WO2006082791A1 - 液晶表示装置および液晶表示駆動回路 - Google Patents

液晶表示装置および液晶表示駆動回路 Download PDF

Info

Publication number
WO2006082791A1
WO2006082791A1 PCT/JP2006/301487 JP2006301487W WO2006082791A1 WO 2006082791 A1 WO2006082791 A1 WO 2006082791A1 JP 2006301487 W JP2006301487 W JP 2006301487W WO 2006082791 A1 WO2006082791 A1 WO 2006082791A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
gradation
adjustment
output
circuit
Prior art date
Application number
PCT/JP2006/301487
Other languages
English (en)
French (fr)
Inventor
Hiroyuki Higashino
Tetsuya Umehara
Yasuki Mori
Original Assignee
Sharp Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Kabushiki Kaisha filed Critical Sharp Kabushiki Kaisha
Priority to US11/792,039 priority Critical patent/US8094108B2/en
Publication of WO2006082791A1 publication Critical patent/WO2006082791A1/ja

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3685Details of drivers for data electrodes
    • G09G3/3688Details of drivers for data electrodes suitable for active matrices only
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0264Details of driving circuits
    • G09G2310/027Details of drivers for data electrodes, the drivers handling digital grey scale data, e.g. use of D/A converters

Definitions

  • Liquid crystal display device and liquid crystal display driving circuit Liquid crystal display device and liquid crystal display driving circuit
  • the present invention relates to an active matrix type liquid crystal display device used for a display screen of a display of a television device or a personal computer, for example, and a liquid crystal display driving circuit used therefor.
  • a plurality of scanning signal lines (gate signal lines) and a plurality of video signal lines (source signal lines) are provided so as to intersect with each other, and for each region separated by both signal lines.
  • a display panel having a plurality of display picture elements connected to the gate signal line and the source signal line is arranged in a matrix.
  • Each display pixel portion includes a liquid crystal capacitor Clc provided between the pixel electrode and the counter electrode, a gate electrode connected to the gate signal line, a source electrode connected to the source signal line, and a drain electrode.
  • TFT thin film transistor
  • a source driver is provided for each of a plurality of source signal lines in the peripheral portion of the liquid crystal panel, and the source drivers are connected to the corresponding source signal lines.
  • the video signal corresponding to the video display of each display picture element unit is supplied.
  • This video signal is supplied with a positive polarity and a negative polarity alternately with respect to the counter electrode potential in order to prevent liquid crystal burn-in.
  • Such driving of the liquid crystal panel is called inversion driving.
  • a gate driver is provided for each of the plurality of gate signal lines in the peripheral portion of the liquid crystal panel, and the gate driver is connected to the corresponding gate signal line.
  • a scanning signal for selectively driving each display pixel portion is supplied.
  • the TFT For each pixel part, when the TFT is turned on by the scanning signal, it is supplied to the pixel electrode via the video signal force FT, and both electrodes are supplied according to the potential difference between the counter electrode potential and the pixel electrode potential.
  • the alignment state of the liquid crystal which is a display medium sandwiched between the two, changes, and various images are displayed on the display screen as characters and figures as a whole of the plurality of pixel portions on the display screen.
  • each display picture element includes a liquid crystal capacitor Clc and an auxiliary capacitor Cs.
  • a parasitic capacitance Cgd between the gate and drain of the TFT due to the parasitic capacitance Cgd between the gate and drain, a charge pull-in voltage (charge pull-in amount) ⁇ expressed by the following equation 1 is generated in each pixel part, and the voltage actually applied to the liquid crystal Is changed by the amount of charge draw-in ⁇ .
  • VGH is the gate high voltage of the scanning signal line
  • VGL is the gate low voltage of the scanning signal line.
  • ⁇ V ⁇ Cgd / (Cgd + Clc + Cs) ⁇ X (VGH-VGL)
  • the pixel pattern is formed a plurality of times by being divided into a plurality of blocks. In this case, depending on the characteristics of Araimento position or patterning device, deviation occurs in the parasitic capacitance Cg d between the gate and the drain on the display screen in the liquid crystal panel.
  • the flitz force phenomenon (1) is caused by waveform rounding of the gate signal.
  • the gate signal lines are arranged in the horizontal direction in the display screen, it is possible to mitigate the flitz force phenomenon by correcting the horizontal inclination of the charge draw amount ⁇ .
  • Flying force phenomenon (2) is caused by characteristics in the pixel pattern formation process. This Therefore, when the pixel pattern formation is performed a plurality of times, the flicker force phenomenon can be alleviated by correcting the deviation of the charge drawing amount ⁇ in each forming block.
  • Patent Document 1 Japanese Patent Laid-Open Publication No. 2001-22325 (published date: January 26, 2001) (hereinafter referred to as “Patent Document 1”) includes a potentiometer in a grayscale voltage generation circuit.
  • a liquid crystal display device is disclosed in which a gradation characteristic can be adjusted without changing a circuit constant after designing a drive circuit by incorporating an element that can obtain a desired resistance value by an external input such as the above.
  • the change due to the adjustment of the gradation voltage value is caused by the so-called ⁇ value in addition to the change in the degree of the flick force phenomenon due to the deviation of the center value of the positive voltage and the negative voltage in each gradation.
  • This also causes a change in gradation characteristics, such as a change in display quality, which is accompanied by a change in display quality. Therefore, there is a demand for a structure that can reduce the flicker force phenomenon without changing the gradation characteristics.
  • Patent Document 1 although the gradation voltage can be easily adjusted after designing the drive circuit, the adjustment of the gradation voltage is accompanied by a change in display quality due to a change in gradation characteristics.
  • the present invention solves the above-described conventional problems, and an object thereof is to provide a liquid crystal display device capable of reducing the fringe force phenomenon without changing the gradation characteristics, and a liquid crystal display driving circuit used therefor. To do.
  • the liquid crystal display device of the present invention is provided with a gradation voltage generation circuit for generating a gradation voltage for display, and a plurality of scanning signal lines and a plurality of video signal lines are provided so as to cross each other.
  • a liquid crystal display device in which a plurality of picture element portions separated by both signal lines are arranged two-dimensionally and the gradation voltage corresponding to the video data signal is supplied to each picture element portion for display.
  • a picture in which the positive gray scale voltage VH (X) of the X th gray scale and the negative gray scale voltage VL (X) of the X th gray scale are connected to the corresponding video signal line in the gray scale voltage generation circuit.
  • a gradation voltage adjustment unit for adjusting the voltage by increasing the adjustment voltage of the element part is provided, thereby achieving the above object.
  • a control unit that outputs the gradation voltage and various control signals is provided in a source driver that supplies the gradation voltage to a plurality of video signal lines.
  • the gradation voltage generation circuit is provided in the control unit.
  • a source driver that supplies the gradation voltage to a plurality of video signal lines is provided, and the gradation voltage generation circuit is provided in the source driver. Yes.
  • a plurality of scanning signal lines and a plurality of video signal lines are provided so as to intersect with each other, and picture element portions partitioned by both signal lines are arranged in a matrix.
  • a plurality of source drivers provided for each predetermined number of video signal lines around the display unit and selectively supplying a positive or negative gradation voltage as a video signal to the video signal line, and the periphery of the display unit
  • a plurality of gate drivers which are provided for each predetermined number of scanning signal lines and selectively supply scanning signals for driving each pixel unit to the scanning signal lines
  • Each source driver is provided with a gradation voltage generation circuit for generating a gradation voltage for display, and a positive gradation voltage VH (X) of the Xth gradation is provided in the gradation voltage generation circuit.
  • a gradation voltage adjustment unit for adjusting the voltage by increasing the negative gradation voltage VL (X) of the X-th gradation by the adjustment voltage of the picture element connected to the corresponding video signal line.
  • the scanning signal line in the vicinity of the intersection of the two signal lines is connected to the control terminal, and the video signal line in the vicinity of the intersection is one.
  • a switch element connected to the one drive region, and a pixel electrode to which the other drive region of the switch element is connected.
  • the gradation voltage adjustment unit in the liquid crystal display device of the present invention is arranged so that the X-th gradation positive polarity gradation voltage VH (for each one or a plurality of video signal lines in one frame. The voltage is adjusted by increasing X) and the negative gradation voltage VL (X) of the Xth gradation by the adjustment voltage of the picture element connected to the corresponding video signal line.
  • the gradation voltage adjustment unit in the liquid crystal display device of the present invention is arranged so that the X-th gradation positive polarity gradation voltage VH (for each one or a plurality of scanning signal lines in one frame.
  • the voltage is adjusted by increasing the negative gradation voltage VL (X) of X) and the Xth gradation by the adjustment voltage of the picture element connected to the corresponding scanning signal line.
  • the gradation voltage adjusting unit in the liquid crystal display device of the present invention is configured such that the X-th gradation positive polarity gradation voltage VH (X) and the X-th gradation in the source driver unit.
  • the voltage is adjusted by increasing the negative polarity gradation voltage VL (X) by the adjustment voltage of the picture element connected to the corresponding video signal line.
  • the gradation voltage adjusting unit in the liquid crystal display device of the present invention is configured so that the positive gradation voltage VH (X) of the Xth gradation and the Xth gradation are in units of the gate driver.
  • the voltage is adjusted by increasing the negative gradation voltage VL (X) of the pixel by the adjustment voltage of the picture element connected to the corresponding scanning signal line.
  • the adjustment voltage in the liquid crystal display device of the present invention is set in accordance with the inclination of the charge drawing amount ⁇ V in the scanning signal line direction.
  • the adjustment voltage in the liquid crystal display device of the present invention is set in accordance with the inclination of the charge draw amount ⁇ V in the video signal line direction.
  • the adjustment voltage in the liquid crystal display device of the present invention is such that the in-panel deviation of the charge draw amount ⁇ generated by the multi-region divided transfer is a deviation in the horizontal direction and in the Z or vertical direction. It is set according to the deviation of the charge pull-in amount ⁇ V in the horizontal and vertical or vertical directions of the transfer block.
  • the gradation voltage adjusting unit in the liquid crystal display device of the present invention may be configured such that the selection driving timing of the one or a plurality of scanning signal lines or the driving timing unit of the gate driver. A voltage obtained by adding the adjustment voltage or a voltage corresponding thereto is set to a time that is optimal for the charge draw amount ⁇ of the picture element connected to the corresponding scanning signal line. Change the axis.
  • the gradation voltage adjusting unit in the liquid crystal display device of the present invention includes a minimum value and a maximum value of a gradation voltage range including the positive gradation voltage VH (X) of the Xth gradation.
  • the value is shifted so as to be increased by the adjustment voltage together with the gradation voltage range, and the minimum value and the maximum value of the gradation voltage range including the negative gradation voltage VL (X) of the X-th gradation are The adjustment voltage is shifted so as to increase with the gradation voltage range.
  • the gradation voltage generation circuit in the liquid crystal display device of the present invention includes a first voltage division circuit that generates a plurality of positive and negative reference voltages based on a positive and negative reference voltage, and a positive reference.
  • the voltage adjustment unit supplies a voltage increased by a reference voltage force output adjustment voltage of the first voltage divider circuit force or a voltage corresponding thereto to the second voltage divider circuit and the third voltage divider circuit. Output each.
  • the gradation voltage adjustment unit increases each reference voltage force output adjustment voltage by two large and small reference voltage forces on the positive polarity side of the first voltage dividing circuit force.
  • the voltage or each voltage corresponding thereto is output to the maximum value and the minimum value side of the gradation voltage range of the second voltage divider circuit, respectively, and the first and second voltage divider circuit forces on the negative polarity side
  • Each voltage obtained by increasing the output adjustment voltage from one reference voltage or each corresponding voltage is output to the highest value and lowest value side of the gradation voltage range of the third voltage divider circuit.
  • the gradation voltage adjustment unit in the liquid crystal display device of the present invention includes an adjustment voltage generation circuit that generates an adjustment voltage according to a gradation voltage adjustment signal supplied from the control unit, and the adjustment And a differential amplifier circuit that differentially amplifies a voltage obtained by adding the output adjustment voltage from the voltage generation circuit to a predetermined reference voltage.
  • the adjustment voltage generation circuit in the liquid crystal display device of the present invention includes a variable resistance element whose resistance value is variable according to a voltage value of the gradation voltage adjustment signal, and the variable resistance element.
  • Buffer means to which the output voltage is input.
  • variable resistance element in the liquid crystal display device of the present invention is a potentio. It is a meter.
  • the differential amplifier circuit in the liquid crystal display device of the present invention preferably includes a positive maximum gradation voltage, the positive minimum gradation voltage, the negative maximum gradation voltage, and the negative polarity.
  • the positive input terminals are respectively connected to an output terminal for outputting a predetermined reference voltage of the first voltage divider circuit power and an output terminal of the adjustment voltage generating circuit. And each output terminal is connected to one of the second voltage dividing circuit and the third voltage dividing circuit.
  • the differential amplifier circuit in the liquid crystal display device of the present invention has first to fourth differential amplifier circuits,
  • the first differential amplifier circuit inputs, to its positive input terminal, a voltage that is increased by the output adjustment voltage from the first reference voltage on the positive polarity side from the first voltage divider circuit, and outputs its output voltage. Is output to the highest value output terminal side of the gradation voltage range of the second voltage divider circuit, and the second differential amplifier circuit outputs the second reference voltage on the positive polarity side from the first voltage divider circuit. Is input to the positive input terminal, and the output voltage is output to the lowest value output terminal side of the gradation voltage range of the second voltage divider circuit.
  • the differential amplifier circuit inputs a voltage obtained by increasing the output adjustment voltage from the negative third reference voltage from the first voltage divider circuit to the positive input terminal, and outputs the output voltage to the third voltage reference circuit.
  • a voltage obtained by increasing the output adjustment voltage from the negative fourth reference voltage from the voltage divider circuit is input to the positive input terminal, and the output voltage is applied to the gradation voltage range of the third voltage divider circuit. Configure to output to the lowest value output end.
  • the adjustment voltage generating circuit in the liquid crystal display device of the present invention generates first to nth (n is a natural number of 2 or more; plural) adjustment voltage generators that generate adjustment voltages corresponding to each gradation.
  • nth is a natural number of 2 or more; plural adjustment voltage generators that generate adjustment voltages corresponding to each gradation.
  • the differential amplifying circuit is provided with nX 2 for each of the positive polarity side and the negative polarity side gradation voltages, and each positive polarity input terminal receives a predetermined reference voltage from the first voltage dividing circuit.
  • An output unit for outputting, and the first to nth adjustment voltage generation circuits corresponding to the output unit Any one of the positions of the second voltage dividing circuit and the third voltage dividing circuit corresponding to each other on the positive polarity side and the negative polarity side.
  • the adjustment voltage generation circuit in the liquid crystal display device of the present invention generates the adjustment voltage corresponding to each gradation with respect to the maximum gradation voltage, the intermediate gradation voltage, and the minimum gradation voltage. Having 1st to 3rd adjustment voltage generation circuit,
  • the differential amplifier circuit has an output voltage value of positive maximum gradation voltage, positive intermediate gradation voltage, minimum positive gradation voltage, maximum negative gradation voltage, and negative intermediate gradation voltage.
  • the first and second voltage division circuit power output units each output a predetermined reference voltage, and corresponding to the output unit. Are connected to any one of the output terminals of the first to third adjustment voltage generation circuits, the output terminals of which correspond to each other on the positive polarity side and the negative polarity side, and Connected to one of the voltage divider circuits.
  • the differential amplifier circuit in the liquid crystal display device of the present invention includes first to sixth differential amplifier circuits,
  • the first differential amplifier circuit has a first reference voltage on the positive polarity side from the first voltage dividing circuit, and a voltage obtained by increasing the voltage by the output adjustment voltage of the first adjustment voltage generation circuit. And output the output voltage to the positive maximum voltage output terminal side of the second voltage divider circuit,
  • the second differential amplifier circuit has a second reference voltage on the positive polarity side from the first voltage divider circuit, and a voltage that is increased by the output adjustment voltage of the second adjustment voltage generation circuit. And output the output voltage to the positive halftone voltage output terminal side of the second voltage divider circuit,
  • the third differential amplifier circuit has a third reference voltage on the positive polarity side from the first voltage divider circuit, and a voltage that is increased by the output adjustment voltage of the third adjustment voltage generation circuit. And output the output voltage to the positive polarity minimum gradation voltage output terminal side of the second voltage divider circuit,
  • the fourth differential amplifier circuit includes a fourth reference voltage on the negative polarity side from the first voltage divider circuit. Is increased by the output adjustment voltage of the first adjustment voltage generation circuit to the positive input terminal, and the output voltage is input to the negative maximum gradation voltage output terminal of the third voltage dividing circuit. Output to the side,
  • the fifth differential amplifier circuit has a positive input voltage obtained by increasing the negative reference-side fifth reference voltage from the first voltage divider circuit by the output adjustment voltage of the second adjustment voltage generation circuit. And output the output voltage to the negative halftone voltage output terminal side of the third voltage divider circuit,
  • the sixth differential amplifier circuit has a positive input voltage obtained by increasing the negative reference-side sixth reference voltage from the first voltage divider circuit by the output adjustment voltage of the third adjustment voltage generation circuit. And the output voltage is output to the negative polarity minimum gradation voltage output end side of the third voltage divider circuit.
  • the gradation voltage adjusting unit in the liquid crystal display device of the present invention is configured so that the X-th gradation positive polarity gradation voltage VH (X) and the X-th gradation negative polarity gradation voltage VL ( Adjust the voltage of X) independently for each gradation.
  • a first signal transmission line for supplying the grayscale voltage adjustment signal between the source driver and the control unit power is also preferable.
  • a signal transmission line for commonly supplying the gradation voltage adjustment signal and the video data signal is provided between the source drivers in the control unit power. It has been.
  • the grayscale voltage adjustment signal is supplied during the blanking period via the signal transmission line, and during the blanking period via the signal transmission line. Is supplied with the video data signal,
  • the source driver includes: a latch signal supplied to the control unit; a start pulse force; a selector circuit control signal generation circuit that generates a selector circuit control signal; and a video data signal and a selector circuit control signal based on the selector circuit control signal. And a selector circuit for selecting whether the gradation voltage adjustment signal is shifted.
  • the selector circuit control signal in the liquid crystal display device of the present invention is preferably It is generated so that it rises at the falling timing of the latch signal and falls at the rising timing of the start signal.
  • the selector circuit in the liquid crystal display device of the present invention selects the gradation voltage adjustment signal in one level period of the binary value of the selector circuit control signal and outputs it to the gradation voltage adjustment unit. Then, the video data signal is selected and output in the other level period of the binary value.
  • the adjustment voltage in the liquid crystal display device of the present invention is an adjustment voltage for reducing the screen flaking force.
  • the adjustment voltage in the liquid crystal display device of the present invention is an adjustment voltage for shifting the center value of the positive polarity gradation voltage and the negative polarity gradation voltage of the reference gradation voltage by a predetermined voltage.
  • the adjustment voltage in the liquid crystal display device of the present invention depends on an initial setting value of the center value of the positive gradation voltage and the negative gradation voltage of the reference gradation voltage, and the charge draw amount ⁇ V.
  • the adjustment voltage in the liquid crystal display device of the present invention is the amount of charge drawing.
  • the scanning signal line in the vicinity of the intersection of the two signal lines is connected to the control terminal, and the video signal line in the vicinity of the intersection is one.
