4 were formed on the substrate 1 by the same method as in Example 1 described above. At this time, a hole 6 was formed in the lower electrode 2.
  • a photosensitive polyimide is applied on the substrate 1 so as to cover the lower electrode 2, the dielectric film 3, and the upper electrode 4, exposed and developed, and patterned to form an interlayer insulating film 9. Formed. At this time, openings 10a, 10b, and 10c were formed in the interlayer insulating film 9.
  • the substrate 1 was loaded into a DC sputtering apparatus, and a Ti layer and a Cu layer were successively formed at room temperature by a DC sputtering method to form a CuZTi laminated film on the entire surface.
  • the film thickness of each layer constituting the CuZTi laminated film was Ti: 20 nm, Cu: 300 nm.
  • the Ti layer is an adhesion layer for improving the adhesion between the Cu layer and the lower electrode 2, the upper electrode 4, and the interlayer insulating film 9.
  • a Cr layer or a Zr layer may be used without limitation.
  • a photoresist film was formed by a photolithography method, and openings were formed immediately above the openings 10a and 10c. Then, using this photoresist film as a mask, using a CuZTi laminated film as a power feeding layer, a Cu plating layer was formed to a thickness of 15 / zm by the electrolytic plating method, and the thickness was within each of the opening 10a and the opening 10c. Membrane electrodes 11 and 13 were formed. After Cu plating, the photoresist film was once removed by organic solvent and oxygen plasma treatment.
  • a photoresist film is formed at a position where the upper electrode 4 and the thick film electrode 13 are electrically connected by a photolithography method, and etching is performed by a chemical etching method using the photoresist film as a mask. Then, unnecessary portions of the CuZTi multilayer film were selectively removed, and a thin film electrode 12 composed of a CuZTi multilayer film was formed.
  • Example 2 compared to Example 1 described above, the thick film electrodes 11 and 13 by Cu plating are formed by the electrolytic plating method, so that the stress applied to the Cu plating is applied to the capacitor.
  • the substrate 1 and the insulating layer 5 By bringing the substrate 1 and the insulating layer 5 into close contact with each other through the force hole 6, it was possible to prevent peeling at the interface existing in the capacitor, and to prevent the occurrence of defects.
  • Example 3 is an example corresponding to the above-described third embodiment. Hereinafter, Example 3 will be described with reference to FIGS. 4 (a) and 4 (b) to FIG. First, a four-layer film, an SrTiO layer, and a Pt layer were formed in this order on the substrate 1 by the same method as in Example 1 described above. Next, the actual
  • the Pt layer was patterned by the same photolithography method as in Example 1.
  • the upper electrode 4 has four parts, and each part is not electrically connected to each other.
  • the SrTiO layer is etched by the same method as in Example 1 described above.
  • the dielectric film 3 was formed. At this time, like the upper electrode 4, the dielectric film 3 also has four portions. In the same way, pattern the four-layer film and create a cross shape.
  • the lower electrode 2 in which the hole 6 was formed was formed.
  • the bridge portion 14 was formed from the four-layer film. At this time, the lower electrode 2 is divided into four parts, but each part is connected to each other by the pledge part 14.
  • an interlayer insulating film 9 having openings 10a to 10c formed thereon was formed by the same method as in Example 2 described above, and thick film electrodes 11 and 13 were formed.
  • a resist pattern that covers the region between the upper electrode 4 and the thin film electrode 12 is formed by a photolithography method, and chemical etching is performed using this resist pattern as a mask, and an unnecessary portion of the CuZTi laminated film is formed. Selectively removed.
  • a thin film electrode 12 composed of a CuZTi laminated film was formed.
  • the parts of the upper electrode 4 which are divided into four parts and are not electrically connected to each other are connected to each other via the bridge part 15.
  • the substrate 1, the lower electrode 2, the interlayer insulating film 9, and the bridge portion 15 are laminated in this order from the bottom to the top. Further, the periphery of the pledge portion 14 is covered with the substrate 1 and the interlayer insulating film 9. Next, the insulating layer 5 in which the openings 7a and 7b were formed was formed by the same method as in Example 2 described above.
  • the cross-shaped hole 6 penetrates not only the lower electrode 2 but also the dielectric film 3, the upper electrode 4 and the interlayer insulating film 9. Therefore, although the capacitance decreased by the area of the hole 6, the adhesion between the substrate lower electrode 2, the dielectric film 3 and the upper electrode 4 could be further enhanced. Further, the strength of the laminate 8 with respect to the bending of the substrate 1 in the direction in which the openings 7a and 7b are arranged and in the direction perpendicular thereto can be further increased.
  • Example 4 is an example corresponding to the above-described fourth embodiment.
  • a capacitor was formed by the method shown in the fourth embodiment. That is, the shape of each unit of the laminated body 8 was a hexagon in plan view.
  • the capacitor manufacturing method other than the above in Example 4 was the same as that in Example 3 described above.
  • each unit of the laminated body 8 is a regular hexagonal shape in plan view as compared with the above-described third embodiment, so that the substrate 1 can be bent in all directions. As a result, the strength of the capacitor could be increased and open defects due to peeling could be prevented.
  • Example 5 is an example corresponding to the fifth embodiment described above. Hereinafter, Example 5 will be described with reference to FIG. First, the inner layer wiring 22 was formed on the front and back surfaces of the core substrate 21. Then, an adhesive layer 23 was formed on the surface of the core substrate 21 by a printing method so as to cover the inner layer wiring 22. Next, a capacitor 20 having a thickness of 50 m was mounted on the adhesive layer 23. As a result, the substrate 1 of the capacitor 20 was fixed on the core substrate 21 via the adhesive layer 23. The configuration of the capacitor 20 was the same as that of the capacitor 20 of Example 2 described above.
  • a pre-preder 24 as a build layer was laminated on the front surface and the back surface of the core substrate 21 so as to cover the capacitor 20. Then, a surface wiring 25 having a Cu plating layer force was formed on the surface of the pre-preda 24 by plating. Next, a via 26 a was formed in the region immediately above the thick film electrode 11 in the pre-preparer 24 and a via 26 b was formed in the region immediately above the thick film electrode 13 by laser processing. Next, through-holes 28 penetrating through the core substrate 21 and the pre-preparers 24 provided on both sides thereof were formed by a laser cage.
  • a Cu plating layer 27 was formed on the inner surfaces of the vias 26a and 26b, and a plating electrode 29 was formed on the inner surface of the through-through hole 28.
  • the surface wiring 25 was connected to the thick film electrodes 11 and 13 via the vias 26a and 26b, respectively.
  • the plating electrode 29 connects the surface wiring 25 formed on the pre-preder 24 laminated on the front surface side of the core substrate 21 to the surface wiring 25 formed on the pre-preparation 24 laminated on the back surface side of the core substrate 21. did.
  • a printed wiring board with a built-in capacitor 20 was manufactured.
  • the change rate of the capacitance value of the capacitor 20 was 1% or less.
  • Example 3 the same effect can be obtained by incorporating the capacitors according to Example 3 and Example 4 instead of the capacitor 20 according to Example 2 described above. That is, when the capacitor of Example 3 was used, the resistance to bending of the printed wiring board in the two directions in which the holes 6 extend was high. The change rate of the capacitance value is 1%, and the capacity of Example 2 is as follows. The same as when using the On the other hand, when the capacitor of Example 4 was used, the resistance to bending in all directions was high, and the capacitance change rate without depending on the bending direction of the capacitor 20 and the printed wiring board was 1%. .
  • Example 6 is an example corresponding to the above-described sixth embodiment.
  • Example 6 will be described with reference to FIG.
  • the inner layer wiring 22 was formed on the front and back surfaces of the core substrate 21, and the inner layer pad 33 was formed on the front surface.
  • a capacitor 20 having a thickness of 50 m was temporarily fixed on the surface of the core substrate 21.
  • a paste layer 36 made of silver paste is formed so as to connect the thick film electrode 11 of the capacitor 20 and a part of the inner layer wiring 22, and the thick film electrode 13 and the other part of the inner layer wiring 22 are connected.
  • a base layer 37 made of a silver paste was formed.
  • the paste layers 36 and 37 are heated and dried to fix the capacitor 20 to the core substrate 21 and to electrically connect the thick film electrodes 11 and 13 to the inner layer wiring 22 o
  • a pre-pre- der 24 as a build layer was laminated on the surface of the core substrate 21 so as to cover the capacitor 20.
  • a pre-preda 24 was also laminated on the back surface of the core substrate 21.
  • a surface wiring 25 made of Cu was formed on the surface of the pre-preda 24 by a plating method.
  • a through hole 34 was formed in the region immediately above the inner layer pad 33 in the pre-preda 24 by laser processing.
  • a through hole 31 penetrating the pre-preda 24 was formed by laser processing.
  • Cu plating was performed to form plating electrodes 32 and 35 on the inner surfaces of the through holes 31 and 34, respectively.
  • a printed wiring board with a built-in capacitor 20 was manufactured.
  • the capacitor 20 in the process of incorporating the capacitor 20 in the printed wiring board, even after the through hole 34 is formed by the laser coating method, the capacitor 20 has an open defect due to the separation of the interface. I was able to prevent it. Also, before and after the process of embedding capacitor 20 in the printed circuit board, the change rate of capacitance value of capacitor 20 is less than 1%.
  • the present invention can be suitably used for a capacitor built in a wiring board such as a printed wiring board of an electronic device and a wiring board containing the capacitor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Ceramic Capacitors (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

A lower electrode is provided on a substrate composed of a resin, a dielectric film composed of an oxide having a perovskite structure is provided on a part of a region on the lower electrode, and an upper electrode is provided on the dielectric film. An insulating layer composed of a resin is provided on the substrate so as to cover the lower electrode, the dielectric film and the upper electrode. A slit-shaped hole is formed on a part of a region of the lower electrode, excluding a region directly under the dielectric film. At a bottom section of the hole, the insulating layer is brought into direct contact with the substrate, and the substrate and the insulating layer are firmly bonded. Thus a capacitor having strong adhesion among the substrate, the lower electrode, the dielectric film and the upper electrode is provided.

Description

明 細 書  Specification
キャパシタ及びそれを内蔵した配線基板  Capacitor and wiring board incorporating the capacitor
技術分野  Technical field
[0001] 本発明は、配線基板に搭載可能なキャパシタ及びこのキャパシタを内蔵した配線 基板に関する。  TECHNICAL FIELD [0001] The present invention relates to a capacitor that can be mounted on a wiring board and a wiring board that incorporates the capacitor.
背景技術  Background art
[0002] 近時、電子機器の高性能化を図るために、受動部品の高密度実装に対する市場 の要求が高まっている。このような要求に応えるために、受動部品のサイズは、 1005 サイズ(縦が 1. Omm、横が 0. 5mm)から 0603サイズ(縦が 0. 6mm、横が 0. 3mm )へと小型化の一途をたどっている。近時、更に、 0402サイズ (縦が 0. 4mm、横が 0 . 2mm)の受動部品も開発される傾向にある。  [0002] Recently, in order to improve the performance of electronic devices, market demands for high-density mounting of passive components are increasing. To meet these requirements, the size of passive components has been reduced from 1005 size (vertical 1. Omm, horizontal 0.5 mm) to 0603 size (vertical 0.6 mm, horizontal 0.3 mm). I'm following a course. Recently, there is also a tendency to develop passive components of 0402 size (vertical is 0.4 mm, horizontal is 0.2 mm).
[0003] しかし一方では、これ以上のチップサイズの小型化は技術上及び実装機側の事情 力も困難であるとの認識がある。そういった背景から、受動部品を電気回路基板に内 蔵させることによって基板面積を削減する技術が注目されている。特に、キャパシタ は電子回路を構成する要素の中で最も多く用いられて 、る部品の一つであるので、 キャパシタを電子回路基板に内蔵できると基板の面積削減に特に大きな効果が期待 できる。その中でも、誘電率が高い誘電体を用いたキャパシタは、単位面積当たりの 容量が高い上に、キャパシタ素子をチップ部品よりも薄くすることが可能なので、電子 回路基板に内蔵できるキャパシタとして近年注目されている。  On the other hand, however, there is a recognition that further downsizing of the chip size is difficult in terms of technology and on the mounting machine side. Against this background, a technology that reduces the board area by incorporating passive components in an electric circuit board has attracted attention. In particular, a capacitor is one of the most frequently used components that make up an electronic circuit. Therefore, if the capacitor can be built in an electronic circuit board, a particularly large effect can be expected in reducing the board area. Among them, a capacitor using a dielectric having a high dielectric constant is attracting attention as a capacitor that can be built in an electronic circuit board in recent years because the capacitor per unit area is high and the capacitor element can be made thinner than a chip component. ing.
[0004] このようなキャパシタの基板として、シリコン基板及びガラス基板のようなリジッドな基 板を使用すると、リジットな基板は表面の平坦性及び耐熱性が優れているものの、脆 いため、基板を薄くすると加工及び薄化後のハンドリングが困難になるという問題が ある。一方、榭脂基板のようなフレキシブルな基板は、耐熱性が低いという課題はあ るものの、基板の薄化及びノヽンドリングが容易であり、キャパシタの基板として好適で ある。  [0004] When a rigid substrate such as a silicon substrate or a glass substrate is used as a substrate for such a capacitor, the rigid substrate is excellent in surface flatness and heat resistance, but is thin and thin. Then, there is a problem that handling after processing and thinning becomes difficult. On the other hand, a flexible substrate such as a resin substrate has a problem of low heat resistance, but can be easily thinned and grounded, and is suitable as a capacitor substrate.
[0005] フレキシブル基板を用いたキャパシタに関する技術は、従来よりいくつ力提案され ている。例えば特許文献 1 (特開平 7— 22725号公報)には、セラミック又は樹脂から なる絶縁性基板の表面にキャパシタを形成する技術が開示されている。また、特許 文献 2 (特開 2000— 357631号公報)には、フレキシブル基板上に金属酸化物接着 膜及び金属接着膜を介してキャパシタを形成する技術が開示されている。更に、特 許文献 3 (特開 2004— 56097号公報)には、フレキシブル基板上に下部電極、誘電 体薄膜及び上部電極がこの順に積層されたキャパシタにお ヽて、下部電極を密着層 、高弾性層及び耐酸化層をこの順に積層して形成する技術が開示されて ヽる。 [0005] A number of technologies related to capacitors using flexible substrates have been proposed. For example, Patent Document 1 (Japanese Patent Laid-Open No. 7-22725) discloses a ceramic or resin. A technique for forming a capacitor on the surface of an insulating substrate is disclosed. Patent Document 2 (Japanese Patent Laid-Open No. 2000-357631) discloses a technique for forming a capacitor on a flexible substrate via a metal oxide adhesive film and a metal adhesive film. Further, in Patent Document 3 (Japanese Patent Laid-Open No. 2004-56097), in a capacitor in which a lower electrode, a dielectric thin film, and an upper electrode are laminated in this order on a flexible substrate, the lower electrode is attached to an adhesive layer, A technique for laminating an elastic layer and an oxidation-resistant layer in this order is disclosed.
[0006] また、キャパシタを内蔵したプリント基板又は榭脂配線基板に関しても、従来よりい くつかの技術が提案されている。例えば、特許文献 4 (特開 2000— 277922号公報) 及び特許文献 5 (特開 2001— 77539号公報)には、多層基板を構成する絶縁層を キャパシタの誘電体層として利用する技術が開示されている。また、特許文献 6 (特 開 2001— 160672号公報)には、厚膜によりキャパシタを形成する技術が開示され ている。更に、特許文献 7 (特開 2002— 100533号公報)には、有機多層基板上に 下部電極を形成し、下部電極上にバルブ金属膜を形成し、このバルブ金属膜に陽 極酸化処理を施すことにより陽極酸化膜を形成し、この陽極酸化膜上に上部電極を 形成する技術が開示されている。陽極酸化法によれば、誘電体薄膜を低温で成膜で きるため、プリント基板のような榭脂基板上に誘電体薄膜を形成することができる。  [0006] Several techniques have been proposed for a printed circuit board or a resin wiring board with a built-in capacitor. For example, Patent Document 4 (Japanese Patent Laid-Open No. 2000-277922) and Patent Document 5 (Japanese Patent Laid-Open No. 2001-77539) disclose techniques for using an insulating layer constituting a multilayer substrate as a dielectric layer of a capacitor. ing. Patent Document 6 (Japanese Patent Publication No. 2001-160672) discloses a technique for forming a capacitor with a thick film. Further, in Patent Document 7 (Japanese Patent Laid-Open No. 2002-100533), a lower electrode is formed on an organic multilayer substrate, a valve metal film is formed on the lower electrode, and an anode oxidation treatment is performed on the valve metal film. Thus, a technique for forming an anodic oxide film and forming an upper electrode on the anodic oxide film is disclosed. According to the anodic oxidation method, the dielectric thin film can be formed at a low temperature, so that the dielectric thin film can be formed on a resin substrate such as a printed circuit board.
[0007] 特許文献 1 :特開平 7— 22725号公報  [0007] Patent Document 1: Japanese Patent Laid-Open No. 7-22725
特許文献 2 :特開 2000— 357631号公報  Patent Document 2: JP 2000-357631 A
特許文献 3:特開 2004 - 56097号公報  Patent Document 3: Japanese Patent Application Laid-Open No. 2004-56097
特許文献 4:特開 2000 - 277922号公報  Patent Document 4: Japanese Patent Laid-Open No. 2000-277922
特許文献 5:特開 2001— 77539号公報  Patent Document 5: Japanese Patent Laid-Open No. 2001-77539
特許文献 6:特開 2001— 160672号公報  Patent Document 6: Japanese Unexamined Patent Publication No. 2001-160672
特許文献 7:特開 2002— 100533号公報  Patent Document 7: Japanese Patent Laid-Open No. 2002-100533
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0008] し力しながら、上述の従来の技術には、以下に示すような問題点がある。プリント配 線基板に内蔵するキャパシタの容量を増力 tlさせるためには、 1)誘電体膜の膜厚を薄 くすること、 2)誘電体膜の比誘電率を高くすること、 3)キャパシタの有効電極面積を 大きくすることが有効である。し力しながら、これらの方法によりキャパシタの大容量ィ匕 を図ると、基板、下部電極、誘電体膜及び上部電極の相互間の密着性が低下すると いう問題がある。以下、この問題について詳細に説明する。 [0008] However, the conventional techniques described above have the following problems. In order to increase the capacitance of the capacitor built in the printed wiring board, 1) reduce the thickness of the dielectric film, 2) increase the relative dielectric constant of the dielectric film, and 3) increase the capacitance of the capacitor. Effective electrode area It is effective to increase the size. However, when the capacitance of the capacitor is increased by these methods, there is a problem that the adhesion between the substrate, the lower electrode, the dielectric film, and the upper electrode is lowered. Hereinafter, this problem will be described in detail.
[0009] 上記 1)については、厚い誘電体膜を用いた所謂厚膜コンデンサの場合、製造プロ セス上、その表面の凹凸が大きくなるため、誘電体膜と上部電極との間の密着性は 比較的良好である。しかしながら、キャパシタの容量を増加させるため、並びにキャパ シタ及びこのキャパシタを内蔵したプリント配線基板の厚さを低減するために誘電体 膜を薄くすると、誘電体膜の表面が平坦になり、誘電体膜と上部電極との間の密着 性が低下する。  [0009] Regarding the above 1), in the case of a so-called thick film capacitor using a thick dielectric film, the unevenness of the surface becomes large in the manufacturing process, so the adhesion between the dielectric film and the upper electrode is It is relatively good. However, if the dielectric film is thinned in order to increase the capacitance of the capacitor and to reduce the thickness of the capacitor and the printed wiring board in which the capacitor is built, the surface of the dielectric film becomes flat, and the dielectric film Adhesion between the electrode and the upper electrode decreases.
[0010] 上記 2)については、誘電体膜の比誘電率を向上させるためには、スパッタ法、 CV D法、ゾルゲル法等の方法により、室温における比誘電率が 100を超えるチタン酸バ リウム (BaTiO )又はジルコン酸チタン酸鉛 (Pb (Zr、Ti) 0 )からなる薄膜を形成す  [0010] With regard to 2) above, in order to improve the relative dielectric constant of the dielectric film, barium titanate having a relative dielectric constant exceeding 100 at room temperature by a method such as sputtering, CVD, or sol-gel. A thin film made of (BaTiO 3) or lead zirconate titanate (Pb (Zr, Ti) 0) is formed.
3 3  3 3
ることが有効である。しかし、このような誘電体膜を形成するためには、下地となる下 部電極として、表面の平坦性が優れた金属膜を形成する必要があり、このような金属 膜はスパッタ法により形成する必要がある。しかしながら、スパッタ法により形成された 金属膜は、表面は平坦であるものの、成膜時の残留応力が成膜後に残り、ベースと なるフレキシブル基板との間の密着強度が低いものとなる。  It is effective. However, in order to form such a dielectric film, it is necessary to form a metal film having excellent surface flatness as a lower electrode serving as a base, and such a metal film is formed by sputtering. There is a need. However, although the metal film formed by the sputtering method has a flat surface, the residual stress at the time of film formation remains after the film formation, and the adhesion strength between the base flexible substrate becomes low.
[0011] なお、スクリーン印刷法により基板上に導電ペーストを供給し、この導電ペーストを 乾燥、焼成して下部電極を形成すると、下部電極の表面の平坦性が低いものとなる。 このため、この下部電極上に膜厚がサブミクロンレベルの誘電体薄膜を形成すること は困難であり、従って、容量密度が高いキャパシタを得ることが困難である。また、下 部電極上にバルブ金属膜を形成し、このバルブ金属膜に陽極酸化処理を施すことに より陽極酸化膜を形成し、この陽極酸化膜を誘電体薄膜として使用する方法では、 陽極酸ィ匕膜の比誘電率は 100以下であるため、キャパシタの容量を十分に増加させ ることができない。 [0011] When a conductive paste is supplied onto a substrate by screen printing and the conductive paste is dried and baked to form a lower electrode, the flatness of the surface of the lower electrode becomes low. For this reason, it is difficult to form a dielectric thin film having a thickness of submicron on the lower electrode, and it is therefore difficult to obtain a capacitor having a high capacitance density. Further, in a method in which a valve metal film is formed on the lower electrode, an anodized film is formed by subjecting the valve metal film to anodization, and this anodized film is used as a dielectric thin film, Since the dielectric constant of the dielectric film is 100 or less, the capacitance of the capacitor cannot be increased sufficiently.
[0012] 上記 3)につ 、ては、キャパシタの容量値を増カロさせるために有効電極面積を大き くすると、基板、下部電極、誘電体膜及び上部電極の相互間の密着性の不足が極め て深刻な課題となる。このため、有効面積を大きくした大容量キャパシタの密着性を、 キャパシタをプリント配線基板に内蔵させる工程で印加される外力に耐えうる程度ま で改善することは困難である。 For the above 3), if the effective electrode area is increased in order to increase the capacitance value of the capacitor, the adhesion between the substrate, the lower electrode, the dielectric film, and the upper electrode may be insufficient. This is an extremely serious issue. For this reason, the adhesion of a large-capacity capacitor with a large effective area It is difficult to improve to the extent that it can withstand the external force applied in the process of incorporating the capacitor in the printed wiring board.
[0013] このように、キャパシタの容量値を増カロさせようとすると、キャパシタの密着性が低下 する。特に、フレキシブル基板上に形成されたキャパシタにおいては、榭脂からなる 基板と金属力 なる下部電極との界面、金属力 なる下部電極と金属酸ィ匕物力 なる 誘電体膜との界面、金属酸ィ匕物からなる誘電体膜と金属力 なる上部電極との界面 というように、異種材料の界面が複数存在する。また、このようなキャパシタをプリント 配線基板に内蔵させようとすると、この内蔵工程にぉ ヽてもキャパシタに外力が印カロ される。このため、キャパシタ内の各界面における密着強度を、プリント基板への内蔵 工程に耐える程度まで高くすることは極めて困難である。  [0013] As described above, when the capacitance value of the capacitor is increased, the adhesion of the capacitor is lowered. In particular, in a capacitor formed on a flexible substrate, an interface between a substrate made of a resin and a lower electrode made of metal force, an interface between a lower electrode made of metal force and a dielectric film made of metal oxide, a metal oxide There are multiple interfaces of dissimilar materials, such as the interface between the dielectric film made of a metal and the upper electrode made of metal. Further, when such a capacitor is incorporated in a printed wiring board, an external force is applied to the capacitor even during this incorporation process. For this reason, it is extremely difficult to increase the adhesion strength at each interface in the capacitor to such an extent that it can withstand the process of embedding in the printed circuit board.
[0014] 本発明は力かる問題点に鑑みてなされたものであって、配線基板に内蔵させるキヤ パシタにおいて、キャパシタを構成する基板、下部電極、誘電体膜及び上部電極の 相互間の密着強度が高 、キャパシタ、及びこのキャパシタを内蔵したプリント配線基 板を提供することを目的とする。  [0014] The present invention has been made in view of a serious problem, and in a capacitor built in a wiring board, the adhesion strength among the substrate, the lower electrode, the dielectric film, and the upper electrode constituting the capacitor. An object of the present invention is to provide a capacitor and a printed wiring board incorporating the capacitor.
課題を解決するための手段  Means for solving the problem
[0015] 本発明に係るキャパシタは、基板と、この基板上に形成された下部電極と、この下 部電極上に形成された誘電体膜と、この誘電体膜上に形成された上部電極と、前記 下部電極、前記誘電体膜及び前記上部電極からなる積層体を覆うように前記基板と 密着する材料により形成された絶縁層と、を有し、前記積層体の一部が除去されて 前記絶縁層は前記積層体の除去部分において前記基板に接触していることを特徴 とする。 A capacitor according to the present invention includes a substrate, a lower electrode formed on the substrate, a dielectric film formed on the lower electrode, and an upper electrode formed on the dielectric film. An insulating layer formed of a material that is in close contact with the substrate so as to cover the laminated body including the lower electrode, the dielectric film, and the upper electrode, and a part of the laminated body is removed, The insulating layer is in contact with the substrate at the removed portion of the stacked body.
[0016] 本発明に係る他のキャパシタは、榭脂からなる基板と、この基板上に形成された下 部電極と、この下部電極上の一部に形成された誘電体膜と、この誘電体膜上に形成 された上部電極と、前記基板上に前記下部電極、前記誘電体膜及び前記上部電極 力もなる積層体を覆うように設けられた榭脂製の絶縁層と、を有し、前記積層体の一 部に前記積層体を貫通するホールが形成されており、このホール内に前記絶縁層が 埋め込まれており、前記ホールの底部において前記絶縁層が前記基板に接触して いることを特徴とする。 [0017] 本発明においては、基板及び絶縁層が共に榭脂により形成されているため、基板 と絶縁層との間の密着強度が高い。そして、積層体にホールが形成されており、この ホールの底部にお 、て絶縁層が基板に接触して 、るため、この部分で絶縁層が基 板に強固に結合している。これにより、下部電極、誘電体膜及び上部電極が、相互 に結合した基板と絶縁層との間で挟持されるため、基板、下部電極、誘電体膜及び 上部電極の相互間の密着性が良好である。 Another capacitor according to the present invention includes a substrate made of a resin, a lower electrode formed on the substrate, a dielectric film formed on a part of the lower electrode, and the dielectric An upper electrode formed on the film, and a resin insulating layer provided on the substrate so as to cover the lower electrode, the dielectric film, and the stacked body having the upper electrode force, A hole penetrating the laminate is formed in a part of the laminate, the insulating layer is embedded in the hole, and the insulating layer is in contact with the substrate at the bottom of the hole. Features. [0017] In the present invention, since the substrate and the insulating layer are both formed by grease, the adhesion strength between the substrate and the insulating layer is high. A hole is formed in the laminate, and the insulating layer is in contact with the substrate at the bottom of the hole, so that the insulating layer is firmly bonded to the substrate at this portion. As a result, the lower electrode, the dielectric film, and the upper electrode are sandwiched between the substrate and the insulating layer bonded to each other, so that the adhesion between the substrate, the lower electrode, the dielectric film, and the upper electrode is good. It is.
[0018] また、前記ホールが前記積層体における前記下部電極、前記誘電体膜及び前記 上部電極が積層された領域の一部に形成されていてもよい。これにより、基板と絶縁 層との結合部の近傍に誘電体膜及び上部電極が配置されることになるため、基板、 下部電極、誘電体膜及び上部電極の相互間の密着性がより向上する。  [0018] Further, the hole may be formed in a part of a region where the lower electrode, the dielectric film, and the upper electrode are stacked in the stacked body. As a result, since the dielectric film and the upper electrode are disposed in the vicinity of the joint between the substrate and the insulating layer, the adhesion between the substrate, the lower electrode, the dielectric film and the upper electrode is further improved. .
[0019] このとき、前記ホールにより前記下部電極、前記誘電体膜及び前記上部電極が夫 々複数の部分に分割されており、前記下部電極の相互に隣り合う部分同士は相互に 接続されており、前記上部電極の相互に隣り合う部分同士も相互に接続されているこ とが好ましい。また、前記基板の表面に垂直な方向から見て、前記ホールが格子状 に形成されており、前記下部電極、前記誘電体膜及び前記上部電極の各部分の形 状が矩形であってもよぐ前記下部電極、前記誘電体膜及び前記上部電極の各部 分のうち少なくとも 1つの前記部分の形状が六角形となるように前記ホールが形成さ れて 、てもよく、この各部分がハニカム状に配列されて 、てもよ!/、。  At this time, the lower electrode, the dielectric film, and the upper electrode are each divided into a plurality of portions by the holes, and adjacent portions of the lower electrode are connected to each other. The adjacent portions of the upper electrode are preferably connected to each other. The holes may be formed in a lattice shape when viewed from a direction perpendicular to the surface of the substrate, and the shape of each part of the lower electrode, the dielectric film, and the upper electrode may be rectangular. The holes may be formed such that at least one of the portions of the lower electrode, the dielectric film, and the upper electrode has a hexagonal shape, and each of the portions may have a honeycomb shape. Arranged in !!
[0020] 本発明に係る配線基板は、コア基板と、このコア基板の少なくとも一方の表面上に 設けられた前記キャパシタと、を有することを特徴とする。これにより、キャパシタを配 線基板に内蔵する工程を経ても、キャパシタにおける基板、下部電極、誘電体膜及 び上部電極の相互間にお 、て界面剥離が発生することがな 、。  [0020] A wiring board according to the present invention includes a core substrate and the capacitor provided on at least one surface of the core substrate. As a result, even after the process of incorporating the capacitor into the wiring board, interfacial delamination does not occur between the substrate, the lower electrode, the dielectric film, and the upper electrode in the capacitor.
[0021] また、本発明に係る配線基板は、前記キャパシタを覆うように設けられた絶縁膜と、 この絶縁膜の表面に設けられた表面配線と、を有し、前記キャパシタの下部電極が 前記表面配線の一部分に接続されており、前記キャパシタの上部電極が前記表面 配線における前記一部分から絶縁された他の部分に接続されて ヽることが好ま 、。  In addition, the wiring board according to the present invention has an insulating film provided so as to cover the capacitor, and a surface wiring provided on the surface of the insulating film, and the lower electrode of the capacitor is the Preferably, the capacitor is connected to a part of the surface wiring, and the upper electrode of the capacitor is connected to another part of the surface wiring that is insulated from the part.
[0022] このとき、本発明に係る配線基板は、前記コア基板と前記絶縁膜との間における前 記キャパシタが設けられていない領域に設けられた内層配線と、前記下部電極を前 記内層配線の一部分に接続する第 1の導電体層と、前記上部電極を前記内層配線 における前記一部分から絶縁された他の部分に接続する第 2の導電体層と、を有し、 前記絶縁膜における前記内層配線の前記一部分及び前記他の部分の直上域の一 部には、夫々第 1及び第 2のスルーホールが形成されており、前記下部電極は、前記 第 1の導電体層、前記内層配線の一部分、前記第 1のスルーホールを介して前記表 面配線の一部分に接続されており、前記上部電極は、前記第 2の導電体層、前記内 層配線の他の部分、前記第 2のスルーホールを介して前記表面配線の他の部分に 接続されていることが好ましい。これにより、第 1及び第 2のスルーホールがキャパシタ の直上域を除く領域に配置されるため、第 1及び第 2のスルーホールの形成するとき にキャパシタに損傷を与えることがな 、。 [0022] At this time, the wiring board according to the present invention has an inner layer wiring provided in a region where the capacitor is not provided between the core substrate and the insulating film, and the lower electrode. A first conductor layer connected to a part of the inner layer wiring, and a second conductor layer connecting the upper electrode to the other part of the inner layer wiring insulated from the part. A first through hole and a second through hole are respectively formed in a part of the region immediately above the part and the other part of the inner layer wiring in the film, and the lower electrode includes the first conductor layer, A part of the inner layer wiring is connected to a part of the surface wiring through the first through-hole, and the upper electrode includes the second conductor layer, another part of the inner layer wiring, the It is preferable to be connected to the other part of the surface wiring via the second through hole. As a result, since the first and second through holes are arranged in the region except for the region directly above the capacitor, the capacitor is not damaged when the first and second through holes are formed.
発明の効果  The invention's effect
[0023] 本発明によれば、積層体に形成されたホールの底部で絶縁層が基板に強固に結 合するため、基板、下部電極、誘電体膜及び上部電極の相互間の密着強度が高い キャパシタを得ることができる。  [0023] According to the present invention, the insulating layer is firmly bonded to the substrate at the bottom of the hole formed in the multilayer body, and thus the adhesion strength between the substrate, the lower electrode, the dielectric film, and the upper electrode is high. A capacitor can be obtained.
図面の簡単な説明  Brief Description of Drawings
[0024] [図 1] (a)は本発明の第 1の実施形態に係るキャパシタを示す平面図であり、(b)は (a )に示す A— A'線による断面図である。  FIG. 1 (a) is a plan view showing a capacitor according to a first embodiment of the present invention, and (b) is a cross-sectional view taken along the line AA ′ shown in (a).
[図 2] (a)は本発明の範囲カゝら外れる比較例に係るプリント配線基板を示す平面図で あり、(b)は (a)に示す B— B'線による断面図である。  [FIG. 2] (a) is a plan view showing a printed wiring board according to a comparative example outside the scope of the present invention, and (b) is a cross-sectional view taken along line BB ′ shown in (a).
[図 3] (a)は本発明の第 2の実施形態に係るキャパシタを示す平面図であり、 (b)は (a )に示す C C'線による断面図である。  FIG. 3 (a) is a plan view showing a capacitor according to a second embodiment of the present invention, and (b) is a cross-sectional view taken along the line CC ′ shown in (a).
[図 4] (a)は本発明の第 3の実施形態に係るキャパシタを示す平面図であり、 (b)は (a FIG. 4 (a) is a plan view showing a capacitor according to a third embodiment of the present invention, and (b) is (a
)に示す D— D'線による断面図である。 It is sectional drawing by DD 'line shown to).
[図 5]図 4 (a)に示す E— E'線による断面図である。  FIG. 5 is a cross-sectional view taken along line EE ′ shown in FIG. 4 (a).
[図 6] (a)乃至 (c)は本発明の第 4の実施形態に係るキャパシタを各層毎に示す平面 図である。  [FIG. 6] (a) to (c) are plan views showing a capacitor according to a fourth embodiment of the present invention for each layer.
[図 7] (a)乃至 (c)は本実施形態に係るキャパシタを各層毎に示す平面図である。  FIGS. 7A to 7C are plan views showing capacitors according to the present embodiment for each layer.
[図 8] (a)は本実施形態に係るキャパシタを各層毎に示す平面図であり、 (b)は(a)に 示す F— F'線による断面図である。 FIG. 8 (a) is a plan view showing the capacitor according to the present embodiment for each layer, and FIG. It is sectional drawing by the FF 'line shown.
[図 9] (a)乃至 (c)は本実施形態に係るキャパシタの製造方法をその工程順に示す平 面図である。  [FIG. 9] (a) to (c) are plan views showing a method of manufacturing a capacitor according to the present embodiment in the order of steps.
[図 10] (a)は第 4の実施形態の変形例に係るキャパシタを示す平面図であり、図 (b) は(a)に示す G— G'線による断面図である。  FIG. 10 (a) is a plan view showing a capacitor according to a modification of the fourth embodiment, and FIG. 10 (b) is a cross-sectional view taken along line GG ′ shown in FIG.
[図 11] (a)乃至 (c)は本変形例に係るキャパシタの製造方法をその工程順に示す平 面図である。  [FIG. 11] (a) to (c) are plan views showing a method of manufacturing a capacitor according to this modification in the order of steps.
[図 12] (a)乃至 (c)は本変形例に係るキャパシタの製造方法をその工程順に示す平 面図であり、図 11(c)の次の工程を示す。  [FIG. 12] (a) to (c) are plan views showing the method of manufacturing a capacitor according to this modification in the order of the steps, and show the next step of FIG. 11 (c).
[図 13]本発明の第 5の実施形態に係るプリント配線基板を示す断面図である。  FIG. 13 is a cross-sectional view showing a printed wiring board according to a fifth embodiment of the present invention.
[図 14]本発明の第 6の実施形態に係るプリント配線基板を示す断面図である。 FIG. 14 is a cross-sectional view showing a printed wiring board according to a sixth embodiment of the present invention.
符号の説明 Explanation of symbols
1;基板  1; substrate
2;下部電極  2; Bottom electrode
2a、 2b;矩形領域  2a, 2b; rectangular area
2c;六角形領域  2c; hexagonal region
3;誘電体膜  3; Dielectric film
4;上部電極  4; upper electrode
5;絶縁層  5; insulation layer
6;ホール  6; Hall
7a、 7b;開口部  7a, 7b; opening
8;積層体  8; Laminate
9;層間絶縁膜  9; Interlayer insulation film
10a、 10b、 10c、 10d;開口部  10a, 10b, 10c, 10d; opening
11、 13;厚膜電極  11, 13; thick film electrode
12;薄膜電極  12; Thin film electrode
12c;部分  12c; part
14、 15;ブリッジ部 20;キャパシタ 14, 15; Bridge part 20; Capacitor
21;コア基板  21; Core substrate
22;内層配線  22; Inner layer wiring
23;接着層  23; adhesive layer
24;プリプレダ  24; Prepreda
25;表面配線  25; Surface wiring
26a, 26b;ビア  26a, 26b; via
27;Cuめっき層  27; Cu plating layer
28;貫通スルーホール  28; Through-through hole
29;めっき電極  29; Plating electrode
31、 34;スノレーホ一ノレ  31, 34;
32;めっき電極  32; Plating electrode
33;内層パッド  33; Inner layer pad
35;めっき電極  35; Plating electrode
36、 37;ペースト層  36, 37; paste layer
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
以下、本発明の実施形態について添付の図面を参照して具体的に説明する。先 ず、本発明の第 1の実施形態について説明する。図 1(a)は本実施形態に係るキャパ シタを示す平面図であり、(b)は (a)に示す A— A'線による断面図である。図 1(a)及 び (b)に示すように、本実施形態に係るキャパシタにおいては、榭脂からなり、厚さが 例えば 10乃至 60/ζπι、例えば 20乃至 50 mである基板 1が設けられている。また、 基板 1上には、金属又は合金カゝらなる下部電極 2が設けられている。基板 1の表面に 垂直な方向から見て (以下、平面視で、という)、下部電極 2の形状は矩形である。更 に、下部電極 2上の一部の領域には、無機材料、例えばべ口ブスカイト構造を有する 酸化物からなる誘電体膜 3が設けられており、この誘電体膜 3上には、金属又は合金 カゝらなる上部電極 4が設けられている。平面視で、誘電体膜 3及び上部電極 4の形状 は矩形である。下部電極 2、誘電体膜 3及び上部電極 4により、積層体 8が構成され ている。 [0027] そして、この積層体 8を覆うように、絶縁層 5が設けられている。絶縁層 5は下部電極 2、誘電体膜 3及び上部電極 4を保護するためのものであり、基板 1との間の密着性 が良好な榭脂により形成されている。絶縁層 5における相互に離隔した領域には、 2 ケ所の開口部 7a及び 7bが形成されている。開口部 7aは、下部電極 2の直上域であ つて誘電体膜 3の直上域を除く領域の一部に形成されており、開口部 7aの底部には 下部電極 2が露出している。また、開口部 7bは上部電極 4の直上域の一部に形成さ れており、開口部 7bの底部には上部電極 4が露出している。平面視で、開口部 7a及 び 7bの形状は矩形であり、その長手方向は相互に同一の方向であり、開口部 7a及 び 7bはその長手方向に直交する方向(短手方向)に沿って配列されている。そして、 外部回路から、開口部 7a及び 7bを介して、下部電極 2と上部電極 4との間に電圧が 印加されるようになっている。このとき、誘電体膜 3は容量絶縁膜として機能する。 Hereinafter, embodiments of the present invention will be specifically described with reference to the accompanying drawings. First, the first embodiment of the present invention will be described. FIG. 1A is a plan view showing the capacitor according to the present embodiment, and FIG. 1B is a cross-sectional view taken along the line AA ′ shown in FIG. As shown in FIGS. 1 (a) and (b), the capacitor according to the present embodiment is provided with a substrate 1 made of resin and having a thickness of, for example, 10 to 60 / ζπι, for example, 20 to 50 m. It has been. On the substrate 1, a lower electrode 2 made of a metal or an alloy is provided. When viewed from a direction perpendicular to the surface of the substrate 1 (hereinafter referred to as a plan view), the shape of the lower electrode 2 is rectangular. Further, a dielectric film 3 made of an inorganic material, for example, an oxide having a bottom bumskite structure, is provided in a part of the region on the lower electrode 2. On the dielectric film 3, metal or An upper electrode 4 made of an alloy is provided. In plan view, the dielectric film 3 and the upper electrode 4 are rectangular. A laminated body 8 is constituted by the lower electrode 2, the dielectric film 3 and the upper electrode 4. [0027] An insulating layer 5 is provided so as to cover the laminated body 8. The insulating layer 5 is for protecting the lower electrode 2, the dielectric film 3 and the upper electrode 4, and is formed of a resin having good adhesion to the substrate 1. Two openings 7a and 7b are formed in regions of the insulating layer 5 that are separated from each other. The opening 7a is formed in a part of the region directly above the lower electrode 2 and excluding the region directly above the dielectric film 3, and the lower electrode 2 is exposed at the bottom of the opening 7a. The opening 7b is formed in a part of the region directly above the upper electrode 4, and the upper electrode 4 is exposed at the bottom of the opening 7b. In plan view, the shapes of the openings 7a and 7b are rectangular, the longitudinal directions thereof are the same as each other, and the openings 7a and 7b are along the direction (short direction) perpendicular to the longitudinal direction. Are arranged. A voltage is applied from the external circuit between the lower electrode 2 and the upper electrode 4 through the openings 7a and 7b. At this time, the dielectric film 3 functions as a capacitive insulating film.
[0028] 積層体 8における誘電体膜 3及び上部電極 4が配置されて ヽな 、領域、即ち、下部 電極 2における誘電体膜 3の直下域を除く領域の一部には、スリット状のホール 6が 形成されている。平面視で、ホール 6は開口部 7aから見て開口部 7bとは反対の位置 に形成されており、ホール 6の長手方向は開口部 7a及び 7bの長手方向と同一である 。ホール 6においては下部電極 2が設けられておらず、基板 1が露出している。また、 ホール 6上には誘電体膜 3及び上部電極 4が設けられていないため、ホール 6内には 絶縁層 5が埋設されている。このため、ホール 6の底部において、絶縁層 5は基板 1に 直接接している。平面視で、下部電極 2の総面積、即ちホール 6を含む面積に対する ホール 6の面積の割合は、例えば 1乃至 25%、例えば 5乃至 10%である。  [0028] In a region where the dielectric film 3 and the upper electrode 4 in the laminated body 8 are arranged, a part of the region excluding the region immediately below the dielectric film 3 in the lower electrode 2 is formed in a slit-like hole. 6 is formed. In plan view, the hole 6 is formed at a position opposite to the opening 7b when viewed from the opening 7a, and the longitudinal direction of the hole 6 is the same as the longitudinal direction of the openings 7a and 7b. In the hole 6, the lower electrode 2 is not provided, and the substrate 1 is exposed. In addition, since the dielectric film 3 and the upper electrode 4 are not provided on the hole 6, the insulating layer 5 is embedded in the hole 6. Therefore, the insulating layer 5 is in direct contact with the substrate 1 at the bottom of the hole 6. In a plan view, the ratio of the area of the hole 6 to the total area of the lower electrode 2, that is, the area including the hole 6 is, for example, 1 to 25%, for example, 5 to 10%.
[0029] 下部電極 2の総面積に占めるホール 6の面積の割合が大きいほど、絶縁層 5と基板 1との間の密着強度は強くなるが、その反面、キャパシタの総面積が大きくなつてしま うという欠点がある。平面視で、下部電極 2の総面積、即ち、ホール 6を含む下部電極 2の面積に対するホール 6の面積の割合が 1%未満であると、上述の基板 1、下部電 極 2、誘電体膜 3及び上部電極 4の相互間の界面の密着性を向上させる効果が少な い。一方、前記割合が 25%を超えると、キャパシタの総面積が大きくなり過ぎ、容量 密度が低下する。従って、前記割合は 1乃至 25%であることが好ましぐ 5乃至 10% であることがより好ましい。 [0030] 次に、本実施形態の効果について説明する。基板 1と絶縁層 5は共に樹脂からなり 、基板 1と絶縁層 5との間の密着強度は高い。このため、ホール 6内において、基板 1 と絶縁層 5とは相互に強固に結合しており、下部電極 2、誘電体膜 3及び上部電極 4 からなる積層体は、基板 1と絶縁層 5とに挟持されている。これにより、基板 1と下部電 極 2との間、下部電極 2と誘電体膜 3との間、誘電体膜 3と上部電極 4との間、及び上 部電極 4と絶縁層 5との間の密着強度を高めることができる。 [0029] The larger the ratio of the area of the hole 6 to the total area of the lower electrode 2, the stronger the adhesion strength between the insulating layer 5 and the substrate 1, but on the other hand, the total area of the capacitor is increased. There is a disadvantage that. When the total area of the lower electrode 2 in plan view, that is, the ratio of the area of the hole 6 to the area of the lower electrode 2 including the hole 6 is less than 1%, the above-described substrate 1, lower electrode 2, and dielectric film The effect of improving the adhesion at the interface between 3 and the upper electrode 4 is small. On the other hand, if the ratio exceeds 25%, the total area of the capacitor becomes too large and the capacitance density decreases. Therefore, the ratio is preferably 1 to 25%, more preferably 5 to 10%. Next, the effect of this embodiment will be described. The substrate 1 and the insulating layer 5 are both made of resin, and the adhesion strength between the substrate 1 and the insulating layer 5 is high. For this reason, the substrate 1 and the insulating layer 5 are firmly bonded to each other in the hole 6, and the laminated body including the lower electrode 2, the dielectric film 3 and the upper electrode 4 is bonded to the substrate 1 and the insulating layer 5. Is sandwiched between. Thus, between the substrate 1 and the lower electrode 2, between the lower electrode 2 and the dielectric film 3, between the dielectric film 3 and the upper electrode 4, and between the upper electrode 4 and the insulating layer 5. The adhesion strength can be increased.
[0031] 即ち、本実施形態においては、下部電極 2の一部を貫通するホール 6を形成し、こ のホール 6を介してフレキシブル基板である基板 1と榭脂からなる絶縁層 5とを直接接 着している。これにより、基板 1と絶縁層 5との間の高い密着性を利用し、キャパシタに 複数存在する界面に特別な密着層を設けることなぐ各界面の密着性を改善すること が可能である。従って、本実施形態に係るキャパシタは、このキャパシタをプリント基 板に内蔵させる工程において印加される外力に耐えることが可能である。このため、 従来、プリント基板内蔵工程において基板の変形に伴う外力によって引き起こされて いたキャパシタ界面の剥離による開放不良の発生を防止することができる。この結果 、信頼性が高いキャパシタ内蔵プリント配線基板を提供することが可能である。また、 キャパシタの密着性を高めるための密着層が不要であるため、この密着層による静 電容量の低下を防止することができ、プリント配線基板に大容量のキャパシタを内蔵 させることが可會である。  That is, in the present embodiment, a hole 6 penetrating a part of the lower electrode 2 is formed, and the substrate 1 that is a flexible substrate and the insulating layer 5 made of resin are directly connected through the hole 6. It is attached. As a result, it is possible to improve the adhesion of each interface without providing a special adhesion layer at the interface existing in plural in the capacitor by utilizing the high adhesion between the substrate 1 and the insulating layer 5. Therefore, the capacitor according to the present embodiment can withstand the external force applied in the process of incorporating the capacitor in the printed board. For this reason, it is possible to prevent the occurrence of an open defect due to the separation of the capacitor interface, which has been caused by the external force accompanying the deformation of the substrate in the process of incorporating the printed circuit board. As a result, a highly reliable printed wiring board with a built-in capacitor can be provided. In addition, since an adhesion layer for improving the adhesion of the capacitor is unnecessary, it is possible to prevent a decrease in electrostatic capacity due to the adhesion layer, and it is possible to incorporate a large-capacity capacitor in the printed wiring board. is there.
[0032] また、本実施形態においては、誘電体膜 3をべ口ブスカイト構造を有する酸化物に より形成しているため、静電容量値が高い。  In the present embodiment, since the dielectric film 3 is formed of an oxide having a bottom bskite structure, the capacitance value is high.
[0033] 図 2 (a)は本発明の範囲力 外れる比較例に係るキャパシタを示す平面図であり、 ( b)は(a)に示す B— B'線による断面図である。図 2に示すように、本比較例において は、積層体 8にホールが形成されていない。このため、絶縁層 5は基板 1に積層体 8 の周辺部においてのみ結合している。従って、前述の第 1の実施形態と比較して、基 板 1と絶縁層 5との間の密着強度が弱ぐこの結果、基板 1と下部電極 2との間、下部 電極 2と誘電体膜 3との間、誘電体膜 3と上部電極 4との間、上部電極 4と絶縁層 5と の間の密着強度も低い。  FIG. 2 (a) is a plan view showing a capacitor according to a comparative example that is out of the range force of the present invention, and FIG. 2 (b) is a cross-sectional view taken along line BB ′ shown in FIG. 2 (a). As shown in FIG. 2, no hole is formed in the laminate 8 in this comparative example. Therefore, the insulating layer 5 is bonded to the substrate 1 only at the periphery of the stacked body 8. Therefore, compared with the first embodiment described above, the adhesion strength between the substrate 1 and the insulating layer 5 is weak. As a result, the substrate 1 and the lower electrode 2 and the lower electrode 2 and the dielectric film are reduced. 3, adhesion strength between the dielectric film 3 and the upper electrode 4, and between the upper electrode 4 and the insulating layer 5 are also low.
[0034] なお、上述の第 1の実施形態においては、ホール 6を 1ケ所のみ形成する例を示し たが、本発明はこれに限定されず、ホール 6を複数ケ所形成してもよい。また、本実施 形態においては、下部電極 2を単層膜により形成する例を示したが、本発明はこれに 限定されず、誘電体膜 3を形成した後の基板 1の変形を抑制するために、下部電極 2 を、基板 1側から順に密着性導電材料層、高弾性導電材料層及び耐酸化性導電材 料層が積層された三層膜、又はこの三層膜を含む四層以上の多層膜により形成して ちょい。 [0034] In the first embodiment described above, an example in which only one hole 6 is formed is shown. However, the present invention is not limited to this, and a plurality of holes 6 may be formed. In the present embodiment, an example in which the lower electrode 2 is formed of a single layer film has been shown. However, the present invention is not limited to this, and the deformation of the substrate 1 after the formation of the dielectric film 3 is suppressed. In addition, the lower electrode 2 is formed of a three-layer film in which an adhesive conductive material layer, a highly elastic conductive material layer and an oxidation-resistant conductive material layer are laminated in order from the substrate 1 side, or four or more layers including this three-layer film. Form with a multilayer film.
[0035] 次に、本発明の第 2の実施形態について説明する。図 3 (a)は本実施形態に係るキ ャパシタを示す平面図であり、(b)は(a)に示す C— C'線による断面図である。なお、 図 3 (a)及び (b)にお 、て、図 1 (a)及び (b)に示す構成要素と同じ構成要素には同 じ符号を付し、その詳細な説明を省略する。  [0035] Next, a second embodiment of the present invention will be described. FIG. 3A is a plan view showing the capacitor according to this embodiment, and FIG. 3B is a cross-sectional view taken along the line CC ′ shown in FIG. In FIGS. 3 (a) and (b), the same components as those shown in FIGS. 1 (a) and (b) are denoted by the same reference numerals, and detailed description thereof is omitted.
[0036] 図 3 (a)及び (b)に示すように、本実施形態に係るキャパシタ 20においては、基板 1 上に下部電極 2が設けられており、下部電極 2上の一部の領域に誘電体膜 3が設け られており、この誘電体膜 3上に上部電極 4が設けられている。そして、下部電極 2に は、前述の第 1の実施形態と同様に、ホール 6が 1ケ所形成されている。  As shown in FIGS. 3 (a) and 3 (b), in the capacitor 20 according to the present embodiment, the lower electrode 2 is provided on the substrate 1, and a partial region on the lower electrode 2 is provided. A dielectric film 3 is provided, and an upper electrode 4 is provided on the dielectric film 3. In the lower electrode 2, one hole 6 is formed in the same manner as in the first embodiment.
[0037] そして、下部電極 2、誘電体膜 3及び上部電極 4を覆うように、絶縁材料、例えば感 光性ポリイミドからなる層間絶縁膜 9が設けられている。層間絶縁膜 9には、 3ケ所の 開口部 10a、 10b及び 10cが形成されている。開口部 10aは下部電極 2の直上域で あって誘電体膜 3が設けられていない領域の一部に形成されており、開口部 10bは ホール 6の内部及びその直上域に形成されており、開口部 10cは上部電極 4の直上 域に形成されている。平面視で、開口部 10a乃至 10cはこの順に一列に配列されて いる。  Then, an interlayer insulating film 9 made of an insulating material, for example, photosensitive polyimide is provided so as to cover the lower electrode 2, the dielectric film 3 and the upper electrode 4. In the interlayer insulating film 9, three openings 10a, 10b and 10c are formed. The opening 10a is formed in a part of the region directly above the lower electrode 2 and not provided with the dielectric film 3, and the opening 10b is formed in the hole 6 and in the region immediately above it. The opening 10c is formed immediately above the upper electrode 4. In plan view, the openings 10a to 10c are arranged in a line in this order.
[0038] 開口部 10aの内部及び直上域には、例えば Cu又は Au力 なる厚膜電極 11が設 けられており、開口部 10aの底部にて下部電極 2に接続されている。また、開口部 10 cの内部及び直上域には、例えば Cu、 Au又は Niからなる薄膜電極 12が設けられて おり、開口部 10cの底部にて上部電極 4に接続されている。薄膜電極 12は、層間絶 縁膜 9上において開口部 10cの直上域から開口部 10bから遠ざ力る方向に延出して いる。更に、層間絶縁膜 9上における上部電極 4の直上域を除く領域の一部には、例 えば Cu又は Auからなる厚膜電極 13が設けられており、薄膜電極 12の延出部に接 続されている。厚膜電極 13の直下域にも下部電極 2が設けられている力 下部電極 2における厚膜電極 13の直下域に配置された部分は、下部電極 2における上部電 極 4の直下域に配置された部分からは絶縁されている。薄膜電極 12及び厚膜電極 1 3は、層間絶縁膜 9により下部電極 2から絶縁されている。 [0038] A thick film electrode 11 made of, for example, Cu or Au force is provided inside and directly above the opening 10a, and is connected to the lower electrode 2 at the bottom of the opening 10a. In addition, a thin film electrode 12 made of, for example, Cu, Au, or Ni is provided in the opening 10c and directly above, and is connected to the upper electrode 4 at the bottom of the opening 10c. The thin film electrode 12 extends on the interlayer insulating film 9 from the region directly above the opening 10c in a direction away from the opening 10b. Furthermore, a thick film electrode 13 made of, for example, Cu or Au is provided in a part of the region on the interlayer insulating film 9 except for the region directly above the upper electrode 4, and is in contact with the extending portion of the thin film electrode 12. It has been continued. The force that the lower electrode 2 is also provided in the region immediately below the thick film electrode 13 The portion of the lower electrode 2 that is disposed immediately below the thick film electrode 13 is disposed in the region immediately below the upper electrode 4 in the lower electrode 2. It is insulated from the part. The thin film electrode 12 and the thick film electrode 13 are insulated from the lower electrode 2 by the interlayer insulating film 9.
[0039] また、基板 1上に設けられた積層体 8、層間絶縁膜 9、厚膜電極 11、薄膜電極 12及 び厚膜電極 13を覆うように、絶縁層 5が設けられている。絶縁層 5は基板 1との間の 密着性が良好な榭脂により形成されている。そして、層間絶縁膜 9に形成された開口 部 10bの内部には、絶縁層 5が埋設されており、開口部 10bの底部、即ち、ホール 6 の底部にて基板 1と直接接触している。これにより、ホール 6内において、基板 1は絶 縁層 5に強固に結合して 、る。  In addition, an insulating layer 5 is provided so as to cover the laminated body 8, the interlayer insulating film 9, the thick film electrode 11, the thin film electrode 12, and the thick film electrode 13 provided on the substrate 1. The insulating layer 5 is formed of a resin having good adhesion to the substrate 1. An insulating layer 5 is buried inside the opening 10b formed in the interlayer insulating film 9, and is in direct contact with the substrate 1 at the bottom of the opening 10b, that is, at the bottom of the hole 6. Thus, the substrate 1 is firmly bonded to the insulating layer 5 in the hole 6.
[0040] 絶縁層 5には、 2ケ所の開口部 7a及び 7bが形成されている。開口部 7aは、厚膜電 極 11の直上域に形成されており、その底部において厚膜電極 11が露出している。ま た、開口部 7bは厚膜電極 13の直上域に形成されており、その底部において厚膜電 極 13が露出している。これにより、厚膜電極 11は、絶縁層 5内及び層間絶縁膜 9の 開口部 10a内を貫通して下部電極 2に接続されており、厚膜電極 13は、絶縁層 5内 を貫通して薄膜電極 12に接続されており、薄膜電極 12は層間絶縁膜 9の開口部 10 c内を貫通して上部電極 4に接続されている。厚膜電極 11及び 13は、下部電極 2及 び上部電極 4を外部回路(図示せず)に接続するものである。そして、外部回路から、 厚膜電極 11及び 13を介して、下部電極 2と上部電極 4との間に電圧が印加される。 本実施形態における上記以外の構成は、前述の第 1の実施形態と同様である。  [0040] The insulating layer 5 has two openings 7a and 7b. The opening 7a is formed immediately above the thick film electrode 11, and the thick film electrode 11 is exposed at the bottom. Further, the opening 7b is formed in the region immediately above the thick film electrode 13, and the thick film electrode 13 is exposed at the bottom. As a result, the thick film electrode 11 passes through the insulating layer 5 and the opening 10a of the interlayer insulating film 9 and is connected to the lower electrode 2, and the thick film electrode 13 passes through the insulating layer 5. The thin film electrode 12 is connected to the upper electrode 4 through the opening 10 c of the interlayer insulating film 9. The thick film electrodes 11 and 13 connect the lower electrode 2 and the upper electrode 4 to an external circuit (not shown). Then, a voltage is applied between the lower electrode 2 and the upper electrode 4 from the external circuit via the thick film electrodes 11 and 13. Other configurations in the present embodiment are the same as those in the first embodiment described above.
[0041] 上述の如ぐ薄膜電極 12は上部電極 4を厚膜電極 13に接続するものである。また 、層間絶縁膜 9は、キャパシタの上部電極 4と下部電極 2との間の絶縁性、及び上部 電極 4、薄膜電極 12、厚膜電極 13と下部電極 2との間の絶縁性を確実にするための ものである。なお、層間絶縁膜 9は無機材料により形成してもよい。  The thin film electrode 12 as described above connects the upper electrode 4 to the thick film electrode 13. Further, the interlayer insulating film 9 ensures insulation between the upper electrode 4 and the lower electrode 2 of the capacitor and insulation between the upper electrode 4, the thin film electrode 12, the thick film electrode 13 and the lower electrode 2. It is for doing. Note that the interlayer insulating film 9 may be formed of an inorganic material.
[0042] 本実施形態においては、厚膜電極 11及び 13が設けられているため、外部回路と の間の接続信頼性が高い。本実施形態における上記以外の効果は、前述の第 1の 実施形態と同様である。  In the present embodiment, since the thick film electrodes 11 and 13 are provided, the connection reliability with the external circuit is high. The effects of the present embodiment other than those described above are the same as those of the first embodiment described above.
[0043] 次に、本発明の第 3の実施形態について説明する。図 4 (a)は本実施形態に係るキ ャパシタを示す平面図であり、(b)は(a)に示す D— D'線による断面図であり、図 5は 図 4 (a)に示す E— E'線による断面図である。なお、図 4 (a)及び (b)並びに図 5にお いて、図 3 (a)及び (b)に示す構成要素と同じ構成要素には同じ符号を付し、その詳 細な説明を省略する。 Next, a third embodiment of the present invention will be described. Fig. 4 (a) shows the key according to this embodiment. FIG. 5B is a cross-sectional view taken along line DD ′ shown in FIG. 5A, and FIG. 5 is a cross-sectional view taken along line EE ′ shown in FIG. 4A. In FIGS. 4 (a) and (b) and FIG. 5, the same components as those shown in FIGS. 3 (a) and (b) are denoted by the same reference numerals, and detailed description thereof is omitted. To do.
[0044] 図 4 (a)及び (b)並びに図 5に示すように、本実施形態に係るキャパシタは、前述の 第 2の実施形態と比較して、ホール 6が積層体 8における下部電極 2、誘電体膜 3及 び上部電極 4が積層された領域に形成されており、ホール 6が平面視で格子状、例 えば十字形に形成されており、このホール 6により、下部電極 2、誘電体膜 3、上部電 極 4及び薄膜電極 12が夫々 4つの部分に分割されて 、る点が異なって 、る。  [0044] As shown in FIGS. 4 (a) and 4 (b) and FIG. 5, the capacitor according to the present embodiment has holes 6 in the lower electrode 2 in the multilayer body 8 as compared with the second embodiment described above. The dielectric film 3 and the upper electrode 4 are formed in the laminated region, and the holes 6 are formed in a lattice shape, for example, a cross shape in a plan view. The body film 3, the upper electrode 4 and the thin film electrode 12 are each divided into four parts, but are different.
[0045] 以下、より詳細に説明する。下部電極 2は、厚膜電極 11の直下域から厚膜電極 13 の直下域に向う方向に沿って、 3つの領域に分けられている。下部電極 2のうち、厚 膜電極 11の直下域を含む領域の上方には誘電体膜 3及び上部電極 4が設けられて おらず、この領域は厚膜電極 11に接続されている。また、下部電極 2のうち、厚膜電 極 13の直下域を含む領域の上方にも誘電体膜 3及び上部電極 4が設けられておら ず、この領域は他の 2つの領域から離隔されている。  [0045] Hereinafter, this will be described in more detail. The lower electrode 2 is divided into three regions along the direction from the region immediately below the thick film electrode 11 to the region immediately below the thick film electrode 13. In the lower electrode 2, the dielectric film 3 and the upper electrode 4 are not provided above the region including the region immediately below the thick film electrode 11, and this region is connected to the thick film electrode 11. In addition, the dielectric film 3 and the upper electrode 4 are not provided above the region of the lower electrode 2 including the region immediately below the thick film electrode 13, and this region is separated from the other two regions. Yes.
[0046] 下部電極 2における上述の 2つの領域の間に配置された領域の上方には、誘電体 膜 3及び上部電極 4が設けられている。この領域は前述の厚膜電極 11の直下域を含 む領域と連続している。また、この領域は、十字形のホール 6により 4つの部分に分割 されている。平面視で、各部分の形状は矩形である。そして、十字形のホール 6にお ける交差部及び外端部並びに各部分間には、下部電極 2の各部分力 延出し隣り合 う部分同士を接続するブリッジ部 14が存在する。これにより、下部電極 2の 4つの部 分は、この交差部及び外端部にお 、てブリッジ部 14を介して相互に接続されて 、る 。また、誘電体膜 3及び上部電極 4は、十字形のホール 6により夫々 4つの部分に分 断され、各部分は相互に連結していない。なお、平面視で、誘電体膜 3及び上部電 極 4の形状は矩形である。  A dielectric film 3 and an upper electrode 4 are provided above the region of the lower electrode 2 disposed between the two regions described above. This region is continuous with the region including the region immediately below the thick film electrode 11 described above. This area is divided into four parts by a cross-shaped hole 6. In plan view, the shape of each part is a rectangle. Between the crossing portion and the outer end portion of the cross-shaped hole 6 and between each portion, there is a bridge portion 14 that extends each partial force of the lower electrode 2 and connects adjacent portions. As a result, the four portions of the lower electrode 2 are connected to each other via the bridge portion 14 at the crossing portion and the outer end portion. In addition, the dielectric film 3 and the upper electrode 4 are divided into four parts by the cross-shaped holes 6, respectively, and the parts are not connected to each other. In plan view, the dielectric film 3 and the upper electrode 4 are rectangular.
[0047] 更に、薄膜電極 12は、誘電体膜 3及び上部電極 4の直上域を含む領域に設けられ ており、十字形のホール 6により 4つの部分に分断されているが、各部分間及び厚膜 電極 13との間には、各部分力も延出したブリッジ部 15が設けられている。ブリッジ部 15は、ブリッジ部 14のうち、下部電極 2の各部分間に設けられたブリッジ部 14の直上 域に配置されている。これにより、薄膜電極 12の各部分は、ブリッジ部 15を介して厚 膜電極 13に接続されている。従って、薄膜電極 12の各部分に夫々接続された上部 電極 4の各部分同士も、相互に接続されると共に厚膜電極 13に接続されている。本 実施形態における上記以外の構成は、前述の第 2の実施形態と同様である。 [0047] Furthermore, the thin film electrode 12 is provided in a region including a region immediately above the dielectric film 3 and the upper electrode 4, and is divided into four parts by a cross-shaped hole 6, but between each part and Between the thick film electrode 13, a bridge portion 15 in which each partial force extends is provided. Bridge part 15 is arranged in a region immediately above the bridge portion 14 provided between the portions of the lower electrode 2 in the bridge portion 14. Thereby, each part of the thin film electrode 12 is connected to the thick film electrode 13 via the bridge part 15. Therefore, the portions of the upper electrode 4 connected to the portions of the thin film electrode 12 are also connected to each other and to the thick film electrode 13. Other configurations in the present embodiment are the same as those in the second embodiment described above.
[0048] 本実施形態においては、ホール 6が積層体 8における下部電極 2、誘電体膜 3及び 上部電極 4が積層されて 、る領域に形成されて 、るため、基板 1と絶縁層 5との結合 部の近傍に、下部電極 2、誘電体膜 3及び上部電極 4が配置される。このため、前述 の第 2の実施形態と比較して、基板 下部電極 2、誘電体膜 3及び上部電極 4の相 互間の密着性がより向上する。また、ホール 6を十字形に形成しているため、下部電 極 2、誘電体膜 3及び上部電極 4が夫々比較的小面積の 4つの部分に分割される。こ の結果、基板 1と下部電極 2との間、下部電極 2と誘電体膜 3との間、誘電体膜 3と上 部電極 4との間、及び上部電極 4と絶縁層 5との間の密着性が安定して良好なものと なる。 In the present embodiment, since the hole 6 is formed in a region where the lower electrode 2, the dielectric film 3 and the upper electrode 4 are stacked in the stacked body 8, the substrate 1 and the insulating layer 5 A lower electrode 2, a dielectric film 3, and an upper electrode 4 are disposed in the vicinity of the coupling portion. For this reason, the adhesion between the substrate lower electrode 2, the dielectric film 3, and the upper electrode 4 is further improved as compared with the second embodiment described above. Further, since the hole 6 is formed in a cross shape, the lower electrode 2, the dielectric film 3, and the upper electrode 4 are each divided into four portions having a relatively small area. As a result, between the substrate 1 and the lower electrode 2, between the lower electrode 2 and the dielectric film 3, between the dielectric film 3 and the upper electrode 4, and between the upper electrode 4 and the insulating layer 5. The adhesion of the material becomes stable and good.
[0049] また、基板 1が開口部 7aの長手方向及びそれに直交する短手方向に曲げられたと きに、ホール 6が積層体 8に印加される応力を緩和することができるため、これらの方 向の湾曲に対する耐性が高 、。  [0049] In addition, when the substrate 1 is bent in the longitudinal direction of the opening 7a and the short direction perpendicular to the opening 7a, the stress applied to the stacked body 8 can be relaxed. High resistance to direction curvature.
[0050] 更に、下部電極 2及び上部電極 4の各部分を相互に接続することにより、ホール 6 により分割された下部電極 2、誘電体膜 3及び上部電極 4の各部分からなる複数のュ ニットを、統合して 1つのキャパシタとして使用することができる。このため、ホール 6を 形成しない場合と比較して、キャパシタの容量値が大きく低減することがない。本実 施形態における上記以外の効果は、前述の第 2の実施形態と同様である。  [0050] Furthermore, by connecting the portions of the lower electrode 2 and the upper electrode 4 to each other, a plurality of units comprising the portions of the lower electrode 2, the dielectric film 3, and the upper electrode 4 divided by the holes 6 are provided. Can be integrated and used as a single capacitor. For this reason, the capacitance value of the capacitor is not greatly reduced as compared with the case where the hole 6 is not formed. The effects other than those described above in the present embodiment are the same as those in the second embodiment described above.
[0051] なお、本実施形態においては、ホール 6の形状力 平面視で相互に直交する 2本 のスリット状の部分力もなる十字形である例を示したが、本発明はこれに限定されず、 ホール 6の形状は、平面視で相互に直交する各複数本のスリット状の部分力 なる格 子状であってもよい。本明細書においては、十字形のスリットは格子状のスリットの一 例であるものとする。  In the present embodiment, the shape force of the hole 6 is shown as an example of a cross having two slit-like partial forces orthogonal to each other in plan view, but the present invention is not limited to this. The shape of the hole 6 may be a lattice shape having a plurality of slit-like partial forces that are orthogonal to each other in plan view. In the present specification, a cross-shaped slit is an example of a lattice-shaped slit.
[0052] 次に、本発明の第 4の実施形態について説明する。図 6 (a)乃至 (c)、図 7 (a)乃至 (c)及び図 8 (a)は本実施形態に係るキャパシタを下層側力 順に各層毎に示す平 面図であり、図 8 (b)は図 8 (a)に示す F— F'線による断面図である。なお、図 6 (a)乃 至 (c)、図 7 (a)乃至 (c)並びに図 8 (a)及び (b)において、図 3 (a)及び (b)に示す構 成要素と同じ構成要素には同じ符号を付し、その詳細な説明を省略する。 [0052] Next, a fourth embodiment of the present invention will be described. Fig. 6 (a) to (c), Fig. 7 (a) to (c) and FIG. 8 (a) are plan views showing the capacitor according to the present embodiment for each layer in the order of lower layer side force, and FIG. 8 (b) is taken along the line FF ′ shown in FIG. 8 (a). It is sectional drawing. In Fig. 6 (a) No to (c), Fig. 7 (a) to (c) and Fig. 8 (a) and (b), the same components as shown in Fig. 3 (a) and (b) are used. The same reference numerals are given to the constituent elements, and detailed description thereof will be omitted.
[0053] 図 6 (a)に示すように、基板 1上に下部電極 2が形成されている。平面視で、下部電 極 2は以下に説明するような形状にパターユングされている。即ち、下部電極 2は、 2 ケ所の矩形領域 2a及び 2bと、この矩形領域 2aと矩形領域 2bとの間に配置された 3ケ 所の六角形領域 2cとを備えている。また、下部電極 2は矩形領域 2aとこの矩形領域 2aに最も近い 1ケ所の六角形領域 2cとの間及び 3ケ所の六角形領域 2cの相互間を 接続するブリッジ部 14を備えている。これにより、矩形領域 2a及び六角形領域 2cは 相互に接続されており、矩形領域 2bは矩形領域 2a及び六角形領域 2cとは絶縁され ている。 As shown in FIG. 6 (a), the lower electrode 2 is formed on the substrate 1. In plan view, the lower electrode 2 is patterned in the shape described below. That is, the lower electrode 2 includes two rectangular areas 2a and 2b and three hexagonal areas 2c arranged between the rectangular area 2a and the rectangular area 2b. Further, the lower electrode 2 includes a bridge portion 14 that connects between the rectangular region 2a and the one hexagonal region 2c closest to the rectangular region 2a and between the three hexagonal regions 2c. Thus, the rectangular region 2a and the hexagonal region 2c are connected to each other, and the rectangular region 2b is insulated from the rectangular region 2a and the hexagonal region 2c.
[0054] また、図 6 (b)に示すように、下部電極 2の六角形領域 2c上には誘電体膜 3が形成 されている。即ち、誘電体膜 3は、平面視で正六角形である 3ケ所の六角形領域に分 割されている。更に、図 6 (c)に示すように、誘電体膜 3上には上部電極 4が形成され ている。即ち、上部電極 4は、平面視で正六角形である 3ケ所の六角形領域に分割さ れている。下部電極 2、誘電体膜 3及び上部電極 4により積層体 8が形成されている。 これにより、積層体 8は平面視で正六角形をなす 3つのユニットに分割されている。  Further, as shown in FIG. 6B, a dielectric film 3 is formed on the hexagonal region 2 c of the lower electrode 2. That is, the dielectric film 3 is divided into three hexagonal regions that are regular hexagons in plan view. Furthermore, as shown in FIG. 6C, an upper electrode 4 is formed on the dielectric film 3. That is, the upper electrode 4 is divided into three hexagonal regions that are regular hexagons in plan view. A laminated body 8 is formed by the lower electrode 2, the dielectric film 3 and the upper electrode 4. Thereby, the laminate 8 is divided into three units having a regular hexagonal shape in plan view.
[0055] 更にまた、図 7 (a)に示すように、基板 1上に積層体 8を覆うように層間絶縁膜 9が成 膜されている。層間絶縁膜 9には開口部 10a乃至 lOdが形成されている。開口部 10a は下部電極 2の矩形領域 2aの直上域に 1ケ所形成されており、その形状は平面視で 矩形である。開口部 10aにおいては、下部電極 2の矩形領域 2aが露出している。開 口部 10bは 3ケ所の六角形領域 2cに囲まれた領域の直上域に 1ケ所と、 2つの六角 形領域 2cと矩形領域 2bに囲まれた領域の直上域に 1ケ所、合計 2ケ所形成されてお り、その形状は前記領域の形状を反映した形状である。開口部 10bにおいては、基 板 1が露出している。開口部 10bは前述の第 1乃至第 3の実施形態におけるホール 6 に相当する。開口部 10cは 3ケ所の六角形領域 2cの直上域、即ち、上部電極 4の直 上域に各 1ケ所づつ合計 3ケ所形成されており、その形状は平面視で円形である。開 口部 10cにおいては、上部電極 4が露出している。開口部 10dは下部電極 2の矩形 領域 2bの直上域に 1ケ所形成されており、その形状は平面視で矩形である。開口部 10dにお!/、ては、下部電極 2の矩形領域 2bが露出して!/、る。 Furthermore, as shown in FIG. 7A, an interlayer insulating film 9 is formed on the substrate 1 so as to cover the stacked body 8. Openings 10a to lOd are formed in the interlayer insulating film 9. One opening 10a is formed in the region directly above the rectangular region 2a of the lower electrode 2, and the shape thereof is rectangular in plan view. In the opening 10a, the rectangular region 2a of the lower electrode 2 is exposed. The opening 10b has one location directly above the region surrounded by the three hexagonal regions 2c, and one location directly above the region surrounded by the two hexagonal regions 2c and the rectangular region 2b. It is formed and its shape reflects the shape of the region. In the opening 10b, the substrate 1 is exposed. The opening 10b corresponds to the hole 6 in the first to third embodiments described above. A total of three openings 10c are formed in the region immediately above the three hexagonal regions 2c, that is, the region directly above the upper electrode 4, and the shape thereof is circular in plan view. Open The upper electrode 4 is exposed at the mouth portion 10c. One opening 10d is formed in a region immediately above the rectangular region 2b of the lower electrode 2, and the shape thereof is rectangular in plan view. In the opening 10d, the rectangular region 2b of the lower electrode 2 is exposed! /.
