WO2006082692A1 - 超音波内視鏡 - Google Patents
超音波内視鏡 Download PDFInfo
- Publication number
- WO2006082692A1 WO2006082692A1 PCT/JP2005/024150 JP2005024150W WO2006082692A1 WO 2006082692 A1 WO2006082692 A1 WO 2006082692A1 JP 2005024150 W JP2005024150 W JP 2005024150W WO 2006082692 A1 WO2006082692 A1 WO 2006082692A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- ultrasonic
- cable
- endoscope
- bending
- electronic radial
- Prior art date
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/005—Flexible endoscopes
- A61B1/0051—Flexible endoscopes with controlled bending of insertion part
- A61B1/0055—Constructional details of insertion parts, e.g. vertebral elements
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/00064—Constructional details of the endoscope body
- A61B1/00071—Insertion part of the endoscope body
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/00064—Constructional details of the endoscope body
- A61B1/00071—Insertion part of the endoscope body
- A61B1/0008—Insertion part of the endoscope body characterised by distal tip features
- A61B1/00094—Suction openings
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/00064—Constructional details of the endoscope body
- A61B1/00071—Insertion part of the endoscope body
- A61B1/0008—Insertion part of the endoscope body characterised by distal tip features
- A61B1/00096—Optical elements
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/00112—Connection or coupling means
- A61B1/00114—Electrical cables in or with an endoscope
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/00112—Connection or coupling means
- A61B1/00119—Tubes or pipes in or with an endoscope
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/12—Diagnosis using ultrasonic, sonic or infrasonic waves in body cavities or body tracts, e.g. by using catheters
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/44—Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
- A61B8/4444—Constructional features of the ultrasonic, sonic or infrasonic diagnostic device related to the probe
- A61B8/445—Details of catheter construction
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/44—Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
- A61B8/4483—Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer
- A61B8/4488—Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer the transducer being a phased array
Definitions
- the present invention relates to an electronic radial type ultrasonic endoscope with improved operability and reduced burden on a patient or an operator.
- a plurality of flexible boards are used for wiring for transmitting an electrical signal to the ultrasonic probe (see, for example, Patent Document 1 and Patent Document 2).
- the FPC is arranged in the bending tube so as to avoid an endoscope observation part such as a forceps channel.
- This FPC is connected to a signal line (coaxial cable) at the distal end of the flexible tube closer to the proximal side than the curved tube portion (the operation portion side of the ultrasonic endoscope main body) (for example, Patent Documents). 2: See Figure 1).
- the distal end rigid part for positioning the endoscope observation part and the ultrasound observation part branches or deforms the shape of the ultrasonic cable, thereby increasing the degree of freedom of the treatment instrument insertion channel.
- Patent Document 1 JP 2002-153465 A
- Patent Document 2 JP 2002-153470 A
- Patent Document 3 Japanese Patent Laid-Open No. 2001-170054
- Patent Document 4 Japanese Patent Laid-Open No. 2001-112757
- An ultrasonic endoscope includes an ultrasonic probe in which a plurality of ultrasonic transducer elements for transmitting and receiving ultrasonic waves are arranged in a substantially cylindrical shape, and a distal end of an endoscope insertion portion.
- the signal wire bundle passing through the inside of the signal wire bundle, the signal wire bundle being covered with a restraining member that restrains the signal wire bundle, and among the signal wire bundles included in the bending tube portion, Place
- the restraining force of the restraining member is Of these, it is smaller than the restraining force of the restraining member covering the range other than the range
- the ultrasonic endoscope according to the present invention includes an ultrasonic probe in which a plurality of ultrasonic transducer elements for transmitting and receiving ultrasonic waves are arranged in a substantially cylindrical shape, and a distal end of the endoscope insertion portion.
- a distal end rigid portion configured and provided with the ultrasonic probe, a curved tube portion connected to the distal end rigid portion and curved by remote operation, a flexible tube portion connected to the curved tube portion, A bundle of signal lines corresponding to each ultrasonic transducer element for transmitting a drive signal for driving each ultrasonic vibrator element, wherein the distal end rigid portion, the bending tube portion, and the flexible tube portion
- the signal line bundle passing through the inside of the signal line bundle, and among the signal line bundles included in the bending tube portion, a distance between the signal lines of the signal line bundle in a predetermined range is set to a value other than the range.
- the signal line bundle is made larger than the interval between the signal lines. .
- an electronic radial ultrasonic endoscope includes an endoscope observation section provided with an illumination optical system and an observation optical system, and a plurality of ultrasonic transducer elements that transmit and receive ultrasonic waves.
- the ultrasonic observation section is included in the hard distal end portion constituting the distal end portion of the insertion section, and the bending portion that can be bent at least in a first bending direction and a second bending direction orthogonal to each other is provided.
- a thickness of a cable that is a bundle of signal wires connected to each of the ultrasonic transducer elements at the hard end at the rear end of the mass portion, and the first bend than the second bend direction. It is characterized by being thinned in the direction and fixed.
- an electronic radial ultrasonic endoscope includes an endoscope observation unit provided with an illumination optical system and an observation optical system, and a plurality of ultrasonic transducer elements arranged to transmit and receive ultrasonic waves.
- the ultrasonic observation section is included in the hard distal end portion constituting the distal end portion of the insertion section, and the bending portion that can be bent at least in a first bending direction and a second bending direction orthogonal to each other is provided.
- the cable which is a bundle of signal wires connected to each ultrasonic transducer element is branched at the tip hard part, and the thickness of the cable bundle obtained by bundling the branched cables is determined. It is characterized in that it is fixed to be thinner in the first bending direction than in the second bending direction.
- FIG. 1 is a diagram for explaining a signal line bundle 201 of a bending tube portion of a conventional endoscope.
- ⁇ 2 It is a conceptual diagram for explaining a constrained part and a weakly constrained part of a signal line in the first embodiment.
- ⁇ 3 It is a diagram showing an external configuration of an ultrasonic endoscope in the first to first embodiments.
- FIG. 4A is an enlarged view (outside perspective view) of the distal end portion of the ultrasonic endoscope 1 of FIG.
- FIG. 4B is an enlarged view (outside view configuration diagram) of the distal end portion of the ultrasonic endoscope 1 in FIG.
- FIG. 5 is a cross-sectional view of the ultrasonic probe in the first embodiment.
- FIG. 6 is a perspective view of an ultrasonic probe according to the first embodiment.
- FIG. 9 A schematic view of the distal end of the insertion portion of the ultrasonic endoscope according to the first and second embodiments. ⁇ 10] The state of the signal line bundle when the bending tube portion 8 of the ultrasonic endoscope in the first and second embodiments is bent is shown.
- FIG. 11 A schematic view of the distal end of the insertion portion of the ultrasonic endoscope in the first to third embodiments.
- FIG. 12A is a view showing a cable of a distal end hard portion of an electronic radial type ultrasonic endoscope according to a second embodiment (Example 1).
- FIG. 12B A diagram (FF cross-sectional view) showing the cable of the distal end hard portion of the electronic radial type ultrasonic endoscope in the second embodiment (Example 1).
- FIG. 12C is a diagram (GG cross-sectional view) showing the cable of the distal end hard portion of the electronic radial ultrasonic endoscope according to the second embodiment (Example 1).
- FIG. 13A is a diagram showing a cable of a distal end hard portion of an electronic radial ultrasonic endoscope according to a second embodiment (Example 2).
- FIG. 13B A diagram (FF cross-sectional view) showing the cable of the distal end hard portion of the electronic radial type ultrasonic endoscope in the second embodiment (Example 2).
- FIG. 13C is a diagram (GG sectional view) showing a cable of a distal end hard portion of the electronic radial type ultrasonic endoscope in the second embodiment (Example 2).
- FIG. 14A is a view showing a cable of a distal end hard portion of an electronic radial type ultrasonic endoscope according to a second embodiment (Example 3).
- FIG. 14B is a diagram (FF cross-sectional view) showing the cable of the distal end hard portion of the electronic radial ultrasonic endoscope according to the second mode for embodying the present invention (embodiment 3).
- FIG. 14C is a view (GG sectional view) showing a cable of a distal end hard portion of the electronic radial type ultrasonic endoscope in the second embodiment (Example 3).
- FIG. 15 is a view showing a state in which a heat-shrinkable tube is attached to the cable in the second embodiment.
- FIG. 16A is a view (left side view) showing a cable fixing member 63 for fixing the cable shown in FIG.
- FIG. 16B is a diagram (front view) showing a cable fixing member 63 for fixing the cable shown in FIG.
- FIG. 16C is a view (right side view) showing the cable fixing member 63 for fixing the cable shown in FIG.
- FIG. 17A is a view showing a hard tip portion of the electronic radial ultrasonic endoscope shown in FIG.
- FIG. 17B is a cross-sectional view taken along the line H-H shown in FIG. 17A.
- FIG. 18 is a side sectional view showing the inclination of the cable at the distal end hard portion in the second embodiment.
- FIG. 19A is a view showing a cable fixing member (right and left) for inclining a cable in the second embodiment.
- FIG. 19B is a view showing a cable fixing member (upward and downward) for inclining the cable in the second embodiment.
- the bending tube portion of the endoscope also has a combined bending state (twisted state) such as LEFT 90 degrees in addition to UP 130 degrees. Then, in the configuration of the previous example, not only the bending operation force amount becomes heavier, but also the balance of the resistance force by FPC is lost, and there is a problem that the movement may be different from the movement intended by the operator.
- a combined bending state such as LEFT 90 degrees in addition to UP 130 degrees.
- the FPC when the FPC is not used, for example, as shown in FIG. 1, when the signal line bundle 201 bundled with a restraining member (for example, a skin) 200 is used, the signal line bundle 201 is bound by the restraining member 200. As a result, the signal wire bundle 201 becomes a single rigid body 202. As a result, the operation force of the bending tube section becomes heavy, and the operability deteriorates.
- a restraining member for example, a skin
- the signal line bundle in the bending tube is rigid, so the center of the signal line bundle becomes a neutral axis, and the signal line on the outer peripheral side receives a tensile force,
- the inner circumference receives compression force, but the surroundings are constrained, so pressure is applied to the surrounding signal lines.
- repeated stress is applied by the endoscope operation, so there is a risk of disconnection.
- the present invention provides an ultrasonic endoscope that is excellent in insertion into a patient and operator's operability with a large bending angle and a small amount of operation force.
- FIG. 2 is a conceptual diagram showing a constrained portion and a non-constrained portion of the signal line bundle included in the bending tube portion of the ultrasonic endoscope according to the present invention.
- the signal wire bundle 101 inserted through the insertion portion of the endoscope is covered with the restraining member 100 over its entire length and is restrained (constraint portion).
- the restraining member 100 covering the signal wire bundle 101 is removed from a part in the bending tube toward the hard end of the tip, and the signal wire bundle 101 is exposed. ing. Therefore, the signal line bundle in that part is not restrained by the restraining member (unconstrained part).
- FIG. 2 shows a stiffness model diagram of the left diagram of FIG.
- the constrained portion in the left view of FIG. 2 is shown as a rigid portion 102
- the unconstrained portion is shown as a flexible portion 103.
- the section line Xa-Xa in FIG. 2 is compared with the corresponding section line Xb-Xb in FIG.
- the cutting line Xb-Xb is a rigid body, while the cutting line Xa-Xa is a flexible part. Therefore, the load applied when bending the signal line bundle in FIG.
- the distal end rigid portion is disposed and perpendicular to the insertion axis.
- An ultrasonic probe portion in which a plurality of ultrasonic transducers having a specific sound axis are arranged in an annular shape, and an ultrasonic wave that is a member for transmitting and receiving signals to the ultrasonic probe inserted into the insertion portion Has almost the same number of signal bundles as the transducer.
- each signal line extending from the ultrasonic probe is constrained in the distal end rigid portion and the flexible tube portion, and in at least a part of the bending tube portion.
- the restraint state is a gentler and stronger force than the restraint state in the end rigid portion and the flexible tube portion.
- the signal lines up to half of the total length of all the bending tubes are in a weakly constrained state inside the bending tube. Also, within the bending tube, the signal lines up to the tip half of the entire length of the entire bending tube are in a weakly constrained state.
- FIG. 3 shows an external configuration of the ultrasonic endoscope according to the present invention.
- the ultrasonic endoscope 1 includes an elongated insertion portion 2 that is inserted into a body cavity, an operation portion 3 that is located at the proximal end of the insertion portion 2, and a universal portion that extends from the side of the operation portion 3. It consists mainly of code 4.
- a light guide cable, a suction tube, an electric wire, and the like pass.
- a scope connector 5 connected to a light source device (not shown) is provided at the base end of the universal cord 4. From this scope connector 5, an electrical cable is detachably connected to a camera control unit (not shown) via an electrical connector. Further, from the scope connector 5, an ultrasonic cable 6 detachably connected to an ultrasonic observation apparatus (not shown) via an ultrasonic connector 6 a is extended.
- the insertion portion 2 is configured by connecting a distal end rigid portion 7, a bending tube portion 8, and a flexible tube portion 9 in series.
- the distal end rigid portion 7 is formed of a hard resin member in order from the distal end side cover.
- the bendable tube portion 8 is a bendable tube portion located at the rear end of the distal end rigid portion 7.
- the flexible tube portion 9 is a thin, long and flexible tube portion that is located at the rear end of the curved tube portion 8 and reaches the distal end portion of the operation portion 3.
- An ultrasonic probe 10 is provided on the distal end side of the distal rigid portion 7. In the ultrasonic probe 10, a plurality of piezoelectric elements that transmit and receive ultrasonic waves are arranged.
- the operation unit 3 is provided with an angle knob 11, an air / water supply button 12, a suction button 13, a treatment instrument insertion port 14, and the like.
- the angle knob 11 controls the bending of the bending tube portion 8 in a desired direction.
- the air supply / water supply button 12 is used for air supply and water supply operations.
- the suction button 13 is for performing a suction operation.
- the treatment instrument sputum inlet 14 is a portion serving as an entrance for a treatment instrument introduced into a body cavity.
- FIG. 4A and 4B are enlarged views of the distal rigid portion 7 of the ultrasonic endoscope 1 shown in FIG.
- FIG. 4A shows an external perspective view
- FIG. 4B shows an external configuration diagram.
- An ultrasonic transducer 10 that enables electronic radial scanning is provided at the tip of the tip rigid portion 7.
- the ultrasonic transducer 10 is covered with a material on which an acoustic lens (ultrasonic transmission / reception unit) 17 is formed.
- the tip rigid portion 7 is formed with a slope portion 7a.
- the slope 7a is provided with an illumination lens 18b, an object lens 18c, a suction / forceps port 18d, and an air / water supply port 18a.
- the illumination lens 18b constitutes an illumination optical unit that irradiates the observation site with illumination light.
- the objective lens 18c constitutes an observation optical unit that captures an optical image of the observation site.
- the suction / forceps opening 18d is an opening through which the excised site is sucked and the treatment tool protrudes.
- Air supply / water supply opening 18a is an opening for supplying air and water.
- FIG. 5 shows a cross section of the ultrasonic probe.
- FIG. 6 is a perspective view thereof.
- an electronic radial ultrasonic probe will be described as an example of the ultrasonic probe.
- An electronic radial ultrasonic probe transmits and receives an ultrasonic beam in the circumferential direction.
- the ultrasonic probe 10 has a cylindrical shape.
- the ultrasonic probe 10 is covered with an acoustic lens material 17 and an acoustic matching layer 22 from the outermost peripheral side.
- Each facing surface of the piezoelectric element 23 (the inner surface and the outer surface of the ultrasonic probe 10)
- the electrode layers 23a and 23b are respectively formed on the surface).
- a conductive layer 21 is formed on one surface of the substrate 20 (the surface in the direction toward the inner side of the ultrasonic probe 10).
- the conductive layer 21 and the electrode layer 23a are electrically connected.
- a conductive layer 25 that is electrically connected to the electrode layer 23b is formed in a part of the acoustic matching layer.
- the substrate 20, conductive layer 21, piezoelectric element 23, electrode layer 23a, electrode 23b, conductive layer 25, and acoustic matching layer 22 are diced.
- a plurality of transducer elements 37 are formed!
- Donut-shaped structural members 26 and 29 are provided in the vicinity of the lower opening and the upper opening of the ultrasonic probe 10, respectively.
- the space between the structural members 26 and 29 is filled with a backing material 28.
- a copper foil is formed on the surface of the structural member 26 (the lower surface in the figure).
- the electrode 23b and the copper foil 27 are electrically connected via the conductive layer 25.
- a cylindrical structural member 30 is inserted from the upper opening side (the side where the substrate 20 is provided).
- the cylindrical structural member 30 includes a cylindrical portion and an annular collar 31 provided at one end thereof. By joining the flange 31 and the structural member 29, the position of the cylindrical member 30 is fixed inside the ultrasonic probe 10.
- a printed wiring board 32 is provided on the surface of the collar 31.
- a plurality of electrode pads 36 are provided on the surface of the printed wiring board 32.
- a cable bundle 40 is passed through the cylindrical structural member 30. The tip of each cable 41 of the cable bundle 40 is soldered to the electrode pad 36 corresponding to each cable 41.
- the cable 41 is usually a coaxial cable to reduce noise.
- Each electrode pad 36 is electrically connected to the conductive layer 21 via solder and wire 35. Cable 41 is potted with grease 42.
- the surface of the cylindrical portion of the cylindrical structural member 30 is covered with a metal thin film 38.
- the ground wire 39 extending from the cable 40 is soldered to the cylindrical surface on which the metal thin film 38 is formed by the solder 39a. Further, the metal thin film 38 is electrically connected to the copper foil 27.
- the signal line of each cable 41 is electrically connected to one electrode 23a of the piezoelectric element of the resonator element 37 corresponding to the signal line of each cable 41.
- the electrode 23b facing the signal electrode 23a of the piezoelectric element 23 is a ground electrode.
- FIG. 7 shows a cross section near the distal end of the insertion part 2 of the ultrasonic endoscope in the present embodiment.
- a cable bundle 40 extends from the opening of the cylindrical structural member 30 and passes through the inside of the bending tube portion 8.
- a plurality of connecting members for bending the bending tube portion 8 in the left-right direction (perpendicular to the paper surface in FIG. 7) and a vertical direction (see FIG. In FIG. 7, there are a plurality of connecting members 49 for bending the bending tube portion 8 in a direction horizontal to the paper surface.
- the bending tube portion 8 is composed of a plurality of units of the bending tube 48. Therefore, when the connecting member operates, each bending tube 48 moves, and the bending tube portion 8 as a whole is bent.
- the multi-core coaxial cable 50 is used as the cable bundle 40.
- FIG. 8 shows a cross section of the multi-core coaxial cable 50 in the present embodiment.
- 8 is a schematic cross-sectional view of the multi-core coaxial cable 50 corresponding to the cut surface AA in FIG.
- the BB cross section in FIG. 8 is a schematic view of the cross section of the multi-core coaxial cable 50 corresponding to the cut surface BB in FIG.
- the multi-core coaxial cable 50 is a bundle of a plurality of coaxial cables 54.
- the multi-core coaxial cable 50 has a cross section indicated by a BB cross section over the entire length, except for a portion to be described later (see the AA cross section in FIG. 8). First, the BB cross section in Fig. 8 is explained.
- each coaxial cable 54 has a core wire (signal wire) 54a covered with an insulator 54b and further covered with a shield wire 54c, and further covered with a jacket (skin) 54d. It is made up of covered with. Further, a plurality of coaxial cables 54 are bundled and covered with a shield wire (overall shield wire) 53 and further covered with a jacket (outer skin) 52. This is a typical multi-core coaxial cable configuration. In the present embodiment, such a multi-core coaxial cable 50 is further covered with a heat shrinkable tube 51.
- a predetermined number of signal lines (signal wire bundles) connected to the ultrasonic probe 10 are within a part of the distal end rigid portion 7 and within the bending tube portion 8.
- the heat shrinkable tube 51 was covered on the jacket 52 over the entire length by a part of the flexible tube portion 9 and the flexible tube portion 9.
- the A-A cross section of FIG. 8 is a part of the curved tube portion 8, in which the jacket 52 and the overall shield wire 53 of the multi-core coaxial cable 50 described in the BB cross section of FIG.
- the bundle of coaxial cables 54 is covered with a heat shrinkable tube 51.
- the reason why the heat shrinkable tube 51 is covered is that each coaxial cable 54 is held so as not to be separated one by one and with a certain degree of freedom. This is because if each coaxial cable 54 is separated one by one, there is a risk of being disconnected by being pinched by the connecting member 49 or the like.
- the heat shrinkable tube 51 is also for positioning the multi-core coaxial cable 50 at a predetermined position inside the bending tube portion 8.
- the heat-shrinkable tube 51 prevents the overall shield wire 53 from being exposed to the outside when the jacket 52 is mechanically damaged, thereby improving safety. It is also for the purpose.
- the multi-core coaxial cable 50 extending from the opening of the cylindrical structural member 30 toward the bending tube portion 8 side is cylindrical from a portion of the bending tube portion 8.
- the jacket 52 and the overall shield wire 53 are removed by force toward the structural member 30 (C part).
- the jacket 52 and the general shield wire 53 are covered (D portion).
- the bundle of the coaxial cables 54 that has been exposed is bonded near the opening of the cylindrical structural member 30 by the adhesive 43, and is bundled and restrained. Except for the bonded portion 43, the multi-core coaxial cable 50 is covered with the heat shrinkable tube 51 over the entire length, including the bundled portion (C portion) of the coaxial cable 54 that is exposed. ing.
- heat-shrinkable tube 51 when the multi-core coaxial cable 50 is covered with the heat-shrinkable tube 51, first, heat is applied from outside through the heat-shrinkable tube 51. At this time, by changing the heating time, changing the heating power or heat source (for example, adjusting by using a small heating device such as a heat gun or a large heating device), or moving the heat source away from the object to be heated. Heat Apply a gradient and adjust the restraining force of the heat-shrinkable tube 51 on each coaxial cable 54 depending on the part.
- the jacket 52 and the overall shield wire 53 are removed, and the heating time for the heat-shrinkable tube 51 positioned in the portion (C portion) is set shorter than the other portions, so that each coaxial cable is The binding force on 54 can be weakened relatively.
- each signal line (coaxial cable 54) in the jacket 52 (in the general shield 53) is further restrained (D portion). Therefore, as shown in the BB cross section of FIG. 8, the interval PO between the coaxial cables 54 is narrowed. Then, the twist of the overall shield 53 becomes a large sliding resistance of the signal line (coaxial cable 54), and each signal line (coaxial cable 54) is surely restrained.
- the jacket 52 and the overall shield 53 are not provided, so that there is little tightening with respect to each signal line (coaxial cable 54). That is, as shown in the AA cross section of FIG. 8, the interval P1 between the coaxial cables 54 is wider than the PO of the BB cross section of FIG. 8 ( ⁇ 1> ⁇ ).
- the signal wire bundle is weakly constrained over the entire length of the bending tube (the state is fully constrained by the jacket 52 and the integrated shield wire 53, etc., and the state is covered only with the heat shrinkable tube in the first embodiment. If this is the case (C part) (hereinafter the same), each signal line will stagger in various directions. As a result, it comes into contact with other built-in objects (for example, a light guide cable, etc.) existing in the bending tube portion, and an unnecessary load is applied to them. Therefore, in this embodiment, the signal line bundle in a weakly constrained state in the bending tube portion is set to be equal to or less than half of the entire length of the bending tube portion.
- FIG. 9 is a schematic diagram of the distal end of the insertion portion of the ultrasonic endoscope according to the present embodiment.
- the total length of the bending tube portion is L1
- the length of the signal wire bundle portion 70 in the weakly constrained state is L2.
- L2 is less than half of L1.
- L2 may be 1/3 the length of L1.
- FIG. 10 shows a state of signal line bundles when the bending tube portion 8 of the ultrasonic endoscope in the present embodiment is bent.
- the bending tube portion 8 is bent in a semicircular shape so that the one end E1 and the other end E2 of the bending tube portion 8 are positioned at 180 degrees, the length of the signal line bundle portion 70 is increased.
- the limit is indicated by a 90 degree arc. If the arc is larger than this, each signal line may stagnate in various directions. Therefore, considering FIG. 10, the signal line bundle portion in a substantially weakly constrained state should be less than half the total length of the bending tube portion.
- each signal line is freely deformed. Therefore, interference with other built-in objects such as a forceps channel and an optical observation member can be prevented, and damage to other built-in objects only by disconnection of the signal line can be minimized.
- the length of the portion of the weakly constrained signal line bundle in the bending tube portion is half or less than that of the bending tube portion. Is less than or equal to half of the tip side between the curves.
- FIG. 11 is a schematic diagram of the distal end of the insertion portion of the ultrasonic endoscope in the present embodiment.
- the flexible portion (the weakly constrained signal line bundle portion 80) of the bending tube is positioned on the distal end side.
- the followability to the lumen is improved at the time of insertion into the patient, the insertability is improved, and the burden on the patient and the operator is reduced.
- the heat-shrinkable tube is used.
- the present invention is not limited to this.
- heat shrink tape good In the embodiments 1-1 to 1-3, the electronic radial type ultrasonic probe is used.
- the present invention is not limited to this.
- a convex type or linear type ultrasonic probe may be used.
- Good In the first to first to first to third embodiments, an electronic radial ultrasonic probe using a piezoelectric element is used.
- a capacitive transducer (c MUT) is used. The present invention can also be applied to the used electronic radial ultrasonic probe.
- the present invention is not limited to the first to first to third embodiments, and various configurations can be adopted within the scope described in the scope of patent claims. Therefore, the restraining force by the covering member covering the signal wire bundle in a predetermined range among the signal wire bundles included in the bending tube portion can be made smaller than the restraining force of the covering member covering the other part.
- the covering member is not limited to the configuration of the heat shrinkable tube 51, the jacket 52, and the overall shield 53.
- Patent Document 4 has a configuration in which at least the cable in the hard portion extends toward the operation portion in parallel with the insertion axis, and does not consider the observation optical system.
- an object of the present invention is to provide an electronic radial type ultrasonic endoscope with improved operability and reduced burden on a patient or an operator.
- FIG. 12A, FIG. 12B, and FIG. 12C are diagrams showing the cable of the distal end hard portion 7 of the electronic radial type ultrasonic endoscope 1 in the present embodiment (Example 1).
- the cable is a bundle of ultrasonic transducer elements and signal lines that transmit and receive drive signals.
- Fig. 12B shows a cross-sectional view of the cable 321 in the external configuration diagram shown in Fig. 12A.
- Cable 321a is a circle It has a shape.
- FIG. 12C shows a GG cross section of cable 321 of FIG. 12A.
- the cable 321b has a shape deformed from a circular shape, for example, an elliptical shape (thin shape in a desired bending direction) by a cable fixing member (not shown).
- the cable 321b may be filled with flexible resin at least partially to make it easier to bend the cable in the vertical direction in the figure.
- FIG. 13A, FIG. 13B, and FIG. 13C are diagrams showing the cable of the distal end hard portion 7 of the electronic radial type ultrasonic endoscope 1 in the present embodiment (Example 2).
- Fig. 13B shows a cross-sectional view of the cable 322 in the external configuration shown in Fig. 13A.
- Cable 322a of cable 322 has a circular shape.
- Figure 13C shows a GG cross section of cable 322 in Figure 13A.
- the cable 322b has a bifurcated shape that is easily bent in a desired bending direction (vertical direction in the figure) by a cable fixing member (not shown). Even if it is not bifurcated, there is no problem as long as it is easy to bend by thinning it in the desired bending direction that can be branched into 3 or more.
- FIG. 14A, FIG. 14B, and FIG. 14C are diagrams showing the cable of the distal end hard portion 7 of the electronic radial type ultrasonic endoscope 1 in the present embodiment (Example 3).
- Figure 14B shows a cross-sectional view of the cable 323 in the external configuration shown in Figure 14A.
- the cable 323a has a circular shape with no outer coating near the vibrator.
- FIG. 14C shows a GG cross section of cable 323 of FIG. 14A. Similar to FIG. 12C, the shape is deformed from a circular shape by a cable fixing member (not shown), for example, an elliptical shape (a thin shape in a certain bending direction).
- the cable 323b may be filled with flexible resin at least partially to make the cable easier to bend in the vertical direction in the figure.
- FIG. 15 is a view showing a state in which a heat-shrinkable tube is attached to the cable in the present embodiment.
- the heat-shrinkable tube 331 for preventing disconnection of the cable 324 branched into two branches is made of, for example, fluorocarbon resin.
- FIG. 16A, FIG. 16B, and FIG. 16C show an example of a cable fixing member 363 that fixes the cable 324 shown in FIG.
- FIG. 16A is a left side view of the cable fixing member 363.
- FIG. 16A a cable hole 363a is provided on the cable front end side.
- Figure 16B FIG. 4 is a front view of a cable fixing member 363.
- FIG. 16C is a right side view of the cable fixing member 363.
- the cable hole 363b has two holes, and the branched cable is fixed.
- FIG. 17A shows a side sectional view of the distal end hard portion 7 of the electronic radial ultrasonic endoscope 1 shown in FIG.
- a signal line 362 is connected to the center of the electrode pad 351 in the center direction.
- one end of the wire 390 is connected to the outer circumferential direction side of the flange with solder 401, and the other end is connected to the signal side electrode 320a on the substrate 320 of the transducer element with solder 402.
- it connects using the short wire 390 so that a wire may contact the adjacent signal side electrode 320a and it does not short-circuit.
- the connection between the signal line 362 and the electrode pad 351 with the potting resin 400 is performed. The entire part is covered.
- the signal line 362 is divided into two branches from the cable branch point 362a, and a cable fixing member 363 is provided on the outer periphery of the signal line 362.
- a copper foil 403 is formed on one surface of the structural member 330b, and a conductor film 409 is formed on the cylindrical side surface of the cable fixing member 363.
- the ground wire 370 that combines the ground wires of the cable 362 consisting of a plurality of signal wires 362 is connected by the conductor film 409 provided on the cylindrical side surface of the cable fixing member 363 and the solder 410, and further the copper foil on the surface of the structural member 330b.
- the electrode 403 is connected to the electrode on the vibrator surface side of the piezoelectric element 333 through a conductive resin layer 404 formed by grooving the acoustic matching layer 334.
- An acoustic matching layer 324 and an acoustic lens 317 are arranged on the acoustic radiation surface side of the piezoelectric element.
- the distal end hard member 406 and the structural member 405 are connected to each other, and further fixed to the distal end rigid member 407 by screwing 365 using a U-shaped positioning member 364.
- the distal end hard portion 7 of the sonic endoscope 1 is formed.
- FIG. 17B is a cross-sectional view taken along the line HH shown in FIG. 17A.
- the electronic radial ultrasonic transducer 1 is a cylindrical device in which a piezoelectric element on a flat acoustic matching layer 334 is diced to form a groove. Therefore, the joint between the one end and the other end of the flat plate starts with the pitch, Since the accuracy of the image decreases due to slight differences in the components of the joints and joints, the joints are positioned in the down direction shown in the figure.
- a positioning member 364 is provided over a desired angle, and on the outer periphery, a distal end hard member 407 fixed to the positioning member 364 with a fixing screw 365 is provided.
- FIG. 18 is a side sectional view showing the inclination of the cable of the distal end hard portion 7 in the present embodiment.
- the cable 372 is inclined in a direction away from the observation optical system 408 which is an endoscope observation unit (here, for example, 3 degrees).
- FIG. 19A and FIG. 19B show a cable fixing member 366 for inclining the cable 362 in the present embodiment.
- FIG. 19A is a diagram showing the shape of the endoscope observation part in the R (right) and L (left) directions.
- FIG. 19B is a diagram showing the shapes in the U (upper direction in which the observation optical system is located) and D (lower) direction.
- the cable hole 366a of the cable fixing member 366 having the conductive film 409 bonded to the surface is inclined in the D direction from the cable front end side (left side in the figure).
- the circular force is also deformed by a cable fixing member (not shown) (thin shape in the desired bending direction (vertical direction in the figure)), so that the curve in the desired direction can be obtained. Will be easier.
- FIG. 13C shows a cable 322b. Even if the cable is branched, the thickness in the desired bending direction (vertical direction in the figure) is reduced to a desired shape. It becomes easier to bend. In addition, by aligning the direction that tends to bend with the up and down directions of the optical observation unit and ultrasonic observation unit, when the angle knob 11 of the endoscope operation unit is turned, the direction that the surgeon assumes It can be curved.
- a cable 323a may be used, and an uncovered cable in the vicinity of the hard end portion may be used.
- the surface of the cable fixing member is metal-plated, it will be grounded by connecting the unshielded partial extension of the integrated shield to the cable fixing member, and it will not be affected by electrical noise. It is electrically safe.
- the cable 324 branched into two bundles covered with the heat-shrinkable tube 331 is combined with the cable fixing member 363 shown in FIG. 16, so that the tension applied to the signal line 362 shown in FIG. It can be lost.
- the tension of the cable acting on the vibrator side is This is because the heat shrinkable tube 331 absorbs at the branch portion of the cable fixing member. For this reason, the stress applied to each signal line 362 is remarkably reduced, and the wiring with the base is not broken, and a highly reliable ultrasonic endoscope can be manufactured.
- the cable fixing member has a function of changing the shape of the cable.
- the same function is provided in the distal end rigid portion 7 including the distal end rigid member 407 when the cable is bent.
- the effect of not transmitting the generated cable tension to the transducer side and the ability to identify the direction of the bending due to the shape of the cable is the same.
- the cable that also has the bundle force of the signal lines connected to each ultrasonic vibrator element is thinly fixed in a certain direction at the distal end hard part or the curved part. Because it is easy to bend in a predetermined direction, the burden on the patient and the operator is reduced.
- the cable fixing member is inclined by tilting the central axis of the cable. As shown in FIG. 16, the cable fixing member is not inclined, and the cable is inclined by leaning against the hard tip. A similar effect can be obtained by using a structure with a hole or a cylindrical guide.
- the joint when forming the electronic radial ultrasonic transducer in a cylindrical shape is fixed at a position substantially opposite to the observation optical system, so that it is substantially the same as the observation optical system that is not often used by the operator.
- a joint where the image accuracy is lowered is arranged at the opposite position, and the diagnosis accuracy is improved.
- this embodiment is not limited to an ultrasonic transducer using a piezoelectric element, but also applied to an electronic radial ultrasonic transducer using a capacitive transducer (c MUT). Is possible.
- the cable that also has the bundling force of the signal line connected to each ultrasonic transducer element is fixed thinly in a certain direction at the distal end hard portion. By doing so, it is easy to bend in a predetermined direction, and the burden on the patient and the operator is reduced.
- the usable area of the observation optical system is expanded, and the degree of freedom in arrangement is increased. Increase. As a result, it becomes possible to achieve a smaller diameter and reduce the burden on the patient and the operator. In addition, the operability is enhanced by the small diameter.
- the joint when forming the electronic radial ultrasonic transducer in a cylindrical shape is fixed at a position substantially opposite to the observation optical system, so that it is substantially the same as the observation optical system that is not often used by the operator.
- the arrangement is such that the image accuracy is lowered at the opposite position, and the diagnostic accuracy is improved.
- a heat-shrinkable tube is provided at the branching position of the cable, so that disconnection due to the tension applied to the cable can be prevented.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Surgery (AREA)
- Medical Informatics (AREA)
- Biophysics (AREA)
- Pathology (AREA)
- Radiology & Medical Imaging (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Physics & Mathematics (AREA)
- Molecular Biology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Optics & Photonics (AREA)
- Gynecology & Obstetrics (AREA)
- Ultra Sonic Daignosis Equipment (AREA)
Abstract
超音波を送受する超音波振動子エレメントが略円筒状に複数配列された超音波探触子と、内視鏡挿入部の先端を構成し前記超音波探触子が設けられた先端硬性部と、前記先端硬性部が接続され遠隔操作により湾曲する湾曲管部と、前記湾曲管部と接続された可撓管部と、前記各超音波振動子エレメントを駆動させる駆動信号を送信するための各超音波振動子エレメントに対応する信号線の束であって、前記先端硬性部、前記湾曲管部、及び前記可撓管部の内部を通っている該信号線束と、を備える超音波内視鏡であって、前記信号線束は、該信号線束を拘束する拘束部材で被覆されており、前記湾曲管部に内包されている前記信号線束のうち、所定の範囲の該信号線束を被覆している前記拘束部材の拘束力を、前記信号線束のうち該範囲以外を被覆している前記拘束部材の拘束力よりも小さいことを特徴とする。
Description
明 細 書
超音波内視鏡
技術分野
[0001] 本発明は、操作性を高め、患者や術者の負担を軽減した電子ラジアル型超音波内 視鏡に関する。
背景技術
[0002] 近年、内視鏡の挿入部の先端に超音波探触子を有し、電気的に走査を行う電子走 查型の超音波内視鏡が実用化されている。電子走査式の超音波内視鏡においては 、多数の圧電振動子がアレイ状に並べられて配置されている。そして、これらの圧電 振動子を超音波内視鏡が接続される超音波観測装置によって適宜駆動させることに よって、超音波画像が得られるようになつている。
[0003] この超音波探触子に電気信号を伝送するための配線には、複数のフレキシブル基 板 (FPC : Flexible Printec Circuit)が使用されている(例えば、特許文献 1、特 許文献 2参照)。
[0004] この FPCは、鉗子チャンネルなどの内視鏡観察部を避けるようにして、湾曲管部内 に配置にされている。そして、この FPCは、湾曲管部よりも手元側 (超音波内視鏡本 体の操作部側)の可撓管先端にて、信号線(同軸ケーブル)に接続されている (例え ば特許文献 2 :図 1参照)。
[0005] 一般的な内視鏡の湾曲動作では、 UP方向の湾曲角を大きくする必要があり、 130 度程度湾曲させ、その他の方向へも 90度程度湾曲させる必要がある。このように構 成することで、患者への挿入性をスムーズにし、患者への負担、内視鏡を操作する術 者への負担を軽減して ヽる。
[0006] また、 FPCがなく、直接信号線を配した場合、多数本の信号線が、先端硬性部、湾 曲管、可撓管部それぞれの全長にわたり熱収縮チューブなどによって束ねられてい る。
ところで、超音波内視鏡は、内視鏡としての操作性を向上させることが患者や術者 の負担軽減に繋がるため、先端の湾曲部は所定の方向へ湾曲しやすいことが大切
である。湾曲の度合いは、超音波を送受信するためのケーブルに大きく影響を受け、 特にケーブルの形状、材質、配置が重要な要素となる。
[0007] また、体腔内に挿入される硬質部長を短くかつ細径化することも、操作性を高め、 患者や術者の負担軽減に繋がる。
コンベックス型超音波内視鏡において内視鏡観察部と超音波観察部の位置決めを するための先端硬質部にて、超音波ケーブルを分岐もしくは形状を変形させ、処置 具挿通用チャンネルの自由度をあげる技術が開示されている(例えば、特許文献 3。
) o
[0008] また、コンベックス型超音波内視鏡において振動子からのケーブルが傾いたものが 開示されている(例えば、特許文献 4。 ) 0
特許文献 3及び特許文献 4の技術では、内視鏡観察部と超音波観察部の振動子 の位置について記述がな力つた。これは、振動子 360度方向の観察ができるもので はなぐ振動子には必ず両端が存在し、振動子エレメントの位置は必然的に決まって いたためである。
特許文献 1 :特開 2002— 153465号公報
特許文献 2:特開 2002— 153470号公報
特許文献 3:特開 2001— 170054号公報
特許文献 4:特開 2001— 112757号公報
発明の開示
[0009] 本発明にかかる超音波内視鏡は、超音波を送受する超音波振動子エレメントが略 円筒状に複数配列された超音波探触子と、内視鏡挿入部の先端を構成し前記超音 波探触子が設けられた先端硬性部と、前記先端硬性部が接続され遠隔操作により湾 曲する湾曲管部と、前記湾曲管部と接続された可撓管部と、前記各超音波振動子ヱ レメントを駆動させる駆動信号を送信するための各超音波振動子エレメントに対応す る信号線の束であって、前記先端硬性部、前記湾曲管部、及び前記可撓管部の内 部を通っている該信号線束と、を備え、前記信号線束は、該信号線束を拘束する拘 束部材で被覆されており、前記湾曲管部に内包されている前記信号線束のうち、所
、る前記拘束部材の拘束力を、前記信号線束の
うち該範囲以外を被覆している前記拘束部材の拘束力よりも小さいことを特徴とする
[0010] また、本発明にかかる超音波内視鏡は、超音波を送受する超音波振動子エレメント が略円筒状に複数配列された超音波探触子と、内視鏡挿入部の先端を構成し前記 超音波探触子が設けられた先端硬性部と、前記先端硬性部が接続され遠隔操作に より湾曲する湾曲管部と、前記湾曲管部と接続された可撓管部と、前記各超音波振 動子エレメントを駆動させる駆動信号を送信するための各超音波振動子エレメントに 対応する信号線の束であって、前記先端硬性部、前記湾曲管部、及び前記可撓管 部の内部を通っている該信号線束と、を備え、前記湾曲管部に内包されている前記 信号線束のうち、所定の範囲の該信号線束の前記信号線間相互の間隔を、該範囲 以外の該信号線束の前記信号線間相互の間隔よりも大きくすることを特徴とする。
[0011] また、本発明にかかる電子ラジアル型超音波内視鏡は、照明光学系と観察光学系 とを設けた内視鏡観察部と、超音波を送受する超音波振動子エレメントを複数配列し た超音波観察部とを挿入部の先端部を構成する先端硬質部に有し、少なくとも互い に直交する第 1の湾曲方向と第 2の湾曲方向とに湾曲自在な湾曲部を前記先端硬 質部の後端に有し、前記先端硬質部で、前記各超音波振動子エレメントと接続され た信号線の束力 なるケーブルの厚さを前記第 2の湾曲方向よりも前記第 1の湾曲方 向に薄くして固定することを特徴とする。
[0012] また、本発明にかかる電子ラジアル型超音波内視鏡は、照明光学系と観察光学系 とを設けた内視鏡観察部と、超音波を送受する超音波振動子エレメントを複数配列し た超音波観察部とを挿入部の先端部を構成する先端硬質部に有し、少なくとも互い に直交する第 1の湾曲方向と第 2の湾曲方向とに湾曲自在な湾曲部を前記先端硬 質部の後端に有し、前記先端硬質部で、前記各超音波振動子エレメントと接続され た信号線の束力 なるケーブルを分岐し、該分岐したケーブルを束ねたケーブル束 の厚さを前記第 2の湾曲方向よりも前記第 1の湾曲方向に薄くして固定することを特 徴とする。
図面の簡単な説明
[0013] [図 1]従来の内視鏡の湾曲管部の信号線束 201を説明するための図である。
圆 2]第 1の実施形態における信号線の拘束部分及び弱拘束部分を説明するための 概念図である。
圆 3]第 1—1の実施形態における超音波内視鏡の外観構成を示す図である。
圆 4A]図 3の超音波内視鏡 1の先端部の拡大図 (外観斜視図)である。
圆 4B]図 3の超音波内視鏡 1の先端部の拡大図 (外観構成図)である。
圆 5]第 1— 1の実施形態における超音波探触子の断面図である。
[図 6]第 1 1の実施形態における超音波探触子の斜視図である。
圆 7]第 1 1の実施形態における超音波内視鏡の挿入部 2の先端付近の断面を示 す。
圆 8]第 1—1の実施形態における多芯同軸ケーブルの断面を示す。
圆 9]第 1—2の実施形態における超音波内視鏡の挿入部先端の模式図である。 圆 10]第 1—2の実施形態における超音波内視鏡の湾曲管部 8を湾曲させた場合で の信号線束の様子を示す。
圆 11]第 1—3の実施形態における超音波内視鏡の挿入部先端の模式図である。
[図 12A]第 2の実施形態 (実施例 1)における電子ラジアル型超音波内視鏡の先端硬 質部のケーブルを示す図である。
圆 12B]第 2の実施形態 (実施例 1)における電子ラジアル型超音波内視鏡の先端硬 質部のケーブルを示す図(F—F断面図)である。
[図 12C]第 2の実施形態 (実施例 1)における電子ラジアル型超音波内視鏡の先端硬 質部のケーブルを示す図(G— G断面図)である。
[図 13A]第 2の実施形態 (実施例 2)における電子ラジアル型超音波内視鏡の先端硬 質部のケーブルを示す図である。
圆 13B]第 2の実施形態 (実施例 2)における電子ラジアル型超音波内視鏡の先端硬 質部のケーブルを示す図(F—F断面図)である。
[図 13C]第 2の実施形態 (実施例 2)における電子ラジアル型超音波内視鏡の先端硬 質部のケーブルを示す図(G— G断面図)である。
[図 14A]第 2の実施形態 (実施例 3)における電子ラジアル型超音波内視鏡の先端硬 質部のケーブルを示す図である。
[図 14B]第 2の実施形態 (実施例 3)における電子ラジアル型超音波内視鏡の先端硬 質部のケーブルを示す図(F—F断面図)である。
[図 14C]第 2の実施形態 (実施例 3)における電子ラジアル型超音波内視鏡の先端硬 質部のケーブルを示す図(G— G断面図)である。
[図 15]第 2の実施形態におけるケーブルに熱収縮チューブを取り付けた状態を示す 図である。
[図 16A]図 15に示すケーブルを固定するケーブル固定部材 63を示す図(左側面図) である。
[図 16B]図 15に示すケーブルを固定するケーブル固定部材 63を示す図(正面図)で ある。
[図 16C]図 15に示すケーブルを固定するケーブル固定部材 63を示す図(右側面図) である。
[図 17A]図 13で示した電子ラジアル超音波内視鏡の先端硬質部を示す図である。
[図 17B]図 17Aで示す H— H断面図である。
[図 18]第 2の実施形態における先端硬質部のケーブルの傾斜を示す側断面図であ る。
[図 19A]第 2の実施形態におけるケーブルを傾斜させるケーブル固定部材 (右左方 向)を示す図である。
[図 19B]第 2の実施形態におけるケーブルを傾斜させるケーブル固定部材 (上下方 向)を示す図である。
発明を実施するための最良の形態
[0014] <第 1の実施形態 >
し力しながら、先行例のように FPCを使用した場合、このように大きく湾曲管部が湾 曲すると、たとえ先行例のように FPCを配しても、 FPCの挿入軸方向には伸縮させる 力が作用し、 FPCが波打ったり、引っ張り力を受けたりする。その結果、断線が起き 易くなり、全方位にわたって、湾曲角度を大きくすることができないという問題点があ つた o
[0015] また、先行例では、 FPCに起因する抵抗力(伸縮力)をバランスさせることがポイント
である。そうすると、術者の感じる操作力量が重くなるだけでなぐ湾曲部の追従性が 悪くなる。つまり、傷つけやすい体腔内で、慎重な操作を行うことが難しくなる。その 結果、内視鏡の操作性が悪くなり、術者への負担が増すという問題点があった。
[0016] さらに、内視鏡の湾曲管部は、 UP130度に加え LEFT90度といった複合した湾曲 状態 (ツイスト状態)も存在する。そうすると、先行例の構成では湾曲操作力量がより 重くなるだけでなぐ FPCによる抵抗力のバランスがくずれ、術者の意図する動作と は異なる動作を起こす場合もあるという問題点があった。
[0017] また、 FPCを用いない場合、例えば、図 1に示すように、拘束部材 (例えば、外皮等 ) 200で束ねられた信号線束 201を用いる場合には、拘束部材 200によりその信号 線束 201が締め付けられてしまうことで、信号線束 201が 1本の剛体 202となってしま う。そうすると、湾曲管部の操作力量が重くなつてしまい、操作性が悪くなるという問題 点がめった。
[0018] 特に、曲率半径 Rで湾曲させた場合、湾曲管内の信号線束は、剛体ィ匕しているた め、信号線束の中心が中立軸となり、外周側の信号線は引っ張り力を受け、内周側 は圧縮力を受けるが周囲を拘束されているため、周囲の信号線に圧力を加えること になる。そのため、内視鏡操作によって繰り返し応力を受けるため、断線する恐れも めつに。
[0019] 上記課題に鑑み、本発明では、湾曲角が大きくでき、操作力量も小さぐ患者への 挿入性、術者の操作性に優れる超音波内視鏡を提供する。
図 2は、本発明における超音波内視鏡の湾曲管部に内包される信号線束の拘束部 分及び非拘束部分を示す概念図である。内視鏡の挿入部に挿通された信号線束 10 1は、その全長に渡って拘束部材 100で被覆され、拘束された状態になっている(拘 束部分)。そのうち、図 2の左側の図に示すように、湾曲管内の一部から先端硬性部 側へ向力つて信号線束 101を覆っている拘束部材 100が取り除かれて、信号線束 1 01が剥き出しになっている。そのため、その部分の信号線束は拘束部材による拘束 を受けていない (非拘束部分)。
[0020] 図 2の右側は、図 2の左図の剛性のモデル図を示す。図 2の右図では、図 2の左図 の拘束部分は剛体部 102として示され、非拘束部分は柔軟部 103として示される。
ここで、図 2の切断線 Xa—Xa部分とこれに対応する図 1の切断線 Xb—Xbとを比較 する。切断線 Xb—Xbでは剛体であるのに対し、切断線 Xa—Xaでは柔軟部であるた め、図 1よりも図 2の信号線束を湾曲させる場合に力かる負荷が比較的小さい。
[0021] 本発明にかかる超音波内視鏡では、内視鏡挿入部の先端を構成する可撓管部、 湾曲管部、先端硬性部のうち、先端硬性部に配置され、挿入軸に垂直な音軸を有す る複数の超音波振動子を円環状に配列した超音波探触子部と、挿入部内部に挿通 された前記超音波探触子への信号の送受信部材である超音波振動子とほぼ同数の 信号線束を有する。
[0022] そこで、この超音波内視鏡において、前記超音波探触子から延出する各信号線が 、先端硬性部内及び可撓管部では拘束状態にし、湾曲管部の少なくとも一部では先 端硬性部内及び可撓管部での拘束状態よりも緩や力な拘束状態にする。そうするこ とで、各信号線が、内視鏡の挿入軸方向に対して自在に移動可能にするができ、湾 曲管部が湾曲して、その外周側の信号線は引っ張り力を受け、内周側は圧縮カを受 けた場合にも柔軟に湾曲することができる。
[0023] また、本発明では、湾曲管内部で、全湾曲管の全長の半分までの信号線を弱拘束 状態とする。また、湾曲管内部で、全湾曲管の全長の先端側半分までの信号線を弱 拘束状態とする。
[0024] それでは、本発明にかかる実施形態について、以下に説明する。
<第 1 1の実施形態 >
図 3は、本発明にかかる超音波内視鏡の外観構成を示す。超音波内視鏡 1は、体 腔内に挿入される細長の挿入部 2と、この挿入部 2の基端に位置する操作部 3と、こ の操作部 3の側部から延出するユニバーサルコード 4とで主に構成されている。
[0025] ユニバーサルコード 4内には、ライトガイドケーブル、吸引チューブ、電線等が通つ ている。ユニバーサルコード 4の基端部には、図示しない光源装置に接続されるスコ ープコネクタ 5が設けられている。このスコープコネクタ 5からは、図示しないカメラコン トロールユニットに電気コネクタを介して着脱自在に接続される電気ケーブルが延出 している。また、このスコープコネクタ 5からは、図示しない超音波観測装置に超音波 コネクタ 6aを介して着脱自在に接続される超音波ケーブル 6が延出して 、る。
[0026] 挿入部 2は、先端硬性部 7、湾曲管部 8、可撓管部 9が連設されて構成されている。 先端硬性部 7は、先端側カゝら順に硬質な榭脂部材で形成したものである。湾曲管部 8は、この先端硬性部 7の後端に位置する湾曲自在な管部である。可撓管部 9は、こ の湾曲管部 8の後端に位置して操作部 3の先端部に至る細径かつ長尺で可撓性を 有する管部である。そして、先端硬性部 7の先端側には超音波探触子 10が設けられ ている。超音波探触子 10は、超音波を送受する複数の圧電素子が配列されている。
[0027] 操作部 3には、アングルノブ 11、送気'送水ボタン 12、吸引ボタン 13、処置具挿入 口 14等が設けられている。アングルノブ 11は、湾曲管部 8を所望の方向に湾曲制御 するものである。送気'送水ボタン 12は、送気及び送水操作を行うためのものである 。吸引ボタン 13は、吸引操作を行うためのものである。処置具揷入口 14は、体腔内 に導入する処置具の入り口となる部分である。
[0028] 図 4A、図 4Bは、図 3に示す超音波内視鏡 1の先端硬性部 7の拡大図である。図 4 Aは外観斜視図を示し、図 4Bは外観構成図を示す。先端硬性部 7の先端には、電 子ラジアル型走査を可能にする超音波振動子 10が設けられている。超音波振動子 1 0は、音響レンズ (超音波送受部) 17が形成されている材質で被覆されている。また、 先端硬性部 7には斜面部 7aが形成されている。斜面部 7aには、照明レンズ 18b、対 物レンズ 18c、吸引兼鉗子口 18d、送気.送水口 18aが設けてある。照明レンズ 18b は、観察部位に照明光を照射する照明光学部を構成する。対物レンズ 18cは、観察 部位の光学像を捉える観察光学部を構成する。吸引兼鉗子口 18dは、切除した部位 を吸引したり処置具が突出したりする開口である。送気 ·送水口 18aは、送気及び送 水するための開口である。
[0029] 図 5は、超音波探触子の断面を示す。また、図 6は、その斜視図を示す。本実施形 態では、超音波探触子の一例として電子ラジアル型超音波探触子を用いて説明する 。電子ラジアル型超音波探触子とは、超音波ビームを円周方向に送受信するもので ある。
[0030] 超音波探触子 10は、円筒形状をしている。超音波探触子 10は、その最外周側から 音響レンズ材 17、音響整合層 22で被覆されている。
圧電素子 23の対向する各表面 (超音波探触子 10の内側方向の面と外側方向の面
の表面)にそれぞれ、電極層 23a, 23bが形成されている。また、基板 20の一方の表 面 (超音波探触子 10の内部側方向の面)には導電層 21が形成されている。導電層 2 1と電極層 23aとは電気的に接続されて!ヽる。電極層 23bと導通する導電層 25が音 響整合層の一部に形成されている。
[0031] 図 5、図 6に示すように、これら基板 20,導電層 21,圧電素子 23,電極層 23a,電 極 23b,導電層 25,音響整合層 22 (その一部)はダイシングされて、複数の振動子 エレメント 37が形成されて!、る。
[0032] 超音波探触子 10の下部側の開口部と上部側の開口部付近にはそれぞれドーナツ 形状の構造部材 26, 29が設けられている。構造部材 26, 29の間はバッキング材 28 で充填されている。構造部材 26の表面(同図において下側の面)は銅箔が形成され ている。導電層 25を介して電極 23bと銅箔 27は電気的に接続されている。
[0033] 上部の開口部側 (基板 20が設けられて 、る側)から、円筒状の構造部材 30が挿入 されている。この円筒状構造部材 30は、円筒状部分とその一端に設けられている環 状の鍔 (つば) 31とから構成されている。鍔 31と構造部材 29が接合することにより、 円筒状部材 30の位置が超音波探触子 10の内部で固定される。
[0034] 鍔 31表面にはプリント配線板 32が設けてある。プリント配線板 32の表面に複数の 電極パッド 36が設けてある。さらに、円筒状構造部材 30内部には、ケーブル束 40が 通してある。そのケーブル束 40の各ケーブル 41の先端は、それぞれのケーブル 41 に対応する電極パッド 36に半田付けされている。なお、ケーブル 41は、通常はノイズ 低減のために同軸ケーブルを用いる。各電極パッド 36は半田及びワイヤー 35を介し て導電層 21と電気的に接続されている。ケーブル 41は、榭脂 42にてポッティングさ れている。
[0035] 円筒状構造部材 30の円筒部分の表面は金属薄膜 38で被覆されている。ケーブル 40から延びるグランド線 39は、半田 39aにより金属薄膜 38が形成された円筒表面と 半田付けされている。また、金属薄膜 38は、銅箔 27は電気的に接続されている。
[0036] 上記より、各ケーブル 41の信号線は、この各ケーブル 41の信号線と対応する振動 子エレメント 37の圧電素子の一方の電極 23aと電気的に接続されている。一方、圧 電素子 23のシグナル電極 23aと対面する電極 23bは、グランド電極となっている。ケ
一ブル束 40は、接着剤 43により円筒状構造部材 30の開口部付近のみで接着され、 束ねられて拘束されている。
[0037] 図 7は、本実施形態における超音波内視鏡の挿入部 2の先端付近の断面を示す。
挿入部 2の先端から先端硬性部 7、湾曲管部 8がある。また、超音波探触子 10を先 端硬性部材に接合させるための接続部材 60が設けられている。
[0038] 接続部材 60の内側には、円筒状構造部材 30の円筒部分が収納されている。円筒 状構造部材 30の開口部からはケーブル束 40が延びて、湾曲管部 8の内部を通って いる。
さらに、湾曲管部 8の内部には、左右方向(図 7においては紙面に対して垂直方向 )へ湾曲管部 8を湾曲させるための複数連なった連結部材 (不図示)と、上下方向(図 7においては紙面に対して水平方向)へ湾曲管部 8を湾曲させるための複数連なつ た連結部材 49がある。
[0039] また、湾曲管部 8は湾曲管 48の複数のユニットから構成されている。よって、連結部 材が動作することで、各湾曲管 48が動き、湾曲管部 8全体として湾曲する。なお、本 実施形態では、ケーブル束 40として多芯同軸ケーブル 50を用いた。
[0040] 図 8は、本実施形態における多芯同軸ケーブル 50の断面を示す。図 8の A— A断 面は、図 7の切断面 A— Aに対応する多芯同軸ケーブル 50の断面の模式図である。 図 8の B— B断面は、図 7の切断面 B— Bに対応する多芯同軸ケーブル 50の断面の 模式図である。
[0041] 多芯同軸ケーブル 50とは、複数の同軸ケーブル 54を束ねたものをいう。本実施形 態では、多芯同軸ケーブル 50は、後述する部分(図 8の A— A断面参照)を除いて、 全長に渡って B— B断面で示す断面をしている。まず、図 8の B—B断面について説 明する。
[0042] 図 8の B— B断面では、各同軸ケーブル 54は、芯線 (信号線) 54aが絶縁体 54bで 被覆され、その上カゝらシールド線 54cで被覆され、さらにジャケット (外皮) 54dで被覆 されて構成されている。さらに、複数の同軸ケーブル 54を束ね、その上からシールド 線 (総合シールド線) 53で被覆され、さらにジャケット(外皮) 52で被覆されている。こ れが一般的な多芯同軸ケーブルの構成である。
[0043] 本実施形態では、このような多芯同軸ケーブル 50をさらに熱収縮チューブ 51で被 覆している。このように、超音波探触子 10に接続される所定数 (振動子エレメントの個 数に対応する数)の信号線 (信号線束)は、先端硬性部 7の一部内、湾曲管部 8内の 一部、及び可撓管部 9にて、全長にわたりジャケット 52の上に熱収縮チューブ 51を 被覆した。
[0044] 図 8の A— A断面は、湾曲管部 8内の一部において、図 8の B— B断面で説明した 多芯同軸ケーブル 50のジャケット 52及び総合シールド線 53を取り去り、剥き出しとな つた同軸ケーブル 54の束の上から熱収縮チューブ 51で被覆したものである。ここで 熱収縮チューブ 51を被覆させる理由としては、各同軸ケーブル 54が 1本 1本バラバ ラにならないように、かつ、ある程度の自由度を持たせて保持するためである。各同 軸ケーブル 54が 1本 1本バラバラにあると、上記の連結部材 49等に挟まって断線す る恐れもあるからである。
[0045] また、熱収縮チューブ 51は、多芯同軸ケーブル 50を湾曲管部 8内部の所定の位 置に位置決めするためでもある。また、図 8の B— B断面において、熱収縮チューブ 5 1は、ジャケット 52が機械的損傷を受けた場合、総合シールド線 53が外部に露出す るのを防止して、より安全性を高めるためでもある。
[0046] 再び図 7について見てみると、円筒状構造部材 30の開口部から湾曲管部 8側へ向 力つて延出している多芯同軸ケーブル 50は、湾曲管部 8の一部から円筒状構造部 材 30側へ向力つてジャケット 52及び総合シールド線 53が取り去られている(C部分) 。それ以外は、ジャケット 52及び総合シールド線 53が被覆している(D部分)。
[0047] そして、剥き出しとなった同軸ケーブル 54の束は、接着剤 43により円筒状構造部 材 30の開口部付近で接着され、束ねられて拘束されている。そして、この接着されて いる部分 43を除いて、多芯同軸ケーブル 50は、剥き出しとなった同軸ケーブル 54 の束の部分 (C部分)も含めて、全長に渡って熱収縮チューブ 51で覆われている。
[0048] ところで、多芯同軸ケーブル 50を熱収縮チューブ 51で覆う際、まず、多芯同軸ケ 一ブル 50を熱収縮チューブ 51に通して外部より熱をかける。このとき、加熱時間を変 えたり、火力または熱源 (例えば、ヒートガン等の小型の加熱器具や大型の加熱器具 を使用することにより調整)を変えたり、熱源を加熱対象物から離したりすることで熱
勾配をかけ、部分によって各同軸ケーブル 54に対する熱収縮チューブ 51の拘束力 を調整する。
[0049] 例えば、ジャケット 52及び総合シールド線 53が取り去られて 、る(C部分)部分に位 置する熱収縮チューブ 51への加熱時間を、その他の部分より短くして、各同軸ケー ブル 54への拘束力を相対的に弱めることができる。
[0050] 熱収縮チューブ 51を被覆することで、ジャケット 52内(総合シールド 53内)の各信 号線(同軸ケーブル 54)が、より拘束される(D部分)。そのため、図 8の B— B断面に 示すように、同軸ケーブル 54相互間の間隔 POが狭まる。そうすると、総合シールド 5 3の蹉りが信号線(同軸ケーブル 54)の大きな摺動抵抗となり、各信号線(同軸ケー ブル 54)が確実に拘束される。
[0051] 一方、湾曲管部 8内の C部分では、ジャケット 52及び総合シールド 53がないため、 各信号線(同軸ケーブル 54)に対して締め付けが少ない。つまり、図 8の A— A断面 に示すように、同軸ケーブル 54相互間の間隔 P1は、図 8の B— B断面の POに比べ て広くなる(Ρ1 >ΡΟ)。
[0052] そのため、図 8の A— A断面では各同軸ケープノレ 54の自由度が図 8の B— B断面 の場合よりも大きい。このことは、多芯同軸ケーブル 50を湾曲させた場合、各同軸ケ 一ブル 54に対する拘束力が図 8の A— A断面の方が小さいことを示している。
[0053] 以上より、内視鏡の湾曲動作によって信号線束が曲率半径 Rで湾曲すると、曲率の 内周側に位置する信号線は橈み、外周側に位置する信号線は、曲率半径 Rで曲が り、不要な引っ張り力が力かることがなくなる。また、信号線に不要な力が力からない ため、断線の恐れがなくなるだけでなぐ信号線束が柔軟になるため、操作力量が低 減される。
[0054] <第 1 2の実施形態 >
湾曲管全長に渡って信号線束が弱拘束状態 (ジャケット 52及び総合シールド線 53 等により十分に拘束されて 、な 、状態を 、 、、第 1の実施形態で 、う熱収縮チュー ブのみで被覆された状態 (C部分)をいう。以下、同じ)であると、各信号線がそれぞ れいろんな方向に橈んでしまう。その結果、湾曲管部内に存在する他の内蔵物 (例 えば、ライトガイドケーブル等)に接触して、それらに不要な負荷を加えることになる。
そこで、本実施形態では、湾曲管部内における弱拘束状態の信号線束を湾曲管部 全長の半分以下とする。
[0055] 図 9は、本実施形態における超音波内視鏡の挿入部先端の模式図である。同図に おいて、湾曲管部の全長を L1とし、弱拘束状態の信号線束部分 70の長さを L2とす る。 L2は、 L1の半分以下の長さとする。例えば、 L2を、 L1の 3分の 1の長さにしても よい。
[0056] 図 10は、本実施形態における超音波内視鏡の湾曲管部 8を湾曲させた場合での 信号線束の様子を示す。同図に示すように、湾曲管部 8の一端 E1と他端 E2とが 180 度の位置に位置するように、湾曲管部 8を半円状に湾曲させた場合、信号線束部分 70の長さの限界は 90度の円弧で示される。これ以上の角度の円弧になると、各信号 線がそれぞれいろんな方向に橈んでしまうおそれがある。したがって、図 10を考慮す ると、実質的に弱拘束状態の信号線束部分は、湾曲管部の全長の半分以下とする のがよい。
[0057] 本実施形態によれば、各信号線が自由に変形する領域を制限することができる。よ つて、鉗子用チャンネルや、光学観察用の部材などの他の内蔵物との干渉を防止し 、信号線の断線だけでなぐ他の内蔵物へのダメージを最小限にすることができる。
[0058] <第 1 3の実施形態 >
第 2の実施形態では、湾曲管部内における弱拘束状態の信号線束の部分の長さを 湾曲管部の半分以下としたが、本実施形態では、湾曲管全長のうち、弱拘束状態の 信号線束を湾曲間の先端側半分以下とする。内視鏡を体腔内に誘導の際に、内視 鏡の挿入部の先端が柔軟に曲がればよぐその他の部分は追従するのみである。
[0059] 図 11は、本実施形態における超音波内視鏡の挿入部先端の模式図である。これ により、湾曲管の柔軟な箇所 (弱拘束状態の信号線束部分 80)が、先端側に位置す る。
そうすることで、患者への挿入時、管腔への追従性がよくなり、挿入性が改善し、患 者、術者への負担軽減となる。
[0060] なお、第 1—1〜第 1—3の実施形態において、熱収縮チューブを用いたが、これに 限定されず、信号線束を拘束できるものであればよい。例えば、熱収縮テープ等でも
良い。また、第 1—1〜第 1—3の実施形態では、電子ラジアル型の超音波探触子を 用いたが、これに限定されず、例えば、コンベックス型、リニア型の超音波探触子でも よい。また、第 1—1〜第 1—3の実施形態では圧電素子を用いた電子ラジアル型超 音波探触子を用いたが、これに限定されず、静電容量型振動子 (c MUT)を用い た電子ラジアル型超音波探触子に対しても適用することができる。
[0061] また、本発明は、第 1—1〜第 1—3の実施形態に限定されるものではなぐ特許請 求の範囲に記載した範囲において種々の構成を採用することができる。したがって、 湾曲管部に内包されている信号線束のうち所定の範囲の信号線束を被覆している 被覆部材による拘束力を、その他の部分を被覆している被覆部材の拘束力よりも小 さくできるのであれば、この被覆部材は、熱収縮チューブ 51、ジャケット 52、総合シ 一ルド 53の構成に限定されない。
[0062] 以上より、本発明によれば、湾曲角度を大きくすることができ、かつ、操作力量を低 減することが可能になり、患者および術者にとって、負担の少ない超音波内視鏡を得 ることがでさる。
[0063] <第 2の実施形態 >
従来の超音波内視鏡には、超音波ケーブルを固定するケーブル固定部材がない ため、数十力 数百本に及ぶ配線が内視鏡組立て時や、内視鏡診断時の曲げ応力 などによるよじれや、張力による断線が発生する可能性があった。また、光学系の内 視鏡観察部と超音波観察部の機能を持たせるため、細径ィ匕が図りにくい状況であつ た。
[0064] また、特許文献 4の技術は、少なくとも硬質部におけるケーブルは挿入軸と平行に 操作部の方へ伸ばす構成であり、観察光学系を考慮したものではなかった。
本発明の課題は、上記従来の実情に鑑み、操作性を高め、患者や術者の負担を 軽減した電子ラジアル型超音波内視鏡を提供することである。
[0065] 図 12A、図 12B、図 12Cは、本実施形態(実施例 1)における電子ラジアル型超音 波内視鏡 1の先端硬質部 7のケーブルを示す図である。ケーブルは、超音波振動子 エレメントと駆動信号を送受する信号線を束ねて被覆したものである。図 12Aに示す 外観構成図のケーブル 321の F—F断面図を図 12Bに示す。ケーブル 321aは、円
形形状となっている。図 12Cは、図 12Aのケーブル 321の G— G断面図を示す。ケ 一ブル 321bは、図示しないケーブル固定部材により、円形から変形された形状、例 えば楕円形状 (所望の湾曲方向に薄 、形状)となって!/、る。ケーブル 321b内に柔軟 性のある榭脂を少なくとも一部に充填して、ケーブルを図中の上下方向に湾曲しや すくしてもよ ヽ。
[0066] 図 13A、図 13B、及び図 13Cは、本実施形態(実施例 2)における電子ラジアル型 超音波内視鏡 1の先端硬質部 7のケーブルを示す図である。図 13Aに示す外観構 成図のケーブル 322の F—F断面図を図 13Bに示す。ケーブル 322のケーブル 322 aは、円形形状となっている。図 13Cは、図 13Aのケーブル 322の G— G断面図を示 す。ケーブル 322bは、図示しないケーブル固定部材により、所望の湾曲方向(図中 の上下方向)に湾曲しやすい 2股形状となっている。なお、 2股形状でなくとも、 3本以 上に分岐してもよぐ所望の湾曲方向に薄くし、湾曲しやすくなつていれば問題ない
[0067] 図 14A、図 14B、及び図 14Cは、本実施形態(実施例 3)における電子ラジアル型 超音波内視鏡 1の先端硬質部 7のケーブルを示す図である。図 14Aに示す外観構 成図のケーブル 323の F—F断面図を図 14Bに示す。ケーブル 323aは、振動子近 傍で外周の被覆のない円形形状となっている。図 14Cは、図 14Aのケーブル 323の G— G断面図を示す。図 12Cと同様に、図示しないケーブル固定部材により、円形か ら変形された形状、例えば楕円形状 (一定の湾曲方向に薄い形状)となっている。必 要であれば、ケーブル 323b内に柔軟性のある榭脂を少なくとも一部に充填して、ケ 一ブルを図中の上下方向に湾曲しやすくしてもよ 、。
[0068] 図 15は、本実施形態におけるケーブルに熱収縮チューブを取り付けた状態を示す 図である。 2股に分岐したケーブル 324の断線を防ぐための熱収縮チューブ 331は、 例えばフッ素系榭脂からなる。ケーブル 324を分岐させる場合は、分岐箇所に熱収 縮チューブ 331を取り付けることが好ましい。
[0069] 図 16A、図 16B、及び図 16Cは、図 15に示すケーブル 324を固定するケーブル固 定部材 363の一例を示す。図 16Aは、ケーブル固定部材 363の左側面図である。図 16Aにおいて、ケーブル先端側では、ケーブル孔 363aがーつとなっている。図 16B
は、ケーブル固定部材 363の正面図である。図 16Cは、ケーブル固定部材 363の右 側面図である。図 16Cに示すように、ケーブル孔 363bを 2つの孔とし、分岐したケー ブルを固定する構造となって 、る。
[0070] 次に、先端硬質部 7内でケーブル固定部材 363により固定されたケーブルの様子 を、図 17A及び図 17Bを用いて説明する。
図 17Aは、図 13で示した電子ラジアル超音波内視鏡 1の先端硬質部 7の側断面図 を示す。電極パッド 351のうち鍔の中心方向側に信号線 362が結線されている。電 極パッド 351のうち、鍔の外周方向側にワイヤー 390の一端が半田 401で結線され、 他端が振動子エレメントの基板 320上にあるシグナル側電極 320aと半田 402で結線 されている。なお、隣接するシグナル側電極 320aにワイヤーが接触して短絡しない ように短いワイヤー 390を用いて結線する。また、信号線 362に負荷力 Sかかることによ り引っ張られて、信号線 362が電極パッド 351から外れてしまうことを防ぐために、ポッ ティング榭脂 400で信号線 362と電極パッド 351との結線部分全体を被覆している。 信号線 362は、ケーブル分岐箇所 362aから 2股に分かれており、信号線 362の外周 部にはケーブル固定部材 363が設けられている。また、構造部材 330bの片側表面 には銅箔 403が成膜されており、さらにケーブル固定部材 363の円筒側面には導体 皮膜 409が形成されて 、る。複数の信号線 362からなるケーブル 362のグランド線を まとめたグランド線 370は、ケーブル固定部材 363の円筒側面に設けた導体皮膜 40 9と半田 410により結線され、さらに構造部材 330bの表面の銅箔 403、そして、音響 整合層 334に溝をいれ形成した導電性榭脂層 404を介し、圧電素子 333の振動子 表面側の電極につながつている。圧電素子の音響放射面側には、音響整合層 324 、そして音響レンズ 317を配置している。
[0071] この超音波振動子を作製した後、先端硬質部材 406及び構造部材 405を接続し、 さらに U字状の位置決め部材 364を用いて、ネジ止め 365により先端硬質部材 407 に固定し、超音波内視鏡 1の先端硬質部 7を形成している。
[0072] 図 17Bは、図 17Aで示す H— H断面図である。電子ラジアル型超音波振動子 1は 、平板状の音響整合層 334上の圧電素子をダイシングして溝を形成し、円筒状にし たものである。そのため、その平板の一端と他端の繋ぎ目は、ピッチをはじめ、位置ズ
レ、また繋ぎ目の構成部材が若干異なることにより、画像精度が低下するため、図中 で示す Down方向に繋ぎ目部分が位置決めされるようにする。構造部材 405の外周 には位置決め部材 364が所望の角度に渡って設けられ、さらに外周には位置決め 部材 364に固定ネジ 365で固定される先端硬質部材 407が設けられる。
[0073] 図 18は、本実施形態における先端硬質部 7のケーブルの傾斜を示す側断面図で ある。同図に示すように、ケーブル 372は、内視鏡観察部である観察光学系 408から 離れた方向に傾!、て 、る(ここでは、例えば 3度)。
[0074] 図 19A及び図 19Bは、本実施形態におけるケーブル 362を傾斜させるケーブル固 定部材 366を示す。図 19Aは内視鏡観察部の R (右)、 L (左)方向の形状を示す図 である。図 19Bは U (上:観察光学系のある方向)、 D (下)方向の形状を示す図であ る。表面に導電皮膜 409が接合されたケーブル固定部材 366のケーブル孔 366aは 、ケーブル先端側(図中の左側)から、 D方向に傾斜している。
[0075] 以下、本実施の形態における作用を説明する。
図 12Cに示すケーブル 321bのように、図示しないケーブル固定部材により、円形 力も変形された形状 (所望の湾曲方向(図中の上下方向)に薄い形状)とすることで、 所望の方向への湾曲が行 、やすくなる。
[0076] 図 13C〖こ示すケーブル 322bのよう〖こ、ケーブルを分岐しても、所望の湾曲方向( 図中の上下方向)の厚さを薄い形状とすることで、所望の湾曲方向への湾曲が行い やすくなる。また、湾曲しやすい方向を、光学観察部及び超音波観察部のアップ、ダ ゥン方向に合わせることで、内視鏡操作部のアングルノブ 11を回したときに、術者の 想定する方向へ湾曲させることが可能となる。
[0077] 図 14B〖こ示すケーブル 323aのよう〖こ、先端硬質部近傍で被覆のないケーブルを 用いても構わない。この場合、ケーブル固定部材表面を金属メツキしておけば、その 被覆のない部分力 延出した総合シールドをケーブル固定部材に接続することで接 地され、電気ノイズの影響を受けないとともに、人体に対して電気的に安全である。
[0078] 図 15に示すように、熱収縮チューブ 331を被せた 2束に分岐したケーブル 324は、 図 16に示すケーブル固定部材 363と組み合わせることで、図 17に示す信号線 362 にかかる張力を無くすことができる。これは、振動子側に力かるケーブルの張力が、
ケーブル固定部材の分岐部で熱収縮チューブ 331により吸収されるためである。こ のため、各信号線 362にかかる応力は著しく低減され、基盤との配線が断線すること はなくなり、信頼性の高い超音波内視鏡が作製できる。なお、本実施の形態では、ケ 一ブル固定部材にケーブルの形状変更機能を持たせたが、先端硬質部材 407をは じめ先端硬質部 7内で、同様な機能を持たせることで湾曲時に発生するケーブルの 張力を振動子側に伝えないこと、そしてケーブルの形状に起因する湾曲のしゃすい 方向を特定できる効果は同様である。
[0079] また、図 19Bに示すように、ケーブル固定部材 366のケーブル孔 366aを先端側か ら D (ダウン)方向に傾けることで、観察光学系の使用できる領域が広がり、配置の自 由度が増す。
[0080] 以上のように、本実施の形態によれば、先端硬質部又は湾曲部で、各超音波振動 子エレメントと接続された信号線の束力もなるケーブルを一定の方向に薄く固定する ことで、所定の方向への湾曲が行いやすいため、患者や術者への負担が少なくなる
[0081] また、ケーブル固定部材により、ケーブルの中心軸を、その挿入軸方向に対し観察 光学系から離れた方向に傾けることで、観察光学系の使用できる領域が広がり、配 置の自由度が増す。その結果、より細径ィ匕を達成することが可能となり、患者や術者 の負担軽減となる。また、細径ィ匕により操作性も高まる。なお、本実施の形態ではケ 一ブル固定部材においてケーブルの中心軸を傾けた力 図 16に示すように、ケープ ル固定部材には傾きを設けず、先端硬質部にぉ ヽてケーブルを傾ける傾斜を持た せた穴、もしくは円筒状のガイドを用いる構造とすることでも、同様の作用'効果が得 られる。
[0082] なお、円筒状にして電子ラジアル型超音波振動子を形成する際の繋ぎ目を、観察 光学系と略相対する位置に固定することで、術者があまり使用しない観察光学系と略 相対する位置に画像精度が低下する繋ぎ目を配置することとなり、診断精度が向上 する。
[0083] また、分岐したケーブルの固定に際し、ケーブルの分岐位置に熱収縮チューブを 備えることで、ケーブルに加わる張力による断線を防ぐことが可能である。
また、本実施の形態は、圧電素子を用いた超音波振動子だけに限らず、静電容量 型振動子 (c MUT)を用いた電子ラジアル型超音波振動子に対しても適用するこ とが可能である。
[0084] 以上より、本発明の電子ラジアル型超音波内視鏡によれば、先端硬質部で、各超 音波振動子エレメントと接続された信号線の束力もなるケーブルを一定の方向に薄く 固定することで、所定の方向への湾曲が行いやすいため、患者や術者への負担が 少なくなる。
[0085] また、ケーブル固定部材により、ケーブルの中心軸を、その挿入軸方向に対し観察 光学系から離れた方向に傾けることで、観察光学系の使用できる領域が広がり、配 置の自由度が増す。その結果、より細径ィ匕を達成することが可能となり、患者や術者 の負担軽減となる。また、細径ィ匕により操作性も高まる。
[0086] なお、円筒状にして電子ラジアル型超音波振動子を形成する際の繋ぎ目を、観察 光学系と略相対する位置に固定することで、術者があまり使用しない観察光学系と略 相対する位置で画像精度が低下する配置とし、診断精度が向上する。
[0087] また、分岐したケーブルの固定に際し、ケーブルの分岐位置に熱収縮チューブを 備えることで、ケーブルに加わる張力による断線を防ぐことが可能である。
Claims
[1] 超音波を送受する超音波振動子エレメントが略円筒状に複数配列された超音波探 触子と、内視鏡挿入部の先端を構成し前記超音波探触子が設けられた先端硬性部 と、
前記先端硬性部が接続され遠隔操作により湾曲する湾曲管部と、
前記湾曲管部と接続された可撓管部と、
前記各超音波振動子エレメントを駆動させる駆動信号を送信するための各超音波 振動子エレメントに対応する信号線の束であって、前記先端硬性部、前記湾曲管部
、及び前記可撓管部の内部を通っている該信号線束と、
を備える超音波内視鏡であって、
前記信号線束は、該信号線束を拘束する拘束部材で被覆されており、 前記湾曲管部に内包されている前記信号線束のうち、所定の範囲の該信号線束を 被覆して 、る前記拘束部材の拘束力を、前記信号線束のうち該範囲以外を被覆して
V、る前記拘束部材の拘束力よりも小さ!/ヽ
ことを特徴とする超音波内視鏡。
[2] 前記拘束部材は、少なくとも前記信号線束を保持する第 1の保持層と、該第 1の保 持層よりも薄い第 2の保持層とから構成され、
前記拘束力が小さい前記所定の範囲の前記信号線束は、前記第 2の保持層のみ 力 なる前記拘束部材で被覆されて 、る
ことを特徴とする請求項 1に記載の超音波内視鏡。
[3] 前記第 1の保持層は、少なくともシールド材と、該シールド材を被覆する外皮とから 構成されることを特徴とする請求項 2に記載の超音波内視鏡。
[4] 前記第 2の保持層は、熱収縮部材から構成されることを特徴とする請求項 2に記載 の超音波内視鏡。
[5] 前記所定の範囲は、長くとも前記湾曲管部の全長の半分の長さに相当する範囲で あることを特徴とする請求項 1に記載の超音波内視鏡。
[6] 前記所定の範囲は、前記先端硬性部側の前記湾曲管部の端から長くとも該湾曲管 部の全長の半分の位置であることを特徴とする請求項 1に記載の超音波内視鏡。
[7] 前記所定の範囲は、前記湾曲管部の全長の半分の長さに相当する範囲であること を特徴とする請求項 1に記載の超音波内視鏡。
[8] 超音波を送受する超音波振動子エレメントが略円筒状に複数配列された超音波探 触子と、内視鏡挿入部の先端を構成し前記超音波探触子が設けられた先端硬性部 と、
前記先端硬性部が接続され遠隔操作により湾曲する湾曲管部と、
前記湾曲管部と接続された可撓管部と、
前記各超音波振動子エレメントを駆動させる駆動信号を送信するための各超音波 振動子エレメントに対応する信号線の束であって、前記先端硬性部、前記湾曲管部
、及び前記可撓管部の内部を通っている該信号線束と、
を備える超音波内視鏡であって、
前記湾曲管部に内包されている前記信号線束のうち、所定の範囲の該信号線束 の前記信号線間相互の間隔を、該範囲以外の該信号線束の前記信号線間相互の 間隔よりも大きくする
ことを特徴とする超音波内視鏡。
[9] 照明光学系と観察光学系とを設けた内視鏡観察部と、超音波を送受する超音波振 動子エレメントを複数配列した超音波観察部とを挿入部の先端部を構成する先端硬 質部に有し、少なくとも互いに直交する第 1の湾曲方向と第 2の湾曲方向とに湾曲自 在な湾曲部を前記先端硬質部の後端に有する電子ラジアル型超音波内視鏡であつ て、
前記先端硬質部で、前記各超音波振動子エレメントと接続された信号線の束から なるケーブルの厚さを前記第 2の湾曲方向よりも前記第 1の湾曲方向に薄くして固定 することを特徴とする電子ラジアル型超音波内視鏡。
[10] 請求項 9に記載の電子ラジアル型超音波内視鏡であって、前記超音波観察部の内 部に設けたケーブル固定部材により、前記ケーブルを固定することを特徴とする電子 ラジアル型超音波内視鏡。
[11] 請求項 10に記載の電子ラジアル型超音波内視鏡であって、前記ケーブル固定部 材により、前記ケーブルを形状変形させることを特徴とする電子ラジアル型超音波内
視鏡。
[12] 請求項 10に記載の電子ラジアル型超音波内視鏡であって、前記ケーブル固定部 材により、前記ケーブルの中心軸を、その挿入軸方向に対し前記観察光学系から離 れた方向に傾けることを特徴とする電子ラジアル型超音波内視鏡。
[13] 請求項 10に記載の電子ラジアル型超音波内視鏡であって、前記ケーブル固定部 材は、前記内視鏡観察部と前記超音波観察部との接続を行う構造部材であることを 特徴とする電子ラジアル型超音波内視鏡。
[14] 請求項 9に記載の電子ラジアル型超音波内視鏡であって、円筒状にして電子ラジ アル型超音波振動子を形成する際の繋ぎ目を、前記観察光学系と略相対する位置 に固定することを特徴とする電子ラジアル型超音波内視鏡。
[15] 照明光学系と観察光学系とを設けた内視鏡観察部と、超音波を送受する超音波振 動子エレメントを複数配列した超音波観察部とを挿入部の先端部を構成する先端硬 質部に有し、少なくとも互いに直交する第 1の湾曲方向と第 2の湾曲方向とに湾曲自 在な湾曲部を前記先端硬質部の後端に有する電子ラジアル型超音波内視鏡であつ て、
前記先端硬質部で、前記各超音波振動子エレメントと接続された信号線の束から なるケーブルを分岐し、該分岐したケーブルを束ねたケーブル束の厚さを前記第 2 の湾曲方向よりも前記第 1の湾曲方向に薄くして固定することを特徴とする電子ラジ アル型超音波内視鏡。
[16] 請求項 15に記載の電子ラジアル型超音波内視鏡であって、前記超音波振動子ェ レメントの内部に設けたケーブル固定部材により、前記分岐したケーブルを固定する ことを特徴とする電子ラジアル型超音波内視鏡。
[17] 請求項 16に記載の電子ラジアル型超音波内視鏡であって、前記ケーブル固定部 材により、前記ケーブルの中心軸を、その挿入軸方向に対し前記観察光学系から離 れた方向に傾けることを特徴とする電子ラジアル型超音波内視鏡。
[18] 請求項 16に記載の電子ラジアル型超音波内視鏡であって、前記ケーブル固定部 材は、前記内視鏡観察部と前記超音波観察部との接続を行う構造部材であることを 特徴とする電子ラジアル型超音波内視鏡。
[19] 請求項 15に記載の電子ラジアル型超音波内視鏡であって、前記ケーブルの分岐 位置に熱収縮チューブを備えたことを特徴とする電子ラジアル型超音波内視鏡。
[20] 請求項 15に記載の電子ラジアル型超音波内視鏡であって、円筒状にして電子ラジ アル型超音波振動子を形成する際の繋ぎ目を、前記観察光学系と略相対する位置 に固定することを特徴とする電子ラジアル型超音波内視鏡。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP20050822706 EP1849414B1 (en) | 2005-02-07 | 2005-12-29 | Ultrasound endoscope |
US11/883,754 US20080119738A1 (en) | 2005-02-07 | 2005-12-29 | Ultrasound Endoscope |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005031132A JP4388485B2 (ja) | 2005-02-07 | 2005-02-07 | 電子ラジアル型超音波内視鏡 |
JP2005-031132 | 2005-02-07 | ||
JP2005-225571 | 2005-08-03 | ||
JP2005225571A JP4339830B2 (ja) | 2005-08-03 | 2005-08-03 | 超音波内視鏡 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2006082692A1 true WO2006082692A1 (ja) | 2006-08-10 |
Family
ID=36777082
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2005/024150 WO2006082692A1 (ja) | 2005-02-07 | 2005-12-29 | 超音波内視鏡 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20080119738A1 (ja) |
EP (3) | EP1849414B1 (ja) |
WO (1) | WO2006082692A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9737200B2 (en) | 2014-09-01 | 2017-08-22 | Olympus Corporation | Endoscope having a bending portion with intersecting signal line and wire conduit |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5148779B2 (ja) * | 2010-11-15 | 2013-02-20 | オリンパスメディカルシステムズ株式会社 | 超音波内視鏡 |
WO2012157354A1 (ja) * | 2011-05-13 | 2012-11-22 | オリンパスメディカルシステムズ株式会社 | 超音波振動子ユニット、超音波内視鏡 |
US9179969B2 (en) | 2011-06-03 | 2015-11-10 | Cook Medical Technologies Llc | Sphincterotome orientation |
WO2013077101A1 (ja) * | 2011-11-24 | 2013-05-30 | オリンパスメディカルシステムズ株式会社 | 超音波プローブ |
CA2880110C (en) | 2012-08-03 | 2020-01-14 | Charles WALTHER | Endoscopic biopsy instrument, endoscope, and method for taking a biopsy sample |
CN103889306B (zh) * | 2012-08-09 | 2015-12-30 | 奥林巴斯株式会社 | 电子内窥镜装置 |
EP2928517B1 (en) * | 2012-12-04 | 2021-02-17 | Endoclear LLC | Suction cleaning devices |
US20140276066A1 (en) * | 2013-03-12 | 2014-09-18 | Volcano Corporation | Imaging apparatus with reinforced electrical signal transmission member and method of use thereof |
EP3165170A4 (en) * | 2014-12-01 | 2018-05-23 | Olympus Corporation | Ultrasonic endoscope |
EP3412216A4 (en) * | 2016-02-03 | 2019-09-18 | Olympus Corporation | PROCESS FOR PRODUCING ENDOSCOPE AND ENDOSCOPE |
JP6165405B1 (ja) * | 2016-02-03 | 2017-07-19 | オリンパス株式会社 | 内視鏡の製造方法および内視鏡 |
JP1561942S (ja) * | 2016-02-23 | 2016-10-31 | ||
JP6568645B2 (ja) * | 2016-03-14 | 2019-08-28 | オリンパス株式会社 | 内視鏡 |
JP6219011B1 (ja) * | 2016-03-23 | 2017-10-25 | オリンパス株式会社 | 内視鏡 |
WO2020188762A1 (ja) * | 2019-03-19 | 2020-09-24 | オリンパス株式会社 | 超音波内視鏡 |
JP7512308B2 (ja) * | 2019-04-26 | 2024-07-08 | ヌベラ・メディカル・インコーポレイテッド | 医療器具位置決め装置、システム、並びに使用及び製造方法 |
WO2021095108A1 (ja) * | 2019-11-11 | 2021-05-20 | オリンパス株式会社 | 超音波内視鏡 |
US10856841B1 (en) * | 2020-01-24 | 2020-12-08 | King Saud University | Ultrasonic imaging probe |
JP2022124502A (ja) * | 2021-02-16 | 2022-08-26 | 富士フイルム株式会社 | 超音波内視鏡 |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63111840A (ja) * | 1986-10-31 | 1988-05-17 | オリンパス光学工業株式会社 | 超音波内視鏡 |
JPH02265534A (ja) * | 1989-04-06 | 1990-10-30 | Olympus Optical Co Ltd | 超音波内視鏡 |
JPH03182238A (ja) * | 1989-12-13 | 1991-08-08 | Toshiba Corp | 体腔内用超音波探触子及び超音波診断装置 |
US5476497A (en) | 1991-01-09 | 1995-12-19 | Ann Mirowski | Oval electrode lead body |
JPH09135833A (ja) * | 1995-11-17 | 1997-05-27 | Asahi Optical Co Ltd | 超音波内視鏡の先端部 |
JPH1189794A (ja) * | 1997-09-24 | 1999-04-06 | Olympus Optical Co Ltd | 電子内視鏡 |
WO1999032918A1 (en) | 1997-12-22 | 1999-07-01 | Micrus Corporation | Variable stiffness fiber optic shaft |
JP2001170054A (ja) * | 1999-12-17 | 2001-06-26 | Olympus Optical Co Ltd | 超音波内視鏡 |
US20020062048A1 (en) | 2000-09-14 | 2002-05-23 | Wachs Israel E. | Metal molybdate/iron-molybdate dual catalyst bed system and process using the same for methanol oxidation to formaldehyde |
JP2002306490A (ja) * | 2001-04-18 | 2002-10-22 | Asahi Optical Co Ltd | 超音波内視鏡 |
JP2004135693A (ja) * | 2002-10-15 | 2004-05-13 | Olympus Corp | 超音波振動子、超音波内視鏡、及び超音波診断装置 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4176662A (en) * | 1977-06-17 | 1979-12-04 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Apparatus for endoscopic examination |
GB8405556D0 (en) * | 1984-03-02 | 1984-04-04 | Francais Isolants | Strain relief device |
US4934340A (en) * | 1989-06-08 | 1990-06-19 | Hemo Laser Corporation | Device for guiding medical catheters and scopes |
US6409666B1 (en) * | 1999-04-15 | 2002-06-25 | Asahi Kogaku Kogyo Kabushiki Kaisha | Tip end of ultrasonic endoscope |
JP2001112757A (ja) | 1999-10-15 | 2001-04-24 | Olympus Optical Co Ltd | 体腔内診断装置 |
US6549812B1 (en) * | 1999-11-29 | 2003-04-15 | Medtronic, Inc. | Medical electrical lead having bending stiffness which increase in the distal direction |
JP3579646B2 (ja) | 2000-11-21 | 2004-10-20 | ペンタックス株式会社 | 超音波内視鏡 |
JP3579651B2 (ja) * | 2000-11-21 | 2004-10-20 | ペンタックス株式会社 | 超音波内視鏡 |
-
2005
- 2005-12-29 EP EP20050822706 patent/EP1849414B1/en not_active Not-in-force
- 2005-12-29 WO PCT/JP2005/024150 patent/WO2006082692A1/ja active Application Filing
- 2005-12-29 EP EP11002307.4A patent/EP2340768B1/en not_active Not-in-force
- 2005-12-29 EP EP11002306.6A patent/EP2340767B1/en not_active Not-in-force
- 2005-12-29 US US11/883,754 patent/US20080119738A1/en not_active Abandoned
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63111840A (ja) * | 1986-10-31 | 1988-05-17 | オリンパス光学工業株式会社 | 超音波内視鏡 |
JPH02265534A (ja) * | 1989-04-06 | 1990-10-30 | Olympus Optical Co Ltd | 超音波内視鏡 |
JPH03182238A (ja) * | 1989-12-13 | 1991-08-08 | Toshiba Corp | 体腔内用超音波探触子及び超音波診断装置 |
US5476497A (en) | 1991-01-09 | 1995-12-19 | Ann Mirowski | Oval electrode lead body |
JPH09135833A (ja) * | 1995-11-17 | 1997-05-27 | Asahi Optical Co Ltd | 超音波内視鏡の先端部 |
JPH1189794A (ja) * | 1997-09-24 | 1999-04-06 | Olympus Optical Co Ltd | 電子内視鏡 |
WO1999032918A1 (en) | 1997-12-22 | 1999-07-01 | Micrus Corporation | Variable stiffness fiber optic shaft |
JP2001170054A (ja) * | 1999-12-17 | 2001-06-26 | Olympus Optical Co Ltd | 超音波内視鏡 |
US20020062048A1 (en) | 2000-09-14 | 2002-05-23 | Wachs Israel E. | Metal molybdate/iron-molybdate dual catalyst bed system and process using the same for methanol oxidation to formaldehyde |
JP2002306490A (ja) * | 2001-04-18 | 2002-10-22 | Asahi Optical Co Ltd | 超音波内視鏡 |
JP2004135693A (ja) * | 2002-10-15 | 2004-05-13 | Olympus Corp | 超音波振動子、超音波内視鏡、及び超音波診断装置 |
Non-Patent Citations (1)
Title |
---|
See also references of EP1849414A4 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9737200B2 (en) | 2014-09-01 | 2017-08-22 | Olympus Corporation | Endoscope having a bending portion with intersecting signal line and wire conduit |
Also Published As
Publication number | Publication date |
---|---|
EP2340768A1 (en) | 2011-07-06 |
EP1849414B1 (en) | 2012-03-14 |
EP2340767B1 (en) | 2017-08-23 |
EP1849414A1 (en) | 2007-10-31 |
US20080119738A1 (en) | 2008-05-22 |
EP2340768B1 (en) | 2015-12-23 |
EP1849414A4 (en) | 2009-09-02 |
EP2340767A1 (en) | 2011-07-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2006082692A1 (ja) | 超音波内視鏡 | |
US7766838B2 (en) | Ultrasonic probe in body cavity | |
JP5399594B1 (ja) | 超音波内視鏡 | |
US20090177038A1 (en) | Electronic endoscope | |
US8787743B2 (en) | Cable connection structure and endoscope apparatus | |
WO2014034191A1 (ja) | 超音波内視鏡 | |
JP4468691B2 (ja) | 超音波信号ケーブルコネクタ装置 | |
JP6633189B2 (ja) | 超音波振動子ユニット | |
EP1707125B1 (en) | Ultrasonic endoscope | |
JP4339830B2 (ja) | 超音波内視鏡 | |
JP2000139927A (ja) | 超音波内視鏡装置 | |
JP4388485B2 (ja) | 電子ラジアル型超音波内視鏡 | |
CN109069125A (zh) | 具有声波可视化能力的系统 | |
JP3586180B2 (ja) | 内視鏡形状検出プローブ | |
JP4409020B2 (ja) | 超音波内視鏡 | |
JP3579649B2 (ja) | 超音波内視鏡 | |
JP2003325527A (ja) | 超音波内視鏡の先端部 | |
JP4647968B2 (ja) | 超音波内視鏡 | |
JP7324180B2 (ja) | 超音波内視鏡 | |
JP7324181B2 (ja) | 超音波内視鏡 | |
JP2009089925A (ja) | 内視鏡 | |
WO2022137446A1 (ja) | 基板の接続構造および超音波診断装置 | |
JP6800078B2 (ja) | 超音波振動子、超音波内視鏡、及び超音波振動子の製造方法 | |
JP6755147B2 (ja) | ケーブル、超音波プローブ、及び超音波内視鏡 | |
JP2022124502A (ja) | 超音波内視鏡 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 11883754 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2005822706 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 2005822706 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 11883754 Country of ref document: US |