  • a switch element connected to the one drive region, and a pixel electrode to which the other drive region of the switch element is connected,
  • the charge draw amount ⁇ is
  • Liquid crystal capacitance Clc of the pixel electrode Liquid crystal capacitance Clc of the pixel electrode, auxiliary capacitance Cs connected thereto, parasitic capacitance Cgd between the transistor gate and drain of the switch element, gate high voltage VGH of the scanning signal line, gate low voltage VGL of the scanning signal line
  • auxiliary capacitance Cs connected thereto, parasitic capacitance Cgd between the transistor gate and drain of the switch element, gate high voltage VGH of the scanning signal line, gate low voltage VGL of the scanning signal line
  • ⁇ V ⁇ Cgd / (Cgd + Clc + Cs) ⁇ X (VGH-VGL)
  • the liquid crystal display driving circuit of the present invention is provided with a gradation voltage generation circuit that generates a gradation voltage for positive or negative display, and a liquid crystal display unit using the gradation voltage for display.
  • a liquid crystal display driving circuit for display driving In a liquid crystal display driving circuit for display driving,
  • a gradation voltage adjustment unit for adjusting the voltage by increasing only the adjustment voltage of the unit is provided, thereby achieving the above purpose.
  • a plurality of source dryers supplying the positive or negative display gradation voltage to the liquid crystal display unit as a video signal;
  • a plurality of gate drivers for supplying a liquid crystal display driving scanning signal to the liquid crystal display unit
  • Each grayscale voltage generation circuit is provided in each source driver.
  • the gradation voltage adjustment unit in the liquid crystal display drive circuit of the present invention is a voltage obtained by adding the adjustment voltage for each drive timing of the scanning signal or for each drive timing of the gate driver.
  • the voltage corresponding to this is changed on the time axis so as to be optimal for the charge drawing amount ⁇ of the picture element portion to which the corresponding scanning signal is supplied.
  • the gradation voltage adjusting unit in the liquid crystal display driving circuit of the present invention includes a minimum value of a gradation voltage range including the positive gradation voltage VH (X) of the Xth gradation.
  • the maximum value is shifted so as to increase by the adjustment voltage together with the gradation voltage range, and the minimum value and the maximum value of the gradation voltage range including the negative gradation voltage VL (X) of the X-th gradation are interposed.
  • the adjustment voltage is shifted so as to increase along with the gradation voltage range.
  • the gradation voltage generation circuit in the liquid crystal display driving circuit of the present invention includes a first voltage dividing circuit that generates a plurality of reference voltages having positive and negative reference voltage forces and a positive reference.
  • the gradation voltage adjustment unit is configured to increase a voltage increased by a reference voltage force output adjustment voltage of the first voltage divider circuit force or a voltage corresponding thereto to the second voltage divider circuit and the third voltage divider. Output to each circuit.
  • the gradation voltage adjusting unit in the liquid crystal display driving circuit of the present invention includes: Two reference voltage forces on the positive polarity side of the first voltage divider circuit force Each voltage increased by the output adjustment voltage or each corresponding voltage is set to the maximum of the gradation voltage range of the second voltage divider circuit.
  • the gradation voltage adjustment unit in the liquid crystal display driving circuit of the present invention includes an adjustment voltage generation circuit that generates an adjustment voltage according to a gradation voltage adjustment signal supplied from the control unit, And a differential amplifier circuit that differentially amplifies a voltage obtained by adding the output adjustment voltage of the adjustment voltage generation circuit power to a predetermined reference voltage.
  • the adjustment voltage generating circuit in the liquid crystal display driving circuit of the present invention includes a variable resistance element whose resistance value is variable according to the voltage value of the gradation voltage adjustment signal, and the variable resistance. And buffer means for receiving an output voltage from the element.
  • the differential amplifier circuit in the liquid crystal display driving circuit of the present invention includes a positive maximum gradation voltage, a positive minimum gradation voltage, a negative maximum gradation voltage, and a negative polarity.
  • the positive polarity input terminals are respectively provided for an output terminal for outputting a predetermined reference voltage from the first voltage divider circuit and an output terminal for the adjustment voltage generating circuit. And each output terminal is connected to one of the second voltage divider circuit and the third voltage divider circuit.
  • the differential amplifier circuit in the liquid crystal display driving circuit of the present invention has first to fourth differential amplifier circuits,
  • the first differential amplifier circuit inputs, to its positive input terminal, a voltage that is increased by the output adjustment voltage from the first reference voltage on the positive polarity side from the first voltage divider circuit, and outputs its output voltage. Is output to the highest value output terminal side of the gradation voltage range of the second voltage divider circuit, and the second differential amplifier circuit outputs the second reference voltage on the positive polarity side from the first voltage divider circuit. Is input to the positive input terminal, and the output voltage is output to the lowest value output terminal side of the gradation voltage range of the second voltage divider circuit.
  • the differential amplifier circuit has a third reference voltage on the negative polarity side from the first voltage divider circuit.
  • the differential amplifier circuit inputs a voltage obtained by increasing the output adjustment voltage from the negative fourth reference voltage from the first voltage divider circuit to the positive input terminal, and outputs the output voltage to the third voltage input circuit.
  • the voltage divider circuit is configured to output to the lowest value output end side of the gradation voltage range.
  • the adjustment voltage generation circuit in the liquid crystal display driving circuit of the present invention generates first to nth (n is a natural number of 2 or more) adjustment voltages for generating an adjustment voltage corresponding to each gradation.
  • nth is a natural number of 2 or more
  • the differential amplifying circuit is provided with nX 2 for each of the positive polarity side and the negative polarity side gradation voltages, and each positive polarity input terminal receives a predetermined reference voltage from the first voltage dividing circuit. And an output unit connected to any one of the output terminals of the first to nth adjustment voltage generation circuits corresponding to the output unit, and the output terminals are connected to each other on the positive polarity side and the negative polarity side. It is connected to either the corresponding position of the second voltage divider circuit or the position of the third voltage divider circuit.
  • the adjustment voltage generating circuit in the liquid crystal display driving circuit of the present invention generates an adjustment voltage corresponding to each gradation with respect to the maximum gradation voltage, the intermediate gradation voltage, and the minimum gradation voltage. Having first to third adjustment voltage generating circuits,
  • the differential amplifier circuit has an output voltage value of positive maximum gradation voltage, positive intermediate gradation voltage, minimum positive gradation voltage, maximum negative gradation voltage, and negative intermediate gradation voltage.
  • the first and second voltage division circuit power output units each output a predetermined reference voltage, and corresponding to the output unit. Are connected to any one of the output terminals of the first to third adjustment voltage generation circuits, the output terminals of which correspond to each other on the positive polarity side and the negative polarity side, and Connected to one of the voltage divider circuits.
  • the differential amplifier circuit in the liquid crystal display driving circuit of the present invention has first to sixth differential amplifier circuits,
  • the first differential amplifier circuit has a first reference voltage on the positive polarity side from the first voltage divider circuit. Pressure The voltage increased by the output adjustment voltage of the first adjustment voltage generation circuit is input to the positive polarity input terminal, and the output voltage is the positive polarity maximum voltage output terminal side of the second voltage divider circuit Output to
  • the second differential amplifier circuit has a second reference voltage on the positive polarity side from the first voltage divider circuit, and a voltage that is increased by the output adjustment voltage of the second adjustment voltage generation circuit. And output the output voltage to the positive halftone voltage output terminal side of the second voltage divider circuit,
  • the third differential amplifier circuit has a third reference voltage on the positive polarity side from the first voltage divider circuit, and a voltage that is increased by the output adjustment voltage of the third adjustment voltage generation circuit. And output the output voltage to the positive polarity minimum gradation voltage output terminal side of the second voltage divider circuit,
  • the fourth differential amplifier circuit has a positive input voltage obtained by increasing the negative reference-side fourth reference voltage from the first voltage divider circuit by the output adjustment voltage of the first adjustment voltage generation circuit. And output the output voltage to the negative polarity maximum gradation voltage output end side of the third voltage divider circuit,
  • the fifth differential amplifier circuit has a positive input voltage obtained by increasing the negative reference-side fifth reference voltage from the first voltage divider circuit by the output adjustment voltage of the second adjustment voltage generation circuit. And output the output voltage to the negative halftone voltage output terminal side of the third voltage divider circuit,
  • the sixth differential amplifier circuit has a positive input voltage obtained by increasing the negative reference-side sixth reference voltage from the first voltage divider circuit by the output adjustment voltage of the third adjustment voltage generation circuit. And the output voltage is output to the negative polarity minimum gradation voltage output end side of the third voltage dividing circuit.
  • the gradation voltage adjusting unit in the liquid crystal display driving circuit of the present invention is configured such that the X-th gradation positive polarity gradation voltage VH (X) and the X-th gradation negative polarity gradation voltage VL. Adjust the voltage of (X) independently for each gradation.
  • the flicker force phenomenon that does not change the gradation characteristics is reduced.
  • VLC (X) applied to the liquid crystal layer of each pixel unit during X-th gradation display is Vcom as the counter potential, and positive polarity of any X-th gradation If the gradation voltage is VH (X) and the negative gradation voltage of any Xth gradation is VL (X),
  • VLC (X) VH (X)-Vcom (Positive drive)
  • VLC (X) Vcom- VL (X) (Negative drive)
  • the TFT substrate has a charge drawing amount ⁇ due to the parasitic capacitance Cgd of the TFT, the voltage VLC (X) actually applied to the liquid crystal layer is If the amount of charge draw is ⁇ ,
  • VLC (X) (VH (X)-AV) -Vcom (during positive drive)
  • VLC (X) Vcom— (VL (X) — ⁇ V) (Negative drive)
  • a grayscale voltage adjustment unit is provided in a grayscale voltage generation circuit provided in the source driver, and the Xth
  • the positive polarity gradation voltage VHX of the gradation and the negative polarity gradation voltage VLX of the Xth gradation in accordance with the amount of charge pull-in ⁇ , the entire flaw force phenomenon in the panel surface is suppressed. It becomes possible to do.
  • the center value of the positive / negative grayscale voltage is adjusted in units of drivers in accordance with the slope of the charge draw amount ⁇ in the gate signal line direction. It is possible to suppress the flicking force phenomenon (1) without changing the tonal characteristics.
  • the charge pull-in amount AV of the transfer block By adjusting the center value of the positive / negative gradation voltage in units of drivers according to the deviation, it is possible to suppress the flicker force phenomenon (2) without changing the gradation characteristics.
  • the center value of the positive / negative gradation voltage is set for each horizontal line or a plurality of horizontal lines. It becomes possible to do.
  • the charge draw amount ⁇ has a deviation (deviation for each gradation voltage) with respect to the gradation voltage value applied to the drain of the TFT. Therefore, the adjustment voltage generation circuit is provided independently for each gradation in the adjustment voltage generation circuit, and a different gradation voltage adjustment signal is supplied to each gradation, so that the positive / negative gradation voltage center value is adjusted independently. As a result, even if there is a deviation in the charge draw amount ⁇ between the gradation voltages, or there is a deviation in the positive / negative gradation voltage center value at which the flicker force phenomenon is minimized between the gradation voltages, It becomes possible to suppress the phenomenon of flickering force.
  • the gradation voltage adjustment signal may be provided with a dedicated transmission line, but the gradation voltage adjustment signal can be obtained by using the video signal transmission line as the gradation voltage adjustment signal transmission line during the blanking period. It is possible to reduce dedicated transmission lines.
  • Patent Document 1 there is a difference in the usage method of the differential amplifier circuit between Patent Document 1 and the present invention.
  • Patent Document 1 aims to easily adjust the gradation characteristics after designing the drive circuit, whereas in the present invention, the flicker phenomenon on the entire surface of the panel without changing the gradation characteristics. For the purpose of reducing!
  • Patent Document 1 when the gradation voltage is adjusted, the amount of charge drawn in each gradation changes due to a change in the voltage difference between the positive voltage and the negative voltage of each gradation. Due to the change in the amount of charge drawn, there is a problem of causing the flick force phenomenon.
  • Patent Document 1 does not mention anything about the method of inputting the serial data for adjusting the gradation voltage, the timing thereof, and the like.
  • Table 1 below shows a content comparison between the present invention and Patent Document 1.
  • Patent Document 1 and the present invention are completely different in configuration.
  • the gradation voltage generating circuit is provided with the gradation voltage adjusting unit, and the X-th gradation positive polarity gradation voltage VHX and the X-th gradation negative electrode are provided.
  • FIG. 1 is a block diagram showing a configuration example of a liquid crystal display device according to Embodiment 1 of the present invention.
  • FIG. 2 is a block diagram illustrating a configuration example of a source driver in the liquid crystal display device of FIG.
  • FIG. 3 is a circuit diagram showing a configuration example of a gradation voltage generation circuit in the source driver of FIG.
  • FIG. 4 is a circuit diagram showing a configuration example of the adjustment voltage generation circuit of FIG.
  • FIG. 5 is a diagram for explaining a method for reducing a flickering force phenomenon caused by a deviation in the horizontal direction of the amount of charge draw-in ⁇ in Embodiment 1 of the present invention.
  • FIG. 6 is a diagram for explaining a method for reducing the flickering force phenomenon caused by the vertical inclination of the charge drawing amount ⁇ in the first embodiment of the present invention.
  • FIG. 7 is a circuit diagram showing a configuration example of a gradation voltage generation circuit in the liquid crystal display device according to Embodiment 2 of the present invention.
  • FIG. 8 is a block diagram showing a configuration example of a source driver in a liquid crystal display device according to Embodiment 3 of the present invention.
  • FIG. 9 is a signal waveform diagram of the latch signal LS, start pulse SP, and selector circuit control signal Ss in FIG.
  • FIG. 10 is a circuit diagram showing a configuration example of the selector circuit of FIG.
  • FIG. 11 is a block diagram showing a configuration example of a liquid crystal display device having the source driver of FIG. 8. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 is a block diagram showing a configuration example of a liquid crystal display device according to Embodiment 1 of the present invention.
  • a liquid crystal display device 10 includes a liquid crystal panel 1, a plurality of gate drivers 2, a plurality of source drivers 3, and a control IC that outputs video data signals and their control signals ( Control part) 4!
  • a plurality of scanning signal lines (gate signal lines) and a plurality of video signal lines (source signal lines) are provided so as to intersect each other, and each pixel region divided by both signal lines ( A plurality of display picture element parts connected to the gate signal line and the source signal line are arranged in a matrix for each picture element part).
  • the gate driver 2 is provided for each of a plurality (a predetermined number) of gate signal lines around the liquid crystal panel 1, and for each corresponding gate signal line, each gate signal line connected to the gate signal line is provided.
  • a scanning signal (gate signal) for selectively driving the pixel portion is selectively supplied.
  • the source driver 3 is provided for each of a plurality (predetermined number) of source signal lines around the liquid crystal panel 1. For each corresponding source signal line, each source signal line connected to the source signal line is provided. Positive and negative grayscale voltages corresponding to video display of the display picture element unit are selectively supplied as video signals (source signals). As a result, the liquid crystal panel 1 is driven in reverse.
  • the control IC 4 supplies various synchronization signals such as a clock signal CK and a start pulse SP to the gate driver 2 and also supplies a clock signal to the source driver 3.
  • Various synchronization signals such as signal CK, start pulse SP and latch signal LS, RGB video data signals DR, DG, DB, and gradation voltage adjustment signal DV for adjusting the gradation voltage are supplied.
  • the source dry gate 3 and the gate driver 2 are driven by various synchronization signals output from the control IC 4, and thereby the video based on the video data signal. Is displayed from the liquid crystal panel 1 constituting the display unit.
  • each source driver 3 is supplied with a gradation voltage adjustment signal DV supplied from the control IC 4 to each gradation voltage value (the positive gradation voltage VH X of the Xth gradation).
  • a gradation voltage adjustment signal DV supplied from the control IC 4 to each gradation voltage value (the positive gradation voltage VH X of the Xth gradation).
  • the center value of the gradation voltage is adjusted in units of 3 source drivers to adjust the flicker. Force can be suppressed.
  • the center value of the gradation voltage is adjusted in accordance with the slope of the amount of charge draw-in ⁇ in the horizontal direction, thereby adjusting the flits. Force can be suppressed. This will be described in detail with reference to FIGS.
  • FIG. 2 is a block diagram showing a configuration example of the source driver 3 in the liquid crystal display device 10 of FIG.
  • a source driver 3 includes a shift register circuit 31, an input latch circuit 32, a sampling memory circuit 33, a hold memory circuit 34, a level shifter, and the like as a commonly used source driver.
  • a circuit 35, a gradation voltage generation circuit (gradation voltage generation unit) 36, a DA (digital 'analog) conversion circuit 37, and an output circuit 38 are included.
  • the shift register circuit 31 receives the clock signal CK and the start pulse S from the control IC 4, generates a sampling clock for each source signal line, and supplies it to the sampling memory circuit 33.
  • the input latch circuit 32 latches the video data signals DR, DG and DB from the control IC4.
  • the sampling memory circuit 33 receives the video data signal DR latched by the input latch circuit 32. , DG and DB are sampled at the timing of the sampling clock from the shift register circuit 31.
  • the hold memory circuit 34 latches and holds the video data signal (sampling data) for one horizontal line from the sampling memory 33 at the timing of the latch signal LS from the control IC 4.
  • the level shifter circuit 35 is supplied with the video data signal (sampling data) of the hold memory circuit 34, and the level is shifted by a predetermined amount.
  • the gradation voltage generation circuit 36 can generate a plurality of gradation voltages necessary for multi-stage display, and the gradation voltages are supplied to the DA conversion circuit 37.
  • the gradation voltage generation circuit 36 includes an adjustment voltage adjustment unit 36a that outputs an adjustment voltage Va that adjusts the gradation voltage according to the gradation voltage adjustment signal DV supplied from the control IC 4. Speak.
  • This adjustment voltage Va is used to adjust the voltage of the gradation voltage of each gradation (the positive gradation voltage VHX of the Xth gradation and the negative gradation voltage VLX of the Xth gradation) by a charge pulling amount ⁇ . It is a voltage. This will be described in detail with reference to FIGS.
  • the gradation voltage from the gradation voltage generation circuit 36 is DA-converted according to the video data signal from the level shifter circuit 35 and supplied to the output circuit 38.
  • the output circuit 38 outputs the grayscale voltage from the DA conversion circuit 37 after the DA conversion to each source signal line as a display voltage.
  • FIG. 3 is a circuit diagram showing a configuration example of the gradation voltage generation circuit 36 in the source driver 3 of FIG.
  • a gradation voltage generation circuit 36 is obtained by adding a gradation voltage adjustment unit 36a to a commonly used gradation voltage generation circuit.
  • First voltage divider 361 that generates multiple positive and negative reference voltages (respective resistance divided voltages at points A to D) from GND, buffers 362a to 362d that temporarily store each reference voltage, and positive polarity reference
  • a second voltage dividing circuit 363a that generates positive gradation voltages VHO to VH 63 by resistance division using the voltages (respective resistance division voltages at points A and B), and a negative reference voltage (points C and D
  • the third voltage divider circuit 363b that generates negative gradation voltages VL63 to VLO using each of the resistance division voltages of the above and the adjustment voltage Va corresponding to the charge draw amount ⁇ V
  • a voltage gradation voltage adjusting unit 36a that outputs the voltage (the resistance divided voltages at points A to D) to be added.
  • the noffer 362a has its positive input connected to the point A of the first voltage divider 361, its negative input connected to the output, and the buffer 362b is the first voltage divider 361a.
  • the positive input terminal is connected to point B of 361, and the negative input terminal is connected to the output terminal.
  • a positive reference voltage is output from these buffers 362a and 362b.
  • the notch 362c has a positive input terminal connected to the point C of the first voltage divider circuit 361 and a negative input terminal connected to the output terminal of the first voltage divider circuit 361.
  • the positive input terminal is connected to the point D of the circuit 361, and the negative input terminal is connected to the output terminal.
  • a negative reference voltage is output from these buffers 362c and 362d.
  • the gradation voltage adjustment unit 36a includes an adjustment voltage generation circuit 364 that generates an adjustment voltage Va according to the gradation voltage adjustment signal DV supplied from the control IC 4, and output terminals and adjustment voltages of the buffers 362a to 362d.
