WO2006080457A1 - 短パルスレーダ及びその制御方法 - Google Patents

短パルスレーダ及びその制御方法 Download PDF

Info

Publication number
WO2006080457A1
WO2006080457A1 PCT/JP2006/301349 JP2006301349W WO2006080457A1 WO 2006080457 A1 WO2006080457 A1 WO 2006080457A1 JP 2006301349 W JP2006301349 W JP 2006301349W WO 2006080457 A1 WO2006080457 A1 WO 2006080457A1
Authority
WO
WIPO (PCT)
Prior art keywords
pulse
burst
output
signal
wave
Prior art date
Application number
PCT/JP2006/301349
Other languages
English (en)
French (fr)
Inventor
Tasuku Teshirogi
Masaharu Uchino
Sumio Saito
Masanori Ejima
Original Assignee
Anritsu Corporation
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anritsu Corporation, Matsushita Electric Industrial Co., Ltd. filed Critical Anritsu Corporation
Priority to EP06712515A priority Critical patent/EP1736795A4/en
Priority to JP2007500606A priority patent/JP4377940B2/ja
Publication of WO2006080457A1 publication Critical patent/WO2006080457A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/0209Systems with very large relative bandwidth, i.e. larger than 10 %, e.g. baseband, pulse, carrier-free, ultrawideband
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/28Details of pulse systems
    • G01S7/282Transmitters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/7163Spread spectrum techniques using impulse radio
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/03Details of HF subsystems specially adapted therefor, e.g. common to transmitter and receiver
    • G01S7/038Feedthrough nulling circuits

