WO2006082704A1 - ディーゼルエンジンの排気弁制御方法及び排気弁制御装置 - Google Patents

ディーゼルエンジンの排気弁制御方法及び排気弁制御装置 Download PDF

Info

Publication number
WO2006082704A1
WO2006082704A1 PCT/JP2006/300498 JP2006300498W WO2006082704A1 WO 2006082704 A1 WO2006082704 A1 WO 2006082704A1 JP 2006300498 W JP2006300498 W JP 2006300498W WO 2006082704 A1 WO2006082704 A1 WO 2006082704A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust valve
exhaust
valve
combustion mode
internal pressure
Prior art date
Application number
PCT/JP2006/300498
Other languages
English (en)
French (fr)
Inventor
Junichiro Nitta
Original Assignee
Isuzu Motors Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Limited filed Critical Isuzu Motors Limited
Priority to EP06711778.8A priority Critical patent/EP1845245B1/en
Priority to US11/815,371 priority patent/US8011334B2/en
Publication of WO2006082704A1 publication Critical patent/WO2006082704A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0273Multiple actuations of a valve within an engine cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/02Valve drive
    • F01L1/04Valve drive by means of cams, camshafts, cam discs, eccentrics or the like
    • F01L1/08Shape of cams
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L13/00Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations
    • F01L13/0015Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations for optimising engine performances by modifying valve lift according to various working parameters, e.g. rotational speed, load, torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L13/00Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations
    • F01L13/08Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations for decompression, e.g. during starting; for changing compression ratio
    • F01L13/085Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations for decompression, e.g. during starting; for changing compression ratio the valve-gear having an auxiliary cam protruding from the main cam profile
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L9/00Valve-gear or valve arrangements actuated non-mechanically
    • F01L9/10Valve-gear or valve arrangements actuated non-mechanically by fluid means, e.g. hydraulic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B17/00Engines characterised by means for effecting stratification of charge in cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0242Variable control of the exhaust valves only
    • F02D13/0246Variable control of the exhaust valves only changing valve lift or valve lift and timing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D35/00Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
    • F02D35/02Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
    • F02D35/023Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions by determining the cylinder pressure
    • F02D35/024Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions by determining the cylinder pressure using an estimation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/006Controlling exhaust gas recirculation [EGR] using internal EGR
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1448Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an exhaust gas pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3017Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used
    • F02D41/3035Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the premixed charge compression-ignition mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/01Internal exhaust gas recirculation, i.e. wherein the residual exhaust gases are trapped in the cylinder or pushed back from the intake or the exhaust manifold into the combustion chamber without the use of additional passages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/20Adjusting or compensating clearance
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2305/00Valve arrangements comprising rollers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2800/00Methods of operation using a variable valve timing mechanism
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2800/00Methods of operation using a variable valve timing mechanism
    • F01L2800/10Providing exhaust gas recirculation [EGR]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B1/00Engines characterised by fuel-air mixture compression
    • F02B1/12Engines characterised by fuel-air mixture compression with compression ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B2275/00Other engines, components or details, not provided for in other groups of this subclass
    • F02B2275/14Direct injection into combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/02Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
    • F02B23/06Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
    • F02B23/0696W-piston bowl, i.e. the combustion space having a central projection pointing towards the cylinder head and the surrounding wall being inclined towards the cylinder wall
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0253Fully variable control of valve lift and timing using camless actuation systems such as hydraulic, pneumatic or electromagnetic actuators, e.g. solenoid valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D35/00Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
    • F02D35/02Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
    • F02D35/027Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions using knock sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/18Circuit arrangements for generating control signals by measuring intake air flow
    • F02D41/187Circuit arrangements for generating control signals by measuring intake air flow using a hot wire flow sensor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to an exhaust valve control method and an exhaust valve control device for a diesel engine that switches between a normal combustion mode and a premixed combustion mode according to the operating state of the engine, and in particular, an exhaust valve in the premixed combustion mode. This is related to the internal EGR by performing two-stage valve opening control.
  • a diesel engine that switches between a normal combustion mode and a premixed combustion mode according to the operating state of an internal combustion engine (engine) will be described with reference to FIG. 9 (see Patent Document 1).
  • the normal combustion mode is a mode in which fuel is injected from the fuel injection nozzle 2 into the cavity 3 of the piston top surface at the timing near the compression top dead center of the piston 1 as in the normal engine.
  • fuel injection is started at any timing from BTDC 10 ° to 0 °.
  • the fuel injected at the beginning of fuel injection ignites after an ignition delay period, and the fuel is burned by continuously injecting the fuel into the flame formed thereby.
  • the premixed combustion mode described below is used in combination according to the operating state of the engine.
  • fuel injection is injected into the cavity 3 from the fuel injection nozzle 2 at an earlier timing than the normal combustion mode and at a timing at which the fuel does not ignite until the end of injection.
  • fuel injection is started at any timing between BTDC50 ° and 20 °.
  • all injected fuel is mixed with air and burned after the combustion chamber is diluted almost uniformly, so that combustion occurs in a state where there is sufficient oxygen around the fuel, and smoke NOx generation can also be suppressed because the combustion rate is relatively slow and the combustion temperature does not rise rapidly.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2003-83119 Disclosure of the Invention Problems to be Solved by the Invention
  • EGR exhaust gas recirculation
  • the exhaust pipe and the intake pipe are connected by the EGR pipe, and the EGR is performed through this EGR pipe. Therefore, EGR gas (exhaust gas) is introduced into the cylinder in a state of being mixed with intake air (air), and only EGR gas cannot be introduced into the cylinder. Therefore, knocking is suppressed by a gas in which EGR gas and air are mixed, and an EGR gas amount (EGR rate) higher than a certain level is required to prevent knocking. Therefore, the amount of intake air into the cylinder is reduced by that amount, leading to a decrease in output and the generation of smoke. Therefore, it has been limited to extend the premixed combustion mode to a high load operation range.
  • EGR internal EGR
  • the exhaust valve is opened from the beginning to the middle of the intake stroke, the EGR gas introduced into the cylinder is strongly affected by the flow generated in the cylinder during the intake stroke, particularly the tumble flow, As a result, it is mixed with intake air, so knocking is suppressed by a gas mixture of EGR gas and air. Therefore, the same problem as described in the previous section arises.
  • the object of the present invention created in view of the above circumstances is to layer the EGR gas in the upper part of the cylinder without mixing with the intake air and without diffusing into the cylinder in the premixed combustion mode. It is an object of the present invention to provide a diesel engine exhaust valve control method and an exhaust valve control device that can be arranged and efficiently suppress knocking with a smaller EGR gas amount (EGR rate) than before.
  • EGR rate EGR gas amount
  • a first invention created to achieve the above object is an exhaust valve control method for a diesel engine that switches between a normal combustion mode and a premixed combustion mode in accordance with an operating state. Opens the exhaust valve only in the exhaust stroke, and in the premixed combustion mode, performs the two-stage valve opening control that opens the exhaust valve not only in the exhaust stroke but also in the second half of the intake stroke and the beginning of the compression stroke It is what I did.
  • a second invention is an exhaust valve control device for a diesel engine that switches between a normal combustion mode and a premixed combustion mode according to an operating state, and an exhaust valve capable of changing an opening / closing timing and a period of the exhaust valve
  • the exhaust valve driving device is controlled so that the exhaust valve is opened not only in the exhaust stroke but also in the latter half of the intake stroke and in the initial stage of the compression stroke.
  • the exhaust valve in the premixed combustion mode, is opened toward the initial stage of the second half of the intake stroke and the compression stroke, so that a part of the exhaust gas in the exhaust port is relaxed in the cylinder. Since it is taken in and placed in a layered state at the top of the cylinder with little mixing with the intake air and without diffusing, it can be knocked efficiently with a small amount of EGR gas (EGR rate) Can be prevented. Therefore, the amount of intake air into the cylinder can be increased more than before, and a reduction in output and the occurrence of smoke can be avoided, so that the premixed combustion mode can be expanded to a higher load operation region than before.
  • EGR rate EGR rate
  • FIG. 1 is a valve lift curve diagram showing an exhaust valve control method for a diesel engine according to a preferred embodiment of the present invention.
  • FIG. 2 is a system diagram showing an entire exhaust valve control device for a diesel engine according to a preferred embodiment of the present invention.
  • FIG. 3 is an explanatory diagram showing a flow for determining the second valve opening timing and the valve closing timing of the exhaust valve in the above method and apparatus.
  • FIG. 4 is an explanatory diagram showing the relationship among cylinder pressure, intake port pressure, and exhaust port pressure.
  • FIG. 5 is an explanatory diagram showing the relationship between the exhaust flow rate and the intake flow rate.
  • FIG. 6 is a side sectional view showing a camless valve mechanism as an exhaust valve driving device.
  • FIG. 7 is a perspective view showing an exhaust two-stage cam switching device as an exhaust valve driving device.
  • FIG. 8 is a side sectional view of the exhaust two-stage cam switching device.
  • FIG. 9 is a side sectional view of the engine showing fuel injection in a premixed combustion mode. Explanation of symbols
  • the method and the device are provided with an injection timing of fuel injected from the fuel injection nozzle 2 and Applicable to diesel engine 6 with switching means 5 for switching the period to normal combustion mode (described above) during high-load operation of engine 6 and to premixed combustion mode (described above) during low-medium load operation And an exhaust valve drive device 7 capable of changing the opening / closing timing and period of the exhaust valve, and a control unit 8 for controlling the exhaust valve drive device 7.
  • the control unit 8 controls the exhaust valve in the exhaust stroke.
  • the exhaust valve drive device 7 is controlled so that the valve opens as described above, and the internal EGR (described above) is not performed.
  • the control unit 8 switches the exhaust valve as shown in FIG. From the second half of the intake stroke to the early stage of the compression stroke as well as the exhaust stroke The exhaust valve drive device 7 is controlled to perform two-stage valve opening control that opens even when the force is four, and internal EGR is performed.
  • the exhaust valve driving device 7 shown in FIG. 2 uses the camless valve driving device 7a shown in FIG. 6 that does not have a mechanical cam. As will be described later in detail, the device 7a can arbitrarily change the opening / closing timing and period of the exhaust valve 9 based on a command from the control unit 8.
  • the intake pipe 10 of the engine 6 includes a MAF (mass air flow) sensor 11 that measures the intake air amount, and an intake pipe internal pressure sensor 12 that measures the internal pressure of the intake pipe 10.
  • the cylinder body of the engine 6 is provided with a knocking sensor (car speed sensor, etc.) 13 for measuring the knocking strength based on the magnitude of vibration, etc.
  • a crank angle sensor 14 for detecting the shaft angle is provided, and an exhaust pipe internal pressure sensor 16 for measuring the internal pressure of the exhaust pipe 15 is provided in the exhaust pipe 15 of the engine 6.
  • a fuel injection amount detecting means 17 for determining the fuel injection amount injected from the fuel injection nozzle 2 based on a target injection amount or the like is provided, and a cylinder for determining the cylinder internal pressure of the engine 6
  • An internal pressure detecting means 18 is provided.
  • the cylinder internal pressure detecting means 18 includes the crank angle sensor 14 and the intake pipe internal pressure sensor 12, and calculates the cylinder internal pressure at each crank angle based on at least the internal pressure of the intake pipe 10 measured by the intake pipe internal pressure sensor 12. It is what you do. Calculations are based on maps and approximate equations obtained through experiments and simulations. Further, the cylinder internal pressure detecting means 18 may use not only the internal pressure of the intake pipe 10 but also a load (axle opening), an engine speed, and the like as parameters for calculating the cylinder internal pressure.
  • the switching means 5 switches the injection timing and period of the fuel injected from the fuel injection nozzle 2 to the normal combustion mode during high load operation and to the premixed combustion mode during low and medium load operation.
  • a predetermined value for example, 2.5
  • the premixed combustion mode is selected because the load is low and medium, and if the excess air ratio is less than the predetermined value, the normal combustion mode is set because the load is high.
  • the control unit 8 controls the exhaust valve drive device 7 so that the exhaust valve 9 opens normally in the exhaust stroke.
  • the control unit 8 controls the exhaust valve 9 only in the exhaust stroke.
  • the exhaust valve driving device 7 is controlled so as to perform the two-stage valve opening control that opens even in the early stage of the second half of the intake stroke. Since the opening and closing timing and period of the exhaust valve 9 in the normal combustion mode are the same as those of a normal engine, a description thereof will be omitted, and the above-described two-stage valve opening control of the exhaust valve 9 in the premixed combustion mode will be described with reference to FIG. It explains using.
  • the crank angle at the time of fuel injection is obtained by the crank angle sensor 14, the fuel injection amount is obtained by the injection amount detection means 17, and the current fuel injection timing and amount are determined based on these values in the premixed combustion mode. It is determined whether or not. In addition, it may be determined whether the pre-mixed combustion mode is in accordance with whether the excess air ratio obtained from the MAF sensor 11 and the injection amount detection means 17 is not less than the predetermined value.
  • crank angle rotation angle per unit time from the crank angle sensor 14 that is, It is also possible to obtain the engine rotation speed, obtain the fuel injection amount by the injection amount detection means 17, and determine whether or not the premixed combustion mode is based on these values. For example, if the engine speed is less than a predetermined speed and the fuel injection amount is less than a predetermined amount, it is determined that the premixed combustion mode is set, and otherwise, it is determined that the normal combustion mode is set.
  • the exhaust valve 9 is controlled to be opened in two stages as shown in FIG. It is the same as the time (similar to a normal engine), and is controlled at a predetermined opening / closing timing and period so that the exhaust is optimal in the exhaust stroke.
  • the opening / closing timing and period of the second stage of the exhaust valve 9, which is a feature of the present embodiment, are determined as follows.
  • the restart valve timing (EVO) of the exhaust valve 9 affects the new intake air amount, it is calculated from the intake air amount measured by the MAF sensor 11 and the fuel injection amount obtained by the fuel injection amount detecting means 17. It is determined based on the / F value (air-fuel ratio value) and the knocking intensity measured by the knocking sensor 13. Specifically, it is determined based on the condition that the A / F value is not less than a predetermined value and the knocking strength is not more than another predetermined value.
  • the opening timing of the exhaust valve 9 is too early than the appropriate timing, the amount of EGR gas (EGR rate) introduced into the cylinder from the exhaust port increases and the intake amount decreases accordingly. F value decreases.
  • the valve opening timing is delayed and the EGR gas amount is controlled to decrease, so that in the premixed combustion mode, the A / F value can be kept above the predetermined value and a predetermined new intake air amount is secured. As a result, the output is reduced and the occurrence of smoke is avoided.
  • the valve closing timing (EVC) of the exhaust valve 9 is such that the internal pressure of the exhaust pipe 15 measured by the exhaust pipe internal pressure sensor 16 and the cylinder internal pressure detection means 18 in order to prevent the gas in the cylinder from flowing into the exhaust port. Compare the cylinder internal pressure obtained in step 1 and determine an appropriate EVC timing. Specifically, the internal pressure of the exhaust pipe 15 measured by the exhaust pipe internal pressure sensor 16 is converted by the cylinder internal pressure detection means 18. It is determined on the basis of the condition that the pressure in the cylinder is equal to or higher than the obtained pressure.
  • the exhaust port pressure in the initial stage of the compression stroke varies slightly depending on the operating conditions, but basically, up to a predetermined crank angle, Also gets higher. Therefore, while the exhaust port pressure is higher than the cylinder pressure, the exhaust valve 9 is kept open, and when the relationship between these pressures is reversed, the exhaust valve 9 is closed to guide the pressure into the cylinder. EGR gas is prevented from flowing into the exhaust port.
  • the control unit 8 controls the exhaust valve drive device 7 (camless valve drive device 7a). become.
  • the opening timing (EV ⁇ ) and closing timing (EVC) of the exhaust valve 9 may be determined every time the exhaust valve 9 is opened and closed, or each predetermined opening and closing times to simplify control. You may plan.
  • the EGR gas amount (EGR rate) is smaller than in the conventional example in the premixed combustion mode as described above.
  • knocking can be effectively prevented while avoiding a decrease in output. Therefore, the premixed combustion mode can be expanded to a higher load operation range than before.
  • the camless valve driving device 7a will be described with reference to FIG.
  • the camless valve driving device 7a is provided with an urging means 19 for urging the exhaust valve 9 in the valve closing direction, and a pressure applied to open the exhaust valve 9 by staking the urging force of the urging means 19
  • a pressure chamber 20 to which the working fluid is supplied supply means 21 for supplying the working fluid into the pressure chamber 20, and discharge means 22 for discharging the working fluid from the pressure chamber 20.
  • the control unit 8 controls the opening timing (EVO) of the exhaust valve 9 by controlling the supply timing of the working fluid into the pressure chamber 20 by the supply unit 21, and the control unit 8 controls the discharge unit 22. By controlling the discharge timing of the working fluid from the pressure chamber 20, the valve closing timing (EVC) of the exhaust valve 9 is controlled.
  • the urging means 19 closes the exhaust valve 9 by energizing a flange 9b accommodated in the valve panel chamber 23 in a compressed state and provided on the stem portion 9a of the exhaust valve 9 upward.
  • a valve spring 19a that urges in the valve direction, and is accommodated in the actuator body 24 above the valve spring chamber 23, and the exhaust valve 9 is urged in the valve closing direction by magnetically attracting the flange 9b.
  • Magnet 19b (permanent magnet, electromagnet, etc.).
  • the pressure chamber 20 is formed in an upper portion of a circular hole formed so as to slidably accommodate the stem portion 9a of the exhaust valve 9 in the actuator body 24, and a bottom surface portion thereof is formed.
  • the stem portion 9a is partitioned by the top surface 9c.
  • the working fluid is supplied into the pressure chamber 20 by the supply means 21, and the force for opening the exhaust valve 9 due to the pressure in the pressure chamber 20 acting on the top surface 9c is the valve panel 19a and the magnet 19b.
  • the exhaust valve 9 is opened.
  • the supply means 21 includes a high-pressure working fluid supply means 21a for supplying a high-pressure working fluid into the pressure chamber 20 during a predetermined period of time when the exhaust valve 9 is initially opened, and a predetermined period of time when the exhaust valve 9 is open. After the elapse, low pressure working fluid supply means 21b for supplying a low pressure working fluid to the pressure chamber 20 is provided.
  • the high-pressure working fluid supply means 21a ejects the high-pressure working fluid from above the pressure chamber 20 toward the top surface 9c of the stem portion 9a. As a result, the injected high-pressure working fluid flows into the top surface 9c of the stem portion 9a and presses it downward, and the pressure in the pressure chamber 20 rises rapidly, so that the exhaust valve 9 opens. Necessary initial energy is given, and the opening of the exhaust valve 9 starts vigorously.
  • the exhaust valve 9 is lifted by inertial movement, and at this time, the actual volume increase amount of the pressure chamber 20 is due to the fact that the exhaust valve 9 is inertial movement by injection of the high-pressure working fluid.
  • the amount of increase in the volume of the pressure chamber 20 according to the supply amount of the high-pressure working fluid is larger than the theoretical increase in volume of the pressure chamber 20, and the pressure chamber 20 can have a negative pressure. Is introduced into the pressure chamber 20, so that the pressure chamber 20 is prevented from becoming a negative pressure. Therefore, the lift operation of the exhaust valve 9 is stabilized, and the lift amount can be ensured to a lift amount corresponding to the initial energy given by the supply of the high-pressure working fluid.
  • the high-pressure working fluid supply means 21a includes a balance valve 26 housed in a balance valve housing chamber formed in communication with an upper side of the pressure chamber 20 via an outlet hole 25, and a balance valve 26.
  • a balance valve 26 housed in a balance valve housing chamber formed in communication with an upper side of the pressure chamber 20 via an outlet hole 25, and a balance valve 26.
  • the balance valve 26 is pressed against the valve seat 2 7 formed in a mortar shape around the outlet hole 25.
  • the stepped portion 29 is formed in a cone shape on the side portion of the balance valve 26 and the cone-shaped bottom surface portion.
  • valve opening chamber 30 for supplying high pressure working fluid to the valve opening chamber 30 and the valve closing chamber 28, and the balance valve 26 housed in the valve closing chamber 28 are lightly pressed against the valve seat 27.
  • a relief means 33 for releasing the pressure in the valve closing chamber 28.
  • the pressure in the valve closing chamber 28 is not released by the relief means 33 and is sealed, the pressure in the valve closing chamber 28 is closed on the top surface of the balance valve 26 so that the balance valve 26 is closed. Since the valve closing force that acts on the stepped portion 29 and the bottom surface portion of the balance valve 26 is equalized so that the balance valve 26 is opened by the pressure in the valve opening chamber 30, the panel 3 2 The balance valve 26 is seated on the valve seat 27 and closed by force. Once the valve is closed, the bottom surface of the balance valve 26 is seated and covered with the valve seat 27, so that the pressure of the working fluid does not act on the bottom surface, and the valve opening force decreases and the valve closing force is reduced.
  • the balance valve 26 Since the force becomes larger, the balance valve 26 is seated on the valve seat 27 with the urging force and closed. When the pressure in the valve closing chamber 28 is released by the relief means 33, the valve closing force becomes remarkably small and the valve opening force becomes larger. Therefore, even if the force of the panel 32 is taken into account, the balance valve 26 Is lifted away from valve seat 27 and opened. Then, the high-pressure working fluid is vigorously injected into the pressure chamber 20 through the outlet hole 25.
  • the relief means 33 includes a relief hole 36 formed in a cover plate 35 that defines an upper portion of the valve closing chamber 28, and a valve element 37 disposed on the upper surface of the cover plate 35 to open and close the relief hole 36.
  • the electromagnetic solenoid 39 When the electromagnetic solenoid 39 is not energized, the valve body 37 is seated on the cover plate 35 by the force of the spring 38, closes the relief hole 36, and closes when the electromagnetic solenoid 39 is energized. Since the suction movement is performed, the relief hole 36 is released from the lid plate 35 and opened.
  • the electromagnetic solenoid 39 is appropriately turned on and off in response to a command from the control unit 8 (electronic control unit).
  • the electromagnetic solenoid 39 When the electromagnetic solenoid 39 is energized, the valve body 37 is suctioned and opened, the balance valve 26 is opened, the high-pressure working fluid is injected into the pressure chamber 20, and the exhaust valve 9 is turned on. The valve is lowered and opened (lifted). Thereby, the valve opening timing (EVO) of the exhaust valve 9 can be controlled.
  • the electromagnetic solenoid 39 is turned off, the valve body 37 is closed by the force of the spring 38, the balance valve 26 is closed, and the high-pressure working fluid is not injected into the pressure chamber 20. The force to open (lift) is lost. Thereby, the lift amount of the exhaust valve 9 can be controlled.
  • the low-pressure working fluid supply means 21b is provided in the low-pressure supply passage 40 and the low-pressure supply passage 40, which are in communication with the upper side of the pressure chamber 20 in order to supply the low-pressure working fluid into the pressure chamber 20.
  • the check valve 41 is provided.
  • the fuel stored in a low pressure state for example, 0.5 MPa
  • the low pressure chamber 4 since the working fluid flows from the low pressure chamber 42 to the pressure chamber 20 but does not flow in the reverse direction, the low pressure chamber 4 only when the pressure in the pressure chamber 20 is lower than the upstream side of the check valve 41.
  • the check valve 41 closes the pressure chamber 20. To do.
  • the supply means 21 configured as described above, when the balance valve 26 of the high-pressure working fluid supply means 21a is opened and the high-pressure working fluid is injected from the outlet hole 25 into the pressure chamber 20, as described above.
  • the volume increase of the pressure chamber 20 is the theoretical volume of the pressure chamber 20 corresponding to the amount of high-pressure working fluid supplied.
  • the pressure chamber 20 can become negative pressure when the pressure is larger than the increase, but if the pressure in the pressure chamber 20 becomes lower than the pressure in the low pressure chamber 42 during the lift, the low pressure working fluid supply means 21b operates the low pressure.
  • valve opening timing is controlled by the high pressure working fluid supply means 21a, and the exhaust valve 9 in which a stable lift operation is secured by the low pressure working fluid supply means 21b is connected to the pressure chamber by the discharge means 22. Since the valve is closed (raised) by releasing the pressure in the valve 20, the valve closing timing (EVC) can be controlled by controlling the release timing.
  • the discharge means 22 includes a discharge passage 43 communicated with the upper side of the pressure chamber 20 to discharge the working fluid in the pressure chamber 20, and an on-off valve 44 interposed in the discharge passage 43. ing.
  • the on-off valve 44 is appropriately opened and closed according to a command from the control unit 8. This open / close valve 44 is closed.
  • the pressure that lifts the exhaust valve 9 is maintained by maintaining the pressure in the pressure chamber 20 at the same time, and the pressure that lifts the exhaust valve 9 by releasing the pressure in the pressure chamber 20 when the valve is opened is released. Close the valve. Therefore, the valve closing timing (EVC) of the exhaust valve 9 can be controlled by controlling the valve opening timing of the on-off valve 44 by the control unit 8 as described above with reference to FIGS.
  • EMC valve closing timing
  • the camless valve drive device 7a described above is incorporated in a fuel circuit (flow path) of a common rail fuel injection system 45 of a diesel engine as shown in FIG.
  • Fuel stored in a high pressure state (several tens to several hundred MPa) in the common rail 34 is used as a high pressure working fluid of the high pressure working fluid supply means 21a, and a low pressure state (for example, in the low pressure chamber 42 by the feed pump 47 and the relief valve 48)
  • the fuel stored at 0.5 MPa is used as the low pressure working fluid of the low pressure working fluid supply means 21b.
  • the common rail fuel injection system 45 will be described.
  • a fuel injection nozzle 2 for performing fuel injection is provided for each cylinder of the engine 6, and the fuel injection nozzle 2 is stored in the common rail 34 in a high pressure state.
  • Fuel is always supplied.
  • the fuel that has been brought into a high pressure state (several tens to several hundreds of MPa) by the high pressure pump 46 is pumped to the common rail 34.
  • the fuel in the fuel tank 49 is fed to the high pressure pump 46 through the fuel filter 50. Pumped by.
  • the feed pressure Pf of the feed pump 47 is adjusted by the relief valve 48 and is kept at a constant pressure (for example, 0.5 MPa).
  • a control unit 8 (electronic control unit) is provided as a device for comprehensively controlling the entire apparatus shown in the figure.
  • the control unit 8 includes an operating state of the engine 6 (crank angle, rotational speed, engine load, etc. of the engine 6). ) Is detected (see Fig. 2).
  • the control unit 8 grasps the operating state of the engine 6 based on the signals of these sensors, transmits a drive signal based on this to the electromagnetic solenoid of the fuel injection nozzle 2, and controls the energization of the electromagnetic solenoid to control the fuel.
  • the fuel injection nozzle 2 is controlled to open and close, and the execution / stop of fuel injection is controlled.
  • the fuel is returned from the fuel injection nozzle 2 to the fuel tank 49 through the fuel force S return circuit 51 at a normal pressure.
  • the control unit 8 feedback-controls the pressure in the common rail 34 toward the target pressure in accordance with the operating state of the engine 6. For this reason, the common rail 34 is provided with a sensor 52 for detecting pressure therein.
  • the camless valve drive device 7a is installed in the common rail fuel injection system 45.
  • the low pressure chamber 42 of the camless vano drive unit 7a is connected to the circuit between the feed pump 47 and the high pressure pump 46 via a passage. Therefore, the low-pressure chamber 42 stores low-pressure fuel corresponding to the feed pressure Pf (for example, 0.5 MPa), and this is used as the low-pressure working fluid.
  • the high pressure supply passage 31 of the camless valve driving device 7a is communicated with the common rail 34, and the high pressure fuel (several tens to several hundred MPa) in the common rail 34 is used as the high pressure working fluid.
  • the downstream side of the discharge passage 43 of the camless valve driving device 7a is connected to the fuel tank 49 via the return circuit 53, and the fuel discharged from the discharge passage 43 is connected to the fuel via the return circuit 53. Returned to tank 49.
  • the common rail fuel injection system 45 is not an indispensable component of this embodiment. That is, the high-pressure working fluid of the camless valve driving device 7a may use another fluid that is not the high-pressure fuel in the common rail 34.
  • the low-pressure working fluid may not be the low-pressure fuel in the low-pressure chamber 42; Use it.
  • the exhaust two-stage cam switching device 7b includes an exhaust camshaft 60 that is rotated by a crankshaft of the engine 6, and first and second exhaust cams 61 and 62 provided on the camshaft 60.
  • the first and second exhaust cams 61 and 62 have the same shape as the first cam crest 63 and the second exhaust cam 62, respectively.
  • the second cam crest 64 formed to open the exhaust valve in the latter half of the intake stroke during the initial compression stroke, and the rocker shaft 65 corresponding to the first and second cams 61 and 62
  • the first and second rocker arms 66 and 67 are swingably oscillated separately, the roller 92 provided on the first rocker arm 66 and in contact with the first exhaust cam 61, and the second rocker arm 67. And a roller 93 that abuts against the second exhaust cam 62.
  • the exhaust two-stage cam switching device 7b is further provided at the end of the first rocker arm 66 and piles the top of the stem portion of the exhaust valve against the force of the valve panel and pushes it downward to lift (open valve). ) And the rocker movement of the second rocker arm 67 is transmitted to the first rocker arm 66. The second cam crest 64 and the second cam crest arm 67 is not transmitted to the first rocker arm 66. And a cancel mechanism 69 for switching between the idling mode for canceling the opening of the exhaust valve.
  • the control unit 8 sets the cancel mechanism 69 to the idling mode when operating in the normal combustion mode, stops the opening of the exhaust valve by the second cam peak 64, and cancels when operating in the premixed combustion mode.
  • the mechanism 69 is set to the two-stage valve open mode and the exhaust valve is opened by the second cam crest 64 (see Fig. 1). That is, during operation in the normal combustion mode, by setting the cancel mechanism 69 to the idling mode, the swing of the second rocker arm 67 becomes idling and is not transmitted to the first rocker arm 66. Opening and closing is controlled by the first rocker arm 66, and is normally opened and closed by the exhaust stroke.
  • the swing mechanism of the second rocker arm 67 is transmitted to the first rocker arm 66 by setting the cancel mechanism 69 to the two-stage valve opening mode.
  • the first and second rocker arms 66 and 67 are controlled to open and close, and in addition to the valve opening in the normal exhaust stroke, the valve is also opened in the initial half of the force compression stroke in the intake stroke.
  • the exhaust gas (EGR gas) in the exhaust port enters the cylinder as detailed in the previous embodiment. It is taken in slowly and is arranged in a layered state in the upper part of the cylinder with little mixing with the intake air (fresh air) in the cylinder and without diffusing into the cylinder. Therefore, the amount of EGR gas (EGR rate) is less than that of the conventional example, so that knocking can be prevented efficiently, and the amount of EGR gas (EGR rate) required to prevent knocking is less than that of the conventional example. As a result, the amount of intake air into the cylinder is increased compared to the conventional example, and the reduction in output during EGR can suppress the generation of smoke, so the operating range of the premixed combustion mode can be expanded to the high load side.
  • the cancel mechanism 69 for switching between performing and not performing is substantially inside the arm body 70 of the second rocker arm 67 from right to left.
  • a plunger hole 73 and a plunger 74 accommodated in the plunger hole 73 so as to be slidable from the left side are provided.
  • a spring 76 is provided between the plunger body 72 and the arm body 70 to urge the plunger body 72 to the right and press it against the pad 75 of the first rocker arm 66.
  • the plunger 74 is formed with a passage 77 communicating with the left and right thereof, and a needle 79 provided on the piston 78 is passed through the passage 77.
  • the piston 78 is lightly biased to the right by a spring 80, and a panel chamber 81 that houses the panel 80 is communicated with the atmosphere via an air passage 82 formed in the arm body 70.
  • a spherical stop valve 83 for closing the end of the passage 77 is disposed at the right end of the needle 79 by being pressed leftward by a spring 85 through a retainer 84.
  • the sealed space on the right side of the shutoff valve 83 is a lock oil chamber 86, and the sealed space on the left side of the shutoff valve 83 is a hydraulic oil chamber 87.
  • the hydraulic oil chamber 87 is connected to a hydraulic oil supply passage 89 formed in the arm body 70 via a switching valve 88 formed of a spool valve, and the hydraulic oil supply passage 89 is formed inside the rocker shaft 65. It is connected to oil passage 90.
  • the switching valve 88 is disposed across the air passage 82.
  • the cancel mechanism 69 described above controls the swing of the second rocker arm 67 to the first rocker arm 66, that is, when executing the opening of the exhaust valve by the second cam peak 64.
  • the control unit 8 controls the hydraulic oil amount control valve 91 to supply hydraulic oil to the oil passage 90 and increase the hydraulic pressure in the oil passage 90 and the hydraulic oil supply passage 89.
  • the hydraulic oil (lubricating oil) in the oil tank 92 is pumped up by the pump 93 and supplied to the control valve 91 through the oil gallery 94.
  • the switching valve 88 is retracted to the left against the panel 95 due to the high hydraulic pressure, and the hydraulic oil supply passage 89 communicates with the hydraulic oil chamber 87.
  • the high-pressure hydraulic oil flows into the hydraulic oil chamber 87, the piston 78 moves to the side opposite to the pad 75 against the spring 80, and the plunger body 72 moves to the pad 75 side.
  • the shut-off valve 83 is sucked and opened, and the hydraulic oil in the hydraulic oil chamber 87 flows into the lock oil chamber 86, and the plunger body 72 is pressed by the pressure of the hydraulic oil. Is pressed against pad 75.
  • the plunger body 72 is larger than the force due to the hydraulic oil pressure.
  • the plunger body 72 is locked in the pushed state and is brought into contact with the pad 75, so that the swing of the second rocker arm 67 is transmitted to the first rocker arm 66. Therefore, the exhaust valve is not only opened in the exhaust stroke by the first cam peak 63 as usual, but is also opened by the second cam peak 64 even in the early stage of the second half force compression stroke of the intake stroke. As described above, knocking can be effectively prevented with a smaller amount of EGR gas (EGR rate) than in the conventional example by performing the two-stage valve opening in the premixed combustion mode.
  • EGR rate EGR gas
  • the hydraulic oil pressure gradually decreases. While the force pushing the switching valve 88 is stronger than the biasing force of the spring 95, the oil passage 90, the hydraulic oil supply passage 89, the hydraulic oil chamber 87, and the lock Since the oil chamber 86 is in communication, the hydraulic oil returns to the oil passage 90.
  • the switching valve 88 moves forward due to the biasing force of the panel 95, shuts off the hydraulic oil chamber 87 and the hydraulic oil supply passage 89, and the hydraulic oil chamber 87 and the lock oil chamber 86 communicate with each other. In this state, both chambers are sealed. As a result, the plunger body 72 is locked in the retracted state. Further, the ring groove formed on the side portion of the switching valve 88 is displaced from the air passage 82 and seals the panel chamber 81.
  • Switching between the normal combustion mode and the premixed combustion mode operation is performed by the switching means 5 described in the previous embodiment described with reference to FIG. 2, and this switching means 5 is, for example, selected by the MAF sensor 11.
  • this switching means 5 is, for example, selected by the MAF sensor 11.
  • the excess air ratio calculated from the measured intake air amount and the fuel injection amount obtained by the fuel injection amount detection means 17 is a predetermined value (for example, 2.5) or more, pre-mix the injection timing and period from the fuel injection nozzle 2
  • the combustion mode is set, and when the excess air ratio is less than the predetermined value, the injection timing and period from the fuel injection nozzle 2 are set to the normal combustion mode.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Valve Device For Special Equipments (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

