WO2006080120A1 - 追尾システムおよび自走体 - Google Patents

追尾システムおよび自走体 Download PDF

Info

Publication number
WO2006080120A1
WO2006080120A1 PCT/JP2005/020093 JP2005020093W WO2006080120A1 WO 2006080120 A1 WO2006080120 A1 WO 2006080120A1 JP 2005020093 W JP2005020093 W JP 2005020093W WO 2006080120 A1 WO2006080120 A1 WO 2006080120A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultrasonic
wave
ultrasonic wave
received
self
Prior art date
Application number
PCT/JP2005/020093
Other languages
English (en)
French (fr)
Inventor
Masahiko Hashimoto
Takehiko Suginouchi
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to JP2007500422A priority Critical patent/JP3955314B2/ja
Priority to US11/491,034 priority patent/US7363125B2/en
Publication of WO2006080120A1 publication Critical patent/WO2006080120A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/74Systems using reradiation of acoustic waves, e.g. IFF, i.e. identification of friend or foe
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/66Sonar tracking systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/93Sonar systems specially adapted for specific applications for anti-collision purposes
    • G01S15/931Sonar systems specially adapted for specific applications for anti-collision purposes of land vehicles

Definitions

  • the present invention relates to a tracking system and a self-propelled body used for the tracking system.
  • Tracking that tracks the movement of a moving body such as a person (hereinafter sometimes referred to as "master") by controlling the movement of an autonomous mobile body such as a transfer robot (hereinafter sometimes referred to as "self-propelled body”)
  • master a moving body
  • self-propelled body an autonomous mobile body
  • the system is used in a factory.
  • a tracking device that estimates the position of a master using ultrasonic waves is known.
  • the self-propelled body side is equipped with an ultrasonic transmitter / receiver, transmits ultrasonic waves from the self-propelled body side to the master, and receives the ultrasonic waves reflected by the master on the self-propelled body side.
  • the relative position is measured.
  • each of the master and the self-propelled body is provided with an ultrasonic transmitter / receiver, and the relative position of the master is measured by mutually transmitting and receiving ultrasonic waves (for example, Japanese Patent Publication No. 7-31244). ).
  • the ultrasonic transmitter / receiver on the master side is called a transbonder.
  • a radar tracking device is used as a method for estimating the position of an object to be measured when an obstacle exists between the apparatus for measuring the position of the object and the object to be measured (object).
  • the method used is disclosed (JP-A-8-248125). This method will be described with reference to FIG.
  • a radar device 202 is installed on an inland land of a coastline 201, and the radar device 202 monitors a ship at sea.
  • An obstacle 203 such as an island exists in the monitoring area of the radar device 202, and a blind spot area 204 is formed by the obstacle 203.
  • a radar wave primary reflector 205 is set around the blind spot area 204.
  • Primary reflector 20 On 5th, large berthed ships are used.
  • a sailing vessel that is a tracking body moves with a force of position 206 in the direction 207 as well.
  • the radar radio wave When the tracking body moves to the position 208 in the blind spot area 204, the radar radio wave reaches the primary reflector 205 by the propagation path 210 and is reflected, and reaches the tracking body at the position 208 by the propagation path 211. .
  • the radar radio wave is reflected by the tracking body, reaches the radar apparatus 202 via the propagation path 211, the primary reflector 205, and the propagation path 210 and is received.
  • the radar image is displayed at a position 209 behind the primary reflector 205 of the virtual image power of the tracking body at the position 208. From this information, the position of the tracker in the blind spot area is estimated by using the reflection path.
  • Japanese Patent Laid-Open No. 8-248125 is a method used in a situation where measurement parameters are limited, such as a radar device or a blind spot area of measurement being almost fixed. . Therefore, it is difficult to apply to a tracking system in which environmental conditions change greatly with time.
  • the present invention provides a tracking system that can estimate the relative position of a moving object even when a direct path connecting the moving object and the self-propelled object is blocked by an obstacle.
  • One of the objectives is to provide a self-propelled body used for the above.
  • a tracking system is a tracking system including a transbonder arranged on a moving body and a self-propelled body that tracks the transbonder.
  • the body includes environment detection means for obtaining reflection environment information regarding the wall surface existing around the self-propelled body and the transbonder, and a first ultrasonic transmission / reception device. Equipped with an ultrasonic transceiver,
  • the self-propelled body transmits a first ultrasonic wave from the first ultrasonic transmission / reception device
  • the transponder receives the first ultrasonic wave by the second ultrasonic transmission / reception device, and then transmits the second ultrasonic wave from the second ultrasonic transmission / reception device in response to the reception of the first ultrasonic wave.
  • the self-propelled body directly receives the second ultrasonic wave by the first ultrasonic transmission / reception device, thereby directly transferring the second ultrasonic transmission / reception device to the first ultrasonic transmission / reception device.
  • the self-propelled body uses the received information and the reflected environment information to determine whether the received second ultrasonic wave is the direct wave or the reflected wave; Then, based on the determination, the received information is processed to estimate the position of the transbonder and track the transbonder.
  • “ultrasound” means a sound wave having a frequency of 20 kHz or more.
  • the “wall surface” is a surface that forms a certain angle with respect to the floor surface (for example, 90 ° in the range of 80 ° to 100 °), Means a reflective surface.
  • a glass window or the like corresponds to this wall surface.
  • the wall surface may be a flat surface or a curved surface.
  • the self-propelled body of the present invention is a self-propelled body used in a tracking system including a transbonder arranged in a moving body and a self-propelled body that tracks the transbonder. And an environment detection means for obtaining reflection environment information about the wall surface existing around the transbonder, and an ultrasonic transmission / reception device,
  • the second ultrasonic wave transmitted / received by the ultrasonic wave transmitting / receiving apparatus receives the second ultrasonic wave transmitted as the response signal to the first ultrasonic wave from the second ultrasonic wave transmitting / receiving apparatus.
  • the self-propelled vehicle and the tracking system of the present invention are based on a direct wave between a moving object and a self-propelled object that tracks the moving object, and a reflection path generated by an object existing in the surrounding environment.
  • the relative position of the moving object is estimated using the reflected wave. Therefore, the self-running of the present invention
  • the body and tracking system can track the transponder by estimating the position of the transponder even when the direct path between the transponder and the self-propelled body that tracks the transbonder is interrupted. is there.
  • FIG. 1 shows an example of a tracking state in the tracking system of the present invention.
  • FIG. 2 schematically shows an outline of a tracking device and a transbonder in an example of the tracking system of the present invention.
  • FIG. 3 is a flowchart showing an ultrasonic propagation path estimation method in an example of the tracking system of the present invention.
  • FIG. 4 shows an example of the obstacle data and segmentation state obtained in the state of FIG.
  • FIG. 5 shows an example of a mirror image and an estimated path generated in the state of FIG.
  • FIG. 6 is a flowchart showing a method for estimating the relative position of the transbonder in an example of the tracking system of the present invention.
  • FIG. 7 shows the relationship between the waveform of the second ultrasonic wave received in the state of FIG. 1 and the clipping window.
  • FIG. 8 shows another example of the tracking state in the tracking system of the present invention.
  • FIG. 9 shows an example of the obstacle data and segmentation state obtained in the state of FIG.
  • FIG. 10 shows an example of a mirror image and an estimated path generated in the state of FIG.
  • FIG. 11 shows the relationship between the waveform of the second ultrasonic wave received in the state of FIG. 8 and the clipping window.
  • FIG. 12 shows another example of the tracking state in the tracking system of the present invention.
  • FIG. 13 shows the relationship between the waveform of the second ultrasonic wave received in the state of FIG. 12 and the clipping window.
  • Figure 14 shows the obstacle data and segmentation status obtained in the state of Figure 12. An example of the state is shown.
  • FIG. 15 shows an example of a mirror image and an estimated path generated in the state of FIG.
  • FIG. 16 schematically shows a conventional technique using radar reflection to identify the position of an object.
  • the tracking system of the present invention is a tracking system including a transbonder arranged on a moving body and a self-propelled body that tracks the transbonder.
  • the self-propelled body includes an environment detection means for obtaining reflection environment information about the wall surface existing around the self-propelled body and the transbonder, and a first ultrasonic transmitting / receiving device.
  • the transbonder includes a second ultrasonic transmission / reception device. In this tracking system, the following tracking cycle is repeated.
  • the self-propelled body transmits the first ultrasonic wave from the first ultrasonic transmission / reception device.
  • the transbonder receives the first ultrasonic wave by the second ultrasonic transmission / reception device, and then transmits the second ultrasonic wave using the second ultrasonic transmission / reception device power as a trigger.
  • the frequency of the second ultrasonic wave may be the same as or different from the frequency of the first ultrasonic wave.
  • the self-propelled body receives the second ultrasonic wave by the first ultrasonic transmission / reception device, so that the direct wave that directly reaches the first ultrasonic transmission / reception device from the second ultrasonic transmission / reception device. And the received information on the reflected wave that reaches the first ultrasonic transmission / reception device from the second ultrasonic transmission / reception device and is reflected by the wall surface.
  • the reception information includes information related to the reception time of the second ultrasonic wave and information related to the propagation direction of the second ultrasonic wave. Using the reception time of the second ultrasonic wave, the time required to transmit the first ultrasonic wave and receive the second ultrasonic wave is also calculated.
  • the self-propelled body uses the received information and the reflected environment information to determine whether the received second ultrasonic wave is a direct wave or a reflected wave. Based on this, the received information is processed to estimate the position of the transbonder. The self-propelled vehicle then moves based on the estimated position. Track Lance Bonda. From the received information, information on the propagation direction of the second ultrasonic wave and the distance to the transponder can be obtained. If it is determined that the received second ultrasonic wave is a direct wave, the position of the transbonder is estimated using the information obtained with the received information power as it is. On the other hand, if it is determined that the received second ultrasonic wave is a reflected wave, the received information power is processed so as to correspond to the reflected wave using the reflected environment information, and the transponder is processed. Is estimated.
  • the determination as to whether the received second ultrasonic wave is a force reflected wave, which is a direct wave can be made by, for example, directly transmitting a signal in a predetermined time region from the received second ultrasonic signal. Alternatively, it can be performed by judging that it is a reflected wave and separating the signal of that portion.
  • the time required to perform one processing cycle varies depending on the tracking conditions, but in a typical example, it is approximately 30 milliseconds to 500 milliseconds.
  • the ultrasonic transmission / reception apparatus is an apparatus for transmitting / receiving ultrasonic waves, and includes an ultrasonic transmission apparatus and an ultrasonic reception apparatus.
  • the ultrasonic transmission device includes an ultrasonic transmitter and may further include a transmission circuit for driving the ultrasonic transmitter.
  • the ultrasonic receiver includes an ultrasonic receiver and may further include a receiving circuit for driving the ultrasonic receiver.
  • the first ultrasonic transmission / reception device usually includes two or more ultrasonic receivers arranged at a certain distance. By using two or more ultrasonic receivers, the direction of the ultrasonic waves reached can be specified. Usually, two ultrasonic receivers are used. The two ultrasonic receivers are arranged at regular intervals (for example, about 10 cm to about Lm) so that the straight line connecting each other is almost parallel to the floor surface.
  • the reflection environment information includes information related to the arrangement of the wall surface that reflects ultrasonic waves. This reflection environment information is obtained using the environment detection means before the step (iv) above.
  • the self-propelled body uses the predicted position information on the predicted position of the transbonder and the reflection environment information to perform the first ultrasonic transmission / reception. Propagation of ultrasonic waves including a direct path directly connecting the apparatus and the second ultrasonic transmission / reception apparatus, and a reflection path connecting the first ultrasonic transmission / reception apparatus and the second ultrasonic reception apparatus via the wall surface A route may be estimated.
  • the self-propelled body makes the above determination using the propagation path and the received information, that is, whether the received second ultrasonic wave is a force reflected wave that is a direct wave. Judgment may be made.
  • the predicted position information is information related to the predicted relative position of the transbonder, and is determined in consideration of the relative position of the transbonder estimated in the immediately preceding tracking cycle. Note that information regarding the predicted position may not be obtained at the start of tracking. In that case, it is only necessary to perform tracking using the normal tracking method without using the reflected wave for only one cycle after the start of tracking.
  • the received information power is calculated.
  • the transmission position of the ultrasonic wave 2 (virtual transmission position) is estimated as the position of the transponder, and if it is determined that the received second ultrasonic wave is a reflected wave, the wall surface that reflected the reflected wave is reflected.
  • the position of the transponder may be estimated as a position symmetrical to the virtual transmission position with respect to the obstacle data indicating the above. Based on the received information, the propagation direction of the second ultrasonic wave and the propagation distance of the second ultrasonic wave can be calculated, and from this, the virtual transmission position of the second ultrasonic wave can be calculated.
  • the self-propelled body When the first and second ultrasonic waves are propagated through the direct path, the first reception time period when the second ultrasonic wave is expected to be received and the first and second ultrasonic waves follow the reflection path. A second reception time zone in which the second ultrasonic wave is expected to be received when propagating through the second ultrasonic wave may be calculated. Then, even if it is determined that the second ultrasonic wave received in the first reception time zone is a direct wave, and the second ultrasonic wave received in the second reception band is a reflected wave, Good.
  • the propagation path of the ultrasonic wave is estimated by comparing the reception time with the calculated reception time zone. .
  • a reception time zone in which the second ultrasonic wave is expected to be received is calculated. Then, use this to estimate the propagation path.
  • the predicted position information may include information on the moving speed of the moving object. Good. By taking into account the moving speed (especially the upper limit) of the moving object, it is possible to increase the accuracy of the determination of the ultrasonic propagation path. Further, the predicted position information may include information related to the movement trajectory of the moving object.
  • the second supersonic wave is detected from the received information.
  • the propagation path of the sound wave is calculated and the propagation path does not intersect the obstacle data indicating the wall surface, it is determined that the received second ultrasonic wave is a direct wave, and the propagation path indicates the wall surface.
  • crossing the obstacle data it may be judged that the received second ultrasonic wave is a reflected wave.
  • step (iv) if it is determined in step (iv) that the received second ultrasonic wave is a direct wave, the received information power is calculated. If the transmission position of the ultrasonic wave (virtual transmission position) is estimated as the position of the transbonder and it is determined that the received second ultrasonic wave is a reflected wave, the obstacle indicating the wall that reflected the reflected wave A position symmetrical to the virtual transmission position with respect to the physical data may be estimated as the position of the transbonder.
  • the environment detection means may be at least one sensor selected from a photoelectric sensor and an ultrasonic sensor force.
  • a photoelectric sensor When using a photoelectric sensor, light emitted from a light source of the photoelectric sensor and reflected by an object existing around the self-propelled body is usually measured by a light receiving element of the photoelectric sensor.
  • an ultrasonic sensor when an ultrasonic sensor is used, the ultrasonic wave transmitted from the ultrasonic transmitter and reflected by an object existing around the self-propelled body is measured by the ultrasonic receiver.
  • the ultrasonic transmitter / receiver of the ultrasonic sensor is usually equipped separately from the first ultrasonic transmitter / receiver. Reflected environment information about the wall surface around the self-propelled body and transbonder can be obtained from the sensor measurement data. The measurement data is processed with smoothing and segmentation! /. Details of these will be described later.
  • the moving body may be a person and the self-propelled body may be a cart.
  • Such a system can be used in situations where it is necessary to transport packages with people, such as factories, shopping centers, airports, and stations.
  • the self-propelled body of the present invention is a self-propelled body of the tracking system.
  • This self-propelled vehicle obtains reflection environment information about the wall surface around the self-propelled vehicle and the transbonder. And a first ultrasonic transmission / reception device. This self-propelled vehicle repeats the following tracking cycle.
  • the first ultrasonic wave is transmitted from the ultrasonic transmission / reception device.
  • the second ultrasonic wave transmitted by the transponder force as a response signal to the first ultrasonic wave is received by the ultrasonic wave transmitting / receiving device, whereby the first ultrasonic wave is transmitted from the second ultrasonic wave transmitting / receiving device.
  • the processes (I), (II), and (III) correspond to the above-described processes (i), (iii), and (iv), respectively.
  • the self-propelled body of the present invention may have the characteristics of the above-described self-propelled body of the tracking system of the present invention.
  • FIG. 1 shows an overview of the system of the present invention.
  • the self-propelled vehicle 1 that moves autonomously is a cart that carries luggage.
  • the self-propelled body 1 includes a tracking device 10.
  • the moving body 2 is a person, and a transbonder 20 having an ultrasonic transmission / reception function is disposed on the back surface of the moving body 2.
  • the moving body 2 moves in the direction of the arrow in the passage 4 to which the side road 3 is connected, and the self-propelled body 1 tracks the moving body 2 and moves in the direction of the moving body 2.
  • the self-propelled body 1 tracks the moving body 2 and moves in the direction of the moving body 2.
  • the relative position of the transponder 20 with respect to the tracking device 10 is estimated by transmitting and receiving ultrasonic waves between the tracking device 10 and the transbonder 20. So Then, tracking by the self-propelled vehicle 1 is performed based on the estimated relative position.
  • the ultrasonic wave propagation path between the tracking device 10 of the self-propelled vehicle 1 and the transbonder 20 includes a direct path 8 and a reflection path 9a caused by the wall 6a.
  • a reflection path 9b caused by the wall 6b. Both reflection paths have a single reflection.
  • the use of a reflection path with a single reflection is not possible if the error in position estimation becomes large or the sensitivity decreases due to the attenuation characteristics of ultrasonic waves. Is suitable.
  • FIG. 2 schematically shows an example of the configuration of the tracking device 10 and an example of the transbonder 20.
  • the tracking device 10 includes a first ultrasonic transmission / reception device (first ultrasonic transmission device 11 and first ultrasonic reception device 12) and a photoelectric sensor 13.
  • the ultrasonic transmission device 11 includes an ultrasonic transmitter 11a and a transmission circuit l ib connected thereto.
  • the ultrasonic receiving device 12 includes two ultrasonic receivers 12a and 12b and receiving circuits 12c and 12d connected to them. These devices and sensors are connected to a processing unit (CPU) 14.
  • CPU processing unit
  • the arithmetic processing unit 14 is connected to a force provided internally for storing data such as past trajectory data of the transbonder 20 or an external storage device.
  • the arithmetic processing unit 14 estimates the propagation path of ultrasonic waves and processes received information, and thereby estimates the relative position of the transbonder 20.
  • the transbonder 20 includes a second ultrasonic transmission / reception device (a second ultrasonic transmission device 21 and a second ultrasonic reception device 22).
  • the ultrasonic transmission device 21 includes an ultrasonic transmitter 21a and a transmission circuit 21b.
  • the ultrasonic receiver 22 includes an ultrasonic receiver 22a and a receiving circuit 22b. These devices are connected to the arithmetic processing unit 23.
  • the normal speed can be set to about 4 km / h, and the maximum speed can be set to about 6 km / h (about 1.6 mZs).
  • the maximum relative distance is determined by considering the time delay when the self-propelled vehicle 1 starts moving from the stationary state at the start of tracking. Can be set to about 5m to 10m.
  • the frequency of the ultrasonic wave to be used can be determined in consideration of parameters such as the measurement limit and the length of the reflection path, and the attenuation characteristics of the ultrasonic wave in the atmosphere.
  • an ultrasonic transmitter and an ultrasonic receiver using a piezoelectric ceramic flexural vibrator, or an ultrasonic transmitter using a PVDF piezoelectric polymer film as a vibrator, and A receiver can be used.
  • the first ultrasonic wave W1 is transmitted.
  • the first ultrasonic wave W1 is received by the ultrasonic receiver 22 of the transbonder 20.
  • the transponder 20 Using this reception as a trigger signal, the transponder 20 returns the second ultrasonic wave W2 from the ultrasonic transmitter 21.
  • the second ultrasonic wave W2 is received by the ultrasonic receiver 12 (two ultrasonic receivers 12a and 12b) of the self-propelled body 1.
  • the flying direction of the second ultrasonic wave W2 is estimated from the difference between the reception signals of the two ultrasonic receivers 12a and 12b.
  • the distance between the tracking device 10 and the transbonder 20 is estimated from the time required from the transmission of the first ultrasonic wave W1 to the reception of the second ultrasonic wave W2. Using the reception information of the second ultrasonic wave, the relative position of the transbonder 20 with respect to the tracking device 10 is determined.
  • the ultrasonic wave propagates directly through the path 8 and also propagates through the reflection paths 9a and 9b.
  • the relative position of the transbonder 20 is estimated using direct waves and reflected waves.
  • the photoelectric sensor 13 is used to detect obstacles around the self-propelled body 1 (tracking device 10) and the mobile body 2 (transponder 20) to obtain obstacle data (S31).
  • the photoelectric sensor scans a predetermined angle (for example, 90 ° force is also about 150 °) around the traveling direction of the self-propelled body 1.
  • the measurement area 5 of the photoelectric sensor 13 is shown in FIG.
  • Obstacle data 40 obtained in the situation of FIG. 1 is indicated by a thick line in FIG.
  • the length from the tracking device 10 to the obstacle data 40 corresponds to the distance from the tracking device 10 to the obstacle.
  • the measurement area 5 of the photoelectric sensor has a dead zone 5a (shown with hatching in FIG. 4). Exists.
  • the obtained obstacle data is smoothed in order to remove data disturbance due to environmental noise (S32 in Fig. 3).
  • the obstacle data is divided (segmented) in consideration of the continuity of the smoothed obstacle data 40 (S33). Specifically, the obstacle data 40 is divided at a portion where the continuity of the obstacle data 40 is interrupted, and the obstacle data 40a, 40b, 40c and 40d are separated as shown in FIG.
  • the obstacle data 40a corresponds to the wall 6a
  • the obstacle data 40b corresponds to the wall 6c
  • the obstacle data 40d corresponds to the wall 6b.
  • Obstacle data 40e to 40h which exists between the obstacle data 40a to 40d and extends linearly in the radial direction, indicate the discontinuity of the obstacle.
  • the obstacle data 40e is generated because the detection data of the wall 6a and the detection data of the wall 6c far from the wall 6a are adjacent to each other. Obstacle data in such a portion is discontinuous in the radial direction. This is because the photoelectric sensor scans the probe light for obstacle detection in a fan shape.
  • the obstacle data is divided (segmented) from the obstacle data 40 along the direction of the obstacle data 40e to 40h linearly extending in the radial direction (broken line in the figure). Since the measured obstacle data 40 has irregularities in the data due to the influence of environmental noise, etc., segmentation is executed after smoothing by averaging processing or the like. You can also perform smoothing after performing segmentation!
  • FIG. 5 shows obstacle data after smoothing and segmentation (hereinafter sometimes referred to as “obstacle data 50”).
  • the obstacle data 50a to 50d correspond to the obstacle data 40a to 40d in FIG.
  • the obstacle data 50a to 50d are analyzed (S35).
  • a segment that can be determined to be an obstacle is selected from the obstacle data 50.
  • the predicted position information S 34 of the transbonder 20 and the obstacle data 50 it is determined which obstacle data corresponds to the mobile body 2.
  • the position of the transbonder 20 estimated in the immediately preceding tracking cycle is used as the predicted position information S34 indicating the predicted position 51 of the transbonder 20.
  • the data 50c is the moving body 2.
  • Obstacle data 50a, 50b and 50d It is determined that the obstacle (wall surface) reflects ultrasonic waves.
  • the step (S35) of analyzing the obstacle data provides the reflection environment information regarding the arrangement of the wall surfaces existing around the self-propelled body 1 and the moving body 2.
  • an ultrasonic propagation path is estimated (S36).
  • the route estimation data including the direct route estimation data when the ultrasonic wave directly reaches the tracking device 10 from the transponder 20 and the reflection route estimation data when the reflection wave reaches the tracking device 10 is obtained. It is done.
  • the direct route can be estimated from the predicted position 51 of the transbonder 20 with respect to the tracking device 10.
  • the reflection path is estimated using the predicted position 51 of the transbonder 20 and reflection environment information.
  • the position of the mirror image (mirror image) of the predicted position 51 is calculated with the obstacle data 50a, 50b and 50d indicating the wall as the symmetry plane (symmetry axis).
  • the mirror images 51a, 51b, and 51d are mirror images having the obstacle data 50a, 50b, and 50d as axes of symmetry, respectively.
  • the predicted position 51 and the mirror image 51a exist at symmetrical positions with the obstacle data 50a corresponding to the wall 6a in FIG. 1 as the symmetry axis.
  • the second ultrasonic wave transmitted from the transbonder 20 is received by the tracking device 10 (specifically, an individual ultrasonic receiver) through the direct path 52.
  • the second ultrasonic wave is received by the tracking device 10 through the reflection path 53a via the wall 6a (obstacle data 50a).
  • the ultrasonic wave passing through the reflection path 53a is apparently measured as an ultrasonic wave passing through a virtual path 54a connecting the mirror image 51a and the tracking device 10. Therefore, by calculating the position of the mirror image 51a and estimating the virtual path 54a connecting the mirror image 51a and the tracking device 10, the same result as that obtained by estimating the reflection path 53a can be obtained.
  • a virtual path 54d connecting the mirror image 51d and the tracking device 10 is estimated.
  • a virtual path 54b connecting the mirror image 51b and the tracking device 10 is estimated. However, since the path 54b does not intersect the obstacle data 50b (line segment), a reflection path corresponding to the path 54b is not formed.
  • a mirror image for the predicted position of the transbonder 20 is generated using the obstacle data determined as an obstacle (wall surface) as a symmetry plane, and the mirror image and the tracking device 10 are connected.
  • a reflection path is estimated by assuming a virtual straight line path. That is, the tracking device 10 estimates the direct path and the reflection path using the predicted position information of the transbonder and the reflection environment information.
  • the reflector (obstacle) is planar, but a reflector having a curved surface or unevenness may be considered in actual use.
  • the segment can be further divided into several segments, approximated by straight lines, and a mirror image calculated for each approximate line segment.
  • the curvature force S is small, or when the irregularities are continuous at a wavelength or longer, the ultrasonic wave reflector is not stable, so it is not selected as a reflector.
  • the reflection environment information is obtained using the photoelectric sensor, and the propagation path of the ultrasonic wave is estimated.
  • ultrasonic transmission / reception is performed between the tracking device 10 and the transponder 20, and second ultrasonic reception information transmitted from the transbonder 20 and received by the tracking device 10 is obtained.
  • Acquisition of reflection environment information (and propagation path estimation) and transmission / reception of ultrasonic waves may be performed simultaneously, or one of them may be performed first.
  • the position of the transbonder 20 is estimated.
  • Figure 6 shows the process flow for estimating the position of the transbonder 20.
  • the tracking device 10 transmits a first ultrasonic wave (S61).
  • the transbonder 20 transmits the second ultrasonic wave using the first ultrasonic wave as a trigger signal. This second ultrasonic wave is received by the tracking device 10 (S62).
  • the cut-out window of the received signal means an area (reception time zone) used for estimating the position of the transponder 20 in the second ultrasonic signal received by the tracking device 10.
  • Figure 7 shows the received waveform of the second ultrasonic wave in the state of Figure 1 (state of Figure 5).
  • the second ultrasound is received in the form of waveforms 71, 72 and 73.
  • Waveform 71 shows the direct route 8 (direct Corresponds to ultrasonic waves that have passed through (corresponding to road 52).
  • a waveform 72 is obtained when the forward path is the direct path 8 and the return path is the reflection path 9a (corresponding to the reflection path 53a).
  • a waveform 73 is a waveform obtained when the forward path is the direct path 8 and the return path is the reflection path 9b (corresponding to the reflection path 53d).
  • FIG. 1 it is assumed that the reflection path 9a is shorter than the reflection path 9b.
  • the waveform 71 is received around the elapsed time of [2T1 + D] on the time axis.
  • the time T1 is the one-way propagation time of the ultrasonic wave in the direct path 52
  • the time D is the time including the delay time in the transbonder and the processing time in the circuit system.
  • the arrival time of waveform 72 is [T1 + T2 + D].
  • Time T2 is the one-way propagation time of the ultrasonic wave in the reflection path 53a (corresponding to the path 54a). Since these routes are estimated in advance, the signal reception time can be estimated by determining the time D in advance.
  • Extraction windows (reception time zones) 74 to 76 for extracting received data are set so that these waveforms 71 to 73 can be extracted individually. By cutting out the received data with the set clipping window, it is possible to eliminate the sudden mixing of electromagnetic environmental noise as much as possible and ensure the measurement accuracy.
  • cutout windows 74 to 76 cutout windows when the forward path and the return path are both reflection paths are also set. This cutout window will be described with reference to FIG.
  • the data cutout window is determined so as to correspond to the arrival time of the ultrasonic wave estimated from the route estimation data.
  • the margin is set in consideration of the distance that the transponder 20 moves between the previous tracking cycle force and the next tracking cycle.
  • the predicted position may be estimated in consideration of the trajectory of the transbonder 20 obtained in the previous measurement, and the cutout window may be determined based on the predicted position.
  • the received waveform is cut out by the cutout window determined in this way (S64 in FIG. 6). Then, it is determined whether or not the response ultrasonic wave (second ultrasonic wave) from the transbonder 20 is observed in this cutout window section. Then, based on the result, it is determined whether the received second ultrasonic waveform is a reflected wave that has arrived from the transponder 20 through a direct path and a direct wave force reflected path. (S65). For example, the waveform 71 received by the extraction window 74 is determined to be a direct wave and received by the extraction window 75. Waveform 72 is determined to be a reflected wave.
  • the length of the propagation path between the tracking device 10 and the transbonder 20 is calculated from the reception time.
  • the direction of the propagation path is calculated by comparing the received signals of the two ultrasonic receivers. From these calculated values, the transmission position of the second ultrasonic wave is estimated.
  • the relative position (distance and azimuth) of transponder 20 with respect to tracking device 10 is estimated (S66). That is, when it is determined that the second ultrasonic wave is a direct wave, the transmission position of the second ultrasonic wave whose reception information power is also calculated is estimated to be the position of the transbonder 20. On the other hand, when it is determined that the second ultrasonic wave is a reflected wave, a position symmetrical to the “calculated transmission position” with respect to the obstacle data reflecting the reflected wave is set as the position of the transbonder 20. presume.
  • the estimated relative position of the transbonder 20 is converted to the transformer. It is determined whether or not there is consistency with the track data of the bonder 20 (S68). At this time, generally, the presence or absence of consistency is determined in consideration of the maximum moving speed of the transbonder 20 (moving body 2).
  • the trajectory data of the transbonder 20 is updated (S71), and the process moves to the next tracking cycle (S72).
  • the reflection environment information is obtained using the photoelectric sensor, the propagation path of the ultrasonic wave is estimated, and the relative position of the transponder 20 is estimated again by transmitting and receiving the ultrasonic wave.
  • the self-propelled body 1 tracks the transbonder 20 (the moving body 2) by controlling the self-propelled device based on the output relative position of the transbonder 20.
  • the self-propelled device is not particularly limited.
  • the self-propelled device includes a driving device such as an engine or a motor and wheels driven by the driving device. In this way, the self-propelled body 1 tracks the moving body 2.
  • Fig. 8 shows the state when the moving body 2 moves in the direction of the lateral path 3. In the state of FIG. 8, the straight path 8 connecting the tracking device 10 and the transbonder 20 is not yet blocked by the wall. There is also a reflection path 9b due to the wall 6b.
  • FIG. 9 schematically shows the obstacle data and segmentation results in the state of FIG.
  • the obstacle data is divided into obstacle data 90a, 90b, 90c, and 90d that are recognized as reflectors, and obstacle data 90e and 90f that are recognized as discontinuous portions. Note that, as shown in Fig. 9, segmentation is performed even in areas where no obstacle data exists.
  • FIG. 10 shows obstacle data, mirror image, and ultrasonic wave propagation path after smoothing and selection in the state of FIG.
  • the obstacle data 100a to 100d correspond to the obstacle data 90a to 90d, respectively.
  • Obstacle data 100a, 100c and 100d correspond to walls 6a, 6c and 6b, respectively.
  • Obstacle data 100b corresponds to mobile 2.
  • the predicted position 101 is the relative position of the transbonder 20 determined in the immediately preceding tracking cycle.
  • the mirror image 101a is a mirror image of the predicted position 101 for the obstacle data 100a and 100c (walls 6a and 6c).
  • the mirror image lOld is a mirror image of the predicted position 101 with respect to the obstacle data 100d (wall 6b).
  • a direct route 102 connecting the tracking device 10 and the transbonder 20 and routes 104a and 104d connecting the tracking device 10 and the mirror images 101a and 101d are calculated.
  • the path 104d is a virtual path corresponding to the reflection path 103d. Note that the path 104a connecting the tracking device 10 and the mirror image 101a does not intersect with the obstacle data 100a and 100c, so there is no reflection path between them, and a clipping window corresponding to these paths is set. Nah ...
  • FIG. 11 shows ultrasonic reception data in the state of FIG.
  • FIG. 11 shows a cutout window that is set when the transbonder 20 is in the position shown in FIG.
  • a waveform 111 in FIG. 11 is a waveform when both the forward path and the return path are direct paths.
  • Waveform 112 is a waveform when the forward path is a direct path and the return path is a reflection path (corresponding to path 104d).
  • the extraction window 113 is based on the transmission time of the first ultrasonic wave so that the waveform 111 can be extracted. Then, the time width is set to [2T1 + D person M] ([2T1 + D—M] to [2T1 + D + M]).
  • time T 1 is the one-way propagation time of the ultrasonic wave in the direct path 102.
  • Time D is the time including the delay time in the transbonder and the processing time in the circuit system, and indicates the sum of the time delays.
  • Time M is a margin for covering the time lag due to the movement of the transbonder 20. The margin time may be different before and after time [2T1 + D].
  • the clipping window 114 corresponds to the waveform 112, and is set to a time width of [T1 + T2 + D person M].
  • T2 is the one-way propagation time of the ultrasonic wave in the path 104d.
  • the cutout window 115 corresponds to the case where both the forward path and the return path are reflection paths, and is set to a time width of [2T2 + D person M].
  • FIG. 12 shows a state in which the moving body 2 travels along the lateral path 3 and the straight path 8 between the tracking device 10 and the transbonder 20 is blocked by the wall 6a.
  • the straight path 8 is blocked, but the ultrasonic wave propagates through the reflection paths 9b and 9c. It is assumed that the reflection path 9b is shorter than the reflection path 9c.
  • FIG. 13 shows the waveform of the second ultrasonic wave received by the tracking device 10 in the state of FIG.
  • dotted waveforms 111 and 112 mean a waveform that has not been received.
  • the first ultrasonic wave transmitted from the tracking device 10 reaches the transbonder 20 through the shortest reflection path 9b.
  • the transbonder 20 transmits the second ultrasonic wave triggered by the reception of the ultrasonic wave.
  • the second ultrasonic wave reaches the tracking device 10 through the short reflection path 9b or the long reflection path 9c.
  • a waveform 131 in FIG. 13 is a second ultrasonic signal propagated by the reflection path 9b, and a waveform 132 is a second ultrasonic signal propagated by the reflection path 9c.
  • Waveform 131 is observed after the time [2T2 '+ D] has elapsed since the transmission of the first ultrasonic wave.
  • T2 ′ is the one-way propagation time of the ultrasonic wave in the reflection path 9b.
  • the signal observed in the cutout window 115 is determined to be a signal transmitted through the reflection path 9b in both the forward path and the return path.
  • tracking device 10 calculates the relative position of transponder 20 from the propagation direction and reception time of the received second ultrasonic wave. This relative position exists in the position of the mirror image with respect to the wall 6b of the actual transbonder 20. Therefore, a position symmetric to the “calculated relative position” with respect to the obstacle data 100d indicating the wall 6b is calculated as the actual position of the transbonder 20. For example, when the calculated relative position is at the position of the mirror image 101d, the actual position of the transbonder 20 is estimated to be at the predicted position 101. The actual position of the transbonder 20 can be calculated by mirroring in reverse to the estimation of the reflection path. Thus, even when the direct route connecting the tracking device 10 and the transbonder 20 is interrupted, the position of the transbonder 20 can be estimated and tracking can be continued.
  • Figure 14 schematically shows the obstacle data and segmentation results in the situation shown in Figure 12.
  • the obstacle data is divided into obstacle data 140a, 140b, 140c and 140d recognized as a reflector, and obstacle data 140e recognized as a discontinuous portion.
  • FIG. 15 shows data obtained by processing the data of FIG. Obstacle data 150a to 150d correspond to obstacle data 140a to 140d, respectively.
  • Obstacle data 150a corresponds to wall 6a
  • obstacle data 150b and 150c correspond to wall 6c
  • obstacle data 150d corresponds to wall 6b.
  • the predicted position 151 is the relative position of the transbonder 20 determined by the previous relative position estimation.
  • the mirror image 15 la is a mirror image of the predicted position 151 with respect to the obstacle data 150a (wall 6a).
  • the mirror image 151b is a mirror image of the predicted position 151 with respect to the obstacle data 150b (wall 6c).
  • the mirror image 151d is a mirror image of the predicted position 151 with respect to the obstacle data 150d (wall 6b).
  • a cutout window corresponding to a signal in which the forward path and the return path are direct paths a cutout window corresponding to a signal in which the forward path is a direct path and the return path is a reflection path, and the forward path and the return path are reflection paths.
  • a clipping window corresponding to a signal in a certain case is set. Then, the position of the transbonder 20 is estimated by processing the reception information of the second ultrasonic wave in the same manner as the processing of FIG.
  • the present invention is also effective in other situations.
  • the present invention is also effective when an obstacle (such as another person) that accompanies movement enters between a moving body and a self-propelled body and the direct route is interrupted.
  • the case where the photoelectric sensor is used as the obstacle detection means has been described.
  • an obstacle sensor using ultrasonic waves may be used.
  • the frequency of the ultrasonic wave of the obstacle sensor is selected so as not to affect the ultrasonic wave transmission / reception process for the relative position estimation performed between the transponder and the tracking device. For example, when an obstacle is detected using an ultrasonic wave having a frequency higher than that of the ultrasonic wave used for relative position estimation, the obstacle detection performance is high and the influence on the relative position estimation is small.
  • a second extraction window is set based on the estimated propagation path of ultrasonic waves, and a second extraction window is set using the extraction window.
  • the case where the sound wave signal is separated into a direct wave signal and a reflected wave signal has been described.
  • the second ultrasonic signal can be separated by other methods. For example, when the propagation path calculated for the signal strength of the received second ultrasonic wave intersects the obstacle data indicating the wall surface, it is determined that the received signal is a signal propagated by the reflection path. It is also possible.
  • the present invention can be applied to a tracking system including a moving object and a self-propelled object that tracks the moving object, and a self-propelled object used in the tracking system. Since the tracking system of the present invention can flexibly respond to changes in the surrounding environment, it is useful as a transport robot in indoor environments such as railway stations and airports.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Acoustics & Sound (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

 本発明の追尾システムは、移動体に配置されたトランスポンダと、トランスポンダを追尾する自走体とを含む。自走体は、周囲に存在する壁面に関する反射環境情報を入手するための環境検知手段を備える。このシステムでは以下の追尾サイクルが行われる。自走体は第1の超音波を送信し、それを受信したトランスポンダは第2の超音波を送信する。自走体は、第2の超音波を受信することによって、トランスポンダから自走体に直接届く直接波と壁面を介して届く反射波とに関する受信情報を入手する。自走体は、受信情報と反射環境情報とを用いて、受信された第2の超音波が直接波であるか反射波であるかの判断を行い、その判断に基づいて受信情報を処理してトランスポンダの位置を推定し、追尾する。

Description

明 細 書
追尾システムおよび自走体
技術分野
[0001] 本発明は、追尾システムおよびそれに用いられる自走体に関する。
背景技術
[0002] 搬送ロボットなどの自律移動体 (以後、「自走体」という場合がある)の動きを制御し て、人などの移動体 (以後、「マスタ」という場合がある)を追尾させる追尾システムが、 工場などで使用されている。このような追尾システムの一例として、超音波を用いてマ スタの位置を推定する追尾装置が知られて 、る。
[0003] 一般に、これらの装置では、エコー方式とトランスボンダ方式とが用いられて 、る。
エコー方式では、自走体側のみが超音波送受信器を備え、自走体側から超音波を マスタに向かって送信し、マスタによって反射された超音波を自走体側で受信するこ とによって、マスタの相対位置が計測される。一方、トランスボンダ方式では、マスタ および自走体のそれぞれが超音波送受信器を備え、相互に超音波の送受信を行う ことによって、マスタの相対位置が計測される(たとえば特公平 7— 31244号公報)。 トランスボンダ方式において、マスタ側の超音波送受信器は、トランスボンダと呼ばれ る。
[0004] しかし、従来の追尾装置では、超音波を遮るような障害物がマスタと自走体とを結 ぶ直接経路上に存在すると、マスタの位置を推定することが困難であった。
[0005] 対象物の位置を測定するための装置と、被測定物 (対象物)との間に障害物が存 在する場合に被測定物の位置を推定する方法としては、レーダ追尾装置を用いた方 法が開示されている(特開平 8— 248125号公報)。この方法について、図 16を用い て説明する。
[0006] 図 16において、海岸線 201の内陸の陸地にレーダ装置 202が設置されており、レ ーダ装置 202は海上の船舶を監視している。レーダ装置 202の監視区域内には、島 などの障害物 203が存在し、障害物 203によって死角領域 204が形成されている。 死角領域 204の周辺に、レーダ電波の 1次反射体 205が設定される。 1次反射体 20 5には、停泊中の大型船舶などが利用される。追尾体である航行船舶は、位置 206 力も方向 207に向力つて移動する。
[0007] 追尾体が死角領域 204の位置 208に移動した場合、レーダ電波は伝搬経路 210 により 1次反射体 205に到達し反射され、伝搬経路 211により位置 208に存在する追 尾体に到達する。そのレーダ電波は、追尾体によって反射され、伝搬経路 211、 1次 反射体 205、伝搬経路 210を介してレーダ装置 202に到達して受信される。この場 合、レーダ画像では、位置 208の追尾体の虚像力 1次反射体 205の後方の位置 2 09に表示される。これらの情報から、反射経路を利用することによって、死角領域に 存在する追尾体の位置が推定される。
[0008] し力しながら、特開平 8— 248125号公報の方法は、レーダ装置や計測の死角領 域がほぼ固定されているような、計測パラメータが限定されている状況で用いられる 方法である。そのため、環境条件が時間によって大きく変化する追尾システムへの適 用が困難である。
発明の開示
[0009] このような状況において、本発明は、移動体と自走体とを結ぶ直接経路が障害物に よって遮断された場合においても、移動体の相対位置を推定することが可能な追尾 システム、およびそれに用いられる自走体を提供することを目的の 1つとする。
[0010] 上記目的を達成するために、本発明の追尾システムは、移動体に配置されたトラン スボンダと、前記トランスボンダを追尾する自走体とを含む追尾システムであって、前 記自走体は、前記自走体および前記トランスボンダの周囲に存在する壁面に関する 反射環境情報を入手するための環境検知手段と、第 1の超音波送受信装置とを備え 、前記トランスボンダは、第 2の超音波送受信装置を備え、
(i)前記自走体は、前記第 1の超音波送受信装置から第 1の超音波を送信し、
(ii)前記トランスボンダは、前記第 1の超音波を前記第 2の超音波送受信装置で受 信したのち、その受信を契機として前記第 2の超音波送受信装置から第 2の超音波 を送信し、
(iii)前記自走体は、前記第 1の超音波送受信装置で前記第 2の超音波を受信する ことによって、前記第 2の超音波送受信装置から前記第 1の超音波送受信装置に直 接届く直接波と、前記第 2の超音波送受信装置から前記第 1の超音波送受信装置に 前記壁面で反射されて届く反射波とに関する受信情報を入手し、
(iv)前記自走体は、前記受信情報と前記反射環境情報とを用いて、受信された前 記第 2の超音波が前記直接波であるか前記反射波であるかの判断を行 、、前記判 断に基づ ヽて前記受信情報を処理して前記トランスボンダの位置を推定し、前記トラ ンスボンダを追尾する。
[0011] なお、この明細書において、「超音波」とは、周波数が 20kHz以上の音波を意味す る。また、この明細書において、「壁面」とは、床面に対して一定の角度 (たとえば 80 ° 〜100° の範囲で典型的には 90° )をなしている面であって、超音波を反射する 面を意味する。この壁面には、一般的な壁の他に、ガラス窓なども該当する。壁面は 、平面であってもよいし曲面であってもよい。
[0012] また、本発明の自走体は、移動体に配置されたトランスボンダと前記トランスボンダ を追尾する自走体とを含む追尾システムに用いられる自走体であって、前記自走体 および前記トランスボンダの周囲に存在する壁面に関する反射環境情報を入手する ための環境検知手段と、超音波送受信装置とを備え、
(I)前記超音波送受信装置から第 1の超音波を送信し、
(II)前記第 1の超音波に対する応答信号として前記トランスボンダ力 送信された 第 2の超音波を前記超音波送受信装置で受信することによって、前記第 2の超音波 送受信装置から前記第 1の超音波送受信装置に直接届く直接波と、前記第 2の超音 波送受信装置から前記第 1の超音波送受信装置に前記壁面で反射されて届く反射 波とに関する受信情報を入手し、
(III)前記受信情報と前記反射環境情報とを用いて、受信された前記第 2の超音波 が前記直接波であるか前記反射波であるかの判断を行 、、前記判断に基づ 、て前 記受信情報を処理して前記トランスボンダの位置を推定し、前記トランスボンダを追 尾する。
[0013] 本発明の自走体および追尾システムは、移動体とその移動体を追尾する自走体と の間の直接経路による直接波と、周囲環境に存在する物体によって発生する反射経 路による反射波とを用いて移動体の相対位置を推定する。そのため、本発明の自走 体および追尾システムによれば、トランスボンダとトランスボンダを追尾する自走体と の間の直接経路が遮断された場合においても、トランスボンダの位置を推定してトラ ンスボンダを追尾することが可能である。
図面の簡単な説明
[図 1]図 1は、本発明の追尾システムにおける追尾状態の一例を示す。
[図 2]図 2は、本発明の追尾システムの一例における追尾装置およびトランスボンダの 概略を模式的に示す。
[図 3]図 3は、本発明の追尾システムの一例における超音波伝搬経路の推定方法を 示すフローチャートである。
[図 4]図 4は、図 1の状態において得られる障害物データとセグメンテイシヨンの状態 について一例を示す。
[図 5]図 5は、図 1の状態において生成されるミラーイメージおよび推定経路の一例を 示す。
[図 6]図 6は、本発明の追尾システムの一例におけるトランスボンダの相対位置の推 定方法を示すフローチャートである。
[図 7]図 7は、図 1の状態において受信される第 2の超音波の波形と切り出し窓との関 係を示す。
[図 8]図 8は、本発明の追尾システムにおける追尾状態の他の例を示す。
[図 9]図 9は、図 8の状態において得られる障害物データとセグメンテイシヨンの状態 について一例を示す。
[図 10]図 10は、図 8の状態において生成されるミラーイメージおよび推定経路の一例 を示す。
[図 11]図 11は、図 8の状態にぉ 、て受信される第 2の超音波の波形と切り出し窓との 関係を示す。
[図 12]図 12は、本発明の追尾システムにおける追尾状態のその他の例を示す。
[図 13]図 13は、図 12の状態において受信される第 2の超音波の波形と切り出し窓と の関係を示す。
[図 14]図 14は、図 12の状態において得られる障害物データとセグメンテイシヨンの状 態について一例を示す。
[図 15]図 15は、図 12の状態にお 、て生成されるミラーイメージおよび推定経路の一 例を示す。
[図 16]図 16は、対象物の位置を特定するためにレーダの反射を用いる従来技術を 模式的に示す。
発明を実施するための最良の形態
[0015] 以下、本発明の実施の形態について説明する。
[0016] 本発明の追尾システムは、移動体に配置されたトランスボンダと、トランスボンダを 追尾する自走体とを含む追尾システムである。自走体は、自走体およびトランスボン ダの周囲に存在する壁面に関する反射環境情報を入手するための環境検知手段と 、第 1の超音波送受信装置とを備える。トランスボンダは、第 2の超音波送受信装置を 備える。この追尾システムでは、以下の追尾サイクルが繰り返される。
[0017] (i)自走体は、第 1の超音波送受信装置から第 1の超音波を送信する。
[0018] (ii)トランスボンダは、第 1の超音波を第 2の超音波送受信装置で受信したのち、そ の受信を契機として第 2の超音波送受信装置力 第 2の超音波を送信する。第 2の超 音波の周波数は、第 1の超音波の周波数と同じでもよいし異なってもよい。第 1およ び第 2の超音波の周波数に特に限定はなぐたとえば 20kHz〜100kHz程度の周 波数を用いてもよい。
[0019] (iii)自走体は、第 1の超音波送受信装置で第 2の超音波を受信することによって、 第 2の超音波送受信装置から第 1の超音波送受信装置に直接届く直接波と、第 2の 超音波送受信装置から第 1の超音波送受信装置に壁面で反射されて届く反射波と に関する受信情報を入手する。その受信情報は、第 2の超音波の受信時刻に関する 情報と、第 2の超音波の伝搬方向に関する情報とを含む。第 2の超音波の受信時刻 を用いて、第 1の超音波を送信して力も第 2の超音波を受信するまでに要する時間が 算出される。
[0020] (iv)自走体は、受信情報と反射環境情報とを用いて、受信された第 2の超音波が直 接波であるか反射波であるかの判断を行 、、その判断に基づ 、て受信情報を処理し てトランスボンダの位置を推定する。そして、自走体は、推定された位置に基づいてト ランスボンダを追尾する。受信情報からは、第 2の超音波の伝搬方向と、トランスボン ダまでの距離に関する情報が得られる。受信された第 2の超音波が直接波であると 判断された場合には、受信情報力も得られた情報をそのまま用いてトランスボンダの 位置が推定される。一方、受信された第 2の超音波が反射波であると判断された場合 には、受信情報力 得られた情報を、反射環境情報を用いて反射波に対応するよう に処理し、トランスボンダの位置が推定される。
[0021] 受信された第 2の超音波が直接波である力反射波であるかの判断は、たとえば、受 信した第 2の超音波の信号のうち、所定の時間域の信号を直接波または反射波であ ると判断してその部分の信号を分離することによって行うことができる。
[0022] 上記の(i)〜(iv)の処理サイクルを行うのに要する時間が短!、ほど、トランスボンダ の位置の推定の精度を高めることができる。 1回の処理サイクルを行うのに要する時 間は追尾の条件によって異なるが、典型的な一例では、 30ミリ秒〜 500ミリ秒程度で ある。
[0023] 上記超音波送受信装置は、超音波を送受信するための装置であり、超音波送信装 置と超音波受信装置とを含む。超音波送信装置は超音波送信器を含み、それを駆 動するための送信回路をさらに含んでもよい。超音波受信装置は超音波受信器を含 み、それを駆動するための受信回路をさらに含んでもよい。なお、第 1の超音波送受 信装置は、通常、一定の距離を置いて配置された 2個以上の超音波受信器を含む。 2個以上の超音波受信器を用いることによって、到達した超音波の方向を特定できる 。通常は、 2個の超音波受信器が用いられる。その 2個の超音波受信器は、お互いを 結ぶ直線が床面とほぼ平行になるように、一定の間隔 (たとえば、 10cm〜: Lm程度) をおいて配置される。
[0024] 上記反射環境情報は、超音波を反射する壁面の配置に関する情報を含む。この反 射環境情報は、上記 (iv)のステップの前に、環境検知手段を用いて入手される。
[0025] 本発明の追尾システムでは、上記(iv)のステップの前に、自走体は、トランスボンダ の予測位置に関する予測位置情報と反射環境情報とを用いて、第 1の超音波送受 信装置と第 2の超音波送受信装置とを直接結ぶ直接経路と、壁面を介して第 1の超 音波送受信装置と第 2の超音波受信装置とを結ぶ反射経路とを含む超音波の伝搬 経路を推定してもよい。そして、(iv)のステップにおいて、自走体は、上記伝搬経路と 上記受信情報とを用いて上記判断、すなわち受信された第 2の超音波が直接波であ る力反射波であるかの判断、を行ってもよい。
[0026] 上記予測位置情報は、トランスボンダの予測される相対位置に関する情報であり、 直前の追尾サイクルで推定されたトランスボンダの相対位置を考慮して決定される。 なお、追尾開始時には、予測位置に関する情報が得られない場合がある。その場合 、追尾開始後の 1サイクルのみは反射波を用いないで通常の追尾方法による追尾を 行えばよい。
[0027] 上記本発明の追尾システムでは、(iv)のステップにお 、て、受信された第 2の超音 波が直接波であると判断された場合には、受信情報力 算出される第 2の超音波の 送信位置 (仮想の送信位置)をトランスボンダの位置と推定し、受信された第 2の超音 波が反射波であると判断された場合には、反射波を反射した壁面を示す障害物デー タに対して上記仮想の送信位置と対称な位置をトランスボンダの位置と推定してもよ い。受信情報によって、第 2の超音波の伝搬方向と第 2の超音波の伝搬距離とを算 出でき、それらから、第 2の超音波の仮想の送信位置を算出できる。
[0028] 受信された第 2の超音波が直接波である力反射波であるかの上記判断を行う場合 の第 1の例では、上記 (iv)のステップにおいて、自走体は、第 1および第 2の超音波 が直接経路を通って伝搬される場合に第 2の超音波が受信されると予想される第 1の 受信時間帯と、第 1および第 2の超音波が反射経路を通って伝搬される場合に第 2の 超音波が受信されると予想される第 2の受信時間帯とを算出してもよい。そして、第 1 の受信時間帯に受信された第 2の超音波を直接波であると判断し、第 2の受信帯に 受信された第 2の超音波を反射波であると判断してもよい。第 2の超音波の受信情報 は第 2の超音波の受信時刻に関する情報を含むため、その受信時刻と、算出された 受信時間帯とを比較することによって、超音波の伝搬経路が推定される。なお、第 1 の超音波が直接経路を通って伝搬され、第 2の超音波が反射経路を通って伝搬され る場合に第 2の超音波が受信されると予想される受信時間帯を算出し、これを利用し て伝搬経路の推定を行ってもょ 、。
[0029] 上記第 1の例では、予測位置情報は、移動体の移動速度に関する情報を含んでも よい。移動体の移動速度 (特に上限)を考慮することによって、超音波の伝搬経路の 判断の精度を高めることができる。また、予測位置情報は、移動体の移動の軌跡に 関する情報を含んでもよい。
[0030] 受信された第 2の超音波が直接波である力反射波であるかの上記判断を行う場合 の第 2の例では、上記 (iv)のステップにおいて、受信情報から第 2の超音波の伝搬経 路を算出し、伝搬経路が壁面を示す障害物データと交差していない場合に、受信さ れた第 2の超音波が直接波であると判断し、伝搬経路が壁面を示す障害物データと 交差して 、る場合に、受信された第 2の超音波が反射波であると判断してもよ 、。
[0031] 上記第 1および第 2の例では、(iv)のステップにおいて、受信された第 2の超音波が 直接波であると判断された場合には、受信情報力 算出される第 2の超音波の送信 位置 (仮想の送信位置)をトランスボンダの位置と推定し、受信された第 2の超音波が 反射波であると判断された場合には、反射波を反射した壁面を示す障害物データに 対して上記仮想の送信位置と対称な位置をトランスボンダの位置と推定してもよい。
[0032] 上記本発明の追尾システムでは、上記環境検知手段が光電センサおよび超音波 センサ力 選ばれる少なくとも 1種のセンサであってもよ 、。光電センサを用いる場合 、通常、光電センサの光源から出射され、自走体の周囲に存在する物体によって反 射された光を光電センサの受光素子で測定する。同様に、超音波センサを用いる場 合、超音波送信器から送信され、自走体の周囲に存在する物体によって反射された 超音波を超音波受信器で測定する。超音波センサの超音波の送受信器は、通常、 第 1の超音波送受信器とは別に装備される。センサの測定データから、自走体およ びトランスボンダの周囲に存在する壁面に関する反射環境情報が得られる。測定デ ータに対しては、スムージングゃセグメンテイシヨンと!/、つたデータ処理が行われる。 これらの詳細については後述する。
[0033] 上記本発明の追尾システムでは、移動体が人であり、自走体がカートであってもよ い。このようなシステムは、工場、ショッピングセンター、空港、駅など、人とともに荷物 を搬送する必要がある状況で使用できる。
[0034] また、本発明の自走体は、上記追尾システムの自走体である。この自走体は、自走 体およびトランスボンダの周囲に存在する壁面に関する反射環境情報を入手するた めの環境検知手段と、第 1の超音波送受信装置とを備える。この自走体は、以下の 追尾サイクルを繰り返す。
[0035] (I)超音波送受信装置から第 1の超音波を送信する。
[0036] (II)第 1の超音波に対する応答信号としてトランスボンダ力 送信された第 2の超音 波を超音波送受信装置で受信することによって、第 2の超音波送受信装置から第 1 の超音波送受信装置に直接届く直接波と、第 2の超音波送受信装置から第 1の超音 波送受信装置に壁面で反射されて届く反射波とに関する受信情報を入手する。
[0037] (III)受信情報と反射環境情報とを用いて、受信された第 2の超音波が直接波であ る力反射波であるかの判断を行 、、その判断に基づ 、て受信情報を処理してトラン スボンダの位置を推定する。そして、推定された位置に基づいてトランスボンダを追 尾する。
[0038] なお、処理 (I)、 (II)および (III)は、それぞれ、上述した処理 (i)、 (iii)および (iv)に 対応する。また、本発明の自走体は、上述した本発明の追尾システムの自走体が備 える特徴を備えてもよ ヽ。
[0039] [実施形態の一例]
以下、本発明の実施形態について、図面を参照しながら説明する。なお、以下の 図において、同じ構成要素については同じ符号を用いて重複する説明を省略する場 合がある。以下では、光電センサを用いて反射環境情報 (障害物情報)を得る場合の 一例について説明する。
[0040] 図 1に、本発明のシステムの概要を示す。自律的に移動する自走体 1は、荷物搬送 などを行うカートである。自走体 1は、追尾装置 10を備える。移動体 2は、人であり、 移動体 2の背面には、超音波送受信機能を有するトランスボンダ 20が配置されてい る。図 1の例では、移動体 2は、横道 3が接続された通路 4を矢印の方向に移動して おり、自走体 1は移動体 2を追尾して移動体 2の方向に移動している。自走体 1およ び移動体 2の周囲には、床面からほぼ垂直に立ち上がった壁面 6a、 6bおよび 6cが 存在している。
[0041] このシステムでは、追尾装置 10とトランスボンダ 20との間で超音波を送受信するこ とによって、追尾装置 10に対するトランスボンダ 20の相対的な位置が推定される。そ して、推定された相対位置に基づ 、て自走体 1による追尾が行われる。
[0042] 図 1に示される環境の場合、自走体 1の追尾装置 10とトランスボンダ 20との間の超 音波の伝搬経路としては、直接経路 8と、壁 6aに起因する反射経路 9aと、壁 6bに起 因する反射経路 9bとが存在する。どちらの反射経路も、反射回数が 1回の経路であ る。反射回数が 2回以上の反射経路も存在するが、位置推定の誤差が大きくなること や、超音波の減衰特性等による感度低下を考慮すれば、反射回数が 1回である反射 経路の利用が適している。
[0043] トランスボンダ 20の相対位置の決定方法について、図 1および図 2を用いて具体的 に説明する。追尾装置 10の一例の構成およびトランスボンダ 20の一例の構成を図 2 に模式的に示す。追尾装置 10は、第 1の超音波送受信装置 (第 1の超音波送信装 置 11および第 1の超音波受信装置 12)と光電センサ 13とを備える。超音波送信装置 11は、超音波送信器 11aとそれに接続された送信回路 l ibとを含む。超音波受信装 置 12は、 2つの超音波受信器 12aおよび 12bと、それらに接続された受信回路 12c および 12dとを備える。それらの装置およびセンサは、演算処理装置 (CPU) 14に接 続される。演算処理装置 14は、トランスボンダ 20の過去の軌跡データなどのデータ を記憶するための記憶手段 (メモリ)を内部に備える力 あるいは外部の記憶装置に 接続されている。演算処理装置 14は、超音波の伝搬経路の推定や受信情報の処理 を行 、、それによつてトランスボンダ 20の相対位置を推定する。
[0044] トランスボンダ 20は、第 2の超音波送受信装置 (第 2の超音波送信装置 21および第 2の超音波受信装置 22)を備える。超音波送信装置 21は、超音波送信器 21aと送信 回路 21bとを備える。超音波受信装置 22は、超音波受信器 22aと受信回路 22bとを 備える。これらの装置は、演算処理装置 23に接続される。
[0045] 移動体 2が人である場合、通常の速度は時速 4km程度であり、最高速度は時速 6k m程度 (約 1. 6mZs)であると設定できる。その場合、自走体 1の移動速度もほぼ人 並みであればよぐ追尾開始時の静止状態から自走体 1が動き出す際の時間遅れ等 を考慮すれば、最大相対距離 (測定限界)は 5m〜10m程度に設定できる。この測定 限界と反射経路の長さ等のパラメータと、大気中における超音波の減衰特性とを考 慮して、使用する超音波の周波数を決定できる。たとえば、測定限界を 5mとしたとき には、 100kHz以下の超音波が適している。なお、移動体 2の最高速度を時速 6km と仮定し、上記 (i)〜(iv)の 1回の処理サイクルに要する時間を 80ミリ秒とすると、処 理サイクル間における移動体 2の最大移動距離は、 13. 3cmとなる。
[0046] 超音波送信器および超音波受信器としては、圧電セラミックのたわみ振動子を用い た超音波送信器および超音波受信器、あるいは PVDF圧電高分子膜を振動子とし た超音波送信器および受信器などが利用できる。
[0047] 自走体 1の超音波送信装置 11からは、第 1の超音波 W1が送信される。第 1の超音 波 W1は、トランスボンダ 20の超音波受信装置 22で受信される。この受信をトリガ信 号として、トランスボンダ 20は、超音波送信装置 21から第 2の超音波 W2を返信する 。第 2の超音波 W2は、自走体 1の超音波受信装置 12 (2つの超音波受信器 12aおよ び 12b)で受信される。 2つの超音波受信器 12aおよび 12bの受信信号のずれから、 第 2の超音波 W2の飛来方向が推定される。また、第 1の超音波 W1を送信してから 第 2の超音波 W2を受信するまでに要する時間から、追尾装置 10とトランスボンダ 20 との間の距離が推定される。第 2の超音波の受信情報を用いて、追尾装置 10に対す るトランスボンダ 20の相対位置が決定される。
[0048] 図 1に示すように、超音波は、直接経路 8を通って伝搬するとともに反射経路 9aおよ び 9bを通って伝搬する。本発明の追尾システムでは、直接波と反射波とを利用してト ランスボンダ 20の相対位置の推定が行われる。
[0049] 以下、トランスボンダ 20の位置を推定する方法について説明する。まず、追尾装置
10とトランスボンダ 20との間の超音波の伝搬経路を推定する処理の流れを、図 3の フローチャートを用いて説明する。
[0050] まず、光電センサ 13を用いて、自走体 1 (追尾装置 10)および移動体 2 (トランスポ ンダ 20)の周囲に存在する障害物を検知し、障害物データを得る(S31)。光電セン サは、自走体 1の進行方向を中心として所定の角度 (たとえば 90° 力も 150° 程度) をスキャンする。光電センサ 13の測定領域 5を図 1に示す。
[0051] 図 1の状況で得られる障害物データ 40を、図 4に太線で示す。追尾装置 10から障 害物データ 40までの長さは、追尾装置 10から障害物までの距離に対応している。な お、光電センサの測定領域 5には、不感帯 5a (図 4でハッチングを付して示す)が存 在する。得られた障害物データは、環境ノイズ等によるデータの乱れを除去するため にスムージングが行われる(図 3の S32)。
[0052] 次に、スムージングされた障害物データ 40の連続性を考慮して障害物データを分 割(セグメンテイシヨン)する(S33)。具体的には、障害物データ 40の連続性がとぎれ ている部分で障害物データ 40を分割し、図 4に示すように、障害物データ 40a、 40b 、 40cおよび 40dを分離する。
[0053] 図 1と対比すると、障害物データ 40aは壁 6aに対応し、障害物データ 40bは壁 6cに 対応し、障害物データ 40dは壁 6bに対応する。障害物データ 40a〜40dの間に存在 する、径方向に直線的に伸びる障害物データ 40e〜40hは、障害物の不連続を示 すものである。例えば、障害物データ 40eは、壁 6aの検知データと、壁 6aから離れて いる壁 6cの検知データとが隣接するために発生したものである。このような部分にお ける障害物データは、径方向に不連続となる。それは、光電センサが、障害物検知 のためのプローブ光を扇状に走査するためである。そのため、障害物データ 40の中 から、径方向に直線的に伸びる障害物データ 40e〜40hの方向(図中の破線)に沿 つて、障害物データが分割 (セグメンテイシヨン)される。測定される障害物データ 40 には、環境ノイズ等の影響によってデータの凹凸が見られるので、平均処理等によつ てスムージングしたのち、セグメンテイシヨンを実行する。なお、セグメンテイシヨンを行 つてからスムージングを行ってもよ!、。
[0054] スムージングおよびセグメンテイシヨン後の障害物データ(以下、「障害物データ 50 」という場合がある)を図 5に示す。障害物データ 50a〜50dは、それぞれ、図 4の障 害物データ 40a〜40dに対応して!/、る。
[0055] 次に、障害物データ 50a〜50dを分析する(S35)。まず、障害物データ 50の中で、 障害物と判断できるセグメントを選択する。次に、トランスボンダ 20の予測位置情報 S 34と、障害物データ 50とを用いることによって、いずれの障害物データが移動体 2に 該当するかを決定する。このとき、直前の追尾サイクルで推定されたトランスボンダ 20 の位置が、トランスボンダ 20の予測位置 51を示す予測位置情報 S34として利用され る。図 5のデータでは、予測位置 51と障害物データ 50cとが近接していることから、デ ータ 50cは移動体 2であると判断される。また、障害物データ 50a、 50bおよび 50dは 、超音波を反射する障害物 (壁面)であると判断される。
[0056] 以上のように障害物データを分析するステップ (S35)によって、自走体 1および移 動体 2の周囲に存在する壁面の配置に関する反射環境情報が得られる。
[0057] 次に、超音波の伝搬経路の推定が行われる(S36)。ここでは、トランスボンダ 20か ら追尾装置 10に超音波が直接到達する場合の直接経路の推定データと、壁面に反 射して到達する場合の反射経路の推定データとを含む経路推定データが得られる。
[0058] 直接経路は、追尾装置 10に対するトランスボンダ 20の予測位置 51から推定できる 。一方、反射経路の推定は、トランスボンダ 20の予測位置 51と、反射環境情報とを 用いて行われる。
[0059] 反射経路の推定の方法について、図 5を用いて説明する。まず、壁面を示す障害 物データ 50a、 50bおよび 50dを対称面(対称軸)とする、予測位置 51の鏡像 (ミラー イメージ)の位置を算出する。ミラーイメージ 51a、 51bおよび 51dは、それぞれ、障害 物データ 50a、 50bおよび 50dを対称軸とするミラーイメージである。たとえば、予測 位置 51とミラーイメージ 51aとは、図 1の壁 6aに対応する障害物データ 50aを対称軸 として対称の位置に存在する。
[0060] トランスボンダ 20から送信される第 2の超音波は、直接経路 52を通って追尾装置 1 0 (具体的には個々の超音波受信器)で受信される。また、第 2の超音波は、壁 6a (障 害物データ 50a)を介した反射経路 53aを通って追尾装置 10で受信される。ここで、 反射経路 53aを通る超音波は、見かけ上、ミラーイメージ 51aと追尾装置 10とを結ぶ 仮想の経路 54aを通る超音波であると測定される。したがって、ミラーイメージ 51aの 位置を算出し、ミラーイメージ 51aと追尾装置 10とを結ぶ仮想の経路 54aを推定する ことによって、反射経路 53aを推定したことと同様の結果が得られる。同様に、ミラーイ メージ 51dと追尾装置 10とを結ぶ仮想の経路 54dが推定される。同様に、ミラーィメ ージ 51bと追尾装置 10とを結ぶ仮想の経路 54bが推定される。ただし、経路 54bと障 害物データ 50b (線分)とは交わらないため、経路 54bに対応する反射経路は形成さ れない。
[0061] このように、障害物 (壁面)と判断された障害物データを対称面としてトランスボンダ 20の予測位置に対するミラーイメージを生成し、ミラーイメージと追尾装置 10とを結 ぶ仮想の直線経路を想定することによって、反射経路が推定される。すなわち、追尾 装置 10は、トランスボンダの予測位置情報と、反射環境情報とを用いて直接経路お よび反射経路を推定する。
[0062] なお、以上の説明では、反射体 (障害物)が平面的なものである場合を想定してい るが、実際の使用状況では、曲面や凹凸を有する反射体も考えられる。曲率が大きく 滑らかな曲面を有する反射体であれば、セグメントの中をさらにいくつかに分割して 直線で近似し、各近似線分に対してミラーイメージを計算すればよい。曲率力 S小さい 場合や凹凸が波長程度以上で連続している場合などには、超音波の反射体として 安定性が悪くなるので反射体として選択しない。これらの設定は、追尾システムの使 用環境や使用される超音波の周波数などを考慮して決定すればよい。
[0063] 以上のようにして、光電センサを用いて反射環境情報を入手し、超音波の伝搬経 路を推定する。その一方で、追尾装置 10とトランスボンダ 20との間で超音波の送受 信を行い、トランスボンダ 20から送信され追尾装置 10で受信される第 2の超音波の 受信情報を入手する。反射環境情報の入手 (および伝搬経路の推定)と超音波の送 受信とは、同時に行ってもよいし、どちらか一方を先に行ってもよい。以上のようにし て得られた反射環境情報 (伝搬経路)および受信情報を用いて、トランスボンダ 20の 位置が推定される。トランスボンダ 20の位置を推定する処理のフローを図 6に示す。
[0064] まず、追尾装置 10は第 1の超音波を送信する(S61)。トランスボンダ 20は、第 1の 超音波をトリガ信号として第 2の超音波を送信する。この第 2の超音波は、追尾装置 1 0で受信される(S62)。
[0065] 次に、受信信号の切り出し窓の決定と、受信信号の切り出しが行われる (S64)。こ のとき、超音波の送受信と平行または前後して上述した方法で推定された、超音波 の伝搬経路に関する推定データが用いられる(S63)。ここで、受信信号の切り出し 窓とは、追尾装置 10で受信された第 2の超音波の信号のうち、トランスボンダ 20の位 置の推定に利用する領域 (受信時間帯)を意味する。
[0066] 以下に、切り出し窓の決定方法について説明する。図 1の状態(図 5の状態)におけ る第 2の超音波の受信波形を図 7に示す。第 2の超音波は、波形 71、 72および 73と いう形で受信される。波形 71は、往路および復路がともに図 1の直接経路 8 (直接経 路 52に対応)を通って到達した超音波に対応している。波形 72は、往路が直接経路 8で復路が反射経路 9a (反射経路 53aに対応)である場合に得られる波形である。波 形 73は、往路が直接経路 8で復路が反射経路 9b (反射経路 53dに対応)である場合 に得られる波形である。なお、図 1では、反射経路 9aが反射経路 9bよりも短いと仮定 している。
[0067] 波形 71は、時間軸上で [2T1 +D]の経過時間付近で受信される。時間 T1は直接 経路 52における超音波の片道伝搬時間であり、時間 Dはトランスボンダにおける遅 延時間と、回路系における処理時間とを含む時間である。波形 72の到達時間は [T1 +T2 + D]となる。時間 T2は反射経路 53a (経路 54aに対応)における超音波の片 道伝搬時間である。これらの経路は事前に推定されているため、予め時間 Dを決定し ておくことによって、信号の受信時間を推定できる。
[0068] これらの波形 71〜73を個別に切り出せるように、受信データを切り出すための切り 出し窓 (受信時間帯) 74〜76が設定される。設定された切り出し窓で受信データを 切り出すことによって、電磁的な環境ノイズの突然の混入などをできる限り排除して計 測精度を確保できる。本発明では、切り出し窓 74〜76に加えて、往路および復路が ともに反射経路である場合の切り出し窓も設定される。この切り出し窓については、図 11で説明する。
[0069] データ切り出し窓は、経路推定データから推定される超音波の到達時刻に対応す るように決定される。このとき、前回の追尾サイクル力 次回の追尾サイクルまでの間 にトランスボンダ 20が移動する距離を考慮してマージンが設定される。なお、前回ま での測定で得られて ヽるトランスボンダ 20の軌跡を考慮して予測位置を推定し、その 予測位置に基づ 、て切り出し窓を決定してもよ 、。
[0070] このようにして決定された切り出し窓によって、受信された波形が切り出される(図 6 の S64)。そして、この切り出し窓区間において、トランスボンダ 20からの返信超音波 (第 2の超音波)が観測された力否かを判定する。そして、その結果に基づいて、受 信された第 2の超音波の波形が、トランスボンダ 20から直接経路を通って届 、た直接 波力 反射経路を通って届いた反射波であるかを判断する(S65)。たとえば、切り出 し窓 74で受信された波形 71は直接波であると判断され、切り出し窓 75で受信された 波形 72は反射波であると判断される。
[0071] 切り出し窓 74〜76で第 2の超音波が観測された場合、その受信時刻から、追尾装 置 10とトランスボンダ 20との間の伝搬経路の長さが算出される。また、 2つの超音波 受信器の受信信号を比較することによって、伝搬経路の方向が算出される。それらの 算出値から、第 2の超音波の送信位置が推定される。
[0072] これらの結果と上記判断結果とを用いて、追尾装置 10に対するトランスボンダ 20の 相対位置 (距離および方位)が推定される(S66)。すなわち、第 2の超音波が直接波 であると判断された場合には、受信情報力も算出された第 2の超音波の送信位置を、 トランスボンダ 20の位置であると推定する。一方、第 2の超音波が反射波であると判 断された場合には、反射波を反射した障害物データに対して「算出された送信位置」 と対称な位置をトランスボンダ 20の位置と推定する。
[0073] 次に、推定されたトランスボンダ 20の相対位置と、過去の測定で蓄積されたトランス ボンダ 20の移動の軌跡データ(S67)とを比較することによって、推定された相対位 置がトランスボンダ 20の軌跡データと整合性を有するカゝ否かを判断する(S68)。この とき、一般的には、トランスボンダ 20 (移動体 2)の最大移動速度を考慮して整合性の 有無を判断する。
[0074] 両者が整合性を有さな!/、場合には、エラーフラグを出力し (S69)、次の追尾サイク ル (S72)に移動する。一方、両者が整合性を有する場合には、推定されたトランスポ ンダ 20の相対位置を、トランスボンダ 20の測定時の位置として出力する(S70)。出 力された位置は、次回の追尾サイクルにお 、て予測位置情報として利用される。
[0075] 次に、トランスボンダ 20の軌跡データを更新し (S71)、次の追尾サイクルに移動す る(S72)。次の測定サイクルでは、光電センサを用いた反射環境情報の取得、超音 波の伝搬経路の推定、および超音波の送受信によるトランスボンダ 20の相対位置の 推定が再度行われる。
[0076] 自走体 1は、出力されたトランスボンダ 20の相対位置に基づき、自走装置を制御し てトランスボンダ 20 (移動体 2)を追尾する。なお、自走装置に特に限定はないが、た とえば、エンジンやモータなどの駆動装置と、それによつて駆動される車輪とを備える [0077] このようにして、自走体 1は移動体 2を追尾する。次に、図 1の状態力も移動体 2が 移動した場合を考える。移動体 2が、横道 3の方向に移動した場合の状態を図 8に示 す。図 8の状態では、追尾装置 10とトランスボンダ 20とを結ぶ直線経路 8は、まだ壁 に遮られていない。また、壁 6bによる反射経路 9bも存在している。
[0078] 図 8の状態における障害物データ、およびセグメンテイシヨンの結果を図 9に模式的 に示す。障害物データは、反射体として認識される障害物データ 90a、 90b、 90cお よび 90dと、不連続部分として認識される障害物データ 90eおよび 90fとに分割され る。なお、図 9に示すように、障害物データが存在しない部分でもセグメンテイシヨン が行われる。
[0079] 図 8の状態における、スムージングおよび選択後の障害物データ、ミラーイメージ、 および超音波の伝搬経路を図 10に示す。障害物データ 100a〜100dは、それぞれ 、障害物データ 90a〜90dに対応する。また、障害物データ 100a、 100cおよび 100 dは、それぞれ、壁 6a、 6cおよび 6bに対応する。また、障害物データ 100bは、移動 体 2に対応する。予測位置 101は、直前の追尾サイクルで決定されたトランスボンダ 2 0の相対位置である。ミラーイメージ 101aは、障害物データ 100aおよび 100c (壁 6a および 6c)に対する予測位置 101のミラーイメージである。また、ミラーイメージ lOld は、障害物データ 100d (壁 6b)に対する予測位置 101のミラーイメージである。
[0080] そして、これらの情報を用いて、追尾装置 10とトランスボンダ 20とを結ぶ直接経路 1 02と、追尾装置 10とミラーイメージ 101aおよび 101dとを結ぶ経路 104aおよび 104 dとを計算する。経路 104dは、反射経路 103dに対応する仮想の経路である。なお、 追尾装置 10とミラーイメージ 101aとを結ぶ経路 104aは、障害物データ 100aおよび 100cと交わらないため、これらの間に反射経路は存在せず、これらの経路に対応す る切り出し窓は設定されな 、。
[0081] 図 8の状態における超音波の受信データを図 11に示す。また、トランスボンダ 20が 図 8の位置に 、る場合に設定される切り出し窓を図 11に示す。図 11の波形 111は、 往路および復路がともに直接経路である場合の波形である。また、波形 112は、往路 が直接経路で復路が反射経路 (経路 104dに相当)である場合の波形である。
[0082] 切り出し窓 113は、波形 111を切り出せるように、第 1の超音波の発信時刻を基準と して、 [2T1 + D士 M] ( [2T1 + D— M」〜[2T1 + D + M])の時間幅に設定される。 ここで、時間 T1は直接経路 102における超音波の片道伝搬時間である。時間 Dは、 トランスボンダにおける遅延時間と回路系における処理時間とを含む時間であり、時 間遅れの総和を示している。時間 Mは、トランスボンダ 20の移動による時間のずれを カバーするためのマージンである。なお、マージンの時間は、時間 [2T1 + D]の前 後で異なっていてもよい。切り出し窓 114は、波形 112に対応しており、 [T1 +T2 + D士 M]の時間幅に設定される。 T2は、経路 104dにおける超音波の片道伝搬時間 である。
[0083] 切り出し窓 115は、往路および復路がともに反射経路である場合に対応しており、 [ 2T2 + D士 M]の時間幅に設定される。移動体 2が図 8の位置力も移動しない場合、 切り出し窓 115では第 2の超音波が受信されな 、。
[0084] 次に、移動体 2が横道 3を進み、追尾装置 10とトランスボンダ 20との間の直線経路 8が壁 6aに遮られたときの状態を図 12に示す。この場合、直線経路 8は遮られるが、 反射経路 9bおよび 9cによって超音波が伝搬する。なお、反射経路 9bは反射経路 9c よりも短いと仮定する。
[0085] 図 8の状態で測定を行った後、次の測定時に図 12の状態に移行した場合を考える 。この場合、図 8の状態で推定されたトランスボンダ 20の位置に基づいて、図 11の切 り出し窓 113〜115が設定される。図 12の状態において追尾装置 10で受信される 第 2の超音波の波形を図 13に示す。なお、図 13において、点線の波形 111および 1 12は、受信されな力 た波形を意味する。
[0086] 追尾装置 10から送信された第 1の超音波は、最も短い反射経路 9bを通ってトラン スボンダ 20に到達する。トランスボンダ 20は、この超音波の受信を契機として第 2の 超音波を送信する。第 2の超音波は、短い反射経路 9bまたは長い反射経路 9cを通 つて追尾装置 10に到達する。図 13の波形 131は反射経路 9bによって伝搬される第 2の超音波の信号であり、波形 132は反射経路 9cによって伝搬される第 2の超音波 の信号である。波形 131は、第 1の超音波の送信から [2T2' +D]の時間が経過した のちに観測される。ここで、 T2'は、反射経路 9bにおける超音波の片道伝搬時間で ある。 [0087] 直接経路 8が遮断されているため、切り出し窓 113および 114では信号が受信され ない。このため、追尾装置 10は、次の切り出し窓 115で信号が観測される力否かをモ ユタし、波形 131を観測する。
[0088] 切り出し窓 115で観測された信号は、往路および復路とも反射経路 9bを通って伝 搬された信号であると判断する。一方、追尾装置 10は、受信された第 2の超音波の 伝搬方向および受信時刻から、トランスボンダ 20の相対位置を算出する。この相対 位置は、実際のトランスボンダ 20の壁 6bに対するミラーイメージの位置に存在してい る。そのため、壁 6bを示す障害物データ 100dに対して「算出された相対位置」と対 称な位置を、トランスボンダ 20の実際の位置であるとして算出する。たとえば、算出さ れた相対位置がミラーイメージ 101dの位置にあった場合、トランスボンダ 20の実際 の位置は予測位置 101にあると推定される。トランスボンダ 20の実際の位置は、反射 経路の推定と逆のミラーリングを行うことによって算出できる。このように、追尾装置 10 とトランスボンダ 20とを結ぶ直接経路が遮断された場合でも、トランスボンダ 20の位 置を推定し、追尾を続行することが可能である。
[0089] トランスボンダ 20が壁の死角に入った以降も、同様に、処理が行われる。図 12の状 況における障害物データ、およびセグメンテイシヨンの結果を図 14に模式的に示す。 障害物データは、反射体として認識される障害物データ 140a、 140b, 140cおよび 140dと、不連続部分として認識される障害物データ 140eとに分割される。
[0090] 図 14のデータを処理することによって得られるデータを図 15に示す。障害物デー タ 150a〜150dは、それぞれ、障害物データ 140a〜140dに対応する。また、障害 物データ 150aは壁 6aに対応し、障害物データ 150bおよび 150cは壁 6cに対応し、 障害物データ 150dは壁 6bに対応する。予測位置 151は、直前の相対位置推定に よって決定されたトランスボンダ 20の相対位置である。ミラーイメージ 15 laは、障害 物データ 150a (壁 6a)に対する予測位置 151のミラーイメージである。また、ミラーイ メージ 151bは、障害物データ 150b (壁 6c)に対する予測位置 151のミラーイメージ である。また、ミラーイメージ 151dは、障害物データ 150d (壁 6b)に対する予測位置 151のミラーイメージである。
[0091] これらの情報を用いて、追尾装置 10とトランスボンダ 20とを結ぶ反射経路に対応す る経路 154a、 154bおよび 154dを計算する。経路 154bおよび 154dは、それぞれ、 反射経路 153bおよび 153dに対応する仮想の経路である。なお、追尾装置 10とミラ 一イメージ 151aとを結ぶ経路 154aは、障害物データ 150aと交わらないため、これら の間に反射経路は存在しな 、。
[0092] 次に、往路および復路が直接経路である信号に対応する切り出し窓と、往路が直 接経路で復路が反射経路である信号に対応する切り出し窓と、往路および復路が反 射経路である場合の信号に対応する切り出し窓が設定される。そして、第 2の超音波 の受信情報を、図 13の処理と同様に処理することによってトランスボンダ 20の位置が 推定される。
[0093] なお、上記具体例の説明では、曲がり角などの死角に移動体が進入する場合につ いて述べたが、本発明は他の状況でも効果を奏する。たとえば、移動を伴う障害物( 他の人など)が移動体と自走体との間に進入して直接経路が遮断された場合などに も、本発明は効果的である。
[0094] また、上記具体例の説明にお 、ては、障害物検知手段として光電センサを用いる 場合について説明したが、超音波を用いた障害物センサを用いてもよい。この場合、 障害物センサの超音波の周波数は、トランスボンダと追尾装置との間で行われる相 対位置推定のための超音波送受信プロセスに影響を与えない周波数が選択される。 たとえば、相対位置推定で用いられる超音波よりも高周波の超音波を用いて障害物 を検知する場合、障害物検知性能が高ぐ相対位置の推定への影響が少ない。
[0095] また、上記具体例の説明にお 、ては、推定された超音波の伝搬経路に基づ!/、て切 り出し窓を設定し、その切り出し窓を用いて、第 2の超音波の信号を直接波による信 号と反射波による信号とに分離する場合について説明した。しかし、第 2の超音波の 信号は、他の方法によって分離することも可能である。たとえば、受信された第 2の超 音波の信号力 算出される伝搬経路が壁面を示す障害物データと交差している場合 に、受信された信号が反射経路によって伝搬された信号であると判断することも可能 である。
[0096] 以上、本発明の実施形態について例を挙げて説明したが、本発明は上記実施形 態に限定されず、本発明の技術的思想に基づき他の実施形態に適用できる。 産業上の利用可能性
本発明は、移動体とそれを追尾する自走体とを含む追尾システム、およびそれに用 いられる自走体に適用できる。本発明の追尾システムは、周囲環境の変化に対して 柔軟に対応できるため、鉄道駅や空港などの屋内環境における搬送用ロボット等とし て有用である。

Claims

請求の範囲
[1] 移動体に配置されたトランスボンダと、前記トランスボンダを追尾する自走体とを含 む追尾システムであって、
前記自走体は、前記自走体および前記トランスボンダの周囲に存在する壁面に関 する反射環境情報を入手するための環境検知手段と、第 1の超音波送受信装置とを 備え、
前記トランスボンダは、第 2の超音波送受信装置を備え、
(i)前記自走体は、前記第 1の超音波送受信装置から第 1の超音波を送信し、
(ii)前記トランスボンダは、前記第 1の超音波を前記第 2の超音波送受信装置で受 信したのち、その受信を契機として前記第 2の超音波送受信装置から第 2の超音波 を送信し、
(iii)前記自走体は、前記第 1の超音波送受信装置で前記第 2の超音波を受信する ことによって、前記第 2の超音波送受信装置から前記第 1の超音波送受信装置に直 接届く直接波と、前記第 2の超音波送受信装置から前記第 1の超音波送受信装置に 前記壁面で反射されて届く反射波とに関する受信情報を入手し、
(iv)前記自走体は、前記受信情報と前記反射環境情報とを用いて、受信された前 記第 2の超音波が前記直接波であるか前記反射波であるかの判断を行 、、前記判 断に基づ ヽて前記受信情報を処理して前記トランスボンダの位置を推定し、前記トラ ンスボンダを追尾する追尾システム。
[2] 前記 (iv)のステップにお 、て、受信された前記第 2の超音波が直接波であると判断 された場合には、前記受信情報から算出される前記第 2の超音波の送信位置を前記 トランスボンダの位置と推定し、
受信された前記第 2の超音波が反射波であると判断された場合には、前記反射波 を反射した前記壁面を示す障害物データに対して前記送信位置と対称な位置を前 記トランスボンダの位置と推定する請求項 1に記載の追尾システム。
[3] 前記 (iv)のステップの前に、前記自走体は、前記トランスボンダの予測位置に関す る予測位置情報と前記反射環境情報とを用いて、前記第 1の超音波送受信装置と前 記第 2の超音波送受信装置とを直接結ぶ直接経路と、前記壁面を介して前記第 1の 超音波送受信装置と前記第 2の超音波受信装置とを結ぶ反射経路とを含む超音波 の伝搬経路を推定し、
前記 (iv)のステップにおいて、前記自走体は、前記伝搬経路と前記受信情報とを 用いて、前記判断を行う請求項 1に記載の追尾システム。
[4] 前記 (iv)のステップにお 、て、前記自走体は、前記第 1および第 2の超音波が前記 直接経路を通って伝搬される場合に前記第 2の超音波が受信されると予想される第
1の受信時間帯と、前記第 1および第 2の超音波が前記反射経路を通って伝搬され る場合に前記第 2の超音波が受信されると予想される第 2の受信時間帯とを算出し、 前記第 1の受信時間帯に受信された前記第 2の超音波を前記直接波であると判断 し、前記第 2の受信帯に受信された前記第 2の超音波を前記反射波であると判断す る請求項 3に記載の追尾システム。
[5] 前記 (iv)のステップにお 、て、受信された前記第 2の超音波が直接波であると判断 された場合には、前記受信情報から算出される前記第 2の超音波の送信位置を前記 トランスボンダの位置と推定し、
受信された前記第 2の超音波が反射波であると判断された場合には、前記反射波 を反射した前記壁面を示す障害物データに対して前記送信位置と対称な位置を前 記トランスボンダの位置と推定する請求項 4に記載の追尾システム。
[6] 前記予測位置情報は、前記移動体の移動速度に関する情報を含む請求項 3に記 載の追尾システム。
[7] 前記 (iv)のステップにお 、て、前記受信情報から前記第 2の超音波の伝搬経路を 算出し、
前記伝搬経路が前記壁面を示す障害物データと交差して 、な 、場合に、受信され た第 2の超音波が前記直接波であると判断し、
前記伝搬経路が前記壁面を示す障害物データと交差して!/ヽる場合に、受信された 第 2の超音波が前記反射波であると判断する請求項 1に記載の追尾システム。
[8] 前記 (iv)のステップにお 、て、受信された前記第 2の超音波が直接波であると判断 された場合には、前記受信情報から算出される前記第 2の超音波の送信位置を前記 トランスボンダの位置と推定し、 受信された前記第 2の超音波が反射波であると判断された場合には、前記反射波 を反射した前記壁面を示す障害物に対して前記送信位置と対称な位置を前記トラン スボンダの位置と推定する請求項 7に記載の追尾システム。
[9] 前記環境検知手段が光電センサおよび超音波センサから選ばれる少なくとも 1種の センサである請求項 1に記載の追尾システム。
[10] 前記移動体が人であり、前記自走体がカートである請求項 1に記載の追尾システム
[11] 移動体に配置されたトランスボンダと前記トランスボンダを追尾する自走体とを含む 追尾システムに用いられる自走体であって、
前記自走体および前記トランスボンダの周囲に存在する壁面に関する反射環境情 報を入手するための環境検知手段と、超音波送受信装置とを備え、
(I)前記超音波送受信装置から第 1の超音波を送信し、
(II)前記第 1の超音波に対する応答信号として前記トランスボンダ力 送信された 第 2の超音波を前記超音波送受信装置で受信することによって、前記第 2の超音波 送受信装置から前記第 1の超音波送受信装置に直接届く直接波と、前記第 2の超音 波送受信装置から前記第 1の超音波送受信装置に前記壁面で反射されて届く反射 波とに関する受信情報を入手し、
(III)前記受信情報と前記反射環境情報とを用いて、受信された前記第 2の超音波 が前記直接波であるか前記反射波であるかの判断を行 、、前記判断に基づ 、て前 記受信情報を処理して前記トランスボンダの位置を推定し、前記トランスボンダを追 尾する自走体。
PCT/JP2005/020093 2005-01-28 2005-11-01 追尾システムおよび自走体 WO2006080120A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007500422A JP3955314B2 (ja) 2005-01-28 2005-11-01 追尾システムおよび自走体
US11/491,034 US7363125B2 (en) 2005-01-28 2006-07-24 Tracking system and autonomous mobile unit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-021668 2005-01-28
JP2005021668 2005-01-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/491,034 Continuation US7363125B2 (en) 2005-01-28 2006-07-24 Tracking system and autonomous mobile unit

Publications (1)

Publication Number Publication Date
WO2006080120A1 true WO2006080120A1 (ja) 2006-08-03

Family

ID=36740154

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/020093 WO2006080120A1 (ja) 2005-01-28 2005-11-01 追尾システムおよび自走体

Country Status (3)

Country Link
US (1) US7363125B2 (ja)
JP (1) JP3955314B2 (ja)
WO (1) WO2006080120A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008026463A1 (fr) * 2006-08-30 2008-03-06 Nec Corporation Système, procédé, programme et robot de localisation de source sonore
US8798905B2 (en) 2009-07-02 2014-08-05 Panasonic Corporation Vehicle location detection device and vehicle location detection method
CN107728622A (zh) * 2017-10-20 2018-02-23 中国人民解放军陆军工程大学 一种基于超声波阵列的无人驾驶机械车辆位姿测量与追踪方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8279063B2 (en) * 2008-11-12 2012-10-02 Xhale, Inc. Personnel location and monitoring system and method for enclosed facilities
US8416071B2 (en) * 2009-08-03 2013-04-09 Raytheon Company Relative location determination of mobile sensor nodes
JP5803054B2 (ja) * 2009-12-02 2015-11-04 村田機械株式会社 自律移動装置
US8510029B2 (en) * 2011-10-07 2013-08-13 Southwest Research Institute Waypoint splining for autonomous vehicle following
US8965641B2 (en) * 2012-09-19 2015-02-24 Caterpillar Inc. Positioning system using radio frequency signals
JP6557958B2 (ja) * 2014-10-22 2019-08-14 株式会社Soken 車両用障害物検出装置
JP6528382B2 (ja) * 2014-10-22 2019-06-12 株式会社Soken 車両用障害物検出装置
TWI678547B (zh) * 2018-11-19 2019-12-01 廣達電腦股份有限公司 環境偵測裝置及應用其之環境偵測方法
US11565415B2 (en) 2019-07-02 2023-01-31 Lg Electronics Inc. Method of tracking user position using crowd robot, tag device, and robot implementing thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5940278A (ja) * 1982-08-31 1984-03-05 Mitsubishi Electric Corp レ−ダ装置
JPH0731244B2 (ja) * 1985-03-25 1995-04-10 松下電工株式会社 超音波式追尾装置
JPH07146366A (ja) * 1993-11-24 1995-06-06 Nippon Telegr & Teleph Corp <Ntt> 物体移動情報検出装置
JPH08248125A (ja) * 1995-03-14 1996-09-27 Oki Electric Ind Co Ltd 物標追尾装置
JPH09264948A (ja) * 1996-03-27 1997-10-07 Nec Corp 水中航走体検出装置
JP2003015739A (ja) * 2001-07-02 2003-01-17 Yaskawa Electric Corp 外環境地図、並びに自己位置同定装置および誘導制御装置
JP2004348242A (ja) * 2003-05-20 2004-12-09 Hitachi Ltd 監視システム及び監視端末

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0731244A (ja) 1993-07-16 1995-02-03 Iseki & Co Ltd 作物引抜機の茎葉移送装置
US20050259213A1 (en) * 2004-05-21 2005-11-24 Eastman Kodak Company Method of making an electronic display

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5940278A (ja) * 1982-08-31 1984-03-05 Mitsubishi Electric Corp レ−ダ装置
JPH0731244B2 (ja) * 1985-03-25 1995-04-10 松下電工株式会社 超音波式追尾装置
JPH07146366A (ja) * 1993-11-24 1995-06-06 Nippon Telegr & Teleph Corp <Ntt> 物体移動情報検出装置
JPH08248125A (ja) * 1995-03-14 1996-09-27 Oki Electric Ind Co Ltd 物標追尾装置
JPH09264948A (ja) * 1996-03-27 1997-10-07 Nec Corp 水中航走体検出装置
JP2003015739A (ja) * 2001-07-02 2003-01-17 Yaskawa Electric Corp 外環境地図、並びに自己位置同定装置および誘導制御装置
JP2004348242A (ja) * 2003-05-20 2004-12-09 Hitachi Ltd 監視システム及び監視端末

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008026463A1 (fr) * 2006-08-30 2008-03-06 Nec Corporation Système, procédé, programme et robot de localisation de source sonore
US8798905B2 (en) 2009-07-02 2014-08-05 Panasonic Corporation Vehicle location detection device and vehicle location detection method
CN107728622A (zh) * 2017-10-20 2018-02-23 中国人民解放军陆军工程大学 一种基于超声波阵列的无人驾驶机械车辆位姿测量与追踪方法

Also Published As

Publication number Publication date
US20060259213A1 (en) 2006-11-16
JPWO2006080120A1 (ja) 2008-06-19
US7363125B2 (en) 2008-04-22
JP3955314B2 (ja) 2007-08-08

Similar Documents

Publication Publication Date Title
JP3955314B2 (ja) 追尾システムおよび自走体
US8949012B2 (en) Automated multi-vehicle position, orientation and identification system and method
KR100561855B1 (ko) 로봇용 로컬라이제이션 시스템
KR100486737B1 (ko) 청소로봇의 청소궤적 생성·추종방법 및 장치
JP6333412B2 (ja) 障害物検知装置
JPH06131596A (ja) 車両用障害物検出装置
KR100928964B1 (ko) 이동로봇의 도킹스테이션 귀환방법 및 장치
JP2002372577A (ja) 障害物検出装置
JP2998125B2 (ja) レーザレーダによる物体大きさ判定方法、物体大きさ判定装置、距離検出方法、及び距離検出装置
US20200142059A1 (en) Driving support apparatus
JP4045895B2 (ja) 駐車スペース検出装置
JP2007101295A (ja) 追尾システムおよび自走体
JP2006317161A (ja) 追尾システム
JP2015132511A (ja) 路面監視装置および電動カート
JP2006214992A (ja) 追尾システムおよびそれに用いられる自走体
JP4863679B2 (ja) 位置測定装置
JP6953166B2 (ja) 電動車両の自動走行制御装置および自動走行制御方法
KR20220166704A (ko) 비가시 경로 레이더 장치
JP4462220B2 (ja) 自律移動装置、並びに、自律移動システム
JP3475745B2 (ja) 車間距離警報装置
JPH05288847A (ja) 接近検知装置
JP2022028534A (ja) 制御装置及びロボットシステム
KR102667973B1 (ko) 초음파 센서 장치와 초음파 센서 제어 장치 및 방법
CA2773363C (en) An automated multi-vehicle position, orientation and identification system and method
WO2021024433A1 (ja) 障害物検出装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2007500422

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11491034

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 11491034

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 05800424

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 5800424

Country of ref document: EP