Definitions

  • the present invention relates to short range radars and control methods thereof, and in particular, emits a narrow pulse wave (short pulse wave) to a space at a predetermined period, and a reflected wave from an object in the space.
  • short pulse radars which are allocated for automotive radars and radars for walking support for visually impaired persons.
  • UWB Ultra Wide Band
  • RR International Radio Communications Regulations
  • short pulse radar using UWB emits short pulse waves from the antenna of the transmitter to the space, receives the reflected waves from objects in the space, and analyzes the object. Process.
  • FIG. 13 is a block diagram showing a configuration of a main part of this type of short pulse radar.
  • the burst wave Ba is amplified by the amplifier 5a of the transmission unit 5, and then radiated from the antenna 5b to the search target space 1 as a short pulse wave Pt.
  • the reflected wave Pr from the object la that has received the short pulse wave Pt is received by the antenna 6a of the receiving unit 6, and then the received signal R is amplified by the amplifier 6b.
  • This quadrature detection circuit 6c outputs the baseband components I and Q by performing quadrature detection of the received signal using the carrier signal S output from the carrier signal generator 1 as a local signal.
  • the intensity of the received signal R is obtained based on the baseband components I and Q by a signal processing unit (not shown), etc., and the pulse signal Pa is output from the pulse generator 3 is a predetermined level or higher.
  • Object information such as the size and distance of the object la existing in the search target space 1 is obtained based on the time until the amplitude of the object is detected, its intensity, and the like. Disclosure of the invention
  • the pulse-off time is about four times longer than the pulse-on time. Therefore, as a result of the extremely large carrier leakage power, the spectral density Sx of the short pulse Pt becomes a value in which the leakage component CA ⁇ protrudes greatly at the position of the carrier frequency fc as shown in FIG. 14, for example.
  • This leakage component limits the effective reception sensitivity of reflected waves for short pulse waves output at regular transmission timing, narrows the radar search range, and detects low-reflectance obstacles. Make it difficult.
  • Non-Patent Document 1 FCC 04- 285 "SECOND REPORT AND ORDER AND SECOND MEMORANDAM OPINION AND ORDER"
  • the power density in the range of 1.61 to 23.12 GHz and the range of 29.0 GHz or more in the UWB is 16.3 dBmZMHz or less, 23.12 to 23.6 GHz.
  • the power density in the range of 24.0 to 29.0 GHz is specified at -41.3 dBmZMHz or less.
  • the International Radio Communication Regulation intentionally prohibits radio emission. 23.6-24. In the RR radio wave emission prohibited band, it is 20 dB lower than the conventional level, and is suppressed to 16.3 dBm / MHz.
  • a narrow band (Short Range Device: SRD) of 24.05 to 24.25GHz for Doppler radar, which has a power density higher than 41.3dBmZMHz, of UWB. )
  • SRD Short Range Device
  • the pulse modulation signal in which the carrier signal is intermittent with the pulse signal as described above has a spectrum width of several hundred MHz to 2 GHz. Therefore, when the carrier frequency is set in the SRD band in the vicinity of the RR radio wave emission prohibition band as described above, the level portion of the short pulse spectrum is considerably high, and the level portion is in the RR radio wave emission prohibition band. Therefore, it is extremely difficult to suppress it to 61.3 dBm or less like the latest spectrum mask.
  • Patent Document l WO 2005Z117256 (December 8, 2005) Title of Invention Radar oscillator capable of preventing leakage of oscillation output
  • the burst oscillator used for this radar oscillator does not generate carrier leaks in principle, any spectrum arrangement is possible, and by disposing the main part of the spectrum RR radio wave emission prohibition band sufficiently separated, Interference with earth exploration satellites can be suppressed sufficiently low.
  • the inventors of the present application use a burst oscillator and a transmission antenna having a gain notch in the RR radio wave emission prohibition band, so that the RR radio wave emission prohibition band can easily obtain 20 dB from the spectrum peak.
  • the UWB radar that can reduce the radiated power density is proposed by the following Patent Document 2.
  • Patent Document 2 PCTZJP2005Z020859 (November 14, 2005) Title of Invention Circularly Polarized Antenna and Radar Device Using It
  • a square detector is used as a detection circuit for the purpose of simplifying the configuration of the receiving system.
  • an object of the present invention is to set a first pulse having a predetermined width and the same width as the first pulse every time a transmission instruction signal is received.
  • a pair of pulses including a second pulse delayed by time is generated, and a short pulse wave of a burst wave is radiated into space based on the first pulse generated earlier of the pair of pulses.
  • U It has a transmission system that can prevent interference with the RR radio wave emission prohibition band while complying with the spectrum mask specified as WB radar, and the second pulse generated after the pair of pulses. It is intended to provide a short pulse radar having a receiving system capable of performing high-sensitivity detection with a wide dynamic range by using quadrature detection with a local signal and a control method thereof.
  • the first carrier wave is oscillated during a period of receiving a pair of pulses including the first and second pulses output from the counter pulse generator, and a signal having a predetermined carrier frequency is used as the first burst wave (Ba).
  • the signal of the predetermined carrier frequency is output as the second burst wave (Bb) in synchronization with the second pulse, and the first and second pulses are output.
  • a burst oscillator (22) for stopping the oscillation operation during a period when a pair of pulses including a pulse is not input;
  • a reflected wave of a short pulse wave generated by the first burst wave radiated from the transmitter to the search target space is received, and the received signal is output from the burst oscillator in synchronization with the second pulse.
  • a receiving unit (30) for detecting the second burst wave as a local signal, and outputting the transmission instruction signal to the counter-pulse generator, and an interval between the first pulse and the second pulse output from the counter-pulse generator A control unit (50) for variably controlling
  • a short pulse radar is provided.
  • the short pulse radar according to the first aspect is provided, wherein the reception unit performs quadrature detection of the received signal using the second burst wave as a local signal.
  • the first and second burst waves provided between the burst oscillator and the transmission unit and between the burst oscillator and the reception unit and output from the burst oscillator force are transmitted from the transmission unit or the reception unit.
  • a switch switching circuit (24) for controlling the switch to input the first burst wave output from the burst oscillator force to the transmission unit and to input the second burst wave to the reception unit;
  • the short pulse radar according to the first aspect is further provided.
  • the transmitting unit is provided with a fixed delay device (25d) that gives a delay of a predetermined time to the first burst wave, and the short pulse radar according to the first aspect is provided.
  • the counter-pulse generator is a generator of The counter-pulse generator.
  • the frequency data (Df) with a predetermined number of bits L is received, and the frequency data is stored in an internal read-only memory (ROM) with an address length (L) that stores waveform data for one sine wave cycle.
  • ROM read-only memory
  • DZA digital Z-analog
  • a low pass filter (LPF: 21b) that removes a high frequency component of the sine wave signal output from the DDS and outputs a sine wave signal;
  • Waveform shaping processing is performed on the sine wave signal output from the LPF, and the first and second phases of two phases having a period (T e) corresponding to the frequency of the sine wave signal whose levels are inverted with each other at a duty ratio of 50.
  • a waveform shaping circuit (2 lc) that outputs a second variable period pulse (Pe, Pe ');
  • the first variable period pulse output from the waveform shaping circuit is input, the transmission instruction signal is input, and the force is predetermined in synchronization with the timing at which the level of the first variable period pulse first falls.
  • the second variable cycle pulse output from the waveform shaping circuit is input, the transmission instruction signal is input, and the force is predetermined in synchronization with the timing at which the level of the second variable cycle pulse first falls.
  • An OR circuit (21f) that takes a logical sum of the first pulse output from the first pulse generation circuit and the second pulse output from the second pulse generation circuit;
  • a short pulse radar according to a first aspect is provided.
  • the burst oscillator positively feeds back the output of the amplifier (22f) having the resonator (22e) as a load to the input side of the amplifier by a feedback circuit (22b) so as to oscillate at the resonance frequency of the resonator.
  • a switch circuit (22c) opens and closes between the input end or output end of the amplifier and the ground line, and the burst oscillator 22 is turned on.
  • a short pulse radar according to the first aspect is provided, which is configured to switch between an oscillation operation state and an oscillation stop state.
  • the burst oscillator positively feeds back the output of the amplifier (22f) having the resonator (22e) as a load to the input side of the amplifier by a feedback circuit (22b) so as to oscillate at the resonance frequency of the resonator. And by connecting a switch circuit (22c) to the power supply line of the amplifier, the power supply to the amplifier is controlled to be turned on and off, and the burst oscillator is operated as an oscillation operation state and an oscillation stop state.
  • a short pulse radar according to the first aspect, which is configured to switch to
  • the burst oscillator positively feeds back the output of the amplifier (22f) having the resonator (22e) as a load to the input side of the amplifier by a feedback circuit (22b) so as to oscillate at the resonance frequency of the resonator.
  • the first switch circuit (22c) is connected to the power supply line of the amplifier to restrict the power supply to the amplifier on and off, and the burst oscillator is operated in the oscillation operation state.
  • the second switch circuit (22g) which is configured to switch to an oscillation stop state and opens / closes in a relationship opposite to the first switch circuit, is used to supply power to the amplifier by the first switch circuit.
  • a short pulse radar according to the first aspect is provided.
  • the switch has a common contact and first and second contacts, and inputs the first burst wave to the transmitter through the common contact and the first contact, and the common contact. And a short pulse array according to the third aspect, wherein the second burst wave is input to the receiving unit via the second contact. Da provided.
  • the switch is composed of a first switch (23a) for inputting the first burst wave to the transmitting unit and a second switch (23b) for inputting the second burst wave to the receiving unit.
  • a short pulse radar according to the third aspect is provided.
  • the first and second switches are respectively
  • the fifth diode (D5) in which the connecting force of the first two diodes (D1, D2) connected in the reverse direction among the first to fourth diodes is also inserted in the reverse direction between the ground,
  • a sixth diode (D6) connected in the forward direction between the connection point of the second two diodes (D3 and D4) connected in the reverse direction among the first to fourth diodes (D3, D4); Connected between the connection point of the first two diodes and each reverse connection point of the second two diodes, and depending on the level of the switching signal (Q) from the switch switching circuit, the direction of the current And a current source (I) that is inverted,
  • the first or second burst wave (Ba, Bb) input to the point is output from a connection point of the second and fourth diodes.
  • a short pulse radar is provided.
  • the first pulse (Pa) having a predetermined width and the same width as the first pulse are preset.
  • Td time
  • the burst oscillator (22) oscillates during a period of receiving a pair of pulses including the first and second pulses output from the counter pulse generator, and outputs a signal having a predetermined carrier frequency.
  • a burst wave (Ba) is output in synchronization with the first pulse, and a signal having the predetermined carrier frequency is output as a second burst wave (Bb) in synchronization with the second pulse. Stopping the oscillation operation during a period when a pair of pulses including two pulses is not input;
  • the reception unit (30) receives a reflected wave of a short pulse wave from the first burst wave radiated from the transmission unit to the search target space, and the received signal is converted into the burst oscillator power and the second oscillator power. Detecting a second burst wave output in synchronization with a pulse as a local signal;
  • a method of controlling a short pulse radar comprising:
  • a short pulse radar control method according to the twelfth aspect is provided, wherein the receiving unit performs quadrature detection of the received signal using the second burst wave as a local signal.
  • a short pulse radar control method according to the twelfth aspect, wherein the transmission unit is provided with a fixed delay device (25d) that gives a delay of a predetermined time to the first burst wave. .
  • the counter-pulse generator is a generator of The counter-pulse generator.
  • a clock signal having a predetermined frequency (fc) and frequency data (Df) having a predetermined number of bits L corresponding to the delay time from the control unit, and stores waveform data for one cycle of the sine wave.
  • the address data is addressed to the internal read-only memory (ROM) of the specified address length (L) with the value obtained by integrating the frequency data with the period of the clock signal, and the waveform data is read out sequentially and converted to digital Z analog.
  • a direct digital synthesizer DDS: 21a) that outputs a sinusoidal signal having a frequency (fe) determined by the predetermined frequency of the clock signal, the address length, and the frequency data;
  • a low pass filter (LPF: 21b) that removes a high frequency component of the sine wave signal output from the DDS and outputs a sine wave signal;
  • Waveform shaping processing is performed on the sine wave signal output from the LPF, and the first and second phases of two phases having a period (T e) corresponding to the frequency of the sine wave signal whose levels are inverted with each other at a duty ratio of 50.
  • a waveform shaping circuit (2 lc) that outputs a second variable period pulse (Pe, Pe ');
  • the first variable period pulse output from the waveform shaping circuit is input, the transmission instruction signal is input, and the force is a predetermined width in which the level of the first variable period pulse is first synchronized with the falling force timing.
  • the second variable cycle pulse output from the waveform shaping circuit is input, the transmission instruction signal is input, and the force is set to a predetermined level in which the level of the second variable cycle pulse first falls and is synchronized with the timing.
  • Second pulse generation circuit that outputs the second pulse (Pa) of width ( 21e)
  • An OR circuit (21f) that performs a logical sum of the first pulse output from the first pulse generation circuit and the second pulse output from the second pulse generation circuit;
  • a control method for a short pulse radar according to the twelfth aspect is provided.
  • the burst oscillator positively feeds back the output of the amplifier (22f) having the resonator (22e) as a load to the input side of the amplifier by a feedback circuit (22b) so as to oscillate at the resonance frequency of the resonator.
  • the switching circuit (22c) opens and closes the input terminal or output terminal of the amplifier and the ground line, and the burst oscillator 22 is switched between an oscillation operation state and an oscillation stop state.
  • the burst oscillator positively feeds back the output of the amplifier (22f) having the resonator (22e) as a load to the input side of the amplifier by a feedback circuit (22b) so as to oscillate at the resonance frequency of the resonator. And by connecting a switch circuit (22c) to the power supply line of the amplifier, the power supply to the amplifier is controlled to be turned on and off, and the burst oscillator is operated as an oscillation operation state and an oscillation stop state.
  • a control method for a short pulse radar according to the twelfth aspect, which is configured to switch to
  • the burst oscillator positively feeds back the output of the amplifier (22f) having the resonator (22e) as a load to the input side of the amplifier by a feedback circuit (22b) so as to oscillate at the resonance frequency of the resonator.
  • the first switch circuit (22c) is connected to the power supply line of the amplifier to restrict the power supply to the amplifier on and off, and the burst oscillator is operated in the oscillation operation state.
  • the second switch circuit (22g) which is configured to switch to an oscillation stop state and opens and closes in a relationship opposite to that of the first switch circuit, is connected to the amplifier by the first switch circuit.
  • the second switch circuit Only when the power supply is stopped, the second switch circuit is closed and a predetermined current is allowed to flow through the resonator, and the first switch circuit is closed and power is supplied to the amplifier at the timing when the power is supplied.
  • the second switch circuit By opening the second switch circuit, a signal component having a resonance frequency due to an excessive phenomenon is generated in the resonator, and the burst oscillator is quickly shifted to an oscillation operation state.
  • a pair of pulses including a first pulse and a second pulse delayed by a predetermined time from the first pulse cover is a burst oscillator.
  • the first burst wave oscillated and output in synchronization with the first pulse from the burst oscillator force by the switch is radiated as a short pulse wave to the search target space and the reflected wave is received by the switch.
  • the second burst wave that is oscillated and output in synchronization with the second pulse of the burst oscillator power is detected as a local signal.
  • the first burst wave output by the burst oscillator force is input to the transmission unit and the second burst wave is input to the reception unit by the switch. Therefore, it is possible to prevent the second burst wave from being radiated to the space to be explored, and further, the output power of the first and second burst waves can be minimized and the power consumption can be reduced. .
  • the first and second burst waves are configured by delaying the first burst wave output from the switch by a fixed delay device for a predetermined time. It is possible to detect a target at a short distance even if the time difference between them is not so close.
  • FIG. 1 is a block diagram for explaining a configuration of a short pulse radar according to a first embodiment of the present invention.
  • FIG. 2 is a timing chart shown for explaining the operation of the main part of FIG.
  • FIG. 3 is a block diagram showing a configuration example of a main part of FIG.
  • FIG. 4 is a timing chart shown for explaining the operation of the configuration example of FIG.
  • FIG. 5 is a block diagram showing a configuration example of a main part of FIG.
  • FIG. 6 is a block diagram showing another configuration example of the main part of FIG.
  • FIG. 7 is a block diagram showing another configuration example of the main part of FIG.
  • FIG. 8 is a block diagram showing another configuration example of the main part of FIG.
  • FIG. 9 is a diagram showing a specific circuit example of the configuration example of FIG.
  • FIG. 10 is a characteristic diagram showing a comparison of dynamic range between the linear detection method employed in the present invention and the square detection method according to the prior art.
  • FIG. 11 is a timing chart shown for explaining the operation of FIG.
  • FIG. 12 is a block diagram for explaining a configuration of a short pulse radar according to a second embodiment of the present invention.
  • FIG. 13 is a block diagram showing a configuration example of a conventional short pulse radar device.
  • FIG. 14 is a spectrum characteristic diagram for explaining the operation of a conventional short pulse radar device.
  • FIG. 15 is a diagram showing a spectrum mask of FCC recommendation in UWB.
  • FIG. 1 is a block diagram for explaining the configuration of the short pulse radar according to the first embodiment of the present invention.
  • the short pulse radar 20 basically has a first pulse Pa having a predetermined width and a preset time Td having the same width as the first pulse every time the transmission instruction signal S is received.