 運転状態に応じて通常燃焼モードと予混合燃焼モードとを切り替えるディーゼルエンジン6の排気弁制御方法であって、通常燃焼モードにおいては排気弁9を排気行程においてのみ開弁し、予混合燃焼モードにおいては上記排気弁9を排気行程のみならず、吸気行程の後半から圧縮行程の初期にかけても開弁する二段開弁制御を行うようにした。

Description

明 細 書
ディーゼルエンジンの排気弁制御方法及び排気弁制御装置
技術分野
[0001] 本発明は、機関の運転状態に応じて通常燃焼モードと予混合燃焼モードとを切り 替えるディーゼルエンジンの排気弁制御方法及び排気弁制御装置に係り、特に、予 混合燃焼モード時に排気弁の二段開弁制御を行うことで内部 EGRするようにしたも のに関する。
背景技術
[0002] 内燃機関(エンジン)の運転状態に応じて通常燃焼モードと予混合燃焼モードとを 切り替えるディーゼルエンジンについて、図 9を用いて説明する(特許文献 1参照)。
[0003] 通常燃焼モードは、通常のエンジンと同様にピストン 1の圧縮上死点近傍のタイミン グで燃料噴射ノズノレ 2から燃料をピストン頂面のキヤビティ 3内に噴射するモードであ る。図例では、 BTDC10° 〜0° までのいずれかのタイミングで燃料の噴射を開始し ている。この通常燃焼モードでは、燃料噴射の初期に噴射した燃料が着火遅れ期間 を経て着火し、これによつて形成された火炎の中に継続して燃料を噴射することで、 この燃料が燃焼するという拡散燃焼の形態を採る。かかる拡散燃焼では、火炎の中 に新たな燃料を噴射して燃焼させるため、元々酸素が少ないところに燃料を供給し て燃焼させなければならず、スモークが発生し易い。そこで、以下に述べる予混合燃 焼モードをエンジンの運転状態に応じて併用するようにしている。
[0004] 予混合燃焼モードは、通常燃焼モードよりも早期のタイミングで、且つ噴射終了ま で燃料の着火が生じなレ、ようなタイミングで、燃料噴射ノズル 2から燃料をキヤビティ 3 内に噴射するモードである。図例では、 BTDC50° 〜20° のいずれかタイミングで 燃料の噴射を開始している。この予混合燃焼モードでは、噴射された全ての燃料が 空気と混合され、燃焼室内が略均一に希薄化された後に燃焼するため、燃料の周囲 に酸素が十分存在する状態での燃焼となり、スモークの発生を抑制でき、且つ燃焼 速度が比較的緩慢で燃焼温度も急激に上昇しないため、 NOxの発生も抑制できる。
[0005] 特許文献 1 :特開 2003— 83119号公報 発明の開示 発明が解決しょうとする課題
[0006] ところで、エンジンの高負荷運転時には、予混合燃焼モードを実行することは困難 である。何故なら、高負荷時には多量の燃料が噴射されるため、燃料噴射ノズル 2か ら燃料を通常よりも早期に噴射すると、ピストン 1が上死点近傍に到達する前に着火 が開始してしまい、ノッキングが激しくなり、エンジンが損傷し兼ねないからである。よ つて、エンジンの高負荷運転時には通常燃焼モードとし、低中負荷運転時に予混合 燃焼モードに切り替えるようにしている。
[0007] 予混合燃焼モード時におけるノッキングの発生について本発明者が研究を重ねた 結果、以下の事実が分かった。すなわち、本発明者の実験'シミュレーションによって 、ピストン 1の圧縮上死点近傍において、スキッシュクリアランスの周辺、すなわちビス トン 1の頂部のキヤビティ 3の外周部 4の温度が他の部位よりも数十 K程度上昇するこ とが判明した。そして、上記ノッキングは、このピストン外周部 4における温度上昇域 での着火がトリガーとなって発生することが分かった。よって、この外周部 4における 燃焼反応を抑制すれば、予混合燃焼モードにおいて問題となっているノッキングを 抑制することが可能となり、予混合燃焼モードの運転領域をより高負荷側に拡大する ことが可能となる。
[0008] 燃焼反応を抑制する技術として EGR (排気ガス再循環)が知られている力 通常の EGRでは排気管と吸気管とを EGR管で連通させ、この EGR管を通じて EGRを行つ ているため、 EGRガス (排気ガス)が吸気(空気)と混合された状態でシリンダ内に導 入されてしまレ、、 EGRガスのみをシリンダ内に導入することができない。よって、 EGR ガスと空気とが混ざったガスでノッキングを抑制することになり、ノッキングを防止する には有る程度以上の EGRガス量 (EGR率)が必要となる。従って、その分シリンダ内 への吸気量が減り、出力の低下やスモークの発生を招くため、予混合燃焼モードを 高負荷運転域に広げることが制限されていた。
[0009] また、別の EGR方法として、排気弁を排気行程のみならず吸気行程の初期から中 期にかけて再び開弁することで排気ポート内の排気ガスの一部をシリンダ内に導入 するタイプの EGR (内部 EGR)も知られている。し力し、この内部 EGRタイプにあって も、排気弁を吸気行程の初期から中期にかけて開弁しているので、シリンダ内に導入 された EGRガスが吸気行程においてシリンダ内にて生じる流動、特にタンブル流の 影響を強く受け、シリンダ内にて吸気と混合されてしまうため、 EGRガスと空気とが混 ざったガスでノッキングを抑制することになる。よって、前段で述べたものと同様の問 題が生じる。
[0010] 以上の事情を鑑みて創案された本発明の目的は、予混合燃焼モード時において、 EGRガスを吸気と混合させることなく且つシリンダ内に拡散させることなくシリンダ内 の上部に層状化して配置でき、従来よりも少ない EGRガス量 (EGR率)でノッキング を効率よく抑制できるディーゼルエンジンの排気弁制御方法及び排気弁制御装置を 提供することにある。
課題を解決するための手段
[0011] 上記目的を達成すべく創案された第一の発明は、運転状態に応じて通常燃焼モー ドと予混合燃焼モードとを切り替えるディーゼルエンジンの排気弁制御方法であって 、通常燃焼モードにおいては排気弁を排気行程においてのみ開弁し、予混合燃焼 モードにおいては上記排気弁を排気行程のみならず、吸気行程の後半から圧縮行 程の初期にかけても開弁する二段開弁制御を行うようにしたものである。
[0012] 第二の発明は、運転状態に応じて通常燃焼モードと予混合燃焼モードとを切り替 えるディーゼルエンジンの排気弁制御装置であって、排気弁の開閉時期及び期間を 変更可能な排気弁駆動装置と、該排気弁駆動装置を制御する制御部とを有し、該制 御部は、上記通常燃焼モード時には、上記排気弁を排気行程においてのみ開弁す るように上記排気弁駆動装置を制御し、上記予混合燃焼モード時には、上記排気弁 を排気行程のみならず吸気行程の後半力 圧縮行程の初期にかけても開弁する二 段開弁制御を行うように上記排気弁駆動装置を制御するものである。
発明の効果
[0013] 本発明によれば、予混合燃焼モード時に排気弁を吸気行程の後半力 圧縮行程 の初期にかけて開弁することで、排気ポート内の排気ガスの一部がシリンダ内に緩や 力に取り込まれ、吸気と殆ど混合することなく且つ拡散することなくシリンダの上部に 層状化した状態で配置されるため、少なレ、EGRガス量 (EGR率)で効率的にノッキン グを防止できる。よって、シリンダ内への吸気量を従来よりも増やすことができ、出力 低下やスモークの発生を回避できるため、予混合燃焼モードを従来よりも高負荷運 転域に広げることができる。
図面の簡単な説明
[0014] [図 1]図 1は、本発明の好適実施形態に係るディーゼルエンジンの排気弁制御方法 を示す弁リフトカーブ線図である。
[図 2]図 2は、本発明の好適実施形態に係るディーゼルエンジンの排気弁制御装置 の全体を示すシステム図である。
[図 3]図 3は、上記方法および装置において、排気弁の二段目の開弁時期と閉弁時 期とを定めるフローを示す説明図である。
[図 4]図 4は、シリンダ圧力と吸気ポート圧力と排気ポート圧力との関係を示す説明図 である。
[図 5]図 5は、排気流量と吸気流量との関係を示す説明図である。
[図 6]図 6は、排気弁駆動装置としてのカムレスバルブ機構を示す側断面図である。
[図 7]図 7は、排気弁駆動装置としての排気二段カム切換装置を示す斜視図である。
[図 8]図 8は、上記排気二段カム切換装置の側断面図である。
[図 9]図 9は、予混合燃焼モードでの燃料噴射を示すエンジンの側断面図である。 符号の説明
[0015] 5 切換手段
6 ディーゼノレエンジン
7 排気弁駆動装置
7a カムレスバルブ駆動装置
7b 排気二段カム切換装置
8 制御部
9 排気弁
10 吸気管
11 MAFセンサ
12 吸気管内圧センサ 13 ノッキングセンサ
14 クランク角センサ
16 排気管内圧センサ
17 噴射量検出手段
18 シリンダ内圧検出手段
19 付勢手段
20 圧力室
21 供給手段
22 排出手段
61 第一排気カム
62 第二排気カム
63 第一カム山
64 第二カム山
69 キャンセノレ機構
発明を実施するための最良の形態
[0016] 以下、本発明の好適実施形態を添付図面に基づいて説明する。
[0017] 本実施形態に係る排気弁制御方法及び排気弁制御装置の概要を説明すると、図 2に示すように、本方法及び装置は、燃料噴射ノズル 2から噴射される燃料の噴射時 期及び期間を、エンジン 6の高負荷運転時には通常燃焼モード (既述)とし、低中負 荷運転時に予混合燃焼モード (既述)に切り替える切換手段 5を備えたディーゼルェ ンジン 6に適用されるものであり、排気弁の開閉時期及び期間を変更可能な排気弁 駆動装置 7と、排気弁駆動装置 7を制御する制御部 8とを備えている。
[0018] 制御部 8は、高負荷運転時に切換手段 5が燃料噴射ノズル 2から噴射される燃料の 噴射時期及び期間を通常燃焼モードに切り替えたときには、排気弁を排気行程にお レ、て通常通りに開弁するように排気弁駆動装置 7を制御し、内部 EGR (既述)を行わ ない。また、制御部 8は、低中負荷運転時に切換手段 5が燃料噴射ノズル 2から噴射 される燃料の噴射時期及び期間を予混合燃焼モードに切り替えたときには、図 1に 示すように、排気弁を排気行程のみならず吸気行程の後半から圧縮行程の初期に 力 4ナても開弁する二段開弁制御を行うように排気弁駆動装置 7を制御し、内部 EGR を行う。
[0019] 排気弁を吸気行程の後半力 圧縮行程の初期にかけて開弁すると、図 4に示すよ うに排気ポート内の圧力がシリンダ内の圧力よりも僅かに高い期間の開弁となるため 、排気ポート内の排気ガスの一部がシリンダ内に緩やかに取り込まれ、しかも図 5に 示すようにこの期間においては吸気ポートからシリンダ内への吸気が略終了している ため、シリンダ内に取り込まれた EGRガスが吸気(空気)と激しく混じり合うことなく且 っシリンダ内に拡散することなくシリンダ内の上部に層状化した状態で配置される。
[0020] 空気が殆ど混ざっていない EGRガスがシリンダ内の上部に層状配置されると、ビス トン 1の圧縮上死点近傍にて温度上昇が生じてノッキングのトリガーとなるピストン 1頂 部のキヤビティ 3の外周部 4における燃焼反応力 S、従来例よりも少ない EGRガス量 (E GR率)で効率よく抑制される。よって、ノッキングを防止するために必要な EGRガス 量 (EGR率)が従来例よりも少なくて済むことになり、その分シリンダ内への吸気量が 従来例よりも増え、 EGR時の出力低下やスモークの発生が抑えられるので、予混合 燃焼モードの運転領域を高負荷側に拡張できる。
[0021] 以下、本実施形態に係る排気弁制御方法及び排気弁制御装置を詳述する。
[0022] 本実施形態では、図 2に示す排気弁駆動装置 7に機械カムを有しない図 6に示す カムレスバルブ駆動装置 7aを用いている。この装置 7aについては、詳しくは後述す るが、排気弁 9の開閉時期及び期間を制御部 8からの指令に基づいて任意に変更で きるようになつている。
[0023] 図 2に示すように、エンジン 6の吸気管 10には、吸気量を測定する MAF (マス.エア •フロー)センサ 11と、吸気管 10の内圧を測定する吸気管内圧センサ 12とが設けら れ、エンジン 6のシリンダボディ等には、ノッキングの強度を振動の大きさ等に基づい て測定するノッキングセンサ (カ卩速度センサ等) 13が設けられ、エンジン 6の内部には 、クランク軸の角度を検出するクランク角センサ 14が設けられ、エンジン 6の排気管 1 5には、排気管 15の内圧を測定する排気管内圧センサ 16が設けられている。
[0024] また、燃料噴射ノズル 2から噴射される燃料噴射量を、 目標噴射量等に基づいて求 める燃料噴射量検出手段 17が設けられ、エンジン 6のシリンダ内圧を求めるシリンダ 内圧検出手段 18が設けられている。シリンダ内圧検出手段 18は、上記クランク角セ ンサ 14及び上記吸気管内圧センサ 12を有し、少なくとも吸気管内圧センサ 12で測 定した吸気管 10の内圧に基づいて各クランク角におけるシリンダ内圧を算出するも のである。算出は実験やシミュレーションにより得られたマップや近似式等に基づい て行う。また、シリンダ内圧検出手段 18は、上記吸気管 10の内圧の他、負荷(ァクセ ル開度)やエンジン回転速度等も、シリンダ内圧を算出するためのパラメータとしても よい。
[0025] 切換手段 5は、燃料噴射ノズル 2から噴射される燃料の噴射時期及び期間を、高負 荷運転時には通常燃焼モードとし、低中負荷運転時には予混合燃焼モードに切り替 えるものであるが、ここで高負荷か低中負荷かの判断は、 MAFセンサ 11で測定した 吸気量と燃料噴射量検出手段 17で求めた燃料噴射量とから算出した空気過剰率( 空気過剰率 λ = (供給 A/F値) / (理論 AZF値) )が所定値 (例えば 2. 5)以上のと き低中負荷と判断し、上記空気過剰率が上記所定値未満のとき高負荷と判断する。 すなわち、空気過剰率が上記所定値以上なら低中負荷なので予混合燃焼モードとし 、空気過剰率が上記所定値未満なら高負荷なので通常燃焼モードとする。
[0026] 制御部 8は、通常燃焼モード時には、排気弁 9を排気行程において通常通りに開 弁するように排気弁駆動装置 7を制御し、予混合燃焼モード時には、排気弁 9を排気 行程のみならず図 1に示すように吸気行程の後半力 圧縮行程の初期にかけても開 弁する二段開弁制御を行うように排気弁駆動装置 7を制御する。通常燃焼モード時 における排気弁 9の開閉時期及び期間については通常のエンジンと同様であるので 説明を省略し、予混合燃焼モード時における排気弁 9の上記二段開弁制御につい て以下図 3を用いて説明する。
[0027] 先ず、クランク角センサ 14によって燃料噴射時のクランク角度を求め、噴射量検出 手段 17によって燃料噴射量を求め、これらの値に基づいて現在の燃料噴射の時期 および量が予混合燃焼モードであるか否かを判断する。また、 MAFセンサ 11および 噴射量検出手段 17とから求めた空気過剰率が上記所定値以上か否かによって予混 合燃焼モードであるか否か判断してもよレ、。
[0028] また、クランク角センサ 14から単位時間当たりのクランク軸の回転角度すなわちェ ンジン回転速度を求め、噴射量検出手段 17によって燃料噴射量を求め、これらの値 に基づいて予混合燃焼モードであるか否か判断してもよい。例えば、エンジン回転速 度が所定速度未満であり、且つ燃料噴射量が所定量未満であれば予混合燃焼モー ドであると判断し、さもなければ通常燃焼モードであると判断する。
[0029] 予混合燃焼モードと判断された場合、図 1に示すように排気弁 9を二段開弁制御す るのであるが、排気弁 9の一段目の開閉時期及び期間は、通常燃焼モード時と同様 (通常のエンジンと同様)であり、排気行程において排気が最適となるように予め定め られた開閉時期及び期間に制御される。本実施形態の特徴である排気弁 9の二段目 の開閉時期及び期間は、次のようにして決定される。
[0030] 排気弁 9の再開弁時期(EVO)は、新規吸気量に影響を及ぼすため、 MAFセンサ 11で測定した吸気量と燃料噴射量検出手段 17で求めた燃料噴射量とから算出した A/F値(空燃比値)と、ノッキングセンサ 13で測定したノッキング強度とに基づいて 決定される。具体的には、 A/F値が所定値以上で且つノッキング強度が別の所定 値以下とレ、う条件に基づレ、て決定される。
[0031] 例えば、排気弁 9の開弁時期が適切な時期よりも早すぎると、排気ポートからシリン ダ内に導かれる EGRガス量 (EGR率)が増えその分吸気量が減るため、 A/F値が 小さくなる。この場合、開弁時期を遅めて EGRガス量を減らす方向に制御され、これ により、予混合燃焼モードにおいて、 A/F値を所定値以上に保つことができ、所定 の新規吸気量を確保できるので、出力の低下やスモークの発生が回避される。
[0032] 逆に、排気弁 9の開弁時期が遅すぎると、 EGRガス量が減るため、ピストン 1頂部の キヤビティ 3の外周部 4においてノッキングのトリガーとなる燃焼反応を十分抑えること が出来ず、ノッキングが強くなるため、開弁時期を早めて EGRガス量を増やす方向 に制御される。これにより、予混合燃焼モードにおいて、ノッキングを防止できる量の EGRガス量を確保でき、ノッキングを防止できる。
[0033] 排気弁 9の閉弁時期(EVC)は、シリンダ内のガスが排気ポートに流出することを防 ぐために、排気管内圧センサ 16で測定した排気管 15の内圧とシリンダ内圧検出手 段 18で求めたシリンダ内圧とを比較して、適切な EVC時期に決定する。具体的には 、排気管内圧センサ 16で測定した排気管 15の内圧が、シリンダ内圧検出手段 18で 求めたシリンダ内圧力以上、とレ、う条件に基づレ、て決定される。
[0034] この点、図 4に示すように、圧縮行程初期の排気ポート内圧力は、運転条件によつ て若干の差違は生じるものの基本的には所定のクランク角度までは、シリンダ内圧力 よりも高くなる。よって、排気ポート内圧力がシリンダ内圧力よりも高い間は排気弁 9を 開弁しておき、これらの圧力の関係が逆転するときに排気弁 9を閉弁することにより、 シリンダ内に導かれた EGRガスが排気ポートに流出することが防止される。
[0035] こうして決定された排気弁の開弁時期(EV〇)、閉弁時期(EVC)に基づいて、制 御部 8が排気弁駆動装置 7 (カムレスバルブ駆動装置 7a)を制御することになる。排 気弁 9の開弁時期(EV〇)及び閉弁時期(EVC)の決定は、排気弁 9の毎回の開閉 毎に行ってもよいし、所定の開閉回数毎に行って制御の簡素化を図ってもよい。
[0036] 以上の排気弁 9の開弁時期(EV〇)及び閉弁時期(EVC)制御により、既述したよう に、予混合燃焼モードにおいて、従来例よりも少ない EGRガス量 (EGR率)で、出力 の低下を回避しつつ、ノッキングを効果的に防止できる。よって、予混合燃焼モード を従来よりも高負荷運転域に広げることが可能となる。
[0037] カムレスバルブ駆動装置 7aについて、図 6を用いて説明する。
[0038] カムレスバルブ駆動装置 7aは、排気弁 9を閉弁方向に付勢する付勢手段 19と、付 勢手段 19の付勢力に杭して排気弁 9を開弁させるために加圧された作動流体が供 給される圧力室 20と、圧力室 20内に上記作動流体を供給するための供給手段 21と 、圧力室 20内から上記作動流体を排出するための排出手段 22とを備えている。そし て、制御部 8が供給手段 21による圧力室 20内への上記作動流体の供給時期を制御 することで排気弁 9の開弁時期(EVO)を制御し、制御部 8が排出手段 22による圧力 室 20からの上記作動流体の排出時期を制御することで排気弁 9の閉弁時期(EVC) を制御するようになっている。
[0039] 上記付勢手段 19は、弁パネ室 23内に圧縮された状態で収容され排気弁 9のステ ム部 9aに設けられたフランジ 9bを上方に付勢することで排気弁 9を閉弁方向に付勢 する弁バネ 19aと、弁バネ室 23の上方のァクチユエータボディ 24内に収容され上記 フランジ 9bを磁気的に吸引することで排気弁 9を閉弁方向に付勢する磁石 19b (永 久磁石、電磁石等)とを有する。 [0040] 上記圧力室 20は、ァクチユエータボディ 24内に排気弁 9のステム部 9aをスライド可 能に収容するように形成された円穴の上部に形成されており、その底面部分が上記 ステム部 9aの頂面 9cによって区画されている。よって、圧力室 20内に供給手段 21 によって上記作動流体が供給され、圧力室 20内の圧力が頂面 9cに作用することに よる排気弁 9を開弁させる力が、弁パネ 19a及び磁石 19bによる閉弁方向の付勢力 を上回ると、排気弁 9が開弁される。
[0041] 上記供給手段 21は、排気弁 9の開弁初期の所定期間において、圧力室 20内に高 圧の作動流体を供給する高圧作動流体供給手段 21aと、上記開弁初期の所定期間 の経過後、圧力室 20に低圧の作動流体を供給する低圧作動流体供給手段 21bとを 有する。高圧作動流体供給手段 21aは、圧力室 20の上方から上記ステム部 9aの頂 面 9cに向けて高圧作動流体を噴射する。これにより、噴射された高圧作動流体が上 記ステム部 9aの頂面 9cに流れ当たってこれを下方に押圧すると共に圧力室 20内の 圧力が急激に上昇するため、排気弁 9に開弁に必要な初期エネルギが与えられ、排 気弁 9の開弁が勢いよく開始される。