  • Generator circuit 364 has a differential input circuit 365a-365d with a positive input terminal connected to the output terminal and a negative input terminal grounded, and adjustment to adjust the voltage higher by the charge draw amount ⁇ V
  • the voltage Va is added to the reference voltages from the output terminals of the noters 362a to 362d, respectively, and input to the positive input terminals of the differential amplifier circuits 365a to 365d.
  • FIG. 4 is a circuit diagram showing a configuration example of the adjustment voltage generation circuit 364 of FIG.
  • the adjustment voltage generation circuit 364 includes a variable resistance element 364m whose resistance value is variable according to the gradation voltage adjustment signal DV, and a positive input terminal at the output of the variable resistance element 364m.
  • a buffer 364 ⁇ serving as buffer means connected to the output terminal of the negative input terminal is connected.
  • a potentiometer or the like that can obtain a desired resistance value by inputting serial data is preferably used.
  • a potentiometer is used as the variable resistance element 364m will be described.
  • the differential amplifier circuit 365a of the gradation voltage adjusting unit 36a will be described.
  • the differential amplifier circuit 365a has a positive input terminal connected to the output terminal of the adjustment voltage generating circuit 364 and a buffer. It is connected to connection point E with the output terminal of 362a, and its negative input terminal is grounded through a resistor.
  • the differential amplifier circuit 365b has its positive input terminal connected to the connection point F between the output terminal of the adjustment voltage generation circuit 364 and the output terminal of the buffer 362b, and its negative input terminal is grounded via a resistor. ing.
  • the differential amplifier circuit 365c has its positive input terminal connected to the connection point G between the output terminal of the adjustment voltage generating circuit 364 and the output terminal of the buffer 362c, and its negative input terminal is grounded via a resistor.
  • the differential amplifier circuit 365d has its positive polarity input terminal connected to the connection point H between the output terminal of the adjustment voltage generating circuit 364 and the output terminal of the buffer 362d, and its negative input terminal is grounded via a resistor. Has been.
  • a resistor is provided between each end and the negative input end.
  • the output terminal of the differential amplifier circuit 365a is connected to the point I where the positive maximum gradation voltage VHO is output with respect to the counter voltage V com in the second voltage divider circuit 363a.
  • the output terminal of the differential amplifier circuit 365b is connected to the point J at which the positive minimum grayscale voltage VH63 is output in the second voltage divider circuit 363a.
  • the output terminal of the differential amplifier circuit 365c is connected to the point K at which the maximum gradation voltage VL63 having a negative polarity with respect to the counter voltage Vcom is output in the third voltage divider circuit 363b.
  • the output terminal of the differential amplifier circuit 365d is connected to the point L where the negative polarity minimum gradation voltage VLO is output in the third voltage divider circuit 363b.
  • the gradation voltage VHO having the maximum voltage value
  • the minimum gradation voltage VH63 having the maximum voltage value
  • the negative gradation voltage with respect to Vcom are obtained.
  • the gradation voltage VL63 having the maximum voltage value and the voltage of the minimum gradation voltage VLO are adjusted.
  • the gradation voltage adjustment unit 36a is configured to have the lowest value (gradation voltage VH63) and the highest value (gradation voltage) of the gradation voltage range including the positive polarity gradation voltage VHX of any Xth gradation.
  • Adjustment voltage VHO is shifted so as to increase by the amount of charge draw-in ⁇ V (adjustment voltage Va) together with the gradation voltage range (VH63 to VHO), and the negative gradation voltage VLX of any Xth gradation is changed.
  • the minimum value (grayscale voltage VLO) and maximum value (grayscale voltage VL63) of the grayscale voltage range included between them are increased by the charge draw amount ⁇ V (adjustment voltage Va) together with the grayscale voltage range (VLO to VL63).
  • ⁇ V adjustment voltage Va
  • the resistance value of the variable resistance element 364a is controlled by the gradation voltage adjustment signal DV, and the adjustment voltage Va is output via the nother 364 ⁇ . In this manner, the voltage value from Vh to OV is selectively output as the adjustment voltage Va from the adjustment voltage generation circuit 364 in accordance with the gradation voltage adjustment signal DV.
  • the grayscale voltages VHO, VH63, VL63, and VLO are increased by the output adjustment voltage Va from the adjustment voltage generation circuit 364 and output.
  • VHO, VH63, VLO, and VL63 are equally shifted higher by the adjustment voltage Va (charge pull-in amount AV) generated by the adjustment voltage generation circuit 364.
  • the voltage difference between the negative voltage and the negative voltage is maintained, and only the center potential (hereinafter, center value) between the positive voltage and the negative voltage can be changed.
  • VH20-VL20 is held in the same way as before voltage adjustment, and only the center values of VH20 and VL20 can be changed without changing the gradation characteristics.
  • each source driver 3 unit is provided. It becomes possible to set the center value of different positive and negative gray scale voltages.
  • the in-panel deviation of the charge pull-in amount ⁇ caused by the multiple-area divided transfer that is the cause of the above-mentioned flitz force phenomenon (2) is a horizontal deviation
  • the charge of the pixel part connected to the corresponding source signal line with the positive gradation voltage and the negative gradation voltage in source driver units is increased.
  • the center value of the positive / negative polarity gradation voltage it is possible to reduce the flick force phenomenon (2) without changing the gradation characteristics.
  • the method for reducing the flick force phenomenon caused by the horizontal tilt of the charge pull-in amount ⁇ is corrected for the horizontal tilt of the charge pull-in amount ⁇ .
  • FIG. 5 shows the gradation voltage values in the horizontal direction (X direction) of the liquid crystal panel 1.
  • the flicker force can only be adjusted so that the flicker force is not visually observed at one point in the display screen of the liquid crystal panel 1. . Therefore, for example, as shown by the dotted line in FIG. 5, when the adjustment is performed at the center of the panel, the balance between the positive voltage and the negative voltage is broken by ⁇ VI and AVr in FIG. appear.
  • the center value of the positive / negative polarity gradation voltage is not limited to the optimum value in units of three source drivers, but is adjusted from the control IC 4 within the horizontal blanking period, for example.
  • the center value of the positive / negative gradation voltage can be set for each horizontal line or a plurality of horizontal lines in one frame. It becomes possible.
  • the transfer block droops.
  • the pixel connected to the gate signal line corresponding to the positive and negative gradation voltages for each horizontal line or multiple horizontal lines in one frame.
  • FIG. 6 shows the gradation voltage values in the vertical direction (y direction) of the liquid crystal panel 1.
  • the center value of the positive / negative gradation voltage can be changed for each horizontal line or a plurality of horizontal lines within one frame, as shown by the solid line in FIG. Since the center value of the positive / negative gradation voltage can be set to an optimum value, it is possible to greatly reduce the phenomenon of flickering force. For example, for each gate driver 2, the center value of the positive / negative polarity gradation voltage may be set to an optimum value.
  • the center value of the positive / negative gradation voltage can be adjusted for each source driver 3 or for each horizontal line or for each horizontal line.
  • control IC 4 that controls the voltage adjustment is a means for setting the shift amount of the center value in accordance with the pixel part to be driven in the liquid crystal panel. Function.
  • the charge draw amount ⁇ has a deviation in the panel plane. It has a deviation (deviation for each gradation voltage) with respect to the gradation voltage value applied to the drain region of the TFT element. This deviation is called the ⁇ value.
  • the gradation voltage VHO, VH63, VL0 and VL63 can all be increased by the same potential adjustment voltage Va to reduce the flicker force phenomenon.
  • liquid crystal display device 10B capable of correcting the ⁇ value that is a deviation for each gradation voltage will be described.
  • FIG. 7 is a circuit diagram showing a configuration example of the gradation voltage generating circuit 36 ⁇ in the liquid crystal display device 10B (see FIG. 1) according to Embodiment 2 of the present invention.
  • the grayscale voltage generation circuit 36 ⁇ includes a fourth voltage dividing circuit 361b that generates a plurality of reference voltages (predetermined reference voltages) having positive and negative reference voltages VLS and GND power, and a plurality of references.
  • Buffers 362a to 362f that temporarily store voltage deviation, and adjustment voltage generation that generates independent adjustment voltages for each gradation according to the gradation voltage adjustment signals DVO, DVX, and DV63 supplied from the control IC4 Circuit 364a to 364c and adjustment voltage generation circuit 364a to 364c !, differential amplification circuit that differentially amplifies the sum of the adjustment voltage from the deviation and the output voltage from the buffers 362a to 362f!
  • a fifth voltage dividing circuit 363c that generates positive grayscale voltages VHO to VH63 using a positive reference voltage
  • a sixth voltage divider circuit 363d for generating VLO.
  • the adjustment voltage generation circuits 364a to 364c do not change the gradation characteristics, as in the case of the adjustment voltage generation circuit 364 in FIG.
  • the grayscale voltage is increased by the same voltage value (charge pulling amount ⁇ ) when adjusting the grayscale voltage, and the positive / negative grayscale voltage is maintained while the voltage difference between the positive grayscale voltage and the negative grayscale voltage is kept constant.
  • Sen Voltage value is adjusted. For example, positive voltage VH (X) and negative voltage VL (X) of any Xth gradation!
  • VH (X) -VL (X) voltage value is fixed, By increasing the voltage values of VH (X) and VL (X) by the output adjustment voltage Va, only the center values of VH (X) and VL (X) can be changed.
  • the differential amplifier circuit 365a has its positive input terminal connected to the connection point A1 between the output terminal of the adjustment voltage generation circuit 364a and the output terminal of the buffer 362a from which the positive maximum reference voltage is output.
  • the sex input terminal is grounded via a resistor.
  • the differential amplifier circuit 365b has its positive input terminal connected to the connection point B1 between the output terminal of the adjustment voltage generation circuit 364b and the output terminal of the buffer 362b from which a positive intermediate reference voltage is output.
  • the input terminal is grounded via a resistor.
  • the differential amplifier circuit 365c has its positive input terminal connected to the connection point C1 between the output terminal of the regulated voltage generation circuit 364c and the output terminal of the buffer 362c from which the positive minimum reference voltage is output, and its negative electrode.
  • the sex input terminal is grounded via a resistor.
  • the differential amplifier circuit 365d has its positive input terminal connected to the connection point D1 between the output terminal of the adjustment voltage generation circuit 364c and the output terminal of the buffer 362d from which the negative maximum reference voltage is output.
  • the negative input terminal is grounded via a resistor.
  • the differential amplifier circuit 365e has a positive input terminal connected to a connection point E1 between the output terminal of the adjustment voltage generation circuit 364b and the output terminal of the buffer 362e from which a negative intermediate reference voltage is output.
  • the input terminal is grounded.
  • the differential amplifier circuit 365F has its positive input terminal connected to the connection point F1 between the output terminal of the regulated voltage generation circuit 364a and the output terminal of the buffer 362f from which the negative minimum reference voltage is output, and its negative terminal.
  • the sex input is grounded via a resistor! Speak.
  • differential amplification between the output terminals of the adjustment voltage generating circuits 364a to 364c and the connection points A to F, between the output terminals of the buffers 362a to 362f and the connection points A to F, and differential amplification Resistors are provided between the output terminals of the circuits 365a to 365f and the negative input terminals, respectively.
  • the output terminal of the differential amplifier circuit 365a is connected to the point G1 at which the maximum grayscale voltage VHO having a positive polarity with respect to the counter voltage Vcom is output in the fifth voltage divider circuit 363c.
  • the output terminal of the dynamic amplifier circuit 365b is connected to the point HI where the positive halftone voltage VH (X) is output in the fifth voltage divider circuit 363c, and the output terminal of the differential amplifier circuit 365c is In the fifth voltage divider circuit 363c, the minimum positive gradation voltage VH63 is output. Connected to point II.
  • the output terminal of the differential amplifier circuit 365d is connected to the point J1 at which the negative maximum gradation voltage VL63 is output with respect to the counter voltage Vcom in the sixth voltage divider circuit 363d.
  • the output terminal of the differential amplifier circuit 365e is connected to the point K1 where the negative halftone voltage VL (X) is output in the sixth voltage divider circuit 363d, and the output terminal of the differential amplifier circuit 365f In the sixth voltage divider circuit 363d, this is connected to the point L1 at which the negative minimum gradation voltage VLO is output.
  • the gradation voltage VHO having the maximum voltage value, the intermediate gradation voltage VH (X), the minimum gradation voltage VH63, and The gradation voltage VL63 with the maximum voltage value, the intermediate gradation voltage VL (X), and the minimum gradation voltage VLO among the negative gradation voltages with respect to Vcom are adjusted for each gradation.
  • the center value of the positive and negative polarity gradation voltages can be adjusted independently for each gradation, so that the charge drawing amount ⁇ between the gradations can be reduced. Even if there is a deviation ( ⁇ value), or there is a deviation ( ⁇ value) in the center value of the positive and negative polarity gradation voltage that minimizes the flickering force phenomenon between each gradation, even if each gradation By inputting different gradation voltage adjustment signals DVO, DVX and DV63, the flicker force phenomenon can be further reduced.
  • control IC 4 that controls the voltage adjustment sets the shift amount of the center value according to the gradation to be displayed on the pixel part to be driven in the liquid crystal panel. Functions as a means.
  • the gradation voltage adjustment function is provided for the three gradations of the 0th gradation, the Xth gradation, and the 63rd gradation.
  • the gradation voltage adjustment signal transmission line and the gradation voltage adjustment signal input terminal are used to transmit the gradation voltage adjustment signal DV in order to add the gradation voltage adjustment function of the present invention.
  • the above In order to supply the gradation voltage adjustment signal DV from the control IC 4 to each source driver 3 as in the first embodiment, it is necessary to add the transmission line and the input terminal one by one.
  • the gradation voltage adjustment signals DV0, DVX and DV63 are supplied from the control IC4, it is necessary to add three transmission lines and three input terminals.
  • Embodiment 3 describes a liquid crystal display device that can add a gradation voltage adjustment function to a source driver without adding a transmission line and its input terminal.
  • the blanking period is a non-display period, it is not necessary to transmit a video data signal. Therefore, in the third embodiment, by adopting the structure of the source driver shown in FIG. 8, the video signal transmission line is substituted as the gradation voltage adjustment signal transmission line during the blanking period, and the transmission line is reduced. I am trying. This case will be described in detail with reference to FIG.
  • FIG. 8 is a block diagram showing a configuration example of a source driver in the liquid crystal display device according to Embodiment 3 of the present invention.
  • the source driver 3C includes the video data signals DR, DG and DB and the gradation voltage adjustment signals DVO, DVX and DV63.
  • the video data signals DR, DG, and DB are selected and supplied to the input latch circuit 32.
  • the gradation voltage adjustment signals DVO, DVX Selector circuit 39a that selects and supplies DV63 to the gradation voltage adjustment unit 36b, and the selector circuit that generates the selector circuit control signal Ss according to the latch signal LS and start pulse SP to which the control IC4 power is also supplied And a signal generation circuit 39b.
  • FIG. 9 is a signal waveform diagram of latch signal LS, start pulse SP, and selector circuit control signal Ss in FIG.
  • the selector circuit control signal generation circuit 39b controls the selector circuit which rises when the latch signal LS falls and rises when the start pulse SP rises.
  • Signal Ss is generated.
  • the selector circuit control signal Ss is in the ON state (no level)
  • the blanking period is indicated.
  • the selector circuit control signal Ss is in the OFF state (low level)
  • the blanking period is indicated.
  • Video data signals DR, DG, and DB are transmitted from the control IC4 to the source driver 3C in the (display period), and the gradation voltage is adjusted from the control IC4 to the source driver 3C in the blanking period (non-display period)
  • Signals DV0, DVX and D V63 are being transmitted.
  • FIG. 10 is a circuit diagram showing a configuration example of the selector circuit 39a of FIG.
  • the selector circuit 39a transmits the video data signals DR, DG, and DB during the non-returning period, and transmits the gradation voltage adjustment signals DV0, DVX, and DV63 during the retrace period.
  • the output terminal is selected in synchronization with the selector circuit control signal Ss, and the input signal is branched.
  • the selector circuit control signal Ss When the selector circuit control signal Ss is OFF (non-return period), the input video data signals DR, DG, and DB are output to the input latch circuit 32 side, and the selector circuit control signal Ss is ON (return period) Sometimes, the gradation voltage adjustment signals DV0, DVX and DV63 input from the same transmission line are output to the gradation voltage adjustment unit 36b.
  • FIG. 11 is a block diagram showing a configuration example of a liquid crystal display device 10C having the source driver 3C of FIG.
  • the video data signals DR, DG and DB are transmitted from the control IC 4 to the source driver 3C using the video signal transmission line 5 in the non-returning period, and the grayscale voltage in the retrace period.
  • the adjustment signal DV it is possible to realize the source driver 3C to which the gradation voltage adjustment function of the present invention is added without newly adding a transmission line and a driver input terminal on the drive circuit.
  • the grayscale voltage generation circuit 36 or 36B in each source driver 3, 3B, or 3C is supplied to the positive grayscale voltage VHX and the Xth grayscale of the Xth grayscale.
  • a gradation voltage adjustment unit 36a or 36b is provided that simultaneously increases the negative gradation voltage VLX of the gradation by the charge draw amount ⁇ .
  • transfer block To change the gradation characteristics by adjusting the center value of the positive / negative gradation voltage for each line or multiple lines in one frame in accordance with the horizontal and vertical deviation of the amount of charge drawn in lock ⁇ The flicker force phenomenon can be suppressed.
  • an arbitrary X-th gradation positive polarity gradation voltage VH (X) is applied to the gradation voltage generation circuit 36 or 36 ⁇ in each source driver 3, 3 ⁇ or 3C, respectively.
  • the negative polarity gradation voltage VL (X) of the X-th gradation are simultaneously increased by the amount of charge draw ⁇ of each pixel part connected to the corresponding video signal line!
  • the gradation voltage adjusting unit 36a or 36b for adjusting the voltage by adjusting the voltage is not limited to this, and the gradation voltage generating circuit 36 or 36B is provided in each source driver 3, 3B or 3C. It may be provided in the control IC4 as a necessary control means. In this case, a gradation signal for display as a video signal is transmitted to each source driver 3, 3B or 3C instead of the gradation voltage adjustment signal and the video data signal.
  • the gradation voltage adjusting unit 36a or 36b is provided for each one or a plurality of scanning signal lines in one frame, or for two gate drivers. Then, the positive gradation voltage VH (X) of the X-th gradation and the negative gradation voltage VL (X) of the X-th gradation are drawn into the charge amount ⁇ of the picture element connected to the corresponding scanning signal line
  • each gate driver that selectively drives one or a plurality of scanning signal lines or each one or a plurality of scanning signal lines within a frame.
  • the amount of power draw ⁇ (adjustment voltage Va) added to the display gradation voltage (video signal) supplied to each video signal line from 3 source drivers is supported.
  • Picture element connected to the scanning signal line It will be changed on the time axis so as to be optimal for the amount of electric charge of ⁇ V!
  • the adjustment voltage Va will be described.
  • the actual amount of voltage to be shifted is not limited to the value, such as the amount of charge draw-in ⁇ V shown in Equation 1, and the positive polarity of the reference gradation voltage is negative.
  • This is an adjustment voltage value that depends on the initial set value of the center value and the charge draw amount ⁇ V.
  • the amount of charge to be shifted is not limited to the “charge draw amount ⁇ ”, but the adjustment voltage Va in FIG. [0169] Therefore, the adjustment voltage is an adjustment voltage for reducing the screen flicker force, and is an adjustment voltage for shifting the center value of the positive gradation voltage and the negative gradation voltage of the reference gradation voltage by a predetermined voltage. It is.
  • this adjustment voltage may be a charge drawing amount ⁇ or a voltage corresponding thereto.
  • the charge draw amount ⁇ is the liquid crystal capacitance Clc of the pixel electrode, the auxiliary capacitance Cs connected thereto, the parasitic capacitance Cgd between the transistor gate and the drain of the switch element, the gate high voltage VGH of the scanning signal line, the scanning signal As the gate low voltage VGL of the line, as shown in Equation 1 below,
  • ⁇ V ⁇ Cgd / (Cgd + Clc + Cs) ⁇ X (VGH-VGL)
  • the force control IC shown as an example in which the source driver and the control IC are separated from each other is included in the source driver. Change to,.
  • the present invention relates to, for example, an active matrix type liquid crystal display device used for a display screen of a television device display, a personal computer motor, and the like, and a liquid crystal display driving circuit used in the field.
  • a gradation voltage adjustment unit in the voltage generation circuit and simultaneously increasing the positive gradation voltage VHX of the Xth gradation and the negative gradation voltage VLX of the Xth gradation by the charge draw amount ⁇ , Suppresses the flickering phenomenon in the entire panel surface without changing the gradation characteristics to obtain a good display state. Can do.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Liquid Crystal (AREA)
  • Liquid Crystal Display Device Control (AREA)