[0056] 更にまた、図 7 (b)に示すように、層間絶縁膜 9上には薄膜電極 12が形成されてい る。平面視で、薄膜電極 12の形状は下部電極 2の形状とほぼ同じである力 下部電 極 2の六角形領域 2cを矩形領域 2aに接続するブリッジ部 14 (図 6 (a)参照)の直上 域には、薄膜電極 12は形成されていない。このため、薄膜電極 12における上部電 極 4の直上域に配置された部分 12cは、下部電極 2の矩形領域 2bの直上域に配置 された部分 12bには接続されている力 矩形領域 2aの直上域に配置された部分 12a には接続されていない。また、薄膜電極 12は層間絶縁膜 9の開口部 10a、 10c及び 10d (図 6 (a)参照)内に埋設されている。従って、薄膜電極 12の部分 12aは、開口 部 10aを介して下部電極 2の矩形領域 2a及び六角形領域 2c (図 6 (a)参照)に接続 されており、薄膜電極 12の部分 12bは、部分 12c、開口部 10cを介して上部電極 4に 接続されている。なお、薄膜電極 12は層間絶縁膜 9の開口部 10b内には埋設されて いない。 Furthermore, as shown in FIG. 7B, a thin film electrode 12 is formed on the interlayer insulating film 9. The shape of the thin film electrode 12 is almost the same as the shape of the lower electrode 2 in plan view. The force is just above the bridge portion 14 (see FIG. 6 (a)) that connects the hexagonal region 2c of the lower electrode 2 to the rectangular region 2a. The thin film electrode 12 is not formed in the region. For this reason, the portion 12c of the thin film electrode 12 disposed immediately above the upper electrode 4 is directly above the force rectangular region 2a connected to the portion 12b disposed immediately above the rectangular region 2b of the lower electrode 2. It is not connected to the part 12a located in the area. The thin film electrode 12 is embedded in the openings 10a, 10c and 10d (see FIG. 6A) of the interlayer insulating film 9. Accordingly, the portion 12a of the thin film electrode 12 is connected to the rectangular region 2a and the hexagonal region 2c (see FIG. 6 (a)) of the lower electrode 2 through the opening 10a, and the portion 12b of the thin film electrode 12 is It is connected to the upper electrode 4 through the portion 12c and the opening 10c. The thin film electrode 12 is not embedded in the opening 10b of the interlayer insulating film 9.
[0057] 更にまた、図 7 (c)に示すように、薄膜電極 12の部分 12aの直上域及び部分 12bの 直上域に、夫々厚膜電極 11及び 13が形成されている。これにより、厚膜電極 11は 薄膜電極 12の部分 12a、開口部 10aを介して下部電極 2の矩形領域 2a及び六角形 領域 2c (図 6 (a)参照)に接続されており、厚膜電極 13は薄膜電極 12の部分 12b、 部分 12c、開口部 10cを介して上部電極 4に接続されている。  Furthermore, as shown in FIG. 7 (c), thick film electrodes 11 and 13 are formed in a region immediately above the portion 12a and a region directly above the portion 12b of the thin film electrode 12, respectively. As a result, the thick film electrode 11 is connected to the rectangular region 2a and the hexagonal region 2c (see FIG. 6 (a)) of the lower electrode 2 via the portion 12a of the thin film electrode 12 and the opening 10a. 13 is connected to the upper electrode 4 through the portion 12b, the portion 12c, and the opening 10c of the thin film electrode 12.
[0058] 更にまた、図 8 (a)及び (b)に示すように、積層体 8、層間絶縁膜 9、薄膜電極 12並 びに厚膜電極 11及び 13を覆うように、絶縁層 5が形成されている。絶縁層 5は層間 絶縁膜 9の開口部 10b内に埋設され、基板 1に接触し、基板 1に接着している。また、 絶縁層 5は層間絶縁膜 9の周囲においても、基板 1に接着している。そして、絶縁層 5 における厚膜電極 11及び 13の直上域に相当する部分には、夫々開口部 7a及び 7b が形成されている。このため、開口部 7aにおいて厚膜電極 11が露出し、開口部 7bに おいて厚膜電極 13が露出している。このようにして、図 8 (a)及び (b)に示すキャパシ タが構成されている。 [0059] 図 8 (a)及び (b)に示すように、本実施形態に係るキャパシタは、前述の第 3の実施 形態と比較して、積層体 8が平面視で正六角形をなす 3つのユニットに分割されてい る点が異なっている。本実施形態における上記以外の構成は、前述の第 3の実施形 態と同様である。 Furthermore, as shown in FIGS. 8 (a) and (b), the insulating layer 5 is formed so as to cover the multilayer body 8, the interlayer insulating film 9, the thin film electrode 12, and the thick film electrodes 11 and 13. Has been. The insulating layer 5 is embedded in the opening 10 b of the interlayer insulating film 9, contacts the substrate 1, and adheres to the substrate 1. The insulating layer 5 is also bonded to the substrate 1 around the interlayer insulating film 9. Openings 7a and 7b are formed in portions of the insulating layer 5 corresponding to the regions immediately above the thick film electrodes 11 and 13, respectively. For this reason, the thick film electrode 11 is exposed in the opening 7a, and the thick film electrode 13 is exposed in the opening 7b. In this way, the capacitors shown in FIGS. 8 (a) and (b) are configured. [0059] As shown in Figs. 8 (a) and (b), the capacitor according to this embodiment includes three capacitors 8 each having a regular hexagonal shape in plan view, as compared with the third embodiment described above. The difference is that it is divided into units. Other configurations in the present embodiment are the same as those in the third embodiment described above.
[0060] 次に、本実施形態に係るキャパシタの製造方法について説明する。図 9 (a)乃至 (c )は本実施形態に係るキャパシタの製造方法をその工程順に示す平面図である。な お、本実施形態の製造方法においては、図 9 (a)乃至 (c)に示す工程の後に、図 6 (c )、図 7 (a)、図 7 (c)、 08 (a)に示す工程が続いている。  Next, a method for manufacturing the capacitor according to the present embodiment will be described. FIGS. 9A to 9C are plan views showing the method of manufacturing a capacitor according to this embodiment in the order of the steps. In the manufacturing method of this embodiment, after the steps shown in FIGS. 9 (a) to 9 (c), FIGS. 6 (c), 7 (a), 7 (c), and 08 (a) are performed. The process shown continues.
[0061] 先ず、図 9 (a)に示すように、榭脂からなる基板 1 (図 8 (b)参照)上の全面に下部電 極層 2d (図 9 (c)参照)、誘電体層 3a (図 9 (b)参照)及び上部電極層 4aをこの順に 成膜する。次に、図 9 (b)に示すように、上部電極層 4aをパターユングして、上部電 極 4を形成する。上部電極 4は、平面視で正六角形である 3ケ所の六角形領域に分 割されている。また、このとき、上部電極 4以外の領域には、誘電体層 3aが露出して いる。次に、図 9 (c)に示すように、誘電体層 3aをパターユングして、上部電極 4の直 下城に誘電体膜 3を形成する。誘電体膜 3は、平面視で正六角形である 3ケ所の六 角形領域に分割されている。また、このとき、誘電体膜 3以外の領域には、上部電極 層 2dが露出している。  First, as shown in FIG. 9 (a), a lower electrode layer 2d (see FIG. 9 (c)) and a dielectric layer are formed on the entire surface of the substrate 1 made of resin (see FIG. 8 (b)). 3a (see FIG. 9B) and the upper electrode layer 4a are formed in this order. Next, as shown in FIG. 9B, the upper electrode layer 4a is patterned to form the upper electrode 4. The upper electrode 4 is divided into three hexagonal regions that are regular hexagons in plan view. At this time, the dielectric layer 3a is exposed in a region other than the upper electrode 4. Next, as shown in FIG. 9 (c), the dielectric layer 3 a is patterned to form the dielectric film 3 directly below the upper electrode 4. The dielectric film 3 is divided into three hexagonal regions that are regular hexagons in plan view. At this time, the upper electrode layer 2d is exposed in a region other than the dielectric film 3.
[0062] 次に、図 6 (c)に示すように、下部電極層 2d (図 9 (c)参照)をパターユングして、下 部電極 2を形成する。上述の如ぐ下部電極 2は、 2ケ所の矩形領域 2a及び 2bと、こ の矩形領域 2aと矩形領域 2bとの間に配置された 3ケ所の六角形領域 2cとを備え、更 にブリッジ部 14を備えている。なお、下部電極 2、誘電体膜 3及び上部電極 4により積 層体 8が形成される。  Next, as shown in FIG. 6 (c), the lower electrode layer 2d (see FIG. 9 (c)) is patterned to form the lower electrode 2. The lower electrode 2 as described above includes two rectangular regions 2a and 2b, three hexagonal regions 2c arranged between the rectangular regions 2a and 2b, and a bridge portion. It has 14. A laminated body 8 is formed by the lower electrode 2, the dielectric film 3 and the upper electrode 4.
[0063] 次に、図 7 (a)に示すように、基板 1上に積層体 8を覆うように層間絶縁膜 9を成膜し 、層間絶縁膜 9に開口部 10a乃至 10dを形成する。このとき、開口部 10aにおいては 下部電極 2の矩形領域 2aが露出し、開口部 10bにおいては基板 1が露出し、開口部 10cにおいては上部電極 4が露出し、開口部 10dにおいては下部電極 2の矩形領域 2bが露出する。  Next, as shown in FIG. 7A, an interlayer insulating film 9 is formed on the substrate 1 so as to cover the stacked body 8, and openings 10 a to 10 d are formed in the interlayer insulating film 9. At this time, the rectangular region 2a of the lower electrode 2 is exposed in the opening 10a, the substrate 1 is exposed in the opening 10b, the upper electrode 4 is exposed in the opening 10c, and the lower electrode 2 is exposed in the opening 10d. The rectangular area 2b is exposed.
[0064] 次に、基板 1上及び層間絶縁膜 9上等の全面に、めっきシード層(図示せず)を形 成する。このめつきシード層は、後の工程でパターユングされて薄膜電極 12となるも のである。このめつきシード層上にレジストを形成してパターユングし、このパターニン グされたレジストをマスクとし、めっきシード層を使用して電気めつきを行い、薄膜電 極 12の部分 12aが形成される予定の領域の直上域及び部分 12bが形成される予定 の領域の直上域に、夫々厚膜電極 11及び 13を形成する。 Next, a plating seed layer (not shown) is formed on the entire surface such as on the substrate 1 and the interlayer insulating film 9. To do. This seed layer is patterned into a thin film electrode 12 in a later step. A resist is formed on the plating seed layer and patterned. Using the patterned resist as a mask, plating is performed using the plating seed layer to form the portion 12a of the thin film electrode 12. Thick film electrodes 11 and 13 are formed in the region immediately above the planned region and the region directly above the region where the portion 12b is to be formed, respectively.
[0065] 次に、図 7 (c)に示すように、めっきシード層をパターユングして薄膜電極 12を形成 する。平面視で、薄膜電極 12の形状は下部電極 2の形状とほぼ同じとするが、下部 電極 2の六角形領域 2cを矩形領域 2aに接続するブリッジ部 14 (図 6 (a)参照)の直 上域には、薄膜電極 12は形成しない。また、薄膜電極 12は層間絶縁膜 9の開口部 1 Oa、 10c及び 10d (図 7 (a)参照)内に埋設される。一方、薄膜電極 12は層間絶縁膜 9の開口部 10b内には埋設されず、開口部 10b内においては基板 1が露出したまま である。これにより、厚膜電極 11は薄膜電極 12の部分 12a、開口部 10aを介して下 部電極 2の矩形領域 2a及び六角形領域 2c (図 6 (a)参照)に接続され、厚膜電極 13 は薄膜電極 12の部分 12b、部分 12c、開口部 10cを介して上部電極 4に接続される Next, as shown in FIG. 7C, the plating seed layer is patterned to form the thin film electrode 12. In plan view, the shape of the thin-film electrode 12 is almost the same as the shape of the lower electrode 2, but the shape of the bridge portion 14 (see FIG. 6 (a)) that connects the hexagonal region 2c of the lower electrode 2 to the rectangular region 2a. The thin film electrode 12 is not formed in the upper region. The thin film electrode 12 is embedded in the openings 1 Oa, 10c and 10d (see FIG. 7A) of the interlayer insulating film 9. On the other hand, the thin-film electrode 12 is not buried in the opening 10b of the interlayer insulating film 9, and the substrate 1 remains exposed in the opening 10b. As a result, the thick film electrode 11 is connected to the rectangular region 2a and the hexagonal region 2c (see FIG. 6 (a)) of the lower electrode 2 through the portion 12a of the thin film electrode 12 and the opening 10a. Is connected to the upper electrode 4 through the portion 12b, the portion 12c, and the opening 10c of the thin film electrode 12.
[0066] 次に、図 8 (a)及び (b)に示すように、基板 1上に、積層体 8、層間絶縁膜 9、薄膜電 極 12並びに厚膜電極 11及び 13を覆うように、絶縁層 5を形成する。このとき、絶縁層 5は層間絶縁膜 9の開口部 10b内に埋設され、基板 1に接着する。また、絶縁層 5は 層間絶縁膜 9の周囲においても、基板 1に接着する。そして、絶縁層 5における厚膜 電極 11及び 13の直上域に相当する部分に、夫々開口部 7a及び 7bを形成する。こ れにより、開口部 7aにおいて厚膜電極 11が露出し、開口部 7bにおいて厚膜電極 13 が露出する。これにより、図 8 (a)及び (b)に示すキャパシタが作製される。 Next, as shown in FIGS. 8 (a) and 8 (b), on the substrate 1, the laminated body 8, the interlayer insulating film 9, the thin film electrode 12, and the thick film electrodes 11 and 13 are covered. Insulating layer 5 is formed. At this time, the insulating layer 5 is embedded in the opening 10b of the interlayer insulating film 9 and adhered to the substrate 1. The insulating layer 5 is also bonded to the substrate 1 around the interlayer insulating film 9. Then, openings 7a and 7b are formed in portions of the insulating layer 5 corresponding to the regions immediately above the thick film electrodes 11 and 13, respectively. As a result, the thick film electrode 11 is exposed in the opening 7a, and the thick film electrode 13 is exposed in the opening 7b. As a result, the capacitor shown in FIGS. 8A and 8B is manufactured.
[0067] 本実施形態においては、層間絶縁膜 9の周囲の他に、開口部 10b内においても絶 縁層 5が基板 1に接着しているため、基板 1と絶縁層 5との間の密着強度が高い。この ため、基板 1と絶縁層 5との間に配置された下部電極 2、誘電体膜 3及び上部電極 4 の相互間、基板 1と下部電極 2との間、上部電極 4と絶縁層 5との間の密着性が優れ ている。また、前述の第 3の実施形態と比較して、積層体 8の各ユニットの形状が六角 形状であるため、あらゆる方向について、基板 1が曲げられたときに、積層体 8に印加 される応力を緩和することができる。このため、あらゆる方向の基板 1の曲げに対する 下部電極 2、誘電体膜 3及び上部電極 4の耐性を高めることができる。本実施形態に おける上記以外の動作及び効果は、前述の第 3の実施形態と同様である。 In this embodiment, since the insulating layer 5 is adhered to the substrate 1 in the opening 10b in addition to the periphery of the interlayer insulating film 9, the adhesion between the substrate 1 and the insulating layer 5 is maintained. High strength. Therefore, the lower electrode 2, the dielectric film 3 and the upper electrode 4 arranged between the substrate 1 and the insulating layer 5, the substrate 1 and the lower electrode 2, the upper electrode 4 and the insulating layer 5 Excellent adhesion between the two. In addition, since the shape of each unit of the laminated body 8 is a hexagonal shape compared to the third embodiment described above, it is applied to the laminated body 8 when the substrate 1 is bent in all directions. Stress can be relieved. For this reason, the resistance of the lower electrode 2, the dielectric film 3, and the upper electrode 4 with respect to the bending of the substrate 1 in all directions can be enhanced. Operations and effects other than those described above in the present embodiment are the same as those in the third embodiment described above.
[0068] なお、本実施形態にぉ 、ては、積層体 8の各ユニットの形状が正六角形である例を 示したが、本発明はこれに限定されず、各部分の形状は正六角形以外の正多角形、 又は正多角形以外の多角形であってもよ 、。  [0068] Although the example in which the shape of each unit of the laminated body 8 is a regular hexagon is shown in this embodiment, the present invention is not limited to this, and the shape of each part is other than a regular hexagon. It may be a regular polygon or a polygon other than a regular polygon.
[0069] 次に、第 4の実施形態の変形例について説明する。図 10 (a)は本変形例に係るキ ャパシタを示す平面図であり、図 10 (b)は(a)に示す G - G '線による断面図である。 なお、図 10 (a)及び (b)において、図 3 (a)及び (b)に示す構成要素と同じ構成要素 には同じ符号を付し、その詳細な説明を省略する。  Next, a modification of the fourth embodiment will be described. FIG. 10 (a) is a plan view showing a capacitor according to this modification, and FIG. 10 (b) is a sectional view taken along line GG ′ shown in FIG. 10 (a). In FIGS. 10 (a) and (b), the same components as those shown in FIGS. 3 (a) and (b) are denoted by the same reference numerals, and detailed description thereof is omitted.
[0070] 図 10 (a)及び (b)に示すように、本変形例に係るキャパシタは、前述の第 4の実施 形態に係るキャパシタと比較して、積層体 8のユニットの数が多ぐ各ユニットがハ- カム状に配列されている点が異なっている。即ち、平面視で、複数の正六角形のュ ニットが、相互に 60° の角度をなして交差する 3方向に沿って最密充填的に配置さ れている。本変形例に係る上記以外の構成は、前述の第 4の実施形態と同様である  [0070] As shown in FIGS. 10 (a) and 10 (b), the capacitor according to the present modification has a larger number of units of the multilayer body 8 than the capacitor according to the above-described fourth embodiment. The difference is that each unit is arranged in the form of a hard cam. That is, in a plan view, a plurality of regular hexagonal units are arranged in a close-packed manner along three directions intersecting each other at an angle of 60 °. Other configurations of the present modification are the same as those of the fourth embodiment described above.
[0071] 次に、本変形例に係るキャパシタの製造方法について説明する。図 11 (a)乃至 (c) 、図 12 (a)乃至 (c)は本変形例に係るキャパシタの製造方法をその工程順に示す平 面図である。先ず、図 11 (a)に示すように、基板 1 (図 10 (b)参照)上の全面に下部 電極層 2d (図 11 (c)参照)、誘電体層 3a (図 11 (b)参照)及び上部電極層 4aをこの 順に成膜する。次に、図 11 (b)に示すように、上部電極層 4aをパターユングして、上 部電極 4を形成する。上部電極 4は、平面視で正六角形でありハニカム状に配列され た 8ケ所の六角形領域及び 2ケ所のこの六角形領域の二等分した形状の領域に分割 されている。また、このとき、上部電極 4以外の領域には、誘電体層 3aが露出してい る。次に、図 11 (c)に示すように、誘電体層 3aをパターユングして、誘電体膜 3を形 成する。誘電体膜 3は上部電極 4の直下域に配置される。また、このとき、誘電体膜 3 以外の領域には、上部電極層 2dが露出している。 Next, a method for manufacturing a capacitor according to this variation will be described. 11 (a) to (c) and FIGS. 12 (a) to (c) are plan views showing a method of manufacturing a capacitor according to this modification in the order of the steps. First, as shown in FIG. 11 (a), a lower electrode layer 2d (see FIG. 11 (c)) and a dielectric layer 3a (see FIG. 11 (b)) are formed on the entire surface of the substrate 1 (see FIG. 10 (b)). ) And the upper electrode layer 4a are formed in this order. Next, as shown in FIG. 11B, the upper electrode layer 4a is patterned to form the upper electrode 4. The upper electrode 4 has a regular hexagonal shape in plan view and is divided into eight hexagonal regions arranged in a honeycomb shape and two regions that are bisected into two hexagonal regions. At this time, the dielectric layer 3a is exposed in a region other than the upper electrode 4. Next, as shown in FIG. 11 (c), the dielectric layer 3a is patterned to form the dielectric film 3. The dielectric film 3 is disposed immediately below the upper electrode 4. At this time, the upper electrode layer 2d is exposed in a region other than the dielectric film 3.
[0072] 次に、図 12 (a)に示すように、下部電極層 2d (図 11 (c)参照)をパターユングして、 下部電極 2を形成する。下部電極 2には、誘電体膜 3及び上部電極 4が形成された 領域を挟むように配置された 2ケ所の矩形領域 2a及び 2bと、誘電体膜 3の直下域に 配置された 8ケ所の六角形領域 2cとを設け、更にブリッジ部 14を設ける。なお、下部 電極 2、誘電体膜 3及び上部電極 4により積層体 8が形成される。 [0072] Next, as shown in FIG. 12 (a), the lower electrode layer 2d (see FIG. 11 (c)) is patterned, Lower electrode 2 is formed. The lower electrode 2 has two rectangular regions 2a and 2b disposed so as to sandwich the region where the dielectric film 3 and the upper electrode 4 are sandwiched, and eight regions disposed immediately below the dielectric film 3. A hexagonal region 2c is provided, and a bridge portion 14 is further provided. A laminated body 8 is formed by the lower electrode 2, the dielectric film 3 and the upper electrode 4.
[0073] 次に、図 12 (b)に示すように、基板 1上に積層体 8を覆うように層間絶縁膜 9を成膜 し、層間絶縁膜 9に開口部 10a乃至 10dを形成する。このとき、開口部 10aにおいて は下部電極 2の矩形領域 2aが露出し、開口部 10bにおいては基板 1が露出し、開口 部 10cにおいては上部電極 4が露出し、開口部 10dにおいては下部電極 2の矩形領 域 2bが露出する。 Next, as shown in FIG. 12B, an interlayer insulating film 9 is formed on the substrate 1 so as to cover the stacked body 8, and openings 10 a to 10 d are formed in the interlayer insulating film 9. At this time, the rectangular region 2a of the lower electrode 2 is exposed in the opening 10a, the substrate 1 is exposed in the opening 10b, the upper electrode 4 is exposed in the opening 10c, and the lower electrode 2 is exposed in the opening 10d. The rectangular area 2b of is exposed.
[0074] 次に、基板 1上及び層間絶縁膜 9上等の全面に、めっきシード層(図示せず)を形 成する。このめつきシード層は、後の工程でパターユングされて薄膜電極 12となるも のである。このめつきシード層上にレジストを形成してパターユングし、このパターニン グされたレジストをマスクとし、めっきシード層を使用して電気めつきを行い、薄膜電 極 12の部分 12aが形成される予定の領域の直上域及び部分 12bが形成される予定 の領域の直上域に、夫々厚膜電極 11及び 13を形成する。  Next, a plating seed layer (not shown) is formed on the entire surface such as on the substrate 1 and the interlayer insulating film 9. This seed layer is patterned into a thin film electrode 12 in a later step. A resist is formed on the plating seed layer and patterned. Using the patterned resist as a mask, plating is performed using the plating seed layer to form the portion 12a of the thin film electrode 12. Thick film electrodes 11 and 13 are formed in the region immediately above the planned region and the region directly above the region where the portion 12b is to be formed, respectively.
[0075] 次に、図 12 (c)に示すように、めっきシード層をパターユングして薄膜電極 12を形 成する。平面視で、薄膜電極 12の形状は下部電極 2の形状とほぼ同じとするが、下 部電極 2の六角形領域 2cと矩形領域 2aとの間の領域の直上域には、薄膜電極 12を 形成しない。また、薄膜電極 12は層間絶縁膜 9の開口部 10a、 10c及び 10d (図 12 ( b)参照)内に埋設される。一方、薄膜電極 12は層間絶縁膜 9の開口部 10b内には埋 設されず、開口部 10b内においては基板 1が露出したままである。  Next, as shown in FIG. 12 (c), the plating seed layer is patterned to form the thin film electrode 12. In plan view, the shape of the thin-film electrode 12 is almost the same as the shape of the lower electrode 2, but the thin-film electrode 12 is placed in the region immediately above the hexagonal region 2c and the rectangular region 2a of the lower electrode 2. Do not form. The thin film electrode 12 is embedded in the openings 10a, 10c and 10d (see FIG. 12B) of the interlayer insulating film 9. On the other hand, the thin-film electrode 12 is not embedded in the opening 10b of the interlayer insulating film 9, and the substrate 1 remains exposed in the opening 10b.
[0076] 次に、図 10 (a)及び (b)に示すように、積層体 8、層間絶縁膜 9、薄膜電極 12並び に厚膜電極 11及び 13を覆うように、絶縁層 5を形成する。このとき、絶縁層 5は層間 絶縁膜 9の開口部 10b内に埋設され、基板 1に接着する。また、絶縁層 5は層間絶縁 膜 9の周囲においても、基板 1に接着する。そして、絶縁層 5における厚膜電極 11及 び 13の直上域に相当する部分に、夫々開口部 7a及び 7bを形成する。これにより、 開口部 7aにお 、て厚膜電極 11が露出し、開口部 7bにお 、て厚膜電極 13が露出す る。これにより、図 10 (a)及び (b)に示すキャパシタが作製される。 [0077] 本変形例においては、前述の第 4の実施形態と比較して、積層体 8のユニットの数 を多くしてハ-カム状に配列させているため、応力に対する耐性がより優れている。ま た、積層体 8のユニットを最密充填で配置することができるため、単位面積当たりの積 層体 8の面積を大きくすることができ、容量密度を向上させることができる。本変形例 における上記以外の動作及び効果は、前述の第 4の実施形態と同様である。 Next, as shown in FIGS. 10 (a) and (b), the insulating layer 5 is formed so as to cover the multilayer body 8, the interlayer insulating film 9, the thin film electrode 12 and the thick film electrodes 11 and 13. To do. At this time, the insulating layer 5 is embedded in the opening 10b of the interlayer insulating film 9 and adhered to the substrate 1. The insulating layer 5 is also bonded to the substrate 1 around the interlayer insulating film 9. Then, openings 7a and 7b are formed in portions of the insulating layer 5 corresponding to the regions immediately above the thick film electrodes 11 and 13, respectively. As a result, the thick film electrode 11 is exposed at the opening 7a, and the thick film electrode 13 is exposed at the opening 7b. As a result, the capacitor shown in FIGS. 10A and 10B is manufactured. [0077] In this modified example, compared to the above-described fourth embodiment, the number of units of the laminated body 8 is increased and arranged in the form of a hard cam, so that the resistance to stress is more excellent. Yes. Further, since the units of the laminated body 8 can be arranged in the closest packing, the area of the laminated body 8 per unit area can be increased, and the capacity density can be improved. Operations and effects other than those described above in the present modification are the same as those in the fourth embodiment described above.
[0078] 次に、本発明の第 5の実施形態について説明する。図 13は本実施形態に係るプリ ント配線基板を示す断面図である。なお、図 13において、図 3 (a)及び (b)に示す構 成要素と同じ構成要素には同じ符号を付し、その詳細な説明を省略する。図 13に示 すように、本実施形態に係るプリント配線基板においては、コア基板 21が設けられて おり、コア基板 21の表面上及び裏面上には、内層配線 22が設けられている。また、 コア基板 21の表面上の全面には、内層配線 22を覆うように、接着剤又は榭脂からな る接着層 23が設けられている。そして、接着層 23上には、キャパシタ 20が設けられ ている。このキャパシタ 20の構成は、前述の第 2の実施形態に係るキャパシタ 20 (図 3 (a)及び (b)参照)と同様である。なお、図 13においては、キャパシタ 20の薄膜電 極 12は図示を省略されている。キャパシタ 20の基板 1は、接着層 23により、コア基板 21に接着されている。  [0078] Next, a fifth embodiment of the present invention will be described. FIG. 13 is a cross-sectional view showing a printed wiring board according to this embodiment. In FIG. 13, the same components as those shown in FIGS. 3 (a) and 3 (b) are denoted by the same reference numerals, and detailed description thereof is omitted. As shown in FIG. 13, in the printed wiring board according to the present embodiment, a core substrate 21 is provided, and inner layer wirings 22 are provided on the front surface and the back surface of the core substrate 21. An adhesive layer 23 made of an adhesive or a resin is provided on the entire surface of the core substrate 21 so as to cover the inner layer wiring 22. A capacitor 20 is provided on the adhesive layer 23. The configuration of the capacitor 20 is the same as that of the capacitor 20 (see FIGS. 3A and 3B) according to the second embodiment described above. In FIG. 13, the thin film electrode 12 of the capacitor 20 is not shown. The substrate 1 of the capacitor 20 is bonded to the core substrate 21 by the adhesive layer 23.
[0079] コア基板 21の表面及び裏面上には、夫々絶縁膜としてのプリプレダ 24が積層され ている。プリプレダ 24はクロスを含まない銅張り積層板であってもよい。プリプレダ 24 の表面上には表面配線 25が設けられている。コア基板 21の表面上に設けられたプ リプレダ 24におけるキャパシタ 20の厚膜電極 11及び 13の直上域には夫々ビア 26a 及び 26bが形成されている。ビア 26a及び 26bは例えばレーザビアである。また、ビア 26a及び 26bの内面には Cuめっき層 27が設けられており、ビア 26a及び 26bの内部 は空洞である。 Cuめっき層 27は厚膜電極 11又は 13に接続されており、且つ表面配 線 25に接続されている。これにより、厚膜電極 11はビア 26a内の Cuめっき層 27を介 して表面配線 25の一部分に接続されており、厚膜電極 13はビア 26b内の Cuめっき 層 27を介して表面配線 25の他の部分に接続されている。表面配線 25の一部分と他 の部分とは相互に絶縁されて 、る。  [0079] On the front surface and the back surface of the core substrate 21, a pre-preda 24 as an insulating film is laminated. The pre-preda 24 may be a copper-clad laminate that does not include cloth. A surface wiring 25 is provided on the surface of the pre-preda 24. Vias 26a and 26b are formed in regions immediately above the thick film electrodes 11 and 13 of the capacitor 20 in the pre-preader 24 provided on the surface of the core substrate 21, respectively. The vias 26a and 26b are, for example, laser vias. Further, a Cu plating layer 27 is provided on the inner surfaces of the vias 26a and 26b, and the insides of the vias 26a and 26b are hollow. The Cu plating layer 27 is connected to the thick film electrode 11 or 13 and is connected to the surface wiring 25. Thereby, the thick film electrode 11 is connected to a part of the surface wiring 25 via the Cu plating layer 27 in the via 26a, and the thick film electrode 13 is connected to the surface wiring 25 via the Cu plating layer 27 in the via 26b. Connected to other parts. One part of the surface wiring 25 and the other part are insulated from each other.
[0080] また、コア基板 21及びプリプレダ 24力もなる積層体におけるキャパシタ 20が配置さ れていない領域の一部には、この積層体を貫通するように貫通スルーホール 28が形 成されている。貫通スルーホール 28の内面にはめつき電極 29が設けられており、貫 通スルーホール 28の内部は空洞である。そして、めっき電極 29は表面配線 25及び 内層配線 22に接続されている。これにより、表層配線 25はめつき電極 29を介して内 層配線 22に接続されている。 [0080] Further, the capacitor 20 in the multilayer body having the core substrate 21 and the pre-predator 24 force is disposed. A through-through hole 28 is formed in a part of the unexposed region so as to penetrate the laminate. A fitting electrode 29 is provided on the inner surface of the through hole 28, and the inside of the through hole 28 is a cavity. The plating electrode 29 is connected to the surface wiring 25 and the inner layer wiring 22. Thus, the surface layer wiring 25 is connected to the inner layer wiring 22 through the fitting electrode 29.
[0081] なお、キャパシタ 20の厚さは 20乃至 100 μ m、好ましくは 30乃至 70 μ mであり、プ リプレダ 24の厚さは 50乃至 200 μ m、好ましくは 60乃至 120 μ mである。プリプレダ 24の厚さがキャパシタ 20の厚さ以上であれば、技術的には本実施形態に係るプリン ト配線基板が実現可能である。しかしながら、本実施形態におけるキャパシタの特徴 の一つは、 SMD (Surface Mount Device:表面実装部品)と比較して薄いことにある。 従って、この特徴を出すためには、キャパシタ 20及びプリプレダ 24の厚さを上述の範 囲とすることが望ましい。  Note that the thickness of the capacitor 20 is 20 to 100 μm, preferably 30 to 70 μm, and the thickness of the pre-preda 24 is 50 to 200 μm, preferably 60 to 120 μm. If the thickness of the pre-preda 24 is equal to or greater than the thickness of the capacitor 20, the printed wiring board according to the present embodiment can be technically realized. However, one of the features of the capacitor in this embodiment is that it is thinner than an SMD (Surface Mount Device). Therefore, in order to obtain this feature, it is desirable that the thicknesses of the capacitor 20 and the pre-preder 24 are within the above-mentioned range.
[0082] 本実施形態によれば、基板 1、下部電極 2、誘電体膜 3及び上部電極 4の相互間の 密着性が良好なキャパシタ 20を内蔵したプリント配線基板を得ることができる。これに より、キャパシタ 20を配線基板に内蔵させる工程を経ても、キャパシタ 20における基 板 1、下部電極 2、誘電体膜 3及び上部電極 4の相互間において界面剥離が発生す ることがない。このため、キャパシタの界面剥離に起因する不良の発生を防止するこ とがでさる。  According to the present embodiment, it is possible to obtain a printed wiring board having a built-in capacitor 20 having good adhesion between the substrate 1, the lower electrode 2, the dielectric film 3, and the upper electrode 4. As a result, even if the process of incorporating the capacitor 20 in the wiring board is performed, the interface peeling between the substrate 1, the lower electrode 2, the dielectric film 3 and the upper electrode 4 in the capacitor 20 does not occur. For this reason, it is possible to prevent the occurrence of defects due to the interface peeling of the capacitor.
[0083] なお、本実施形態においては、ビア 26a及び 26b並びに貫通スルーホール 28の内 部が空洞である例を示したが、榭脂又は導電性材料を埋設してもよ ヽ。  In the present embodiment, an example in which the vias 26a and 26b and the through through hole 28 are hollow is shown, but a resin or a conductive material may be embedded.
[0084] 次に、本発明の第 6の実施形態について説明する。図 14は本実施形態に係るプリ ント配線基板を示す断面図である。なお、図 14において、図 13に示す構成要素と同 じ構成要素には同じ符号を付し、その詳細な説明を省略する。図 14に示すように、 本実施形態に係るプリント配線基板においては、前述の第 5の実施形態に係るプリン ト配線基板(図 13参照)とは異なり、接着層 23が設けられておらず、また、ビア 26a及 び 26b並びに貫通スルーホール 28 (図 13参照)が形成されて!ヽな ヽ。  [0084] Next, a sixth embodiment of the present invention will be described. FIG. 14 is a cross-sectional view showing a printed wiring board according to this embodiment. In FIG. 14, the same components as those shown in FIG. 13 are denoted by the same reference numerals, and detailed description thereof is omitted. As shown in FIG. 14, in the printed wiring board according to the present embodiment, unlike the printed wiring board according to the fifth embodiment described above (see FIG. 13), the adhesive layer 23 is not provided. Also, vias 26a and 26b and through-through holes 28 (see Fig. 13) are formed!
[0085] そして、本実施形態に係るプリント配線基板においては、プリプレダ 24におけるキヤ パシタ 20の直上域を除く部分の一部に、コア基板 21まで到達するスルーホール 31 が形成されており、このスルーホール 31の内面に、内層配線 22を表面配線 25に接 続するめつき電極 32が設けられている。また、コア基板 21の表面上におけるキャパ シタ 20が配置されていない領域には、内層パッド 33が設けられており、プリプレダ 24 における内層パッド 33の直上域には、スルーホール 34が形成されている。スルーホ ール 34は例えばレーザにより形成されたものである。内層パッド 33はスルーホール 3 4の底面にお!、て露出して!/、る。 Then, in the printed wiring board according to the present embodiment, the through hole 31 reaching the core substrate 21 in a part of the pre-preda 24 except for the region directly above the capacitor 20. In this through hole 31, an electrode 32 for connecting the inner layer wiring 22 to the surface wiring 25 is provided. In addition, an inner layer pad 33 is provided in a region where the capacitor 20 is not disposed on the surface of the core substrate 21, and a through hole 34 is formed immediately above the inner layer pad 33 in the pre-preda 24. . The through hole 34 is formed by a laser, for example. The inner layer pad 33 is exposed on the bottom of the through hole 3 4!
[0086] そして、スルーホール 34の内面にはめつき電極 35が設けられており、内層パッド 3 3はめつき電極 35を介して表面配線 25に接続されている。一方、内層パッド 33をキ ャパシタ 20の厚膜電極 11に接続するように、銀ペースト等の導電性ペーストからなる ペースト層 36が設けられている。これにより、キャパシタ 20の厚膜電極 11は、ペース ト層 36、内層パッド 33、めっき電極 35を介して表面配線 25の一部分に接続されてい る。 [0086] A fitting electrode 35 is provided on the inner surface of the through hole 34, and is connected to the surface wiring 25 via the fitting electrode 35 of the inner layer pad 33. On the other hand, a paste layer 36 made of a conductive paste such as a silver paste is provided so as to connect the inner layer pad 33 to the thick film electrode 11 of the capacitor 20. Thus, the thick film electrode 11 of the capacitor 20 is connected to a part of the surface wiring 25 via the paste layer 36, the inner layer pad 33, and the plating electrode 35.
[0087] 更に、キャパシタ 20の厚膜電極 13を内層配線 22に接続するように、銀ペースト等 の導電性ペーストからなるペースト層 37が設けられている。これにより、キャパシタ 20 の厚膜電極 13は、ペースト層 37、内層配線 22、めっき電極 32を介して表面配線 25 の他の部分に接続されている。ペースト層 36及び 37は、キャパシタ 20をコア基板 21 に固定する役割も果たしている。本実施形態における上記以外の構成は、前述の第 5の実施形態と同様である。  Furthermore, a paste layer 37 made of a conductive paste such as a silver paste is provided so as to connect the thick film electrode 13 of the capacitor 20 to the inner layer wiring 22. Thus, the thick film electrode 13 of the capacitor 20 is connected to the other part of the surface wiring 25 via the paste layer 37, the inner layer wiring 22, and the plating electrode 32. The paste layers 36 and 37 also serve to fix the capacitor 20 to the core substrate 21. Other configurations in the present embodiment are the same as those in the fifth embodiment described above.
[0088] 本実施形態においては、前述の第 5の実施形態と比較して、プリント配線基板の面 積が大きくなる点は不利である力 スルーホール 31及び 34がキャパシタ 20の直上域 に形成されないため、スルーホール 31及び 34を形成する際にキャパシタ 20に損傷 を与えることがない。本実施形態における上記以外の効果は、前述の第 5の実施形 態と同様である。  In this embodiment, it is disadvantageous in that the area of the printed wiring board is large compared to the fifth embodiment described above. The through holes 31 and 34 are not formed in the region immediately above the capacitor 20. Therefore, the capacitor 20 is not damaged when the through holes 31 and 34 are formed. The effects of the present embodiment other than those described above are the same as those of the fifth embodiment described above.
実施例  Example
[0089] 以下、本発明の実施例の効果について、その特許請求の範囲力も外れる比較例と 比較して具体的に説明する。  [0089] Hereinafter, the effects of the embodiments of the present invention will be specifically described in comparison with a comparative example in which the power of the claims is also excluded.
[0090] (実施例 1) [0090] (Example 1)
本実施例 1は、前述の第 1の実施形態に対応する実施例である。以下、本実施例 1 を、図 1 (a)及び (b)を参照して説明する。先ず、基板 1として市販のポリイミドフィルム (厚さ 50 m)を準備した。そして、このポリイミドフィルムを DCスパッタ装置に装入し 、 DCスパッタ法により室温にて Ti層、 Mo層、 Ti層、 Pt層をこの順に成膜し、積層さ せた。各層の膜厚は、 Ti層: 20nm、 Mo層: 600nm、 Ti層: 20nm、 Pt層: 200nmと した。 Mo層は高弾性導電材料層、 Pt層は耐酸ィ匕性導電材料層、 T環はポリイミドフ イルムと Mo層との間の密着性導電材料層、及び Mo層と Pt層との間の密着性導電 材料層である。これにより、基板 1上に、 Ti層、 Mo層、 Ti層、 Pt層がこの順に積層さ れた 4層膜を形成した。 Example 1 is an example corresponding to the first embodiment described above. Hereinafter, Example 1 Is described with reference to Figs. 1 (a) and (b). First, a commercially available polyimide film (thickness 50 m) was prepared as the substrate 1. Then, this polyimide film was loaded into a DC sputtering apparatus, and a Ti layer, a Mo layer, a Ti layer, and a Pt layer were formed in this order at room temperature by the DC sputtering method and laminated. The thickness of each layer was Ti layer: 20 nm, Mo layer: 600 nm, Ti layer: 20 nm, and Pt layer: 200 nm. Mo layer is a highly elastic conductive material layer, Pt layer is an acid-resistant conductive material layer, T-ring is an adhesive conductive material layer between the polyimide film and the Mo layer, and an adhesion between the Mo layer and the Pt layer It is a conductive material layer. As a result, a four-layer film in which a Ti layer, a Mo layer, a Ti layer, and a Pt layer were laminated in this order was formed on the substrate 1.
[0091] 次に、基板 1を RFスパッタ装置に装入し、 RFスパッタ法により、成膜温度を 400°C として、前記 4層膜上に厚さが 500nmの SrTiO層を成膜した。次に、基板 1を再度  [0091] Next, the substrate 1 was loaded into an RF sputtering apparatus, and an SrTiO layer having a thickness of 500 nm was formed on the four-layer film by RF sputtering at a film formation temperature of 400 ° C. Next, board 1 again
3  Three
DCスパッタ装置に装入し、 DCスパッタ法により室温にて SrTiO層上に厚さが 200η  Inserted into a DC sputtering system, the thickness was 200η on the SrTiO layer at room temperature by DC sputtering.
3  Three
mの Pt層を成膜した。次に、フォトリソグラフィ一法により、 Pt層上にフォトレジスト膜を 形成し、このフォトレジスト膜のパターユングを行い、パターユングされたフォトレジスト 膜をマスクとしてイオンビームエッチング法又は化学エッチング法により Pt層をエッチ ングして選択的に除去し、所望のパターンを形成した。その後、有機溶剤及び酸素 プラズマ処理によりフォトレジスト膜を除去した。これにより、上部電極 4を形成した。  m Pt layer was deposited. Next, a photoresist film is formed on the Pt layer by a photolithography method, the photoresist film is patterned, and the patterned photoresist film is used as a mask to perform Pt by ion beam etching or chemical etching. The layer was selectively removed by etching to form the desired pattern. Thereafter, the photoresist film was removed by an organic solvent and oxygen plasma treatment. Thereby, the upper electrode 4 was formed.
[0092] 次に、上部電極 4の加工法と同様に、フォトリソグラフィ一法により所望の形状にパタ 一ユングされたフォトレジスト膜を形成し、これをマスクとして化学エッチング法により S rTiO層をエッチングすることにより所望の形状にパターユングし、その後有機溶剤[0092] Next, similarly to the processing method of the upper electrode 4, a photoresist film patterned into a desired shape is formed by a photolithography method, and the SrTiO layer is etched by a chemical etching method using this as a mask. Put it in the desired shape and then organic solvent
3 Three
及び酸素プラズマ処理によりフォトレジスト膜を除去した。これにより、誘電体膜 3を形 成した。さらに同様にして、 4層膜上にフォトレジスト膜のパターンを形成し、イオンビ ームエッチング及びィ匕学エッチング法により 4層膜をパター-ングした。これにより、 下部電極 2を形成した。このとき、 4層膜における誘電体膜 3及び上部電極 4の直下 域から外れた領域に、ホール 6を形成した。そして、有機溶剤及び酸素プラズマ処理 によりフォトレジスト膜を除去した。  Then, the photoresist film was removed by oxygen plasma treatment. Thereby, the dielectric film 3 was formed. Similarly, a pattern of a photoresist film was formed on the four-layer film, and the four-layer film was patterned by ion beam etching and chemical etching. Thereby, the lower electrode 2 was formed. At this time, a hole 6 was formed in a region outside the region immediately below the dielectric film 3 and the upper electrode 4 in the four-layer film. Then, the photoresist film was removed by organic solvent and oxygen plasma treatment.
[0093] 次に、基板 1上に、下部電極 2、誘電体膜 3及び上部電極 4を覆うように、基板 1との 間の密着性が良好な榭脂、例えばエポキシ榭脂を塗布し、露光及び現像してパター ユングした。このとき、開口部 7a及び 7bを形成した。そして、窒素雰囲気中で加熱、 保持することで榭脂層を硬化させ、キャパシタのカバー層として絶縁層 5を形成した。 これにより、図 1 (a)及び (b)に示すキャパシタを作製した。 [0093] Next, on the substrate 1, so as to cover the lower electrode 2, the dielectric film 3 and the upper electrode 4, a resin having good adhesion with the substrate 1, such as an epoxy resin, is applied, Patterned after exposure and development. At this time, openings 7a and 7b were formed. And heating in a nitrogen atmosphere, The resin layer was cured by holding, and the insulating layer 5 was formed as a capacitor cover layer. Thus, the capacitor shown in FIGS. 1 (a) and (b) was produced.
[0094] このキャパシタにおいては、下部電極 2に貫通ホール 6を形成し、貫通ホール 6を介 して基板 1と絶縁層 5とを直接接着する構造とし、基板 1と絶縁層 5との結合部を、キヤ パシタの外周部の他にホール 6内にも設けているため、キャパシタに複数存在する各 界面での密着性を高めることが可能となった。このため、キャパシタの面積が 1. Om m X l. Omm以上であっても、キャパシタの界面において剥離が生じなかった。なお 、図 1にはホール 6がスリット形状であり且つ 1ケ所であるキャパシタを示しているが、 ホール 6の形状及び個数に限定されることなく同様の効果が得られた。  This capacitor has a structure in which a through hole 6 is formed in the lower electrode 2 and the substrate 1 and the insulating layer 5 are directly bonded via the through hole 6. Is provided in the hole 6 in addition to the outer periphery of the capacitor, so that it is possible to improve the adhesion at each interface existing in the capacitor. For this reason, even if the area of the capacitor was 1. Om m X l. Although FIG. 1 shows a capacitor in which the hole 6 has a slit shape and one location, the same effect is obtained without being limited to the shape and number of the holes 6.
[0095] (比較例 1)  [0095] (Comparative Example 1)
本比較例 1は、前述の比較例に対応するものである。以下、本比較例 1を、図 2 (a) 及び (b)を参照して説明する。本比較例 1においては、下部電極 2をパターユングす るときにホール 6を形成しな力つた。本比較例 1に係るキャパシタの製造方法のうち、 上記以外の方法は前述の実施例 1と同様とした。本比較例 1においては、図 1に示す ホール 6は形成していないため、結合部がキャパシタの外周部のみとなり、キャパシタ の面積が 1. Omm X l. Omm以上となると、テープ試験により剥離が容易に生じた。  This Comparative Example 1 corresponds to the above-described comparative example. Hereinafter, the first comparative example will be described with reference to FIGS. 2 (a) and 2 (b). In this comparative example 1, when the lower electrode 2 was patterned, the hole 6 was not formed and it was strong. Of the capacitor manufacturing method according to Comparative Example 1, the other methods were the same as those in Example 1 described above. In Comparative Example 1, since the hole 6 shown in FIG. 1 is not formed, the coupling portion is only the outer peripheral portion of the capacitor, and when the area of the capacitor exceeds 1. Omm X l. It happened easily.
[0096] (実施例 2)  [Example 2]
本実施例 2は、前述の第 2の実施形態に対応する実施例である。以下、本実施例 2 を、図 3 (a)及び (b)を参照して説明する。先ず、前述の実施例 1と同様な方法により 、基板 1上に下部電極 2、誘電体膜 3及び上部電極 4を形成した。このとき、下部電極 2にはホール 6を形成した。  Example 2 is an example corresponding to the second embodiment described above. Hereinafter, Example 2 will be described with reference to FIGS. 3 (a) and 3 (b). First, the lower electrode 2, the dielectric film 3 and the upper electrode 4 were formed on the substrate 1 by the same method as in Example 1 described above. At this time, a hole 6 was formed in the lower electrode 2.
[0097] 次に、基板 1上に、下部電極 2、誘電体膜 3及び上部電極 4を覆うように、感光性ポ リイミドを塗布し、露光及び現像を行ってパターユングし、層間絶縁膜 9を形成した。 このとき、層間絶縁膜 9には、開口部 10a、 10b、 10cを形成した。次に、基板 1を DC スパッタ装置に装入し、 DCスパッタ法により、室温で Ti層及び Cu層の順に連続して 成膜し、 CuZTi積層膜を全面に形成した。 CuZTi積層膜を構成する各層の膜厚は Ti: 20nm、 Cu: 300nmとした。なお、 Ti層は、 Cu層と下部電極 2、上部電極 4及び 層間絶縁膜 9との間の密着性を良好なものとするための密着層であるので、 Ti層に 限定されることなぐ Cr層又は Zr層でもよい。 Next, a photosensitive polyimide is applied on the substrate 1 so as to cover the lower electrode 2, the dielectric film 3, and the upper electrode 4, exposed and developed, and patterned to form an interlayer insulating film 9. Formed. At this time, openings 10a, 10b, and 10c were formed in the interlayer insulating film 9. Next, the substrate 1 was loaded into a DC sputtering apparatus, and a Ti layer and a Cu layer were successively formed at room temperature by a DC sputtering method to form a CuZTi laminated film on the entire surface. The film thickness of each layer constituting the CuZTi laminated film was Ti: 20 nm, Cu: 300 nm. The Ti layer is an adhesion layer for improving the adhesion between the Cu layer and the lower electrode 2, the upper electrode 4, and the interlayer insulating film 9. A Cr layer or a Zr layer may be used without limitation.
[0098] 次にフォトリソグラフィ一法により、フォトレジスト膜を成膜し、開口部 10a及び 10cの 直上域に開口部を形成した。そして、このフォトレジスト膜をマスクとし、 CuZTi積層 膜を給電層として、電解めつき法により Cuめっき層を 15 /z mの厚さに成膜し、開口部 10a内及び開口部 10c内に夫々厚膜電極 11及び 13を形成した。 Cuめっき後、有機 溶剤及び酸素プラズマ処理により一旦フォトレジスト膜を除去した。  [0098] Next, a photoresist film was formed by a photolithography method, and openings were formed immediately above the openings 10a and 10c. Then, using this photoresist film as a mask, using a CuZTi laminated film as a power feeding layer, a Cu plating layer was formed to a thickness of 15 / zm by the electrolytic plating method, and the thickness was within each of the opening 10a and the opening 10c. Membrane electrodes 11 and 13 were formed. After Cu plating, the photoresist film was once removed by organic solvent and oxygen plasma treatment.
[0099] 次いで、フォトリソグラフィ一法により、上部電極 4と厚膜電極 13とを電気的に接続 する位置にフォトレジスト膜を成膜し、このフォトレジスト膜をマスクとして化学エツチン グ方法によりエッチングを行い、不要な部分の CuZTi積層膜を選択的に除去し、 C uZTi積層膜から構成される薄膜電極 12を形成した。  Next, a photoresist film is formed at a position where the upper electrode 4 and the thick film electrode 13 are electrically connected by a photolithography method, and etching is performed by a chemical etching method using the photoresist film as a mask. Then, unnecessary portions of the CuZTi multilayer film were selectively removed, and a thin film electrode 12 composed of a CuZTi multilayer film was formed.
[0100] 次に、全面に基板 1との間の密着性が高いエポキシ榭脂を塗布し、露光及び現像 によりパターユングして絶縁層 5を形成した。このとき、絶縁層 5には、厚膜電極 11及 び 13が絶縁層 5から露出して外部と接続できるように、開口部 7a及び 7bを形成した 。これにより、図 2 (a)及び (b)に示すキャパシタ 20を作製した。  [0100] Next, an epoxy resin having high adhesion to the substrate 1 was applied to the entire surface, and patterned by exposure and development to form the insulating layer 5. At this time, openings 7a and 7b were formed in the insulating layer 5 so that the thick film electrodes 11 and 13 were exposed from the insulating layer 5 and could be connected to the outside. As a result, the capacitor 20 shown in FIGS. 2 (a) and (b) was produced.
[0101] 本実施例 2は、前述の実施例 1と比較して、 Cuめっきによる厚膜電極 11及び 13を 電解めつき法により形成しているため、 Cuめっき形成時の応力がキャパシタにかかる 力 ホール 6を介して基板 1と絶縁層 5とを密着させることにより、キャパシタ内に複数 存在する界面における剥離を防止することができ、不良の発生を防止することができ た。  [0101] In this Example 2, compared to Example 1 described above, the thick film electrodes 11 and 13 by Cu plating are formed by the electrolytic plating method, so that the stress applied to the Cu plating is applied to the capacitor. By bringing the substrate 1 and the insulating layer 5 into close contact with each other through the force hole 6, it was possible to prevent peeling at the interface existing in the capacitor, and to prevent the occurrence of defects.
[0102] (実施例 3)  [0102] (Example 3)
本実施例 3は、前述の第 3の実施形態に対応する実施例である。以下、本実施例 3 を、図 4 (a)及び (b)乃至図 5を参照して説明する。先ず、前述の実施例 1と同様な方 法により、基板 1上に 4層膜、 SrTiO層、 Pt層をこの順に成膜した。次に、前述の実  Example 3 is an example corresponding to the above-described third embodiment. Hereinafter, Example 3 will be described with reference to FIGS. 4 (a) and 4 (b) to FIG. First, a four-layer film, an SrTiO layer, and a Pt layer were formed in this order on the substrate 1 by the same method as in Example 1 described above. Next, the actual
3  Three
施例 1と同様なフォトリソグラフィ一法により、 Pt層をパターユングした。この段階では 、上部電極 4には 4つの部分が存在し、各部分は電気的に相互に接続されていない 。次に、前述の実施例 1と同様な方法により、 SrTiO層をエッチングすることで所望  The Pt layer was patterned by the same photolithography method as in Example 1. At this stage, the upper electrode 4 has four parts, and each part is not electrically connected to each other. Next, the SrTiO layer is etched by the same method as in Example 1 described above.
3  Three
のパターンを形成し、誘電体膜 3を形成した。このとき、上部電極 4と同様に、誘電体 膜 3にも 4つの部分が存在する。さらに同様にして、 4層膜をパターユングし、十字形 のホール 6が形成された下部電極 2を形成した。また、同時に 4層膜からブリッジ部 14 を形成した。このとき、下部電極 2は 4つの部分に分割されているが、各部分間はプリ ッジ部 14により相互に接続されている。 Thus, the dielectric film 3 was formed. At this time, like the upper electrode 4, the dielectric film 3 also has four portions. In the same way, pattern the four-layer film and create a cross shape. The lower electrode 2 in which the hole 6 was formed was formed. At the same time, the bridge portion 14 was formed from the four-layer film. At this time, the lower electrode 2 is divided into four parts, but each part is connected to each other by the pledge part 14.
[0103] 次に、前述の実施例 2と同様な方法により、開口部 10a乃至 10cが形成された層間 絶縁膜 9を成膜し、厚膜電極 11及び 13を形成した。次いで、フォトリソグラフィ一法に より、上部電極 4と薄膜電極 12との間の領域を覆うレジストパターンを形成し、このレ ジストパターンをマスクとして化学エッチングを行 、、不要な部分の CuZTi積層膜を 選択的に除去した。これにより、 CuZTi積層膜から構成される薄膜電極 12を形成し た。この工程において、 4つに分割され且つ相互に電気的に接続されていな力つた 上部電極 4の各部分は、ブリッジ部 15を介して相互に接続される。このキャパシタに おけるブリッジ部 15が配置されている領域においては、下方から上方に向かって基 板 1、下部電極 2、層間絶縁膜 9及びブリッジ部 15がこの順に積層される。また、プリ ッジ部 14の周囲は基板 1及び層間絶縁膜 9により覆われる。次に、前述の実施例 2と 同様な方法により、開口部 7a及び 7bが形成された絶縁層 5を成膜した。  Next, an interlayer insulating film 9 having openings 10a to 10c formed thereon was formed by the same method as in Example 2 described above, and thick film electrodes 11 and 13 were formed. Next, a resist pattern that covers the region between the upper electrode 4 and the thin film electrode 12 is formed by a photolithography method, and chemical etching is performed using this resist pattern as a mask, and an unnecessary portion of the CuZTi laminated film is formed. Selectively removed. As a result, a thin film electrode 12 composed of a CuZTi laminated film was formed. In this step, the parts of the upper electrode 4 which are divided into four parts and are not electrically connected to each other are connected to each other via the bridge part 15. In the region of the capacitor where the bridge portion 15 is disposed, the substrate 1, the lower electrode 2, the interlayer insulating film 9, and the bridge portion 15 are laminated in this order from the bottom to the top. Further, the periphery of the pledge portion 14 is covered with the substrate 1 and the interlayer insulating film 9. Next, the insulating layer 5 in which the openings 7a and 7b were formed was formed by the same method as in Example 2 described above.
[0104] 本実施例 3は、前述の実施例 2と比較して、十字形のホール 6が下部電極 2のみな らず誘電体膜 3、上部電極 4及び層間絶縁膜 9を貫通しているため、ホール 6の面積 の分だけ静電容量は減少したが、基板 下部電極 2、誘電体膜 3及び上部電極 4の 相互間の密着性をより一層高めることができた。また、開口部 7a及び 7bが配列され た方向及びこれに直交する方向における基板 1の曲げに対する積層体 8の強度を、 より高めることができた。  In this third embodiment, compared to the second embodiment, the cross-shaped hole 6 penetrates not only the lower electrode 2 but also the dielectric film 3, the upper electrode 4 and the interlayer insulating film 9. Therefore, although the capacitance decreased by the area of the hole 6, the adhesion between the substrate lower electrode 2, the dielectric film 3 and the upper electrode 4 could be further enhanced. Further, the strength of the laminate 8 with respect to the bending of the substrate 1 in the direction in which the openings 7a and 7b are arranged and in the direction perpendicular thereto can be further increased.
[0105] (実施例 4)  [0105] (Example 4)
本実施例 4は、前述の第 4の実施形態に対応する実施例である。本実施例 4にお いては、前述の第 4の実施形態において示した方法により、キャパシタを形成した。 即ち、積層体 8の各ユニットの形状が、平面視で六角形となるようにした。本実施例 4 における上記以外のキャパシタの製造方法は、前述の実施例 3と同様とした。  Example 4 is an example corresponding to the above-described fourth embodiment. In Example 4, a capacitor was formed by the method shown in the fourth embodiment. That is, the shape of each unit of the laminated body 8 was a hexagon in plan view. The capacitor manufacturing method other than the above in Example 4 was the same as that in Example 3 described above.
[0106] 本実施例 4においては、前述の実施例 3と比較して、平面視で、積層体 8の各ュ- ットの形状を正六角形としたため、基板 1のあらゆる方向の曲げに対して、キャパシタ の強度を高めることができ、剥離による開放不良を防止することができた。 [0107] (実施例 5) [0106] In the fourth embodiment, the shape of each unit of the laminated body 8 is a regular hexagonal shape in plan view as compared with the above-described third embodiment, so that the substrate 1 can be bent in all directions. As a result, the strength of the capacitor could be increased and open defects due to peeling could be prevented. [Example 5]
本実施例 5は、前述の第 5の実施形態に対応する実施例である。以下、本実施例 5 を、図 13を参照して説明する。先ず、コア基板 21の表裏面上に内層配線 22を形成 した。そして、コア基板 21の表面上に、内層配線 22を覆うようにして、印刷法により接 着層 23を形成した。次に、この接着層 23上に、厚さが 50 mのキャパシタ 20を搭載 した。これにより、キャパシタ 20の基板 1を、接着層 23を介してコア基板 21上に固定 した。キャパシタ 20の構成は、前述の実施例 2のキャパシタ 20と同じとした。  Example 5 is an example corresponding to the fifth embodiment described above. Hereinafter, Example 5 will be described with reference to FIG. First, the inner layer wiring 22 was formed on the front and back surfaces of the core substrate 21. Then, an adhesive layer 23 was formed on the surface of the core substrate 21 by a printing method so as to cover the inner layer wiring 22. Next, a capacitor 20 having a thickness of 50 m was mounted on the adhesive layer 23. As a result, the substrate 1 of the capacitor 20 was fixed on the core substrate 21 via the adhesive layer 23. The configuration of the capacitor 20 was the same as that of the capacitor 20 of Example 2 described above.
[0108] 次に、キャパシタ 20を覆うように、コア基板 21の表面上及び裏面上にビルド層とし てのプリプレダ 24を積層した。そして、めっき法によりプリプレダ 24の表面上に Cuめ つき層力もなる表面配線 25を形成した。次に、レーザ加工により、プリプレダ 24にお ける厚膜電極 11の直上域にビア 26aを形成し、厚膜電極 13の直上域にビア 26bを 形成した。次に、コア基板 21及びその両面に設けられたプリプレダ 24を貫通する貫 通スルーホール 28をレーザカ卩ェにより形成した。そして、 Cuめっきを行い、ビア 26a 及び 26bの内面に Cuめっき層 27を形成し、貫通スルーホール 28の内面にめっき電 極 29を形成した。これにより、表面配線 25をビア 26a及び 26bを介して夫々厚膜電 極 11及び 13に接続した。また、めっき電極 29により、コア基板 21の表面側に積層さ れたプリプレダ 24に形成された表面配線 25を、コア基板 21の裏面側に積層された プリプレダ 24に形成された表面配線 25に接続した。これにより、キャパシタ 20が内蔵 されたプリント配線基板を製造した。  Next, a pre-preder 24 as a build layer was laminated on the front surface and the back surface of the core substrate 21 so as to cover the capacitor 20. Then, a surface wiring 25 having a Cu plating layer force was formed on the surface of the pre-preda 24 by plating. Next, a via 26 a was formed in the region immediately above the thick film electrode 11 in the pre-preparer 24 and a via 26 b was formed in the region immediately above the thick film electrode 13 by laser processing. Next, through-holes 28 penetrating through the core substrate 21 and the pre-preparers 24 provided on both sides thereof were formed by a laser cage. Then, Cu plating was performed, a Cu plating layer 27 was formed on the inner surfaces of the vias 26a and 26b, and a plating electrode 29 was formed on the inner surface of the through-through hole 28. As a result, the surface wiring 25 was connected to the thick film electrodes 11 and 13 via the vias 26a and 26b, respectively. In addition, the plating electrode 29 connects the surface wiring 25 formed on the pre-preder 24 laminated on the front surface side of the core substrate 21 to the surface wiring 25 formed on the pre-preparation 24 laminated on the back surface side of the core substrate 21. did. As a result, a printed wiring board with a built-in capacitor 20 was manufactured.
[0109] 本実施例 5においては、キャパシタ 20をプリント配線基板に内蔵する工程において 、レーザカ卩工法によりビア 26a及び 26bを形成した後であっても、ビア 26a及び 26b の直下に位置するキャパシタ 20が、界面剥離による開放不良を起こすことを防止で きた。また、キャパシタ 20をプリント配線基板に内蔵する工程の前後において、キヤ パシタ 20の静電容量値の変化率は 1%以下であった。  In the fifth embodiment, in the step of incorporating the capacitor 20 in the printed wiring board, the capacitor 20 positioned immediately below the vias 26a and 26b even after the vias 26a and 26b are formed by the laser coating method. However, it was possible to prevent an open failure due to interfacial peeling. Further, before and after the process of incorporating the capacitor 20 in the printed circuit board, the change rate of the capacitance value of the capacitor 20 was 1% or less.
[0110] また、前述の実施例 2に係るキャパシタ 20の替わりに、前述の実施例 3及び実施例 4に係るキャパシタを内蔵しても、同様の効果が得られた。即ち、実施例 3のキャパシ タを使用した場合は、ホール 6が延びる 2方向におけるプリント配線基板の曲げに対 する耐性が高カゝつた。また、静電容量値の変化率は 1%であり、実施例 2のキャパシ タを使用した場合と同程度であった。一方、実施例 4のキャパシタを使用した場合は 、あらゆる方向の曲げに対して耐性が高ぐまた、キャパシタ 20とプリント配線基板の 曲げ方向に依存することなぐその容量変化率は 1%であった。 [0110] Further, the same effect can be obtained by incorporating the capacitors according to Example 3 and Example 4 instead of the capacitor 20 according to Example 2 described above. That is, when the capacitor of Example 3 was used, the resistance to bending of the printed wiring board in the two directions in which the holes 6 extend was high. The change rate of the capacitance value is 1%, and the capacity of Example 2 is as follows. The same as when using the On the other hand, when the capacitor of Example 4 was used, the resistance to bending in all directions was high, and the capacitance change rate without depending on the bending direction of the capacitor 20 and the printed wiring board was 1%. .
[0111] (実施例 6) [0111] (Example 6)
本実施例 6は、前述の第 6の実施形態に対応する実施例である。以下、本実施例 6 を、図 14を参照して説明する。先ず、コア基板 21の表裏面上に内層配線 22を形成 すると共に、表面上に内層パッド 33を形成した。そして、コア基板 21の表面上に、厚 さが 50 mであるキャパシタ 20を仮固定した。次に、キャパシタ 20の厚膜電極 11と 内層配線 22の一部分とを接続するように、銀ペーストからなるペースト層 36を形成し 、厚膜電極 13と内層配線 22の他の部分とを接続するように、銀ペーストからなるベー スト層 37を形成した。そして、ペースト層 36及び 37を加熱して乾燥させ、キャパシタ 2 0をコア基板 21に固定すると共に、厚膜電極 11及び 13を内層配線 22に電気的に接 cした o  Example 6 is an example corresponding to the above-described sixth embodiment. Hereinafter, Example 6 will be described with reference to FIG. First, the inner layer wiring 22 was formed on the front and back surfaces of the core substrate 21, and the inner layer pad 33 was formed on the front surface. Then, a capacitor 20 having a thickness of 50 m was temporarily fixed on the surface of the core substrate 21. Next, a paste layer 36 made of silver paste is formed so as to connect the thick film electrode 11 of the capacitor 20 and a part of the inner layer wiring 22, and the thick film electrode 13 and the other part of the inner layer wiring 22 are connected. Thus, a base layer 37 made of a silver paste was formed. Then, the paste layers 36 and 37 are heated and dried to fix the capacitor 20 to the core substrate 21 and to electrically connect the thick film electrodes 11 and 13 to the inner layer wiring 22 o
[0112] 次に、キャパシタ 20を覆うように、コア基板 21の表面上にビルド層としてプリプレダ 2 4を積層した。また、コア基板 21の裏面上にもプリプレダ 24を積層した。そして、プリ プレダ 24の表面上に、めっき法により Cuからなる表面配線 25を形成した。次に、レ 一ザ加工により、プリプレダ 24における内層パッド 33の直上域にスルーホール 34を 形成した。また、レーザ加工により、プリプレダ 24を貫通するスルーホール 31を形成 した。そして、 Cuめっきを行い、スルーホール 31及び 34の内面に夫々めっき電極 32 及び 35を形成した。これにより、キャパシタ 20が内蔵されたプリント配線基板を製造 した。  [0112] Next, a pre-pre- der 24 as a build layer was laminated on the surface of the core substrate 21 so as to cover the capacitor 20. A pre-preda 24 was also laminated on the back surface of the core substrate 21. Then, a surface wiring 25 made of Cu was formed on the surface of the pre-preda 24 by a plating method. Next, a through hole 34 was formed in the region immediately above the inner layer pad 33 in the pre-preda 24 by laser processing. In addition, a through hole 31 penetrating the pre-preda 24 was formed by laser processing. Then, Cu plating was performed to form plating electrodes 32 and 35 on the inner surfaces of the through holes 31 and 34, respectively. As a result, a printed wiring board with a built-in capacitor 20 was manufactured.
[0113] 本実施例 6においては、キャパシタ 20をプリント配線基板に内蔵する工程において 、レーザカ卩工法によるスルーホール 34の形成後であっても、キャパシタ 20が界面剥 離により開放不良となることを防止できた。また、キャパシタ 20をプリント配線基板に 内蔵する工程の前後において、キャパシタ 20の静電容量値の変化率は 1%以下で めつに。  [0113] In the sixth embodiment, in the process of incorporating the capacitor 20 in the printed wiring board, even after the through hole 34 is formed by the laser coating method, the capacitor 20 has an open defect due to the separation of the interface. I was able to prevent it. Also, before and after the process of embedding capacitor 20 in the printed circuit board, the change rate of capacitance value of capacitor 20 is less than 1%.
[0114] また、前述の実施例 2に係るキャパシタ 20の替わりに実施例 3のキャパシタを使用 した場合は、ホール 6が延びる 2方向におけるプリント配線基板の曲げに対する耐性 が高力つた。また、静電容量値の変化率は 1%であり、実施例 2のキャパシタを使用し た場合と同程度であった。実施例 2に係るキャパシタ 20の替わりに実施例 4のキャパ シタを使用した場合は、あらゆる方向の曲げに対して耐性が高ぐまた、キャパシタと プリント配線基板の曲げ方向に依存することなく、その容量変化は 1 %であった。 産業上の利用可能性 [0114] Further, when the capacitor of Example 3 is used instead of the capacitor 20 according to Example 2 described above, resistance against bending of the printed wiring board in the two directions in which the holes 6 extend is shown. Was strong. Further, the change rate of the capacitance value was 1%, which was the same as the case of using the capacitor of Example 2. When the capacitor of Example 4 is used instead of the capacitor 20 according to Example 2, the resistance to bending in all directions is high, and it does not depend on the bending direction of the capacitor and the printed wiring board. The capacity change was 1%. Industrial applicability
本発明は、電子機器のプリント配線基板等の配線基板に内蔵されるキャパシタ及 びこのキャパシタを内蔵した配線基板に好適に利用することができる。  The present invention can be suitably used for a capacitor built in a wiring board such as a printed wiring board of an electronic device and a wiring board containing the capacitor.

Claims

請求の範囲 The scope of the claims
[1] 基板と、この基板上に形成された下部電極と、この下部電極上に形成された誘電体 膜と、この誘電体膜上に形成された上部電極と、前記下部電極、前記誘電体膜及び 前記上部電極からなる積層体を覆うように前記基板と密着する材料により形成された 絶縁層と、を有し、前記積層体の一部が除去されて前記絶縁層は前記積層体の除 去部分にお 、て前記基板に接触して 、ることを特徴とするキャパシタ。  [1] a substrate, a lower electrode formed on the substrate, a dielectric film formed on the lower electrode, an upper electrode formed on the dielectric film, the lower electrode, and the dielectric An insulating layer formed of a material that is in close contact with the substrate so as to cover the laminated body including the film and the upper electrode, and the insulating layer is removed from the laminated body by removing a part of the laminated body. A capacitor characterized in that the other portion is in contact with the substrate.
[2] 榭脂からなる基板と、この基板上に形成された下部電極と、この下部電極上の一部 に形成された誘電体膜と、この誘電体膜上に形成された上部電極と、前記基板上に 前記下部電極、前記誘電体膜及び前記上部電極からなる積層体を覆うように設けら れた榭脂製の絶縁層と、を有し、前記積層体の一部に前記積層体を貫通するホール が形成されており、このホール内に前記絶縁層が埋め込まれており、前記ホールの 底部にぉ 、て前記絶縁層が前記基板に接触して 、ることを特徴とするキャパシタ。  [2] A substrate made of a resin, a lower electrode formed on the substrate, a dielectric film formed on a part of the lower electrode, an upper electrode formed on the dielectric film, An insulating layer made of resin that is provided on the substrate so as to cover the laminated body composed of the lower electrode, the dielectric film, and the upper electrode, and the laminated body is partially formed on the laminated body A capacitor is characterized in that a hole penetrating the substrate is formed, the insulating layer is embedded in the hole, and the insulating layer is in contact with the substrate at the bottom of the hole.
[3] 前記ホールが前記下部電極における前記誘電体膜の直下域を除く領域の一部に形 成されていることを特徴とする請求項 2に記載のキャパシタ。  3. The capacitor according to claim 2, wherein the hole is formed in a part of a region of the lower electrode excluding a region immediately below the dielectric film.
[4] 前記ホールが前記積層体における前記下部電極、前記誘電体膜及び前記上部電 極が積層された領域の一部に形成されていることを特徴とする請求項 2に記載のキヤ パシタ。  4. The capacitor according to claim 2, wherein the hole is formed in a part of a region where the lower electrode, the dielectric film, and the upper electrode are stacked in the stacked body.
[5] 前記ホールにより前記下部電極、前記誘電体膜及び前記上部電極が夫々複数の部 分に分割されており、前記下部電極の相互に隣り合う部分同士は相互に接続されて おり、前記上部電極の相互に隣り合う部分同士も相互に接続されていることを特徴と する請求項 4に記載のキャパシタ。  [5] The lower electrode, the dielectric film, and the upper electrode are each divided into a plurality of parts by the holes, and adjacent portions of the lower electrode are connected to each other, and the upper electrode 5. The capacitor according to claim 4, wherein adjacent portions of the electrodes are also connected to each other.
[6] 前記基板の表面に垂直な方向から見て、前記ホールが格子状に形成されており、前 記下部電極、前記誘電体膜及び前記上部電極の各部分の形状が矩形であることを 特徴とする請求項 5に記載のキャパシタ。  [6] The holes are formed in a lattice shape when viewed from a direction perpendicular to the surface of the substrate, and the shape of each part of the lower electrode, the dielectric film, and the upper electrode is rectangular. 6. The capacitor according to claim 5, wherein the capacitor is characterized in that:
[7] 前記基板の表面に垂直な方向から見て、前記下部電極、前記誘電体膜及び前記上 部電極の各部分のうち少なくとも 1つの前記部分の形状が六角形であり、前記各部 分がハ-カム状に配列されていることを特徴とする請求項 5に記載のキャパシタ。  [7] When viewed from a direction perpendicular to the surface of the substrate, at least one of the portions of the lower electrode, the dielectric film, and the upper electrode has a hexagonal shape, and the portions are 6. The capacitor according to claim 5, wherein the capacitor is arranged in a her cam shape.
[8] 前記基板の表面に垂直な方向から見て、前記下部電極の総面積に対する前記ホー ルの面積の割合が 1乃至 25%であることを特徴とする請求項 2乃至 7のいずれか 1項 に記載のキャパシタ。 [8] The hole with respect to the total area of the lower electrode as viewed from a direction perpendicular to the surface of the substrate. The capacitor according to any one of claims 2 to 7, wherein a ratio of the area of the light is 1 to 25%.
[9] 前記割合が 5乃至 10%であることを特徴とする請求項 8に記載のキャパシタ。  9. The capacitor according to claim 8, wherein the ratio is 5 to 10%.
[10] 前記絶縁層における前記下部電極の直上域であって前記誘電体膜の直上域から外 れた領域の一部に第 1の開口部が形成されており、前記第 1の開口部から離隔した 位置に第 2の開口部が形成されており、前記第 1の開口部内に設けられ前記下部電 極に接続された第 1の外部接続用電極と、前記第 2の開口部内に設けられ前記上部 電極に接続された第 2の外部接続用電極と、を有することを特徴とする請求項 1乃至 9の!、ずれ力 1項に記載のキャパシタ。  [10] A first opening is formed in a portion of the insulating layer immediately above the lower electrode and out of the region directly above the dielectric film, and from the first opening A second opening is formed at a spaced position, and is provided in the second opening and the first external connection electrode provided in the first opening and connected to the lower electrode. 10. The capacitor according to claim 1, further comprising a second external connection electrode connected to the upper electrode.
[11] 前記下部電極が、前記基板上に設けられた密着性導電材料層と、この密着性導電 材料層上に設けられた耐酸化性導電材料層と、を有することを特徴とする請求項 1乃 至 10のいずれ力 1項に記載のキャパシタ。  [11] The lower electrode includes an adhesive conductive material layer provided on the substrate and an oxidation-resistant conductive material layer provided on the adhesive conductive material layer. 1 to 10 Any one of the capacitors described in item 1 above.
[12] 前記下部電極が、前記密着性導電材料層と前記耐酸化性導電材料層との間に設け られた高弾性導電材料層を有することを特徴とする請求項 11に記載のキャパシタ。  12. The capacitor according to claim 11, wherein the lower electrode has a highly elastic conductive material layer provided between the adhesive conductive material layer and the oxidation-resistant conductive material layer.
[13] 前記誘電体膜がベロブスカイト構造を有する酸化物より形成されていることを特徴と する請求項 1乃至 12のいずれ力 1項に記載のキャパシタ。  [13] The capacitor according to any one of [1] to [12], wherein the dielectric film is formed of an oxide having a bevelskite structure.
[14] コア基板と、このコア基板の少なくとも一方の表面上に設けられた請求項 1乃至 13の いずれか 1項に記載のキャパシタと、を有することを特徴とする配線基板。  [14] A wiring board comprising: a core substrate; and the capacitor according to any one of claims 1 to 13 provided on at least one surface of the core substrate.
[15] 前記キャパシタを覆うように設けられた絶縁膜と、この絶縁膜の表面に設けられた表 面配線と、を有し、前記キャパシタの下部電極が前記表面配線の一部分に接続され ており、前記キャパシタの上部電極が前記表面配線における前記一部分力 絶縁さ れた他の部分に接続されていることを特徴とする請求項 14に記載の配線基板。  [15] An insulating film provided so as to cover the capacitor and a surface wiring provided on a surface of the insulating film, wherein a lower electrode of the capacitor is connected to a part of the surface wiring. 15. The wiring board according to claim 14, wherein an upper electrode of the capacitor is connected to the other portion of the surface wiring that is partly force-insulated.
[16] 前記コア基板と前記絶縁膜との間における前記キャパシタが設けられて 、な 、領域 に設けられた内層配線と、前記下部電極を前記内層配線の一部分に接続する第 1 の導電体層と、前記上部電極を前記内層配線における前記一部分から絶縁された 他の部分に接続する第 2の導電体層と、を有し、前記絶縁膜における前記内層配線 の前記一部分及び前記他の部分の直上域の一部には、夫々第 1及び第 2のスルー ホールが形成されており、前記下部電極は、前記第 1の導電体層、前記内層配線の 一部分、前記第 1のスルーホールを介して前記表面配線の一部分に接続されており 、前記上部電極は、前記第 2の導電体層、前記内層配線の他の部分、前記第 2のス ルーホールを介して前記表面配線の他の部分に接続されていることを特徴とする請 求項 15に記載の配線基板。 [16] The capacitor is provided between the core substrate and the insulating film, the inner layer wiring provided in the region, and the first conductor layer connecting the lower electrode to a part of the inner layer wiring. And a second conductor layer that connects the upper electrode to another portion of the inner layer wiring that is insulated from the portion of the inner layer wiring, and the portion of the inner layer wiring and the other portion of the insulating film A first through hole and a second through hole are formed in a part of the region directly above, and the lower electrode is formed of the first conductor layer and the inner layer wiring. The upper electrode is connected to a part of the surface wiring through the first through hole, and the upper electrode is connected to the second conductor layer, the other part of the inner layer wiring, and the second through hole. 16. The wiring board according to claim 15, wherein the wiring board is connected to another part of the surface wiring via the wiring.
PCT/JP2006/301587 2005-02-04 2006-01-31 Capacitor and wiring board incorporating same WO2006082817A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007501575A JP5061895B2 (en) 2005-02-04 2006-01-31 Capacitor and wiring board incorporating the capacitor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005029016 2005-02-04
JP2005-029016 2005-02-04

Publications (1)

Publication Number Publication Date
WO2006082817A1 true WO2006082817A1 (en) 2006-08-10

Family

ID=36777201

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/301587 WO2006082817A1 (en) 2005-02-04 2006-01-31 Capacitor and wiring board incorporating same

Country Status (2)

Country Link
JP (1) JP5061895B2 (en)
WO (1) WO2006082817A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011044614A (en) * 2009-08-21 2011-03-03 Tdk Corp Electronic component and method of manufacturing the same
JP2018006475A (en) * 2016-06-29 2018-01-11 太陽誘電株式会社 Variable capacitance device and antenna device
TWI655656B (en) * 2016-12-20 2019-04-01 日商 Tdk 股份有限公司 Substrate with film capacitor sheet
CN109923630A (en) * 2016-11-02 2019-06-21 株式会社村田制作所 Capacitor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000252163A (en) * 1999-02-26 2000-09-14 Kyocera Corp Capacitor
JP2002100533A (en) * 2000-07-19 2002-04-05 Sony Corp Method of forming capacitor element, method of forming composite thin film element, wiring board and module board
JP2002164258A (en) * 2000-11-24 2002-06-07 Kyocera Corp Thin-film capacitor and capacitor substrate
JP2004056097A (en) * 2002-05-27 2004-02-19 Nec Corp Thin film capacitor, combined passive component including the thin film capacitor, method of manufacturing same, and wiring board including same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3206243B2 (en) * 1993-09-20 2001-09-10 富士通株式会社 Bonding pad and method of forming the same
JPH1022457A (en) * 1996-07-03 1998-01-23 Mitsubishi Electric Corp Capacitance device and semiconductor device, and manufacture thereof
JP3362776B2 (en) * 1999-02-02 2003-01-07 日本電気株式会社 Thin film capacitor, substrate with built-in thin film capacitor and method of manufacturing thin film capacitor
JP4211210B2 (en) * 2000-09-08 2009-01-21 日本電気株式会社 Capacitor, mounting structure thereof, manufacturing method thereof, semiconductor device and manufacturing method thereof
JP3972128B2 (en) * 2002-12-06 2007-09-05 松下電器産業株式会社 Semiconductor device and manufacturing method thereof
JP4641396B2 (en) * 2004-09-02 2011-03-02 Okiセミコンダクタ株式会社 Thin film capacitor and manufacturing method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000252163A (en) * 1999-02-26 2000-09-14 Kyocera Corp Capacitor
JP2002100533A (en) * 2000-07-19 2002-04-05 Sony Corp Method of forming capacitor element, method of forming composite thin film element, wiring board and module board
JP2002164258A (en) * 2000-11-24 2002-06-07 Kyocera Corp Thin-film capacitor and capacitor substrate
JP2004056097A (en) * 2002-05-27 2004-02-19 Nec Corp Thin film capacitor, combined passive component including the thin film capacitor, method of manufacturing same, and wiring board including same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011044614A (en) * 2009-08-21 2011-03-03 Tdk Corp Electronic component and method of manufacturing the same
JP2018006475A (en) * 2016-06-29 2018-01-11 太陽誘電株式会社 Variable capacitance device and antenna device
CN109923630A (en) * 2016-11-02 2019-06-21 株式会社村田制作所 Capacitor
US11521800B2 (en) 2016-11-02 2022-12-06 Murata Manufacturing Co., Ltd. Capacitor
TWI655656B (en) * 2016-12-20 2019-04-01 日商 Tdk 股份有限公司 Substrate with film capacitor sheet

Also Published As

Publication number Publication date
JP5061895B2 (en) 2012-10-31
JPWO2006082817A1 (en) 2008-06-26

Similar Documents

Publication Publication Date Title
JP6665838B2 (en) Inductor components
KR100945622B1 (en) Electronic component module
JP5188256B2 (en) Capacitor component manufacturing method
JP4708407B2 (en) Capacitor-embedded printed circuit board and manufacturing method thereof
JP6927544B2 (en) Thin film capacitors and their manufacturing methods
JP6862886B2 (en) Board with built-in electronic components
JP4649198B2 (en) Wiring board manufacturing method
US10109571B2 (en) Wiring substrate and manufacturing method of wiring substrate
KR20030040083A (en) Process for manufacturing multiple layer wiring substrate onto which thin film capacitor is incorporated
JP3882779B2 (en) Thin film capacitor, composite passive component including thin film capacitor, method for manufacturing the same, and wiring board incorporating them
JP4394999B2 (en) Passive element built-in wiring board and manufacturing method thereof
KR20220116559A (en) Thin film capacitor, manufacturing method thereof, and electronic circuit board including thin film capacitor
JP4784128B2 (en) Semiconductor device and manufacturing method thereof
WO2006082817A1 (en) Capacitor and wiring board incorporating same
JP4622367B2 (en) Electronic components
EP1983532B1 (en) Capacitor and manufacturing method thereof
US10278290B2 (en) Electronic component embedded substrate
JP6822192B2 (en) Board with built-in electronic components
CN110767455B (en) Multilayer ceramic electronic component, method for manufacturing same, and electronic component-embedded circuit board
US20120241204A1 (en) Thin film capacitor, mounting substrate, and method of manufacturing the mounting substrate
JP2000323845A (en) Manufacture of electronic circuit mounting substrate
JP2005203680A (en) Method of manufacturing interposer capacitor
KR20040036779A (en) Method of manufacturing capacitor-embedded printed circuit board
JP4784141B2 (en) Manufacturing method of semiconductor device
JP4599653B2 (en) Sheet capacitor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007501575

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06712730

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 6712730

Country of ref document: EP