  • a counter pulse generator 21 that generates a pair of pulses including a second pulse Pb delayed from the first pulse, and the first and second pulses Pa, Pb output from the counter pulse generator 21. Oscillates during a period of receiving a pair of pulses including and outputs a signal of a predetermined carrier frequency as a first burst wave Ba in synchronism with the first pulse Pa, and at the predetermined carrier frequency.
  • the signal is output as the second burst wave Bb in synchronization with the second pulse Pb, and the oscillation operation is stopped during a period when the pair of pulses including the first and second pulses Pa and Pb are not input.
  • Burst oscillator 22 and the first pulse from burst oscillator 22 The first burst wave Ba output in synchronization with Pa is transmitted as a short pulse wave Pt to the exploration target space 1 as a transmission unit 25, and the transmission unit 25 radiates the exploration target space 1 as described above.
  • the reflected wave Pr of the short pulse wave by the burst wave Ba is received, and the received signal R is detected by using the second burst wave Bb output from the burst oscillator 22 in synchronization with the second pulse Pb as a local signal.
  • the transmission instruction signal S to the counter-pulse generator 21 and variably control the interval between the first pulse Pa and the second pulse Pb output from the counter-pulse generator 21.
  • a control unit 50 The transmission instruction signal S to the counter
  • the short pulse radar control method basically includes the steps of preparing the counter-pulse generator 21, the burst oscillator 22, the receiving unit 30 and the control unit 50, and the control unit 50.
  • Period of receiving a pair of pulses including Pb A signal having a predetermined carrier frequency is output as a first burst wave Ba in synchronization with the first pulse Pa, and the second carrier wave Bb is used as the second burst wave Bb.
  • Output in synchronization with the pulse Pb, including the first and second pulses Pa, Pb 1 A step of stopping the oscillation operation during a period in which a pair of pulses are not input, and the first burst wave Ba output from the burst oscillator 22 in synchronization with the first pulse Pa by the transmitter 25.
  • the counter pulse generator 21 of the short pulse radar 20 is started up as shown in FIG. 2 (a) supplied from the control unit 50 described later.
  • a signal S instructing transmission is received, as shown in (b) of FIG. 2
  • a first pulse Pa of a predetermined width for example, Ins
  • a preset time with the same width as the first pulse Pa are set.
  • the second pulse Pb delayed by Td is output as a pair of pulses.
  • the counter pulse generator 21 has a configuration as shown in FIG. 3, for example, in order to give an accurate delay time T d between the first pulse Pa and the second pulse Pb.
  • a direct digital synthesizer (DDS) 21a has a predetermined number of bits L corresponding to a clock signal C having a predetermined frequency fc (eg, 200 MHz) and a delay time Td from the control unit 50 described later.
  • DDS direct digital synthesizer
  • the frequency data Df is integrated with the clock period to the internal read-only memory (ROM) of address length L that stores waveform data for one sine wave cycle
  • the waveform data is read out sequentially, converted to digital Z analog (DZA), and the frequency fc, address length L of the clock signal C and the frequency data Df determined by the frequency fe are sinusoidal (strictly speaking, sine wave
  • the signal of the waveform that changes in a step-like manner along the line is output to the low-pass filter (LPF) 21b.
  • LPF low-pass filter
  • the LPF 21b removes a high frequency component (for example, a component of 71 MH or more) from the DZA conversion output from the DDS 21a, generates a sine wave signal, and outputs it to the waveform shaping circuit 21c.
  • a high frequency component for example, a component of 71 MH or more
  • the waveform shaping circuit 21c performs waveform shaping processing on the sine wave signal from the LPF 21b, and, as shown in Figs. 4 (a) and (b), the frequency fe (cycle Te) Two-phase first and second variable period pulses Pe and Pe ′ are output.
  • the frequency fe of the first and second variable period pulses Pe, Pe ' is the frequency of the clock signal C.
  • fe the frequency of the clock signal C.
  • the period Te of the first and second variable period pulses Pe, Pe ' is in a range more than twice the period Tc of the frequency fc of the clock signal C.
  • the first and second variable period pulses Pe and Pe ′ have a time resolution of 0.02 ns when the frequency data Df is in the vicinity of 1 ⁇ 10 6 .
  • variable period of the first and second variable period pulses Pe and Pe ' can be obtained with a sufficiently small time resolution compared to the width (Ins) of the short pulse Pt.
  • the period can be varied continuously.
  • the first variable period pulse Pe is input to the first pulse generation circuit 21d, and the second variable period pulse P is input to the second pulse generation circuit 21e.
  • the first pulse generation circuit 21d receives the transmission instruction signal S as shown in (c) of FIG. 4 and is synchronized with the timing at which the level of the first variable period pulse Pe first falls. Shi The first pulse Pa having a predetermined width (InS) is generated as shown in FIG. 4 (d) and output to the OR circuit 21f.
  • the second pulse generation circuit 21e is a predetermined pulse synchronized with a timing at which the first pulse Pa is output from the first pulse generation circuit 21d and the level of the second variable period norse P first falls.
  • a second pulse Pb having a width (Ins) is generated as shown in (e) of FIG. 4 and output to the OR circuit 21 f.
  • the variable periods of the first and second variable period pulses Pe and Pe ′ are as follows. Can be changed finely.
  • the delay time Td between the two pulses Pa and Pb generated by the counter pulse generator 21 can be varied stably and with high resolution.
  • the counter pulse generated by the counter pulse generator 21 is input to the burst oscillator 22.
  • the burst oscillator 22 While receiving the two pulses Pa and Pb output from the counter pulse generator 21, the burst oscillator 22 oscillates and outputs a signal of a predetermined carrier frequency, and receives two pulses Pa and Pb.
  • the period is configured to stop the oscillation operation during the period.
  • FIG. 5 shows a configuration example of the burst oscillator 22 using a resonator.
  • This burst oscillator 22 is configured so that the output of the amplifier 22f with the resonator 22e as a load is positively fed back to the input side of the amplifier 22f by the feedback circuit 22b and oscillates at the resonance frequency of the resonator 22e. is doing.
  • the feedback circuit 22b is, for example, an L type such as a resistor (or coil) and a capacitor, or an L type such as a T type. Consists of PF.
  • the input or output terminal of the amplifier 22f and the ground line are opened and closed by the switch circuit 22c, and the burst oscillator 22 is switched between the oscillation operation state and the oscillation stop state.
  • the switch circuit 22c is inserted so as to open and close between the input terminal (or output terminal) of the amplifier 22f and the ground line, and is open when the pulses Pa and Pb are at the high level (pulse input state). Then, the burst oscillator 22 is set in an oscillation operation state, and when the pulses Pa and Pb are at a low level (pulse non-input state), the burst oscillator 22 is closed and the oscillation is stopped.
  • the burst oscillator 22 oscillates and outputs a burst wave having the resonance frequency of the resonator 22e, and the oscillation operation stops when the switch circuit 22c is closed.
  • the resonance frequency of the resonator 22e is set so that the oscillation frequency of the burst oscillator 22 is, for example, 26.5 GHz.
  • the limitation on the power density specified when using the UWB is determined based on the instantaneous power of the short pulse wave that is output at the time of oscillation. It can be used as effectively as possible.
  • the main mouth can be placed at any position on the UWB spectrum mask, and almost all of the Mayrobe should overlap with the RR radio wave emission prohibited band. It can be rubbed.
  • the switch circuit 22c is connected to the power supply line of the amplifier 22f, and the supply of power to the amplifier 22f (including the bias power supply) is regulated to oscillate. Can also be stopped.
  • the oscillation operation may not be started immediately even if the power is supplied.
  • the switch circuit 22g that opens and closes is used, the switch circuit 22g is closed only while the power supply to the amplifier 22f is stopped, and a predetermined current is supplied to the resonator 22e, and the switch circuit 22c is closed and power is supplied.
  • the switch circuit 22g By opening the switch circuit 22g at the timing, it is possible to generate a signal component of the resonance frequency due to the transient phenomenon in the resonator 22e and quickly shift to the oscillation state.
  • the switch circuit 22c and the switch circuit 22g are opened and closed reversely.
  • the oscillation start described above is performed when the switch circuit 22g is opened. Since the transient phenomenon occurring in the resonator 22e is used, the current supply to the resonator 22e by the switch circuit 22g may be performed only for a predetermined time immediately before the power supply by the switch circuit 22c is started.
  • the resonator 22e may be configured by a transmission line type resonator (for example, ⁇ 4 type) that is not only an LC type.
  • the burst waves Ba and Bb output from the burst oscillator 22 are input to the switch 23.
  • This switch 23 is used to distribute the burst waves Ba and Bb output from the burst oscillator 22 to the transmission unit 25 and the reception unit 30, respectively, and is synchronized with the first pulse Pa by the switch switching circuit 24. Then, the first burst wave Ba output from the burst oscillator 22 is input to the transmission unit 25, and the second burst wave Bb output in synchronization with the second pulse Pb is input to the reception unit 30.
  • the switch 23 inputs the first burst wave Ba to the transmission unit 25 independently as shown in FIG. 8 which is only a one-circuit two-contact type switch as shown in FIG.
  • the first and second switches 23a and 23b of two on / off types may be used.
  • a switch switching circuit 24 is a circuit that performs switching control of the switch 23.
  • the first pulse Pa output from the first pulse generation circuit 21d of the counter pulse generator 21 falls.
  • the switch 23 is connected to the receiving unit 30 side, and the switch 23 is connected to the transmitting unit 25 side when the second pulse Pb output from the second pulse generating circuit 21e also falls.
  • FIG. 9 is an example showing only one of the circuits that can be used as the first and second switches 23a and 23b.
  • the first and second switches 23a and 23b are bridge-connected first to fourth diodes D1 to D4, respectively, and the first to fourth diodes connected in the reverse direction.
  • a fifth diode D5 inserted in the reverse direction between the connection point of the two diodes Dl and D2 and the ground, and a second one of the first to fourth diodes D1 to D4 connected in the reverse direction.
  • the sixth diode D6 connected in the forward direction from the connection point of the two diodes D3 and D4 to the ground, the connection point of the first two diodes Dl and D2, and the second two diodes D3 , D4, and a current source I that is connected between the reverse connection points of D4 and reverses the direction of the current according to the level of the switching signal Q from the switch switching circuit 24, and the current of the current source I Direction of the fifth and sixth diodes D5, D6 off, the first to fourth Only when the diodes D1 to D4 are turned on, the first and second burst waves Ba and Bb inputted to the connection point of the first and third diodes Dl and D3 are converted into the second and second diodes D1 and D4. It is configured to output from the connection point of 4 diodes D2 and D4.
  • the on / off ratio of the first and second switches 23a, 23b having such a configuration at 26 GHz is about 35 dB.
  • first and second switches 23a and 23b it is also possible to use a diode configured by short-circuiting the base and collector of an npn transistor instead of each diode.
  • the on / off ratio is about 51 dB.
  • the transmitter 25 amplifies the first burst wave Ba input via the switch 23 to the specified power by the power amplifier 25a, and the band regulation filter (BRF) 25b performs RR Unnecessary components such as the radio wave emission prohibition band are removed, and the short pulse wave Pt is radiated from the transmitting antenna 25c to the search target space 1.
  • BRF band regulation filter
  • the receiving unit 30 transmits the reflected wave Pr of the short pulse wave Pt radiated to the search target space 1 to the antenna 3
  • LNA low noise amplifier
  • This band-limited received signal is band-limited by a bandpass filter (BPF) 30c of about 2 GHz! ⁇ Is input to quadrature detection circuit 30d.
  • BPF bandpass filter
  • the quadrature detection circuit 30d performs quadrature detection on the received signal using the second burst wave Bb input via the switch 23 as a local signal, and samples the two orthogonal baseband components I and Q into the sample hold circuit 30e, Enter in 30f.
  • the quadrature detection circuit 30d is a so-called linear detector, and its input / output characteristics (dB value)
  • the detector input range to fit within the input range to the sample-and-hold circuits 30e and 30f, that is, the dynamic range of the detector is dB for quadrature detection than square detection.
  • the value is about twice as wide and has characteristics.
  • the quadrature detection method can detect even if the detector input is small, which is effective for UWB radar that requires high-sensitivity reception. .
  • the output signal (or the second burst signal) of LNA30b is divided into two using the distributor, and then the phase difference of 90 degrees is obtained by the hybrid circuit.
  • 2 baseband components I and Q by using two mixers and mixing with a second burst signal (or LNA30b output signal) divided into two equal phases. It can be configured to obtain an output signal of the channel.
  • I and Q signals are input to the two-channel sample and hold circuits 30e and 30f.
  • the sample hold circuits 30e and 30f extract the baseband components I 'and Q' at a predetermined timing during the input of the second pulse Pb.
  • the baseband components ⁇ and Q ' are converted into digital values by analog Z digital (AZD) conversions 35 and 36, respectively, and input to the signal processing unit 40.
  • analog Z digital (AZD) conversions 35 and 36 respectively, and input to the signal processing unit 40.
  • the signal processing unit 40 calculates the amplitude value V of the received signal of the baseband components I 'and Q'.
  • the amplitude is compared with a predetermined threshold value r. If the amplitude value V is larger than the threshold value r, it is determined that an object la that reflects a short pulse wave exists in the search target space 1.
  • the control unit 50 is notified of information including the determination result.
  • the signal processing unit 40 receives the received signal for which the baseband components I 'and Q' are also required.
  • control unit 50 Based on the information from the signal processing unit 40, the control unit 50 performs various controls on the anti-pulse generator 21, the transmission unit 25, and the reception unit 30 to determine the distance about the object la existing in the search target space 1. Collect information such as size, and generate an alarm if necessary.
  • control unit 50 variably controls the interval (delay time) Td between the first pulse Pa and the second pulse Pb output from the anti-pulse generator 21 in order to vary the search distance.
  • FIG. 11 is a timing chart shown to explain an operation example when the distance to be searched is gradually increased.
  • the control unit 50 outputs the transmission instruction signal S to the counter-pulse generator 21 at a predetermined period (for example: s) and also outputs the first pulse Pa.
  • the delay time Td of the second pulse Pb with respect to that is, the frequency data Df described above is gradually changed.
  • the difference between the delay times Td (i) and Td (i + 1) is It is set to be equal to the pulse width (Ins) of the short pulse wave Pt radiated to the exploration target space 1.
  • the interval between the first pulse Pa and the second pulse Pb is widened by Ins, and the interval between the first burst wave Ba and the second burst wave Bb output from the burst oscillator 22 according to the interval is also shown in FIG. Spread as shown in (c).
  • the first burst wave Ba oscillated and output in synchronization with the first pulse Pa is input to the transmitter 25 by the switch 23, and the transmitter 25 transmits the first burst wave Ba as shown in (d) of FIG.
  • a short pulse wave Pt corresponding to the first burst wave Ba is radiated to the search target space 1.
  • the received signal R is sent to the quadrature detection circuit 30d as shown in Fig. 14 (e). Entered.
  • the distance to the object la can be grasped by calculating the pulse interval Tdx when the maximum amplitude value V is obtained and calculating the light speed XTdx Z2. Then, the material of the object la (whether or not the reflectivity is high) can be estimated from the maximum amplitude value and the like.
  • the control unit 50 performs the exploration process as described above to obtain information such as the existence and distance of the object la. When necessary, for example, when an object with high reflectance is nearby, an alarm is generated. To output a warning.
  • the on / off ratio of the switch 23 is about 35 to 51 dB, and the level of the leakage component of the first burst wave Ba is very small, so that the leakage component at this time is the quadrature detection circuit 30d.
  • the detection output is small enough to be ignored.
  • the level is very small as described above, and the output time is as short as Ins. Therefore, the output of the original short pulse wave is caused by the leak component at this time.
  • the limited spectrum can be stored within the specified spectrum mask.
  • FIG. 12 is a block diagram for explaining the configuration of a short pulse radar 20 ′ according to the second embodiment of the present invention.
  • the first pulse Pa and the second pulse Pb are generated so as to be synchronized with the rising and falling timings of the variable period pulse Pe, respectively.
  • the pair pulse generator 21 can generate such short-interval pair pulses, the switching speed of the switch 23 must be extremely high, which is difficult to realize in that respect. It is possible to become.
  • the first burst wave Ba output from the switch 23 to the transmission unit 25 is delayed for a predetermined time by the fixed delay unit 25d, and the space to be searched is detected.
  • the space to be searched is detected.
  • the pulse width of the short pulse wave Pt radiated to the search target space 1 at the minimum delay time TdO that can be set between the first pulse Pa and the second pulse Pb that can be output by the counter pulse generator 21 By giving a predetermined delay time with (Ins) added by the fixed delay device 25d, the delay time of the second burst wave Bb with respect to the short pulse wave Pt emitted into the space can be made almost equal to the pulse width. Exploration of distance force is possible.
  • the insertion position of fixed delay device 25d is shared by the feed line to antenna 25c.
  • the fixed delay device 25d can be inserted at an arbitrary position between the switch 23 and the antenna 25c, and a plurality of fixed delay devices can be distributed and inserted into the transmitter 25. It ’s good.
  • a plurality of fixed delay devices 25d having different delay times can be selectively inserted into the transmission unit 25 so that the search distance can be varied at a wide interval, and a counter pulse generator is provided between the wide intervals. It is also possible to interpolate with variable control of 21 delay times Td.
  • the first burst wave Ba and the second burst wave Bb are distributed to the transmission unit 25 and the reception unit 30 by the switch 23, respectively.
  • the switch for turning on and off between the burst oscillator 22 and the transmission unit 25 is provided, and only the first burst wave Ba is input to the transmission unit 25 in the same manner as described above, and the reception unit 30 receives the first burst wave Ba. May be configured to receive the first burst wave Ba and the second burst wave Bb.
  • the second burst wave Bb as the original local signal is input to the quadrature detection circuit 30d, and the first burst wave Ba is also input as the local signal.
  • the received signal that is input to the quadrature detection circuit 30d at the same timing as the local signal of the first burst wave Ba is a noise component that is unnecessary for the search, and the force is also divided by the timing. It can be easily removed by the signal processing unit 40.
  • the first pulse having a predetermined width and the same width as the first pulse are set in advance in order to solve the problems of the prior art.
  • a pair of pulses including a second pulse delayed by a predetermined time is generated, and a short pulse wave of a burst wave is radiated into space based on the first pulse generated earlier of the pair of pulses.
  • it has a transmission system that can prevent interference with the RR radio wave emission prohibition band while complying with the spectrum mask specified as UWB radar, and it occurred later in the pair of pulses.
  • UWB radar spectrum mask specified as UWB radar

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Radar Systems Or Details Thereof (AREA)

Description

明 細 書
短パルスレーダ及びその制御方法
技術分野
[0001] 本発明は短パルスレーダ(short range radars)及びその制御方法に係り、特に 、幅の狭いパルス波(短パルス波)を所定周期で空間に放射し、空間にある物体から の反射波を受信して検波し、その検波出力に基づいて空間にある物体の解析を行う 短パルスレーダのうち、車載用レーダ(automotive radars)や視覚障害者の歩行 支援用レーダ等のために割り当てられて 、る 22〜29GHzの UWB (Ultra— Wideb and)で使用する短パルスレーダにおいて、国際無線通信規則 (RR)の規定を正し く遵守できるようにするための技術を採用した短パルスレーダ及びその制御方法に 関する。
背景技術
[0002] 車載用の近距離レーダや視覚障害者のためのレーダとして、 UWBを用いた短パ ルスレーダが実用化されようとしている。
[0003] UWBを用いる短パルスレーダは、通常のレーダと同様に、送信部のアンテナから 短パルス波を空間に放射し、その空間に存在する物体による反射波を受信して、物 体の解析処理を行う。
[0004] 図 13は、この種の短パルスレーダの要部構成を示すブロック図である。
[0005] すなわち、この短パルスレーダにおいては、キャリア信号発生器 1から出力された U
WB内の所定周波数のキャリア信号 CA力 スィッチ回路 2に入力される。
[0006] このスィッチ回路 2をパルス発生器 3から所定周期で出力されたパルス信号 Paで開 閉することにより、バースト波 Baが生成される。
[0007] そして、このバースト波 Baは、送信部 5の増幅器 5aで増幅された後、アンテナ 5bか ら短パルス波 Ptとして探査対象空間 1に放射される。
[0008] また、この短パルス波 Ptを受けた物体 laからの反射波 Prは、受信部 6のアンテナ 6 aで受信された後、その受信信号 Rが増幅器 6bで増幅される。
[0009] そして、この増幅された受信信号!^ が直交検波回路 6cに入力される。 [0010] この直交検波回路 6cは、キャリア信号発生器 1から出力されたキャリア信号 Sをロー カル信号として受信信号 を直交検波することにより、そのベースバンド成分 I、 Q を出力する。
[0011] そして、図示しない信号処理部等により、ベースバンド成分 I、 Qに基づいて受信信 号 Rの強度が求められると共に、パルス発生器 3よりパルス信号 Paが出力されたタイ ミンダカ 所定レベル以上の振幅が検出されるまでの時間やその強度等に基づいて 、探査対象空間 1に存在する物体 laの大きさや距離などの物体情報が求められる。 発明の開示
[0012] しかしながら、上記の従来の短パルスレーダのように、キャリア信号 CAの経路に揷 入されたスィッチ回路 2を開閉してバースト波 Baを生成する構成では、スィッチ回路 2 のアイソレーションの不完全性によりリークが生じ、キャリア信号の出力を完全に停止 させることができな!/、と!/ヽぅ問題がある。
[0013] 特に、前記したように周波数の高い UWBでは、このキャリアリークを防止することが 困難であると共に、 UWBを用いる短パルスレーダではパルスオフの時間がパルスォ ンの時間よりも約 4倍長くなるため、キャリアリーク電力が非常に大きくなる結果、その 短パルス Ptのスペクトラム密度 Sxは、例えば、図 14に示すように、キャリア周波数 fc の位置にリーク成分 CA^ が大きく突出したものになる。
[0014] このリーク成分 は、正規の送信タイミングに出力された短パルス波に対する反 射波の実質的な受信感度を制限することになり、レーダ探査範囲を狭め、低反射率 の障害物の検出を困難にする。
[0015] また、前記 UWBレーダシステムに関して、 FCC (米国連邦通信委員会)は、次の非 特許文献 1にお 、て、図 15に示すようなスペクトラムマスクを規定して 、る。
非特許文献 1 :FCC 04- 285 "SECOND REPORT AND ORDER AND SECOND MEMORANDAM OPINION AND ORDER"
[0016] このスペクトラムマスクは、 2004年 12月 16日付けで開示されたもので、それ以前の ものより一段と厳 、規格となって 、る。
[0017] このスペクトラムマスクにおいて、 UWBのうち、 1. 61〜23. 12GHzの範囲及び 29 . 0GHz以上の範囲の電力密度は一 61. 3dBmZMHz以下、 23. 12〜23. 6GHz 、 24. 0〜29. 0GHzの範囲の電力密度は—41. 3dBmZMHz以下に規定されて いる。
[0018] また、電波天文や地球探査衛星 (EESS)のパッシブセンサーを保護するため、国 際無線通信規則 (RR)で意図的に電波発射を禁じている 23. 6〜24. OGHzのいわ ゆる RR電波発射禁止帯では従来のレベルより 20dB低! 、一 61. 3dBm/MHzに抑 えられている。
[0019] 上記帯域内における放射電力密度が規制されているので、上記のようなリーク成分 S' が大きいと、その分だけ正規の送信タイミングにおける出力レベルを低く設定し なければならず、探査距離等が大きく制限されてしまう。
[0020] そこで、図 15に示しているように、 UWBのうち、 41. 3dBmZMHzより高い電力 密度が許されているドッブラレーダ用の 24. 05〜24. 25GHzの狭帯域 (Short R ange Device : SRD)に、短パルス Ptのキャリア周波数を一致させて、そのリーク成 分 CA^ による問題を避けることも考えられている。
[0021] しかし、この SRDの近傍には、前述の RR電波発射禁止帯が存在し、しかも、上記 のようにパルス信号でキャリア信号を断続したパルス変調信号は、数 100MHz〜2G Hzのスペクトラム幅を有して 、るので、上記のように RR電波発射禁止帯の近傍の S RD帯にキャリア周波数を設定した場合、その短パルスのスペクトラムのかなり高 、レ ベルの部分が RR電波発射禁止帯に重なってしま 、、上記最新のスペクトラムマスク のように 61. 3dBm以下に抑えることは極めて困難である。
[0022] このような背景から、本願発明者等は、送信指示信号に基づくパルスのオン時のみ 発振し、該ノ ルスのオフ時には発振が停止する、いわゆるバースト発振器を用いる U WBレーダを次の特許文献 1により提案して!/、る。
特許文献 l :WO 2005Z117256 (2005年 12月 8日) 発明の名称 発振出力のリ ークを防止可能とするレーダ用発振器
[0023] このレーダ用発振器に用いられるバースト発振器は原理的にキャリアリークが生じ ないため、任意のスペクトル配置が可能となり、スペクトルの主要部分を RR電波発射 禁止帯力 十分離して配置することにより、地球探査衛星などとの干渉を十分低く抑 えることができる。 [0024] さらに、本願発明者等は、バースト発振器と、 RR電波発射禁止帯に利得のノッチを 有する送信アンテナの両方を用いることにより、 RR電波発射禁止帯ではスペクトルピ ークより、容易に 20dB以上放射電力密度を低減させることが可能となる UWBレーダ を次の特許文献 2により提案して 、る。
特許文献 2 : PCTZJP2005Z020859 (2005年 11月 14日) 発明の名称 円偏波 アンテナ及びそれを用いるレーダ装置
[0025] このレーダ装置とし適用される UWBレーダでは、受信系の構成を簡易化する目的 で検波回路として、自乗検波器を用いている。
[0026] しかしながら、自乗検波器は一般にダイナミックレンジが狭ぐ高感度検波が難しい ため、受信系に利得可変の低雑音増幅器 (LNA)を用いて受信感度を補正しなけれ ばならな!、と!/、う問題がある。
[0027] 本発明の目的は、以上のような従来技術の問題を解決するため、送信指示信号を 受ける毎に、所定幅の第 1パルスと、該第 1パルスと同一幅で予め設定された時間だ け遅延した第 2パルスとを含む 1対のパルスを発生し、該 1対のパルスのうち先に発生 した第 1パルスに基づいてバースト波の短パルス波を空間に放射させることにより、 U WBレーダとして規定されているスペクトルマスクを遵守しながら RR電波発射禁止帯 への妨害が起こらないようにすることができる送信系を有すると共に、該 1対のパルス のうち後に発生した第 2パルスをローカル信号に用いて直交検波することにより、ダイ ナミックレンジが広く高感度検波を行うことができる受信系を有する短パルスレーダ及 びその制御方法を提供することである。
[0028] 前記目的を達成するために、本発明の第 1の態様によると、
送信指示信号 (S)を受ける毎に、所定幅の第 1パルス (Pa)と、該第 1パルスと同一 幅で予め設定された時間 (Td)だけ該第 1パルスよりも遅延した第 2パルス (Pb)とを 含む 1対のパルスを発生する対パルス発生器(21)と、
前記対パルス発生器から出力される前記第 1及び第 2パルスを含む 1対のパルスを 受けている期間に発振動作して所定のキャリア周波数の信号を第 1バースト波 (Ba) として前記第 1パルスに同期して出力すると共に、前記所定のキャリア周波数の信号 を第 2バースト波 (Bb)として前記第 2パルスに同期して出力し、前記第 1及び第 2パ ルスを含む 1対のパルスが入力されていない期間に前記発振動作を停止するバース ト発振器 (22)と、
前記バースト発振器力 前記第 1パルスに同期して出力される前記第 1バースト波 を短パルス波 (Pt)として探査対象空間(1)へ放射する送信部(25)と、
前記送信部から前記探査対象空間へ放射された前記第 1バースト波による短パル ス波の反射波を受信し、該受信した信号を、前記バースト発振器から前記第 2パルス に同期して出力される第 2バースト波をローカル信号として検波する受信部(30)と、 前記送信指示信号を前記対パルス発生器に出力すると共に、該対パルス発生器 が出力する第 1パルスと第 2パルスとの間隔を可変制御する制御部(50)と、
を具備する短パルスレーダが提供される。
[0029] また、前記目的を達成するために、本発明の第 2の態様によると、
前記受信部は、前記受信した信号を前記第 2バースト波をローカル信号として直交 検波することを特徴とする第 1の態様に従う短パルスレーダが提供される。
[0030] また、前記目的を達成するために、本発明の第 3の態様によると、
前記バースト発振器と前記送信部との間及び前記バースト発振器と前記受信部と の間に設けられ、前記バースト発振器力 出力された前記第 1及び第 2バースト波を 前記送信部または前記受信部の 、ずれかに選択的に入力するためのスィッチ(23) と、
前記スィッチを制御して、前記バースト発振器力 出力された前記第 1バースト波を 前記送信部に入力させ、前記第 2バースト波を前記受信部に入力させるスィッチ切 換回路 (24)と、
をさらに備えたことを特徴とする第 1の態様に従う短パルスレーダが提供される。
[0031] また、前記目的を達成するために、本発明の第 4の態様によると、
前記送信部には、前記第 1バースト波に所定時間の遅延を与える固定遅延器(25 d)が設けられて ヽることを特徴とする第 1の態様に従う短パルスレーダが提供される。
[0032] また、前記目的を達成するために、本発明の第 5の態様によると、
前記対パルス発生器は、
所定周波数 (fc)のクロック信号 (C)と、前記制御部からの前記遅延時間に対応した 所定ビット数 Lの周波数データ(Df)とを受け、正弦波 1周期分の波形データを記憶し ているアドレス長 (L)の内部のリードオンリメモリ(ROM)に対して、前記周波数デー タを前記クロック信号の周期で積算した値でアドレス指定して前記波形データを順次 読み出してデジタル Zアナログ (DZA)変換することにより、前記クロック信号の所定 周波数、前記アドレス長及び前記周波数データで決まる周波数 (fe)の正弦波状の 信号を出力するダイレクトデジタルシンセサイザ (DDS: 21a)と、
前記 DDSから出力される前記正弦波状の信号の高域成分を除去して正弦波信号 を出力するローパスフィルタ(LPF : 21b)と、
前記 LPFから出力される前記正弦波信号に対する波形整形処理を行 ヽ、デューテ ィ比 50で互いにレベルが反転した前記正弦波状の信号の周波数に対応した周期 (T e)の 2相の第 1及び第 2の可変周期パルス (Pe、 Pe' )を出力する波形整形回路(2 lc)と、
前記波形整形回路から出力される前記第 1の可変周期パルスが入力され、前記送 信指示信号が入力されて力 前記第 1の可変周期パルスのレベルが最初に立ち下 がるタイミングに同期した所定幅の第 1パルス (Pa)を出力する第 1パルス発生回路( 21d)と、
前記波形整形回路から出力される前記第 2の可変周期パルスが入力され、前記送 信指示信号が入力されて力 前記第 2の可変周期パルスのレベルが最初に立ち下 がるタイミングに同期した所定幅の第 2パルス (Pa)を出力する第 2パルス発生回路( 21e)と、
第 1パルス発生回路から出力される前記第 1パルス及び前記第 2パルス発生回路 から出力される前記第 2パルスとの論理和をとるオア回路(21f)と、
を備えたことを特徴とする第 1の態様に従う短パルスレーダが提供される。
また、前記目的を達成するために、本発明の第 6の態様によると、
前記バースト発振器は、共振器 (22e)を負荷とする増幅器 (22f)の出力を帰還回 路(22b)により前記増幅器の入力側に正帰還して前記共振器の共振周波数でもつ て発振させるように構成されていると共に、前記増幅器の入力端あるいは出力端とァ ースラインとの間を、スィッチ回路(22c)により開閉し、前記バースト発振器 22をして 発振動作状態と発振停止状態とを切り換えるように構成されて!ヽることを特徴とする 第 1の態様に従う短パルスレーダが提供される。
[0034] また、前記目的を達成するために、本発明の第 7の態様によると、
前記バースト発振器は、共振器 (22e)を負荷とする増幅器 (22f)の出力を帰還回 路(22b)により前記増幅器の入力側に正帰還して前記共振器の共振周波数でもつ て発振させるように構成されていると共に、前記増幅器の電源供給ラインにスィッチ 回路 (22c)を接続することにより、前記増幅器に対する電源の供給をオンオフ規制 し、前記バースト発振器をして発振動作状態と発振停止状態とに切り換えるように構 成されていることを特徴とする第 1の態様に従う短パルスレーダが提供される。
[0035] また、前記目的を達成するために、本発明の第 8の態様によると、
前記バースト発振器は、共振器 (22e)を負荷とする増幅器 (22f)の出力を帰還回 路(22b)により前記増幅器の入力側に正帰還して前記共振器の共振周波数でもつ て発振させるように構成されていると共に、前記増幅器の電源供給ラインに第 1のス イッチ回路(22c)を接続することにより、前記増幅器に対する電源の供給をオンオフ 規制し、前記バースト発振器をして発振動作状態と発振停止状態とに切り換えるよう に構成されており、さらに前記第 1のスィッチ回路と反対の関係で開閉動作する第 2 のスィッチ回路 (22g)を用い、前記第 1のスィッチ回路により前記増幅器に対する 電源供給が停止している間だけ前記第 2のスィッチ回路を閉じて前記共振器に所定 電流を流しておき、前記第 1のスィッチ回路が閉じて前記増幅器に対する電源が供 給されるタイミングに前記第 2のスィッチ回路を開くことにより、前記共振器に過度現 象による共振周波数の信号成分を発生させ、前記バースト発振器をして発振動作状 態に速やかに移行させることを特徴とする第 1の態様に従う短パルスレーダが提供さ れる。
[0036] また、前記目的を達成するために、本発明の第 9の態様によると、
前記スィッチは、共通接点と、第 1及び第 2の接点とを有し、前記共通接点と前記第 1の接点を介して前記第 1バースト波を前記送信部に入力させると共に、前記共通接 点と前記第 2の接点を介して前記第 2バースト波を前記受信部に入力させる 1回路 2 接点型のスィッチカゝら構成されていることを特徴とする第 3の態様に従う短パルスレー ダが提供される。
[0037] また、前記目的を達成するために、本発明の第 10の態様によると、
前記スィッチは、前記第 1バースト波を前記送信部に入力させる第 1のスィッチ(23 a)と、前記第 2バースト波を前記受信部に入力させる第 2のスィッチ(23b)とから構成 されていることを特徴とする第 3の態様に従う短パルスレーダが提供される。
[0038] また、前記目的を達成するために、本発明の第 11の態様によると、
前記第 1及び第 2のスィッチは、それぞれ、
ブリッジ接続された第 1乃至第 4のダイオード (D1〜D4)と、
前記第 1乃至第 4のダイオードのうち逆方向接続された第 1の 2つのダイオード (D1 、 D2)の接続点力もアースの間に逆方向に挿入された第 5のダイオード (D5)と、 前記第 1乃至第 4のダイオードのうち逆方向接続された第 2の 2つのダイオード (D3 、D4)の接続点カゝらアースの間に順方向に接続された第 6のダイオード (D6)と、 前記第 1の 2つのダイオードの接続点と前記第 2の 2つのダイオードの各逆方向接 続点の間に接続され、前記スィッチ切換回路からの切換信号 (Q)のレベルに応じて 電流の方向が反転される電流源 (I)とを備え、
前記電流源 Iの電流の方向が、前記第 5及び第 6のダイオードをオフ、前記第 1乃 至第 4のダイオードをオンとする方向であるときのみ、前記第 1及び第 3のダイオード の接続点に入力される第 1または第 2バースト波 (Ba, Bb)を前記第 2及び第 4のダイ オードの接続点から出力するように構成されていることを特徴とする第 10の態様に従 う短パルスレーダが提供される。
[0039] また、前記目的を達成するために、本発明の第 12の態様によると、
対パルス発生器 (21)、バースト発振器 (22)、受信部(30)、送信部(25)及び制御 部(50)を準備するステップと、
前記制御部(50)によって、送信指示信号を出力するステップと、
前記対パルス発生器 (21)によって、前記制御部からの前記送信指示信号 (S)を 受ける毎に、所定幅の第 1パルス (Pa)と、該第 1パルスと同一幅で予め設定された時 間 (Td)だけ該第 1パルスよりも遅延した第 2パルス (Pb)とを含む 1対のノ ルスを発生 するステップと、 前記制御部(50)によって、前記対パルス発生器が出力する第 1パルスと第 2パル スとの間隔を可変制御するステップと、
前記バースト発振器 (22)によって、前記対パルス発生器から出力される前記第 1 及び第 2パルスを含む 1対のノ ルスを受けている期間に発振動作して所定のキャリア 周波数の信号を第 1バースト波 (Ba)として前記第 1パルスに同期して出力すると共に 、前記所定のキャリア周波数の信号を第 2バースト波(Bb)として前記第 2パルスに同 期して出力し、前記第 1及び第 2パルスを含む 1対のパルスが入力されていない期間 に前記発振動作を停止するステップと、
前記送信部(25)によって、前記バースト発振器力 前記第 1パルスに同期して出 力される前記第 1バースト波を短パルス波 (Pt)として探査対象空間(1)へ放射するス テツプと、
前記受信部(30)によって、前記送信部から前記探査対象空間へ放射された前記 第 1バースト波による短パルス波の反射波を受信し、該受信した信号を、前記バース ト発振器力 前記第 2パルスに同期して出力される第 2バースト波をローカル信号とし て検波するステップと、
を具備する短パルスレーダの制御方法が提供される。
[0040] また、前記目的を達成するために、本発明の第 13の態様によると、
前記検波するステップは、前記受信部によって、前記受信した信号を前記第 2バー スト波をローカル信号として直交検波することを特徴とする第 12の態様に従う短パル スレーダの制御方法が提供される。
[0041] また、前記目的を達成するために、本発明の第 14の態様によると、
スィッチ(23)及びスィッチ切換回路(24)を準備するステップと、
前記スィッチ (23)によって、前記バースト発振器から出力された前記第 1及び第 2 バースト波を前記送信部または前記受信部のいずれかに選択的に入力するステップ と、
前記スィッチ切換回路(24)によって、前記スィッチを制御して、前記バースト発振 器から出力された前記第 1バースト波を前記送信部に入力させ、前記第 2バースト波 を前記受信部に入力させるステップと、 をさらに備えたことを特徴とする第 12の態様に従う短パルスレーダの制御方法が提 供される。
[0042] また、前記目的を達成するために、本発明の第 15の態様によると、
前記送信部には、前記第 1バースト波に所定時間の遅延を与える固定遅延器(25 d)が設けられていることを特徴とする第 12の態様に従う短パルスレーダの制御方法 が提供される。
[0043] また、前記目的を達成するために、本発明の第 16の態様によると、
前記対パルス発生器は、
所定周波数 (fc)のクロック信号 (C)と、前記制御部からの前記遅延時間に対応した 所定ビット数 Lの周波数データ(Df)とを受け、正弦波 1周期分の波形データを記憶し ているアドレス長 (L)の内部のリードオンリメモリ(ROM)に対して、前記周波数デー タを前記クロック信号の周期で積算した値でアドレス指定して前記波形データを順次 読み出してデジタル Zアナログ変換することにより、前記クロック信号の所定周波数、 前記アドレス長及び前記周波数データで決まる周波数 (fe)の正弦波状の信号を出 力するダイレクトデジタルシンセサイザ (DDS: 21a)と、
前記 DDSから出力される前記正弦波状の信号の高域成分を除去して正弦波信号 を出力するローパスフィルタ(LPF : 21b)と、
前記 LPFから出力される前記正弦波信号に対する波形整形処理を行 ヽ、デューテ ィ比 50で互いにレベルが反転した前記正弦波状の信号の周波数に対応した周期 (T e)の 2相の第 1及び第 2の可変周期パルス (Pe、 Pe' )を出力する波形整形回路(2 lc)と、
前記波形整形回路から出力される前記第 1の可変周期パルスが入力され、前記送 信指示信号が入力されて力 前記第 1の可変周期パルスのレベルが最初に立ち下 力 タイミングに同期した所定幅の第 1パルス (Pa)を出力する第 1パルス発生回路( 21d)と、
前記波形整形回路から出力される前記第 2の可変周期パルスが入力され、前記送 信指示信号が入力されて力 前記第 2の可変周期パルスのレベルが最初に立ち下 力 ¾タイミングに同期した所定幅の第 2パルス (Pa)を出力する第 2パルス発生回路( 21e)と、
第 1パルス発生回路から出力される前記第 1パルス及び前記第 2パルス発生回路 力も出力される前記第 2パルスとの論理和をとるオア回路(21f)と、
を備えたことを特徴とする第 12の態様に従う短パルスレーダの制御方法が提供さ れる。
[0044] また、前記目的を達成するために、本発明の第 17の態様によると、
前記バースト発振器は、共振器 (22e)を負荷とする増幅器 (22f)の出力を帰還回 路(22b)により前記増幅器の入力側に正帰還して前記共振器の共振周波数でもつ て発振させるように構成されていると共に、前記増幅器の入力端あるいは出力端とァ ースラインとの間を、スィッチ回路(22c)により開閉し、前記バースト発振器 22をして 発振動作状態と発振停止状態とを切り換えるように構成されて!ヽることを特徴とする 第 12の態様に従う短パルスレーダの制御方法が提供される。
[0045] また、前記目的を達成するために、本発明の第 18の態様によると、
前記バースト発振器は、共振器 (22e)を負荷とする増幅器 (22f)の出力を帰還回 路(22b)により前記増幅器の入力側に正帰還して前記共振器の共振周波数でもつ て発振させるように構成されていると共に、前記増幅器の電源供給ラインにスィッチ 回路 (22c)を接続することにより、前記増幅器に対する電源の供給をオンオフ規制 し、前記バースト発振器をして発振動作状態と発振停止状態とに切り換えるように構 成されていることを特徴とする第 12の態様に従う短パルスレーダの制御方法が提供 される。
[0046] また、前記目的を達成するために、本発明の第 19の態様によると、
前記バースト発振器は、共振器 (22e)を負荷とする増幅器 (22f)の出力を帰還回 路(22b)により前記増幅器の入力側に正帰還して前記共振器の共振周波数でもつ て発振させるように構成されていると共に、前記増幅器の電源供給ラインに第 1のス イッチ回路(22c)を接続することにより、前記増幅器に対する電源の供給をオンオフ 規制し、前記バースト発振器をして発振動作状態と発振停止状態とに切り換えるよう に構成されており、さらに前記第 1のスィッチ回路と反対の関係で開閉動作する第 2 のスィッチ回路 (22g)を用い、前記第 1のスィッチ回路により前記増幅器に対する 電源供給が停止している間だけ前記第 2のスィッチ回路を閉じて前記共振器に所定 電流を流しておき、前記第 1のスィッチ回路が閉じて前記増幅器に対する電源が供 給されるタイミングに前記第 2のスィッチ回路を開くことにより、前記共振器に過度現 象による共振周波数の信号成分を発生させ、前記バースト発振器をして発振動作状 態に速やかに移行させることを特徴とする第 12の態様に従う短パルスレーダの制御 方法が提供される。
[0047] 以上のように構成される本発明による短パルスレーダ及びその制御方法では、第 1 パルスと該第 1パルスカゝら所定時間遅延した第 2パルスとを含む 1対のパルスをバー スト発振器に入力し、スィッチにより、バースト発振器力ゝら第 1パルスに同期して発振 出力された第 1バースト波を短パルス波として送信部カゝら探査対象空間に放射し、そ の反射波を受信部で受信し、その受信した信号を、バースト発振器力 第 2パルスに 同期して発振出力された第 2バースト波をローカル信号として検波するようにしている
[0048] このような本発明による短パルスレーダ及びその制御方法では、検波方式が!/、わゆ る直線検波方式であるので、自乗検波方式に比べて高感度で、広いダイナミックレン ジの受信が可能となる。
[0049] また、本発明による短パルスレーダ及びその制御方法では、スィッチにより、バース ト発振器力 出力された第 1バースト波を送信部に入力し、第 2バースト波を受信部 に入力する構成であるので、探査対象空間への第 2バースト波の放射を防止すること ができ、さらに、第 1及び第 2バースト波の出力電力を必要最小限にでき、低消費電 力化を図ることができる。
[0050] また、本発明による短パルスレーダ及びその制御方法では、スィッチから出力され た第 1バースト波を固定遅延器により所定時間遅延するような構成とすることにより、 第 1及び第 2バースト波の時間差をあまり接近させなくとも、近距離にあるターゲットの 検出が可能となる。
[0051] すなわち、第 1及び第 2バースト波の時間差が接近していると、バースト発振器の過 渡特性や発生する熱に起因して、第 2バースト波の発振周波数や波形が第 1バース ト波とずれてくるという問題がある。 [0052] しかるに、上記のように第 1バースト波を固定遅延器により所定時間遅延する構成と して、第 1及び第 2バースト波の時間差を固定することにより、上記の問題を回避する ことができる。
図面の簡単な説明
[0053] [図 1]図 1は、本発明の第 1の実施形態による短パルスレーダの構成を説明するため に示すブロック図である。
[図 2]図 2は、図 1の要部の動作を説明するために示すタイミングチャートである。
[図 3]図 3は、図 1の要部の構成例を示すブロック図である。
[図 4]図 4は、図 3の構成例の動作を説明するために示すタイミングチャートである。
[図 5]図 5は、図 1の要部の構成例を示すブロック図である。
[図 6]図 6は、図 1の要部の他の構成例を示すブロック図である。
[図 7]図 7は、図 1の要部の他の構成例を示すブロック図である。
[図 8]図 8は、図 1の要部の他の構成例を示すブロック図である。
[図 9]図 9は、図 8の構成例の具体回路例を示す図である。
[図 10]図 10は、本発明で採用する直線検波方式と従来技術による自乗検波方式と のダイナミックレンジの比較を示す特性図である。
[図 11]図 11は、図 1の動作を説明するために示すタイミングチャートである。
[図 12]図 12は、本発明の第 2の実施形態による短パルスレーダの構成を説明するた めに示すブロック図である。
[図 13]図 13は、従来の短パルスレーダ装置の構成例を示すブロック図である。
[図 14]図 14は、従来の短パルスレーダ装置の動作を説明するためのスペクトラム特
'性図である。
[図 15]図 15は、 UWBにおける FCC勧告のスペクトラムマスクを示す図である。
発明を実施するための最良の形態
[0054] 以下、図面に基づいて本発明の幾つかの実施の形態を説明する。
[0055] (第 1実施形態)
図 1は、本発明の第 1の実施形態による短パルスレーダの構成を説明するために示 すブロック図である。 [0056] 本発明に係る短パルスレーダ 20は、基本的には、送信指示信号 Sを受ける毎に、 所定幅の第 1パルス Paと、該第 1パルスと同一幅で予め設定された時間 Tdだけ該第 1パルスよりも遅延した第 2パルス Pbとを含む 1対のパルスを発生する対パルス発生 器 21と、前記対パルス発生器 21から出力される前記第 1及び第 2パルス Pa、 Pbを含 む 1対のパルスを受けている期間に発振動作して所定のキャリア周波数の信号を第 1 バースト波 Baとして前記第 1パルス Paに同期して出力すると共に、前記所定のキヤリ ァ周波数の信号を第 2バースト波 Bbとして前記第 2パルス Pbに同期して出力し、前 記第 1及び第 2パルス Pa、 Pbを含む 1対のパルスが入力されていない期間に前記発 振動作を停止するバースト発振器 22と、前記バースト発振器 22から前記第 1パルス Paに同期して出力される前記第 1バースト波 Baを短パルス波 Ptとして探査対象空間 1へ放射する送信部 25と、前記送信部 25から前記探査対象空間 1へ放射された前 記第 1バースト波 Baによる短パルス波の反射波 Prを受信し、該受信した信号 Rを、前 記バースト発振器 22から前記第 2パルス Pbに同期して出力される第 2バースト波 Bb をローカル信号として検波する受信部 30と、前記送信指示信号 Sを前記対パルス発 生器 21に出力すると共に、該対パルス発生器 21が出力する第 1パルス Paと第 2パル ス Pbとの間隔を可変制御する制御部 50とを有している。
[0057] また、本発明に係る短パルスレーダの制御方法は、基本的には、対パルス発生器 2 1、バースト発振器 22、受信部 30及び制御部 50を準備するステップと、前記制御部 50によって、送信指示信号 Sを出力するステップと、前記対パルス発生器 21によつ て、前記制御部 50からの前記送信指示信号 Sを受ける毎に、所定幅の第 1パルス Pa と、該第 1パルス Paと同一幅で予め設定された時間 Tdだけ該第 1パルスよりも遅延し た第 2パルス Pbとを含む 1対のパルスを発生するステップと、前記制御部 50によって 、前記対パルス発生器 21が出力する第 1パルス Paと第 2パルス Pbとの間隔を可変制 御するステップと、前記バースト発振器 22によって、前記対パルス発生器 21から出 力される前記第 1及び第 2パルス Pa、 Pbを含む 1対のパルスを受けている期間に発 振動作して所定のキャリア周波数の信号を第 1バースト波 Baとして前記第 1パルス Pa に同期して出力すると共に、前記所定のキャリア周波数の信号を第 2バースト波 Bbと して前記第 2パルス Pbに同期して出力し、前記第 1及び第 2パルス Pa、 Pbを含む 1 対のパルスが入力されていない期間に前記発振動作を停止するステップと、前記送 信部 25によって、前記バースト発振器 22から前記第 1パルス Paに同期して出力され る前記第 1バースト波 Baを短パルス波 Ptとして探査対象空間 1へ放射するステップと 、前記受信部 30によって、前記送信部 25から前記探査対象空間 1へ放射された前 記第 1バースト波 Baによる短パルス波 Ptの反射 Pr波を受信し、該受信した信号 Rを、 前記バースト発振器 22から前記第 2パルス Pbに同期して出力される第 2バースト波 B bをローカル信号として検波するステップとを有している。
[0058] 具体的には、図 1に示すように、この短パルスレーダ 20の対パルス発生器 21は、後 述する制御部 50から供給される図 2の(a)に示すように立ち上がりで送信を指示する 信号 Sを受ける毎に、図 2の (b)に示すように、所定幅 (例えば、 Ins)の第 1パルス Pa と、該第 1パルス Paと同一幅で予め設定された時間 Tdだけ遅延した第 2パルス Pbと を 1対のパルスとして出力する。
[0059] この対パルス発生器 21は、第 1パルス Paと第 2パルス Pbの間に正確な遅延時間 T dを与えるために、例えば、図 3に示すような構成を有している。
[0060] 図 3において、ダイレクトデジタルシンセサイザ (DDS) 21aは、所定周波数 fc (例え ば、 200MHz)のクロック信号 Cと、後述する制御部 50からの遅延時間 Tdに対応し た所定ビット数 Lの周波数データ Dfとを受け、正弦波 1周期分の波形データを記憶し ているアドレス長 Lの内部のリードオンリメモリ(ROM)に対して、周波数データ Dfをク ロック周期で積算した値でアドレス指定して波形データを順次読み出し、これをデジ タル Zアナログ (DZA)変換して、クロック信号 Cの周波数 fc、アドレス長 L及び周波 数データ Dfで決まる周波数 feの正弦波状 (厳密には、正弦波に沿って階段状に変 化する波形)の信号をローパスフィルタ (LPF) 21bに出力する。
[0061] LPF21bは、 DDS21aからの DZA変換出力の高域成分(例えば、 71MH以上の 成分)を除去して正弦波信号を生成して波形整形回路 21cに出力する。
[0062] 波形整形回路 21cは、 LPF21bからの正弦波信号に対する波形整形処理を行い、 図 4の(a)、 (b)に示すように、デューティ比 50で互いにレベルが反転した周波数 fe ( 周期 Te)の 2相の第 1及び第 2の可変周期パルス Pe、 Pe' を出力する。
[0063] この第 1及び第 2の可変周期パルス Pe、 Pe' の周波数 feは、クロック信号 Cの周波 数 f cの 1Z2以下の範囲で、
fe = Df-fe/2L
となる。
[0064] また、第 1及び第 2の可変周期パルス Pe、 Pe' の周期 Teは、クロック信号 Cの周波 数 fcの周期 Tcの 2倍以上の範囲で、
Te=Tc-2L/Df
となる。
[0065] ここで、周波数データ Dfの値が Aから A+ 1に 1ポイントだけ変化したときの第 1及び 第 2の可変周期パルス Pe、 Pe' の周期 Teの変化 ΔΤ (時間分解能)は、次のように 表すことができる。
[0066] ΔΤ= (Tc-2L) { (1/A) -[1/(A+1)]}
= (Tc-2L){l/[A(A+l)]}
上記式で Aが 1に比べて十分大き!/、とき、
AT=(Tc-2L) (1/A2)
となる。
[0067] 例えば、 Tc = 5ns、 2L=232を概略値 4X 109とし、 A=l X 106とすると、
ΔΤ=20/(1Χ1012)=0.02 (ns)
となる。
[0068] つまり、第 1及び第 2の可変周期パルス Pe、 Pe' は、周波数データ Dfが 1 X 106の 近傍での時間分解能は 0.02nsとなる。
[0069] また、 A= 10 X 106の場合には 0.2psとなる。
[0070] これらのデータ設定範囲においては、第 1及び第 2の可変周期パルス Pe、 Pe' の 可変周期は、短パルス Ptの幅(Ins)に比べて十分小さい時間分解能が得られ、ほ ぼ連続的にその周期を可変することができる。
[0071] 第 1の可変周期パルス Peは、第 1パルス発生回路 21dに入力されると共に、第 2の 可変周期パルス P は第 2パルス発生回路 21eに入力される。
[0072] そして、第 1パルス発生回路 21dは、図 4の(c)に示すような送信指示信号 Sが入力 されて力 第 1の可変周期ノ ルス Peのレベルが最初に立ち下がるタイミングに同期し た所定幅(InS)の第 1パルス Paを図 4の(d)に示すように生成して、オア回路 21fに 出力する。
[0073] また、第 2パルス発生回路 21eは、第 1パルス発生回路 21dから第 1パルス Paが出 力されて力 第 2の可変周期ノルス P のレベルが最初に立ち下がるタイミングと同 期した所定幅(Ins)の第 2パルス Pbを図 4の(e)に示すように生成して、オア回路 21 fに出力する。
[0074] したがって、第 1パルス Paと第 2パルス Pbとの論理和をとるオア回路 21fからは、図
4の(f)に示すように、第 1パルス Paが出力されてから、 Td=TeZ2だけ遅延した第 2 パルス Pbが出力されることになる。
[0075] これにより、図 4の(a)乃至(e)に示すように、第 1の可変周期パルス Peの周期を Te から Te' まで大きくすれば、第 1パルス Paに対する第 2パルスの遅延時間は Tdから
Td' まで長くすることができる。
[0076] ここで、遅延時間 Td=TeZ2はクロック信号 Cの周波数精度に依存して非常に安 定であり、前記したように、第 1及び第 2の可変周期パルス Pe、 Pe' の可変周期を微 細〖こ変ィ匕させることができる。
[0077] したがって、対パルス発生器 21によって生成される 2つのパルス Pa、 Pbの間の遅 延時間 Tdは、安定且つ高!、分解能で可変することができる。
[0078] このようにして、対パルス発生器 21によって生成された対パルスは、バースト発振 器 22に入力される。
[0079] バースト発振器 22は、対パルス発生器 21から出力される 2つのパルス Pa、 Pbを受 けている間、発振動作して所定のキャリア周波数の信号を出力し、 2つのパルス Pa、 Pbが入力されて 、な 、期間は発振動作を停止させるように構成されて 、る。
[0080] このようなバースト発振器 22としては種々の構成が考えられる。
[0081] 例えば、図 5は、共振器を用いたバースト発振器 22の構成例を示している。
[0082] このバースト発振器 22は、共振器 22eを負荷とする増幅器 22fの出力を帰還回路 2 2bにより増幅器 22fの入力側に正帰還して共振器 22eの共振周波数でもって発振さ せるように構成している。
[0083] 帰還回路 22bは、例えば、抵抗 (またはコイル)とコンデンサによる L型、 T型等の L PFで構成される。
[0084] この場合、増幅器 22fの入力端あるいは出力端とアースラインとの間を、スィッチ回 路 22cにより開閉し、バースト発振器 22をして発振動作状態と発振停止状態とを切り 換える。
[0085] スィッチ回路 22cは、増幅器 22fの入力端 (または出力端でもよい)とアースラインの 間を開閉するように挿入されており、パルス Pa、 Pbがハイレベル (パルス入力状態) のときには開いてバースト発振器 22をして発振動作状態とすると共に、ノ レス Pa、 P bがローレベル (パルス非入力状態)のときには閉じてバースト発振器 22をして発振 停止状態とする。
[0086] 以下同様に、スィッチ回路 22cが開いている間、上記動作が繰り返されることになり
、バースト発振器 22からは、共振器 22eの共振周波数を有するバースト波が発振出 力されることになり、スィッチ回路 22cが閉じると発振動作が停止する。
[0087] ここで、バースト発振器 22の発振周波数は、例えば、 26. 5GHzとなるように、共振 器 22eの共振周波数が設定されて 、る。
[0088] 上記のようにパルス Pa、 Pbによってバースト発振器 22の発振動作そのものを制御 しているので、原理的にキャリア漏れは発生しない。
[0089] したがって、 UWBの使用に際して規定されている電力密度の制限は、発振時に出 力される短パルス波の瞬時パワーにっ 、てのみ考慮すればよぐ規定されて 、る電 力を最大限有効に使用することができる。
[0090] また、キャリア漏れがな 、ので、 UWBのスペクトラムマスクの任意の位置にメイン口 ーブを配置することができ、そのメイローブのほぼ全体が RR電波発射禁止帯と重な らな ヽよう〖こすることがでさる。
[0091] また、図 6に示すバースト発振器 22のように、増幅器 22fの電源供給ラインにスイツ チ回路 22cを接続し、増幅器 22fに対する電源の供給 (バイアス電源も含む)を規制 して、発振動作を停止させることもできる。
[0092] ただし、増幅器 22fに対する電源供給を制御してバースト波を発生させる構成の場 合、電源を供給しても発振動作がすぐに開始されな ヽ場合が考えられる。
[0093] このような場合には、図 7に示すバースト発振器 22のように、スィッチ回路 22cと逆 に開閉動作するスィッチ回路 22gを用い、増幅器 22fに対する電源供給が停止して いる間だけスィッチ回路 22gを閉じて共振器 22eに所定電流を流しておき、スィッチ 回路 22cが閉じて電源が供給されるタイミングにスィッチ回路 22gを開くことにより、共 振器 22eに過度現象による共振周波数の信号成分を発生させ、発振状態に速やか に移行させることができる。
[0094] なお、ここでは、説明を簡単にするためにスィッチ回路 22cとスィッチ回路 22gとが 逆の開閉動作をするようにしていたが、上記の発振起動は、スィッチ回路 22gが開い たときに共振器 22eに生じる過渡現象を利用しているので、スィッチ回路 22gによる 共振器 22eへの電流供給は、スィッチ回路 22cによる電源供給が開始される直前の 所定時間のみ行えばよい。
[0095] なお、上記の共振型の各バースト発振器 22において、共振器 22eを LC型のものだ けでなぐ伝送路型 (例えば、 λ Ζ4型)の共振器で構成してもよい。
[0096] 図 1に戻ると、上記バースト発振器 22から出力されるバースト波 Ba、 Bbは、スィッチ 23に入力される。
[0097] このスィッチ 23は、バースト発振器 22から出力されたバースト波 Ba、 Bbを送信部 2 5と受信部 30にそれぞれ振り分けるためのものであり、スィッチ切換回路 24により、第 1パルス Paに同期してバースト発振器 22から出力された第 1バースト波 Baを送信部 2 5に入力し、第 2パルス Pbに同期して出力された第 2バースト波 Bbを受信部 30に入 力させる。
[0098] ここで、スィッチ 23は、図 1に示したような 1回路 2接点型のスィッチだけでなぐ図 8 に示すように、それぞれ独立して第 1バースト波 Baを送信部 25に入力させると共に、 第 2バースト波 Bbを受信部 30に入力させるために、 2つのオンオフ型(2回路 2接点 型)の第 1及び第 2のスィッチ 23a、 23bを用いて構成してもよ ヽ。
[0099] 図 1において、スィッチ切換回路 24は、スィッチ 23の切換制御を行う回路であり、 例えば、対パルス発生器 21の第 1パルス発生回路 21dから出力される第 1パルス Pa が立ち下がった時にスィッチ 23を受信部 30側に接続させ、第 2パルス発生回路 21e 力も出力される第 2パルス Pbが立ち下がった時にスィッチ 23を送信部 25側に接続さ せる。 [0100] 図 9は、第 1及び第 2のスィッチ 23a、 23bとして使用可能な回路の一方のみを示し ている例である。
[0101] この第 1及び第 2のスィッチ 23a、 23bは、それぞれ、ブリッジ接続された第 1乃至第 4のダイオード D1〜D4と、前記第 1乃至第 4のダイオードのうち逆方向接続された第 1の 2つのダイオード Dl、 D2の接続点からアースの間に逆方向に挿入された第 5の ダイオード D5と、前記第 1乃至第 4のダイオード D1〜D4のうち逆方向接続された第 2の 2つのダイオード D3、D4の接続点からアースの間に順方向に接続された第 6の ダイオード D6と、前記第 1の 2つのダイオード Dl、 D2の接続点と前記第 2の 2つのダ ィオード D3、 D4の各逆方向接続点の間に接続され、前記スィッチ切換回路 24から の切換信号 Qのレベルに応じて電流の方向が反転される電流源 Iとを備え、前記電 流源 Iの電流の方向が、前記第 5及び第 6のダイオード D5、 D6をオフ、前記第 1乃至 第 4のダイオード D1〜D4をオンとする方向であるときのみ、前記第 1及び第 3のダイ オード Dl、 D3の接続点に入力された第 1または第 2バースト波 Ba, Bbを前記第 2及 び第 4のダイオード D2、 D4の接続点から出力するように構成されている。
[0102] すなわち、この第 1及び第 2のスィッチ 23a、 23bの場合、電流源 Iが図示の向きに 電流を流す状態になっているとき、ダイオード D5、 D6はオフ、ダイオード D1〜D4は オンとなり、ダイオード Dl、 D3の接続点に入力された第 1または第 2バースト波 Ba, Bbはダイオード D2、 D4の接続点から出力される。
[0103] また、電流源 Iが図示の状態と逆方向に電流を流す状態になっているとき、ダイォ ード D5、 D6はオン、ダイオード D1〜D4はオフとなり、ダイオード Dl、 D3の接続点 に入力された第 1または第 2バースト波 Ba, Bbはダイオード D2、 D4の接続点に伝達 されない。
[0104] このような構成の第 1及び第 2のスィッチ 23a、 23bの 26GHzにおけるオンオフ比は 約 35dBとなっている。
[0105] 上記第 1及び第 2のスィッチ 23a、 23bの回路例で、各ダイオードの代わりに、 npn 型トランジスタのベースとコレクタ間を短絡させて構成したダイオードを用いることも可 能である。
[0106] この場合、スィッチ素子としてのオン抵抗を小さくすることができるので、 26GHzに おけるオンオフ比は約 51dBとなっている。
[0107] 図 1に戻ると、送信部 25は、スィッチ 23を介して入力された第 1バースト波 Baを、電 力増幅器 25aにより規定電力に増幅して、バンドレギュレーションフィルタ(BRF) 25b によって RR電波発射禁止帯などの不要成分を除去して短パルス波 Ptとして送信ァ ンテナ 25cから探査対象空間 1へ放射する。
[0108] 受信部 30は、探査対象空間 1へ放射された短パルス波 Ptの反射波 Prをアンテナ 3
Oaで受信し、その受信信号 Rを LNA (低雑音増幅器) 30bにより増幅した後、帯域幅
2GHz程度のバンドパスフィルタ (BPF) 30cにより帯域制限し、この帯域制限した受 信信号!^ を直交検波回路 30dに入力する。
[0109] なお、電力増幅器 25a及び LNA30bの増幅度は、後述する制御部 50によって可 変することができるようになって ヽる。
[0110] 直交検波回路 30dは、スィッチ 23を介して入力される第 2バースト波 Bbをローカル 信号として受信信号 を直交検波し、 2つの直交するベースバンド成分 I、 Qをサン プルホールド回路 30e、 30fに入力する。
[0111] ここで、直交検波回路 30dは、いわゆる直線検波器であり、その入出力特性 (dB値
)は、自乗検波器のそれと比較において、図 10に示すようなダイナミックレンジ特性を 有している。
[0112] この図 10に示すダイナミックレンジ特性から、サンプルホールド回路 30e、 30fへの 入力範囲に収まるための検波器入力範囲、すなわち検波器のダイナミックレンジは、 直交検波の方が自乗検波よりも dB値で約 2倍広 、特性を有して 、ること分かる。
[0113] また、図 10に示すダイナミックレンジ特性力も分力るように、直交検波方式では検 波器入力が小さくても検波できるので、高感度受信が必要とされる UWBレーダに有 効である。
[0114] 直交検波器の内部は図示していないが、例えば、 LNA30bの出力信号 (または第 2のバースト信号)を、分配器を用いて 2分配した後、ハイブリッド回路で 90度の位相 差を持つ 2つの信号を生成し、 2つのミキサーを用いて、等位相に 2分配した第 2のバ 一スト信号 (または LNA30bの出力信号)と混合することにより、ベースバンド成分 I及 び Qの 2チャンネルの出力信号を得るように構成することができる。 [0115] そして、これらの I、 Q信号が 2チャンネルのサンプルホールド回路 30e、 30fに入力 される。
[0116] サンプルホールド回路 30e、 30fは、第 2パルス Pbが入力している間の所定タイミン グにおけるベースバンド成分 I' 、Q' を抽出する。
[0117] このベースバンド成分^ 、Q' は、アナログ Zデジタル (AZD)変翻 35、 36によ りそれぞれデジタル値に変換されて信号処理部 40に入力される。
[0118] 信号処理部 40は、ベースバンド成分 I' 、Q' 力 受信信号 の振幅値 Vを求め
、その振幅を所定のしきい値 rと比較し、振幅値 Vがしきい値 rより大きい場合には、探 查対象空間 1に短パルス波を反射する物体 laが存在していると判定し、その判定結 果などを含む情報を制御部 50に通知する。
[0119] また、信号処理部 40は、ベースバンド成分 I' 、Q' 力も求められる受信信号
の振幅値 Vがしきい値 r以下のときには、探査対象空間 1に短パルス波を反射する物 体 laが存在して 、な 、と判定し、その判定結果などを含む情報を制御部 50に通知 する。
[0120] 制御部 50は、信号処理部 40からの情報に基づき、対パルス発生器 21、送信部 25 、受信部 30に対する各種制御を行い、探査対象空間 1に存在する物体 laについて の距離や大きさ等の情報を収集し、必要であればアラームを発生する。
[0121] また、制御部 50は、探査距離を可変するために、対パルス発生器 21が出力する第 1パルス Paと第 2パルス Pbの間隔(遅延時間) Tdを可変制御する。
[0122] 図 11は、探査対象の距離を徐々に長くして行く場合の動作例を説明するために示 すタイミングチャートである。
[0123] この場合、制御部 50は、図 11の(a)に示すように、送信指示信号 Sを所定周期 ( 例えば、: s)で対パルス発生器 21に出力すると共に、第 1パルス Paに対する第 2 パルス Pbの遅延時間 Td (すなわち、前記した周波数データ Df)を順次大きく変更す る。
[0124] この制御により、対パルス発生器 21から出力される第 1パルス Paと第 2パルス Pbの 間隔は、図 11の(b)に示すように Tdl、Td2、…と広がっていく。
[0125] このとき探査漏れ領域を発生させないように、遅延時間 Td(i)、 Td (i+ 1)の差は、 探査対象空間 1に放射する短パルス波 Ptのパルス幅(Ins)と等しくなるように設定さ れる。
[0126] つまり、第 1パルス Paと第 2パルス Pbの間隔は、 Insずつ広くなり、それに従ってバ 一スト発振器 22から出力される第 1バースト波 Ba、第 2バースト波 Bbの間隔も図 14 の(c)に示すように広がって 、く。
[0127] この第 1パルス Paに同期して発振出力された第 1バースト波 Baは、スィッチ 23によ り送信部 25に入力され、送信部 25からは、図 11の(d)に示すように、第 1バースト波 Baに対応した短パルス波 Ptが探査対象空間 1へ放射される。
[0128] この短パルス波 Ptを受けた物体 laからの反射波 Prが受信部 30で受信されると、そ の受信信号 Rが図 14の(e)に示すように、直交検波回路 30dに入力される。
[0129] しかるに、図 14の(f)に示す左部のように、第 2バースト波 Bbが受信信号 Rよりも前 で互いに重ならないタイミングに直交検波回路 30dに入力された場合、ベースバンド 成分 I' 、Q' に基づいて得られる振幅値 VIは図 11の(g)に示すようにほぼゼロ(ノ ィズ成分)となり、しきい値 rを超えないので、この段階では物体 laは検知されない。
[0130] そして、図 11の(a)〜(g)の各中央部で示しているように、パルス Pa、 Pbの間隔が Tdlから Td2に広がって、第 2バースト波 Bbが受信信号 Rの先頭部に重なり合うタイ ミングで直交検波回路 30dに入力されると、ベースバンド成分 I' 、Q' に基づいて 得られる振幅値 V2がしきい値 rより大きくなることにより、物体 laの存在が検知される
[0131] さらに、図 11の(a)〜(g)の各右部で示しているように、パルス Pa、 Pbの間隔が Td 3に広がって、第 2バースト波 Bbと受信信号 Rとが丁度重なり合うタイミングで直交検 波回路 30dに入力されると、ベースバンド成分 I' 、Q' に基づいて得られる振幅値 V3は、さらに大きくなる。
[0132] 以下同様の処理が繰り返され、パルス Pa、 Pbの間隔がさらに広がると、第 2バース ト波 Bbと受信信号 Rとが重なり合う時間が短くなり、ベースバンド成分 I' 、 Q' に基 づ 、て得られる受信信号 Rの振幅値 Vは徐々に小さくなる。
[0133] したがって、最大の振幅値 Vが得られたときのパルス間隔 Tdxを求め、光速 XTdx Z2を算出すれば、物体 laまでの距離を把握することができる。 [0134] そして、最大振幅値等から物体 laの材質 (反射率が高 、か否か)等も推定すること ができる。
[0135] 制御部 50は、上記のような探査処理を行って物体 laの存在、距離などの情報を求 め、必要なとき、例えば,反射率が高い物体が近くにあるような場合にアラームを出 力して警告する。
[0136] 上記したように、第 1バースト波 Baと第 2バースト波 Bbをスィッチ 23により送信部 25 と受信部 30に振り分ける構成の場合、第 1バースト波 Baがスィッチ 23を介して受信 部 30にリークすることが考えられる。
[0137] しかるに、前記したように、スィッチ 23のオンオフ比は 35〜51dB程得られると共に 、第 1バースト波 Baのリーク成分のレベルは非常に小さいので、このときのリーク成分 は直交検波回路 30dを正常動作させるレベルにはならず、検波出力は無視できる程 小さい。
[0138] また、逆に、第 2バースト波 Bbがスィッチ 23を介して送信部 25にリークすることが考 えられる。
[0139] しかるに、この場合も、前記と同様にそのレベルは非常に小さぐし力も、出力時間 は Ins程度と非常に短かいので、このときのリーク成分により本来の短パルス波の出 力が制限されることはなぐそのスペクトラムを規定のスペクトラムマスク内に収めるこ とがでさる。
[0140] (第 2実施形態)
図 12は、本発明の第 2の実施形態による短パルスレーダ 20' の構成を説明するた めに示すブロック図である。
[0141] なお、図 12において、前述した図 1に示される第 1の実施形態による短パルスレー ダ 20の構成と同様に構成される部分については、同一参照符号を付してそれらの説 明を省略するのとする。
[0142] 上記第 1の実施形態では、可変周期パルス Peの立ち上がりと立ち下がりのタイミン グにそれぞれ同期するように第 1パルス Paと第 2パルス Pbを生成しているので、その 間隔をゼロまで小さくするためには可変周期ノ ルス Peの周期を、例えば、 Insまで短 くしなければならず、実現が困難で、近距離の探査が難しくなることが考えられる。 [0143] また、たとえ対パルス発生器 21でこのような短い間隔の対パルスを発生できたとし ても、スィッチ 23の切り換え速度を極めて高速にしなければならず、その点において も実現が困難となることが考えられる。
[0144] そこで、この第 2の実施形態による短パルスレーダ 20' では、スィッチ 23から送信 部 25に出力された第 1バースト波 Baを固定遅延器 25dにより所定時間遅延して、探 查対象空間 1へ放射することによって、上述した近距離の探査が難しくなるという問 題を解決することができるようにして 、る。
[0145] この場合、対パルス発生器 21において出力可能な第 1パルス Paと第 2パルス Pbと の間で設定可能な最小遅延時間 TdOに探査対象空間 1に放射する短パルス波 Ptの パルス幅(Ins)を加えた所定遅延時間を固定遅延器 25dによって与えることにより、 空間に出射される短パルス波 Ptに対する第 2バースト波 Bbの遅延時間をそのパルス 幅とほぼ等しくすることができ、至近距離力もの探査が可能となる。
[0146] なお、図 12では、固定遅延器 25dの挿入位置をアンテナ 25cへの給電ラインで兼 用するようにしている。
[0147] しかるに、固定遅延器 25dは、スィッチ 23とアンテナ 25cの間の任意の位置に挿入 することができると共に、複数の固定遅延器を送信部 25内に分散して挿入するように してちよい。
[0148] また、遅延時間が異なる複数の固定遅延器 25dを送信部 25に選択的に挿入でき るように構成して探査距離を広い間隔で可変し、その広い間隔の間を対パルス発生 器 21の遅延時間 Tdの可変制御で補間することも可能である。
[0149] また、前記実施形態では、スィッチ 23により第 1バースト波 Baと第 2バースト波 Bbを それぞれ送信部 25と受信部 30に振り分けている。
[0150] しかるに、バースト発振器 22と送信部 25の間をオンオフするスィッチ (前記スィッチ 23a)のみを設け、送信部 25には前記同様に第 1バースト波 Baだけが入力され、受 信部 30には第 1バースト波 Baと第 2バースト波 Bbが入力されるように構成してもよい
[0151] この場合、直交検波回路 30dには本来のローカル信号としての第 2バースト波 Bbが 入力されると共に、第 1バースト波 Baもローカル信号として入力されることになる。 [0152] しかるに、この第 1バースト波 Baによるローカル信号と同タイミングに直交検波回路 30dに入力される受信信号は、探査に不要なノイズ成分であり、し力もそのタイミング が分力つて 、るので、信号処理部 40で容易に除去することができる。
[0153] したがって、以上のような本発明によれば、従来技術の問題を解決するため、送信 指示信号を受ける毎に、所定幅の第 1パルスと、該第 1パルスと同一幅で予め設定さ れた時間だけ遅延した第 2パルスとを含む 1対のパルスを発生し、該 1対のパルスのう ち先に発生した第 1パルスに基づいてバースト波の短パルス波を空間に放射させるこ とにより、 UWBレーダとして規定されているスペクトルマスクを遵守しながら RR電波 発射禁止帯への妨害が起こらないようにすることができる送信系を有すると共に、該 1 対のパルスのうち後に発生した第 2パルスをローカル信号に用いて直交検波すること により、ダイナミックレンジが広く高感度検波を行うことができる受信系を有する短パ ルスレーダ及びその制御方法を提供することができる。

Claims

請求の範囲
[1] 送信指示信号を受ける毎に、所定幅の第 1パルスと、該第 1パルスと同一幅で該第 1パルスより予め設定された時間だけ遅延した第 2パルスとを含む 1対のパルスとして 発生する対パルス発生器と、
前記対パルス発生器カゝら出力される前記第 1及び第 2パルスを含む 1対のパルスが 入力されている期間に発振動作を行って、所定のキャリア周波数の信号を第 1バース ト波として前記第 1パルスに同期して出力すると共に、前記所定のキャリア周波数の 信号を第 2バースト波として前記第 2パルスに同期して出力し、前記第 1及び第 2パル スを含む 1対のパルスが入力されていない期間は前記発振動作を停止させるバース ト発振器と、
前記バースト発振器力 前記第 1パルスに同期して出力される前記第 1バースト波 を探査対象空間へ放射する送信部と、
前記送信部から前記探査対象空間へ放射された前記第 1バースト波の反射波を受 信し、該受信した信号を、前記バースト発振器力 前記第 2パルスに同期して出力さ れる第 2バースト波をローカル信号として検波する受信部と、
前記送信指示信号を前記対パルス発生器に出力すると共に、該対パルス発生器 が出力する第 1パルスと第 2パルスとの間隔を可変制御する制御部と、
を具備する短パルスレーダ。
[2] 前記受信部は、前記受信信号を前記第 2バースト波をローカル信号として直交検 波することを特徴とする請求項 1に記載の短パルスレーダ。
[3] 前記バースト発振器と前記送信部との間及び前記バースト発振器と前記受信部と の間に設けられ、前記バースト発振器力 出力される前記第 1または第 2バースト波 を前記送信部または前記受信部のいずれかに選択的に入力するためのスィッチと、 前記スィッチを制御して、前記バースト発振器から出力される前記第 1バースト波を 前記送信部に入力させ、前記第 2バースト波を前記受信部に入力させるスィッチ切 換回路と、 をさらに具備することを特徴とする請求項 1に記載の短パルスレーダ。
[4] 前記送信部は、前記バースト発振器から出力される前記第 1バースト波に固定の遅 延を与える固定遅延器を有して ヽることを特徴とする請求項 1に記載の短パルスレー ダ。
[5] 前記対パルス発生器は、
所定周波数のクロック信号と、前記制御部からの前記遅延時間に対応した所定ビッ ト数 Lの周波数データとを受け、正弦波 1周期分の波形データを記憶しているアドレ ス長の内部のリードオンリメモリに対して、前記周波数データを前記クロック信号の周 期で積算した値でアドレス指定して前記波形データを順次読み出してデジタル Zァ ナログ変換することにより、前記クロック信号の所定周波数、前記アドレス長及び前記 周波数データで決まる周波数の正弦波状の信号を出力するダイレクトデジタルシン セサイザ(DDS)と、
前記 DDSから出力される前記正弦波状の信号の高域成分を除去して正弦波信号 を出力するローパスフィルタ(LPF)と、
前記 LPFから出力される前記正弦波信号に対する波形整形処理を行 ヽ、デューテ ィ比 50で互いにレベルが反転した前記正弦波状の信号の周波数に対応した周期の 2相の第 1及び第 2の可変周期パルスを出力する波形整形回路と、
前記波形整形回路から出力される前記第 1の可変周期パルスが入力され、前記送 信指示信号が入力されて力 前記第 1の可変周期パルスのレベルが最初に立ち下 力 タイミングに同期した所定幅の第 1パルスを出力する第 1パルス発生回路と、 前記波形整形回路から出力される前記第 2の可変周期パルスが入力され、前記送 信指示信号が入力されて力 前記第 2の可変周期パルスのレベルが最初に立ち下 力 ¾タイミングに同期した所定幅の第 2パルスを出力する第 2パルス発生回路と、 第 1パルス発生回路から出力される前記第 1パルス及び前記第 2パルス発生回路 力 出力される前記第 2パルスとの論理和をとるオア回路と、
を備えたことを特徴とする請求項 1に記載の短パルスレーダ。
[6] 前記バースト発振器は、共振器を負荷とする増幅器の出力を帰還回路により前記 増幅器の入力側に正帰還して前記共振器の共振周波数でもって発振させるように構 成されていると共に、前記増幅器の入力端あるいは出力端とアースラインとの間を、 スィッチ回路により開閉し、前記バースト発振器をして発振動作状態と発振停止状態 とを切り換えるように構成されて ヽることを特徴とする請求項 1に記載の短パルスレー ダ。
[7] 前記バースト発振器は、共振器を負荷とする増幅器の出力を帰還回路により前記 増幅器の入力側に正帰還して前記共振器の共振周波数でもって発振させるように構 成されていると共に、前記増幅器の電源供給ラインにスィッチ回路を接続すること〖こ より、前記増幅器に対する電源の供給をオンオフ規制し、前記バースト発振器をして 発振動作状態と発振停止状態とに切り換えるように構成されていることを特徴とする 請求項 1に記載の短パルスレーダ。
[8] 前記バースト発振器は、共振器を負荷とする増幅器の出力を帰還回路により前記 増幅器の入力側に正帰還して前記共振器の共振周波数でもって発振させるように構 成されていると共に、前記増幅器の電源供給ラインに第 1のスィッチ回路を接続する ことにより、前記増幅器に対する電源の供給をオンオフ規制し、前記バースト発振器 をして発振動作状態と発振停止状態とに切り換えるように構成されており、さらに前 記第 1のスィッチ回路と反対の関係で開閉動作する第 2のスィッチ回路を用い、前記 第 1のスィッチ回路により前記増幅器に対する電源供給が停止している間だけ前記 第 2のスィッチ回路を閉じて前記共振器に所定電流を流しておき、前記第 1のスイツ チ回路が閉じて前記増幅器に対する電源が供給されるタイミングに前記第 2のスイツ チ回路を開くことにより、前記共振器に過度現象による共振周波数の信号成分を発 生させ、前記バースト発振器をして発振動作状態に速やかに移行させることを特徴と する請求項 1に記載の短パルスレーダ。
[9] 前記スィッチは、共通接点と、第 1及び第 2の接点とを有し、前記共通接点と前記第 1の接点を介して前記第 1バースト波を前記送信部に入力させると共に、前記共通接 点と前記第 2の接点を介して前記第 2バースト波を前記受信部に入力させる 1回路 2 接点型のスィッチ力 構成されて ヽることを特徴とする請求項 3に記載の短パルスレ ーダ。
[10] 前記スィッチは、前記第 1バースト波を前記送信部に入力させる第 1のスィッチと、 前記第 2バースト波を前記受信部に入力させる第 2のスィッチとから構成されているこ とを特徴とする請求項 3に記載の短パルスレーダ。
[11] 前記第 1及び第 2のスィッチは、それぞれ、 ブリッジ接続された第 1乃至第 4のダイオードと、
前記第 1乃至第 4のダイオードのうち逆方向接続された第 1の 2つのダイオードの接 続点からアースの間に逆方向に挿入された第 5のダイオードと、
前記第 1乃至第 4のダイオードのうち逆方向接続された第 2の 2つのダイオードの接 続点からアースの間に順方向に接続された第 6のダイオードと、
前記第 1の 2つのダイオードの接続点と前記第 2の 2つのダイオードの各逆方向接 続点の間に接続され、前記スィッチ切換回路からの切換信号のレベルに応じて電流 の方向が反転される電流源とを備え、
前記電流源の電流の方向が、前記第 5及び第 6のダイオードをオフ、前記第 1乃至 第 4のダイオードをオンとする方向であるときのみ、前記第 1及び第 3のダイオードの 接続点に入力される第 1または第 2バースト波を前記第 2及び第 4のダイオードの接 続点から出力するように構成されていることを特徴とする請求項 10に記載の短パルス レーダ。
対パルス発生器、バースト発振器、受信部、送信部及び制御部を準備するステップ と、
前記制御部によって、送信指示信号を出力するステップと、
前記対パルス発生器によって、前記制御部からの前記送信指示信号を受ける毎に 、所定幅の第 1パルスと、該第 1パルスと同一幅で予め設定された時間だけ該第 1パ ルスよりも遅延した第 2パルスとを含む 1対のパルスを発生するステップと、
前記制御部によって、前記対パルス発生器が出力する第 1パルスと第 2パルスとの 間隔を可変制御するステップと、
前記バースト発振器によって、前記対パルス発生器力 出力される前記第 1及び第 2パルスを含む 1対のパルスを受けている期間に発振動作を行って所定のキャリア周 波数の信号を第 1バースト波として前記第 1パルスに同期して出力すると共に、前記 所定のキャリア周波数の信号を第 2バースト波として前記第 2パルスに同期して出力 し、前記第 1及び第 2パルスを含む 1対のパルスが入力されていない期間に前記発 振動作を停止するステップと、
前記送信部によって、前記バースト発振器力 前記第 1パルスに同期して出力され る前記第 1バースト波を短パルス波として探査対象空間へ放射するステップと、 前記受信部によって、前記送信部から前記探査対象空間へ放射された前記第 1バ 一スト波による短パルス波の反射波を受信し、該受信した信号を、前記バースト発振 器力 前記第 2パルスに同期して出力される第 2バースト波をローカル信号として検 波するステップと、
を具備する短パルスレーダの制御方法。
[13] 前記検波するステップは、前記受信部によって、前記受信した信号を前記第 2バー スト波をローカル信号として直交検波することを特徴とする請求項 12に記載の短パ ルスレーダの制御方法。
[14] スィッチ及びスィッチ切換回路を準備するステップと、
前記スィッチによって、前記バースト発振器から出力された前記第 1及び第 2バース ト波を前記送信部または前記受信部のいずれかに選択的に入力するステップと、 前記スィッチ切換回路によって、前記スィッチを制御して、前記バースト発振器から 出力された前記第 1バースト波を前記送信部に入力させ、前記第 2バースト波を前記 受信部に入力させるステップと、
をさらに備えたことを特徴とする請求項 12に記載の短パルスレーダの制御方法。
[15] 前記送信部には、前記第 1バースト波に所定時間の遅延を与える固定遅延器が設 けられていることを特徴とする請求項 12に記載の短パルスレーダの制御方法。
[16] 前記対パルス発生器は、
所定周波数のクロック信号と、前記制御部からの前記遅延時間に対応した所定ビッ ト数 Lの周波数データとを受け、正弦波 1周期分の波形データを記憶しているアドレ ス長の内部のリードオンリメモリに対して、前記周波数データを前記クロック信号の周 期で積算した値でアドレス指定して前記波形データを順次読み出してデジタル Zァ ナログ変換することにより、前記クロック信号の所定周波数、前記アドレス長及び前記 周波数データで決まる周波数の正弦波状の信号を出力するダイレクトデジタルシン セサイザ(DDS)と、
前記 DDSから出力される前記正弦波状の信号の高域成分を除去して正弦波信号 を出力するローパスフィルタ(LPF)と、 前記 LPFから出力される前記正弦波信号に対する波形整形処理を行 ヽ、デューテ ィ比 50で互いにレベルが反転した前記正弦波状の信号の周波数に対応した周期の 2相の第 1及び第 2の可変周期パルスを出力する波形整形回路と、
前記波形整形回路から出力される前記第 1の可変周期パルスが入力され、前記送 信指示信号が入力されて力 前記第 1の可変周期パルスのレベルが最初に立ち下 力 タイミングに同期した所定幅の第 1パルスを出力する第 1パルス発生回路と、 前記波形整形回路から出力される前記第 2の可変周期パルスが入力され、前記送 信指示信号が入力されて力 前記第 2の可変周期パルスのレベルが最初に立ち下 力 ¾タイミングに同期した所定幅の第 2パルスを出力する第 2パルス発生回路と、 第 1パルス発生回路から出力される前記第 1パルス及び前記第 2パルス発生回路 力 出力される前記第 2パルスとの論理和をとるオア回路と、
を備えたことを特徴とする請求項 12に記載の短パルスレーダの制御方法。
[17] 前記バースト発振器は、共振器を負荷とする増幅器の出力を帰還回路により前記 増幅器の入力側に正帰還して前記共振器の共振周波数でもって発振させるように構 成されていると共に、前記増幅器の入力端あるいは出力端とアースラインとの間を、 スィッチ回路により開閉し、前記バースト発振器をして発振動作状態と発振停止状態 とを切り換えるように構成されていることを特徴とする請求項 12に記載の短パルスレ ーダの制御方法。
[18] 前記バースト発振器は、共振器を負荷とする増幅器の出力を帰還回路により前記 増幅器の入力側に正帰還して前記共振器の共振周波数でもって発振させるように構 成されていると共に、前記増幅器の電源供給ラインにスィッチ回路を接続すること〖こ より、前記増幅器に対する電源の供給をオンオフ規制し、前記バースト発振器をして 発振動作状態と発振停止状態とに切り換えるように構成されていることを特徴とする 請求項 12に記載の短パルスレーダの制御方法。
[19] 前記バースト発振器は、共振器を負荷とする増幅器の出力を帰還回路により前記 増幅器の入力側に正帰還して前記共振器の共振周波数でもって発振させるように構 成されていると共に、前記増幅器の電源供給ラインに第 1のスィッチ回路を接続する ことにより、前記増幅器に対する電源の供給をオンオフ規制し、前記バースト発振器 をして発振動作状態と発振停止状態とに切り換えるように構成されており、さらに前 記第 1のスィッチ回路と反対の関係で開閉動作する第 2のスィッチ回路を用い、前記 第 1のスィッチ回路により前記増幅器に対する電源供給が停止している間だけ前記 第 2のスィッチ回路を閉じて前記共振器に所定電流を流しておき、前記第 1のスイツ チ回路が閉じて前記増幅器に対する電源が供給されるタイミングに前記第 2のスイツ チ回路を開くことにより、前記共振器に過度現象による共振周波数の信号成分を発 生させ、前記バースト発振器をして発振動作状態に速やかに移行させることを特徴と する請求項 12に記載の短パルスレーダの制御方法。
PCT/JP2006/301349 2005-01-28 2006-01-27 短パルスレーダ及びその制御方法 WO2006080457A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP06712515A EP1736795A4 (en) 2005-01-28 2006-01-27 SHORT PULSE RADAR AND METHOD OF CONTROLLING THE SAME
JP2007500606A JP4377940B2 (ja) 2005-01-28 2006-01-27 短パルスレーダ及びその制御方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-021629 2005-01-28
JP2005021629 2005-01-28

Publications (1)

Publication Number Publication Date
WO2006080457A1 true WO2006080457A1 (ja) 2006-08-03

Family

ID=36740481

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/301349 WO2006080457A1 (ja) 2005-01-28 2006-01-27 短パルスレーダ及びその制御方法

Country Status (4)

Country Link
EP (1) EP1736795A4 (ja)
JP (1) JP4377940B2 (ja)
CN (1) CN1942779A (ja)
WO (1) WO2006080457A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7710311B2 (en) * 2004-10-14 2010-05-04 Anritsu Corporation Short range radar small in size and low in power consumption and controlling method thereof
TWI789853B (zh) * 2021-07-29 2023-01-11 立積電子股份有限公司 雷達裝置及干擾抑制方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2509233A3 (en) * 2008-05-27 2012-12-26 Panasonic Corporation Reception device
CN107690751B (zh) * 2015-06-16 2021-01-12 瑞典爱立信有限公司 正交相位检测器电路、正交相位校正器、多天线无线电电路、无线电站和方法
CN105207692B (zh) * 2015-08-31 2018-08-03 海能达通信股份有限公司 无线通讯设备及其控制关时隙功率的方法
JP6568493B2 (ja) * 2016-03-18 2019-08-28 株式会社Soken 物体検知装置
CN110045372B (zh) * 2019-03-11 2021-03-23 西安电子科技大学 超宽带脉冲信号发射装置及超宽带脉冲雷达系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS562709A (en) * 1979-06-11 1981-01-13 Motorola Inc Start*stop oscillator having predetermined start phase
JPS6093331U (ja) * 1983-12-01 1985-06-26 横河・ヒユーレツト・パツカード株式会社 スイツチ回路
JPS61137404A (ja) * 1984-12-10 1986-06-25 Sony Corp スタ−ト・ストツプ発振器
JPS63133704A (ja) * 1986-10-30 1988-06-06 アールシーエー トムソン ライセンシング コーポレイシヨン スタート・ストップ発振器
JPH05312938A (ja) * 1992-05-14 1993-11-26 Ikuo Arai 可変周期相関型探知装置ならびに可変周期相関型信号検出装置
JP2000511281A (ja) * 1996-05-28 2000-08-29 ザ、リージェンツ、オブ、ザ、ユニバーシティ、オブ、カリフォルニア パルス同期によるフィールド外乱センサ
JP2002507728A (ja) * 1998-03-16 2002-03-12 トーマス イー マックエワン 差動パルスレーダー動きセンサー
JP2004507768A (ja) * 2000-08-28 2004-03-11 レイセオン・カンパニー 高性能レーダ励起装置におけるddsスパー緩和

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5117230A (en) * 1991-04-12 1992-05-26 The United States Of America As Represented By The Secretary Of The Army Electronic target radar simulator
US6239736B1 (en) * 1999-04-21 2001-05-29 Interlogix, Inc. Range-gated radar motion detector
WO2005117256A1 (ja) * 2004-05-31 2005-12-08 Anritsu Corporation 発振出力のリークを防止可能とするレーダ用発振器
JP4369956B2 (ja) * 2005-01-28 2009-11-25 アンリツ株式会社 レーダ用発振器

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS562709A (en) * 1979-06-11 1981-01-13 Motorola Inc Start*stop oscillator having predetermined start phase
JPS6093331U (ja) * 1983-12-01 1985-06-26 横河・ヒユーレツト・パツカード株式会社 スイツチ回路
JPS61137404A (ja) * 1984-12-10 1986-06-25 Sony Corp スタ−ト・ストツプ発振器
JPS63133704A (ja) * 1986-10-30 1988-06-06 アールシーエー トムソン ライセンシング コーポレイシヨン スタート・ストップ発振器
JPH05312938A (ja) * 1992-05-14 1993-11-26 Ikuo Arai 可変周期相関型探知装置ならびに可変周期相関型信号検出装置
JP2000511281A (ja) * 1996-05-28 2000-08-29 ザ、リージェンツ、オブ、ザ、ユニバーシティ、オブ、カリフォルニア パルス同期によるフィールド外乱センサ
JP2002507728A (ja) * 1998-03-16 2002-03-12 トーマス イー マックエワン 差動パルスレーダー動きセンサー
JP2004507768A (ja) * 2000-08-28 2004-03-11 レイセオン・カンパニー 高性能レーダ励起装置におけるddsスパー緩和

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
GRESHAM I.: "Ultra-Wideband Radar Sensors for Short-Range Vehicular Applications", IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, vol. 52, no. 9, 2004, pages 2105 - 2122, XP011118093 *
KONDO H.: "Junmirihatai Kotaiiki Impulse Radar no Kaihatsu -24GHz-tai UWB Kinkyori Radar-yo RF Module-", PROCEEDINGS OF THE IEICE CONFERENCE, 2004 SOCIETY, 2004, pages S_30 - S_31, XP003002264 *
See also references of EP1736795A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7710311B2 (en) * 2004-10-14 2010-05-04 Anritsu Corporation Short range radar small in size and low in power consumption and controlling method thereof
TWI789853B (zh) * 2021-07-29 2023-01-11 立積電子股份有限公司 雷達裝置及干擾抑制方法

Also Published As

Publication number Publication date
JP4377940B2 (ja) 2009-12-02
CN1942779A (zh) 2007-04-04
EP1736795A1 (en) 2006-12-27
JPWO2006080457A1 (ja) 2008-06-19
EP1736795A4 (en) 2007-08-08

Similar Documents

Publication Publication Date Title
US20080246650A1 (en) Short Range Radar and Method of Controlling the Same
Ma et al. A CMOS 76–81-GHz 2-TX 3-RX FMCW radar transceiver based on mixed-mode PLL chirp generator
US7420503B2 (en) Small-sized low-power dissipation short-range radar that can arbitrarily change delay time between transmission and reception with high time resolution and method of controlling the same
JP2990097B2 (ja) 連続波広帯域精密距離測定レーダ装置
JP4544866B2 (ja) 自動車及び他の商業用途用のパルス圧縮レーダシステム
US7095362B2 (en) Radar measurement device, especially for a motor vehicle, and method for operating a radar measurement device
WO2006080457A1 (ja) 短パルスレーダ及びその制御方法
US7812760B2 (en) Short-range radar and control method thereof
Park et al. 76–81-GHz CMOS transmitter with a phase-locked-loop-based multichirp modulator for automotive radar
KR100675193B1 (ko) 거리를 측정하기 위한 트랜스폰더 시스템 및 방법
JP4850826B2 (ja) スペクトル拡散型レーダ装置およびスペクトル拡散型探知方法
ES2779317T3 (es) Sistemas relacionados con la radiodifusión de banda ultra ancha que comprenden un salto dinámico de frecuencia y de ancho de banda
Zhang et al. 24GHz software-defined radar system for automotive applications
US8115673B1 (en) Self-oscillating UWB emitter-detector
CN104880705A (zh) 一种基于数控振荡器的调频连续波雷达
JP2003172776A (ja) レーダ装置
Dardari Pseudorandom active UWB reflectors for accurate ranging
CN111965605B (zh) 调频连续波信号发射装置、发射调频连续波信号的方法、信号发收装置、电子器件和设备
JP2006226847A (ja) 無線センシング装置及び無線センシング方法
JP3778906B2 (ja) 短パルス発生回路及びその短パルス発生回路を用いたレーダ装置
WO2008107825A1 (en) Compensation of frequency-dependent delays
JP4216240B2 (ja) 短パルスレーダ
CN115407350A (zh) 一种相位式激光测距电路及测距方法
JP4646247B2 (ja) 複合レーダ信号生成装置
JP4298524B2 (ja) レーダ装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2007500606

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2006712515

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10593055

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 200680000129.6

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2006712515

Country of ref document: EP