Abstract

 各ソースドライバ(3)内の階調電圧生成回路(16)に、第X階調の正極性階調電圧VHXおよび第X階調の負極性階調電圧VLXを電荷引き込み量ΔVだけ増加させる階調電圧調整部(16a)を設ける。ゲート信号線方向の電荷引き込み量ΔVの傾斜に合わせて、ドライバ単位で正負極性階調電圧のセンター値を調整することによって、階調特性を変動させることなく、フリッカ現象を抑制することができる。また、転写ブロックにおける電荷引き込み量ΔVの水平方向および垂直方向の偏差に合わせて、1フレーム内で1水平ラインまたは複数ライン毎に正負極性階調電圧のセンター値を調整することによって、階調特性を変動させることなく、フリッカ現象を抑制することができる。

Description

液晶表示装置および液晶表示駆動回路
技術分野
[0001] 本発明は、例えばテレビジョン装置のディスプレイやパーソナルコンピュータのモ- タなどの表示画面に用いられるアクティブマトリクス型などの液晶表示装置およびこ れに用 、る液晶表示駆動回路に関する。
背景技術
[0002] 従来、液晶表示装置では、複数の走査信号線 (ゲート信号線)と複数の映像信号 線 (ソース信号線)とが互いに交差して設けられ、両信号線で区切られた領域毎にゲ ート信号線およびソース信号線に接続された表示用絵素部がマトリクス状に複数配 置された液晶パネルを有している。各表示用絵素部はそれぞれ、画素電極と対向電 極との間に設けられた液晶容量 Clcと、ゲート電極がゲート信号線に接続され、ソー ス電極がソース信号線に接続され、ドレイン電極が画素電極に接続された薄膜トラン ジスタ (TFT)とを有しており、必要に応じて補助容量 Csが設けられている。
[0003] この液晶パネルの周辺部には、複数本のソース信号線毎にソースドライバが設けら れており、ソースドライバは、対応するソース信号線に対して、そのソース信号線に接 続された各表示用絵素部の映像表示に応じた映像信号を供給する。この映像信号 は、液晶の焼き付きを防止するために、対向電極電位に対して正極性と負極性が交 互に供給されて 、る。液晶パネルのこのような駆動を反転駆動と 、う。
[0004] また、液晶パネルの周辺部には、複数本のゲート信号線毎にゲートドライバが設け られており、ゲートドライバは、対応するゲート信号線に対して、そのゲート信号線に 接続された各表示用絵素部を選択駆動するための走査信号を供給する。
[0005] この絵素部毎に、走査信号によって TFTがオン状態になったときに、映像信号力 FTを介して画素電極に供給され、対向電極電位と画素電極電位の電位差に応じて 両電極の間に挟まれた表示媒体である液晶の配向状態が変化し、表示画面上の複 数の画素部全体として、表示画面上に文字 ·図形などの他、各種画像が表示される。
[0006] この液晶表示装置において、各表示用絵素には液晶容量 Clcと補助容量 Csの他 に、 TFTのゲート'ドレイン間の寄生容量 Cgdが存在する。このため、各絵素部には ゲート ·ドレイン間の寄生容量 Cgdに起因して、下記式 1によって示される電荷引き込 み電圧 (電荷引き込み量) Δνが生じ、実際に液晶に印加される電圧は、電荷引き込 み量 Δνだけ変化したものとなる。なお、下記式 1において、 VGHは走査信号線の ゲートハイ電圧であり、 VGLは走査信号線のゲートロー電圧である。
[0007] Δ V = { Cgd/ (Cgd + Clc + Cs) } X (VGH - VGL)
また、液晶パネルの表示画面内において上記電荷引き込み量 Δνが異なることに より、表示画面がちらついて見えるフリツ力現象が生じる。このフリツ力現象には、以下 の(1)と(2)の二種類が挙げられる。
[0008] (1)液晶パネルにおいて、ゲート信号線には配線抵抗や寄生容量が存在するため 、ゲート信号線の信号入力端側から離れるにしたがってゲート信号の波形になまりが 生じ、各絵素部でゲート'ドレイン間の寄生容量 Cgdによる電荷引き込み量 Δνに差 異が生じる。この電荷引き込み量 Δνの差異によって、液晶パネルの表示画面内で 正極性駆動時に液晶層に印加される電圧と、負極性駆動時に液晶層に印加される 電圧の中心値に偏差が生じ、これによつてフリツ力現象が発生する。
[0009] (2)ガラス基板上に絵素パターンを形成する工程において、ガラス基板の面積によ つては一回の形成でガラス基板全面に絵素パターンを形成することが困難であるた め、複数ブロックに分割して複数回の絵素パターン形成を行うことがある。この場合、 ァライメント位置またはパターン形成装置の特性などによって、液晶パネルの表示画 面内にゲート ·ドレイン間の寄生容量 Cgdに偏差が生じる。この寄生容量 Cgdの偏差 により、上記式で示される電荷引き込み量 Δνに差異が生じ、液晶パネルの表示画 面内で正極性駆動時に液晶層に印加される電圧と、負極性駆動時に液晶層に印加 される電圧の中心値に偏差が生じて、フリツ力現象が発生する。
[0010] ここで、フリツ力現象(1)は、ゲート信号の波形なまりに起因する。一般に、ゲート信 号線は表示画面内で水平方向に配置されているため、電荷引き込み量 Δνの水平 方向における傾斜に対して補正を行うことによって、フリツ力現象を緩和させることが できる。
[0011] また、フリツ力現象(2)は、絵素パターンの形成工程における特性に起因する。この ため、複数回の絵素パターン形成を行った場合に、各形成ブロックにおける電荷引 き込み量 Δνの偏差に対して補正を行うことによって、フリツ力現象を緩和させること ができる。
[0012] さらに、例えば日本国公開特許公報特開 2001— 22325 (公開日: 2001年 1月 26 日)(以下、「特許文献 1」という。)には、階調電圧生成回路にポテンションメータなど の外部入力により所望の抵抗値が得られる素子を組み込むことによって、駆動回路 設計後に回路定数を変更することなく階調特性を調整可能な液晶表示装置が開示 されている。
発明の開示
[0013] 上述した従来の二種類のフリツ力現象は、根本的な発生要因が異なるが、両者とも 液晶パネルの表示画面内における電荷引き込み量 Δ Vの偏差に起因するものであ る。このため、液晶パネルの表示画面内における電荷引き込み量 Δνの偏差に応じ て、液晶層に印加される階調電圧値を調整することによって、フリツ力現象を低減さ せることが可能である。
[0014] しカゝしながら、この階調電圧値の調整による変化は、各階調における正極性電圧と 負極性電圧の中心値のずれによるフリツ力現象の程度の変化に加えて、いわゆる Γ 値の変化などのように階調特性の変化をも生じることから表示品位の変化を伴う。そ こで、階調特性を変化させることなくフリツ力現象を低減させることが可能な構造が求 められている。
[0015] 特許文献 1では、駆動回路設計後に階調電圧を容易に調整できるものの、この階 調電圧の調整は、階調特性の変化による表示品位の変化を伴う。
[0016] 本発明は、上記従来の問題を解決するもので、階調特性を変化させることなくフリツ 力現象を低減できる液晶表示装置およびこれに用いる液晶表示駆動回路を提供す ることを目的とする。
[0017] 本発明の液晶表示装置は、表示用の階調電圧が生成される階調電圧生成回路が 設けられ、複数の走査信号線と複数の映像信号線とが互いに交差して設けられ、両 信号線で区切られた絵素部が 2次元状に複数配設され、映像データ信号に応じた該 階調電圧が各絵素部毎に供給されて表示を行う液晶表示装置において、 該階調電圧生成回路に、第 X階調の正極性階調電圧 VH (X)および該第 X階調の 負極性階調電圧 VL (X)を、対応する映像信号線に接続された絵素部の調整電圧 だけ増カロさせて電圧調整する階調電圧調整部が設けられており、そのことにより上記 目的が達成される。
[0018] また、好ましくは、本発明の液晶表示装置において、複数の映像信号線に前記階 調電圧を供給するソースドライバに該階調電圧および各種制御信号を出力するコン トロール部が設けられ、該コントロール部内に前記階調電圧生成回路が設けられて いる。
[0019] さらに、好ましくは、本発明の液晶表示装置において、複数の映像信号線に前記 階調電圧を供給するソースドライバが設けられ、該ソースドライバ内に前記階調電圧 生成回路が設けられている。
[0020] さらに、好ましくは、本発明の液晶表示装置は、複数の走査信号線と複数の映像信 号線とが互いに交差して設けられ、両信号線で区切られた絵素部がマトリクス状に複 数配設された表示部と、
該表示部の周辺に所定数の映像信号線毎に設けられ、正極性または負極性の階 調電圧を映像信号として該映像信号線に選択的に供給する複数のソースドライバと 該表示部の周辺に所定数の走査信号線毎に設けられ、各絵素部駆動用の走査信 号を該走査信号線に選択的に供給する複数のゲートドライバとを有し、
各ソースドライバ内にそれぞれ、表示用の階調電圧が生成される階調電圧生成回 路がそれぞれ設けられ、該階調電圧生成回路に、第 X階調の正極性階調電圧 VH ( X)および該第 X階調の負極性階調電圧 VL (X)を、対応する映像信号線に接続され た絵素部の調整電圧だけ増加させて電圧調整する階調電圧調整部が設けられてお り、そのことにより上記目的が達成される。
[0021] さらに、好ましくは、本発明の液晶表示装置における絵素部は、前記両信号線の交 差部近傍の走査信号線が制御端子に接続され、該交差部近傍の映像信号線が一 方駆動領域に接続されたスィッチ素子と、該スィッチ素子の他方駆動領域が接続さ れた絵素電極とを有する。 [0022] さらに、好ましくは、本発明の液晶表示装置における階調電圧調整部は、 1フレー ム内において一または複数の映像信号線毎に、前記第 X階調の正極性階調電圧 V H (X)および該第 X階調の負極性階調電圧 VL (X)を、対応する映像信号線に接続 された絵素部の調整電圧だけ増加させて電圧調整する。
[0023] さらに、好ましくは、本発明の液晶表示装置における階調電圧調整部は、 1フレー ム内において一または複数の走査信号線毎に、前記第 X階調の正極性階調電圧 V H (X)および該第 X階調の負極性階調電圧 VL (X)を、対応する走査信号線に接続 された絵素部の調整電圧だけ増加させて電圧調整する。
[0024] さらに、好ましくは、本発明の液晶表示装置における階調電圧調整部は、前記ソー スドライバ単位で、前記第 X階調の正極性階調電圧 VH (X)および該第 X階調の負 極性階調電圧 VL (X)を、対応する映像信号線に接続された絵素部の調整電圧だけ 増加させて電圧調整する。
[0025] さらに、好ましくは、本発明の液晶表示装置における階調電圧調整部は、前記ゲー トドライバ単位で、前記第 X階調の正極性階調電圧 VH (X)および該第 X階調の負極 性階調電圧 VL (X)を、対応する走査信号線に接続された絵素部の調整電圧だけ増 加させて電圧調整する。
[0026] さらに、好ましくは、本発明の液晶表示装置における調整電圧は、前記走査信号線 方向の電荷引き込み量 Δ Vの傾斜に合わせて設定される。
[0027] さらに、好ましくは、本発明の液晶表示装置における調整電圧は、前記映像信号線 方向の電荷引き込み量 Δ Vの傾斜に合わせて設定される。
[0028] さらに、好ましくは、本発明の液晶表示装置における調整電圧は、複数領域分割転 写により生じる電荷引き込み量 Δνのパネル面内偏差が水平方向および Zまたは垂 直方向の偏差である場合に、転写ブロックの水平方向および Ζまたは垂直方向の電 荷引き込み量 Δ Vの偏差に合わせて設定される。
[0029] さらに、好ましくは、本発明の液晶表示装置における階調電圧調整部は、前記一ま たは複数の走査信号線の選択駆動タイミング毎に、または前記ゲートドライバの駆動 タイミング単位で、前記調整電圧が加算された電圧またはこれに対応した電圧を、対 応する走査信号線に接続された絵素部の電荷引き込み量 ΔΥに最適なように時間 軸で変化させる。
[0030] さらに、好ましくは、本発明の液晶表示装置における階調電圧調整部は、前記第 X 階調の正極性階調電圧 VH (X)を間に含む階調電圧範囲の最低値と最高値を当該 階調電圧範囲と共に前記調整電圧だけ高くするようにシフトさせ、該第 X階調の負極 性階調電圧 VL (X)を間に含む階調電圧範囲の最低値と最高値を当該階調電圧範 囲と共に該調整電圧だけ高くするようにシフトさせる。
[0031] さらに、好ましくは、本発明の液晶表示装置における階調電圧生成回路は、正負の 基準電圧カゝら正負の複数の参照電圧を生成する第 1の電圧分割回路と、正極性の 参照電圧力ゝら正極性の階調電圧を生成する第 2の電圧分割回路と、負極性の参照 電圧から負極性の階調電圧を生成する第 3の電圧分割回路とを有し、前記階調電圧 調整部は、該第 1の電圧分割回路力 の参照電圧力 出力調整電圧だけ増加させ た電圧またはこれに対応する電圧を、該第 2の電圧分割回路および該第 3の電圧分 割回路にそれぞれ出力する。
[0032] さらに、好ましくは、本発明の液晶表示装置における階調電圧調整部は、前記第 1 の電圧分割回路力 の正極性側の大小二つの参照電圧力 出力調整電圧だけ増 加させた各電圧またはこれに対応する各電圧を、前記第 2の電圧分割回路の階調電 圧範囲の最高値と最低値側にそれぞれ出力し、該第 1の電圧分割回路力 の負極 性側の大小二つの参照電圧から出力調整電圧だけ増加させた各電圧またはこれに 対応する各電圧を、前記第 3の電圧分割回路の階調電圧範囲の最高値と最低値側 にそれぞれ出力する。
[0033] さらに、好ましくは、本発明の液晶表示装置における階調電圧調整部は、コントロー ル部から供給される階調電圧調整信号に応じて調整電圧を生成する調整電圧生成 回路と、該調整電圧生成回路からの出力調整電圧を所定の参照電圧に加算した電 圧を差動増幅する差動増幅回路とを有して 、る。
[0034] さらに、好ましくは、本発明の液晶表示装置における調整電圧生成回路は、前記階 調電圧調整信号の電圧値に応じて抵抗値が可変である可変抵抗素子と、該可変抵 抗素子からの出力電圧が入力されるバッファ手段とを有する。
[0035] さらに、好ましくは、本発明の液晶表示装置における可変抵抗素子はポテンション メータである。
[0036] さらに、好ましくは、本発明の液晶表示装置における差動増幅回路は、正極性の最 大階調電圧、該正極性の最小階調電圧、負極性の最大階調電圧および該負極性の 最小階調電圧に対してそれぞれ設けられており、それぞれ正極性入力端が、前記第 1の電圧分割回路力 の所定の参照電圧を出力する出力端と前記調整電圧生成回 路の出力端とに接続され、その各出力端が前記第 2の電圧分割回路および前記第 3 の電圧分割回路の 、ずれかに接続されて 、る。
[0037] さらに、好ましくは、本発明の液晶表示装置における差動増幅回路は、第 1〜第 4 の差動増幅回路を有しており、
該第 1の差動増幅回路は、前記第 1の電圧分割回路からの正極性側の第 1参照電 圧から出力調整電圧だけ増加させた電圧をその正極性入力端に入力し、その出力 電圧を前記第 2の電圧分割回路の階調電圧範囲の最高値出力端側に出力し、 該第 2の差動増幅回路は、該第 1の電圧分割回路からの正極性側の第 2参照電圧 から該出力調整電圧だけ増加させた電圧をその正極性入力端に入力し、その出力 電圧を前記第 2の電圧分割回路の階調電圧範囲の最低値出力端側に出力し、 該第 3の差動増幅回路は、該第 1の電圧分割回路からの負極性側の第 3参照電圧 から該出力調整電圧だけ増加させた電圧をその正極性入力端に入力し、その出力 電圧を前記第 3の電圧分割回路の階調電圧範囲の最高値出力端側に出力し、 該第 4の差動増幅回路は、該第 1の電圧分割回路からの負極性側の第 4参照電圧 から該出力調整電圧だけ増加させた電圧をその正極性入力端に入力し、その出力 電圧を前記第 3の電圧分割回路の階調電圧範囲の最低値出力端側に出力するよう に構成する。
[0038] さらに、好ましくは、本発明の液晶表示装置における調整電圧生成回路は、各階調 に応じた調整電圧を生成する第 1〜第 n(nは 2以上の自然数;複数)の調整電圧生 成回路を有しており、
前記差動増幅回路は、正極性側と負極性側の各階調電圧に対してそれぞれ nX 2 個設けられており、それぞれ正極性入力端が前記第 1の電圧分割回路から所定の参 照電圧を出力する出力部と、該出力部に対応した該第 1〜第 nの調整電圧生成回路 の各出力端のいずれかとに接続され、その出力端が、該正極性側と負極性側で互い に対応した前記第 2の電圧分割回路の位置および第 3の電圧分割回路の位置のい ずれかに接続されている。
[0039] さらに、好ましくは、本発明の液晶表示装置における調整電圧生成回路は、最大階 調電圧、中間階調電圧および最小階調電圧に対してそれぞれ各階調に応じた調整 電圧を生成する第 1〜第 3の調整電圧生成回路を有しており、
前記差動増幅回路は、その出力電圧値が正極性の最大階調電圧、正極性の中間 階調電圧、正極性の最小階調電圧、負極性の最大階調電圧、負極性の中間階調電 圧および負極性の最小階調電圧になるようにそれぞれ設けられており、それぞれ正 極性入力端が前記第 1の電圧分割回路力 所定の参照電圧を出力する出力部と、 該出力部に対応した該第 1〜第 3の調整電圧生成回路の各出力端のいずれかとに 接続され、その出力端が、該正極性側と負極性側で互いに対応した前記第 2の電圧 分割回路および第 3の電圧分割回路のいずれかに接続されている。
[0040] さらに、好ましくは、本発明の液晶表示装置における差動増幅回路は、第 1〜第 6 の差動増幅回路を有しており、
該第 1の差動増幅回路は、前記第 1の電圧分割回路からの正極性側の第 1参照電 圧力 前記第 1の調整電圧生成回路の出力調整電圧だけ増加させた電圧をその正 極性入力端に入力し、その出力電圧を前記第 2の電圧分割回路の正極性の最大階 調電圧出力端側に出力し、
該第 2の差動増幅回路は、該第 1の電圧分割回路からの正極性側の第 2参照電圧 力 前記第 2の調整電圧生成回路の出力調整電圧だけ増加させた電圧をその正極 性入力端に入力し、その出力電圧を前記第 2の電圧分割回路の正極性の中間階調 電圧出力端側に出力し、
該第 3の差動増幅回路は、該第 1の電圧分割回路からの正極性側の第 3参照電圧 力 前記第 3の調整電圧生成回路の出力調整電圧だけ増加させた電圧をその正極 性入力端に入力し、その出力電圧を前記第 2の電圧分割回路の正極性の最小階調 電圧出力端側に出力し、
該第 4の差動増幅回路は、該第 1の電圧分割回路からの負極性側の第 4参照電圧 から該第 1の調整電圧生成回路の出力調整電圧だけ増加させた電圧をその正極性 入力端に入力し、その出力電圧を前記第 3の電圧分割回路の負極性の最大階調電 圧出力端側に出力し、
該第 5の差動増幅回路は、該第 1の電圧分割回路からの負極性側の第 5参照電圧 から該第 2の調整電圧生成回路の出力調整電圧だけ増加させた電圧をその正極性 入力端に入力し、その出力電圧を前記第 3の電圧分割回路の負極性の中間階調電 圧出力端側に出力し、
該第 6の差動増幅回路は、該第 1の電圧分割回路からの負極性側の第 6参照電圧 から該第 3の調整電圧生成回路の出力調整電圧だけ増加させた電圧をその正極性 入力端に入力し、その出力電圧を前記第 3の電圧分割回路の負極性の最小階調電 圧出力端側に出力するように構成する。
[0041] さらに、好ましくは、本発明の液晶表示装置における階調電圧調整部は、第 X階調 の正極性階調電圧 VH (X)および該第 X階調の負極性階調電圧 VL (X)を、各階調 毎に独立して電圧調整する。
[0042] さらに、好ましくは、本発明の液晶表示装置において、前記コントロール部力も前記 ソースドライバ間に、前記階調電圧調整信号を供給するための第 1信号伝送ラインと
、前記映像データ信号を供給するための第 2信号伝送ラインとが設けられて 、る。
[0043] さらに、好ましくは、本発明の液晶表示装置において、けるコントロール部力 前記 ソースドライバ間に、前記階調電圧調整信号および前記映像データ信号を共通に供 給するための信号伝送ラインが設けられている。
[0044] さらに、好ましくは、本発明の液晶表示装置において、前記信号伝送ラインを介し て帰線期間中に前記階調電圧調整信号が供給され、該信号伝送ラインを介して非 帰線期間中に前記映像データ信号が供給され、
前記ソースドライバは、前記コントロール部力 供給されるラッチ信号とスタートパルス 力 セレクタ回路制御信号を生成するセレクタ回路制御信号生成回路と、該セレクタ 回路制御信号に基づ!/、て該映像データ信号および該階調電圧調整信号の 、ずれ かを選択するセレクタ回路とを更に有する。
[0045] さらに、好ましくは、本発明の液晶表示装置におけるセレクタ回路制御信号は前記 ラッチ信号の立ち下がりタイミングで立ち上がり、前記スタート信号の立ち上がりタイミ ングで立ち下がるように生成される。
[0046] さらに、好ましくは、本発明の液晶表示装置におけるセレクタ回路は、前記セレクタ 回路制御信号の 2値の一方レベル期間で前記階調電圧調整信号を選択して前記階 調電圧調整部に出力し、該 2値の他方レベル期間で前記映像データ信号を選択し て出力する。
[0047] さらに、好ましくは、本発明の液晶表示装置における調整電圧は、画面フリツ力低 減用の調整電圧である。
[0048] さらに、好ましくは、本発明の液晶表示装置における調整電圧は、基準階調電圧の 正極性階調電圧と負極性階調電圧のセンター値を所定電圧だけシフトさせるための 調整電圧である。
[0049] さらに、好ましくは、本発明の液晶表示装置における調整電圧は、基準階調電圧の 正極性階調電圧と負極性階調電圧のセンター値の初期設定値と電荷引き込み量 Δ Vに依存する電圧値である。
[0050] さらに、好ましくは、本発明の液晶表示装置における調整電圧は電荷引き込み量
Δ Vまたはこれに対応した電圧である。
[0051] さらに、好ましくは、本発明の液晶表示装置における絵素部は、前記両信号線の交 差部近傍の走査信号線が制御端子に接続され、該交差部近傍の映像信号線が一 方駆動領域に接続されたスィッチ素子と、該スィッチ素子の他方駆動領域が接続さ れた絵素電極とを有し、
前記電荷引き込み量 Δνは、
該絵素電極の液晶容量 Clc、これに接続された補助容量 Cs、該スィッチ素子のトラ ンジスタゲート'ドレイン間の寄生容量 Cgd、該走査信号線のゲートハイ電圧 VGH、 該走査信号線のゲートロー電圧 VGLとして、
Δ V = { Cgd/ (Cgd + Clc + Cs) } X (VGH - VGL)
である。
[0052] 本発明の液晶表示駆動回路は、正極性または負極性の表示用の階調電圧が生成 される階調電圧生成回路が設けられ、該表示用の階調電圧を用いて液晶表示部を 表示駆動する液晶表示駆動回路において、
該階調電圧生成回路に、第 X階調の正極性階調電圧 VH (X)および該第 X階調の 負極性階調電圧 VL (X)を、対応する映像信号が供給される絵素部の調整電圧だけ 増加させて電圧調整する階調電圧調整部が設けられており、そのことにより上記目 的が達成される。
[0053] さらに、好ましくは、本発明の液晶表示駆動回路において、前記正極性または負極 性の表示用の階調電圧を映像信号として前記液晶表示部に供給する複数のソース ドライノくと、
液晶表示駆動用の走査信号を該液晶表示部に供給する複数のゲートドライバとを有 し、
各ソースドライバ内にそれぞれ前記階調電圧生成回路がそれぞれ設けられている。
[0054] さらに、好ましくは、本発明の液晶表示駆動回路における階調電圧調整部は、前記 走査信号の駆動タイミング毎に、または前記ゲートドライバの駆動タイミング単位で、 前記調整電圧が加算された電圧またはこれに対応した電圧を、対応する走査信号が 供給される絵素部の電荷引き込み量 Δνに最適なように時間軸で変化させる。
[0055] さらに、好ましくは、本発明の液晶表示駆動回路における階調電圧調整部は、前記 第 X階調の正極性階調電圧 VH (X)を間に含む階調電圧範囲の最低値と最高値を 当該階調電圧範囲と共に前記調整電圧だけ高くするようにシフトさせ、該第 X階調の 負極性階調電圧 VL (X)を間に含む階調電圧範囲の最低値と最高値を当該階調電 圧範囲と共に該調整電圧だけ高くするようにシフトさせる。
[0056] さらに、好ましくは、本発明の液晶表示駆動回路における階調電圧生成回路は、正 負の基準電圧力 正負の複数の参照電圧を生成する第 1の電圧分割回路と、正極 性の参照電圧力ゝら正極性の階調電圧を生成する第 2の電圧分割回路と、負極性の 参照電圧カゝら負極性の階調電圧を生成する第 3の電圧分割回路とを有し、前記階調 電圧調整部は、該第 1の電圧分割回路力 の参照電圧力 出力調整電圧だけ増加 させた電圧またはこれに対応する電圧を、該第 2の電圧分割回路および該第 3の電 圧分割回路にそれぞれ出力する。
[0057] さらに、好ましくは、本発明の液晶表示駆動回路における階調電圧調整部は、前記 第 1の電圧分割回路力 の正極性側の大小二つの参照電圧力 出力調整電圧だけ 増加させた各電圧またはこれに対応する各電圧を、前記第 2の電圧分割回路の階調 電圧範囲の最高値と最低値側にそれぞれ出力し、該第 1の電圧分割回路力ゝらの負 極性側の大小二つの参照電圧から出力調整電圧だけ増加させた各電圧またはこれ に対応する各電圧を、前記第 3の電圧分割回路の階調電圧範囲の最高値と最低値 側にそれぞれ出力する。
[0058] さらに、好ましくは、本発明の液晶表示駆動回路における階調電圧調整部は、コン トロール部から供給される階調電圧調整信号に応じて調整電圧を生成する調整電圧 生成回路と、該調整電圧生成回路力 の出力調整電圧を所定の参照電圧に加算し た電圧を差動増幅する差動増幅回路とを有して!/、る。
[0059] さらに、好ましくは、本発明の液晶表示駆動回路における調整電圧生成回路は、前 記階調電圧調整信号の電圧値に応じて抵抗値が可変である可変抵抗素子と、該可 変抵抗素子からの出力電圧が入力されるバッファ手段とを有する。
[0060] さらに、好ましくは、本発明の液晶表示駆動回路における差動増幅回路は、正極性 の最大階調電圧、該正極性の最小階調電圧、負極性の最大階調電圧および該負極 性の最小階調電圧に対してそれぞれ設けられており、それぞれ正極性入力端が、前 記第 1の電圧分割回路からの所定の参照電圧を出力する出力端と前記調整電圧生 成回路の出力端とに接続され、その各出力端が前記第 2の電圧分割回路および前 記第 3の電圧分割回路の 、ずれかに接続されて 、る。
[0061] さらに、好ましくは、本発明の液晶表示駆動回路における差動増幅回路は、第 1〜 第 4の差動増幅回路を有しており、
該第 1の差動増幅回路は、前記第 1の電圧分割回路からの正極性側の第 1参照電 圧から出力調整電圧だけ増加させた電圧をその正極性入力端に入力し、その出力 電圧を前記第 2の電圧分割回路の階調電圧範囲の最高値出力端側に出力し、 該第 2の差動増幅回路は、該第 1の電圧分割回路からの正極性側の第 2参照電圧 から該出力調整電圧だけ増加させた電圧をその正極性入力端に入力し、その出力 電圧を前記第 2の電圧分割回路の階調電圧範囲の最低値出力端側に出力し、 該第 3の差動増幅回路は、該第 1の電圧分割回路からの負極性側の第 3参照電圧 から該出力調整電圧だけ増加させた電圧をその正極性入力端に入力し、その出力 電圧を前記第 3の電圧分割回路の階調電圧範囲の最高値出力端側に出力し、 該第 4の差動増幅回路は、該第 1の電圧分割回路からの負極性側の第 4参照電圧 から該出力調整電圧だけ増加させた電圧をその正極性入力端に入力し、その出力 電圧を前記第 3の電圧分割回路の階調電圧範囲の最低値出力端側に出力するよう に構成されている。
[0062] さらに、好ましくは、本発明の液晶表示駆動回路における調整電圧生成回路は、各 階調に応じた調整電圧を生成する第 1〜第 n(nは 2以上の自然数)の調整電圧生成 回路を有しており、
前記差動増幅回路は、正極性側と負極性側の各階調電圧に対してそれぞれ nX 2 個設けられており、それぞれ正極性入力端が前記第 1の電圧分割回路から所定の参 照電圧を出力する出力部と、該出力部に対応した該第 1〜第 nの調整電圧生成回路 の各出力端のいずれかとに接続され、その出力端が、該正極性側と負極性側で互い に対応した前記第 2の電圧分割回路の位置および第 3の電圧分割回路の位置のい ずれかに接続されている。
[0063] さらに、好ましくは、本発明の液晶表示駆動回路における調整電圧生成回路は、最 大階調電圧、中間階調電圧および最小階調電圧に対してそれぞれ各階調に応じた 調整電圧を生成する第 1〜第 3の調整電圧生成回路を有しており、
前記差動増幅回路は、その出力電圧値が正極性の最大階調電圧、正極性の中間 階調電圧、正極性の最小階調電圧、負極性の最大階調電圧、負極性の中間階調電 圧および負極性の最小階調電圧になるようにそれぞれ設けられており、それぞれ正 極性入力端が前記第 1の電圧分割回路力 所定の参照電圧を出力する出力部と、 該出力部に対応した該第 1〜第 3の調整電圧生成回路の各出力端のいずれかとに 接続され、その出力端が、該正極性側と負極性側で互いに対応した前記第 2の電圧 分割回路および第 3の電圧分割回路のいずれかに接続されている。
[0064] さらに、好ましくは、本発明の液晶表示駆動回路における差動増幅回路は、第 1〜 第 6の差動増幅回路を有しており、
該第 1の差動増幅回路は、前記第 1の電圧分割回路からの正極性側の第 1参照電 圧力 前記第 1の調整電圧生成回路の出力調整電圧だけ増加させた電圧をその正 極性入力端に入力し、その出力電圧を前記第 2の電圧分割回路の正極性の最大階 調電圧出力端側に出力し、
該第 2の差動増幅回路は、該第 1の電圧分割回路からの正極性側の第 2参照電圧 力 前記第 2の調整電圧生成回路の出力調整電圧だけ増加させた電圧をその正極 性入力端に入力し、その出力電圧を前記第 2の電圧分割回路の正極性の中間階調 電圧出力端側に出力し、
該第 3の差動増幅回路は、該第 1の電圧分割回路からの正極性側の第 3参照電圧 力 前記第 3の調整電圧生成回路の出力調整電圧だけ増加させた電圧をその正極 性入力端に入力し、その出力電圧を前記第 2の電圧分割回路の正極性の最小階調 電圧出力端側に出力し、
該第 4の差動増幅回路は、該第 1の電圧分割回路からの負極性側の第 4参照電圧 から該第 1の調整電圧生成回路の出力調整電圧だけ増加させた電圧をその正極性 入力端に入力し、その出力電圧を前記第 3の電圧分割回路の負極性の最大階調電 圧出力端側に出力し、
該第 5の差動増幅回路は、該第 1の電圧分割回路からの負極性側の第 5参照電圧 から該第 2の調整電圧生成回路の出力調整電圧だけ増加させた電圧をその正極性 入力端に入力し、その出力電圧を前記第 3の電圧分割回路の負極性の中間階調電 圧出力端側に出力し、
該第 6の差動増幅回路は、該第 1の電圧分割回路からの負極性側の第 6参照電圧 から該第 3の調整電圧生成回路の出力調整電圧だけ増加させた電圧をその正極性 入力端に入力し、その出力電圧を前記第 3の電圧分割回路の負極性の最小階調電 圧出力端側に出力するように構成されている。
[0065] さらに、好ましくは、本発明の液晶表示駆動回路における階調電圧調整部は、第 X 階調の正極性階調電圧 VH (X)および該第 X階調の負極性階調電圧 VL (X)を、各 階調毎に独立して電圧調整する。
[0066] 上記構成により、以下、本発明の作用を説明する。
[0067] 本発明にあっては、階調特性に変化を与えることなぐフリツ力現象を低減させる。 [0068] 液晶表示装置にお!、て、第 X階調表示時に各絵素部の液晶層に印加される電圧 VLC (X)は、対向電位を Vcom、任意の第 X階調の正極性階調電圧を VH (X)、任 意の第 X階調の負極性階調電圧を VL (X)とすると、
VLC (X) = VH (X) - Vcom (正極性駆動時)
VLC (X) = Vcom- VL (X) (負極性駆動時)
によって表される。
[0069] この各絵素部の液晶層に印加される電圧 VLC (X)に変化が生じると、液晶層にカロ えられる電界に変化が生じ、液晶層の光透過率に変化が生じる。それに伴って、液 晶表示装置に所望の階調レベルとは異なった階調レベルが表示として表れ、この結 果として階調特性に変化が生じる。したがって、階調特性に変化を与えないためには 、各階調レベルにぉ 、て各絵素部の液晶層に印加される電圧 VLC (X)を所望の電 圧値に固定する必要がある。
[0070] し力しながら、上述したように、 TFT基板には TFTの寄生容量 Cgdに起因して電荷 引き込み量 Δνが存在するため、実際に液晶層に印加される電圧 VLC (X)は、電荷 引き込み量を Δνとすると、
VLC (X) = (VH (X) - AV) -Vcom (正極性駆動時)
VLC (X) = Vcom— (VL (X)— Δ V) (負極性駆動時)
によって表される電圧値となる。
[0071] このように、第 X階調の正極性階調電圧 VHXおよび第 X階調の負極性階調電圧 V LXが電荷引き込み量 Δνだけ減少することによって、正極性階調電圧と負極性階調 電圧との平衡が崩れ、フリツ力現象が発生する。
[0072] そこで、本発明にあっては、第 X階調の正極性階調電圧 VHXおよび第 X階調の負 極性階調電圧 VLXを電荷引き込み量 Δνだけ同時に増カロさせることによって、フリツ 力現象の発生を抑制することが可能となる。このような電荷引き込み量 Δνを打ち消 すように階調電圧 VHXおよび VLXをそれぞれ同じ電圧値 Δν (電荷引き込み量 Δ V)だけ増加させることによって、実際に液晶層に印加される電圧 VLC (X)を所望の 電圧値に固定しながら、フリツ力現象を抑制することが可能となる。
[0073] さらに、上述したように、(1)パネル面内でのゲート信号波形のなまり、および(2)パ ネル面内でのゲート'ドレイン間の寄生容量 Cgdの偏差(ω値)によって、電荷引き込 み量 Δνはパネル面内で異なった値となる。このため、パネル面内全体でフリツ力現 象を抑制するためには、パネル面内の電荷引き込み量 Δνの大きさに応じて、階調 電圧毎に適正な調整量に変化させる必要がある。
[0074] そこで、本発明にあっては、液晶表示装置において、例えばソースドライバ内に設 けられた階調電圧生成回路に階調電圧調整部を設けて、液晶表示装置の駆動時に 、第 X階調の正極性階調電圧 VHXおよび第 X階調の負極性階調電圧 VLXを、各電 荷引き込み量 Δνに応じて動的に増加させることによって、パネル面内全体のフリツ 力現象を抑制することが可能となる。
[0075] 例えば、ソースドライバ毎に階調電圧調整部を設けて、コントロール部力 各ソース ドライバに異なった階調電圧調整信号を供給することによって、ソースドライバ単位で 異なった正負極性階調電圧のセンター値を設定することが可能となる。
[0076] よって、上記フリツ力現象(1)に対しては、ゲート信号線方向の電荷引き込み量 Δν の傾斜に合わせて、ドライバ単位で正負極性階調電圧のセンター値を調整すること によって、階調特性を変動させることなぐフリツ力現象(1)を抑制することが可能とな る。
[0077] また、上記フリツ力現象(2)において、複数領域分割転写により生じる電荷引き込み 量 Δ Vのパネル面内偏差が例えば水平方向の偏差である場合にも、転写ブロックの 電荷引き込み量 AVの偏差に合わせて、ドライバ単位で正負極性階調電圧のセンタ 一値を調整することによって、階調特性を変動させることなぐフリツ力現象(2)を抑制 することが可能となる。
[0078] さらに、例えば、水平帰線期間内にコントロール部から階調電圧調整信号を供給す ること〖こよって、 1水平ラインまたは複数水平ライン毎に正負極性階調電圧のセンタ 一値を設定することが可能となる。
[0079] よって、上記フリツ力現象(2)において、複数領域分割転写により生じる電荷引き込 み量 Δ Vのパネル面内偏差が垂直方向の偏差であつても、転写ブロックの電荷引き 込み量 Δνの偏差に合わせて、 1フレーム内で 1ラインまたは複数ライン毎に正負極 性階調電圧のセンター値を調整することによって、階調特性を変動させることなぐフ リツ力現象 (2)を抑制することが可能となる。
[0080] さらに、電荷引き込み量 Δνは、 TFTのドレインに印加される階調電圧値に対する 偏差 (階調電圧毎の偏差)を有している。よって、調電圧生成回路に階調毎に独立し て調整電圧生成回路を設けて、各階調に対してそれぞれ異なる階調電圧調整信号 を供給し、独立して正負極性階調電圧センター値を調整することによって、各階調電 圧間で電荷引き込み量 Δνに偏差が存在するか、または各階調電圧間でフリツ力現 象が最小となる正負極性階調電圧センター値に偏差が存在する場合でも、フリツ力 現象を抑制することが可能となる。
[0081] さらに、階調電圧調整信号は、専用の伝送ラインを設けてもよいが、帰線期間中に 映像信号伝送ラインを階調電圧調整信号伝送ラインとして用いることによって、階調 電圧調整信号専用の伝送ラインを削減することが可能となる。
[0082] なお、ここで、上記特許文献 1に開示されて 、る液晶表示装置と本願発明につ!/、て 比較してみると、両者は階調電圧を調整する手段が類似している。
[0083] し力しながら、特許文献 1と本発明では、差動増幅回路の使用方法に相違がある。
また、特許文献 1では、駆動回路設計後に階調特性を容易に調整することを目的とし ているのに対して、本発明では階調特性を変化させることなくパネル面内全面のフリ ッカ現象を低減させることを目的として!/、る。
[0084] また、特許文献 1では、階調電圧を調整した場合に、各階調の正極性電圧と負極 性電圧の電圧差が変化することによって、各階調における電荷引き込み量が変化す る。その電荷引き込み量の変化に起因して、フリツ力現象の悪ィ匕を引き起こすという 問題がある。
[0085] さらに、特許文献 1では、階調電圧調整用のシリアルデータを入力する方法や、そ のタイミングなどに関しては、何等言及されていない。
[0086] 下記表 1に、本願発明と特許文献 1との内容比較を示している。
[0087] [表 1] 項目 特開 2001- 22325 本発明 目的 階調特性の調整 /V'ネル面内のフリツ力現象の低減 階調電圧調整手段 正極性と負極性階調電圧の 正極性と負極性階調電圧の振 振幅値を変化させる。 幅値を固定して、センタ-値のみ 変化させる。
階調電圧調整用于' -タの 一切、言及されていない。 シリアルテ'-タの入力方法'タイミンク' 入力方法 について記載。
また、 T -タラインの追加なしに伝 送可能な方法についても記載。
以上のことから、特許文献 1と本願発明はその構成を全く相違するものである。
[0088] 以上により、本発明によれば、液晶表示装置において、階調電圧生成回路に階調 電圧調整部を設けて、第 X階調の正極性階調電圧 VHXおよび第 X階調の負極性階 調電圧 VLXを、電荷引き込み量 AVだけ同時に増加させることによって、階調特性 を変化させることなぐパネル面内全体のフリツ力現象を抑制して、良好な表示状態を 得ることができる。
図面の簡単な説明
[0089] [図 1]本発明の実施形態 1に係る液晶表示装置の構成例を示すブロック図である。
[図 2]図 1の液晶表示装置におけるソースドライバの構成例を示すブロック図である。
[図 3]図 2のソースドライバにおける階調電圧生成回路の構成例を示す回路図である
[図 4]図 3の調整電圧生成回路の構成例を示す回路図である。
[図 5]本発明の実施形態 1において、電荷引き込み量 Δνの水平方向の偏差に起因 するフリツ力現象の低減方法を説明するための図である。
[図 6]本発明の実施形態 1において、電荷引き込み量 Δνの垂直方向の傾斜に起因 するフリツ力現象の低減方法を説明するための図である。
[図 7]本発明の実施形態 2の液晶表示装置における階調電圧生成回路の構成例を 示す回路図である。
[図 8]本発明の実施形態 3の液晶表示装置におけるソースドライバの構成例を示すブ ロック図である。 [図 9]図 8のラッチ信号 LS、スタートパルス SPおよびセレクタ回路制御信号 Ssの信号 波形図である。
[図 10]図 8のセレクタ回路の構成例を示す回路図である。
[図 11]図 8のソースドライバを有する液晶表示装置の構成例を示すブロック図である 発明を実施するための最良の形態
[0090] 以下に、本発明の液晶表示装置およびこれを用いた液晶表示駆動回路の実施形 態 1〜3について、図面を参照しながら詳細に説明する。
(実施形態 1)
図 1は、本発明の実施形態 1に係る液晶表示装置の構成例を示すブロック図である
[0091] 図 1において、液晶表示装置 10は、液晶パネル 1と、複数のゲートドライバ 2と、複 数のソースドライバ 3と、映像データ信号およびこれらの制御信号を出力するコント口 ール IC (コントロール部) 4とを有して!/、る。
[0092] 液晶パネル 1は、複数の走査信号線 (ゲート信号線)と複数の映像信号線 (ソース 信号線)とが互いに交差して設けられ、両信号線で区切られた絵素領域毎 (絵素部 毎)にゲート信号線およびソース信号線に接続された表示用の絵素部がマトリクス状 に複数配置されている。
[0093] ゲートドライバ 2は、液晶パネル 1の周辺に複数本 (所定本数)のゲート信号線毎に 設けられており、対応する各ゲート信号線に対して、そのゲート信号線に接続された 各絵素部を選択駆動するための走査信号 (ゲート信号)が選択的に供給される。
[0094] ソースドライバ 3は、液晶パネル 1の周辺に複数本 (所定本数)のソース信号線毎に 設けられており、対応する各ソース信号線に対して、そのソース信号線に接続された 各表示用絵素部の映像表示に応じた正極性および負極性の階調電圧が映像信号( ソース信号)として選択的に供給される。これにより、液晶パネル 1は反転駆動される
[0095] コントロール IC4からは、ゲートドライバ 2に対してクロック信号 CKおよびスタートパ ルス SPなどの各種同期信号が供給されると共に、ソースドライバ 3に対してクロック信 号 CK、スタートパルス SPおよびラッチ信号 LSなどの各種同期信号と、 RGBの各映 像データ信号 DR, DG, DBと、階調電圧を調整するための階調電圧調整信号 DV が供給される。
[0096] この液晶表示装置 10において、コントロール IC4から出力される各種同期信号によ つてソースドライノく 3およびゲートドライバ 2が駆動され、これによつて、映像データ信 号に基づ ヽた映像が、表示部を構成する液晶パネル 1より表示される。
[0097] 本実施形態 1では、各ソースドライバ 3に、コントロール IC4から供給される階調電圧 調整信号 DVによって任意の各階調の階調電圧値 (第 X階調の正極性階調電圧 VH Xおよび第 X階調の負極性階調電圧 VLX)を電荷引き込み量 Δ Vだけ高く電圧調整 する機能 (以下、階調電圧調整機能と ヽぅ)が設けられて!/ヽる。
[0098] これにより、ゲート信号の波形なまりによって各絵素部で電荷引き込み量 Δνに差 異が生じても、ソースドライバ 3単位で階調電圧のセンター値を電圧調整することによ つて、フリツ力を抑制することができる。また、複数領域分割転写により例えば水平方 向に電荷引き込み量 Δνの偏差が生じても、その水平方向の電荷引き込み量 Δνの 傾斜に合わせて階調電圧のセンター値を電圧調整することによって、フリツ力を抑制 することができる。このことについて、図 2〜図 4を用いて詳細に説明する。
[0099] 図 2は、図 1の液晶表示装置 10におけるソースドライバ 3の構成例を示すブロック図 である。
[0100] 図 2において、ソースドライバ 3は、一般的に用いられているソースドライバと同様に 、シフトレジスタ回路 31と、入力ラッチ回路 32と、サンプリングメモリ回路 33と、ホール ドメモリ回路 34と、レベルシフタ回路 35と、階調電圧生成回路(階調電圧生成部) 36 と、 DA (デジタル 'アナログ)変換回路 37と、出力回路 38とを有している。
[0101] シフトレジスタ回路 31は、コントロール IC4からのクロック信号 CKとスタートパルス S Ρが入力されて、各ソース信号線に対するサンプリングクロックを生成してサンプリン グメモリ回路 33に供給する。
[0102] 入力ラッチ回路 32は、コントロール IC4からの映像データ信号 DR、 DGおよび DB をラッチする。
[0103] サンプリングメモリ回路 33は、入力ラッチ回路 32でラッチされた映像データ信号 DR 、 DGおよび DBを、シフトレジスタ回路 31からのサンプリングクロックのタイミングでに よってサンプリングする。
[0104] ホールドメモリ回路 34は、コントロール IC4からのラッチ信号 LSのタイミングでサン プリングメモリ 33からの 1水平ライン分の映像データ信号 (サンプリングデータ)がラッ チされて保持される。
[0105] レベルシフタ回路 35は、ホールドメモリ回路 34の映像データ信号(サンプリングデ ータ)が供給されて、そのレベルが所定量だけシフトされる。
[0106] 階調電圧生成回路 36は、多段階表示に必要な複数の階調電圧が生成可能とされ て、この階調電圧は DA変換回路 37に供給される。本実施形態 1において、階調電 圧生成回路 36は、コントロール IC4から供給される階調電圧調整信号 DVに応じて 階調電圧を調整する調整電圧 Vaを出力する調整電圧調整部 36aを有して ヽる。こ の調整電圧 Vaが各階調の階調電圧値 (第 X階調の正極性階調電圧 VHXおよび第 X階調の負極性階調電圧 VLX)を電荷引き込み量 Δνだけ高く電圧調整するための 電圧となっている。これを図 3および図 4にて詳細に説明する。
[0107] DA変換回路 37は、レベルシフタ回路 35からの映像データ信号に応じて階調電圧 生成回路 36からの階調電圧が DA変換されて出力回路 38に供給される。
[0108] 出力回路 38は、 DA変換された DA変換回路 37からの階調電圧を表示電圧として 各ソース信号線にそれぞれ出力する。
[0109] 図 3は、図 2のソースドライバ 3における階調電圧生成回路 36の構成例を示す回路 図である。
[0110] 図 3において、階調電圧生成回路 36は、一般的に用いられている階調電圧生成回 路に、階調電圧調整部 36aが付加されたものであり、正負の基準電圧 VLSと GND から正負の複数の参照電圧 (点 A〜Dの各抵抗分割電圧)を生成する第 1の電圧分 割回路 361と、各参照電圧をそれぞれ一時記憶するバッファ 362a〜362dと、正極 性の参照電圧(点 A, Bの各抵抗分割電圧)を用いて正極性の階調電圧 VHO〜VH 63を抵抗分割により生成する第 2の電圧分割回路 363aと、負極性の参照電圧 (点 C , Dの各抵抗分割電圧)を用いて負極性の階調電圧 VL63〜VLOを生成する第 3の 電圧分割回路 363bと、電荷引き込み量 Δ Vに相当する調整電圧 Vaを上記参照電 圧 (点 A〜Dの各抵抗分割電圧)にそれぞれ加算するように出力する電圧階調電圧 調整部 36aとを有している。
[0111] ノッファ 362aは第 1の電圧分割回路 361の点 Aにその正極性入力端が接続され、 出力端にその負極性入力端が接続されており、バッファ 362bは第 1の電圧分割回 路 361の点 Bにその正極性入力端が接続され、その出力端にその負極性入力端が 接続されている。これらのバッファ 362aおよび 362bからは、正の参照電圧が出力さ れている。また、ノ ッファ 362cは第 1の電圧分割回路 361の点 Cにその正極性入力 端が接続され、その出力端にその負極性入力端が接続されており、ノ ッファ 362dは 第 1の電圧分割回路 361の点 Dにその正極性入力端が接続され、その出力端にそ の負極性入力端が接続されている。これらのバッファ 362cおよび 362dからは、負の 参照電圧が出力されている。
[0112] 階調電圧調整部 36aは、コントロール IC4から供給される階調電圧調整信号 DVに 応じて調整電圧 Vaを生成する調整電圧生成回路 364と、バッファ 362a〜362dの各 出力端および調整電圧生成回路 364の出力端に正極性入力端が接続され、負極性 入力端が接地された差動増幅回路 365a〜365dとを有しており、電荷引き込み量 Δ Vだけ高く電圧調整するための調整電圧 Vaを、ノ ッファ 362a〜362dの各出力端か らの参照電圧にそれぞれ加算して差動増幅回路 365a〜365dの各正極性入力端に それぞれ入力している。
[0113] 図 4は、図 3の調整電圧生成回路 364の構成例を示す回路図である。
[0114] 図 4に示すように、調整電圧生成回路 364は、階調電圧調整信号 DVに応じて抵抗 値が可変である可変抵抗素子 364mと、可変抵抗素子 364mの出力に正極性入力 端が接続され、その負極性入力端がその出力端に接続されたバッファ手段としての バッファ 364ηとを有している。この可変抵抗素子 364mとしては、シリアルデータを入 力することによって所望の抵抗値を得ることができるポテンションメータなどを用いるこ とが好ましい。以下では、可変抵抗素子 364mとしてポテンションメータを用いた場合 について説明する。
[0115] 図 3の説明に戻って階調電圧調整部 36aの差動増幅回路 365aから説明する。差 動増幅回路 365aはその正極性入力端が調整電圧生成回路 364の出力端とバッフ ァ 362aの出力端との接続点 Eに接続され、その負極性入力端が抵抗を介して接地さ れている。また、差動増幅回路 365bはその正極性入力端が調整電圧生成回路 364 の出力端とバッファ 362bの出力端との接続点 Fに接続され、その負極性入力端が抵 抗を介して接地されている。さらに、差動増幅回路 365cがその正極性入力端が調整 電圧生成回路 364の出力端とバッファ 362cの出力端との接続点 Gに接続され、その 負極性入力端が抵抗を介して接地されている。さら〖こ、差動増幅回路 365dはその正 極性入力端が調整電圧生成回路 364の出力端とバッファ 362dの出力端との接続点 Hに接続され、その負極性入力端が抵抗を介して接地されている。さら〖こ、調整電圧 生成回路 364の出力端と接続点 E〜Hとの間、バッファ 362a〜362dの出力端と接 続点 E〜Hとの間、および差動増幅回路 365a〜365dの出力端と負極性入力端との 間にはそれぞれ抵抗が設けられている。
[0116] 差動増幅回路 365aの出力端は、第 2の電圧分割回路 363aにおいて、対向電圧 V comに対して正極性の最大階調電圧 VHOが出力される点 I〖こ接続されており、差動 増幅回路 365bの出力端は、第 2の電圧分割回路 363aにおいて正極性の最小階調 電圧 VH63が出力される点 Jに接続されている。
[0117] また、差動増幅回路 365cの出力端は、第 3の電圧分割回路 363bにおいて、対向 電圧 Vcomに対して負極性の最大階調電圧 VL63が出力される点 Kに接続されてお り、差動増幅回路 365dの出力端は、第 3の電圧分割回路 363bにおいて負極性の 最小階調電圧 VLOが出力される点 Lに接続されている。
[0118] これにより、対向電圧 Vcomに対して正極性の階調電圧のうち、電圧値が最大の階 調電圧 VHOと最小の階調電圧 VH63、および Vcomに対して負極性の階調電圧の うち、電圧値が最大の階調電圧 VL63と最小の階調電圧 VLOの電圧が調整される。
[0119] このように、階調電圧調整部 36aは、任意の第 X階調の正極性階調電圧 VHXを間 に含む階調電圧範囲の最低値 (階調電圧 VH63)と最高値 (階調電圧 VHO)を、階 調電圧範囲 (VH63〜VHO)と共に電荷引き込み量 Δ V (調整電圧 Va)だけ高くなる ようにシフトさせ、また、任意の第 X階調の負極性階調電圧 VLXを間に含む階調電 圧範囲の最低値 (階調電圧 VLO)と最高値 (階調電圧 VL63)を階調電圧範囲 (VLO 〜VL63)と共に電荷引き込み量 Δ V (調整電圧 Va)だけ高くなるようにシフトさせるこ とにより、各階調の正極性電圧と負極性電圧の電圧差を保持しかつ、正極性電圧と 負極性電圧の中心電位を電荷引き込み量 Δν (調整電圧 Va)だけ高くなるように変 化させている。
[0120] 上記構成により、以下に、本実施形態 1の階調電圧生成回路 36の動作について説 明する。
[0121] 図 4に示す調整電圧生成回路 364では、階調電圧調整信号 DVによって可変抵抗 素子 364aの抵抗値が制御され、ノ ッファ 364ηを介して調整電圧 Vaが出力される。 このようにして、調整電圧生成回路 364からは、階調電圧調整信号 DVに応じて、 Vh から OVまでの電圧値が調整電圧 Vaとして選択的に出力される。
[0122] また、図 3に示す差動増幅回路 365a〜365dでは、各階調電圧 VHO、 VH63、 VL 63および VLOが調整電圧生成回路 364からの出力調整電圧 Vaだけ高くされて出 力される。これにより、調整用電圧生成回路 364によって生成される調整電圧 Va (電 荷引き込み量 AV)だけ、 VHO、 VH63、 VLOおよび VL63がそれぞれ均等に高い 方にシフトされるため、各階調の正極性電圧と負極性電圧の電圧差は保持されて、 正極性電圧と負極性電圧の中心電位 (以下、センター値)のみを変化させることがで きる。例えば、 VH20— VL20は電圧調整前と同様に保持されて、階調特性を変動さ せることなく、 VH20と VL20のセンター値のみを変化させることができる。
[0123] このような階調電圧生成回路 36をソースドライバ 3毎に設けて、コントロール IC4か ら各ソースドライバ 3に異なった階調電圧調整信号 DVを供給することによって、ソー スドライバ 3単位で異なった正負極性階調電圧のセンター値を設定することが可能と なる。
[0124] したがって、本実施形態 1によれば、上記フリツ力現象(1)の要因であるゲート走査 線方向の電荷引き込み量 Δνの傾斜に合わせて、ソースドライバ 3単位で正極性階 調電圧および負極性階調電圧を、対応するソース信号線に接続された絵素部の電 荷引き込み量 Δνだけ増カロさせて、正負極性階調電圧のセンター値を調整すること によって、階調特性を変動させることなぐフリツ力現象(1)を低減させることができる。
[0125] また、本実施形態 1によれば、上記フリツ力現象(2)の要因である複数領域分割転 写により生じる電荷引き込み量 ΔΥのパネル面内偏差が水平方向の偏差である場合 に、転写ブロックの水平方向の電荷引き込み量 Δνの偏差に合わせて、ソースドライ バ単位で正極性階調電圧および負極性階調電圧を対応するソース信号線に接続さ れた絵素部の電荷引き込み量 Δνだけ増力!]させて、正負極性階調電圧のセンター 値を調整することによって、階調特性を変動させることなぐフリツ力現象 (2)を低減さ せることができる。
[0126] 以下に、本実施形態 1の液晶表示装置 10において、電荷引き込み量 Δνの水平 方向の傾斜に起因するフリツ力現象の低減方法に関し、電荷引き込み量 Δνの水平 方向の傾斜に対して補正が可能であることについて、図 5の事例を用いて詳細に説 明する。
[0127] 図 5に、液晶パネル 1の水平方向(X方向)の階調電圧値を示している。
[0128] 図 5に示す第 Αライン目において、フリツ力現象が最小となる正負極性階調電圧の センター値が図 5中の一点鎖線上にある場合について考える。
[0129] 階調電圧調整機能を有さない従来の液晶表示装置では、液晶パネル 1の表示画 面内の 、ずれか一点でフリツ力が目視されな 、ように調整することしかできな力つた。 よって、例えば図 5中に点線で示すように、パネル中央で調整した場合には、パネル 左右において図 5中の Δ VIおよび AVrだけ正極性電圧と負極性電圧の平衡が崩れ 、フリツ力現象が発生する。
[0130] これに対して、ソースドライバ 3毎に階調電圧調整機能を設けた本実施形態 1の液 晶表示装置 10によれば、図 5中に実線で示すように、ソースドライバ 3単位で正負極 性階調電圧のセンター値を最適な値に設定することができるため、フリツ力現象を大 幅に低減させることが可能となる。
[0131] 本実施形態 1では、前述したようにソースドライバ 3単位で正負極性階調電圧のセ ンター値を最適な値に設定することに限らず、例えば水平帰線期間内にコントロール IC4から調整電圧調整部 36aに対して階調電圧調整信号 DVを供給することによつ て、 1フレーム内において 1水平ラインまたは複数水平ライン毎に、正負極性階調電 圧のセンター値を設定することが可能となる。
[0132] これにより、上記フリツ力現象(2)の要因である複数領域分割転写により生じる電荷 引き込み量 Δ Vのパネル面内偏差が垂直方向の偏差であつても、転写ブロックの垂 直方向の電荷引き込み量 Δνの偏差に合わせて、 1フレーム内において 1水平ライン または複数水平ライン毎に正極性階調電圧および負極性階調電圧を対応するゲー ト信号線に接続された絵素部の電荷引き込み量 Δνだけ増加させて、正負極性階調 電圧のセンター値を調整することによって、階調特性を変動させることなぐフリツ力現 象(2)を低減させることができる。
[0133] 以下に、本実施形態 1の液晶表示装置 10において、電荷引き込み量 Δνの垂直 方向の傾斜に起因するフリツ力現象の低減方法に関し、電荷引き込み量 Δνの垂直 方向の傾斜に対して補正が可能であることについて、図 6の事例を用いて詳細に説 明する。
[0134] 図 6には、液晶パネル 1の垂直方向(y方向)の階調電圧値を示している。
[0135] 図 6に示す第 Bライン目において、フリツ力現象が最小となる正負極性階調電圧の センター値が図 6中の一点鎖線上にある場合について考える。
[0136] 本実施形態 1の階調電圧調整機能を有さな!/ヽ従来の液晶表示装置では、パネル 面内のいずれか一点でフリツ力が目視されないように調整することしかできない。よつ て、例えば図 6中に点線で示すように、パネル中央で調整した場合には、転写ブロッ クが異なる領域にぉ ヽて図 6中の Δ Vuおよび Δ Vdだけ正極性電圧と負極性電圧の 平衡が崩れ、フリツ力現象が発生してしまう。
[0137] これに対して、 1フレーム内で 1水平ラインまたは複数水平ライン毎に正負極性階調 電圧のセンター値を変化可能とした本実施形態 1では、図 6中に実線で示すように、 正負極性階調電圧のセンター値を最適な値に設定することができるため、フリツ力現 象を大幅に低減させることが可能となる。これは、例えばゲートドライバ 2毎に、正負 極性階調電圧のセンター値を最適な値に設定するようにしてもょ 、。
[0138] 以上のように、本実施形態 1によれば、ソースドライバ 3毎に、または、 1水平ラインあ るいは複数水平ライン毎に、正負極性階調電圧のセンター値を電圧調整可能な構 造を液晶表示装置 10に設けることによって、階調特性を変動させることなぐパネル 面内全面のフリツ力現象を低減させることができる。
[0139] そして、上記電圧調整を制御することになるコントロール IC4は、液晶パネルにおけ る駆動対象となる絵素部に応じて、上記センター値のシフト量を設定する手段として 機能する。
[0140] (実施形態 2)
電荷引き込み量 Δνはパネル面内で偏差を有している力 TFT素子のドレイン領 域に印加される階調電圧値に対して偏差 (階調電圧毎の偏差)を有しており、一般に 、この偏差は ω値と呼ばれる。上記実施形態 1のように、階調電圧 VHO、 VH63、 VL 0および VL63を全て同電位の調整電圧 Vaだけ増カロ'調整することによってフリツ力 現象を低減することが可能であるが、さらに、自由度が高い階調電圧調整機能により ω値に対する補正をも行えるようにすることによって、更なるフリツ力現象の低減が可 能となる。
[0141] そこで、本実施形態 2では、階調電圧毎の偏差である ω値に対する補正を可能とし た液晶表示装置 10Bについて説明する。
[0142] 図 7は、本発明の実施形態 2の液晶表示装置 10B (図 1参照)における階調電圧生 成回路 36Βの構成例を示す回路図である。
[0143] 図 7において、階調電圧生成回路 36Βは、正負の基準電圧 VLSと GND力も正負 の複数の参照電圧 (所定の参照電圧)を生成する第 4の電圧分割回路 361bと、複数 の参照電圧の 、ずれかを一時記憶するバッファ 362a〜362fと、コントロール IC4か ら供給される階調電圧調整信号 DVO、DVXおよび DV63に応じて階調毎に独立し た調整電圧を生成する調整電圧生成回路 364a〜364cと、調整電圧生成回路 364 a〜364cの!、ずれかからの調整電圧とバッファ 362a〜362fの!、ずれかからの出力 電圧との加算値を差動増幅する差動増幅回路 365a〜365fと、正極性の参照電圧 を用いて正極性の階調電圧 VHO〜VH63を生成する第 5の電圧分割回路 363cと、 負極性の参照電圧を用いて負極性の階調電圧 VL63〜VLOを生成する第 6の電圧 分割回路 363dとを有して ヽる。これらの調整電圧生成回路 364a〜364cおよび差 動増幅回路 365a〜365fにより階調電圧調整部 36bが構成されている。
[0144] 調整電圧生成回路 364a〜364cは、階調特性に変化を与えないために、図 3の調 整電圧生成回路 364の場合と同様に、同階調の正極性階調電圧と負極性階調電圧 は、階調電圧調整時に同じ電圧値 (電荷引き込み量 Δν)が増加され、正極性階調 電圧と負極性階調電圧の電圧差を一定に維持しながら、正負極性階調電圧のセン ター値が電圧調整される。例えば、任意の第 X階調の正極性電圧 VH (X)および負 極性電圧 VL (X)にお!/、て、 VH (X) -VL (X)の電圧値は一定に固定したまま、 VH (X)および VL (X)を出力調整電圧 Vaだけ電圧値を増加させることによって、 VH (X )と VL (X)のセンター値のみを変化させることができる。
[0145] 差動増幅回路 365aはその正極性入力端が調整電圧生成回路 364aの出力端と、 正の最大参照電圧が出力されるバッファ 362aの出力端との接続点 A1に接続され、 その負極性入力端が抵抗を介して接地されている。また、差動増幅回路 365bはそ の正極性入力端が調整電圧生成回路 364bの出力端と、正の中間参照電圧が出力 されるバッファ 362bの出力端との接続点 B1に接続され、その負極性入力端が抵抗 を介して接地されている。さらに、差動増幅回路 365cはその正極性入力端が調整電 圧生成回路 364cの出力端と、正の最小参照電圧が出力されるバッファ 362cの出力 端との接続点 C1に接続され、その負極性入力端が抵抗を介して接地されている。
[0146] また、差動増幅回路 365dはその正極性入力端が調整電圧生成回路 364cの出力 端と、負の最大参照電圧が出力されるバッファ 362dの出力端との接続点 D1に接続 され、その負極性入力端が抵抗を介して接地されている。また、差動増幅回路 365e はその正極性入力端が調整電圧生成回路 364bの出力端と、負の中間参照電圧が 出力されるバッファ 362eの出力端との接続点 E1に接続され、その負極性入力端が 抵抗を接地されている。さらに、差動増幅回路 365Fはその正極性入力端が調整電 圧生成回路 364aの出力端と、負の最小参照電圧が出力されるバッファ 362fの出力 端との接続点 F1に接続され、その負極性入力端が抵抗を介して接地されて!ヽる。
[0147] さらに、調整電圧生成回路 364a〜364cの各出力端と接続点 A〜Fとの各間、バッ ファ 362a〜362fの各出力端と接続点 A〜Fとの各間、差動増幅回路 365a〜365f の各出力端と各負極性入力端との各間にはそれぞれ抵抗が設けられている。
[0148] 差動増幅回路 365aの出力端は、第 5の電圧分割回路 363cにおいて、対向電圧 V comに対して正極性の最大階調電圧 VHOが出力される点 G1に接続されており、差 動増幅回路 365bの出力端は、第 5の電圧分割回路 363cにおいて、正極性の中間 階調電圧 VH (X)が出力される点 HIに接続されており、差動増幅回路 365cの出力 端は、第 5の電圧分割回路 363cにおいて、正極性の最小階調電圧 VH63が出力さ れる点 IIに接続されている。
[0149] また、差動増幅回路 365dの出力端は、第 6の電圧分割回路 363dにおいて、対向 電圧 Vcomに対して負極性の最大階調電圧 VL63が出力される点 J1に接続されて おり、差動増幅回路 365eの出力端は、第 6の電圧分割回路 363dにおいて、負極性 の中間階調電圧 VL (X)が出力される点 K1に接続されており、差動増幅回路 365f の出力端は、第 6の電圧分割回路 363dにおいて、負極性の最小階調電圧 VLOが 出力される点 L1に接続されて 、る。
[0150] これにより、対向電圧 Vcomに対して正極性の階調電圧のうち、電圧値が最大の階 調電圧 VHOと中間の階調電圧 VH (X)と最小の階調電圧 VH63、および、 Vcomに 対して負極性の階調電圧のうち、電圧値が最大の階調電圧 VL63と中間の階調電 圧 VL (X)と最小の階調電圧 VLOの電圧が階調毎に調整されて 、る。
[0151] 以上のように、本実施形態 2によれば、各階調毎に独立して正負極性階調電圧の センター値を調整することが可能となるため、各階調間で電荷引き込み量 Δνに偏 差(ω値)が存在するか、あるいは各階調間でフリツ力現象が最小となる正負極性階 調電圧のセンター値に偏差( ω値)が存在する場合にお!、ても、各階調に対してそ れぞれ異なった階調電圧調整信号 DVO、 DVXおよび DV63を入力することによつ て、フリツ力現象を更に低減させることができる。
[0152] そして、上記電圧調整を制御することになるコントロール IC4は、液晶パネルにおけ る駆動対象となる絵素部に表示させる階調に応じて応じて、上記センター値のシフト 量を設定する手段として機能する。
[0153] なお、図 7の事例では、第 0階調、第 X階調および第 63階調の三つの階調に対して 階調電圧調整機能を設けているが、必ずしも三つである必要はなぐこれ以上のより 多くの階調に対して階調電圧調整機能を設けることによって、各階調間で生じる偏差 に対してより詳細に調整を行うことも可能である。
[0154] (実施形態 3)
上記図 2に示すソースドライバ 3では、本発明の階調電圧調整機能を付加するため に、階調電圧調整信号 DVを伝送するために階調電圧調整信号伝送ラインおよび階 調電圧調整信号入力端子を少なくとも一つずつ追加する必要がある。例えば上記実 施形態 1のように階調電圧調整信号 DVをコントロール IC4から各ソースドライバ 3に それぞれ供給するためには、その伝送ラインおよび入力端子を一つずつ追加する必 要があり、上記実施形態 2のようにコントロール IC4から階調電圧調整信号 DV0、 D VXおよび DV63を供給する場合には、伝送ラインおよび入力端子を三つずつ追カロ する必要がある。
[0155] し力しながら、駆動回路基板の配線状況を考えると、伝送ラインおよび入力端子の 増加は極力少ない方が好ましい。よって、本実施形態 3では、伝送ラインおよびその 入力端子の追加なしに階調電圧調整機能をソースドライバに付加することが可能な 液晶表示装置について説明する。
[0156] 一般に、帰線期間は非表示期間であるため、映像データ信号を伝送する必要はな い。そこで、本実施形態 3では、図 8に示すソースドライバの構造を採用することによ つて、帰線期間中に映像信号伝送ラインを階調電圧調整信号伝送ラインとして代用 し、伝送ラインの削減を図っている。この場合について図 8を用いて詳細に説明する
[0157] 図 8は、本発明の実施形態 3の液晶表示装置におけるソースドライバの構成例を示 すブロック図である。
[0158] 図 8に示すように、ソースドライバ 3Cは、図 2に示すソースドライバ 3Bに加えて、映 像データ信号 DR、 DGおよび DBと階調電圧調整信号 DVO、 DVXおよび DV63と のうち、表示期間(非帰線期間)には映像データ信号 DR、 DGおよび DBを選択して 入力ラッチ回路 32に供給し、また、非表示期間 (帰線期間)には階調電圧調整信号 DVO、DVXおよび DV63を選択して階調電圧調整部 36bに供給するセレクタ回路 3 9aと、コントロール IC4力も供給されるラッチ信号 LSとスタートパルス SPとに応じてセ レクタ回路制御信号 Ssを生成するセレクタ回路制御信号生成回路 39bとを有してい る。
[0159] 図 9は、図 8のラッチ信号 LS、スタートパルス SPおよびセレクタ回路制御信号 Ssの 信号波形図である。
[0160] セレクタ回路制御信号生成回路 39bは、図 9に示すように、ラッチ信号 LSの立ち下 力 Sり時に立ち上がり、スタートパルス SP立ち上がり時に立ち下がるセレクタ回路制御 信号 Ssが生成される。セレクタ回路制御信号 Ssが ON状態 (ノ、ィレベル)のときは帰 線期間を示し、セレクタ回路制御信号 Ssが OFF状態(ローレベル)のときは非帰線期 間を示し、この非帰線期間(表示期間)でコントロール IC4からソースドライバ 3Cに対 して映像データ信号 DR、 DGおよび DBが伝送され、帰線期間(非表示期間)でコン トロール IC4からソースドライバ 3Cに対して階調電圧調整信号 DV0、 DVXおよび D V63が伝送されている。
[0161] 図 10は、図 8のセレクタ回路 39aの構成例を示す回路図である。
[0162] 図 10に示すように、セレクタ回路 39aは、非帰線期間に映像データ信号 DR、 DG および DBが伝送され、帰線期間に階調電圧調整信号 DV0、 DVXおよび DV63が 伝送されてくる入力信号に対して、セレクタ回路制御信号 Ssと同期して出力端子が 選択されて、入力信号が分岐される。セレクタ回路制御信号 Ssが OFF状態 (非帰線 期間)時には、入力される映像データ信号 DR、 DGおよび DBが入力ラッチ回路 32 側に出力され、セレクタ回路制御信号 Ssが ON状態 (帰線期間)時には、同じ伝送ラ インから入力される階調電圧調整信号 DV0、 DVXおよび DV63が階調電圧調整部 36b側に出力される。
[0163] 図 11は、図 8のソースドライバ 3Cを有する液晶表示装置 10Cの構成例を示すプロ ック図である。
[0164] 図 11に示すように、コントロール IC4からソースドライバ 3Cに映像信号用伝送ライン 5を用いて非帰線期間に映像データ信号 DR, DGおよび DBを伝送し、帰線期間に 階調電圧調整信号 DVを伝送することにより、駆動回路上の伝送ラインおよびドライ バ入力端子の新たな追加なしに、本発明の階調電圧調整機能を付加したソースドラ ィバ 3Cを実現することができる。
[0165] 以上により、上記実施形態 1〜3によれば、各ソースドライバ 3, 3Bまたは 3C内の階 調電圧生成回路 36または 36Bに、第 X階調の正極性階調電圧 VHXおよび第 X階 調の負極性階調電圧 VLXを電荷引き込み量 Δνだけ同時に増加させる階調電圧調 整部 36aまたは 36bを設けている。ゲート信号線方向の電荷引き込み量 Δνの傾斜 に合わせて、ドライバ単位で正負極性階調電圧のセンター値を調整することによって 、階調特性を変動させることなぐフリツ力現象を抑制することができる。また、転写ブ ロックにおける電荷引き込み量 Δνの水平方向および垂直方向の偏差に合わせて、 1フレーム内で 1ラインまたは複数ライン毎に正負極性階調電圧のセンター値を調整 することによって、階調特性を変動させることなぐフリツ力現象を抑制することができ る。
[0166] なお、上記実施形態 1〜3では、各ソースドライバ 3, 3Βまたは 3C内の階調電圧生 成回路 36または 36Βにそれぞれ、任意の第 X階調の正極性階調電圧 VH (X)およ び該第 X階調の負極性階調電圧 VL (X)を、対応する映像信号線に接続された各絵 素部の電荷引き込み量 Δνだけ同時に増力!]させて電圧調整する階調電圧調整部 3 6aまたは 36bが設けられた場合について説明した力 これに限らず、階調電圧生成 回路 36または 36Bは、各ソースドライバ 3, 3Bまたは 3C内にある必要はなぐ制御手 段としてのコントロール IC4内に設けられていてもよい。この場合には、階調電圧調整 信号および映像データ信号の代わりに映像信号としての表示用の階調信号が各ソ ースドライバ 3, 3Bまたは 3Cに伝送される。
[0167] また、上記実施形態 1〜3では、階調電圧調整部 36aまたは 36bが、図 6にも示すよ うに、 1フレーム内において一または複数の走査信号線毎に、またはゲートドライバ 2 単位で、第 X階調の正極性階調電圧 VH (X)および第 X階調の負極性階調電圧 VL (X)を、対応する走査信号線に接続された絵素部の電荷引き込み量 Δνだけ同時に 増加させて電圧調整する場合について説明したが、この場合、 1フレーム内において 一または複数の走査信号線の選択駆動タイミング毎に、または一または複数の走査 信号線を選択駆動する各ゲートドライバ 2の駆動タイミング単位で、各ソースドライバ 3 力ゝら各映像信号線に供給される表示用の階調電圧 (映像信号)に加算されている電 荷引き込み量 Δν (調整電圧 Va)を、対応する走査信号線に接続された絵素部の電 荷引き込み量 Δ Vに最適なように時間軸で変化させるようになって!/、る。
[0168] さらに、調整電圧 Vaについて説明すると、実際のシフトする電圧量は式 1に示す電 荷引き込み量 Δ Vと等 、値に限るものではなく、基準階調電圧の正極性 '負極性の センター値の初期設定値と電荷引き込み量 Δ Vに依存する調整電圧値である。この ため、シフトする電荷量は「電荷引き込み量 ΔΥ」に限らず、図 4の調整電圧 Vaとなる [0169] したがって、調整電圧は、画面フリツ力低減用の調整電圧であって、基準階調電圧 の正極性階調電圧と負極性階調電圧のセンター値を所定電圧だけシフトさせるため の調整電圧である。
[0170] もちろん、この調整電圧は電荷引き込み量 Δνまたはこれに対応した電圧であって もよい。電荷引き込み量 Δνは、絵素電極の液晶容量 Clc、これに接続された補助容 量 Cs、スィッチ素子のトランジスタゲート'ドレイン間の寄生容量 Cgd、該走査信号線 のゲートハイ電圧 VGH、該走查信号線のゲートロー電圧 VGLとして、次の式 1に示 すように、
Δ V = { Cgd/ (Cgd + Clc + Cs) } X (VGH - VGL)
である。
[0171] ここで、上記実施形態 1, 2においてはソースドライバとコントロール ICとが分離され ている構成を一例として示した力 コントロール ICがソースドライバ内部に内包されて V、ても本発明の効果に変わりはな 、。
[0172] 以上のように、本発明の好ましい実施形態 1〜3を用いて本発明を例示してきた力 本発明は、この実施形態 1〜3に限定して解釈されるべきものではない。本発明は、 特許請求の範囲によってのみその範囲が解釈されるべきであることが理解される。当 業者は、本発明の具体的な好ましい実施形態 1〜3の記載から、本発明の記載およ び技術常識に基づ 、て等価な範囲を実施することができることが理解される。本明細 書において引用した特許、特許出願および文献は、その内容自体が具体的に本明 細書に記載されているのと同様にその内容が本明細書に対する参考として援用され るべきであることが理解される。
産業上の利用の可能性
[0173] 本発明は、例えばテレビジョン装置のディスプレイやパーソナルコンピュータのモ- タなどの表示画面に用いられるアクティブマトリクス型などの液晶表示装置およびこ れに用いる液晶表示駆動回路の分野において、階調電圧生成回路に階調電圧調 整部を設けて、第 X階調の正極性階調電圧 VHXおよび第 X階調の負極性階調電圧 VLXを電荷引き込み量 Δνだけ同時に増カロさせることによって、階調特性を変化さ せることなぐパネル面内全体のフリツ力現象を抑制して、良好な表示状態を得ること ができる。

Claims

請求の範囲
[1] 表示用の階調電圧が生成される階調電圧生成回路が設けられ、複数の走査信号 線と複数の映像信号線とが互いに交差して設けられ、両信号線で区切られた絵素部 力^次元状に複数配設され、映像データ信号に応じた該階調電圧が各絵素部毎に 供給されて表示を行う液晶表示装置にぉ ヽて、
該階調電圧生成回路に、第 X階調の正極性階調電圧 VH (X)および該第 X階調の 負極性階調電圧 VL (X)を、対応する映像信号線に接続された絵素部の調整電圧 だけ増加させて電圧調整する階調電圧調整部が設けられている液晶表示装置。
[2] 前記複数の映像信号線に前記階調電圧を供給するソースドライバに該階調電圧お よび各種制御信号を出力するコントロール部が設けられ、該コントロール部内に前記 階調電圧生成回路が設けられて!/ヽる請求項 1に記載の液晶表示装置。
[3] 前記複数の映像信号線に前記階調電圧を供給するソースドライバが設けられ、該 ソースドライバ内に前記階調電圧生成回路が設けられている請求項 1に記載の液晶 表示装置。
[4] 複数の走査信号線と複数の映像信号線とが互いに交差して設けられ、両信号線で 区切られた絵素部がマトリクス状に複数配設された表示部と、
該表示部の周辺に所定数の映像信号線毎に設けられ、正極性または負極性の階 調電圧を映像信号として該映像信号線に選択的に供給する複数のソースドライバと 該表示部の周辺に所定数の走査信号線毎に設けられ、各絵素部駆動用の走査信 号を該走査信号線に選択的に供給する複数のゲートドライバとを有し、
各ソースドライバ内にそれぞれ、表示用の階調電圧が生成される階調電圧生成回 路がそれぞれ設けられ、該階調電圧生成回路に、第 X階調の正極性階調電圧 VH ( X)および該第 X階調の負極性階調電圧 VL (X)を、対応する映像信号線に接続され た絵素部の調整電圧だけ増加させて電圧調整する階調電圧調整部が設けられてい る液晶表示装置。
[5] 前記絵素部は、前記両信号線の交差部近傍の走査信号線が制御端子に接続され 、該交差部近傍の映像信号線が一方駆動領域に接続されたスィッチ素子と、該スィ ツチ素子の他方駆動領域が接続された絵素電極とを有する請求項 1〜4のいずれか に記載の液晶表示装置。
[6] 前記階調電圧調整部は、 1フレーム内において一または複数の映像信号線毎に、 前記第 X階調の正極性階調電圧 VH (X)および該第 X階調の負極性階調電圧 VL ( X)を、対応する映像信号線に接続された絵素部の調整電圧だけ増加させて電圧調 整する請求項 1〜4のいずれかに記載の液晶表示装置。
[7] 前記階調電圧調整部は、 1フレーム内において一または複数の走査信号線毎に、 前記第 X階調の正極性階調電圧 VH (X)および該第 X階調の負極性階調電圧 VL ( X)を、対応する走査信号線に接続された絵素部の調整電圧だけ増加させて電圧調 整する請求項 1〜4および 6のいずれかに記載の液晶表示装置。
[8] 前記階調電圧調整部は、前記ソースドライバ単位で、前記第 X階調の正極性階調 電圧 VH (X)および該第 X階調の負極性階調電圧 VL (X)を、対応する映像信号線 に接続された絵素部の調整電圧だけ増加させて電圧調整する請求項 4に記載の液 晶表示装置。
[9] 前記階調電圧調整部は、前記ゲートドライバ単位で、前記第 X階調の正極性階調 電圧 VH (X)および該第 X階調の負極性階調電圧 VL (X)を、対応する走査信号線 に接続された絵素部の調整電圧だけ増加させて電圧調整する請求項 4または 8に記 載の液晶表示装置。
[10] 前記調整電圧は、前記走査信号線方向の電荷引き込み量 Δνの傾斜に合わせて 設定される請求項 6または 8に記載の液晶表示装置。
[11] 前記調整電圧は、前記映像信号線方向の電荷引き込み量 Δνの傾斜に合わせて 設定される請求項 7または 9に記載の液晶表示装置。
[12] 前記調整電圧は、複数領域分割転写により生じる電荷引き込み量 Δνのパネル面 内偏差が水平方向および Ζまたは垂直方向の偏差である場合に、転写ブロックの水 平方向および Ζまたは垂直方向の電荷引き込み量 Δ Vの偏差に合わせて設定され る請求項 6〜: L 1の 、ずれかに記載の液晶表示装置。
[13] 前記階調電圧調整部は、前記一または複数の走査信号線の選択駆動タイミング毎 に、または前記ゲートドライバの駆動タイミング単位で、前記調整電圧が加算された 電圧またはこれに対応した電圧を、対応する走査信号線に接続された絵素部の電荷 引き込み量 Δνに最適なように時間軸で変化させる請求項 7または 9に記載の液晶 表示装置。
[14] 前記階調電圧調整部は、前記第 X階調の正極性階調電圧 VH (X)を間に含む階 調電圧範囲の最低値と最高値を当該階調電圧範囲と共に前記調整電圧だけ高くす るようにシフトさせ、該第 X階調の負極性階調電圧 VL (X)を間に含む階調電圧範囲 の最低値と最高値を当該階調電圧範囲と共に該調整電圧だけ高くするようにシフトさ せる請求項 1, 4, 6〜9および 13のいずれかに記載の液晶表示装置。
[15] 前記階調電圧生成回路は、正負の基準電圧力 正負の複数の参照電圧を生成す る第 1の電圧分割回路と、正極性の参照電圧力ゝら正極性の階調電圧を生成する第 2 の電圧分割回路と、負極性の参照電圧カゝら負極性の階調電圧を生成する第 3の電 圧分割回路とを有し、前記階調電圧調整部は、該第 1の電圧分割回路からの参照電 圧から出力調整電圧だけ増加させた電圧またはこれに対応する電圧を、該第 2の電 圧分割回路および該第 3の電圧分割回路にそれぞれ出力する請求項 1〜4のいず れかに記載の液晶表示装置。
[16] 前記階調電圧調整部は、前記第 1の電圧分割回路からの正極性側の大小二つの 参照電圧から出力調整電圧だけ増加させた各電圧またはこれに対応する各電圧を、 前記第 2の電圧分割回路の階調電圧範囲の最高値と最低値側にそれぞれ出力し、 該第 1の電圧分割回路力 の負極性側の大小二つの参照電圧力 出力調整電圧だ け増加させた各電圧またはこれに対応する各電圧を、前記第 3の電圧分割回路の階 調電圧範囲の最高値と最低値側にそれぞれ出力する請求項 15に記載の液晶表示 装置。
[17] 前記階調電圧調整部は、コントロール部から供給される階調電圧調整信号に応じ て調整電圧を生成する調整電圧生成回路と、該調整電圧生成回路からの出力調整 電圧を所定の参照電圧に加算した電圧を差動増幅する差動増幅回路とを有してい る請求項 1, 4, 6〜9および 13〜 15のいずれかに記載の液晶表示装置。
[18] 前記調整電圧生成回路は、前記階調電圧調整信号の電圧値に応じて抵抗値が可 変である可変抵抗素子と、該可変抵抗素子力 の出力電圧が入力されるバッファ手 段とを有する請求項 17に記載の液晶表示装置。
[19] 前記可変抵抗素子はポテンションメータである請求項 18に記載の液晶表示装置。
[20] 前記差動増幅回路は、正極性の最大階調電圧、該正極性の最小階調電圧、負極 性の最大階調電圧および該負極性の最小階調電圧に対してそれぞれ設けられてお り、それぞれ正極性入力端が、前記第 1の電圧分割回路からの所定の参照電圧を出 力する出力端と前記調整電圧生成回路の出力端とに接続され、その各出力端が前 記第 2の電圧分割回路および前記第 3の電圧分割回路のいずれかに接続されてい る請求項 17に記載の液晶表示装置。
[21] 前記差動増幅回路は、第 1〜第 4の差動増幅回路を有しており、
該第 1の差動増幅回路は、前記第 1の電圧分割回路からの正極性側の第 1参照電 圧から出力調整電圧だけ増加させた電圧をその正極性入力端に入力し、その出力 電圧を前記第 2の電圧分割回路の階調電圧範囲の最高値出力端側に出力し、 該第 2の差動増幅回路は、該第 1の電圧分割回路からの正極性側の第 2参照電圧 から該出力調整電圧だけ増加させた電圧をその正極性入力端に入力し、その出力 電圧を前記第 2の電圧分割回路の階調電圧範囲の最低値出力端側に出力し、 該第 3の差動増幅回路は、該第 1の電圧分割回路からの負極性側の第 3参照電圧 から該出力調整電圧だけ増加させた電圧をその正極性入力端に入力し、その出力 電圧を前記第 3の電圧分割回路の階調電圧範囲の最高値出力端側に出力し、 該第 4の差動増幅回路は、該第 1の電圧分割回路からの負極性側の第 4参照電圧 から該出力調整電圧だけ増加させた電圧をその正極性入力端に入力し、その出力 電圧を前記第 3の電圧分割回路の階調電圧範囲の最低値出力端側に出力するよう に構成した請求項 20に記載の液晶表示装置。
[22] 前記調整電圧生成回路は、各階調に応じた調整電圧を生成する第 1〜第 n (nは 2 以上の自然数)の調整電圧生成回路を有しており、
前記差動増幅回路は、正極性側と負極性側の各階調電圧に対してそれぞれ n X 2 個設けられており、それぞれ正極性入力端が前記第 1の電圧分割回路から所定の参 照電圧を出力する出力部と、該出力部に対応した該第 1〜第 nの調整電圧生成回路 の各出力端のいずれかとに接続され、その出力端が、該正極性側と負極性側で互い に対応した前記第 2の電圧分割回路の位置および第 3の電圧分割回路の位置のい ずれかに接続されている請求項 17に記載の液晶表示装置。
[23] 前記調整電圧生成回路は、最大階調電圧、中間階調電圧および最小階調電圧に 対してそれぞれ各階調に応じた調整電圧を生成する第 1〜第 3の調整電圧生成回 路を有しており、
前記差動増幅回路は、その出力電圧値が正極性の最大階調電圧、正極性の中間 階調電圧、正極性の最小階調電圧、負極性の最大階調電圧、負極性の中間階調電 圧および負極性の最小階調電圧になるようにそれぞれ設けられており、それぞれ正 極性入力端が前記第 1の電圧分割回路力 所定の参照電圧を出力する出力部と、 該出力部に対応した該第 1〜第 3の調整電圧生成回路の各出力端のいずれかとに 接続され、その出力端が、該正極性側と負極性側で互いに対応した前記第 2の電圧 分割回路および第 3の電圧分割回路のいずれかに接続されている請求項 17に記載 の液晶表示装置。
[24] 前記差動増幅回路は、第 1〜第 6の差動増幅回路を有しており、
該第 1の差動増幅回路は、前記第 1の電圧分割回路からの正極性側の第 1参照電 圧力 前記第 1の調整電圧生成回路の出力調整電圧だけ増加させた電圧をその正 極性入力端に入力し、その出力電圧を前記第 2の電圧分割回路の正極性の最大階 調電圧出力端側に出力し、
該第 2の差動増幅回路は、該第 1の電圧分割回路からの正極性側の第 2参照電圧 力 前記第 2の調整電圧生成回路の出力調整電圧だけ増加させた電圧をその正極 性入力端に入力し、その出力電圧を前記第 2の電圧分割回路の正極性の中間階調 電圧出力端側に出力し、
該第 3の差動増幅回路は、該第 1の電圧分割回路からの正極性側の第 3参照電圧 力 前記第 3の調整電圧生成回路の出力調整電圧だけ増加させた電圧をその正極 性入力端に入力し、その出力電圧を前記第 2の電圧分割回路の正極性の最小階調 電圧出力端側に出力し、
該第 4の差動増幅回路は、該第 1の電圧分割回路からの負極性側の第 4参照電圧 から該第 1の調整電圧生成回路の出力調整電圧だけ増加させた電圧をその正極性 入力端に入力し、その出力電圧を前記第 3の電圧分割回路の負極性の最大階調電 圧出力端側に出力し、
該第 5の差動増幅回路は、該第 1の電圧分割回路からの負極性側の第 5参照電圧 から該第 2の調整電圧生成回路の出力調整電圧だけ増加させた電圧をその正極性 入力端に入力し、その出力電圧を前記第 3の電圧分割回路の負極性の中間階調電 圧出力端側に出力し、
該第 6の差動増幅回路は、該第 1の電圧分割回路からの負極性側の第 6参照電圧 から該第 3の調整電圧生成回路の出力調整電圧だけ増加させた電圧をその正極性 入力端に入力し、その出力電圧を前記第 3の電圧分割回路の負極性の最小階調電 圧出力端側に出力するように構成した請求項 23に記載の液晶表示装置。
[25] 前記階調電圧調整部は、第 X階調の正極性階調電圧 VH (X)および該第 X階調の 負極性階調電圧 VL (X)を、各階調毎に独立して電圧調整する請求項 17および 22 〜24の 、ずれかに記載の液晶表示装置。
[26] 前記コントロール部から前記ソースドライバ間に、前記階調電圧調整信号を供給す るための第 1信号伝送ラインと、前記映像データ信号を供給するための第 2信号伝送 ラインとが設けられている請求項 2または 17に記載の液晶表示装置。
[27] 前記コントロール部から前記ソースドライバ間に、前記階調電圧調整信号および前 記映像データ信号を共通に供給するための信号伝送ラインが設けられている請求項 2または 17に記載の液晶表示装置。
[28] 前記信号伝送ラインを介して帰線期間中に前記階調電圧調整信号が供給され、該 信号伝送ラインを介して非帰線期間中に前記映像データ信号が供給され、 前記ソースドライバは、前記コントロール部力 供給されるラッチ信号とスタートパルス 力 セレクタ回路制御信号を生成するセレクタ回路制御信号生成回路と、該セレクタ 回路制御信号に基づ!/、て該映像データ信号および該階調電圧調整信号の 、ずれ かを選択するセレクタ回路とを更に有する請求項 27に記載の液晶表示装置。
[29] 前記セレクタ回路制御信号は前記ラッチ信号の立ち下がりタイミングで立ち上がり、 前記スタート信号の立ち上がりタイミングで立ち下がるように生成される請求項 28に 記載の液晶表示装置。
[30] 前記セレクタ回路は、前記セレクタ回路制御信号の 2値の一方レベル期間で前記 階調電圧調整信号を選択して前記階調電圧調整部に出力し、該 2値の他方レベル 期間で前記映像データ信号を選択して出力する請求項 28に記載の液晶表示装置。
[31] 前記調整電圧は、画面フリツ力低減用の調整電圧である請求項 1、 4および 6〜14 の!、ずれかに記載の液晶表示装置。
[32] 前記調整電圧は、基準階調電圧の正極性階調電圧と負極性階調電圧のセンター 値を所定電圧だけシフトさせるための調整電圧である請求項 31に記載の液晶表示 装置。
[33] 前記調整電圧は、基準階調電圧の正極性階調電圧と負極性階調電圧のセンター 値の初期設定値と電荷引き込み量 Δ Vに依存する電圧値である請求項 31に記載の 液晶表示装置。
[34] 前記調整電圧は電荷引き込み量 Δνまたはこれに対応した電圧である請求項 31 に記載の液晶表示装置。
[35] 前記絵素部は、前記両信号線の交差部近傍の走査信号線が制御端子に接続され
、該交差部近傍の映像信号線が一方駆動領域に接続されたスィッチ素子と、該スィ ツチ素子の他方駆動領域が接続された絵素電極とを有し、
前記電荷引き込み量 Δνは、
該絵素電極の液晶容量 Clc、これに接続された補助容量 Cs、該スィッチ素子のトラ ンジスタゲート'ドレイン間の寄生容量 Cgd、該走査信号線のゲートハイ電圧 VGH、 該走査信号線のゲートロー電圧 VGLとして、
Δ V = { Cgd/ (Cgd + Clc + Cs) } X (VGH - VGL)
である請求項 34に記載の液晶表示装置。
[36] 正極性または負極性の表示用の階調電圧が生成される階調電圧生成回路が設け られ、該表示用の階調電圧を用いて液晶表示部を表示駆動する液晶表示駆動回路 において、
該階調電圧生成回路に、第 X階調の正極性階調電圧 VH (X)および該第 X階調の 負極性階調電圧 VL (X)を、対応する映像信号が供給される絵素部の調整電圧だけ 増加させて電圧調整する階調電圧調整部が設けられている液晶表示駆動回路。
[37] 前記正極性または負極性の表示用の階調電圧を映像信号として前記液晶表示部 に供給する複数のソースドライバと、
液晶表示駆動用の走査信号を該液晶表示部に供給する複数のゲートドライバとを有 し、
各ソースドライバ内にそれぞれ前記階調電圧生成回路がそれぞれ設けられている 請求項 36に記載の液晶表示駆動回路。
[38] 前記階調電圧調整部は、前記走査信号の駆動タイミング毎に、または前記ゲートド ライバの駆動タイミング単位で、前記調整電圧が加算された電圧またはこれに対応し た電圧を、対応する走査信号が供給される絵素部の電荷引き込み量 Δνに最適なよ うに時間軸で変化させる請求項 37に記載の液晶表示駆動回路。
[39] 前記階調電圧調整部は、前記第 X階調の正極性階調電圧 VH (X)を間に含む階 調電圧範囲の最低値と最高値を当該階調電圧範囲と共に前記調整電圧だけ高くす るようにシフトさせ、該第 X階調の負極性階調電圧 VL (X)を間に含む階調電圧範囲 の最低値と最高値を当該階調電圧範囲と共に該調整電圧だけ高くするようにシフトさ せる請求項 37に記載の液晶表示駆動回路。
[40] 前記階調電圧生成回路は、正負の基準電圧力 正負の複数の参照電圧を生成す る第 1の電圧分割回路と、正極性の参照電圧力ゝら正極性の階調電圧を生成する第 2 の電圧分割回路と、負極性の参照電圧カゝら負極性の階調電圧を生成する第 3の電 圧分割回路とを有し、前記階調電圧調整部は、該第 1の電圧分割回路からの参照電 圧から出力調整電圧だけ増加させた電圧またはこれに対応する電圧を、該第 2の電 圧分割回路および該第 3の電圧分割回路にそれぞれ出力する請求項 36または 37 に記載の液晶表示駆動回路。
[41] 前記階調電圧調整部は、前記第 1の電圧分割回路からの正極性側の大小二つの 参照電圧から出力調整電圧だけ増加させた各電圧またはこれに対応する各電圧を、 前記第 2の電圧分割回路の階調電圧範囲の最高値と最低値側にそれぞれ出力し、 該第 1の電圧分割回路力 の負極性側の大小二つの参照電圧力 出力調整電圧だ け増加させた各電圧またはこれに対応する各電圧を、前記第 3の電圧分割回路の階 調電圧範囲の最高値と最低値側にそれぞれ出力する請求項 40に記載の液晶表示 駆動回路。
[42] 前記階調電圧調整部は、コントロール部から供給される階調電圧調整信号に応じ て調整電圧を生成する調整電圧生成回路と、該調整電圧生成回路からの出力調整 電圧を所定の参照電圧に加算した電圧を差動増幅する差動増幅回路とを有してい る請求項 36〜40のいずれかに記載の液晶表示駆動回路。
[43] 前記調整電圧生成回路は、前記階調電圧調整信号の電圧値に応じて抵抗値が可 変である可変抵抗素子と、該可変抵抗素子力 の出力電圧が入力されるバッファ手 段とを有する請求項 42に記載の液晶表示駆動回路。
[44] 前記差動増幅回路は、正極性の最大階調電圧、該正極性の最小階調電圧、負極 性の最大階調電圧および該負極性の最小階調電圧に対してそれぞれ設けられてお り、それぞれ正極性入力端が、前記第 1の電圧分割回路からの所定の参照電圧を出 力する出力端と前記調整電圧生成回路の出力端とに接続され、その各出力端が前 記第 2の電圧分割回路および前記第 3の電圧分割回路のいずれかに接続されてい る請求項 42に記載の液晶表示駆動回路。
[45] 前記差動増幅回路は、第 1〜第 4の差動増幅回路を有しており、
該第 1の差動増幅回路は、前記第 1の電圧分割回路からの正極性側の第 1参照電 圧から出力調整電圧だけ増加させた電圧をその正極性入力端に入力し、その出力 電圧を前記第 2の電圧分割回路の階調電圧範囲の最高値出力端側に出力し、 該第 2の差動増幅回路は、該第 1の電圧分割回路からの正極性側の第 2参照電圧 から該出力調整電圧だけ増加させた電圧をその正極性入力端に入力し、その出力 電圧を前記第 2の電圧分割回路の階調電圧範囲の最低値出力端側に出力し、 該第 3の差動増幅回路は、該第 1の電圧分割回路からの負極性側の第 3参照電圧 から該出力調整電圧だけ増加させた電圧をその正極性入力端に入力し、その出力 電圧を前記第 3の電圧分割回路の階調電圧範囲の最高値出力端側に出力し、 該第 4の差動増幅回路は、該第 1の電圧分割回路からの負極性側の第 4参照電圧 から該出力調整電圧だけ増加させた電圧をその正極性入力端に入力し、その出力 電圧を前記第 3の電圧分割回路の階調電圧範囲の最低値出力端側に出力するよう に構成した請求項 44に記載の液晶表示駆動回路。
[46] 前記調整電圧生成回路は、各階調に応じた調整電圧を生成する第 1〜第 n (nは 2 以上の自然数)の調整電圧生成回路を有しており、
前記差動増幅回路は、正極性側と負極性側の各階調電圧に対してそれぞれ n X 2 個設けられており、それぞれ正極性入力端が前記第 1の電圧分割回路から所定の参 照電圧を出力する出力部と、該出力部に対応した該第 1〜第 nの調整電圧生成回路 の各出力端のいずれかとに接続され、その出力端が、該正極性側と負極性側で互い に対応した前記第 2の電圧分割回路の位置および第 3の電圧分割回路の位置のい ずれかに接続されている請求項 42に記載の液晶表示駆動回路。
[47] 前記調整電圧生成回路は、最大階調電圧、中間階調電圧および最小階調電圧に 対してそれぞれ各階調に応じた調整電圧を生成する第 1〜第 3の調整電圧生成回 路を有しており、
前記差動増幅回路は、その出力電圧値が正極性の最大階調電圧、正極性の中間 階調電圧、正極性の最小階調電圧、負極性の最大階調電圧、負極性の中間階調電 圧および負極性の最小階調電圧になるようにそれぞれ設けられており、それぞれ正 極性入力端が前記第 1の電圧分割回路力 所定の参照電圧を出力する出力部と、 該出力部に対応した該第 1〜第 3の調整電圧生成回路の各出力端のいずれかとに 接続され、その出力端が、該正極性側と負極性側で互いに対応した前記第 2の電圧 分割回路および第 3の電圧分割回路のいずれかに接続されている請求項 42に記載 の液晶表示駆動回路。
[48] 前記差動増幅回路は、第 1〜第 6の差動増幅回路を有しており、
該第 1の差動増幅回路は、前記第 1の電圧分割回路からの正極性側の第 1参照電 圧力 前記第 1の調整電圧生成回路の出力調整電圧だけ増加させた電圧をその正 極性入力端に入力し、その出力電圧を前記第 2の電圧分割回路の正極性の最大階 調電圧出力端側に出力し、
該第 2の差動増幅回路は、該第 1の電圧分割回路からの正極性側の第 2参照電圧 力 前記第 2の調整電圧生成回路の出力調整電圧だけ増加させた電圧をその正極 性入力端に入力し、その出力電圧を前記第 2の電圧分割回路の正極性の中間階調 電圧出力端側に出力し、 該第 3の差動増幅回路は、該第 1の電圧分割回路からの正極性側の第 3参照電圧 力 前記第 3の調整電圧生成回路の出力調整電圧だけ増加させた電圧をその正極 性入力端に入力し、その出力電圧を前記第 2の電圧分割回路の正極性の最小階調 電圧出力端側に出力し、
該第 4の差動増幅回路は、該第 1の電圧分割回路からの負極性側の第 4参照電圧 から該第 1の調整電圧生成回路の出力調整電圧だけ増加させた電圧をその正極性 入力端に入力し、その出力電圧を前記第 3の電圧分割回路の負極性の最大階調電 圧出力端側に出力し、
該第 5の差動増幅回路は、該第 1の電圧分割回路からの負極性側の第 5参照電圧 から該第 2の調整電圧生成回路の出力調整電圧だけ増加させた電圧をその正極性 入力端に入力し、その出力電圧を前記第 3の電圧分割回路の負極性の中間階調電 圧出力端側に出力し、
該第 6の差動増幅回路は、該第 1の電圧分割回路からの負極性側の第 6参照電圧 から該第 3の調整電圧生成回路の出力調整電圧だけ増加させた電圧をその正極性 入力端に入力し、その出力電圧を前記第 3の電圧分割回路の負極性の最小階調電 圧出力端側に出力するように構成した請求項 47に記載の液晶表示駆動回路。
[49] 前記階調電圧調整部は、第 X階調の正極性階調電圧 VH (X)および該第 X階調の 負極性階調電圧 VL (X)を、各階調毎に独立して電圧調整する請求項 42および 46 〜48のいずれかに記載の液晶表示駆動回路。
[50] 液晶パネルを反転駆動しつつ、この液晶パネルの絵素部に階調表示を行わせる液 晶パネル用表示回路において、
反転駆動のための正極性階調電圧及び負極性階調電圧を生成する階調電圧生 成部と、
前記階調電圧生成部の生成する正極性階調電圧と負極性階調電圧とのセンター 値をシフトさせる階調電圧調整部と、
前記液晶パネルにおける駆動対象となる絵素部に応じて、前記階調電圧調整部に よるシフト量を設定するコントロール部とを備える液晶パネル用表示回路。
[51] 前記コントロール部は、さらに、駆動対象となる絵素部に表示させる階調に応じて前 記シフト量を設定する液晶パネル用表示回路。
PCT/JP2006/301487 2005-02-01 2006-01-30 液晶表示装置および液晶表示駆動回路 WO2006082791A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/792,039 US8094108B2 (en) 2005-02-01 2006-01-30 Liquid crystal display device and liquid crystal display driving circuit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-025245 2005-02-01
JP2005025245A JP2008107369A (ja) 2005-02-01 2005-02-01 液晶表示装置および液晶表示駆動回路