[0042] その後、排気弁 9が慣性運動によってリフトするが、このとき圧力室 20の実際の容 積増大量は、排気弁 9が高圧作動流体の噴射による慣性運動であることに起因して 、高圧作動流体の供給量に応じた理論上の圧力室 20の容積増大量よりも大きくなり 、圧力室 20内が負圧となり得るところ、リフトの途中で低圧作動流体供給手段 21bに より低圧作動流体が圧力室 20内に導入されるため、圧力室 20が負圧になることが回 避される。よって、排気弁 9のリフト動作が安定化し、リフト量を高圧作動流体の供給 により与えられた初期エネルギに応じたリフト量に確保できる。
[0043] 高圧作動流体供給手段 21aは、圧力室 20の上方に出口孔 25を介して連通して形 成されたバランス弁収容室内に昇降可能に収容されたバランス弁 26と、バランス弁 2 6の上方に形成され高圧の作動流体が供給されたときこれをバランス弁 26の頂面に 作用させることでバランス弁 26を出口孔 25の周囲にすり鉢状に形成された弁シート 2 7に押し付けるための閉弁室 28と、バランス弁 26の側方に形成され高圧の作動流体 が供給されたときこれをバランス弁 26の側部にコーン状に形成された段差部 29及び コーン状の底面部に作用させることでバランス弁 26を弁シート 27からリフトさせるため の開弁室 30と、開弁室 30及び閉弁室 28に高圧の作動流体を供給するための高圧 供給通路 31と、閉弁室 28に収容されバランス弁 26を弁シート 27に軽く押し付けるた めのパネ 32と、閉弁室 28内の圧力を逃がすリリーフ手段 33とを有する。高圧供給通 路 31には、後述するようにコモンレール 34に高圧状態(数十〜数百 MPa)で貯留さ れた燃料が高圧作動流体として供給される。
[0044] 閉弁室 28内の圧力がリリーフ手段 33によって解放されておらず密閉されていれば 、閉弁室 28内の圧力によってバランス弁 26を閉弁させるようにバランス弁 26の頂面 に作用する閉弁力と、開弁室 30内の圧力によってバランス弁 26を開弁させるように バランス弁 26の段差部 29及び底面部に作用する開弁力とが等しくなるため、パネ 3 2の力によってバランス弁 26は弁シート 27に着座されて閉弁される。そして一旦閉弁 されると、バランス弁 26の底面部が弁シート 27に着座して覆われるため、この底面部 に作動流体の圧力が作用しなくなり、上記開弁力が減少して上記閉弁力の方が大き くなるため、バランス弁 26はしつ力りと弁シート 27に着座し閉弁される。閉弁室 28内 の圧力がリリーフ手段 33によって解放されると、上記閉弁力が著しく小さくなり、上記 開弁力の方が大きくなるため、パネ 32の力を考慮したとしても、バランス弁 26が弁シ ート 27から離間して素早くリフトし、開弁される。すると、高圧の作動流体が出口孔 25 を通って圧力室 20内に勢い良く噴射されることになる。
[0045] 上記リリーフ手段 33は、閉弁室 28の上部を区画する蓋板 35に形成されたリリーフ 孔 36と、リリーフ孔 36を開閉するために蓋板 35の上面に配置された弁体 37と、弁体 37を蓋板 35に押し付けてリリーフ孔 36を覆って閉弁させるためのバネ 38と、弁体 37 を磁気的に吸引してリリーフ孔 36を開いて開弁させるための電磁ソレノイド 39とを備 えている。弁体 37は、電磁ソレノイド 39が通電されない状態では、バネ 38の力によつ て蓋板 35に着座されてリリーフ孔 36を塞いで閉弁し、電磁ソレノイド 39が通電される と、上方に吸引移動されるため蓋板 35から離間してリリーフ孔 36を解放して開弁す る。
[0046] 電磁ソレノイド 39は制御部 8 (電子制御ユニット)からの指令により通電が適宜オン オフされる。電磁ソレノイド 39が通電オンされると、弁体 37が吸引移動されて開弁さ れ、バランス弁 26が開弁され、高圧作動流体が圧力室 20内に噴射され、排気弁 9が 下降して開弁(リフト)される。これにより、排気弁 9の開弁時期 (EVO)を制御できる。 電磁ソレノイド 39が通電オフされると、弁体 37がバネ 38の力によって閉弁され、バラ ンス弁 26が閉弁され、高圧作動流体が圧力室 20内へ噴射されなくなるので、排気 弁 9を開弁(リフト)させる力がなくなる。これにより、排気弁 9のリフト量を制御できる。
[0047] 低圧作動流体供給手段 21bは、圧力室 20内に低圧の作動流体を供給するために 圧力室 20の側方上部に連通された低圧供給通路 40と、低圧供給通路 40に介設さ れた逆止弁 41とを備えている。低圧供給通路 40には、後述するように低圧室 42内 に低圧状態(例えば 0. 5MPa)で貯留された燃料が低圧作動流体として供給される 。この構成によれば、作動流体は低圧室 42から圧力室 20へは流れるが逆方向には 流れないため、圧力室 20内の圧力が逆止弁 41の上流側よりも低いときのみ低圧室 4 2内の低圧作動流体が逆止弁 41を通って圧力室 20に供給され、圧力室 20内の圧 力が逆止弁 41の上流側よりも高いときには逆止弁 41は圧力室 20を閉塞する。
[0048] 以上の構成からなる供給手段 21によれば、高圧作動流体供給手段 21aのバランス 弁 26が開弁されて出口孔 25から高圧作動流体が圧力室 20内に噴射されると、上述 したように排気弁 9の開弁が勢いよく開始され排気弁 9が慣性運動によってリフトする ため、圧力室 20の容積増大量が高圧作動流体の供給量に応じた理論上の圧力室 2 0の容積増大量よりも大きくなつて圧力室 20内が負圧となり得るところ、リフトの途中 で圧力室 20内の圧力が低圧室 42内の圧力よりも低くなると、低圧作動流体供給手 段 21bによって低圧作動流体が圧力室 20内に導入されるため、圧力室 20が負圧に なること力 S回避される。よって、排気弁 9のリフト動作が安定化し、リフト量を高圧作動 流体の供給により与えられた初期エネルギに応じたリフト量に確保できるのである。
[0049] こうして高圧作動流体供給手段 21aによって開弁時期 (EVO)が制御されると共に 低圧作動流体供給手段に 21bよって安定したリフト動作が確保される排気弁 9は、排 出手段 22によって圧力室 20内の圧力を解放することで閉弁(上昇)されるので、上 記解放の時期を制御することで、閉弁時期(EVC)を制御できる。
[0050] 排出手段 22は、圧力室 20内の作動流体を排出するために圧力室 20の側方上部 に連通された排出通路 43と、排出通路 43に介設された開閉弁 44とを備えている。 開閉弁 44は、制御部 8からの指令により適宜開閉される。この開閉弁 44は、閉弁時 に圧力室 20内の圧力を保持して排気弁 9をリフトさせる力が抜けないようにし、開弁 時に圧力室 20内の圧力を解放して排気弁 9をリフトさせる力を逃がして排気弁 9を閉 弁させる。よって、開閉弁 44の開弁時期を制御部 8によって図 1及び図 2を用いて既 述したように制御することで、排気弁 9の閉弁時期(EVC)を制御できる。
[0051] 以上のカムレスバルブ駆動装置 7aは、本実施形態では図 6に示すようにディーゼ ルエンジンのコモンレール式燃料噴射システム 45の燃料回路(流路)に組み込まれ 、高圧ポンプ 46によって昇圧されコモンレール 34内に高圧状態(数十〜数百 MPa) で貯留された燃料を高圧作動流体供給手段 21aの高圧作動流体として用い、フィー ドポンプ 47及びリリーフ弁 48によって低圧室 42内に低圧状態(例えば 0. 5MPa)で 貯留された燃料を低圧作動流体供給手段 21bの低圧作動流体として用いている。
[0052] コモンレール式燃料噴射システム 45について説明すると、エンジン 6の各気筒毎に 燃料噴射を実行する燃料噴射ノズル 2が設けられ、燃料噴射ノズル 2には、コモンレ ール 34に高圧状態で貯留された燃料が常時供給されている。コモンレール 34には 、上述のように高圧ポンプ 46によって高圧状態(数十〜数百 MPa)にされた燃料が 圧送され、高圧ポンプ 46には、燃料タンク 49の燃料が燃料フィルタ 50を通じてフィ ードポンプ 47によって圧送される。フィードポンプ 47のフィード圧 Pfは、リリーフ弁 48 によって調整され、一定圧(例えば 0. 5MPa)に保たれる。
[0053] 図示する装置全体を総括的に制御する装置として制御部 8 (電子制御ユニット)が 設けられ、制御部 8にはエンジン 6の運転状態(エンジン 6のクランク角、回転速度、 エンジン負荷等)を検出する各種センサ(図 2参照)が接続される。制御部 8は、これ らセンサの信号に基づいてエンジン 6の運転状態を把握し、これに基づいた駆動信 号を燃料噴射ノズル 2の電磁ソレノイドに送信し、電磁ソレノイドの通電を制御して燃 料噴射ノズル 2を開閉制御し、燃料噴射の実行 ·停止を制御する。燃料噴射を停止し たときには、燃料噴射ノズル 2から常圧程度の燃料力 Sリターン回路 51を通して燃料タ ンク 49に戻される。制御部 8は、エンジン 6の運転状態に応じてコモンレール 34内の 圧力を目標圧に向けてフィードバック制御する。このため、コモンレール 34には、そ の内部に圧力を検出するためのセンサ 52が設けられている。
[0054] コモンレール式燃料噴射システム 45に対するカムレスバルブ駆動装置 7aの組込位 置を説明すると、フィードポンプ 47と高圧ポンプ 46との間の回路には、カムレスバノレ ブ駆動装置 7aの低圧室 42が通路を介して連通されている。よって、低圧室 42には、 フィード圧 Pf (例えば 0· 5MPa)に相当する低圧の燃料が貯留され、これが低圧作 動流体として用いられることになる。また、コモンレール 34には、カムレスバルブ駆動 装置 7aの高圧供給通路 31が連通されており、コモンレール 34内の高圧 (数十〜数 百 MPa)の燃料が高圧作動流体として用いられることになる。また、カムレスバルブ駆 動装置 7aの排出通路 43の下流側は、リターン回路 53を介して燃料タンク 49に連通 されており、排出通路 43から排出された燃料は、リターン回路 53を介して燃料タンク 49に戻される。
[0055] なお、コモンレール式燃料噴射システム 45は、本実施形態の必須の構成要件では なレ、。すなわち、カムレスバルブ駆動装置 7aの高圧作動流体はコモンレール 34内の 高圧燃料ではない別の流体を用いてもよぐ低圧作動流体は低圧室 42内の低圧燃 料ではなレ、別の流体を用いてもょレ、。
[0056] 次に、図 2に示す排気弁駆動装置 7に、上述したカムレスバルブ駆動装置 7aでは なぐ排気二段カム切換装置 7bを用いた場合の実施形態を図 7及び図 8を用いて説 明する。
[0057] 図示するように、排気二段カム切換装置 7bは、エンジン 6のクランク軸によって回転 される排気カム軸 60と、このカム軸 60に設けられた第一及び第二排気カム 61、 62と 、第一及び第二排気カム 61、 62に排気行程で排気弁(図示せず)を開弁するように 夫々形成された同一形状の第一カム山 63と、第二排気カム 62に図 1に示すように排 気弁を吸気行程の後半力 圧縮行程に初期にかけて開弁するように形成された第二 カム山 64と、第一及び第二カム 61、 62に対応してロッカーシャフト 65に別々に揺動 可能に揷通された第一及び第二ロッカーアーム 66、 67と、第一ロッカーアーム 66に 設けられ第一排気カム 61に当接するローラ 92と、第二ロッカーアーム 67に設けられ 第二排気カム 62に当接するローラ 93とを備えている。
[0058] 排気二段カム切換装置 7bは、更に、第一ロッカーアーム 66の端部に設けられ排気 弁のステム部の頂部を弁パネの力に杭して下方に押し下げてリフトさせる(開弁させ る)ための押下部 68と、第二ロッカーアーム 67の揺動を第一ロッカーアーム 66に伝 達することで第二カム山 64による排気弁の開弁を実行する二段開弁モードと第二口 ッカーアーム 67の揺動を第一ロッカーアーム 66に伝達しないようにして第二カム山 6 4による排気弁の開弁をキャンセルする空振りモードとを切り替えるキャンセル機構 6 9とを備えている。
[0059] 制御部 8は、通常燃焼モードの運転のときにはキャンセル機構 69を空振りモードに して第二カム山 64による排気弁の開弁を中止し、予混合燃焼モードの運転のときに はキャンセル機構 69を二段開弁モードにして第二カム山 64による排気弁の開弁を 実行する(図 1参照)。すなわち、通常燃焼モードの運転のときには、キャンセル機構 69を空振りモードとすることで、第二ロッカーアーム 67の揺動が空振り状態となって 第一ロッカーアーム 66に伝達されなくなるため、排気弁は、第一ロッカーアーム 66に よって開閉制御され、通常通りに排気行程で開閉される。予混合燃焼モードの運転 のときには、キャンセル機構 69を二段開弁モードとすることで、第二ロッカーアーム 6 7の揺動が第一ロッカーアーム 66に伝達されるようになるため、排気弁は、第一及び 第二ロッカーアーム 66、 67によって開閉制御され、通常通りの排気行程での開弁に 加え、吸気行程の後半力 圧縮行程の初期にかけても開弁される。
[0060] 予混合燃焼モード時に排気弁を吸気行程の後半力 圧縮行程の初期にかけて開 弁すると、前実施形態で詳述したように、排気ポート内の排気ガス (EGRガス)がシリ ンダ内に緩やかに取り込まれ、シリンダ内にて吸気 (新気)と殆ど混合することなく且 っシリンダ内に拡散することなくシリンダ内の上部に層状化した状態で配置される。よ つて、従来例よりも少なレ、 EGRガス量(EGR率)で効率よくノッキングを防止でき、ノッ キングを防止するために必要な EGRガス量 (EGR率)が従来例よりも少なくて済むこ とになり、その分シリンダ内への吸気量が従来例よりも増え、 EGR時の出力低下ゃス モークの発生が抑えられるので、予混合燃焼モードの運転領域を高負荷側に拡張で きる。
[0061] 通常燃焼モードと予混合燃焼モードとで、第二ロッカーアーム 67の揺動を第一ロッ カーアーム 66に伝達する力 ないかを切り替える、即ち、第二カム山 64による排気 弁の開弁を行うか行わないかを切り替えるキャンセル機構 69は、図 7及び図 8に示す ように、第二ロッカーアーム 67のアームボディ 70の内部に右方から左方に向けて略 水平方向に形成されたシリンダ 71と、シリンダ 71内に右方からスライド可能に装着さ れたプランジャボディ 72と、プランジャボディ 72に左方から右方に向けてシリンダ 70 と同心的に形成されたプランジャ穴 73と、プランジャ穴 73に左方からスライド可能に 収容されたプランジャ 74とを備えている。プランジャボディ 72とアームボディ 70との間 には、プランジャボディ 72を右方に付勢して第一ロッカーアーム 66のパッド 75に押し つけるためのバネ 76が設けられている。
[0062] プランジャ 74にはその左右を連通する通路 77が形成されており、通路 77にはビス トン 78に設けられたニードル 79が揷通されている。ピストン 78はバネ 80によって右 方に軽く付勢されており、パネ 80を収容するパネ室 81はアームボディ 70に形成され た空気通路 82を介して大気と連通されている。また、ニードル 79の右端には、通路 7 7の端部を閉塞するための球状の閉止弁 83が、リテーナ 84を介してバネ 85によって 左方に押圧されて配置されている。閉止弁 83の右方の密閉空間はロック用油室 86 であり、閉止弁 83の左方の密閉空間は作動油室 87である。作動油室 87は、スプー ル弁からなる切換弁 88を介してアームボディ 70に形成された作動油供給路 89に連 通され、作動油供給路 89は、ロッカーシャフト 65の内部に形成された油路 90に連通 されている。また、切換弁 88は、空気通路 82を横切って配置されている。
[0063] 以上のキャンセル機構 69は、第二ロッカーアーム 67の揺動を第一ロッカーアーム 6 6に伝達する場合、即ち第二カム山 64による排気弁の開弁を実行する場合には、制 御部 8が油圧油量制御弁 91を制御することで油路 90に作動油を供給し、油路 90お よび作動油供給路 89の油圧を高くする。制御弁 91には、オイルタンク 92の作動油( 潤滑油)がポンプ 93で汲み上げられ、オイルギャラリ 94を介して供給されるようになつ ている。油路 90に高い油圧が供給されると、この高い油圧による力により、切替弁 88 がパネ 95に抗して左方に後退されて作動油供給路 89が作動油室 87と連通される。
[0064] すると、高圧の作動油が作動油室 87に流入し、ピストン 78がバネ 80に抗してパッド 75とは反対側に移動され、プランジャボディ 72がパッド 75の側に移動される。このと き、ロック用油室 86は密閉状態であるので、閉止弁 83が吸引されて開き、作動油室 87の作動油がロック用油室 86に流入し、作動油の圧力でプランジャボディ 72がパッ ド 75に押し付けられる。ここで、プランジャボディ 72が作動油の圧力による力よりも大 きな力でパッド 75から押されると、ロック用油室 86の油圧が上昇し、閉止弁 83が押し 込まれて閉じるので、ロック用油室 86が密閉され、プランジャボディ 72の動きがロック される。
[0065] こうして、プランジャボディ 72が押し出された状態でロックされ、パッド 75に当接され るので、第二ロッカーアーム 67の揺動が第一ロッカーアーム 66に伝達される。よって 、排気弁は、第一カム山 63によって通常通りに排気行程にて開弁されるのみならず 、第二カム山 64によって吸気行程の後半力 圧縮行程の初期にかけても開弁される 。力、かる排気二段開弁を予混合燃焼モード時に行うことで、既述のように従来例よりも 少なレ、 EGRガス量(EGR率)で効率よくノッキングを防止できる。
[0066] なお、切換弁 88が左方に移動して作動油供給路 89と作動油室 87とを連通したと き、切替弁 88の側部に周方向に沿って形成されたリング溝によってパネ室 81が空気 通路 82を通して大気と連通されるので、バネ室 81が負圧になることなくピストン 78の 右方への移動が許容される。
[0067] 他方、キャンセル機構 69によって、第二ロッカーアーム 67の揺動を第一ロッカーァ ーム 66に伝達しない場合、即ち第二カム山 64による排気弁の開弁をキャンセルする 場合には、油路 90に供給される作動油の圧力を制御弁 91を絞って低くする。油路 9 0の油圧が低くなると、ピストン 78がバネ 80の付勢力によりパッド 75の側に移動し、ピ ストン 78に連結しているニードル 79が閉止弁 83を押し開き、ロック用油室 86に溜ま つていた作動油が作動油室 87に戻る。よって、プランジャボディ 72のロックが外れ、 プランジャボディ 72がパッド 75によって押されると、左方に後退することになる。
[0068] このときに、作動油の圧力は徐々に下がる力 バネ 95の付勢力よりも切換弁 88を 押す力が強い間は、油路 90、作動油供給路 89、作動油室 87およびロック用油室 86 が連通しているので、作動油は油路 90に戻る。さらに作動油の圧力が下がると、パネ 95の付勢力によって切換弁 88が前進し、作動油室 87と作動油供給路 89とを遮断し 、作動油室 87とロック用油室 86とが連通した状態で両室が密閉状態となる。この結 果、プランジャボディ 72が引き込んだ状態でロックされる。また、切換弁 88の側部に 形成されたリング溝が空気通路 82からずれてパネ室 81を密閉する。
[0069] こうして、プランジャボディ 72が引き込まれた状態でロックされるので、第二ロッカー アーム 67が第二排気カム 62の第二カム山 64によって揺動されてもパッド 75を押し 込むことができず、第二ロッカーアーム 67の揺動が第一ロッカーアーム 66に伝達さ れることはなレ、。よって、排気弁は、第一カム山 63のみによって通常通りに排気行程 にて開弁される。力、かる開弁を通常燃焼モード時に行うことで、通常の運転を実行で きる。
[0070] 通常燃焼モードと予混合燃焼モード運転との切換は、図 2を用いて説明した前実 施形態で述べた切換手段 5によって行い、この切換手段 5は、例えば、 MAFセンサ 1 1で測定した吸気量と燃料噴射量検出手段 17で求めた燃料噴射量とから算出した 空気過剰率が所定値 (例えば 2. 5)以上のとき燃料噴射ノズル 2からの噴射時期及 び期間を予混合燃焼モードとし、上記空気過剰率が上記所定値未満のとき燃料噴 射ノズル 2からの噴射時期及び期間を通常燃焼モードとする。
[0071] なお、本発明は上述の各実施形態に限定されるものではなぐ請求の範囲に記載 された発明から逸脱しない範囲であれば、あらゆる実施形態が含まれる。

Claims

請求の範囲
[1] 運転状態に応じて通常燃焼モードと予混合燃焼モードとを切り替えるディーゼルェ ンジンの排気弁制御方法であって、
通常燃焼モードにおいては排気弁を排気行程においてのみ開弁し、予混合燃焼 モードにおいては上記排気弁を排気行程のみならず、吸気行程の後半から圧縮行 程の初期にかけても開弁する二段開弁制御を行うようにしたことを特徴とするディー ゼルエンジンの排気弁制御方法。
[2] A/F値、ノッキング強度、排気管内圧及びシリンダ内圧を夫々検出する検出手段 を有する請求項 1記載のディーゼルエンジンの排気弁制御方法において、
上記排気弁の吸気行程の後半における開弁時期は、上記検出手段によって検出 する A/F値が所定値以上且つノッキング強度が別の所定値以下となる時期に決定 し、
上記排気弁の圧縮行程の初期における閉弁時期は、上記検出手段によって検出 する排気管内圧がシリンダ内圧以上となる時期に決定する請求項 1記載のディーゼ ルエンジンの排気弁制御方法。
[3] 高負荷運転時には通常燃焼モードで運転し、低中負荷運転時には予混合燃焼モ ードで運転するようにした請求項 1又は 2記載のディーゼルエンジンの排気弁制御方 法。
[4] 運転状態に応じて通常燃焼モードと予混合燃焼モードとを切り替えるディーゼルェ ンジンの排気弁制御装置であって、
排気弁の開閉時期及び期間を変更可能な排気弁駆動装置と、
該排気弁駆動装置を制御する制御部とを有し、
該制御部は、上記通常燃焼モード時には、上記排気弁を排気行程においてのみ 開弁するように上記排気弁駆動装置を制御し、上記予混合燃焼モード時には、上記 排気弁を排気行程のみならず吸気行程の後半力 圧縮行程の初期にかけても開弁 する二段開弁制御を行うように上記排気弁駆動装置を制御するものであることを特徴 とするディーゼルエンジンの排気弁制御装置。
[5] 上記排気弁駆動装置は、機械カムを有しなレ、カムレスバルブ駆動装置であって、 上記排気弁を閉弁方向に付勢する付勢手段と、該付勢手段の付勢力に杭して上 記排気弁を開弁させるために加圧された作動流体が供給される圧力室と、該圧力室 内に上記作動流体を供給するための供給手段と、上記圧力室内から上記作動流体 を排出するための排出手段とを備え、
上記制御部は、上記供給手段による上記圧力室内への上記作動流体の供給時期 を制御すると共に、上記排出手段による上記圧力室からの上記作動流体の排出時 期を制御するものである請求項 4記載のディーゼルエンジンの排気弁制御装置。
[6] 吸気量を測定する MAFセンサと、ノッキングの強度を測定するノッキングセンサと、 燃料噴射量を求める噴射量検出手段と、排気管内圧を測定する排気管内圧センサ と、シリンダ内圧力を求めるシリンダ内圧検出手段とを更に備え、
上記制御部は、
上記排気弁の吸気行程の後半における開弁時期を、上記 MAFセンサで測定した 吸気量と上記燃料噴射量検出手段で求めた燃料噴射量とから算出した A/F値が 所定値以上で、且つ上記ノッキングセンサで測定したノッキング強度が別の所定値 以下とレ、う条件に基づレ、て決定し、
上記排気弁の圧縮行程の初期における閉弁時期を、上記排気管内圧センサで測 定した排気管内圧が上記シリンダ内圧検出手段で求めたシリンダ内圧力よりも高いと レ、う条件に基づいて決定するものである請求項 4又は 5記載のディーゼルエンジンの 排気弁制御装置。
[7] 上記シリンダ内圧検出手段は、クランク軸の角度を検出するクランク角センサと、吸 気管の内圧を測定する吸気管内圧センサとを有し、少なくとも該吸気管内圧センサ で測定した吸気管内圧に基づいて各クランク角におけるシリンダ内圧を算出するもの である請求項 6記載のディーゼルエンジンの排気弁制御装置。
[8] 上記 MAFセンサで測定した吸気量と上記燃料噴射量検出手段で求めた燃料噴 射量とから算出した空気過剰率が所定値以上のとき予混合燃焼モードの運転を行い 、上記空気過剰率が上記所定値未満のとき通常燃焼モードの運転に切り替える切換 手段を備えた請求項 6又は 7記載のディーゼルエンジンの排気弁制御装置。
[9] 上記排気弁駆動装置は、排気二段カム切換装置であって、 クランク軸によって回転される排気カムに上記排気弁を排気行程にて開弁するよう に形成された第一カム山と、上記排気カムに上記排気弁を吸気行程の後半から圧縮 行程の初期にかけて開弁するように形成された第二カム山と、該第二カム山による上 記排気弁の開弁をキャンセルするキャンセル機構とを備え、
上記制御部は、上記通常燃焼モードの運転のときには上記キャンセル機構を作動 させて上記第二カム山による上記排気弁の開弁を中止し、上記予混合燃焼モードの 運転のときには上記キャンセル機構を停止させて上記第二カム山による上記排気弁 の開弁を実行させるものである請求項 4記載のディーゼルエンジンの排気弁制御装 置。
吸気量を測定する MAFセンサと、燃料噴射量を求める噴射量検出手段とを更に 備え、且つ
上記 MAFセンサで測定した吸気量と上記燃料噴射量検出手段で求めた燃料噴 射量とから算出した空気過剰率が所定値以上のとき予混合燃焼モードの運転を行い 、上記空気過剰率が上記所定値未満のとき通常燃焼モードの運転に切り替える切換 手段を備えた請求項 9記載のディーゼルエンジンの排気弁制御装置。
PCT/JP2006/300498 2005-02-04 2006-01-17 ディーゼルエンジンの排気弁制御方法及び排気弁制御装置 WO2006082704A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP06711778.8A EP1845245B1 (en) 2005-02-04 2006-01-17 Exhaust valve control method and exhaust valve control device for diesel engine
US11/815,371 US8011334B2 (en) 2005-02-04 2006-01-17 Exhaust valve control method and exhaust valve control device for diesel engine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005028827A JP3882838B2 (ja) 2005-02-04 2005-02-04 ディーゼルエンジンの排気弁制御方法及び排気弁制御装置
JP2005-028827 2005-02-04

Publications (1)

Publication Number Publication Date
WO2006082704A1 true WO2006082704A1 (ja) 2006-08-10

Family

ID=36777094

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/300498 WO2006082704A1 (ja) 2005-02-04 2006-01-17 ディーゼルエンジンの排気弁制御方法及び排気弁制御装置

Country Status (5)

Country Link
US (1) US8011334B2 (ja)
EP (1) EP1845245B1 (ja)
JP (1) JP3882838B2 (ja)
CN (1) CN100520016C (ja)
WO (1) WO2006082704A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2372137A1 (en) * 2006-09-19 2011-10-05 Haldex Hydraulics AB Exhaust gas recirculation system and method for gasoline engines

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2933449B1 (fr) * 2008-07-03 2010-07-30 Inst Francais Du Petrole Procede pour ameliorer la vaporisation d'un carburant utlise pour un moteur a combustion interne, notamment a injection directe, en particulier a autoallumage et plus particulierement de type diesel
JP5589673B2 (ja) * 2010-08-20 2014-09-17 マツダ株式会社 ディーゼルエンジン
JP5568457B2 (ja) * 2010-12-20 2014-08-06 日立オートモティブシステムズ株式会社 内燃機関の制御装置
JP5579787B2 (ja) * 2012-06-19 2014-08-27 本田技研工業株式会社 内燃機関の制御装置
DE102014203364B4 (de) * 2014-02-25 2023-03-23 Vitesco Technologies GmbH Verfahren und Vorrichtung zum Betrieb eines Ventils, insbesondere für ein Speichereinspritzsystem
US10221779B2 (en) * 2016-12-16 2019-03-05 Ford Global Technologies, Llc System and method for providing EGR to an engine
CN115234334A (zh) * 2022-08-16 2022-10-25 重庆潍柴发动机有限公司 排气二次开启的排气凸轮

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53100313A (en) * 1977-02-15 1978-09-01 Honda Motor Co Ltd Exhaust purifier in internal combustion engine
JPS59141756A (ja) * 1983-02-02 1984-08-14 Kawasaki Heavy Ind Ltd 4サイクルガスエンジンの制御装置
JPS62247108A (ja) * 1986-04-17 1987-10-28 Mazda Motor Corp エンジンの動弁制御装置
JPH11264319A (ja) * 1998-03-19 1999-09-28 Nissan Motor Co Ltd 内燃機関の排気制御装置
JP2001098963A (ja) * 1999-09-30 2001-04-10 Toyota Motor Corp 内燃機関のバルブ特性制御方法及び制御装置
EP1273770A2 (en) 2001-07-06 2003-01-08 C.R.F. Società Consortile per Azioni Multi-cylinder diesel engine with variably actuated valves
JP2003083119A (ja) 2001-09-07 2003-03-19 Isuzu Motors Ltd 直接噴射式ディーゼルエンジン
JP2003520314A (ja) * 1997-10-03 2003-07-02 ディーゼル エンジン リターダーズ,インコーポレイテッド 内燃機関における排気ガスパラメータを制御する方法と装置
WO2004076831A2 (en) 2003-02-24 2004-09-10 Edward Charles Mendler Controlled auto-ignition engine
EP1493906A2 (en) 2003-07-01 2005-01-05 General Motors Corporation Valve strategy for operating a controlled auto-ignition four-stroke internal combustion engine

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1291490B1 (it) * 1997-02-04 1999-01-11 C R F Societa Consotile Per Az Motore pluricilindrico a ciclo diesel con valvole ad azionamento variabile
US6276334B1 (en) * 1998-02-23 2001-08-21 Cummins Engine Company, Inc. Premixed charge compression ignition engine with optimal combustion control
FR2816988B1 (fr) * 2000-11-17 2003-01-24 Renault Procede de commande d'un moteur a combustion interne en vue de realiser une combustion homogene
JP2002188474A (ja) * 2000-12-15 2002-07-05 Mazda Motor Corp ターボ過給機付きディーゼルエンジンの制御装置
US7080613B2 (en) * 2004-07-12 2006-07-25 General Motors Corporation Method for auto-ignition combustion control

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53100313A (en) * 1977-02-15 1978-09-01 Honda Motor Co Ltd Exhaust purifier in internal combustion engine
JPS59141756A (ja) * 1983-02-02 1984-08-14 Kawasaki Heavy Ind Ltd 4サイクルガスエンジンの制御装置
JPS62247108A (ja) * 1986-04-17 1987-10-28 Mazda Motor Corp エンジンの動弁制御装置
JP2003520314A (ja) * 1997-10-03 2003-07-02 ディーゼル エンジン リターダーズ,インコーポレイテッド 内燃機関における排気ガスパラメータを制御する方法と装置
JPH11264319A (ja) * 1998-03-19 1999-09-28 Nissan Motor Co Ltd 内燃機関の排気制御装置
JP2001098963A (ja) * 1999-09-30 2001-04-10 Toyota Motor Corp 内燃機関のバルブ特性制御方法及び制御装置
EP1273770A2 (en) 2001-07-06 2003-01-08 C.R.F. Società Consortile per Azioni Multi-cylinder diesel engine with variably actuated valves
JP2003083119A (ja) 2001-09-07 2003-03-19 Isuzu Motors Ltd 直接噴射式ディーゼルエンジン
WO2004076831A2 (en) 2003-02-24 2004-09-10 Edward Charles Mendler Controlled auto-ignition engine
EP1493906A2 (en) 2003-07-01 2005-01-05 General Motors Corporation Valve strategy for operating a controlled auto-ignition four-stroke internal combustion engine

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1845245A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2372137A1 (en) * 2006-09-19 2011-10-05 Haldex Hydraulics AB Exhaust gas recirculation system and method for gasoline engines

Also Published As

Publication number Publication date
US20090018747A1 (en) 2009-01-15
EP1845245B1 (en) 2013-07-31
JP3882838B2 (ja) 2007-02-21
EP1845245A4 (en) 2012-05-30
CN101111668A (zh) 2008-01-23
CN100520016C (zh) 2009-07-29
EP1845245A1 (en) 2007-10-17
US8011334B2 (en) 2011-09-06
JP2006214374A (ja) 2006-08-17

Similar Documents

Publication Publication Date Title
JP3882838B2 (ja) ディーゼルエンジンの排気弁制御方法及び排気弁制御装置
JP5421957B2 (ja) 非作動となり得るシリンダを備え、吸気バルブの可変制御で排気再循環を行う、内燃エンジン、及び、内燃エンジンの制御方法
KR100751607B1 (ko) 내적 배기 가스 재순환 시스템 및 방법
EP1582727B1 (en) Diesel Engine
CN102812231B (zh) 具有混合燃料喷射的压燃式发动机
US9644551B2 (en) Method of supplying fuel to engine
JP2007247628A (ja) 内燃機関の排気弁制御装置
US20160333770A1 (en) Reciprocating piston internal combustion engine, and method for operating a reciprocating piston internal combustion engine
JP2007132250A (ja) 内燃機関用燃料噴射装置
WO2007141970A1 (ja) 内燃機関の動弁駆動装置
JP2009511808A (ja) 内燃機関の作動方法
US20190093571A1 (en) Engine control device
JP2009174432A (ja) エンジンの吸排気制御方法及び吸排気制御装置
KR20200127640A (ko) 액티브 퍼지 시스템 및 액티브 퍼지 방법
JP2009275545A (ja) 内燃機関の可変動弁装置
JP5589758B2 (ja) 油圧駆動可変動弁機構のフェイルセーフ制御装置
JP2009121349A (ja) 内燃機関の動弁装置
JP2006316762A (ja) 内燃機関の動弁装置
JP4674563B2 (ja) 動弁装置
JP5617290B2 (ja) 可変動弁制御システム
JPS6350403Y2 (ja)
WO2013147078A1 (ja) 油圧駆動燃料噴射装置および内燃機関
JP5887793B2 (ja) 内燃機関の可変動弁装置
JPH11193730A (ja) エンジンにおける制御弁駆動装置
JP5185904B2 (ja) 内燃機関の燃料供給装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006711778

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11815371

Country of ref document: US

Ref document number: 200680003911.3

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 2006711778

Country of ref document: EP