WO2006068149A1 - 磁気共鳴撮影方法および装置 - Google Patents

磁気共鳴撮影方法および装置 Download PDF

Info

Publication number
WO2006068149A1
WO2006068149A1 PCT/JP2005/023391 JP2005023391W WO2006068149A1 WO 2006068149 A1 WO2006068149 A1 WO 2006068149A1 JP 2005023391 W JP2005023391 W JP 2005023391W WO 2006068149 A1 WO2006068149 A1 WO 2006068149A1
Authority
WO
WIPO (PCT)
Prior art keywords
imaging
magnetic resonance
subject
resonance imaging
region
Prior art date
Application number
PCT/JP2005/023391
Other languages
English (en)
French (fr)
Inventor
Tomohiro Goto
Tetsuhiko Takahashi
Masahiro Takizawa
Original Assignee
Hitachi Medical Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corporation filed Critical Hitachi Medical Corporation
Priority to JP2006549010A priority Critical patent/JP4953823B2/ja
Publication of WO2006068149A1 publication Critical patent/WO2006068149A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/055Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves  involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • G01R33/56Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
    • G01R33/563Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution of moving material, e.g. flow contrast angiography
    • G01R33/56375Intentional motion of the sample during MR, e.g. moving table imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7271Specific aspects of physiological measurement analysis
    • A61B5/7285Specific aspects of physiological measurement analysis for synchronising or triggering a physiological measurement or image acquisition with a physiological event or waveform, e.g. an ECG signal

Definitions

  • the present invention relates to a magnetic resonance imaging apparatus, and more particularly, to a magnetic resonance imaging apparatus (hereinafter referred to as an MRI apparatus) that moves a bed on which a subject is placed and captures a plurality of images along the moving direction of the bed. Say).
  • an MRI apparatus magnetic resonance imaging apparatus
  • breath-holding imaging is performed to suppress artifacts due to respiratory motion at sites where the imaging cross section is affected by respiratory motion, such as the chest and abdomen.
  • image data of a COR cross section for a plurality of stations are acquired, these image data are connected to create one whole body image.
  • image data of the TRS cross section is obtained, this image data is reformatted to create a whole body image in the other direction, that is, a COR cross section or a SAG cross section.
  • a technique for controlling the slice position by using is described.
  • Patent Document 1 Japanese Patent Laid-Open No. 2004-611
  • Patent Document 2 JP 2000-79107 A
  • Patent Document 3 Japanese Patent Publication No. 9-508050
  • Patent Document 3 also presents the problem and means for solving the problem of position alignment between imaging regions including the region where breath-holding imaging is performed in whole-body imaging.
  • an object of the present invention is to provide an MRI apparatus that can obtain a good whole body image without a slice misregistration in whole body imaging accompanied by bed movement.
  • the magnetic resonance imaging method of the present invention is a method for sequentially imaging a plurality of imaging regions in the moving direction of the subject by moving a transport means for mounting the subject in a static magnetic field space of the magnetic resonance imaging apparatus. In this way, the shooting positions of multiple shooting areas are aligned and the entire shooting area is shot. That is, in the magnetic resonance imaging method of the present invention, an area selection step of selecting, from the plurality of imaging areas, a first imaging area and a second imaging area that performs imaging with control of body movement of the subject; A first imaging step for imaging the first imaging area, and a second imaging step for imaging the second imaging area, wherein the second imaging step includes the body of the subject.
  • the position of the second imaging area is controlled.
  • the magnetic resonance imaging apparatus of the present invention is an imaging means for imaging a plurality of imaging regions of a subject arranged in the static magnetic field space by nuclear magnetic resonance, and moves the subject with respect to the static magnetic field space.
  • Moving means image forming means for forming an image using measurement data obtained from a plurality of imaging regions of the subject; control means for controlling the imaging means, the moving means, and the image forming means;
  • the control means includes an input / output means for displaying the image while inputting a user command to the control means, and the control means controls the photographing means and the moving means to sequentially photograph the plurality of photographing regions.
  • the apparatus further comprises body movement detecting means for detecting positional information of body movement of the subject, and the pre-written output means includes a first imaging area and a body of the subject from a plurality of imaging areas of the subject.
  • Information for selecting a second imaging region for performing imaging with motion control is input, and the control means is based on the positional information of the first imaging region and the positional information of the body motion, Thus, the second imaging region is controlled to perform imaging.
  • the imaging positions of the plurality of imaging regions are shifted (misregistration).
  • a good whole body image can be obtained.
  • the body movement of the subject such as breath-holding photography is controlled
  • a change in the subject position during movement due to the body movement of the subject is detected, and this change amount is reflected to reflect the change in the imaging position.
  • imaging cross section it is possible to prevent a misregistration or a non-imaging region from occurring in the finally obtained whole body image.
  • FIG. 1 is a block diagram showing an overall outline of an MRI apparatus to which the present invention is applied.
  • this MRI apparatus has a magnet 102 that generates a uniform static magnetic field in a space where the subject 101 is placed, a gradient magnetic field coil 103 that generates a gradient magnetic field in this space, and a high-frequency magnetic field in the subject 101.
  • RF coil 104 for irradiating and RF probe 105 for detecting the NMR signal generated by subject 101 is provided.
  • the magnet 102 is made of a permanent magnet, a normal conducting magnet, or a superconducting magnet, and generates a static magnetic field in a direction orthogonal to or parallel to the body axis of the subject 101.
  • the gradient magnetic field coil 103 is composed of gradient magnetic field coils in three directions of X, Y, and ⁇ , and each generates a gradient magnetic field in response to a signal from the gradient magnetic field power supply 109. By applying the gradient magnetic field, it is possible to specify the cross section of the subject to be excited and to add position information to the NMR signal.
  • the RF coil 104 generates a high-frequency magnetic field according to the signal of the RF transmission 110.
  • the signal of the RF probe 105 is detected by the signal detection unit 106, processed by the signal processing unit 107, and converted into an image signal by calculation.
  • the RF probe 105 is fixed to the device. May be fixed to the subject, or both may be used in combination. In the case of fixing to the subject, for example, a plurality of RF probes are arranged in parallel in the moving direction of the subject, and the signals are switched by switching the RF probes with the movement.
  • the image created by the signal processing unit 107 is displayed on the display unit 108.
  • the gradient magnetic field power source 109, the RF transmission unit 110, and the signal detection unit 106 are controlled by the control unit 111 in accordance with a control sequence called a pulse sequence.
  • the MRI apparatus further includes a bed 112 for carrying the subject 101 into the static magnetic field space and moving the subject 101 within the static magnetic field space.
  • the top plate of the bed 112 is provided with detection means, for example, an encoder, for detecting the position and amount of movement.
  • the bed 112 is driven by the bed driving unit 113.
  • the bed driving unit 113 is also controlled by the control unit 111, and in the MRI of the present invention, imaging is performed in conjunction with the movement of the bed.
  • FIG. 2 to 4 are diagrams showing a first embodiment of the present invention
  • FIG. 2 is a diagram for explaining the imaging part of each station
  • FIG. 3 is a diagram for explaining the procedure of breath holding imaging
  • FIG. 5 is a diagram for explaining a relationship between a displacement amount due to body movement and a shift of a slice position.
  • multiple (here, 6) COR cross sections 201 to 206 at the same level along the body axis direction of the subject 101 Shoot the station. That is, first, the cross section 201 including the head of the subject is photographed at the first station, and then the bed on which the subject is placed is moved by a predetermined amount in the body axis direction (HF direction), and the subject at the second station. The cross section 202 including the chest is taken. In this way, in multi-station shooting, one bed is shot with the bed stationary, and the first to sixth stations are shot while moving the bed between the station and the station.
  • Each cross section is preferably set so that a part thereof overlaps, and a series of cross-sectional images of the whole body along the body axis of the subject can be obtained by these series of imaging.
  • the level force when performing breath-hold photographing 901, 902 When the same as level 900 when performing non-breathing photographing, the slice position of the same level However, misregistration problems do not occur.However, as shown in (b), when two breath-holding 901 and 902 have different breath-holding levels, or as shown in (c), multiple times If the breath-holding levels in 901 and 902 are the same, but these levels are different from level 900 when non-breath-holding is performed, slice misregistration will occur.
  • a navigation sequence 301 for detecting a body movement position is executed prior to imaging 305, and position information is acquired using a navigation echo.
  • body movement in the direction intersecting the COR section that is, body movement in the vertical direction (AP direction) shown in FIG. 4 becomes a problem. Therefore, in the navigation sequence, the region 401 where the movement in the AP direction can be monitored, specifically, the region 401 that intersects the abdominal wall in the AP direction is excited, and the phase encode 0 echo signal (navigation echo) is generated from this region 401. To get. By performing one-dimensional Fourier transform of the navigation echo in the reading direction, position information of the abdominal wall, for example, a position on an image in pixel units can be obtained.
  • the amount of movement of the abdominal wall is, for example, monitoring which pixel the abdominal wall is in relation to FOV and calculating how much it has moved relative to a predetermined reference position 400, for example, the breathing level position of the expiration cycle. .
  • the navigation sequence may be executed at the start of imaging, and the position of the abdominal wall at this time may be used as a reference position and calculated as the amount of movement relative thereto.
  • the photographing slice position is corrected based on this movement amount. For example, as shown in FIG. 4, when the level is lowered with respect to the reference position 400 at the time of photographing at the third station, the shift amount of the slice position corresponding to the displacement amount is calculated.
  • a navigation echo that is a reference at the time of capturing a scanano image may be acquired in the region 401.
  • the breathing level when taking a scanano image is used as a reference.
  • the displacement amount of the abdominal wall can be regarded as the shift amount of the slice position as it is, so the slice position is corrected in the AP direction by the same amount as the displacement amount of the abdominal wall. Take a picture.
  • the slice position is corrected by the amount obtained by multiplying the detected amount of displacement by that ratio.
  • the pulse sequence employed in the main imaging sequence 305 is not particularly limited, for example, a gradient echo high-speed sequence is employed. In either case, a high-frequency magnetic field is applied together with a slice selective gradient magnetic field in the AP direction to selectively excite a predetermined slice orthogonal to the AP direction and the phase encoder necessary for image reconstruction from that slice cursor. Measure the number of echo signals.
  • the imaging slice position X is determined by the slice selection gradient magnetic field Gs applied together with the frequency V of the high-frequency magnetic field and the high-frequency magnetic field according to the following equation (1).
  • the slice position can be corrected by adjusting the frequency V and ⁇ of the high-frequency magnetic field or the slice selective gradient magnetic field Gs.
  • the slice selection gradient magnetic field Gs is fixed, and the slice position is shifted by changing the frequency V.
  • the 6th station When breath holding is no longer necessary, that is, after the 4th station, without taking a navigation sequence, the 6th station performs shooting at the slice position (reference position) set at the beginning of the shooting. Complete the shooting until.
  • the execution time of the navigation sequence is typically 20 to 30 ms, and the processing time for calculating the displacement due to respiratory motion from the navigator echo is typically 30 to 40 ms.
  • Yo As a result, the overall shooting time is extended by [50 to 70 ms] X [Navigation sequence execution count].
  • the navigation sequence since the navigation sequence is executed only at the second and third stations that are affected by respiratory motion, whole-body image data can be obtained without significantly extending the imaging time.
  • FIG. 5A shows an operation procedure of the present embodiment
  • FIG. 5B shows an example of a GUI suitable for implementing the present embodiment.
  • an image (UI) showing the shooting section as shown in Fig. 5B is displayed on the display unit 108.
  • Step 510 If the conditions for multi-station shooting are set in advance, the UI indicating the position of each station and the shooting section is displayed according to the conditions.
  • the UI shows the arrangement of the bed and the subject and the imaging slice position. The user uses this UI to specify the station for breath-hold shooting and start shooting with force.
  • stations 501 and 502 for photographing the chest and abdomen are selected, and these stations are shown surrounded by thick lines, for example.
  • the bed is first moved to the first station (step 511), and shooting is performed.
  • the first station performs normal photographing that is not breath-holding photographing (steps 512 and 513).
  • the bed is moved to the second station 501 where non-breath-taking photography is performed.
  • a display that allows the user to check the current station position and the currently shooting station position on the UI is displayed, and the user can know that the station has been taken for breath-hold shooting.
  • the patient can have a voice or warning! / ⁇ can start taking a breath-holding instruction by flashing light or displaying a message.
  • the subject may be instructed in advance to hold his / her breath from the station position, and the subject may spontaneously start holding his / her breath.
  • the navigation sequence is first executed, and then the imaging sequence is executed at the slice position calculated from the body movement position detected by the navigation sequence (step 514). 515).
  • the detection of displacement due to body movement by the navigation sequence and the breath-taking photographing at the slice position set based on the displacement amount are performed.
  • normal shooting is performed (step 517), and shooting is terminated.
  • a navigation sequence is executed in a station that requires breath-hold imaging, and based on the detected body movement position. Since the slice position of the main shooting is corrected and shooting is performed, it is possible to prevent level deviation between the station and the station that performs breath holding shooting, and level shift between stations that perform breath holding shooting, without performing breath holding shooting. All stations can shoot at the same level. In addition, since the navigation sequence is limited to stations that require breath-holding photography, it is possible to prevent a significant increase in photography time.
  • the navigation sequence is known as a technique used for a body motion correction method when photographing the same region (for example, Patent Document 3), but in this embodiment, photographing involving bed movement is performed. Is characterized in that a navigation sequence is used as a body motion detection means for position alignment between stations and is applied to an area having a limited movement range.
  • the means for detecting body movement is not limited to the navigation echo, and a body movement sensor such as a pressure sensor for detecting pressure fluctuations in the abdominal wall may be used instead of the navigation echo.
  • a body movement sensor such as a pressure sensor for detecting pressure fluctuations in the abdominal wall
  • the navigation echo is superior in terms of accuracy and ease of application in that the position information obtained by the signal processing unit can be directly applied to the actual photographing sequence.
  • the force monitored by the navigation echo was the AP direction.
  • the TR S cross section monitors the respiratory movement in the HF direction
  • the SAG cross section monitors the respiratory movement in the RL direction. I ’m going to stop.
  • this embodiment is an example in which breath-holding photographing is performed at a station affected by respiratory motion, and even under completely free breathing, photographing can be performed with the same control.
  • the slice position may be corrected based on the navigation echo acquired at the time of scanning the scanano image.
  • the navigation sequence is the same in areas where body motion is a problem, such as respiratory motion, but the slice in the direction orthogonal to the moving direction (HF direction) while moving the bed continuously. Shoot continuously.
  • FIGS. 6 and 7 are diagrams showing the second embodiment, FIG. 6 is a diagram for explaining an imaging region, and FIG. 7 is a diagram for explaining an imaging procedure.
  • the TRS cross section orthogonal to the body axis direction (HF direction) of the subject 101 is imaged while moving the bed continuously.
  • an imaging method that is sufficiently fast with respect to the moving speed of the bed is adopted, and a sequence that measures the signal from one slice within the time that the bed can be considered to be stopped is adopted.
  • imaging is performed, for example, by applying the head strength of the subject to the legs, and obtaining whole body image data.
  • a navigation sequence 701 for detecting the body movement position is executed prior to imaging. Navigator In the sill sequence, as shown in FIG. 6, a region 601 where the diaphragm intersects is excited, and an echo signal (navigation echo) of phase encoding 0 is acquired from this region 601.
  • an echo signal (navigation echo) of phase encoding 0 is acquired from this region 601.
  • imaging slice position 704 is set based on abdominal wall position information 703 obtained in the navigation sequence, and imaging is performed.
  • a high frequency magnetic field is applied together with a slice selection gradient magnetic field in the HF direction to selectively excite a predetermined slice orthogonal to the HF direction, and the number of phase encodings required for image reconstruction from that slice camera. Measure the echo signal.
  • This imaging slice position is determined by the frequency of the high-frequency magnetic field and the slice selection gradient magnetic field applied together with the high-frequency magnetic field, and by controlling these, the slice position is corrected in accordance with the amount of movement in which the navigator echo force is also calculated.
  • the displacement amount of the diaphragm is monitored by, for example, which pixel the diaphragm is located with respect to the FOV, and how much the diaphragm displacement is moved with respect to a predetermined reference position, for example, the position of the expiration period of the respiratory cycle. Is calculated. Alternatively, it is also possible to calculate the amount of movement relative to the position of the diaphragm as the reference position when the navigation sequence is started. For example, the slice 602 that was in the position shown in FIG. 6 (a) during the exhalation period has moved to the position shown in FIG. 6 (b) during the inspiration period, and selects a predetermined reference position.
  • a signal from a slice 603 (dotted line) different from the slice to be shot is measured.
  • the slice position is corrected by the detected displacement amount multiplied by the ratio.
  • the slice position captured in the exhalation period and the inhalation period are captured. Therefore, the misregistration can be eliminated both when the breath holding photographing is not performed and when the breath holding photographing is performed.
  • the slice position can be corrected by the same method even when the breath-hold levels in the multiple-breath-hold photographing are different. For example, as shown in Figure 8, if the first and second breath-hold levels are different, the slice acquired in the second breath-hold is shifted from the slice position 1203 without correction. Shoot at 1204, shifted by the amount (1205). By correcting the slice position in this way, it is possible to prevent the occurrence of ⁇ slices that are not shot due to a difference in breath-holding level or slices that are shot twice.
  • FIG. 9 shows an operation procedure of the present embodiment
  • FIG. 10 shows an example of a GUI suitable for implementing the present embodiment.
  • an image (UI) showing a shooting section as shown in FIG. 10 is displayed on the display unit 108.
  • UI a schematic image (scanogram) of the whole body of the subject imaged in advance can be used as the image showing the imaging section (step 1300).
  • the UI shows the placement of the bed and the subject and the imaging slice position.
  • the user designates a navigation sequence and an area for correcting the slice position (step 1301).
  • the area may be specified with a cursor or the like as indicated by dotted lines 801 and 802 in the figure, and the left end or right end of the bed as a reference. Start and end navigation. Specify the end position with the numerical value 803.
  • bed movement is started (step 1302).
  • normal shooting is performed until the bed moves to the position 801 (steps 1303 and 1307).
  • the control unit 111 that controls the imaging monitors the bed position detected by the bed movement amount detection means such as an encoder, and displays that the bed position has reached the area set for breath-holding imaging. That is, as in the first embodiment, the current bed position (imaging position) is displayed on the UI. Viewing this display, the operator issues a breath-hold instruction to the patient by voice, alarm, flashing light, message display, or the like. Alternatively, instruct the patient to hold his breath from position 801 in advance and let the patient start holding his breath spontaneously. Good.
  • the navigation sequence 701 is automatically executed as shown in FIG.
  • the actual shooting sequence 705 is executed at the calculated slice position (steps 1304 and 1305).
  • the navigation sequence may be started in synchronization with the switching of the RF probes. In this case, it is desirable to display the RF probe in use on the UI so that the operator can issue a breath-hold instruction.
  • the moving bed imaging in the case of imaging the TRS section is shown.
  • the case of the COR section and the SAG section is also possible.
  • the difference when the imaging section changes is that the direction of the respiratory motion monitored by the navigation echo is also changed according to the imaging section in order to move the slice position according to the respiratory motion.
  • the direction monitored by the navigation echo was the H-F direction.
  • the respiratory movement in the A-P direction is monitored, and in the SAG section, the respiratory movement in the R-L direction is monitored.
  • the slice position should be corrected based on the navigation echo acquired when shooting the scanano image.
  • the navigation sequence when moving bed shooting is performed, in a region where body movement is a problem, the navigation sequence is executed prior to shooting, and the detected body movement is thereby detected.
  • the navigation sequence is executed only in the region where the body movement is a problem, it is possible to minimize the imaging time extension due to the navigation sequence.
  • a bed is fixed at each station, and multiple TRS sections in the static magnetic field space are photographed.
  • imaging is performed by shifting a plurality of slices captured at the station based on the displacement amount in the moving direction due to the body movement of the subject.
  • the station to be taken for breath-holding can be set via the UI shown in FIG. 5 as in the first embodiment.
  • the present invention since it is possible to acquire a whole body image that follows the breathing level of the subject, it is necessary to perform training for adjusting the breath holding level to the subject before breath holding photographing, No complicated instructions for adjusting the breathing level are required during stop-shooting. Furthermore, since it is possible to take pictures under free breathing, it is possible to cope with subjects who cannot hold their breath.
  • FIG. 1 is a diagram showing an overall outline of an MRI apparatus to which the present invention is applied.
  • FIG. 2 is a diagram for explaining a first embodiment of imaging by the MRI apparatus of the present invention.
  • FIG. 3 is a diagram showing a procedure for breath-hold photographing according to the first embodiment.
  • FIG. 4 is a diagram for explaining the operation of the first embodiment.
  • FIG. 5A is a diagram showing an operation procedure of the first embodiment.
  • FIG. 5B is a diagram showing an example of a GUI used in the first embodiment.
  • FIG. 6 is a diagram for explaining a second embodiment of imaging by the MRI apparatus of the present invention.
  • FIG. 7 is a diagram showing a procedure for breath-hold photographing according to the second embodiment.
  • FIG. 8 is a view for explaining a plurality of breath-holding photographings in the second embodiment.
  • FIG. 9 is a diagram showing a shooting procedure according to the second embodiment.
  • FIG. 10 is a diagram showing an example of a GUI used in the second embodiment.
  • FIG. 11 is a diagram for explaining conventional multi-station shooting and its problems.
  • FIG. 12 is a diagram for explaining conventional moving bed photography and its problems.
  • FIG. 13 is a diagram for explaining conventional moving bed photography and its problems.

Landscapes

  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • High Energy & Nuclear Physics (AREA)
  • General Health & Medical Sciences (AREA)
  • Radiology & Medical Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Signal Processing (AREA)
  • Vascular Medicine (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Biomedical Technology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

 静磁場空間内にある被検体を撮影する撮影手段と、静磁場空間に対し被検体を移動させる移動手段とを備え、被検体を移動させながら撮影するMRI装置において、撮影を制御する制御手段は、移動手段によって被検体が撮影中に移動する移動範囲の少なくとも一部の範囲において、ナビゲーションシーケンスを行って被検体の体動位置を検出し、検出された変位量に応じて、ナビゲーションシーケンス後の本撮影における撮影断面位置を決定する。これによりベッドの移動を伴う全身撮影においてスライスのミスレジストレーションがなく、良好な全身画像を得ることができる。

Description

磁気共鳴撮影方法および装置
技術分野
[0001] 本発明は磁気共鳴撮影装置に係り、特に被検体を載せたベッドを移動させて、べッ ドの移動方向に沿って複数の画像を撮影する磁気共鳴撮影装置 (以下、 MRI装置と いう)に関する。
背景技術
[0002] 近年、 MRI装置にお 、て、被検体を載せたベッドを連続的或!、はステップ的に移 動させて全身撮影する方法が開発され臨床現場で実用化されつつある。ベッドを連 続的に移動させながら撮影する方法は、ムービングベッド法と呼ばれ、例えば特許文 献 1に開示されている。またベッドを複数のステーションに移動させて、各ステーショ ンではベッドを停止した状態で撮影する方法は、マルチステーション撮影と呼ばれ、 例えば特許文献 2に開示されて 、る。
[0003] このようなムービングベッド法による撮影やマルチステーション撮影では、撮影断面 が呼吸動の影響のある部位、例えば胸部や腹部では、呼吸動によるアーチファクトを 抑制するために息止め撮影を行なう。こうして例えば複数ステーション分の COR断面 の画像データが取得されたならば、これら画像データを繋ぎ合わせて 1枚の全身画 像を作成する。或いは TRS断面の画像データが得られたならば、この画像データを リフォーマットし、他方向の、すなわち COR断面や SAG断面の全身画像を作成する また特許文献 3には、自由呼吸下でナビゲーターエコーを用いてスライス位置を制 御する技術が記載されて ヽる。
特許文献 1:特開 2004 -611号公報
特許文献 2:特開 2000 - 79107号公報
特許文献 3:特表平 9 - 508050号公報
発明の開示
発明が解決しょうとする課題 [0004] 上述した撮影方法による全身撮影において、複数回の息止め撮影を行なう場合、 息止め撮影と非息止め撮影との間或いは異なる息止め撮影間にスライスの不連続( ミスレジストレーシヨン)の問題を生じる場合がある。
また特許文献 3には、全身撮影において、息止め撮影する領域を含む撮影領域間 で位置整合させることにつ 、ては、その課題も解決手段も提示されて 、な 、。
[0005] そこで本発明は、ベッドの移動を伴う全身撮影においてスライスのミスレジストレー シヨンがなく、良好な全身画像を得ることが可能な MRI装置を提供することを目的と する。
課題を解決するための手段
[0006] 本発明の磁気共鳴撮影方法は、磁気共鳴撮影装置の静磁場空間中を、被検体を 搭載する搬送手段を移動させて前記被検体の移動方向の複数の撮影領域を順次 撮影する方法にお!、て、複数の撮影領域の撮影位置を整合させて全撮影領域の撮 影を行なう。すなわち、本発明の磁気共鳴撮影方法は、前記複数の撮影領域から、 第 1の撮影領域と前記被検体の体動の制御を伴う撮影を行なう第 2の撮影領域とを 選択する領域選択ステップと、前記第 1の撮影領域を撮影する第 1の撮影ステップと、 前記第 2の撮影領域を撮影する第 2の撮影ステップとを有し、前記第 2の撮影ステツ プは、前記被検体の体動の位置情報を検出する体動位置情報検出ステップと、前記 第 1の撮影領域の位置情報と前記体動の位置情報とに基づ!、て、前記第 2の撮影領 域の位置を制御するための制御情報を算出する制御情報算出ステップと、前記制御 情報に基づいて前記第 2の撮影領域の位置を制御して撮影を行なう第 2領域撮影ス テツプとを有する。
[0007] 本発明の磁気共鳴撮影装置は、静磁場空間内に配置された被検体の複数の撮影 領域を核磁気共鳴により撮影する撮影手段と、前記静磁場空間に対し被検体を移 動させる移動手段と、前記被検体の複数の撮影領域から得られた計測データを用い て画像を形成する画像形成手段と、前記撮影手段と前記移動手段と前記画像形成 手段とを制御する制御手段と、前記制御手段に対するユーザーの指令が入力される とともに前記画像を表示する入出力手段とを備え、前記制御手段は、前記撮影手段 と前記移動手段とを制御して、前記複数の撮影領域を順次撮影する磁気共鳴撮影 装置において、前記被検体の体動の位置情報を検出する体動検出手段を備え、前 記入出力手段には、前記被検体の複数の撮影領域から、第 1の撮影領域と前記被 検体の体動の制御を伴う撮影を行う第 2の撮影領域とを選択するための情報が入力 され、前記制御手段は、前記第 1の撮影領域の位置情報と前記体動の位置情報とに 基づ 、て、前記第 2の撮影領域の位置を制御して撮影を行うことを特徴とする。
発明の効果
[0008] 本発明によれば、静磁場空間中を、移動手段によって被検体を移動させて被検体 の複数の撮影領域を撮影する際に、複数の撮影領域の撮影位置のずれ (ミスレジス トレーシヨン)がなぐ良好な全身画像を得ることができる。例えば、息止め撮影等の 被検体の体動を制御した撮影を行う範囲について、被検体の体動による、移動の間 の被検体位置の変化を検出し、この変化量を反映させて撮影位置 (撮影断面)を設 定することにより、最終的に得られる全身画像において、ミスレジストレーシヨンや撮 影されない領域が生じるのを防止することができる。
発明を実施するための最良の形態
[0009] 以下、本発明の実施の形態を、図面を参照して説明する。
図 1は、本発明が適用される MRI装置の全体概要を示すブロック図である。この M RI装置は、撮影手段として、被検体 101が置かれる空間に均一な静磁場を発生する 磁石 102と、この空間に傾斜磁場を発生する傾斜磁場コイル 103と、被検体 101に高 周波磁場を照射する RFコイル 104と、被検体 101が発生する NMR信号を検出する R Fプローブ 105とを備えて!/ヽる。
[0010] 磁石 102は、永久磁石、常電導磁石或いは超電導磁石からなり、被検体 101の体軸 と直交する方向或いは体軸と平行な方向に静磁場を発生する。傾斜磁場コイル 103 は、 X、 Y、 Ζの 3方向の傾斜磁場コイルで構成され、傾斜磁場電源 109からの信号に 応じてそれぞれ傾斜磁場を発生する。傾斜磁場の与え方により、被検体の励起する 断面を特定し、また NMR信号に位置情報を付与することができる。 RFコイル 104は、 RF送信 110の信号に応じて高周波磁場を発生する。
[0011] RFプローブ 105の信号は、信号検出部 106で検出され、信号処理部 107で信号処 理され、また計算により画像信号に変換される。なお RFプローブ 105は、装置に固定 されていても、被検体に固定されていても、また両者を併用してもよい。被検体に固 定する場合には、例えば被検体の移動方向に複数の RFプローブを並設し、移動に 伴 、RFプローブを切り換えて信号を受信する。
信号処理部 107で作成された画像は表示部 108に表示される。傾斜磁場電源 109、 RF送信部 110、信号検出部 106は、パルスシーケンスと呼ばれる制御のシーケンスに 従い制御部 111により制御される。
[0012] またこの MRI装置は、被検体 101を静磁場空間に搬入するとともに静磁場空間内 で移動するためのベッド 112を備えている。ベッド 112の天板には、その位置および移 動量を検出するための検出手段、例えばエンコーダーが設けられている。またベッド 112はベッド駆動部 113により駆動される。ベッド駆動部 113もまた制御部 111により制 御され、本発明の MRIにおいてはベッドの移動と連動して撮影が行なわれる。
[0013] 次に本発明の MRI装置による撮影方法について説明する。図 2〜図 4は、本発明 の第 1の実施形態を示す図であり、図 2は各ステーションの撮影部位を説明する図、 図 3は息止め撮影の手順を説明する図、図 4は体動による変位量とスライス位置のシ フトとの関係を説明する図である。
[0014] 本実施形態の撮影方法では、図 2 (a)に示すように、被検体 101の体軸方向に沿つ て同じレベルにある複数(ここでは 6)の COR断面 201〜206をマルチステーション撮 影する。即ち、まず第 1ステーションでは被検体の頭部を含む断面 201を撮影し、次 いで被検体を載せたベッドを体軸方向(HF方向)に所定量移動させて、第 2ステー シヨンでは被検体の胸部を含む断面 202を撮影する。このようにマルチステーション撮 影では、一つのステーションではベッドを静止した状態で撮影し、ステーションとステ ーシヨンとの間でベッドを移動させながら、第 1ステーションから第 6ステーションまで を撮影する。各断面は、好適には、一部がオーバーラップするように設定されており、 これら一連の撮影により被検体の体軸に沿った全身の一断面像が得られる。図 2 (b) に示すように複数の位置(レベル) 211、 212、 213を撮影する場合には、再度、第 1ス テーシヨンまでベッドを移動させて、スライス位置を変更して第 1ステーション力も第 6 ステーションまでの撮影を行なう。
[0015] ここで被検体の胸部及び腹部を含む第 2及び第 3断面では、呼吸動に伴う体動ァ ーチファクトを抑制するために、撮影中は被検体の呼吸を一時的に停止させる撮影( 息止め撮影)を行なう。
[0016] この際、図 11 (a)に示すように、息止め撮影 901、 902を行なったときのレベル力 非 息止め撮影を行なったときのレベル 900と同じ場合には同じレベルのスライス位置を 撮影できるのでミスレジストレーシヨンの問題は生じないが、(b)に示すように 2回の息 止め撮影 901、 902における息止めレベルが異なる場合や、(c)に示すように、複数回 の息止め撮影 901、 902における息止めレベルが同じでも、これらレベルが非息止め 撮影を行なったときのレベル 900と異なる場合には、スライスのミスレジストレーシヨン を生じる。
[0017] そこで息止め撮影の際には、撮影中 Z前に体動位置を検出し、息止め撮影時のス ライス位置をそれ以前の非息止め撮影時のスライス位置に一致させる処理を行う。具 体的には、図 3に示すように、撮影 305に先行して体動位置を検出するナビゲーショ ンシーケンス 301を実行し、ナビゲーシヨンエコーを用いて位置情報を取得する。
[0018] 本実施の形態のように COR断面を撮影する場合には、 COR断面と交差する方向 の体動、即ち図 4に示す上下方向 (AP方向)の体動が問題となる。そこでナビゲーシ ヨンシーケンスでは、 AP方向の動きをモニターできる部位、具体的には腹壁を AP方 向に交差する領域 401を励起し、この領域 401から位相エンコード 0のエコー信号 (ナ ピゲーシヨンエコー)を取得する。このナビゲーシヨンエコーを読み出し方向に 1次元 フーリエ変換することにより、腹壁の位置情報、例えばピクセル単位の画像上の位置 を得ることができる。腹壁の移動量は、例えば、 FOVに対して腹壁がどのピクセルに あるかを監視し、予め定めた基準位置 400、例えば呼気周期の呼吸レベルの位置に 対し、どれだけ移動しているかを算出する。或いは、撮影の開始時点でナビゲーショ ンシーケンスを実行し、このときの腹壁の位置を基準位置とし、それに対する移動量 として算出しても良い。この移動量をもとに撮影スライス位置を補正する。例えば図 4 に示すように第 3ステーションの撮影時には、基準位置 400に対しレベルが下がって しまっている場合には、その変位量に対応するスライス位置のシフト量を算出する。
[0019] なお、スキヤノ画像を撮影する時点で基準となるナビゲーシヨンエコーを領域 401で 取得しておいてもよい。これにより、スキヤノ画像を撮影したときの呼吸レベルを基準 として、この呼吸レベルに合わせて撮影することも可能となる。スキヤノ画像を撮影す るときに取得するナビゲーションェコ一は 1ェコ一で十分なので、スキヤノ画像の撮影 時間の延長は数 10msと短時間であり、問題とはならな!、。
[0020] 撮影の基準位置が腹壁に近 ヽ場合には、腹壁の変位量はそのままスライス位置の シフト量とみなすことができるので、腹壁の変位量と同じだけスライス位置を AP方向 に補正して撮影を行なう。また腹壁の変位量に対する撮影部位の変位量の割合が経 験的にわ力 ている場合には、検出した変位量にその割合を乗じた分だけスライス 位置を補正する。
[0021] 続く本撮影シーケンス 305では、上述のように算出されたスライス位置 304で撮影を 行なう。本撮影シーケンス 305に採用されるパルスシーケンスは特に限定されな 、が 、例えばグラディエントエコー系の高速シーケンスが採用される。いずれの場合にも、 高周波磁場を AP方向のスライス選択傾斜磁場とともに印カロして AP方向に直交する 所定のスライスを選択的に励起し、そのスライスカゝら画像再構成に必要な位相ェンコ ード数のエコー信号を計測する。
[0022] 一般に撮影スライス位置 Xは、次式(1)により、高周波磁場の周波数 Vおよび高周 波磁場とともに印加されるスライス選択傾斜磁場 Gsによって決定される。
= + ( γ /2 π ) ^^ · χ
0
(式中、 V
0は共鳴周波数、 γは磁気回転比である)
従って高周波磁場の周波数 V及び Ζ又はスライス選択傾斜磁場 Gsを調整すること によりスライス位置を補正することができる。本実施の形態ではスライス選択傾斜磁場 Gsは固定し、周波数 Vを変更することによってスライス位置をシフトさせる。
[0023] 息止め撮影の必要がなくなったならば、即ち、第 4ステーション以降では、ナビゲー シヨンシーケンスを行なうことなく、撮影の始めに設定したスライス位置 (基準位置)で 撮影を行い、第 6ステーションまでの撮影を完了する。なお以上の説明では第 2及び 第 3ステーションでそれぞれ 1回のナビゲーシヨンシーケンスを実行する場合を説明し た力 必要に応じてナビゲーシヨンシーケンスをカ卩えてもよい。ナビゲーシヨンシーケ ンスの実行時間は、典型的には 20〜30ms、ナビゲーターエコーから呼吸動による変 位を算出する処理時間は、典型的には 30〜40msであり、これら処理をカ卩えることによ り、全体としての撮影時間は [50〜70ms] X [ナビゲーシヨンシーケンス実行回数]延長 する。本実施形態では、呼吸動による影響がある第 2及び第 3ステーションのみでナ ピゲーシヨンシーケンスを実行するようにして 、るので、大幅な撮影時間の延長なく 全身画像データを得ることができる。
[0024] 図 5Aに本実施の形態の動作手順を、図 5Bに本実施形態を実施するために好適 な GUIの一実施例を示す。マルチステーション撮影が選択され、その条件 (ステーシ ヨン数、スライスのオーバーラップ度など)が設定されると、図 5Bに示すような撮影断 面を示す画像 (UI)が表示部 108に表示される (ステップ 510)。マルチステーション撮 影の条件が予め設定されている場合には、その条件に従って各ステーションの位置 と撮影断面を示す UIが表示される。 UIには、ベッドと被検体の配置及び撮影スライ ス位置が示されている。ユーザーは、この UIを用いて、息止め撮影するステーション を指定して力も撮影を開始する。図では、胸部及び腹部の撮影を行なうステーション 501、 502が選択されており、これらステーションは例えば太い線で囲まれて示されて いる。
[0025] 撮影が開始されると、まず第 1ステーションにベッドを移動し (ステップ 511)、撮影を 行う。本実施の形態では、第 1ステーションは息止め撮影ではない通常の撮影が行 われる (ステップ 512、 513)。次にベッドを非息止め撮影を行なう第 2ステーション 501 に移動する。
[0026] ベッドが移動すると、ベッドと被検体の配置は、 UI上でも撮影とともに更新される。
例えばユーザーが現在のステーション位置や現在撮影中のステーション位置を UI上 で確認可能な表示がなされ、ユーザーは息止め撮影を行なうステーションに到達し たことを知ることができる。息止め撮影を行なうステーションでは、例えば、患者に音 声や警報ある!/ヽは光の点滅、メッセージ表示等により息止めの指示を与えた上で撮 影を開始することができる。あるいは、被検者にそのステーション位置から息止めする ように事前に指示しておき、被検者が自発的に息止めを開始するようにしてもよい。 撮影が開始されると、上述したように、まずナビゲーシヨンシーケンスが実行され、次 いでナビゲーシヨンシーケンスで検出した体動位置カゝら算出されたスライス位置で本 撮影シーケンスが実行される (ステップ 514、 515)。 [0027] 本実施の形態では、第 2および第 3ステーションにお 、て、ナビゲーシヨンシーケン スによる体動による変位の検出と変位量に基づいて設定されたスライス位置で息止 め撮影を行い、それに続く第 4および第 5ステーションでは、通常の撮影を行い (ステ ップ 517)、撮影を終了する。
[0028] このように本実施の形態によれば、マルチステーション撮影を行なう際に、息止め撮 影が必要なステーションでは、ナビゲーシヨンシーケンスが実行され、それによつて検 出した体動位置に基き本撮影のスライス位置を補正し、撮影を行なうので、息止め撮 影を行なわな 、ステーションと息止め撮影を行なうステーションとのレベルのずれ、息 止め撮影を行なうステーション間のレベルのずれを防止し、全てのステーションで同 一レベルの撮影を行なうことができる。またナビゲーシヨンシーケンスの実行を、息止 め撮影が必要なステーションに限定して 、るので、撮影時間の大幅な延長を防止で きる。
[0029] なおナビゲーシヨンシーケンスは、同一の領域を撮影する際の体動補正法に用い られる技術として知られているが(例えば特許文献 3)、本実施の形態では、ベッド移 動を伴う撮影においてステーション間の位置整合のための体動検出手段としてナビ ゲーシヨンシーケンスを利用し、且つ移動範囲の限定された領域に適用することに特 徴がある。
[0030] また本実施の形態では、体動を検出する手段はナビゲーシヨンエコーに限定され ず、ナビゲーシヨンエコーの代わりに腹壁の圧力変動を検出する圧力センサー等の 体動センサーを用いてもよい。ただし精度の点で、また信号処理部で得た位置情報 をそのまま本撮影シーケンスに適用できるという適用容易性の点でナビゲーシヨンェ コ一が優れている。
[0031] なお以上示した実施形態は、 COR断面を撮影する場合のマルチステーション撮影 を示した力 TRS断面、 SAG断面の場合も同様に可能である。撮影断面が変わった 場合に異なる点は、呼吸動に応じてスライスの位置を移動させるために、ナビゲーシ ヨンエコーでモニターする呼吸動の方向も撮影断面に応じて変更する点である。 CO
R断面の場合、ナビゲーシヨンエコーでモニターした方向は A-P方向であった力 TR S断面では H-F方向の呼吸動をモニターし、 SAG断面では、 R-L方向の呼吸動をモ 二ターする。
また本実施例は、呼吸動の影響のあるステーションで息止め撮影を行う例であった 力 完全に自由呼吸下でも同様な制御で撮影可能である。この場合、スキヤノ画像撮 影時に取得したナビゲーシヨンエコーを基準にして、スライス位置補正を行なえば良 い。
[0032] 次に本発明の第 2の実施形態を説明する。この実施形態でも、呼吸動など体動が 問題となる領域ではナビゲーシヨンシーケンスを実行することは同じであるが、連続し てベッドを移動しながら、移動方向(HF方向)と直交する方向のスライスを連続撮影 する。
図 6、図 7は、第 2の実施形態を示す図で、図 6は撮影部位を説明する図、図 7は撮 影の手順を説明する図である。
[0033] 本実施形態の撮影方法では、図 6に示すように、被検体 101の体軸方向(HF方向) と直交する TRS断面を、ベッドを連続して移動させながら撮影する。この場合、撮影 シーケンスとしては、ベッドの移動速度に対し、十分高速な撮影法を採用し、ベッドが 停止しているとみなせる時間内に 1スライスからの信号を計測するシーケンスを採用 する。このような撮影を例えば被検体の頭部力も脚部まで行い、全身の画像データを 得る。
[0034] ここで、装置側のスライス選択条件は同じにしてベッドが移動させることにより順次 被検体の異なる断面を撮影した場合、図 12に示すように呼息期と吸息期では断面の 位置が異なるため、撮影すべき断面を撮影できない場合が生じる。また息止め撮影 を採用した場合にも、図 13 (a)に示すように、複数回の息止め撮影 1101、 1102にお ける息止めレベルが同じ場合には問題はないが、 (b)に示すように 2回の息止め撮影 1103、 1104における息止めレベルが異なると、 1回目では点線で示す位置が撮影さ れたのに対し、 2回目では実線で示す位置が撮影されることになり、画像に連続性が なぐこのような TRS画像を用いてリフォーマットした COR画像や SAG画像にミスレ ジストレーシヨンを生じる。
[0035] そこで、本実施形態では、体動が問題となる領域にベッドが達すると、撮影に先行 して体動位置を検出するためのナビゲーシヨンシーケンス 701を実行する。ナビゲー シヨンシーケンスでは、図 6に示すように、横隔膜が交差する領域 601を励起し、この 領域 601から位相エンコード 0のエコー信号(ナビゲーシヨンエコー)を取得する。この ナビゲーシヨンエコーを読み出し方向に 1次元フーリエ変換することにより、横隔膜の 位置情報、例えばピクセル単位の画像上の位置を得ることができる。
[0036] 続く本撮影シーケンス 705では、ナビゲーシヨンシーケンスで得られた腹壁の位置 情報 703をもとに撮影スライス位置 704を設定し、撮影を行なう。本撮影 705では、高周 波磁場を HF方向のスライス選択傾斜磁場とともに印カロして HF方向に直交する所定 のスライスを選択的に励起し、そのスライスカゝら画像再構成に必要な位相エンコード 数のエコー信号を計測する。この撮影スライス位置は、高周波磁場の周波数および 高周波磁場とともに印加されるスライス選択傾斜磁場によって決定され、これらを制 御することによりスライス位置をナビゲーターエコー力も算出した移動量に対応して補 正する。
[0037] 横隔膜の変位量は、例えば、 FOVに対して横隔膜がどのピクセルにあるかを監視 し、予め定めた基準位置、例えば呼吸周期の呼息期レベルの位置に対し、どれだけ 移動しているかを算出する。或いは、ナビゲーシヨンシーケンスを開始した時点を横 隔膜の位置を基準位置とし、それに対する移動量を算出してもよい。例えば、呼息期 には図 6 (a)に示す位置にあったスライス 602は、吸息期には同図(b)に示す位置に 移動しており、予め定めた基準位置を選択して撮影した場合には、本来撮影すべき スライスとは異なるスライス 603 (点線)からの信号が計測されることになる。ここで横隔 膜の変位量に対応してスライス位置を補正することにより、本来撮影すべきスライスか らの信号を得ることができ、 HF方向の体動によって撮影しないスライスや重複して撮 影されるスライスが生じるのを防止することができる。なおスライスのシフト量は、必ず しも横隔膜の変位量と同じではないが、第 1の実施形態と同様に、横隔膜の変位量 に対する撮影部位の変位量の割合が経験的にわ力つて 、る場合には、検出した変 位量にその割合を乗じた分だけスライス位置を補正する。
[0038] ベッドが移動し、体動の影響を無視できる領域になったならば、撮影の始めに設定 したスライス位置 (基準位置)で撮影を続行する。
[0039] このように本実施の形態では、呼息期で撮影されるスライス位置と吸息期で撮影さ れるスライス位置とを合わせる補正を行なうので、息止め撮影を行なわな 、場合にも 、また息止め撮影を行なう場合にもミスレジストレーシヨンをなくすことができる。さらに
、図 13 (b)に示したような、複数回息止め撮影における息止めレベルが異なった場 合も同様な方法でスライス位置を補正することができる。例えば、図 8に示すように 1 回目の息止めと 2回目の息止めのレベルが異なる場合、 2回目の息止めで取得する スライスは、補正なしの場合のスライス位置 1203から息止めレベルのずれ量(1205) 分シフトさせた 1204の位置で撮影する。このようなスライス位置の補正により、息止め レベルのずれによって撮影しな ヽスライスや、重複して撮影するスライスが生じること を防止できる。
[0040] 図 9に本実施の形態の動作手順を、図 10に本実施形態を実施するために好適な GUIの一実施例を示す。
[0041] ムービングベッド撮影が選択され、その条件 (ベッドの移動速度、スライス位置など) が設定されると、図 10に示すような撮影断面を示す画像 (UI)を表示部 108に表示さ れる。撮影断面を示す画像は、例えば、事前に撮影した被検体の全身の概略画像( スキヤノグラム)を利用することができる(ステップ 1300)。 UIには、ベッドと被検体の配 置及び撮影スライス位置が示されている。ユーザーは、この UIを用いて、ナビゲーシ ヨンシーケンスとそれによりスライス位置補正を行なう領域を指定する (ステップ 1301) 。領域の指定は、例えば、図中、点線 801、 802で示したように、胸部及び腹部を含む 領域をカーソル等で指定するようにしても良 、し、ベッドの左端或いは右端を基準と してナビゲーシヨンを開始 ·終了する位置を数値 803で指定するようにしてもょ 、。
[0042] 撮影が開始されると、ベッド移動が開始される (ステップ 1302)。本実施の形態では 、 801の位置までベッドが移動するまで通常の撮影が行われる (ステップ 1303、 1307) 。撮影を制御する制御部 111は、エンコーダ一等のベッド移動量検出手段により検出 されるベッド位置を監視し、ベッド位置が息止め撮影として設定された領域に達した ことを表示する。すなわち第 1の実施の形態と同様に、 UI上に現在のベッド位置 (撮 影位置)を表示する。この表示を見て操作者は患者に息止め指示を音声や警報ある いは光の点滅、メッセージ表示等により発する。あるいは、患者に 801の位置から息 止めするように事前に指示しておき、患者が自発的に息止めを開始するようにしても よい。
[0043] またベッド位置が息止め撮影として設定された領域に達すると自動的に図 7に示す ようにナビゲーシヨンシーケンス 701を実行し、次!、でナビゲーシヨンシーケンスで検 出した体動位置カゝら算出されたスライス位置で本撮影シーケンス 705が実行される (ス テツプ 1304、 1305)。なお受信用の RFプローブが被検体の移動方向に複数設けられ 、移動に伴い切り換えて受信する場合には、 RFプローブの切り換えに同期してナビ ゲーシヨンシーケンスを開始するようにしてもよい。この場合には、使用中の RFプロ ーブを UI上に表示し、操作者が息止め指示を発することができるようにすることが望 ましい。
[0044] ベッドが 802の位置を過ぎ、呼吸動の影響のな 、部位の撮影となったら自動的にナ ピゲーシヨンシーケンスを停止し、通常の撮影が行われる (ステップ 1307)。
なお以上示した実施形態は、 TRS断面を撮影する場合のムービングベッド撮影を 示したが、 COR断面、 SAG断面の場合も同様に可能である。撮影断面が変わった 場合に異なる点は、呼吸動に応じてスライスの位置を移動させるために、ナビゲーシ ヨンエコーでモニターする呼吸動の方向も撮影断面に応じて変更する点である。 TR S断面の場合、ナビゲーシヨンエコーでモニターする方向は H-F方向であった力 C OR断面では A-P方向の呼吸動をモニターし、 SAG断面では、 R-L方向の呼吸動を モニターする。
[0045] また本実施例は、呼吸動の影響のある領域で息止め撮影を行う例であった力 完 全に自由呼吸下でも同様な制御で撮影可能である。この場合、スキヤノ画像撮影時 に取得したナビゲーシヨンエコーを基準にして、スライス位置補正を行なえば良 、。
[0046] このように本実施の形態によれば、ムービングベッド撮影を行なう際に、体動が問題 となる領域では、撮影に先立ってナビゲーシヨンシーケンスが実行され、それによつ て検出した体動位置に基き本撮影のスライス位置を補正し、撮影を行なうので、撮影 しな 、スライスや重複して撮影されるスライスが生じるのを防止することができる。また この実施形態でも、体動が問題となる領域のみでナビゲーシヨンシーケンスを実行す るようにしているので、ナビゲーシヨンシーケンスによる撮影時間の延長を最小限に することができる。 [0047] 以上、本実施の形態を、ベッドを連続移動する撮影にっ 、て説明した力 本実施の 形態も第 1の実施の形態と同様にベッドをステップ的に移動するマルチステーション 撮影に適用することも可能である。この場合には、各ステーションでベッドを固定し、 静磁場空間内にある複数の TRS断面を撮影する。息止め撮影すべきステーションで は、そのステーションで撮影される複数のスライスをそれぞれ被検体の体動による移 動方向の変位量に基づきシフトさせて撮像を行う。息止め撮影すべきステーションの 設定は、第 1の実施の形態と同様に図 5に示す UIを介して行うことができる。
[0048] また上記第 1および第 2の実施の形態では、体動を制御する撮影として、息止め撮 影を行う場合を説明したが、ナビゲーシヨンエコー等の体動検出手段で検出された 変位が所定の範囲にあるときにのみ信号を取得する体動ゲート撮影もこれらの実施 の形態に適応することが可能である。
産業上の利用可能性
[0049] 本発明によれば、マルチステーション撮影やムービングベッド撮影にぉ 、て体動の 影響をなくし、スライス間のミスレジストレーシヨンのな!、優れた全身画像を得ることが できる。
また本発明によれば、被検者の呼吸レベルに追従した全身画像取得が可能なため 、息止め撮影の前に、被検者に息止めレベルを合わせるためのトレーニングを行う必 要や、息止め撮影の際、呼吸レベルを合わせるための煩雑な指示も不要である。更 に、自由呼吸下での撮影も可能なことから、息止めの出来ない被検者の場合にも対 応できる。
図面の簡単な説明
[0050] [図 1]本発明が適用される MRI装置の全体概要を示す図。
[図 2]本発明の MRI装置による撮影の第 1の実施の形態を説明する図。
[図 3]第 1の実施の形態の息止め撮影の手順を示す図。
[図 4]第 1の実施の形態の作用を説明する図。
[図 5A]第 1の実施の形態の動作手順を示す図。
[図 5B]第 1の実施の形態で使用する GUIの一例を示す図。
[図 6]本発明の MRI装置による撮影の第 2の実施の形態を説明する図。 [図 7]第 2の実施の形態の息止め撮影の手順を示す図。
[図 8]第 2の実施の形態における複数の息止め撮影を説明する図。
[図 9]第 2の実施の形態の撮影の手順を示す図
[図 10]第 2の実施の形態で使用する GUIの一例を示す図。
[図 11]従来のマルチステーション撮影とその問題点を説明する図。
[図 12]従来のムービングベッド撮影とその問題点を説明する図。
[図 13]従来のムービングベッド撮影とその問題点を説明する図。
符号の説明
101…被検体、 102…静磁場発生磁石、 111 · · ·制御部、 112…ベッド、 113 · · ·べッ ド駆動部

Claims

請求の範囲
[1] 核磁気共鳴撮影装置の静磁場空間中を、被検体を搭載する搬送手段を移動させ て前記被検体の移動方向の複数の撮影領域を順次撮影する方法において、 前記複数の撮影領域から、第 1の撮影領域と前記被検体の体動の制御を伴う撮影 を行なう第 2の撮影領域とを選択する領域選択ステップと、
前記第 1の撮影領域を撮影する第 1の撮影ステップと、
前記第 2の撮影領域を撮影する第 2の撮影ステップと、
を有し、
前記第 2の撮影ステップは、
前記被検体の体動の位置情報を検出する体動位置情報検出ステップと、 前記第 1の撮影領域の位置情報と前記体動の位置情報とに基づ!、て、前記第 2の 撮影領域の位置を制御するための制御情報を算出する制御情報算出ステップと、 前記制御情報に基づいて前記第 2の撮影領域の位置を制御して撮影を行なう第 2 領域撮影ステップと
を有することを特徴とする磁気共鳴撮影方法。
[2] 請求項 1記載の磁気共鳴撮影方法にお!ヽて、
前記制御情報算出ステップでは、前記制御情報として、前記第 1の撮影領域の位 置に前記第 2の撮影領域の位置を整合させるための該第 2の撮影領域の位置のシフ ト量が算出され、
前記第 2領域撮影ステップでは、前記シフト量を求めた方向に該シフト量だけ前記 第 2の撮影領域の位置がシフトされて撮影が行われることを特徴とする磁気共鳴撮影 方法。
[3] 請求項 2記載の磁気共鳴撮影方法にぉ ヽて、
前記第 1の撮影領域と前記第 2の撮影領域は、前記被検体の移動方向に平行な方 向に選択されたスライスであることを特徴とする磁気共鳴撮影方法。
[4] 請求項 3記載の磁気共鳴撮影方法にお ヽて、
前記体動位置情報検出ステップでは、前記移動方向に垂直な方向の前記体動の 位置情報が検出され、 前記制御情報算出ステップでは、前記移動方向に垂直な方向の前記シフト量が求 められ、
前記第 2領域撮影ステップでは、前記スライスの位置が前記移動方向に垂直な方 向に前記シフト量だけシフトされて撮影が行われることを特徴とする磁気共鳴撮影方 法。
[5] 請求項 3記載の磁気共鳴線影方法にぉ ヽて、
前記体動位置情報検出ステップでは、前記被検体の腹部の前記移動方向に垂直 な方向の位置情報が検出されることを特徴とする磁気共鳴撮影方法。
[6] 請求項 2記載の磁気共鳴撮影方法にお ヽて、
前記第 1の撮影領域と前記第 2の撮影領域は、前記被検体の移動方向に交差する 方向に選択されたスライスであることを特徴とする磁気共鳴撮影方法。
[7] 請求項 6記載の磁気共鳴撮影方法にぉ ヽて、
前記体動位置情報検出ステップでは、前記移動方向の前記体動の位置情報が検 出され、
前記制御情報算出ステップでは、前記移動方向の前記シフト量が求められ、 前記第 2領域撮影ステップでは、前記スライスの位置が前記移動方向に前記シフト 量だけシフトされて撮影が行われることを特徴とする磁気共鳴撮影方法。
[8] 請求項 6記載の磁気共鳴線影方法にぉ ヽて、
前記体動位置情報検出ステップでは、前記被検体の横隔膜の前記移動方向の位 置情報が検出されることを特徴とする磁気共鳴撮影方法。
[9] 請求項 1記載の磁気共鳴撮影方法にお!ヽて、
前記第 1の撮影ステップと前記第 2の撮影ステップでは、前記被検体が停止されて 撮影が行われることを特徴とする磁気共鳴撮影方法。
[10] 請求項 1記載の磁気共鳴撮影方法にぉ 、て、
前記第 1の撮影ステップと前記第 2の撮影ステップでは、前記被検体が移動されな 力 撮影が行われることを特徴とする磁気共鳴撮影方法。
[11] 請求項 1記載の磁気共鳴撮影方法において、
前記第 2の撮影ステップでは、前記被検体が息止めして 、る状態で撮影が行われ ることを特徴とする磁気共鳴撮影方法。
[12] 請求項 1記載の磁気共鳴撮影方法にぉ 、て、
前記第 2の撮影ステップでは、前記被検体が呼吸して!/ヽる状態で撮影が行われるこ とを特徴とする磁気共鳴撮影方法。
[13] 請求項 1記載の磁気共鳴撮影方法にぉ 、て、
前記体動位置情報検出ステップでは、ナビゲーシヨンエコーシーケンスが実行され て、前記ナビゲーシヨンエコーシーケンスによって取得されたナビゲーシヨンエコーを 用いて前記体動の位置情報が検出されることを特徴とする磁気共鳴撮影方法。
[14] 請求項 1記載の磁気共鳴撮影方法にお!ヽて、
前記領域選択ステップでは、前記第 1の撮影領域として、前記被検体の体動の無 い領域が選択されることを特徴とする磁気共鳴撮影方法。
[15] 請求項 1記載の磁気共鳴撮影方法にぉ 、て、
前記第 1の撮影ステップと前記第 2の撮影ステップとが、前記第 1の撮影領域の位 置を変えて複数回繰り返されることを特徴とする磁気共鳴撮影方法。
[16] 請求項 1記載の磁気共鳴撮影方法にぉ 、て、
前記第 1の撮影ステップと前記第 2の撮影ステップでは、それぞれ複数のスライスが 撮影され、
前記制御情報算出ステップでは、前記スライス毎に、前記制御情報が算出され、 前記第 2の撮影ステップでは、前記スライス毎の制御情報に基づ!/、て該スライスの 位置を制御して撮影が行われることを特徴とする磁気共鳴撮影方法。
[17] 請求項 1記載の磁気共鳴撮影方法にぉ 、て、
前記第 2領域撮影ステップでは、前記制御情報に対応して、前記被検体に印加さ れる高周波磁場の周波数と傾斜磁場の強度の少なくとも一方が制御されることを特 徴とする磁気共鳴撮影方法。
[18] 静磁場空間内に配置された被検体の複数の撮影領域を核磁気共鳴により撮影す る撮影手段と、前記静磁場空間に対し被検体を移動させる移動手段と、前記被検体 の複数の撮影領域から得られた計測データを用いて画像を形成する画像形成手段 と、前記撮影手段と前記移動手段と前記画像形成手段とを制御する制御手段と、前 記制御手段に対するユーザーの指令が入力されるとともに前記画像を表示する入出 力手段とを備え、
前記制御手段は、前記撮影手段と前記移動手段とを制御して、前記複数の撮影領 域を順次撮影する磁気共鳴撮影装置にぉ ヽて、
前記被検体の体動の位置情報を検出する体動検出手段を備え、
前記入出力手段には、前記被検体の複数の撮影領域から、第 1の撮影領域と前記 被検体の体動の制御を伴う撮影を行う第 2の撮影領域とを選択するための情報が入 力され、
前記制御手段は、前記第 1の撮影領域の位置情報と前記体動の位置情報とに基づ V、て、前記第 2の撮影領域の位置を制御して撮影を行うことを特徴とする磁気共鳴撮 影装置。
[19] 請求項 18記載の磁気共鳴撮影装置において、
前記体動検出手段は、ナビゲーシヨンエコーシーケンスを実行し、前記ナビゲーシ ヨンエコーシーケンスによって得られたナビゲーシヨンエコーを用いて前記体動位置 を検出することを特徴とする磁気共鳴撮影装置。
[20] 請求項 18記載の磁気共鳴撮影装置にぉ ヽて、
前記移動手段の移動量を検出する移動量検出手段を備え、
前記制御手段は、前記移動量に基づいて、前記複数の撮影領域の撮影開始をそ れぞれ制御することを特徴とする磁気共鳴撮影装置。
[21] 請求項 18記載の磁気共鳴撮影装置において、
前記撮影手段は、前記被検体の移動方向に並設された複数の受信手段を備え、 前記制御手段は、前記移動量に基づいて、前記複数の受信手段を切り替えながら 前記複数の撮影領域を順次撮影すると共に、前記第 2の撮影領域の近傍に配置さ れた受信手段への切り替えに同期して、前記体動検出手段を制御して前記体動の 位置情報の検出を行うことを特徴とする磁気共鳴撮影装置。
[22] 請求項 18記載の磁気共鳴撮影装置にぉ ヽて、
前記入出力手段は、少なくとも前記第 2の撮影領域を選択するための入力を受け 付ける GUIを表示することを特徴とする磁気共鳴撮影装置。
PCT/JP2005/023391 2004-12-21 2005-12-20 磁気共鳴撮影方法および装置 WO2006068149A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006549010A JP4953823B2 (ja) 2004-12-21 2005-12-20 磁気共鳴撮影方法および装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004369656 2004-12-21
JP2004-369656 2004-12-21

Publications (1)

Publication Number Publication Date
WO2006068149A1 true WO2006068149A1 (ja) 2006-06-29

Family

ID=36601749

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/023391 WO2006068149A1 (ja) 2004-12-21 2005-12-20 磁気共鳴撮影方法および装置

Country Status (2)

Country Link
JP (1) JP4953823B2 (ja)
WO (1) WO2006068149A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006288729A (ja) * 2005-04-11 2006-10-26 Hitachi Medical Corp 磁気共鳴イメージング装置
JP2006320723A (ja) * 2005-05-19 2006-11-30 Siemens Ag 磁気共鳴スペクトロメータ内の検査ボリュームの撮像方法
WO2007119192A1 (en) * 2006-04-13 2007-10-25 Koninklijke Philips Electronics N.V. Mri of a continuously moving object involving motion compensation
JP2007301295A (ja) * 2006-05-15 2007-11-22 Hitachi Medical Corp 磁気共鳴イメージング装置
JP2008148918A (ja) * 2006-12-18 2008-07-03 Ge Medical Systems Global Technology Co Llc Mri装置およびその制御方法
JP2008154887A (ja) * 2006-12-26 2008-07-10 Ge Medical Systems Global Technology Co Llc Mri装置
JP2009148463A (ja) * 2007-12-21 2009-07-09 Hitachi Medical Corp 磁気共鳴イメージング装置
JP2012070982A (ja) * 2010-09-29 2012-04-12 Ge Medical Systems Global Technology Co Llc 磁気共鳴イメージング装置
CN103458780A (zh) * 2011-04-01 2013-12-18 株式会社日立医疗器械 磁共振成像装置以及磁共振成像方法
JP2020168196A (ja) * 2019-04-03 2020-10-15 キヤノンメディカルシステムズ株式会社 画像再構成方法及び再構成装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0435645A (ja) * 1990-05-31 1992-02-06 Toshiba Corp 磁気共鳴イメージング装置
JP2001299725A (ja) * 2000-03-27 2001-10-30 Ge Medical Systems Global Technology Co Llc 保息式腹部mr撮像のためのスライスの順序付けの方法
JP2002010992A (ja) * 2000-04-25 2002-01-15 Toshiba Corp 磁気共鳴イメージング装置及び磁気共鳴イメージング方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63272335A (ja) * 1986-11-18 1988-11-09 Toshiba Corp 磁気共鳴イメ−ジング装置
JP2001198100A (ja) * 2000-01-20 2001-07-24 Ge Medical Systems Global Technology Co Llc Mrデータ収集方法、mr画像表示方法およびmri装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0435645A (ja) * 1990-05-31 1992-02-06 Toshiba Corp 磁気共鳴イメージング装置
JP2001299725A (ja) * 2000-03-27 2001-10-30 Ge Medical Systems Global Technology Co Llc 保息式腹部mr撮像のためのスライスの順序付けの方法
JP2002010992A (ja) * 2000-04-25 2002-01-15 Toshiba Corp 磁気共鳴イメージング装置及び磁気共鳴イメージング方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
CHOYKE P. ET AL.: "Continuously Acquired Moving Table MRI: A Method for Rapid Whole Body Scanning", PROCEEDINGS OF THE INTERNATIONAL SOCIETY FOR MAGNETIC RESONANCE IN MEDICINE 10TH SCIENTIFIC MEETINGS AND EXHIBITION, 2002, pages 560, XP003004527 *
ICHIBA N. ET AL.: "Zenshin MRI no Rinsho Oyo", INNERVISION, vol. 19, no. 9, 25 August 2004 (2004-08-25), pages 49 - 51, XP003004526 *
KORIN H.W. ET AL.: "Adaptive Technique for Three-dimensional MR Imaging of Moving Structures", RADIOLOGY, vol. 177, no. 1, 1990, pages 217 - 221, XP003004529 *
KRUGER D.G. ET AL.: "Continuously moving table data acquisition method for long FOV contrast-enhanced MRA and whole-body MRI", MAGNETIC RESONANCE IN MEDICINE, vol. 47, no. 2, 2002, pages 224 - 231, XP002290063 *
LUDWIG U.A. ET AL.: "COmparison of Stationary and Moving Surface Coil Setups for Continuously Moving Table MRI", PROCEEDINGS OF THE INTERNATIONAL SOCIETY FOR MAGNETIC RESONANCE IN MEDICINE 12TH SCIENTIFIC MEETINGS AND EXHIBITION, May 2005 (2005-05-01), pages 2670, XP003004528 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006288729A (ja) * 2005-04-11 2006-10-26 Hitachi Medical Corp 磁気共鳴イメージング装置
JP2006320723A (ja) * 2005-05-19 2006-11-30 Siemens Ag 磁気共鳴スペクトロメータ内の検査ボリュームの撮像方法
WO2007119192A1 (en) * 2006-04-13 2007-10-25 Koninklijke Philips Electronics N.V. Mri of a continuously moving object involving motion compensation
JP2007301295A (ja) * 2006-05-15 2007-11-22 Hitachi Medical Corp 磁気共鳴イメージング装置
JP2008148918A (ja) * 2006-12-18 2008-07-03 Ge Medical Systems Global Technology Co Llc Mri装置およびその制御方法
JP2008154887A (ja) * 2006-12-26 2008-07-10 Ge Medical Systems Global Technology Co Llc Mri装置
JP2009148463A (ja) * 2007-12-21 2009-07-09 Hitachi Medical Corp 磁気共鳴イメージング装置
JP2012070982A (ja) * 2010-09-29 2012-04-12 Ge Medical Systems Global Technology Co Llc 磁気共鳴イメージング装置
CN103458780A (zh) * 2011-04-01 2013-12-18 株式会社日立医疗器械 磁共振成像装置以及磁共振成像方法
JP2020168196A (ja) * 2019-04-03 2020-10-15 キヤノンメディカルシステムズ株式会社 画像再構成方法及び再構成装置
JP7292930B2 (ja) 2019-04-03 2023-06-19 キヤノンメディカルシステムズ株式会社 画像再構成方法及び再構成装置

Also Published As

Publication number Publication date
JP4953823B2 (ja) 2012-06-13
JPWO2006068149A1 (ja) 2008-06-12

Similar Documents

Publication Publication Date Title
JP4953823B2 (ja) 磁気共鳴撮影方法および装置
JP5105848B2 (ja) 磁気共鳴イメージング装置および磁気共鳴イメージング装置における撮影条件設定方法
JP2007029250A (ja) 磁気共鳴イメージング装置
JP6008839B2 (ja) 磁気共鳴イメージング装置および磁気共鳴イメージング方法
JP5591545B2 (ja) 磁気共鳴映像装置
JP6151697B2 (ja) 磁気共鳴イメージング装置及び磁気共鳴イメージング方法
JPWO2006046639A1 (ja) 核磁気共鳴撮像装置
US8461837B2 (en) Magnetic resonance method and apparatus with display of data acquisition progress for a subject continuously moving through the apparatus
US8358130B2 (en) Magnetic resonance method and apparatus for acquiring measurement data from a subject continuously moving through the apparatus
JP2006320527A (ja) 磁気共鳴イメージング装置
JP5106697B2 (ja) 磁気共鳴イメージング装置
JP3836424B2 (ja) 磁気共鳴撮影装置
JP3895972B2 (ja) 磁気共鳴映像化装置
US9063205B2 (en) Method and magnetic resonance apparatus for image data acquisition
JP4711732B2 (ja) 磁気共鳴撮影装置
US20080218167A1 (en) Magnetic resonance imaging apparatus and magnetic resonance imaging method
WO2006109472A1 (ja) 核磁気共鳴撮像装置および方法
JP5064721B2 (ja) 磁気共鳴イメージング装置
JP6827813B2 (ja) 医用画像診断装置
JP4519827B2 (ja) 磁気共鳴映像化装置
JP2021180765A (ja) 磁気共鳴イメージング装置及びその制御プログラム
US11766188B2 (en) Magnetic resonance imaging device
JP4763429B2 (ja) 磁気共鳴イメージング装置
JP2008148918A (ja) Mri装置およびその制御方法
US7365541B2 (en) MRI apparatus which automatically determines and displays operating instructions

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006549010

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: COMMUNICATION PURSUANT TO RULE 69(1) EPC (FORM 1205A) SENT 13.09.2007.

122 Ep: pct application non-entry in european phase

Ref document number: 05820085

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 5820085

Country of ref document: EP