Publications (1)

Publication Number Publication Date
WO2006082791A1 true WO2006082791A1 (ja) 2006-08-10

Family

ID=36777175

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/301487 WO2006082791A1 (ja) 2005-02-01 2006-01-30 液晶表示装置および液晶表示駆動回路

Country Status (3)

Country Link
US (1) US8094108B2 (ja)
JP (1) JP2008107369A (ja)
WO (1) WO2006082791A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007025239A (ja) * 2005-07-15 2007-02-01 Casio Comput Co Ltd 表示駆動装置及び表示装置
US20100045708A1 (en) * 2006-11-29 2010-02-25 Sharp Kabushiki Kaisha Liquid crystal display apparatus, liquid crystal display apparatus driving circuit, liquid crystal display apparatus source driver, and liquid crystal display apparatus controller

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010061687A1 (ja) 2008-11-26 2010-06-03 シャープ株式会社 液晶表示装置、液晶表示装置の駆動方法、テレビジョン受像機
WO2010061685A1 (ja) 2008-11-26 2010-06-03 シャープ株式会社 液晶表示装置、液晶表示装置の駆動方法、テレビジョン受像機
CN102265327B (zh) 2008-12-25 2014-10-01 夏普株式会社 显示装置和显示装置的驱动方法
JPWO2010087051A1 (ja) * 2009-01-30 2012-07-26 シャープ株式会社 表示装置および表示装置の駆動方法
JP2010286720A (ja) * 2009-06-12 2010-12-24 Renesas Electronics Corp 表示制御回路
JP2011102876A (ja) * 2009-11-10 2011-05-26 Hitachi Displays Ltd 液晶表示装置
JP2012189767A (ja) 2011-03-10 2012-10-04 Panasonic Liquid Crystal Display Co Ltd 液晶表示装置
JP2012189764A (ja) * 2011-03-10 2012-10-04 Panasonic Liquid Crystal Display Co Ltd 液晶表示装置
JP2012189765A (ja) 2011-03-10 2012-10-04 Panasonic Liquid Crystal Display Co Ltd 液晶表示装置
JP6058289B2 (ja) * 2012-06-05 2017-01-11 サターン ライセンシング エルエルシーSaturn Licensing LLC 表示装置、撮像装置及び階調電圧生成回路
KR102098620B1 (ko) * 2013-07-05 2020-05-25 삼성디스플레이 주식회사 표시 패널의 구동 방법 및 이를 수행하는 표시 장치
TW201627977A (zh) * 2015-01-21 2016-08-01 中華映管股份有限公司 顯示器及觸控顯示器
EP3960429A1 (en) 2015-09-14 2022-03-02 TIGER Coatings GmbH & Co. KG Use of a thermosetting polymeric powder composition
KR20170088603A (ko) * 2016-01-25 2017-08-02 삼성전자주식회사 디스플레이 장치, 및 그 구동방법
EP3375820A1 (en) 2017-03-13 2018-09-19 TIGER Coatings GmbH & Co. KG Use of a thermosetting polymeric powder composition
EP3375819A1 (en) 2017-03-13 2018-09-19 TIGER Coatings GmbH & Co. KG Use of a thermosetting polymeric powder compostion

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05203918A (ja) * 1992-01-13 1993-08-13 Nec Corp アクティブマトリクス液晶表示装置
JPH0792937A (ja) * 1993-07-29 1995-04-07 Hitachi Ltd 液晶駆動方法と液晶表示装置
JPH07333576A (ja) * 1994-06-09 1995-12-22 Mitsubishi Electric Corp 液晶表示装置およびその駆動方法
JP2001100711A (ja) * 1999-07-26 2001-04-13 Sharp Corp ソースドライバ、ソースライン駆動回路およびそれを用いた液晶表示装置
JP2001242833A (ja) * 2000-02-29 2001-09-07 Sharp Corp 半導体装置および表示装置モジュール

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100343513B1 (ko) 1993-07-29 2003-05-27 히다찌디바이스엔지니어링 가부시기가이샤 액정구동방법과액정표시장치
JPH11133919A (ja) 1997-10-27 1999-05-21 Advanced Display Inc 液晶表示装置
JP2001022325A (ja) 1999-07-08 2001-01-26 Advanced Display Inc 液晶表示装置
JP2002366112A (ja) * 2001-06-07 2002-12-20 Hitachi Ltd 液晶駆動装置及び液晶表示装置
JP4108360B2 (ja) * 2002-04-25 2008-06-25 シャープ株式会社 表示駆動装置およびそれを用いた表示装置
KR100864491B1 (ko) * 2002-05-16 2008-10-20 삼성전자주식회사 액정 표시 장치의 구동 장치
JP2004094014A (ja) * 2002-09-02 2004-03-25 Hitachi Displays Ltd 表示装置
JP4738867B2 (ja) * 2004-10-22 2011-08-03 ルネサスエレクトロニクス株式会社 表示装置用駆動装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05203918A (ja) * 1992-01-13 1993-08-13 Nec Corp アクティブマトリクス液晶表示装置
JPH0792937A (ja) * 1993-07-29 1995-04-07 Hitachi Ltd 液晶駆動方法と液晶表示装置
JPH07333576A (ja) * 1994-06-09 1995-12-22 Mitsubishi Electric Corp 液晶表示装置およびその駆動方法
JP2001100711A (ja) * 1999-07-26 2001-04-13 Sharp Corp ソースドライバ、ソースライン駆動回路およびそれを用いた液晶表示装置
JP2001242833A (ja) * 2000-02-29 2001-09-07 Sharp Corp 半導体装置および表示装置モジュール

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007025239A (ja) * 2005-07-15 2007-02-01 Casio Comput Co Ltd 表示駆動装置及び表示装置
US20100045708A1 (en) * 2006-11-29 2010-02-25 Sharp Kabushiki Kaisha Liquid crystal display apparatus, liquid crystal display apparatus driving circuit, liquid crystal display apparatus source driver, and liquid crystal display apparatus controller
US8284123B2 (en) * 2006-11-29 2012-10-09 Sharp Kabushiki Kaisha Liquid crystal display apparatus, liquid crystal display apparatus driving circuit, liquid crystal display apparatus source driver, and liquid crystal display apparatus controller

Also Published As

Publication number Publication date
US20080012840A1 (en) 2008-01-17
US8094108B2 (en) 2012-01-10
JP2008107369A (ja) 2008-05-08

Similar Documents

Publication Publication Date Title
WO2006082791A1 (ja) 液晶表示装置および液晶表示駆動回路
WO2008065773A1 (fr) Appareil d'affichage à cristaux liquides, dispositif de commande d'appareil d'affichage à cristaux liquides, pilote de source d'appareil d'affichage à cristaux liquides et contrôleur d'appareil d'affichage à cristaux liquides
KR100375309B1 (ko) 감마 보정 특성을 변경시킬 수 있는 계조표시 기준전압발생회로 및 그를 이용한 액정구동장치
TW564388B (en) Method of driving flat-panel display device
JP4986334B2 (ja) 液晶表示装置及びその駆動方法
JP4278510B2 (ja) 液晶表示装置及び駆動方法
JP4199141B2 (ja) 表示信号処理装置および表示装置
JP4193771B2 (ja) 階調電圧発生回路及び駆動回路
TWI473066B (zh) Display panel and its drive circuit
US7193602B2 (en) Driver circuit, electro-optical device, and driving method
KR100606877B1 (ko) 액정 표시 장치의 구동 회로
JP3596716B2 (ja) アクティブマトリクス型表示装置の調整方法
US20100277494A1 (en) Liquid crystal display device and method of driving the same
KR20100063575A (ko) 액정표시장치와 그 구동방법
KR20070111791A (ko) 표시 장치, 그 구동 장치 및 방법
CN107808646B (zh) 显示驱动器、电光装置、电子设备及显示驱动器的控制方法
KR20110024993A (ko) 액정 표시장치의 구동장치와 그 구동방법
KR100752070B1 (ko) 액정 디스플레이 장치, 투사형 이미지 디스플레이 유닛 및능동 매트릭스 디스플레이 장치
KR101348407B1 (ko) 액정표시장치와 그 액정표시장치의 프레임 레이트 제어방법
KR101585688B1 (ko) 액정표시장치와 그 구동방법
WO2011074285A1 (ja) 液晶表示装置および液晶表示装置の駆動方法
KR101363652B1 (ko) 액정표시장치 및 그의 고속구동 방법
JP2006276114A (ja) 液晶表示装置
CN113870806B (zh) 用于双闸极显示器的补偿系统和方法
US20110169544A1 (en) Source driver

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11792039

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06712630

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 6712630

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP