WO2006068040A1 - 超電導モータの冷却構造 - Google Patents

超電導モータの冷却構造 Download PDF

Info

Publication number
WO2006068040A1
WO2006068040A1 PCT/JP2005/023125 JP2005023125W WO2006068040A1 WO 2006068040 A1 WO2006068040 A1 WO 2006068040A1 JP 2005023125 W JP2005023125 W JP 2005023125W WO 2006068040 A1 WO2006068040 A1 WO 2006068040A1
Authority
WO
WIPO (PCT)
Prior art keywords
pipe
rotor
superconducting
cooling
cooling structure
Prior art date
Application number
PCT/JP2005/023125
Other languages
English (en)
French (fr)
Inventor
Toru Okazaki
Shingo Ohashi
Hidehiko Sugimoto
Toshio Takeda
Original Assignee
Sumitomo Electric Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries, Ltd. filed Critical Sumitomo Electric Industries, Ltd.
Priority to CN2005800445786A priority Critical patent/CN101107763B/zh
Priority to US11/793,681 priority patent/US7667358B2/en
Priority to EP05816900A priority patent/EP1830452A1/en
Priority to CA002592597A priority patent/CA2592597A1/en
Publication of WO2006068040A1 publication Critical patent/WO2006068040A1/ja
Priority to NO20073242A priority patent/NO20073242L/no

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K55/00Dynamo-electric machines having windings operating at cryogenic temperatures
    • H02K55/02Dynamo-electric machines having windings operating at cryogenic temperatures of the synchronous type
    • H02K55/04Dynamo-electric machines having windings operating at cryogenic temperatures of the synchronous type with rotating field windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/24Windings characterised by the conductor shape, form or construction, e.g. with bar conductors with channels or ducts for cooling medium between the conductors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/19Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/19Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil
    • H02K9/20Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil wherein the cooling medium vaporises within the machine casing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Definitions

  • the present invention relates to a cooling structure for a superconducting motor, and more particularly to efficiently cooling a superconducting coil attached to a rotor in a driving motor mounted on a ship such as a government ship or a passenger ship.
  • Patent Document 1 Japanese Patent Laid-Open No. 6-6907
  • cooling of a superconducting coil attached to a rotor disposed in the center of a motor is difficult to cool sufficiently from the outside because the efficiency is poor with cooling from the outside of the motor.
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2002-58207 provides a structure in which a hollow portion is provided on a rotating shaft of a motor and a coil attached to the rotor is cooled through the hollow portion. With this structure, even if the coil attached to the rotor is a superconducting coil, it can be efficiently cooled to a required temperature.
  • Patent Document 1 Japanese Patent Laid-Open No. 6-6907
  • Patent Document 2 JP 2002-58207 A Disclosure of the invention
  • the present invention has been made in view of the above problems, and an object thereof is to provide a simple superconducting motor cooling structure capable of efficiently cooling a superconducting coil attached to a rotor.
  • the present invention provides a cooling structure for a superconducting motor in which a superconducting coil is attached to a rotor.
  • a cooling structure for a superconducting motor characterized in that a groove is formed in the outer surface of a rotating shaft fixed through the rotor, and a cooling medium circulation pipe of a cooling means is inserted and disposed inside the groove. is doing.
  • the cooling structure of the present invention is particularly suitable for a large superconducting motor. Adopted.
  • the refrigerant flow pipe is exposed to the outside through the inside of the groove, so that the refrigerant flow pipe can be in direct contact with the rotor and close to the superconducting coil attached to the rotor. Therefore, the cooling effect can be enhanced.
  • a high temperature superconducting material such as bismuth or yttrium is preferably used.
  • the cooling means includes
  • a first pipe having a forward path portion and a return path portion connected to a supply source for cooling the superconducting coil, fixed to one end in the axial direction of the rotary shaft, and rotatably connected to the first pipe.
  • a second pipe having an outward path and a return path communicating with the forward path and the return path of the one pipe, respectively;
  • the superconducting coil cooling refrigerant is supplied from the supply source to the first pipe forward path, the second pipe forward path, the refrigerant circulation pipe, the second pipe return path, and the first pipe return path.
  • the superconducting coil attached to the rotor can be cooled by the refrigerant that circulates in order and flows through the refrigerant circulation pipe inserted into the groove of the rotating shaft.
  • the groove on the outer surface of the rotating shaft for inserting the refrigerant circulation pipe is provided along the entire length in the axial direction of the rotor and recessed at a symmetric position, and along the outer peripheral surface of the rotating shaft at the front end position of the rotor. It is preferable to insert the turning part into the formed groove so that the forward part and the return part are continuous.
  • the groove for inserting the refrigerant circulation pipe is formed not only in the axial direction of the rotating shaft but also in the circumferential direction, and can be bent, for example, in a bellows shape. If the refrigerant circulation pipe is arranged so as to be wound around the rotation shaft, the length of the refrigerant circulation pipe becomes large, and the superconducting coil can be efficiently cooled in a wide range in the circumferential direction.
  • the heat insulating means is preferably a means that is surrounded by a first pipe, a second pipe, and an outer pipe, and the inside thereof is a vacuum heat insulating layer.
  • the first pipe and the second pipe may be covered with a heat insulating material.
  • the first pipe is fixed because it is connected to the refrigerant supply source, while the second pipe is rotated because it is attached to the rotating shaft side. Therefore, it is necessary to join the first pipe and the second pipe in a rotatable manner.
  • flanges are provided at the joint ends of the first pipe and the second pipe, respectively, and the flanges are brought into contact with each other in a rotatable manner and are urged in the contact direction. Is attached.
  • liquid nitrogen, neon, or helium as a cooling refrigerant for the superconducting coil.
  • Liquid nitrogen that has been heated by cooling the superconducting coil may be cooled by another cooling device and reused as a refrigerant, or may be discharged to the outside when vaporized.
  • the superconducting motor may be an axial type in which the stator is disposed opposite to the rotor in the axial direction and the magnetic flux direction of the superconducting coil is directed in the axial direction, or a rotor is provided in the hollow portion of the stator having an annular cross section. It can be a radial type with the coil's magnetic flux direction in the radial direction.
  • the refrigerant circulation pipe inserted in the groove on the outer surface of the rotating shaft is pulled out from the groove near the rotor, along the side of the rotor, and close to the superconducting coil attached to the rotor. It can be extended. Thereby, since the refrigerant circulation pipe can be arranged in the vicinity of the superconducting coil, the cooling effect of the superconducting coil can be enhanced.
  • a groove is formed on the outer surface of the rotating shaft rather than providing a hollow portion at the center of the rotating shaft. Since the refrigerant flow pipe is inserted into the groove, the cooling structure can be easily formed as compared with the case where the hollow portion is provided on the rotating shaft.
  • the refrigerant can be circulated closer to the superconducting coil attached to the rotor, compared to the case where it is provided on the center line of the rotating shaft. Can be increased.
  • FIG. 1 is a schematic sectional view of a superconducting motor according to a first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of a superconducting motor.
  • FIG. 3 is a cross-sectional view of a rotating shaft extending from a rotor.
  • FIG. 4 is an enlarged cross-sectional view of a main part showing a joining end of a first pipe and a second pipe.
  • FIG. 5 is a cross-sectional view showing a modification of the first embodiment.
  • FIG. 6 is a cross-sectional view of a superconducting motor according to a second embodiment.
  • FIG. 7 is a drawing showing a rotor of a superconducting motor of a second embodiment.
  • FIG. 8 is a drawing showing a rotor of a superconducting motor according to a modification of the second embodiment. Explanation of symbols
  • FIG. 1 to 4 show a first embodiment of the present invention, and a superconducting motor 10 of the present invention is used as a motor for propulsion of a ship.
  • the superconducting motor 10 includes a stator 16 and a rotor 17 that is rotatably disposed in the space of the stator 16.
  • the superconducting motor 22 is attached to the rotor 17.
  • the magnetic flux direction is a radial type with the radial direction.
  • the rotor 17 is formed in a cylindrical shape using a magnetic powder or the like, and has a rotary shaft 23 penetrating and fixed at the center thereof.
  • the rotary shaft 23 extends outside the stator 16 through bearings 18 and 21. 17 is fixed with a superconducting coil 22 (field coil) made of a superconducting material.
  • a superconducting coil 22 field coil
  • a high temperature superconducting material such as bismuth or yttrium is preferably used.
  • the stator 16 is formed of a material such as a powder magnetic material obtained by applying an insulating coating to iron powder, and has a circular cross section as shown in FIG.
  • An armature coil 19 made of a copper wire made of a normal conducting material is attached to the inner peripheral surface at an interval of 120 degrees in the circumferential direction.
  • the armature coil 19 is supplied with a phase-shifted three-phase alternating current to generate a rotating magnetic field and rotate the rotor 17.
  • a pair of grooves 24 that extend along the entire axial length of the rotor 17 and are symmetrical with respect to the central axis of the rotating shaft 23, 25 is recessed.
  • the pair of grooves 24 and 25 are connected by a groove 26 that is recessed in the circumferential direction of the rotary shaft 23 at a position corresponding to the end of the rotor 17 (left side in FIG. 1).
  • refrigerant circulation pipes composed of refrigerant circulation pipes 33 for circulating liquid nitrogen are inserted.
  • the forward passage portion 33A and the return passage portion 33B of the refrigerant circulation pipe 33 are inserted into the pair of grooves 24 and 25, respectively, and the refrigerant circulation pipe 33 is inserted into the groove 26 provided between the grooves 24 and 25 from the forward passage portion 33A to the return passage portion 33B.
  • the folding part 33C that folds back is inserted.
  • the superconducting coil 22 attached to the rotor 17 is cooled by circulating liquid nitrogen, which is a refrigerant, through a continuous refrigerant circulation pipe 33 composed of the folded portion 33C.
  • a first pipe 31 and a second pipe 32 communicating with the first pipe 31 are provided as pipes that constitute a cooling means together with the refrigerant circulation pipe 33.
  • the first pipe 31 includes an outward path part 31A and a return path part 31B, and the forward path part 31A and the return path part 31B are connected to a liquid nitrogen tank 11 which is a supply source of a superconducting coil cooling refrigerant (liquid nitrogen in this embodiment). ing.
  • the superconducting coil cooling refrigerant is not limited to liquid nitrogen, and neon or helium may be used as the cooling medium.
  • the second pipe 32 also includes an outward path part 32A and a return path part 32B, and the forward path part 32A and the return path part 32B are respectively connected to the forward path part 31A and the return path part 31B of the first pipe 31 so as to be freely rotatable. is doing.
  • the second pipe 32 is fixed to one end in the axial direction of the rotating shaft 23, and the second pipe 32 extending from one end of the rotating shaft 23 to the rotor 17 has a rotating shaft as shown in FIG. Inserted into grooves 24 and 25 that are recessed in 23.
  • the first pipe 31 and the second pipe 32 are surrounded by outer pipes 34 and 36 for vacuum heat insulation, respectively, and heat insulation means including vacuum heat insulation layers 35 and 37 is provided.
  • the refrigerant circulation pipe 33 inserted into the grooves 24, 25, and 26 of the rotating shaft 32 communicates the forward path portion 33A and the return path portion 33B with the forward path portion 32A and the return path portion 32B of the second pipe, respectively.
  • the refrigerant circulation pipe 33 is not provided with a heat insulating means, and the cold heat of liquid nitrogen is transmitted through the rotor 17 in this non-insulated portion to cool the superconducting coil 22.
  • the joint end of the first pipe 31 with the second pipe 32 is, as shown in FIG. 5, the forward path portion 31A is arranged on the same line as the center line of the rotating shaft 23, and the forward path portion A return path portion 31B surrounds the outer periphery of 31A, and an outer tube 34 for vacuum insulation surrounds the outer periphery of the return path portion 31B.
  • the joint end of the second pipe 32 with the first pipe 31 is also arranged so that the forward path portion 32A is collinear with the center line of the rotating shaft 23, and the return path portion 32B surrounds the outer periphery of the forward path portion 32A.
  • An outer pipe 36 for vacuum insulation surrounds the outer periphery of the return path portion 32B.
  • the forward path part 31A and the return path part 3IB of the first pipe 31 and the forward path part 32A and the return path part 32B of the second pipe 32 are arranged to face each other. It is.
  • the liquid nitrogen flowing out of the liquid nitrogen tank 11 passes through the forward path part 31A of the first pipe 31, the forward path part 32A of the second pipe 32, the refrigerant circulation pipe 33, the return path part 32B of the second pipe 32, and the first pipe. It circulates in 31 return path parts 31B in order.
  • flanges 31A-1, 31B_1, 32A-1, 32B-1 project from the joint end of the first pipe 31 and the second pipe 32 toward the outer periphery. 1 and 32A-1, 31B-1 and 32B-1 are in contact with each other. Cover the flanges 31B-1 and 32B-1 with the cover 38 and urge the flanges 31B-1 and 3 2B-1 in the contact direction from both sides by the spring 39 installed in the cover 38. Yes.
  • the grooves 24, 25, and 26 are provided on the outer surface of the rotating shaft 23 instead of providing a hollow portion at the center of the rotating shaft 23, and liquid nitrogen serving as a refrigerant is provided in the grooves 24, 25, and 26. Since the refrigerant circulation pipe 33 is inserted, the cooling structure can be easily formed as compared with the case where the rotary shaft 23 is provided with a hollow portion.
  • the refrigerant circulation pipe 33 is provided closer to the outer surface than provided on the center line of the rotating shaft 23, the refrigerant circulation pipe 33 can be disposed near the superconducting coil 22 and the cooling effect can be enhanced.
  • the flange 31A-1 protruding from the joint end of the forward path portion 31A of the first pipe 31 31A-la and the joint end of the forward path portion 32A of the second pipe 32 are connected to each other. If the tip 32A-la of the protruding flange 32A-1 is refracted to the rotor side and the tip 32Ala of one flange 32A-1 is covered with the tip 31A-la of the other flange 31A-1, the joint position The leakage of the refrigerant can be prevented more reliably.
  • stator is arranged in the axial direction of the rotor so as to be an axial type in which the magnetic flux direction of the superconducting coil is directed in the axial direction.
  • a pair of stators 53 and 54 are arranged to face each other with a required air gap on both sides in the axial direction of the rotor 52 fixed to the rotating shaft 51.
  • the rotor 52 is provided with field body mounting holes 52b at intervals in the circumferential direction around the axis, and field superconducting coils 55 are mounted and fixed in the field body mounting holes 52b so that the direction of the magnetic flux is It is arranged to face the axial direction.
  • the stators 53 and 54 having disk shapes symmetrical to each other pass through the rotating shaft 51 through a bearing, and are spaced apart in the circumferential direction around the axis on the rotor-facing surface side by a normal conducting material (for example, one end of a plurality of armature coils 56 and 57 made of copper wire or the like is fixed with an adhesive, and protrudes in the axial direction toward the rotor 52 side.
  • a normal conducting material For example, one end of a plurality of armature coils 56 and 57 made of copper wire or the like is fixed with an adhesive, and protrudes in the axial direction toward the rotor 52 side.
  • grooves 58 and 59 are recessed in the axial direction and symmetrically as in the first embodiment, and the grooves 58 and 59 as in the first embodiment are connected. There is no circumferential groove.
  • the refrigerant circulation pipe 61 of the refrigerant circulation pipe inserted into the grooves 58 and 59 is pulled out from the groove at the groove end on the rotor 52 side, and the refrigerant circulation pipe 61 is disposed along the side surface of the rotor 52.
  • the refrigerant circulation pipe 61 is disposed close to the superconducting coil 55 by alternately passing the outer side (the peripheral side of the rotor 52) and the inner side (the rotating shaft 51 side) of the superconducting coil 55 attached to the rotor 52. That is, as shown in FIG. 7, the refrigerant circulation pipe 61 is connected between the adjacent superconducting coils 55 ⁇ between the superconducting coil 55 and the periphery of the rotor 52 ⁇ between the adjacent superconducting coils 55 ⁇ the superconducting coil 55 and the rotating shaft. It passes in order between 51.
  • the refrigerant circulation pipe 61 may be attached to the side surface of the rotor 52 with an adhesive or the like, or may be inserted into a groove provided in the rotor 52.
  • the cooling structure formed by inserting the refrigerant circulation pipe into the groove provided on the outer surface of the rotating shaft is provided to cool the superconducting coil attached to the rotor. be able to.
  • the refrigerant circulation pipe 61 is pulled out from the grooves 58 and 59 of the rotary shaft 51 and the drawn refrigerant circulation pipe 61 is disposed close to the superconducting coil 55, the cooling effect of the superconducting coil 55 can be enhanced. .
  • first and second pipes of the refrigerant flow pipe and other configurations are the same as those in the first embodiment, and thus description thereof is omitted.
  • FIG. 8 shows a modification of the second embodiment.
  • the superconducting coil 55 is attached along the periphery of the rotor 52, and the refrigerant circulation pipe 61 drawn out from the grooves 58 and 59 of the rotating shaft 51 is inside the superconducting coil 55 (the rotating shaft 51 side). It is arranged along. Even in the configuration described above, since the refrigerant circulation pipe 61 is disposed close to the superconducting coil 55, the cooling effect of the superconducting coil can be enhanced. Industrial applicability
  • the motor device of the present invention can be suitably used as a power source for large ships and the like that require high output.
  • a stator and rotor are arranged at high density as a serially coupled synchronous type in which stators and rotors are alternately stacked on a rotating shaft, and a high-temperature superconducting Balta magnet is arranged on the rotor. If it is configured to be cooled with the refrigerant in the refrigerant flow pipe provided on the rotating shaft, high output can be maintained and it can be suitably used as a propulsion motor for large ships such as government ships and passenger ships.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Superconductive Dynamoelectric Machines (AREA)
  • Windings For Motors And Generators (AREA)
  • Motor Or Generator Cooling System (AREA)

Abstract

 ロータ17に超電導コイル22を取り付けた超電導モータの冷却構造であって、ロータ17に貫通させて固定された回転軸23の外面に溝24、25、26が凹設され、該溝24、25、26に挿入した冷媒循環パイプ33に冷媒を流通させて、該冷媒により超電導コイル22を冷却する構成としている。

Description

明 細 書
超電導モータの冷却構造
技術分野
[0001] 本発明は、超電導モータの冷却構造に関し、特に、官公庁船や客船といった船舶 等に搭載される駆動用のモータにおいて、ロータに取り付けた超電導コイルを効率 良く冷却するものである。
背景技術
[0002] 近年、ガソリン等の燃料資源の枯渴ゃ排気ガスによる環境悪化を改善すベぐ電気 によりモータを駆動して渡航する船舶等の開発が進められている。特に、特開平 6— 6907号 (特許文献 1)に開示されている超電導モータを採用すれば、超電導コイル での銅損がなくなり高効率になると共に、モータ自身を小型化および高出力化するこ とができる。
超電導モータを稼動させるには、超電導コイルを極低温 (例えば、 77ケノレビン)まで 冷却する必要があり、冷却手段が非常に重要であり、効率良く冷却できる簡素な冷 却構造が求められている。
[0003] 特に、モータの中央に配置されるロータに取り付けられる超電導コイルの冷却は、 モータの外部からの冷却では効率が悪ぐ十分に冷却することが困難である。
そこで、特開 2002— 58207号 (特許文献 2)において、モータの回転軸に中空部 を設け、該中空部に冷媒を通してロータに取り付けたコイルを冷却する構造が提供さ れている。該構造であれば、ロータに取り付けたコイルが超電導コイルであっても所 要の温度まで効率良く冷却することができる。
し力 ながら、特許文献 2で開示されている構造では、回転軸中心をドリル等により 掘削して中空部を形成しなければならず、特に、船舶等の駆動用に用いられる直列 連結同期型等の大型のモータでは、回転軸が長尺となり、この回転軸に長尺な中空 部を設けるのは困難である。
特許文献 1 :特開平 6— 6907号公報
特許文献 2 :特開 2002— 58207号公報 発明の開示
発明が解決しょうとする課題
[0004] 本発明は前記問題に鑑みてなされたものであり、ロータに取り付けた超電導コイル を効率良く冷却することのできる簡単な超電導モータの冷却構造を提供することを課 題としている。
課題を解決するための手段
[0005] 前記課題を解決するため、本発明は、ロータに超電導コイルを取り付けた超電導モ ータの冷却構造であって、
前記ロータに貫通させて固定された回転軸の外面に溝が凹設され、冷却手段の冷 媒流通管を前記溝内部に挿入配置していることを特徴とする超電導モータの冷却構 造を提供している。
[0006] 前記構成によれば、回転軸の中心に中空部を設けるのではなぐ回転軸の外面に 溝を設け、該溝に冷媒流通管を挿入しているため、回転軸に中空部を設ける場合に 比べて容易に冷却構造を設けることができる。
モータが大型になる程、回転軸も長尺となり、回転軸の中心に長尺な中空部を形 成することが困難となるため、特に、大型の超電導モータに本発明の冷却構造が好 適に採用される。
また、冷媒流通管を回転軸の中心線上に設けるよりも溝内部に通して外部に露出 させて、ロータに直接冷媒流通管を接触でき、かつ、ロータに取り付けた超電導コィ ルに近い位置とすることができるため、冷却効果を高めることができる。
なお、超電導コイルの材料としては、ビスマス系やイットリウム系等の高温超電導材 等が好適に用いられる。
[0007] 前記冷却手段は、
超電導コイル冷却用冷媒の供給源に接続させた往路部と復路部を備えた第 1パイ プと、前記回転軸の軸線方向の一端に固定させると共に前記第 1パイプと回転自在 に接続され、第 1パイプの往路部と復路部とに夫々連通させる往路部と復路部を有 する第 2パイプと、
前記溝に挿入され、前記第 2パイプの往路部と復路部に両端が連通される冷媒循 環パイプからなる前記冷媒流通管と、を備えていることが好ましい。
[0008] 前記構成によれば、超電導コイル冷却用冷媒を供給源から第 1パイプの往路部、 第 2パイプの往路部、冷媒循環パイプ、第 2パイプの復路部、第 1パイプの復路部を 順に通して循環させ、回転軸の溝に挿入された冷媒循環パイプを流通する冷媒によ り、ロータに取り付けた超電導コイルを冷却することができる。
[0009] 前記冷媒循環パイプを揷入する回転軸外面の溝は、前記ロータの軸線方向の全 長に沿うと共に対称位置に凹設され、ロータの先端位置では回転軸の外周面に沿わ せて形成した溝に折返部を揷入して往路部と復路部とを連続させていることが好まし レ、。
[0010] 前記構成によれば、回転軸の外周面に溝加工して、該溝に冷媒循環パイプを通す だけで良いため簡単に実施でき、超電導モータの製造効率が向上し、低コスト化す ること力 sできる。
なお、さらに冷却効果を高める必要がある場合には、冷媒循環パイプを挿入する溝 を回転軸の軸線方向だけでなく周方向にも螺旋状に溝を形成し、例えば蛇腹状の屈 曲可能な冷媒循環パイプを回転軸に巻き付けるように配置すると、冷媒循環パイプ の長さが大となり、超電導コイルを周方向に広い範囲で効率良く冷却することができ る。
[0011] ロータ配置領域以外の前記第 1パイプと第 2パイプは冷媒の温度上昇を防止する ため、その外周面を断熱手段で囲むことが好ましい。
前記断熱手段は、例えば、第 1パイプと第 2パイプと外管で囲み、其の内部を真空 断熱層とする手段が好ましい。なお、断熱材で第 1パイプと第 2パイプとを被覆しても よい。
[0012] 前記第 1パイプは冷媒供給源に接続されるため、固定されている一方、第 2パイプ は回転軸側に取り付けられるため回転される。よって、第 1パイプと第 2パイプとを回 転自在に接合する必要がある。
本発明では、例えば、第 1パイプと第 2パイプの接合端に夫々フランジを突設し、こ れらフランジ同士を互いに回転自在に当接させると共に、当接方向に付勢されるバ ネ手段を付設している。 [0013] 前記構成によれば、第 1パイプと第 2パイプとが多少位置ズレしても、一方のパイプ の位置ズレした接合端開口が他方のパイプのフランジにより閉鎖されるため、冷媒漏 れを防止することができる。また、当接させたフランジをパネ手段により当接方向に付 勢しているため、当接させたフランジ間の隙間をなくして冷媒漏れを防止することが できる。
[0014] 前記超電導コイルの冷却用冷媒として、液体窒素、ネオンあるいはヘリウムを用い ていることが好ましい。
液体窒素を冷媒として用いると超電導コイルが超電導状態になる極低温にまで冷 去 Pすること力 Sできる。
超電導コイルの冷却により昇温した液体窒素は、他の冷却装置により冷却して冷媒 として再利用してもよいし、気化した場合には外部へ放出してもよい。
[0015] 前記超電導モータはロータの軸線方向にステータを対向配置し、超電導コイルの 磁束方向を軸線方向に向けたアキシャル型でもよいし、断面円環状のステータの中 空部にロータを設けて超電導コイルの磁束方向を径方向に向けたラジアル型でもよ レ、。
超電導モータがアキシャル型の場合には、回転軸の外面の溝に挿入した冷媒循環 パイプをロータ近傍で溝内から引き出してロータの側面に沿わせ、該ロータに取り付 けた超電導コイルの近傍にまで延在させて配置することができる。これにより、冷媒循 環パイプを超電導コイルの近傍に配置することができるため、超電導コイルの冷却効 果を高めることができる。
発明の効果
[0016] 前述したように、本発明によれば、ロータに取り付けた超電導コイルを冷却するため の冷却構造を設けるために、回転軸の中心に中空部を設けるのではなぐ回転軸の 外面に溝を設け、該溝に冷媒流通管を挿入しているため、回転軸に中空部を設ける 場合に比べて容易に冷却構造を形成することができる。
また、冷媒流通管を回転軸の外面露出させていることにより、回転軸の中心線上に 設ける場合と比べて、冷媒をロータに取り付けた超電導コイルに近い位置に流通さ せることができ、冷却効果を高めることができる。 図面の簡単な説明
[0017] [図 1]本発明の第 1実施形態の超電導モータの概略断面図である。
[図 2]超電導モータの断面図である。
[図 3]ロータから延出した回転軸の断面図である。
[図 4]第 1パイプと第 2パイプの接合端を示す要部拡大断面図である。
[図 5]第 1実施形態の変形例を示す断面図である。
[図 6]第 2実施形態の超電導モータの断面図である。
[図 7]第 2実施形態の超電導モータのロータを示す図面である。
[図 8]第 2実施形態の変形例の超電導モータのロータを示す図面である。 符号の説明
[0018] 10 超電導モータ
16 ステータ
17 ロータ
19 電機子コイル
22 超電導コイル
23 回転軸
24、 25、 26 溝
31 第 1パイプ
31 A 往路部
31A- 1 フランジ
31B 復路部
31B- 1 フランジ
32 第 2パイプ
32A 往路部
32A- 1 フランジ
32B 復路部
32B- 1 フランジ
33 冷媒循環パイプ 33A 往路部
33B 復路部
33C 折り返し部
発明を実施するための最良の形態
[0019] 本発明の実施形態を図面を参照して説明する。
図 1乃至図 4は、本発明の第 1実施形態を示し、本発明の超電導モータ 10は、船舶 の推進用のモータとして用いられるものである。
[0020] 超電導モータ 10は、図 1及び図 2に示すように、ステータ 16と、該ステータ 16の中 空部に回転自在に配置されたロータ 17とを備え、ロータ 17に取り付ける超電導コィ ノレ 22の磁束方向を径方向に向けたラジアル型としている。
ロータ 17は、粉末磁性体等を用いて円柱状に形成され、その中心に回転軸 23を 貫通固定し、該回転軸 23は軸受 18、 21を介してステータ 16の外部に延出している ロータ 17には超電導材からなる超電導コイル 22 (界磁コイル)を固定している。超 電導材としては、ビスマス系やイットリウム系等の高温超電導材が好適に用いられる。
[0021] 一方、ステータ 16は、鉄粉に絶縁コーティングを施した粉末磁性体等の素材より形 成しており、図 2に示すように、断面円環形状としている。その内周面には周方向に 1 20度の間隔をあけて常電導材の銅線からなる電機子コイル 19を取り付けている。該 電機子コイル 19には位相ズレした三相交流を供給して回転磁界を発生させ、ロータ 17を回転させる構成としてレ、る。
[0022] 前記回転軸 23の外面には、図 2及び図 3に示すように、ロータ 17の軸線方向の全 長に沿うと共に、回転軸 23の中心軸に対して対称に一対の溝 24、 25を凹設してい る。一対の溝 24、 25は、ロータ 17の端部(図 1中、左側)に対応する位置で回転軸 2 3の周方向に凹設した溝 26により連結されている。これら溝 24、 25、 26に、液体窒 素を流通させる冷媒循環パイプ 33からなる冷媒流通管を挿入している。
一対の溝 24、 25には、それぞれ冷媒循環パイプ 33の往路部 33A、復路部 33Bを 挿入し、溝 24と 25の間に設けた溝 26に冷媒循環パイプ 33を往路部 33Aから復路 部 33Bへと折り返す折り返し部 33Cを挿入している。これら往路部 33A、復路部 33B 、折り返し部 33Cからなる連続した冷媒循環パイプ 33を冷媒である液体窒素が循環 することにより、ロータ 17に取り付けた超電導コイル 22が冷却される構成としている。
[0023] 前記冷媒循環パイプ 33と共に冷却手段を構成するパイプとして、第 1パイプ 31と、 該第 1パイプ 31と連通された第 2パイプ 32を設けている。
第 1パイプ 31は往路部 31Aと復路部 31Bを備え、該往路部 31Aと復路部 31Bを超 電導コイル冷却用冷媒 (本実施形態では液体窒素)の供給源である液体窒素タンク 11に接続している。
なお、前記超電導コイル冷却用冷媒は液体窒素に限らず、ネオンやヘリウムを冷 媒として用いてもよい。
[0024] 第 2パイプ 32も往路部 32Aと復路部 32Bを備え、該往路部 32Aと復路部 32Bとを 第 1パイプ 31の往路部 31Aと復路部 31Bとに夫々連通させて回転自在に接続して いる。また、第 2パイプ 32は、回転軸 23の軸線方向の一端に固定しており、回転軸 2 3の一端からロータ 17まで延在する第 2パイプ 32は、図 3に示すように、回転軸 23に 凹設した溝 24、 25に挿入している。
[0025] 前記第 1パイプ 31と第 2パイプ 32は、その外周面をそれぞれ真空断熱用の外管 34 、 36で囲み、真空断熱層 35、 37を備えた断熱手段を設けている。
前記のように回転軸 32の溝 24、 25、 26に挿入する冷媒循環パイプ 33は、往路部 33Aと復路部 33Bを第 2パイプの往路部 32Aと復路部 32Bにそれぞれ連通させてい る。冷媒循環パイプ 33には、断熱手段を設けておらず、この非断熱部分でロータ 17 を介して液体窒素の冷熱が伝達されて超電導コイル 22を冷却している。
[0026] 第 1パイプ 31の第 2パイプ 32との接合端は、詳細には、図 5に示すように、往路部 3 1Aが回転軸 23の中心線と同一線上に配置され、該往路部 31Aの外周を復路部 31 Bが囲繞し、さらに、該復路部 31Bの外周を真空断熱用の外管 34が囲繞している。 同様に、第 2パイプ 32の第 1パイプ 31との接合端も往路部 32Aが回転軸 23の中心 線と同一線上に配置され、該往路部 32Aの外周を復路部 32Bが囲繞し、さらに、該 復路部 32Bの外周を真空断熱用の外管 36が囲繞している。
よって、第 1パイプ 31と第 2パイプ 32の接合端において、第 1パイプ 31の往路部 31 A、復路部 3 IBと第 2パイプ 32の往路部 32A、復路部 32Bとがそれぞれ対向配置さ れる。これにより、液体窒素タンク 11から流出した液体窒素は、第 1パイプ 31の往路 部 31A、第 2パイプ 32の往路部 32A、冷媒循環パイプ 33、第 2パイプ 32の復路部 3 2B、第 1パイプ 31の復路部 31Bを順に流通する。
[0027] また、第 1パイプ 31と第 2パイプ 32の接合端には、外周側へそれぞれフランジ 31 A —1、 31B_ 1、 32A— 1、 32B— 1が突設されており、フランジ 31A— 1と 32A— 1、 31B— 1と 32B— 1をそれぞれ当接させている。当接させたフランジ 31B— 1と 32B— 1をカバー 38で覆レ、、該カバー 38内に取り付けたバネ 39によりフランジ 31B— 1と 3 2B— 1を両側から当接方向に付勢している。
[0028] 前記構成によれば、回転軸 23の中心に中空部を設けるのではなぐ回転軸 23の 外面に溝 24、 25、 26を設け、該溝 24、 25、 26に冷媒となる液体窒素を流通させる 冷媒循環パイプ 33を揷入しているため、回転軸 23に中空部を設ける場合に比べて 容易に冷却構造を形成することができる。
また、冷媒循環パイプ 33を回転軸 23の中心線上に設けるよりも外面近くに設けて いるため、超電導コイル 22に近い位置に配置することができ、冷却効果を高めること ができる。
[0029] なお、図 5に示すように、第 1パイプ 31の往路部 31Aの接合端に突設したフランジ 3 1A— 1の先端 31A— laと第 2パイプ 32の往路部 32Aの接合端に突設したフランジ 32A— 1の先端 32A— laをロータ側へ屈折し、一方のフランジ 32A— 1の先端 32A laを他方のフランジ 31A— 1の先端 31A— laで覆う構成とすると、接合位置での 冷媒の漏れをより確実に防止することができる。
[0030] 図 6及び図 7は、本発明の第 2実施形態を示す。
第 1実施形態との相違点は、ロータの軸線方向にステータを対向配置し、超電導コ ィルの磁束方向を軸線方向に向けたアキシャル型としている点である。
[0031] 本実施形態の超電導モータ装置 50は、回転軸 51に固定されたロータ 52の軸線方 向の両側に所要のエアギャップをあけて一対のステータ 53、 54を対向配置している ロータ 52は、軸心に貫通穴 52aを設け、該貫通穴 52aに回転軸 51を貫通固定し、 ロータ 52と回転軸 51とを共回転させる構成としている。 前記ロータ 52には軸線回りの周方向に間隔をあけて界磁体取付穴 52bを設け、こ れら界磁体取付穴 52bに界磁用の超電導コイル 55を内嵌固定して取り付け、磁束 方向が軸線方向を向くように配置している。
[0032] 互いに対称形状の円盤形状としたステータ 53、 54は、回転軸 51を軸受を介して貫 通させると共に、ロータ対向面側に軸線回りの周方向に間隔をあけて、常電導材 (例 えば、銅線等)からなる複数の電機子コイル 56、 57の一端を接着剤で固定し、ロータ 52側へと軸線方向に突出させている。
[0033] 回転軸 51の外面には、第 1実施形態と同様、軸線方向に、かつ、対称位置に溝 58 、 59を凹設し、第 1実施形態のような溝 58、 59を連結する周方向の溝は設けていな レ、。溝 58、 59に揷入した冷媒流通管の冷媒循環パイプ 61をロータ 52側の溝端部で 溝内から引き出し、ロータ 52の側面に沿って冷媒循環パイプ 61を配置している。該 冷媒循環パイプ 61は、ロータ 52に取り付けた超電導コイル 55の外側(ロータ 52の周 縁側)と内側(回転軸 51側)を交互に通して超電導コイル 55に近接配置している。即 ち、図 7に示すように、冷媒循環パイプ 61を隣接する超電導コイル 55の間→超電導 コイル 55とロータ 52の周縁との間→隣接する超電導コイル 55の間→超電導コイル 5 5と回転軸 51との間に順に通している。該冷媒循環パイプ 61は、ロータ 52の側面に 接着剤等により取り付けてもよいし、ロータ 52に設けた溝に挿入してもよい。
[0034] 前記構成によれば、アキシャル型のモータ装置においても、回転軸の外面に設け た溝に冷媒循環パイプを挿入して形成した冷却構造を設けて、ロータに取り付けた 超電導コイルを冷却することができる。また、回転軸 51の溝 58、 59から冷媒循環パ イブ 61を引き出し、引き出した冷媒循環パイプ 61を超電導コイル 55に近接配置して レ、るため、超電導コイル 55の冷却効果を高めることができる。
なお、冷媒流通管の第 1、第 2パイプやその他の構成は、第 1実施形態と同様のた め説明を省略する。
[0035] 図 8は、第 2実施形態の変形例を示す。
本変形例では、超電導コイル 55がロータ 52の周縁に沿って取り付けられており、回 転軸 51の溝 58、 59から引き出した冷媒循環パイプ 61は超電導コイル 55の内側(回 転軸 51側)に沿って配置している。 前記構成としても、超電導コイル 55に冷媒循環パイプ 61を近接配置しているため、 超電導コイルの冷却効果を高めることができる。 産業上の利用可能性
本発明のモータ装置は、高出力が必要な大型の船舶等の動力源として好適に用 レ、られるものである。特に、図 6に示すようにアキシャルギャップ型モータとして、回転 軸にステータとロータとを交互に積層配置した直列結合同期型としてステータとロー タとを高密度に配置し、ロータに高温超電導バルタ磁石を取り付けて、回転軸に設け た冷媒流通管内の冷媒で冷却する構成とすると、高出力を持続でき、官公庁船、客 船等の大型船舶の推進用モータとして好適に用いられる。

Claims

請求の範囲
[1] ロータに超電導コイルを取り付けた超電導モータの冷却構造であって、
前記ロータに貫通させて固定された回転軸の外面に溝が凹設され、冷却手段の冷 媒流通管を前記溝内部に挿入配置していることを特徴とする超電導モータの冷却構 造。
[2] 前記冷却手段は、
超電導コイル冷却用冷媒の供給源に接続させた往路部と復路部を備えた第 1パイ プと、前記回転軸の軸線方向の一端に固定させると共に前記第 1パイプと回転自在 に接続され、第 1パイプの往路部と復路部とに夫々連通させる往路部と復路部を有 する第 2パイプと、
前記溝に挿入され、前記第 2パイプの往路部と復路部に両端が連通される冷媒循 環パイプからなる前記冷媒流通管と
を備えている請求項 1に記載の超電導モータの冷却構造。
[3] 前記冷媒循環パイプを挿入する回転軸外面の溝は、前記ロータの軸線方向の全 長に沿うと共に対称位置に凹設され、ロータの先端位置では回転軸の外周面に沿わ せて形成した溝に折返部を揷入して往路部と復路部とを連続させている請求項 2に 記載の超電導モータの冷却構造。
[4] 前記第 1パイプと第 2パイプの外周面を断熱手段で囲んでいる請求項 2または請求 項 3に記載の超電導モータの冷却構造。
[5] 前記断熱手段は、第 1パイプと第 2パイプとを囲む真空断熱用の外管である請求項
4に記載の超電導モータの冷却構造。
[6] 前記第 1パイプと第 2パイプの接合端に夫々フランジが突設され、これらフランジ同 士を互いに回転自在に当接させていると共に、当接方向に付勢されるパネ手段が付 設されている請求項 2乃至請求項 5のいずれ力 4項に記載の超電導モータの冷却構 造。
[7] 前記超電導コイルの冷却用冷媒として液体窒素、ネオンあるいはヘリウムを用いて レ、る請求項 1乃至請求項 6のいずれ力 1項に記載の超電導モータの冷却構造。
[8] 前記超電導モータはアキシャル型あるいはラジアル型である請求項 1乃至請求項 7 のレ、ずれ力 1項に記載の超電導モータの冷却構造。
PCT/JP2005/023125 2004-12-24 2005-12-16 超電導モータの冷却構造 WO2006068040A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN2005800445786A CN101107763B (zh) 2004-12-24 2005-12-16 超导电机的冷却结构
US11/793,681 US7667358B2 (en) 2004-12-24 2005-12-16 Cooling structure of superconducting motor
EP05816900A EP1830452A1 (en) 2004-12-24 2005-12-16 Cooling structure of superconducting motor
CA002592597A CA2592597A1 (en) 2004-12-24 2005-12-16 Cooling structure of superconducting motor
NO20073242A NO20073242L (no) 2004-12-24 2007-06-22 Kjolestruktur for superledende motor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-374707 2004-12-24
JP2004374707A JP4680584B2 (ja) 2004-12-24 2004-12-24 超電導モータの冷却構造

Publications (1)

Publication Number Publication Date
WO2006068040A1 true WO2006068040A1 (ja) 2006-06-29

Family

ID=36601640

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/023125 WO2006068040A1 (ja) 2004-12-24 2005-12-16 超電導モータの冷却構造

Country Status (10)

Country Link
US (1) US7667358B2 (ja)
EP (1) EP1830452A1 (ja)
JP (1) JP4680584B2 (ja)
KR (1) KR20070090947A (ja)
CN (1) CN101107763B (ja)
CA (1) CA2592597A1 (ja)
NO (1) NO20073242L (ja)
RU (1) RU2007128334A (ja)
TW (1) TW200631287A (ja)
WO (1) WO2006068040A1 (ja)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4680584B2 (ja) * 2004-12-24 2011-05-11 住友電気工業株式会社 超電導モータの冷却構造
KR101014689B1 (ko) * 2008-09-09 2011-02-16 두산중공업 주식회사 회전형 극저온 냉매 공급장치
US20110089777A1 (en) * 2009-10-18 2011-04-21 Ernesto Camilo Rivera Thermally manageable system and electric device
KR101372291B1 (ko) * 2010-11-08 2014-03-11 가와사끼 쥬고교 가부시끼 가이샤 로터 코어 및 이 로터 코어를 구비하는 초전도 회전기
US8664809B2 (en) * 2011-03-15 2014-03-04 Siemens Energy, Inc. Apparatus to support superconducting windings in a rotor of an electromotive machine
KR101421129B1 (ko) * 2012-05-31 2014-08-14 두산중공업 주식회사 충진물질층 구비하는 이중구조 냉매배관 및 이를 포함하는 초전도 회전기
EP2893617B1 (en) 2012-09-06 2019-12-25 Carrier Corporation Motor rotor and air gap cooling
WO2015120113A1 (en) * 2014-02-05 2015-08-13 Weinberg Medical Physics Llc Electromagnetic devices with integrated cooling
CN104283344A (zh) * 2014-05-28 2015-01-14 莱克电气股份有限公司 一种转子及其加工装配方法
DE102016202416B4 (de) * 2016-02-17 2017-12-28 Hirschvogel Umformtechnik Gmbh Rotorwellenanordnung und Verfahren zu dessen Herstellung
KR102306468B1 (ko) * 2016-07-06 2021-10-06 주식회사 싸이트로닉 냉열을 이용하는 시스템
JP2018064402A (ja) * 2016-10-14 2018-04-19 マツダ株式会社 アキシャルギャップ型回転電機
JP6412089B2 (ja) * 2016-12-01 2018-10-24 ファナック株式会社 モータ
CN108800306A (zh) * 2017-04-26 2018-11-13 珠海格力电器股份有限公司 一种空调器室内机
CN109114111B (zh) * 2018-11-02 2024-04-02 珠海格力智能装备有限公司 磁悬浮结构
CN113437815A (zh) * 2021-08-06 2021-09-24 哈尔滨工程大学 一种铅铋快堆用汽轮发电机定子绕组的冷却装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10215561A (ja) * 1997-01-30 1998-08-11 Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai 超電導回転電機の回転子
JPH10285905A (ja) * 1997-04-02 1998-10-23 Toshiba Corp 超電導回転電機の回転子
JP2003033000A (ja) * 2001-05-15 2003-01-31 General Electric Co <Ge> テンションロッド及びボルトを有する高温超伝導同期機械のロータコイル支持体及びその組み立て方法
JP2003224961A (ja) * 2002-01-28 2003-08-08 Canon Inc リニアモータ、ステージ装置、露光装置及びデバイス製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3009072A (en) * 1958-01-28 1961-11-14 Scott L & Electromotors Ltd Fluid cooled motors
FR2319233A1 (fr) * 1975-07-22 1977-02-18 Alsthom Cgee Machine tournante utilisant un fluide de refroidissement amene par joint tournant
US4208598A (en) * 1978-05-10 1980-06-17 Badrukhin Jury I Electrical machine with cryogenic cooling
JPH066907A (ja) 1992-06-18 1994-01-14 Sumitomo Electric Ind Ltd 電気自動車における超電導モータ装置
KR970006929A (ko) * 1995-07-25 1997-02-21 배순훈 냉각수 강제순환방식의 온수순환펌프
JP2002058207A (ja) 2000-08-11 2002-02-22 Shimadzu Corp 冷却流路付モータ
JP4680584B2 (ja) * 2004-12-24 2011-05-11 住友電気工業株式会社 超電導モータの冷却構造
DE102005058031A1 (de) * 2005-12-05 2007-06-14 Siemens Ag Elektrische Maschine mit einem Kühlmantel

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10215561A (ja) * 1997-01-30 1998-08-11 Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai 超電導回転電機の回転子
JPH10285905A (ja) * 1997-04-02 1998-10-23 Toshiba Corp 超電導回転電機の回転子
JP2003033000A (ja) * 2001-05-15 2003-01-31 General Electric Co <Ge> テンションロッド及びボルトを有する高温超伝導同期機械のロータコイル支持体及びその組み立て方法
JP2003224961A (ja) * 2002-01-28 2003-08-08 Canon Inc リニアモータ、ステージ装置、露光装置及びデバイス製造方法

Also Published As

Publication number Publication date
CN101107763B (zh) 2010-05-12
US20070296287A1 (en) 2007-12-27
CA2592597A1 (en) 2006-06-29
JP2006187051A (ja) 2006-07-13
TW200631287A (en) 2006-09-01
NO20073242L (no) 2007-09-24
EP1830452A1 (en) 2007-09-05
JP4680584B2 (ja) 2011-05-11
RU2007128334A (ru) 2009-01-27
KR20070090947A (ko) 2007-09-06
CN101107763A (zh) 2008-01-16
US7667358B2 (en) 2010-02-23

Similar Documents

Publication Publication Date Title
WO2006068040A1 (ja) 超電導モータの冷却構造
US7315103B2 (en) Superconducting rotating machines with stationary field coils
US10361597B2 (en) Electric machine for a motor vehicle, coil carrier for an electric machine, and motor vehicle
JP2006204085A (ja) アキシャルギャップ型超電導モータ
US7049724B2 (en) Superconducting rotating machines with stationary field coils and axial airgap flux
JP4758703B2 (ja) 超電導装置およびアキシャルギャップ型の超電導モータ
US6700297B2 (en) Superconducting PM undiffused machines with stationary superconducting coils
JP3936340B2 (ja) 超電導同期機
EP2309627A2 (en) Methods and apparatus for assembling homopolar inductor alternators including superconducting windings
JP4920322B2 (ja) 誘導子型同期機
JP2007060744A (ja) 発電・駆動両用モータおよびそれを備えた車両
JP4983561B2 (ja) 超電導モータ
JP4751134B2 (ja) 誘導子型モータおよびそれを備えた車両
JP2005261084A (ja) モータ冷却構造
US20040239201A1 (en) Methods and apparatus for assembling homopolar inductor alternators including superconducting windings
JP4751135B2 (ja) 誘導子型発電・駆動両用モータおよびそれを備えた自動車
JP2007060747A (ja) 超電導モータ装置およびそれを備えた車両
JP4680708B2 (ja) アキシャル型モータ
JP3938572B2 (ja) 超電導同期機
JP2007037341A (ja) 超電導機器の冷却構造
JP2012139099A (ja) 超電導モータ
JP5076101B2 (ja) 誘導子型同期機
JP2012139099A5 (ja)
JP2007252107A (ja) 超電導電動機

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 200580044578.6

Country of ref document: CN

Ref document number: 2005816900

Country of ref document: EP

Ref document number: 1020077014258

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2592597

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2007128334

Country of ref document: RU

WWE Wipo information: entry into national phase

Ref document number: 11793681

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2005816900

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11793681

Country of ref document: US