WO2006068168A1 - 医療用生分解性生体吸収材料 - Google Patents

医療用生分解性生体吸収材料

Info

Publication number
WO2006068168A1
WO2006068168A1 PCT/JP2005/023464 JP2005023464W WO2006068168A1 WO 2006068168 A1 WO2006068168 A1 WO 2006068168A1 JP 2005023464 W JP2005023464 W JP 2005023464W WO 2006068168 A1 WO2006068168 A1 WO 2006068168A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
mol
copolymer
type polymer
dmo
Prior art date
Application number
PCT/JP2005/023464
Other languages
English (en)
French (fr)
Inventor
Hiroyuki Shirahama
Masamitsu Miyazaki
Mikio Fukuchi
Original Assignee
Goodman Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Goodman Co., Ltd. filed Critical Goodman Co., Ltd.
Priority to EP05820158A priority Critical patent/EP1832302A4/en
Publication of WO2006068168A1 publication Critical patent/WO2006068168A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/74Synthetic polymeric materials
    • A61K31/765Polymers containing oxygen
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/18Macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/58Materials at least partially resorbable by the body

Definitions

  • the present invention relates to a biomedical biodegradable bioabsorbable material such as a suture thread, a vascular stent, a biological cell carrier, a drug carrier and the like.
  • the present invention relates to a degradable bioabsorbable material and a method for producing the same.
  • Bioabsorbable polymers used as medical materials such as vascular stents and sutures include polylactic acid, polydaricholic acid, and polydaractin, polydioxanone, polyglyconate (triglycerates), which are copolymers of both.
  • a copolymer of methylene carbonate and glycolide A copolymer of methylene carbonate and glycolide).
  • Such bioabsorbable polymers are widely used because they degrade in vivo and absorb force, but their mechanical properties such as tensile strength and the degradation rate for absorption are almost fixed. However, increasing its mechanical properties makes it brittle and slows its degradation rate. Further, when the decomposition rate is increased, the mechanical characteristics are decreased. Therefore, there is a problem that the purpose and place of use are limited.
  • Non-Patent Document 1 Polymer Papers, Vol. 56, No. 9, pp. 550—556 (September 1999) Disclosure of Invention
  • PLLA polylactic acid
  • P ( L-LA / CL / DMO) see Non-Patent Document 1
  • CL contributes to decomposability, but greatly reduces heat resistance and mechanical properties
  • DMO is also degradable.
  • it hardly contributes to heat resistance and mechanical properties.
  • the degradability is short in the period required for degrading in vivo, and the better heat resistance is suitable for industrial molding. It has an appropriate glass transition temperature for maintaining various properties in the temperature and storage environment and maintaining the strength at the living body temperature, and the mechanical property means a strength high enough to function as a medical device in the living body.
  • the present inventors have found that mechanical properties and thermal properties are unexpectedly improved by mixing two kinds of polymers forming a stereocomplex, so that the present invention can be completed. It came. That is, the present invention provides a biodegradable bioabsorbable material for medical use, which is a polymer blend of the following A-type polymer and B-type polymer.
  • 1 2 1 2 1 2 is 50-100 mol%, m and m are 3-8, R and R are hydrogen or carbon number 1
  • R and R are alkyl groups having 1 to 2 carbon atoms, R, R,
  • R and R ′ are alkyl groups having 1 to 4 carbon atoms
  • the ratio is preferably 1 to 20 mol%.
  • Y and y are different ratios
  • n 70 to 99 mol%.
  • m and m may be different values.
  • R and R may or may not have optical activity.
  • R, R ′, R and R may be different from each other, preferably a methyl group or
  • the number-average molecular weight of the A-type polymer and the B-type polymer may be different from the viewpoint of formation of a stereocomplex body.
  • 1 ⁇ 10 3 to 3 ⁇ 10 5 is more preferable, and 2 ⁇ 10 3 to 3 ⁇ 10 5 is more preferable, and 2 ⁇ 10 4 to 2 ⁇ 10 5 is more preferable.
  • the A-type polymer and the B-type polymer may be different from the random copolymer and the block copolymer, respectively. From the viewpoint of properties and mechanical properties, a random copolymer is preferred.
  • the blend ratio of A type polymer and B type polymer is from 1: 9 to 9: 1 from the viewpoint of thermal properties and mechanical properties. Is more preferably 3: 7 to 7: 3.
  • R is hydrogen or an alkyl group having 1 to 4 carbon atoms
  • R is an alkyl group having 1 to 2 carbon atoms.
  • R, R ′, R and R are alkyl groups having 1 to 4 carbon atoms.
  • a catalyst amount required typically relatively monomer 1 0 one 7 ⁇ 10- 3 mol / mol
  • a catalyst amount required typically relatively monomer 1 0 one 7 ⁇ 10- 3 mol / mol
  • Commonly used polymerization catalysts include metal catalysts such as tin octylate, and higher alcohols may be added as initiators.
  • the monomer, catalyst and initiator are sufficiently stirred in the reaction vessel and polymerized in the temperature range of 120 to 200 ° C under an inert gas atmosphere. The polymerization temperature, catalyst amount, and polymerization time are adjusted according to the desired molecular weight.
  • the polymer After the polymerization is completed, the polymer is dissolved in an organic solvent such as black mouth form, and the polymer is purified by reprecipitation with methanol or the like.
  • the catalyst at the end of the polymer can be removed by adding hydrochloric acid equimolar or more to the catalyst used to produce a metal salt.
  • Polymer blending methods include L-DMOZL-LA2 copolymer and L-DMOZD-LA2 copolymer, or L-DMOZCLZL-LA3 copolymer and L-DMOZCLZD-LA3.
  • the copolymer is dissolved again in an appropriate amount of black mouth form at a predetermined ratio, mixed, stirred vigorously for 1 to 3 hours, poured into a Teflon (registered trademark) petri dish, and cast into a polymer blend (stereo). (Complex).
  • the polymer blend can be obtained by dissolving in chloroform and reprecipitating and purifying with methanol. The above purification removes a low molecular weight polymer that does not form a stereocomplex.
  • the side chain R group as shown in the figure is hydrogen or an alkyl group having 1 to 4 carbon atoms, and the side chain R ′
  • 1 1 group is an alkyl group having 1 to 2 carbon atoms.
  • a depsipeptide synthesized with an amino acid and a hydroxy acid derivative is obtained by using chloroacetyl chloride, 2-bromopropiol bromide and 2-bromo-n-butyryl bromide as the hydroxy acid derivative.
  • chloroacetyl chloride, 2-bromopropiol bromide and 2-bromo-n-butyryl bromide are the L-MMO, L-DMO, and L-MEMO according to the jet of the hydroxy acid derivative, respectively, and these are all applicable to the present invention ⁇ as these depsipeptide monomers and bioabsorbable polymers.
  • the enzymatic degradation of the copolymer with force prolatathon (CL) is in the order of L-MMO / CL> L-DMO / CL> L-MEMO / CL in the degradation with proteinase IV.
  • depsipeptides synthesized from amino acids and oxyacid derivatives use L-alanine, L- (DL- or D-) parin and L-leucine as amino acids, and the obtained depsipeptides are used in the order of amino acids.
  • DMO, PMO, and BMO all of which are applicable to the present invention.
  • the enzymatic degradation of copolymers of these depsipeptide monomers and ⁇ -force prolataton (CL) is not due to degradation by proteinase ⁇ .
  • DMO cyclic depsipeptide
  • L-LA L-lactide
  • CL ⁇ -force prolataton
  • FIG. 2 is a structural diagram of a copolymer having peptide units obtained by polymerizing this depsipeptide.
  • U indicates depsipeptide unit! /
  • Cyclic depsipeptide is a cyclic ester amide that also has ⁇ -amino acid and ⁇ -hydroxy acid derivative power.
  • DL-alanine was used as the ⁇ -amino acid
  • DL-2-bromopropio-bromide an a-hydroxy acid derivative
  • DMO was purified by recrystallization twice from black mouth form.
  • cyclic depsipeptide (L-DMO) was synthesized from an a-amino acid (L-alanine) and an a-hydroxy acid derivative (DL-2-bromopropio-bromide) and then used after purification.
  • L-lactide (L-LA) was recrystallized from THF and purified by sublimation (twice).
  • the copolymer was prepared as follows.
  • a predetermined amount of CL monomer is put in the same polymerization vessel, and the vessel is sealed.
  • the sealed vessel was immersed in a 120 ° C. oil bath to initiate polymerization.
  • the polymerization vessel was removed from the oil bath and cooled.
  • the amount of hydrochloric acid added to tin oxalate and stir 3 minutes or more
  • the salt was extracted into distilled water (at least once), dehydrated and dried, and then purified by reprecipitation in methanol.
  • Tables 1 and 2 show the yield and molecular weight of the polymers obtained.
  • L-DMOZCLZD-LA ternary random copolymer L-DMOZL-LA binary random copolymer, using the same method as above, using two or three monomers to be polymerized, respectively. And L-DMOZD-LA binary random copolymer were synthesized.
  • 1 H NMR data ( ⁇ , CDC1) of the obtained copolymer is shown below.
  • the copolymer composition was determined by determining the peak integrated value specific force of 1 H NMR ⁇ vector measured using a 400 MHZ nuclear magnetic resonance apparatus (JEOL JMN-LA400). In addition, these spectra were also estimated for the chain arrangement (randomness) of the copolymer.
  • the number average molecular weight (Mn) and molecular weight distribution (Mw / Mn) of the polymer are
  • GPC8010 system ⁇ Column: TSKgel (G2000H + G3000H + G4000H + G
  • the calibration curve force produced by was also determined. A black mouth form was used as the eluent, and the flow rate was 1 mL min.
  • thermal properties of the polymer and polymer blend ie, glass transition temperature (Tg), melting point (Tm) and heat of fusion ( ⁇ Hm) were measured using a differential scanning calorimeter SS C5100DSC22C manufactured by Seiko Instruments Inc. The measurement was performed in a nitrogen atmosphere at a heating rate of 10 ° C / mi ⁇ .
  • the mechanical properties (tensile strength and elongation at break) of the polymer and polymer blend were measured using a tensile tester AGS-H 100N manufactured by Shimadzu Corporation at a crosshead speed of 100 mm / min and a distance between the gauge points of 15 mm. . The measurement was performed at least three times and the average value was adopted.
  • Polymer sample dumbbell specimens (40 mm x 40 mm x 0.2 mm) were prepared by heating and pressing a polymer material at 180 to 200 ° C for approximately 5 minutes (model SDMP-1000-D, standard JISK-7162-). 5B) Enzymatic degradation tests of polymers and polymer blends are outlined below.
  • a polymer film (thickness: approx. 200 ⁇ m, several tens of g) enclosed in a polyethylene sheet mesh (mesh approx. 1 X lmm) is introduced into a sample tube bottle containing enzyme and buffer (50 ml) (37 ° C) to decompose.
  • the enzyme concentration was 1 International Unit (IU) per mg of polymer sample.
  • the buffer solution (decomposition solution) containing the enzyme was replaced with a new decomposition solution approximately every 40 hours in consideration of the decrease in oxygen activity and the contamination and growth of microorganisms in the air.
  • Degradability was evaluated by changes in polymer weight and physical properties (molecular weight, composition, thermal properties) before and after degradation.
  • proteinase K derived from Tritirachium album, manufactured by Merck & Co., Inc., enzyme activity 30.0 mAnson U / mg
  • Tricine pH 8.0
  • the binary copolymer and the ternary copolymer have a strong randomness because one Tg and one Tm are observed. Is suggested. In addition, it can be confirmed from the 1 H NMR spectrum of the ternary copolymer of FIGS. 5 and 6 that the terpolymer is random.
  • the proton peaks (k, h) of ⁇ - and ⁇ -methylene in the CL unit are sensitive to adjacent comonomer units, and each of these peaks is split into two (k, h (The peak on the high magnetic field side corresponds to the CL-CL homo-sequence, and the peak based on the low-high magnetic field side peak force SL-LA-CL and L-DMO-CL heterosequences.)
  • the terpolymer was found to be a random copolymer.
  • this unit is precisely introduced into the copolymer because of its high reactivity and L-LA (Tm is about 95 ° C) polymerization occurs first, and L-DMO (and Z or CL) is ring-opened by this active growth terminal, and is also a force that is randomly incorporated into the copolymer.
  • the polymer blends of the binary and terpolymers are superior to those of PLLA, the binary copolymer alone, and the terpolymer copolymer alone. Properties and thermal properties, better degradability than PLLA.
  • Stereocomplex polylactic acid has a small mechanical property (elongation), and there is a restriction in terms of cracking and cracking as a medical device that deforms in the body such as expansion .
  • the bioabsorbable polymer in the present invention exhibits the necessary and sufficient elongation characteristics similar to those of binary copolymers and terpolymers without sacrificing strength, thermal characteristics, decomposition characteristics, etc. Suitable for use as a tool!
  • bioabsorbable polymer in the present invention is adjusted by adjusting the blend ratio thereof. It is also possible to adjust the degradability.
  • the NH group of the depsipeptide unit of the bioabsorbable polymer is hydrophilic, it is a medical for in-vivo in comparison with polylactic acid (lactide), force prolatatone and their copolymers without hydrophilic groups. It has higher biological friendliness as a device or a bioabsorbable medical device.
  • FIG. 1 is a structural diagram of depsipeptide.
  • FIG. 2 is a structural diagram of a copolymer having a depsipeptide unit.
  • FIG. 3 is a structural diagram illustrating synthesis of depsipeptide.
  • FIG. 4 is a structural diagram of binary and ternary copolymers obtained by ring-opening copolymerization of depsipeptides.
  • FIG. 5 is a graph showing a 1 H NMR ⁇ vector of L-DM0ZCLZL-LA terpolymer.
  • FIG. 6 is a graph showing the 1 H NMR ⁇ vector of L-DMOZCLZD-LA terpolymer.
  • FIG. 7 is a graph showing a 1 H NMR spectrum of L-DMOZL-LA binary copolymer.
  • FIG. 8 is a graph showing a 1 H NMR spectrum of L-DMOZD-LA binary copolymer.
  • FIG. 9 is a graph showing the change in strength and heat resistance according to the blend ratio of the binary copolymer.
  • FIG. 10 is a graph showing changes in strength and heat resistance depending on the blend ratio of the terpolymer.
  • FIG. 11 is a graph showing the results of an enzyme degradability test.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Public Health (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Dermatology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Materials For Medical Uses (AREA)
  • Polyesters Or Polycarbonates (AREA)

Description

医療用生分解性生体吸収材料
技術分野
[0001] 本発明は、縫合糸、脈管ステント、生体細胞の担持体、薬剤等の担持体等の医療 用生分解性生体吸収材製用具として用いることができる生体吸収性ポリマーによる 医療用生分解性生体吸収材料およびその製造方法に関する。
背景技術
[0002] 脈管ステントや縫合糸等の医療用材として用いられている生体吸収性ポリマーとし ては、ポリ乳酸、ポリダリコール酸、この両者の共重合体であるポリダラクチン、ポリジ ォキサノン、ポリグリコネート(トリメチレンカーボネートとグリコリドの共重合体)等があ る。
このような、生体吸収性ポリマーは、生体内で分解し、し力も吸収されるためにひろ く用いられているが、その引張強度等の力学的特性および吸収のための分解速度が それぞれほぼ定まっているもので、その力学的特性を上げると脆くなりかつ分解速度 も遅くなる。また、分解速度を上げると力学的特性が減少してしまう。したがって使用 目的および使用個所が限定されてしまうという問題がある。
[0003] 非特許文献 1 :高分子論文集, Vol. 56, No. 9, pp. 550— 556 (1999年 9月) 発明の開示
発明が解決しょうとする課題
[0004] PLLA (ポリ乳酸)は生分解性材料としてよく知られており、機械的特性には他の生 分解性材料に比べて優れているが、耐熱性は十分といえず、また分解性も十分では ない。このため、 PLLAの分解性を高めるために共重合体として P (L-LA(L-ラクチ ド) ZCL ( ε -力プロラタトン) )、 P (L-LA/DMO (環状デプシペプチド) )、 P (L- LA /CL/DMO)が報告されて 、る (非特許文献 1参照)が、 CLは分解性には寄与す るが、耐熱性、機械的特性を大きく低下させ、また DMOも分解性には寄与するが、 耐熱性、機械的特性に関してはほとんど寄与しない。なお、ここで、分解性は生体内 で分解するのに必要な期間で短 、ほうがよぐ耐熱性は工業的に成型を行うのに適 する温度及び保存環境で諸特性を維持し生体温度で強度を維持するための適度な ガラス転移点温度をもち、また機械的特性は生体内で医療用具として機能する程度 の高い強度を意味する。
課題を解決するための手段
[0005] 本発明者らは、ステレオコンプレックスを形成する 2種のポリマーを混合することによ つて、機械的特性及び熱的特性が予想外に向上することを見出し、本発明を完成さ せるに至った。すなわち、本発明は、下記 A型ポリマーと B型ポリマーとのポリマーブ レンドである医療用生分解性生体吸収材料を提供する。
A型ポリマー:
Figure imgf000004_0001
(式中、 X及び Xは O〜50モル%であり、 Y及び Yは O〜50モル%であり、 Z及び Z
1 2 1 2 1 2 は 50〜100モル%であり、 m及び mは 3〜8であり、 R及び Rは水素または炭素数 1
1 2 1 3
〜4のアルキル基であり、 R,及び R,は炭素数 1〜2のアルキル基であり、 R、 R,、
1 3 2 2
R及び R 'は炭素数 1〜4のアルキル基であるが、
4 4
Xと Xは同時に 0モノレ%であってはならない。 )
1 2
発明を実施するための最良の形態
[0006] 上記 A型ポリマーと B型ポリマーとのポリマーブレンドにおいて、 X及び Xは異なる
1 2 比率であってもよぐ好ましくは 1〜20モル%である。また、 y及び yは異なる比率で
1 2
あってもよぐ好ましくは 1〜30モル%である。また、 z及び zは異なる比率であっても
1 2
よぐ好ましくは 70〜99モル%である。また、 m及び mは異なる値であってもよぐ好
1 2
ましくは 5〜7であり、最も好ましくは 5である。
上記 A型ポリマーと B型ポリマーとのポリマーブレンドにおいて、 R、 R、 R,及び R 'は、互いに異なっていてもよぐ好ましくはメチル基又はェチル基であり、より好ましく はメチル基である。 R,及び R,は光学活性を持っていても持っていなくてもよい。ま
1 3
た、 R、 R '、 R及び R,は、互いに異なっていてもよぐ好ましくはメチル基又はェチ
2 2 3 3
ル基であり、より好ましくはメチル基である。
[0007] 上記 A型ポリマーと B型ポリマーとのポリマーブレンドにおいて、 A型ポリマー及び B 型ポリマーは異なる分子量であってもよぐその数平均分子量は、ステレオコンプレツ タス体の形成の観点から、いずれも 1 X 103〜3 X 105が好ましぐより好ましくは 2 X 103 〜3 X 105であり、さらに好ましくは 2 X 104〜2 X 105である。
上記 A型ポリマーと B型ポリマーとのポリマーブレンドにお!/、て、 A型ポリマー及び B 型ポリマーは、それぞれランダム共重合体及びブロック共重合体の ヽずれであっても よいが、熱的特性及び機械的特性の観点から、好ましくはランダム共重合体である。 上記 A型ポリマーと B型ポリマーとのポリマーブレンドにお!/、て、 A型ポリマーと B型 ポリマーとのブレンド比率は、熱的特性及び機械的特性の観点から、 1: 9〜9: 1が好 ましぐより好ましくは 3 : 7〜7: 3である。
[0008] A型ポリマー及び B型ポリマーの合成方法としては、適当な方法で精製処理された 所定量の下記モノマー:
0 N HA
(式中、 Rは水素または炭素数 1〜4のアルキル基であり、 R,は炭素数 1〜2のアル
1 1
キル基である。 )
Figure imgf000005_0001
(式中、 mは 3〜8である。 )
及び R2 ,0
00ノ、2. 又は
Figure imgf000006_0001
(式中、 R、 R '、 R及び R,は炭素数 1〜4のアルキル基である。 )
2 2 4 4
を反応容器に加え、更にモノマーに対して必要量 (一般的にはモノマーと相対的に 1 0一7〜 10— 3mol/mol)の触媒を添加する。 2元共重合体の場合には 2種類のモノマーを 用い、 3元共重合体の場合には 3種類のモノマーを用いる。一般的に使用される重 合触媒としてはォクチル酸スズなどをはじめとする金属触媒が挙げられ、開始剤とし て高級アルコールを添加してもよい。モノマー、触媒、開始剤は反応容器中で十分 攪拌し、不活性ガス雰囲気下、 120〜200°Cの温度範囲で重合させる。重合温度、触 媒量、重合時間は所望の分子量に合わせて調節する。重合終了後はクロ口ホルムな どの有機溶媒に溶解させ、メタノール等による再沈殿によりポリマーを精製する。 また、精製の際には使用した触媒と等モル以上の塩酸を添加し、金属塩を生成さ せることでポリマー末端の触媒を除去することもできる。
ポリマーのブレンド方法としては、メタノールにより再沈精製した L- DMOZL- LA2 元共重合体と L- DMOZD- LA2元共重合体、もしくは L- DMOZCLZL- LA3元 共重合体と L-DMOZCLZD-LA3元共重合体を所定割合で適量のクロ口ホルム に再度溶解させた後、それらを混合し 1〜3時間激しく攪拌させ、テフロン (登録商標 )シャーレに流し入れ、キャスト法によりフィルム状でポリマーブレンド(ステレオコンプ レックス)を得る方法が挙げられる。また、重合終了後にクロ口ホルムに溶解させ、メタ ノールにより再沈精製してポリマーブレンド (ステレオコンプレックス)を得てもょ 、。な お、上記精製により、ステレオコンプレックスを形成しない低分子量のポリマーを取り 除かれる。
実施例 [0010] 本発明をより詳細に説述するために、添付の図面に従ってこれを説明する。
デプシペプチドの構造を図 1に示す。
図中に示す如ぐ側鎖 R基は水素又は炭素数 1〜4のアルキル基であり、側鎖 R '
1 1 基は炭素数 1〜2のアルキル基である。
デプシペプチドの例としては、アミノ酸とヒドロキシ酸誘導体と力 合成したデプシぺ プチドは、ヒドロキシ酸誘導体としてはクロロアセチルクロリド、 2-ブロモプロピオ-ル ブロミドおよび 2-ブロモ -n-ブチリルブロミドを用い、得られたデプシペプチドをこれを ヒドロキシ酸誘導体の j噴に従いそれぞれ、 L- MMO、 L- DMO、 L- MEMOとし、そ れらすべてが本発明に適応可能である力 これらデプシペプチドモノマーと生体吸 収性ポリマーとしての ε -力プロラタトン (CL)とによる共重合体の酵素分解性はプロ ティナーゼ Κによる分解では、 L - MMO/CL > L - DMO/CL > L - MEMO/CL の順である。
さらに、アミノ酸とォキシ酸誘導体とから合成したデプシペプチドは、アミノ酸として L -ァラニン、 L- (DL-または D-)パリンおよび L-ロイシンを用い、得られたデプシぺプ チドをこれをアミノ酸の順に従いそれぞれ、 DMO、 PMO、 BMOとし、それらすベて が本発明に適応可能であるが、これらデプシペプチドモノマーと ε -力プロラタトン (C L)とによる共重合体の酵素分解性はプロティナーゼ Κによる分解では、 DMOZCL > PMO/CL≥ BMO/CLの順で、コレステロールエステラーゼでは PMO/CL > BMO/CL≥ DMOZCLの順である。
[0011] [L- DMOZCLZL- LA3元ランダム共重合体、 L- DMOZCLZD- LA3元ランダ ム共重合体、 L- DMOZL- LA2元ランダム共重合体及び L- DMOZD- LA2元ラン ダム共重合体の合成]
ポリ乳酸の原料である L-ラクチド (L-LA)とポリ ε -力プロラタトンの原料である ε - 力プロラタトン (CL)との共重合体に環状デプシペプチド (DMO)を加えた 3元共重 合体とした。
図 2はこのデプシペプチドを重合して得られるペプチドユニットを有する共重合体の 構造図である。 Uはデプシペプチドユニットを示して!/、る。
そこで、環状デプシペプチドとして、 3, 6-ジメチル -2, 5-モルフオリンジオン(DM O)を合成した。環状デプシペプチドは、 α -アミノ酸と α -ヒドロキシ酸誘導体力もなる 環状エステルアミドである。ここでは、 α -アミノ酸に DL-ァラニンを、 a -ヒドロキシ酸 誘導体の DL- 2-ブロモプロピオ-ルブロミドを用いた。 ex—アミノ酸は L ァラニン、 D ァラニンの場合でも合成方法は同様である。
合成の第 1段階として、まず、ァラニンと 2-ブロモプロピオ-ルブロミドとの Schotte n-Baumann反応をアルカリ水溶液中で行い、ペプチド結合させ、 2-ブロモプロピオ 二ルァラニンを得た(図 3)。
すなわち、 DL-ァラニン(53. 4g、 0. 6mol)の 4N NaOH (0. 6mol)水溶液 150 mlを約 5° Cに冷却した後、これに 4N NaOH (0. 72mol) 180mlと DL- 2-ブロモ プロピオ-ルブロミド(0. 66mol) 69. 9mlを氷浴中で冷却攪拌しながら交互に約 30 分間かけて添加した。反応混合物は常に微アルカリ性を保っておいた。反応終了後 白色の生成物を濾過して分離した。
生成物を水に溶解し、 pHが約 3となるように 5N HC1を滴下しながらカ卩えた後、水 分は蒸発させることによって除去した。残存している水溶液を冷却しながら 5N HC1 で徐々に酸性にすると、白色の生成物がさらに得られた。得られたこれら白色生成物 をジェチルエーテルを用 、てソックスレー抽出して精製した。
収率 30〜40%; JH NMR ( δ、 CDC1 ) 1. 54 (d, 3H, NHCHCH )、 1. 91 (d,
3 3
3H, BrCHCH ) , 4. 45 (q, IH, NHCHCH ) , 4. 59 (q, IH, BrCHCH )、 6. 8
3 3 3
8 (brs, IH, NH)。
つづいて、精製した 2-ブロモプロピオ-ルァラニン(19. 7g, 0. 0881mol)とこれ と等モルの NaHCO (7. 40g, 0. 0881mol)をジメチルホルムアミド(DMF) 150ml
3
に加えた後、 60° Cで 24時間還流して分子内環化脱塩させることにより環状デプシ ペプチドである DMOを白色粉末として得た(図 3)。
DMOはクロ口ホルムから 2回再結晶して精製した。
収率 40〜60% ; mp 158〜159° 。; NMR ( δ、 CDC1 ) 1. 54 (d, 3H, NH
3
CHCH )、 1. 62 (d, 3H, OCHCH )、 4. 24 (q, IH, NHCH)、 4. 91 (q, IH, O
3 3
CH)ゝ 7. 07ppm (brs, IH, NH)。
つぎに、 3元共重合体の合成について述べる。 共重合モノマーのうち環状デプシペプチド (L-DMO)は、 a -アミノ酸 (L-ァラニン) と a -ヒドロキシ酸誘導体 (DL- 2-ブロモプロピオ-ルブロミド)とから合成後、精製し て用いた。
また、ラタトン (CL)はトルエンに溶解後 CaHにより 48時間乾燥した後、減圧蒸留(
2
2回)することにより、 L-ラクチド (L-LA)は THFから再結晶後、昇華(2回)することに より精製した。
重合操作はすべてアルゴン雰囲気下で行った。
L-DMOZCLZL-LA3元共重合体の合成スキームを図 4に示す。
共重合体の調製は以下のように行った。
THF中に溶解させた所定量の L-DMOと L-LAの両モノマーならびに触媒のオタ チル酸スズ(IlMSn (Oct) ; 0. 2mol%Zmonomer}のトルエン溶液をシュレンク管
2
(重合容器)に導入後、減圧下で溶媒の THFとトルエンをトラップ除去する。
つぎに、所定量の CLモノマーを同じ重合容器に入れ、容器を封管する。封管した 容器を 120° Cの油浴中に浸漬して重合を開始した。
所定の時間(12時間)後、重合容器を油浴から取り出して冷却した。生じた粗ポリマ 一をクロ口ホルムに溶解し、ポリマー末端部の触媒を取り除くために、添加したオタチ ル酸スズの 2倍量以上の塩酸を加えて攪拌し (3分以上)、生成した金属塩を蒸留水 中に抽出(1回以上)させ、脱水乾燥した後メタノール中で再沈殿させることにより精 製した。
表 1及び表 2に得られたポリマーの収率と分子量を示す。
また、 L-DMO/CL/L-LA ( = 8 : 13 : 79) 3元共重合体の1H NMRデータ( δ 、 CDC1 )は以下のようである。
3
1. 38 (m, 2H, CH CH CH CH CH )ゝ 1. 50 (m, 6H, CH X 2 (L- DMO) )、 1.
2 2 2 2 2 3
57 (d, 6H, CH X 2 (L-LA) )、 1. 68 (m, 4H, CH CH CH CH CH )、 2. 25〜
3 2 2 2 2 2
2. 45 (splitting in two peaks, 2H, CCH )、 4. 60 (m, 1H, OCH (L— DMO) )、 6.
2
60ppm (br. m, 1H, NH)。
それぞれ重合させる 2種又は 3種のモノマーを用いて、上記と同様の方法により、 L - DMOZCLZD- LA3元ランダム共重合体、 L- DMOZL- LA2元ランダム共重合 体及び L- DMOZD-LA2元ランダム共重合体を合成した。得られた共重合体の1 H NMRデータ( δ、 CDC1 )を以下に示す。
3
P(L- DMO/L- LA) :1.48 (m, 6H, CH X2(L- DMO))、 1.57 (d, 6H, CH
3 3
X2(L— LA))、 4.59 (m, 1H, NHCH)、 5.17(m, 1H, OCH)、 6.56ppm(br. d, 1H, NH)。
P(L- DMO/D- LA) :1.49 (m, 6H, CH X2(L- DMO))、 1.57 (d, 6H, CH
3 3
X2(L- LA))、4.61 (m, 1H, NHCH)、5.17(m, 1H, OCH)、6.58ppm(br. d, 1H, NH)0
P(L- DMO/CL/D- LA) :1.38 (m, 2H, CH CH CH CH CH )、 1.50 (m, 6
2 2 2 2 2
H, CH X2(L- DMO))、 1.57 (d, 6H, CH X2(L- LA)、 1.68 (m, 4H, CH C
3 3 2
H CH CH CH )ゝ 2.26〜2.38 (splitting in two peaks, 2H, CCH )、 4.59 (m,
2 2 2 2 2
1H, OCH(L— DMO))、 6.66ppm(br. m, 1H, NH)。
上記 2元共重合体及び 3元共重合体の NMRスペクトルを図 5〜図 8に示す。
[0013] なお、コポリマーの組成は 400MHZの核磁気共鳴装置 (JEOL JMN— LA400) を用いて測定した1 H NMR ^ベクトルのピーク積分値比力 決定した。また、これら スペクトルカもコポリマーの連鎖配列(ランダム性)についても推定を行った。
ポリマーの数平均分子量 (Mn)と分子量分布 (Mw/Mn)は東ソー株式会社製の
GPC8010システム {カラム: TSKgel(G2000H +G3000H +G4000H +G
HR HR HR
5000H )、カラム温度 40° C、示差屈折率 (RI)検出器 }を用い、標準ポリスチレン
HR
により作製した検量線力も決定した。溶離液としてクロ口ホルムを用い、流速は lmL min とした。
[0014] [ポリマーブレンドの調製方法]
メタノールにより再沈精製した 2種のポリマー(L- DMOZCLZD- LAと L- DMOZ CL/L-LA,及び L- DMOZL- LAと L- DMOZD- LA)を等重量ずつ、適量のク ロロホルムに溶解させた後、それらを混合し、 1〜3時間激しく撹拌させた後、テフロン (登録商標)シャーレに流し入れ、キャスト法によりフィルム状でポリマーブレンドを得 た。
[0015] [ポリマーブレンドの熱的特性、機械的特性及び酵素分解試験] ポリマー及びポリマーブレンドの熱的特性、すなわちガラス転移温度 (Tg)、融点( Tm)および融解熱 ( Δ Hm)はセイコー電子工業株式会社製の示差走査熱量計 SS C5100DSC22Cを用いて測定した。測定は窒素雰囲気下、昇温速度 10° C/mi πで行った。
ポリマー及びポリマーブレンドの機械的特性 (破壊時の引張強度と伸び)は島津製 作所製の引張試験機 AGS-H 100Nを用い、クロスヘッドスピード 100mm/minにて標点 間距離 15mmで測定した。測定は少なくとも 3回行いその平均値を採用した。なお、ポ リマーサンプルのダンベル試験片(40mm X 40mm X 0.2mm)は、ポリマー材料を 180〜 200°Cで約 5分間加熱プレスして作製した(型式 SDMP-1000-D、規格 JISK- 7162-5B) ポリマー及びポリマーブレンドの酵素分解試験は従来と同様に行った力 以下に概 略を示す。
ポリエチレン製のシートメッシュ(網目約 1 X lmm)に封入したポリマーフィルム(膜厚 約 200 μ m、数 10g)を、酵素ならびに緩衝液 (50ml)の入ったサンプル管瓶内でインキ ュペート(37°C)することにより分解を行った。酵素濃度はポリマーサンプル lmg当たり 1国際単位 (IU)とした。
なお、酵素を含む緩衝液 (分解液)は、酸素活性の低下や空気中の微生物の混入 •増殖を考慮して、約 40時間ごとに新しい分解液と交換した。
分解性は分解前後のポリマーの重量および物性 (分子量,組成,熱的特性)の変 ィ匕により評価した。酵素としてプロテアーゼの 1種であるプロティナーゼ K (Tritirachiu m album由来、メルク株式会社製、酵素活性 30.0mAnsonU/mg)を、 Goodの緩衝液と して Tricine (pH8.0)を用いた。
[0016] 各ポリマー及びポリマーブレンドの熱的特性及び機械的特性を下記表 1及び表 2に 示す。また、ブレンド比率による熱的特性及び機械的特性の変化を図 9及び図 10に 、酵素分解性試験の結果を図 11に示す。
[0017] [表 1] 〔^ 表 1
P(L-DMO/l_A) 収率 n w/Mn Tg Tm*1 AHm 2 strength modulus elongation ポリマ一
(仕込みモル比) (実測モル比) (%) 10" (。c) (°C) (Jg-') (MPa) (MPa) ( )
P(L-D OZL-LA) 5/95 3.8/96.2 76.3 4.2 1.8 60.5 168 42.4 50.2 620.5 10.6
P(L— DMO/D-LA) 5/95 3.4/96.6 71.0 2.4 1.8 47.3 157 23.1 49.5 604.7 9.1
40/60ブレンド 24.0 (150), 215 (0.5), 18.2 59.1 830.8 1 1.2
L+D-LA/DMO
50/50ブレンド 25.0 (154), 212 (0.れ 37.5 61.5 873 1 1.2 ステレ才コンプレックス
70/30ブレンド 29.2 (166), 213 (3.3), 27.8 62.1 499.9 14.2
Figure imgf000013_0001
てある数値)とステレオコンプレックス由来のものそれぞれが測定により観察されるた め。
※2:融解熱 ( Δ Hm)の数値で共重合体由来( ( )内の数値)とステレオコンプレック ス由来のものを比較するとステレオコンプレックス由来の数値が大きぐ材料の大部 分はステレオコンプレックスになっていることがわ力る。
[0019] 表 1及び表 2に示されるとおり、 2元共重合体及び 3元共重合体は、 Tgおよび Tmが それぞれ 1つし力観察されて 、な 、ことから、ランダム性が強 、ことが示唆される。 また、図 5及び図 6の 3元共重合体の1 H NMRスペクトルから 3元共重合体がラン ダム性であることが確認できる。すなわち、 CLユニット中の α -および ε -メチレンの プロトンピーク(k, h)は隣接するコモノマーユニットに敏感であり、これらのピークがそ れぞれ二つに分裂している(k, hの高磁場側のピークが CL-CLのホモシーケンスに 、低高磁場側のピーク力 SL- LA- CLおよび L- DMO- CLのへテロシーケンスに基づ くピークに相当する。)ことから、この 3元共重合体がランダムコポリマーであることが判 明した。
なお、 L- DMOの Tm (約 170°C)より低い 120°Cでの共重合において、このユニット が的確にコポリマー中に導入されるのは、反応性の高 、L-LA (Tmは約 95°C)の重 合がまず起こり、この活性な成長末端により L-DMO (及び Z又は CL)が開環し、コ ポリマー中にランダムに取り込まれる力もである。
表 1及び表 2、並びに図 9〜図 11の結果から、 2元及び 3元共重合体のポリマーブレ ンドは PLLA、 2元共重合体単独及び 3元共重合体単独よりも優れた機械的特性及び 熱的特性を示し、 PLLAよりも優れた分解性を示す。
産業上の利用可能性
[0020] ホモポリマーある!/、はステレオコンプレックスのポリ乳酸は機械的特性の伸び(Elon gation)が小さぐ体内で拡張などの変形をさせる医療用具としては割れやクラックの 面で制約があった。しかし、本発明における生体吸収性ポリマーは、強度や熱的特 性、分解特性などを犠牲にすることなぐ 2元共重合体や 3元共重合体と同様の必要 十分な伸び特性を示し、医療用具として用いるのに適して!/ヽる。
また、本発明における生体吸収性ポリマーはそのブレンド比を調節することにより、 分解性を調節することも可能である。
さらに、本生体吸収性ポリマーのデプシペプチドユニットが持つ N-H基は親水性で あるため、親水性基を持たな 、ポリ乳酸 (ラクチド)や力プロラタトン及びそれらの共重 合体に比べて、体内留置用医療用具や生体吸収性医療用具としてより高い生体親 和性を持っている。
図面の簡単な説明
[図 1]デプシペプチドの構造図である。
[図 2]デプシペプチドユニットを有する共重合体の構造図である。
[図 3]デプシペプチドの合成を説明する構造図である。
[図 4]デプシペプチドが開環共重合した 2元及び 3元共重合体の構造図である。
[図 5]L-DM0ZCLZL-LA3元共重合体の1 H NMR ^ベクトルを示すグラフであ る。
[図 6]L- DMOZCLZD- LA3元共重合体の1 H NMR ^ベクトルを示すグラフであ る。
[図 7]L- DMOZL- LA2元共重合体の1 H NMRスペクトルを示すグラフである。
[図 8]L- DMOZD- LA2元共重合体の1 H NMRスペクトルを示すグラフである。
[図 9]2元共重合体のブレンド比率による強度呼び耐熱性の変化を示すグラフである
[図 10]3元共重合体のブレンド比率による強度呼び耐熱性の変化を示すグラフであ る。
[図 11]酵素分解性試験の結果を示すグラフである。

Claims

請求の範囲
[1] 下記 A型ポリマーと B型ポリマーとのポリマーブレンドである医療用生分解性生体吸 収材料。
Figure imgf000016_0001
Figure imgf000016_0002
(式中、 X及び Xは O〜50モル%であり、 Y及び Yは O〜50モル%であり、 Z及び Z
1 2 1 2 1 2 は 50〜100モル%であり、 m及び mは 3〜8であり、 R及び Rは水素または炭素数 1
1 2 1 3
〜4のアルキル基であり、 R,及び R,は炭素数 1〜2のアルキル基であり、 R、 R,、
1 3 2 2
R及び R 'は炭素数 1〜4のアルキル基であるが、
4 4
Xと Xは同時に 0モノレ%であってはならない。 )
1 2
[2] A型ポリマー及び B型ポリマーの数平均分子量が 1 X 103〜3 X 105である、請求項 1 記載の医療用生分解性生体吸収材料。
[3] A型ポリマー及び B型ポリマーがランダム共重合体である、請求項 1又は 2記載の医 療用生分解性生体吸収材料。
[4] A型ポリマーと B型ポリマーとのブレンド比率が 1 : 9〜9 : 1である、請求項 1〜3のい ずれか 1項記載の医療用生分解性生体吸収材料。
PCT/JP2005/023464 2004-12-24 2005-12-21 医療用生分解性生体吸収材料 WO2006068168A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP05820158A EP1832302A4 (en) 2004-12-24 2005-12-21 BIODEGRADABLE AND BIORESORBABLE MATERIAL FOR MEDICAL PURPOSES

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-373964 2004-12-24
JP2004373964A JP2006175153A (ja) 2004-12-24 2004-12-24 医療用生分解性生体吸収材料

Publications (1)

Publication Number Publication Date
WO2006068168A1 true WO2006068168A1 (ja) 2006-06-29

Family

ID=35449162

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/023464 WO2006068168A1 (ja) 2004-12-24 2005-12-21 医療用生分解性生体吸収材料

Country Status (5)

Country Link
US (1) US20050271617A1 (ja)
EP (1) EP1832302A4 (ja)
JP (1) JP2006175153A (ja)
CN (1) CN101076362A (ja)
WO (1) WO2006068168A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008120887A (ja) * 2006-11-09 2008-05-29 Univ Kansai 柔軟性生分解性ポリマー

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7763769B2 (en) 2001-02-16 2010-07-27 Kci Licensing, Inc. Biocompatible wound dressing
US7700819B2 (en) 2001-02-16 2010-04-20 Kci Licensing, Inc. Biocompatible wound dressing
JP5102200B2 (ja) * 2006-03-30 2012-12-19 テルモ株式会社 生体内留置物
WO2007116646A1 (ja) * 2006-04-04 2007-10-18 Terumo Kabushiki Kaisha 生体内留置物
WO2009072172A1 (ja) 2007-12-03 2009-06-11 Goodman Co., Ltd. ステント及びその製造方法
US9592044B2 (en) 2011-02-09 2017-03-14 C. R. Bard, Inc. T-fastener suture delivery system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11226110A (ja) * 1998-02-12 1999-08-24 Bmg:Kk 外科用接着剤組成物
WO2003047646A1 (en) * 2001-12-04 2003-06-12 Inion Ltd Resorbable polymer composition, implant and method of making implant
WO2004000377A1 (ja) * 2002-06-25 2003-12-31 Goodman Co., Ltd 医療用生体吸収性プラスチック製用具
WO2004000376A1 (ja) * 2002-06-25 2003-12-31 Goodman Co., Ltd 医療用生分解性生体吸収材料およびその製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6136321A (ja) * 1984-07-27 1986-02-21 Daicel Chem Ind Ltd 新規なポリマ−およびその樹脂組成物
JP2986860B2 (ja) * 1990-07-03 1999-12-06 グンゼ株式会社 骨固定用具
AU2831900A (en) * 1999-02-19 2000-09-04 Universiteit Utrecht Stereocomplex hydrogels
JP2001031762A (ja) * 1999-07-21 2001-02-06 Sharp Corp 乳酸系生分解性重合体

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11226110A (ja) * 1998-02-12 1999-08-24 Bmg:Kk 外科用接着剤組成物
WO2003047646A1 (en) * 2001-12-04 2003-06-12 Inion Ltd Resorbable polymer composition, implant and method of making implant
WO2004000377A1 (ja) * 2002-06-25 2003-12-31 Goodman Co., Ltd 医療用生体吸収性プラスチック製用具
WO2004000376A1 (ja) * 2002-06-25 2003-12-31 Goodman Co., Ltd 医療用生分解性生体吸収材料およびその製造方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
DATABASE CAPLUS [online] SHIRAHAMA H.: "Characteristics of the biodegradability and physical properties of stereocomplexes between poly(L-lactide) and poly(D-lactide) copolymers.", XP003001139, accession no. STN Database accession no. (2005:54157) *
FENG Y. ET AL.: "Lipase catalyzed copolymerization of 3(S)-isopropylmorpholine-2, 5-dione and D,L-lactide", MACROMOLECULAR BIOSCIENCE, vol. 4, no. 6, 2004, pages 587 - 590, XP003001137 *
See also references of EP1832302A4 *
SHIRAHAMA H. ET AL.: "Preparation and enzymatic degradation of depsipeptide/lactone/lactide terpolymers", KOBUNSHI RONBUNSHU, vol. 56, no. 9, 1999, pages 550 - 556, XP003001138 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008120887A (ja) * 2006-11-09 2008-05-29 Univ Kansai 柔軟性生分解性ポリマー

Also Published As

Publication number Publication date
JP2006175153A (ja) 2006-07-06
EP1832302A4 (en) 2008-11-12
EP1832302A1 (en) 2007-09-12
CN101076362A (zh) 2007-11-21
US20050271617A1 (en) 2005-12-08

Similar Documents

Publication Publication Date Title
JP4753992B2 (ja) 新規な温度及びpH感受性のブロック共重合体及びこれを用いた高分子ヒドロゲル
Choi et al. Synthesis and characterization of elastic PLGA/PCL/PLGA tri-block copolymers
WO2006068168A1 (ja) 医療用生分解性生体吸収材料
CA2709967C (en) Highly pure amphiphilic copolymer comprising hydrophobic block from alpha-hydroxy acid and process for the preparation thereof
EP2498835B1 (en) Biodegradable thermoplastic elastomers
JP6343031B2 (ja) 高性能高分子量ポリl−乳酸合成プロセス
JP2009501559A (ja) 再吸収性ポリエーテルエステル及び医療用インプラントを製造するためのその使用
JP2009019040A (ja) ヒドロキシ酸から誘導されたモノマー及びそれから調製されたポリマー
JP3379841B2 (ja) ブロック共重合ポリ(エステル−カーボネート)及びその製造方法
JP2001031762A (ja) 乳酸系生分解性重合体
EP3978569A1 (en) Polymer composition, molded body and nerve regeneration inducing tube
JP2016210894A (ja) ステレオコンプレックスマルチブロック共重合体及び成形体
Liu et al. Enzyme-catalyzed degradation of poly (l-lactide)/poly (ɛ-caprolactone) diblock, triblock and four-armed copolymers
JP5258189B2 (ja) 柔軟性生分解性ポリマー
JP2008222768A (ja) 分岐型生分解性ポリエステル及びその製造方法
Xie et al. Synthesis and characterization of novel biotinylated biodegradable poly (ethylene glycol)-b-poly (carbonate-lactic acid) copolymers
Heiny et al. Progress in functionalized biodegradable polyesters
Lee et al. Synthesis and degradation behaviors of PEO/PL/PEO tri-block copolymers
JP4804102B2 (ja) 反応性置換基を有する生分解性重合体
JP3744800B2 (ja) 反応性置換基を有する生分解性重合体
Chen et al. Synthesis and solubility of polylactide-co-poly (amino acid) random copolymer
WO2004000376A1 (ja) 医療用生分解性生体吸収材料およびその製造方法
US20050163822A1 (en) Biodegradable bio-absorbable material for clinical practice and method for producing the same
CN1418901A (zh) 含羧基聚乳酸组成物及其制备方法
Watanabe et al. Syntheses of random and block copolymers of lactides with 1, 5-dioxepan-2-one and their biodegradability

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2005820158

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 200580040255.X

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 2005820158

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP