WO2006054474A1 - デキストリンデキストラナーゼとその製造方法並びに用途 - Google Patents

デキストリンデキストラナーゼとその製造方法並びに用途 Download PDF

Info

Publication number
WO2006054474A1
WO2006054474A1 PCT/JP2005/020584 JP2005020584W WO2006054474A1 WO 2006054474 A1 WO2006054474 A1 WO 2006054474A1 JP 2005020584 W JP2005020584 W JP 2005020584W WO 2006054474 A1 WO2006054474 A1 WO 2006054474A1
Authority
WO
WIPO (PCT)
Prior art keywords
dextrin dextranase
dextran
dextrin
dextranase
experiment
Prior art date
Application number
PCT/JP2005/020584
Other languages
English (en)
French (fr)
Inventor
Keiji Tsusaki
Michio Kubota
Shigeharu Fukuda
Toshio Miyake
Original Assignee
Kabushiki Kaisha Hayashibara Seibutsu Kagaku Kenkyujo
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kabushiki Kaisha Hayashibara Seibutsu Kagaku Kenkyujo filed Critical Kabushiki Kaisha Hayashibara Seibutsu Kagaku Kenkyujo
Publication of WO2006054474A1 publication Critical patent/WO2006054474A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/04Polysaccharides, i.e. compounds containing more than five saccharide radicals attached to each other by glycosidic bonds
    • C12P19/08Dextran
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/20Reducing nutritive value; Dietetic products with reduced nutritive value
    • A23L33/21Addition of substantially indigestible substances, e.g. dietary fibres
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1048Glycosyltransferases (2.4)
    • C12N9/1051Hexosyltransferases (2.4.1)

Definitions

  • the present invention relates to a novel dextrin dextranase, a method for producing the same, and uses thereof.
  • Dietary fiber is said to be a nutrient lacking in the Japanese diet along with calcium.
  • the average dietary fiber intake of the current Japanese is compared with the target dietary fiber intake of 20-25 g / day shown in the 5th revision “Nutritional Requirements for Japanese” issued in 1994.
  • it has been pointed out that it currently only reaches 50% to 80% of the target for example, “Exploring the market trend of food fiber”, “Food and Development”, No. 34, No. 2, No. 24 To page 27 (1999)).
  • dietary fiber has been attracting attention not only for its functions such as intestinal regulation, blood cholesterol reduction and blood glucose control, but also as a prebiotic for improving intestinal flora.
  • water-soluble dietary fiber As water-soluble dietary fiber, a wide variety of materials such as indigestible dextrin, indigestible starch, guar gum degradation products, gnorecomannan, partial degradation products and derivatives of natural polysaccharides such as low-molecular alginic acid have been proposed and used. However, further material development is required.
  • Dextran a kind of microbially produced polysaccharide, is a viscous dulcan that is mainly composed of a-1, 6 bonds and may have branches of a-1, 2, and 1 and 3, bonds. Specifically, it is produced from sucrose as a raw material by dextransclase (EC 2.4.1.5) derived from Leuconostoc mesenteroides belonging to lactic acid bacteria.
  • dextransclase EC 2.4.1.5
  • a partial degradation product of dextran (molecular weight of about 75,000 daltons) has been found to be effective as a plasma expander and is produced on a commercial scale as clinical dextran. It is used.
  • dextran partial degradation products or dextran as water-soluble dietary fiber.
  • dextrin dextranase also known as dextrin 6-darcosyltransferase
  • dextrin dextranase is known as an enzyme that produces dextran from ⁇ -1, 4 glucan (for example, Kazuya Yamamoto et al., “Bioscience” Biotechnology 'Biochemistry', Vol. 56, (1992), pages 169-173).
  • Dextrin dextranase is an enzyme that acts on a partial degradation product of starch (dextrin) and efficiently produces dextran mainly by catalyzing the 1,6 gnorecosinore transition.
  • Dextrin dextranase derived from Acetobacter capsulatum which belongs to acid bacteria, has low dextran production (for example, Masayuki Suzuki et al., “Journal of Applied” Glycoscience (Journal of Applied Glycoscience), No. 48, No. 2, pages 143 to 151 (see 2001 etc.) and the stability of the enzyme itself is low. It has not reached.
  • An object of the present invention is to provide a novel dextrin dextranase that easily and efficiently produces dextran, and dextran as a water-soluble food fiber, such as starch and partially decomposed starch. It is to provide means for manufacturing.
  • the present inventors have high expectations for an enzyme that efficiently produces dextran by using a partially decomposed starch as a raw material and performing a 1,6-gnocosyl transfer.
  • microorganisms that produce the enzyme more widely than in nature.
  • microorganisms isolated from the soil for example, microorganism P7 belonging to Bacillus circulans and microorganism 1349 belonging to Arthrobacter globiformis, both of which are new dextrin dextran It was found to produce stranase. Furthermore, when the dextrin dextranase produced by these two strains was allowed to act on maltose and ⁇ -1,4 glucan having a degree of polymerization of glucose of 3 or more, surprisingly, dextran could be produced efficiently.
  • the headline and the present invention were completed.
  • the present invention relates to a dextrin dextranase that produces dextran in high yield from maltose and ⁇ -1,4 glucan having a degree of glucose polymerization of 3 or more, a production method and use thereof, and a microorganism that produces it.
  • dextran By using the dextrin dextranase of the present invention, dextran can be produced in high yield using inexpensive maltose such as starch and partially degraded starch and / or glycan 1,4 glucan having a glucose polymerization degree of 3 or more as a raw material. Thus, dextran can be provided more easily and inexpensively.
  • inexpensive maltose such as starch and partially degraded starch and / or glycan 1,4 glucan having a glucose polymerization degree of 3 or more as a raw material.
  • FIG. 1 is a graph showing the optimum temperature of dextrin dextranase derived from Bacillus circulans P7.
  • FIG. 2 is a graph showing an optimum pH of dextrin dextranase derived from Bacillus circulans P7.
  • FIG. 3 is a graph showing temperature stability of dextrin dextranase derived from Bacillus circulans P7.
  • FIG. 4 is a graph showing the pH stability of dextrin dextranase derived from Bacillus circulans P7.
  • FIG. 5 is a graph showing the optimal temperature of dextrin dextranase derived from Alsrobacta globulinformis 1349.
  • FIG. 6 is a graph showing the optimum pH of dextrin dextranase derived from Alsrobacta thrombroformis 1349.
  • FIG. 7 is a graph showing the temperature stability of dextrin dextranase derived from Arslobacter 1's Globiformis 1349.
  • FIG. 8 is a diagram showing the pH stability of dextrin dextranase derived from Alslobacter 1 'Globiformis 1349.
  • FIG. 9 shows a recombinant DNA, pBD77.
  • the part indicated by the thick black line is a bee.
  • DNA encoding the dextrin dextranase of the present invention derived from Luth. Circulans P7 (FERM BP-10091).
  • FIG. 10 shows a recombinant DNA for expression, pEBD7.
  • the part indicated by the thick black line is DNA encoding the dextrin dextranase of the present invention derived from Bacillus circulans P7 (FERM BP-10091).
  • FIG. 11 shows a recombinant DNA, pAD13.
  • the portion indicated by a thick black line is DNA encoding the dextrin dextranase of the present invention derived from Arthropactor globiformis 1349 (FERM BP-10414).
  • FIG. 12 shows pEAD1349, a recombinant DNA for expression.
  • the portion indicated by a thick black line is the DNA encoding the dextrin dextranase of the present invention derived from Alsulopactor 'Grobiformis 1349 (FERM BP-10414).
  • FIG. 13 is a diagram showing a comparison between the molecular weight distribution of dextran prepared from a partially decomposed starch using dextrin dextranase derived from Bacillus circulans P7 and that of the partially decomposed starch as a substrate.
  • FIG. 14 is a diagram showing a comparison between the molecular weight distribution of dextran prepared from a partially decomposed starch using dextrin dextranase derived from Alslobacter 1 'Globiformis 1349 and that of a partially decomposed starch as a substrate.
  • FIG. 15 is a diagram showing a comparison between the molecular weight distribution of dextran prepared from a partially decomposed starch dextranase using a dextrin dextranase crude enzyme derived from Bacillus circulans P7 and that of a partially decomposed starch as a substrate.
  • Dashed line dextran prepared using dextrin dextranase of the present invention
  • Solid line used as substrate, partially decomposed starch
  • the dextrin dextranase referred to in the present invention acts on maltose and glucose -1,4-glucan having a degree of polymerization of 3 or more, and catalyzes the 1,6-dalcosyl transfer, whereby gnorlecose is mainly It means an enzyme that produces dextran, a polysaccharide linked by 1, 6 darcoside bonds.
  • the characteristics of the dextrin dextranase of the present invention are as follows.
  • glucose that does not substantially increase the reducing power of the reaction solution is ⁇ -1 , 6 has an action to transfer, produces isomaltoligosaccharides and dextran, and acts on a partially decomposed starch mainly composed of ⁇ -1,4 glucan having a glucose polymerization degree of 3 or more.
  • the main purpose is to produce dextran.
  • the dextrin dextranase of the present invention differs from the known dextrin dextranase derived from acetic acid bacteria in that it acts on maltose to produce dextran and efficiently produces dextran from a high concentration substrate solution. It is an enzyme.
  • the dextran referred to in the present invention means a polysaccharide in which glucose is mainly bonded to 1, 6 and has _1, 2, -1, 3, and / or _1, 4 bonds in the molecule. Includes what you have. Further, the molecular weight and the degree of branching are not particularly limited.
  • the enzyme activity of the dextrin dextranase of the present invention can be measured as follows. Maltose is dissolved in 20 mM acetate buffer ( ⁇ 6.0) to a final concentration of lwZv% to make a substrate solution. 0.5 ml of the enzyme solution is incubated with 5 ml of the substrate solution at 40 ° C for 30 minutes. After stopping the reaction by heating the reaction solution in a boiling water bath for 10 minutes, the amount of glucose in the reaction solution is measured by a glucose oxidase method according to a conventional method, and the amount of glucose produced by the reaction is calculated.
  • One unit of dextrin dextranase activity is defined as the amount of enzyme that produces 1 ⁇ mol of glucose per minute under the above conditions.
  • dextrin dextranase of the present invention is dextrin dextranase having the following physicochemical properties. (1) Molecular weight
  • dextrin dextranase of the present invention includes dextrin dextranase having the following physicochemical properties.
  • the dextrin dextranase of the present invention having the above physicochemical properties has not only the above physicochemical properties but also an amino acid sequence represented by SEQ ID NO: 1 or 2 in the sequence listing as its N-terminal sequence. There is a case where you do it.
  • the dextrin dextranase of the present invention usually has a predetermined amino acid sequence.
  • the amino acid sequence IJ represented by SEQ ID NO: 3 or 4 in the sequence listing, or the amino acid sequence IJ Homologous amino acid sequences are mentioned.
  • amino acid sequence represented by SEQ ID NO: 3 or 4 usually 60% or more, preferably 70% or more, and Desirably, those having an amino acid sequence having a homology of 80% or more, more desirably 90% or more are suitable.
  • the dextrin dextranase having the above physicochemical property or amino acid sequence is merely an example, and an enzyme having a physicochemical property or amino acid sequence different from the above is also used for maltose and glucose polymerization degree.
  • an enzyme having a physicochemical property or amino acid sequence different from the above is also used for maltose and glucose polymerization degree.
  • dextran which acts on 3 or more -1,4 gnolecans and catalyzes the ⁇ 1, 6 darcosyl transfer to produce glucose mainly linked by ⁇ -1, 6 dalcosid bonds, the present invention. There is no need to be included.
  • the dextrin dextranase of the present invention is not limited by its source, a preferable source is a microorganism, and in particular, the microorganism isolated from soil by the present inventors is preferably strain 7 or 1349. Used for.
  • the identification test results for 7 strains and 1349 strains of microorganisms capable of producing dextrin dextranase are shown below. The identification test was conducted according to “Classification and Identification of Microorganisms” (Takeshi Hasegawa, Society Publishing Center, 1985).
  • Meat broth agar plate culture 27 ° C Shape: Circular The size is 1-2mm in 2 days.
  • O xm cocci or gonococci, having a gonococcal monococcal cycle that changes mainly to gonococci at the beginning of culture and to short or staphylococci at the end of culture. It is a bacterium that exhibits polymorphism.
  • Shape Circular The size is 1-2mm in 2 days.
  • Cell wall N_acyl type (5) Cell wall constituent main sugar components: galactose, glucose
  • the present inventors named these two strains, respectively, as the new microorganisms Bacillus 'circulans P7 and Arthrobacter i' Globiformis 1349, dated August 12, 2004 and September 2005.
  • the microorganisms having dextrin dextranase producing ability of the present invention include not only the above strains but also their mutants.
  • the DNA of the present invention means all those encoding the above dextrin dextranase.
  • the DNA of the present invention may be naturally derived or artificially synthesized as long as it encodes the dextrin dextranase of the present invention.
  • Natural sources include, for example, microorganisms of the genus Bacillus, including Bacillus circulans P7 (FERM BP-10091), or the genus Arthropactor, including Arthrobacta 1 ⁇ Globiformis 1349 (FERM BP-10 414).
  • a genetic DNA containing DNA of the present invention can be obtained. That is, such a microorganism is inoculated into a nutrient medium and cultured for about 1 to 3 days under aerobic conditions.
  • the gene DNA containing the DNA is eluted out of the cells by treatment with cell wall lysing enzymes such as mu- ⁇ -gnolecanase and ultrasound.
  • proteases and other proteolytic enzymes can be used together, SDS and other surfactants can be used together, or frozen and thawed.
  • the target gene DNA can be obtained by applying conventional methods such as phenol extraction, alcohol precipitation, centrifugation, and ribonuclease treatment to the treated product thus obtained.
  • it may be chemically synthesized based on the amino acid sequence represented by SEQ ID NO: 3 or 4 in the sequence listing. It is also possible to carry out PCR synthesis using chemically synthesized DNA as an appropriate primer, using the genetic DNA containing the DNA as a saddle.
  • the DNA of the present invention usually has a predetermined base sequence.
  • the base sequence represented by SEQ ID NO: 5 or 6 in the sequence listing or a base sequence homologous thereto is used.
  • the mutant DNA having a base sequence homologous to the base sequence shown in SEQ ID NO: 5 or 6 in the sequence listing is 1 in the base sequence shown in SEQ ID NO: 5 or 6 as long as it retains the activity of the encoded enzyme.
  • the DNA of the present invention naturally includes those obtained by substituting one or more bases with other bases based on the degeneracy of the genetic code without changing the amino acid sequence of the encoded enzyme.
  • the DNA of the present invention can also be advantageously implemented as a recombinant DNA by inserting it into an appropriate vector capable of autonomous replication.
  • Recombinant DNA usually consists of DNA and an autonomously replicable vector. If DNA is available, it can be prepared relatively easily by conventional recombinant DNA techniques.
  • vectors include plasmid vectors such as pBR322, pUC18, pBluescript II KS (+), pUB110, pTZ4, pC194, pHV14, TRp7, YEp7, pBS7, and g; IC, gt- ⁇ ⁇ p 11 , ⁇ 1, ⁇ 105 etc. phage vectors.
  • pBR322, pUC18, Bluescript II KS (+), gt ′ ⁇ C and ⁇ gt ′ ⁇ B are preferred for expressing the DNA of the present invention in E. coli, while for expression, pUB110, pTZ4, pC194, 11, ⁇ 1 and ⁇ 105 force S are suitable. pHV14, TRp7, YEp7 and pBS7 are useful when replicating recombinant DNA in two or more hosts. In order to insert DNA into such a vector, a general method is usually employed in this field.
  • a gene DNA containing DNA and an autonomously replicable vector are cleaved with a restriction enzyme and Z or ultrasound, and then the generated DNA fragment and vector fragment are ligated.
  • Restriction enzymes that specifically act on nucleotides to cleave gene DNA and vectors, especially type II restriction enzymes, in particular Sau 3AI, Eco RI, HindIII, Bam HI, Sal I, Xba I, Sac I, If Pst I or the like is used, it is easy to link the DNA fragment and the vector fragment.
  • DNA ligase is allowed to act in vivo or in vitro.
  • the recombinant DNA thus obtained can be replicated indefinitely by appropriately introducing it into a host to form a transformant and culturing it.
  • the recombinant DNA thus obtained can be introduced into an appropriate host microorganism such as Escherichia coli, Bacillus subtilis, actinomycetes, or yeast.
  • an appropriate host microorganism such as Escherichia coli, Bacillus subtilis, actinomycetes, or yeast.
  • the colony hybridization method is applied, or it is cultured in a nutrient medium containing maltose and / or ⁇ -1,4 glucan having a glucose polymerization degree of 3 or more. Choose one that produces dextrin dextranase.
  • the medium used for culturing the microorganism including the transformant capable of producing dextrin dextranase of the present invention may be any nutrient medium capable of growing the microorganism and capable of producing the dextrin dextranase of the present invention. Any of a synthetic medium and a natural medium may be used.
  • any microorganisms that can be used for growth are suitable.
  • plant-derived starch glycogen, pullulan, dextran derived from animals or microorganisms, partial decomposition products thereof or glucose
  • carbohydrates such as fructose, ratatoose, sucrose, mannitol, sorbitol and molasses
  • organic acids such as succinic acid and succinic acid.
  • concentration of these carbon sources in the medium can be appropriately selected depending on the type of carbon source.
  • inorganic nitrogen compounds such as ammonium salt and nitrate and organic nitrogen-containing materials such as urea, corn steep liquor, casein, peptone, yeast extract and meat extract can be used as appropriate.
  • organic nitrogen-containing materials such as urea, corn steep liquor, casein, peptone, yeast extract and meat extract
  • salts such as calcium salt, magnesium salt, potassium salt, sodium salt, phosphate, mangane salt, zinc salt, iron salt, copper salt, molybdenum salt, cobalt salt and the like can be used as appropriate.
  • amino acids, vitamins and the like can be appropriately used as necessary.
  • the culture is usually aerobic under conditions selected from a temperature range of 5.5 to 10 at a temperature of 15 to 37 ° C, preferably a pH range of 5.5 to 8.5 at a temperature of 20 ° to 34 ° C. To be done.
  • the culture time is preferably 10 hours to 150 hours as long as the microorganism can grow.
  • the dissolved oxygen concentration of the culture solution under the culture conditions is not particularly limited, but usually 0.5 to 20 ppm is preferable.
  • means such as adjusting the air flow rate and stirring are appropriately employed.
  • the culture method may be any of batch culture, semi-continuous culture, or continuous culture.
  • a culture containing the dextrin dextranase of the present invention is collected.
  • Dextrin dextranase activity is mainly observed in the sterilization solution of the culture when the cultured microorganism is either Bacillus circulans P7 (FERM BP-10091) or Arslobacta ⁇ ⁇ Globiformis 1349 (FERM BP-10414). It is recognized that the sterilization solution can be collected as a crude enzyme solution, or the whole culture can be used as a crude enzyme solution. In order to remove cells from the culture, a conventional solid-liquid separation method is employed.
  • a method of centrifuging the culture itself a method of separating by filtration using a precoat filter or the like, a method of separating by membrane filtration of a flat membrane, a hollow fiber membrane, or the like is appropriately employed.
  • the sterilization solution can be used as a crude enzyme solution as it is, it is generally used after being concentrated.
  • concentration method an ammonium sulfate salting-out method, an acetone and alcohol precipitation method, a membrane concentration method using a flat membrane, a hollow membrane, or the like can be employed.
  • dextrin dextranase can be immobilized by an appropriate method commonly used in the art, using a sterilization solution having dextrin dextranase activity and a concentrated solution thereof.
  • an immobilization method for example, a binding method to an ion exchanger, a covalent bonding method with a resin and a membrane, an adsorption method, a comprehensive method using a polymer substance, and the like can be appropriately employed.
  • the dextrin dextranase of the present invention uses the crude enzyme solution as it is or after concentration. Although it can be used after being contracted, it can be further separated and purified by an appropriate method commonly used in the field as needed. For example, after dialyzing an enzyme preparation obtained by subjecting Bacillus circulans P7 (FERM BP-10091) culture supernatant or crushed material to ammonium sulfate, "CM_Toyop ea ri 650S" resin was used.
  • Bacillus circulans P7 (FERM BP— 10091) -derived dextrin dextranase can be obtained as a purified enzyme that electrophoretically shows a single band.
  • “Phenyl-Toyopearl 650M” resin was added.
  • the dextrin dextranase derived from the Arsrobacta 1 'Globiformis 1349 (FERM BP-10414) of the present invention can be obtained as a purified enzyme that electrophoretically shows a single band. it can.
  • dextrin dextranase is a recombinant enzyme
  • the enzyme may accumulate in the microbial cells depending on the type of host.
  • the cells or cultures can be used as they are, but usually, prior to use, if necessary, after extraction from the cells with osmotic shock or a surfactant,
  • maltose and gnolecose polymerization degree 1 or 4 glucan serving as a substrate for the dextrin dextranase of the present invention starch, amylose, amylopectin, glycogen, etc., or amylase or acid, etc. And partially hydrolyzed starches such as amylodextrin, maltodextrin, and malto-oligosaccharides higher than maltose obtained by partial hydrolysis.
  • Examples of partially decomposed products decomposed with amylase include “Handbook of Amylides' and Related Enzyme” (Handbook of Amylases and Related Enzymes) (1988) Alpha-Amylase (EC 3.2.1.1), Amylase (EC 3.2.1.2), Malto described in Pergamon Press, Tokyo Use amylases such as tetraose amylase (EC 3.2.1.60), maltopentaose amylase, maltohexaose amylase (EC 3.2.1.98), starch, amylose, amylo Partially decomposed products obtained by decomposing pectin, glycogen, etc. can be used.
  • starch debranching enzymes such as pullulanase (EC 3.2.1.41) and isoamylase (EC 3.2.1.68) to act on the partial degradation products.
  • starch debranching enzymes such as pullulanase (EC 3.2.1.41) and isoamylase (EC 3.2.1.68) to act on the partial degradation products.
  • starch debranching enzymes such as pullulanase (EC 3.2.1.41) and isoamylase (EC 3.2.1.68) to act on the partial degradation products.
  • starch debranching enzymes such as pullulanase (EC 3.2.1.41) and isoamylase (EC 3.2.1.68)
  • starch debranching enzymes such as pullulanase (EC 3.2.1.41) and isoamylase (EC 3.2.1.68)
  • starch debranching enzymes such as pullulanase (EC 3.2.1.41) and isoamylase (EC 3.2.1.68)
  • starch
  • the substrate concentration is not particularly limited.
  • a substrate concentration of 1% (w / v) or more, preferably 5% (w / v) or more is suitable, and dextran can be produced advantageously under these conditions.
  • the reaction temperature may be a temperature at which the reaction proceeds, that is, up to around 60 ° C.
  • a temperature around 30 to 50 ° C is used.
  • the reaction pH is usually adjusted in the range of 4 to 8, preferably in the range of pH 5 to 7.
  • the amount of enzyme used and the reaction time are closely related, and may be appropriately selected depending on the progress of the target enzyme reaction.
  • the mechanism of dextran formation when the dextrin dextranase of the present invention is allowed to act on starch having a substrate concentration of 1% (w / v) or a partially decomposed product thereof or an aqueous solution of amylose is as follows. Is inferred.
  • This enzyme acts on ⁇ -1,4 glucan having a degree of glucose polymerization of 3 or more, and catalyzes the ⁇ -1,6 gnolecosyl transfer reaction, thereby mainly producing glucose at the 6-position hydroxyl group of the non-reducing terminal gnolecose residue.
  • ⁇ 1, 1 and 6 linked to 1, 1 and 4 gnolecan, and glucose polymerization degree ⁇ -1 and 4 gnolecan are generated.
  • the enzyme further acts on ⁇ -1,4 gnolecan with 1 reduced glucose polymerization power generated in 1), and catalyzes intermolecular ⁇ -1,6 gnolecosyl transfer reaction as in 1). In this way, glucose is ⁇ -1 and 6-bonded to the hydroxyl group at the 6-position of the non-reducing terminal genolecose residue generated in 1). Is further transferred to extend the chain length consisting of 1, 6 bonds.
  • dextran is produced from maltose and glucan having a degree of polymerization of 3 or more.
  • the dextrin dextranase of the present invention having the above-described action can be used for the purpose of modifying maltose and / or one or four glucan having a glucose polymerization degree of 3 or more.
  • saccharide sweeteners derived from starch containing malto-oligosaccharides such as maltose, manoletotriose, maltotetraose, maltopentaose, etc., or starch and partial starch degradation contained in food and beverage ingredients and / or intermediate products
  • the dextrin dextranase of the present invention is allowed to act on starches such as foods to partially convert the ⁇ -1,4 dalcoside structure contained in the starches into ⁇ -1,6 dalcoside structures, for example, low sweetness It is also advantageous to produce modified sugar sweeteners and / or starches that have excellent processing characteristics such as stability, starch aging resistance, moisture retention and storage stability.
  • the dextrin dextrinase of the present invention is a food or drink containing a relatively large amount of starch, such as confectionery such as rice cake, dumpling, cake, bread, and processed rice products such as cooked rice, porridge, rice cake, sweet sake, and pilaf. It is also advantageous to produce high-quality starch-containing foods and drinks by functioning as anti-aging agents, quality improvers, etc. by blending with raw materials and / or intermediate products during production during production. Can be implemented.
  • the amount of dextrin dextranase added according to the present invention varies depending on the amount of water, starch content, ⁇ , product temperature, etc. during the production of various foods and beverages, and thus cannot be limited to a specific range. It is desirable to do.
  • the dextrin dextranase of the present invention can be produced by causing it to act on a starchy substrate solution. If necessary, this dextran-containing solution is allowed to act on one or more selected from ⁇ -amylase, darcoamylase, and hydralkosidase to hydrolyze contaminating oligosaccharides, and reduce the reducing power. It is also possible to advantageously carry out hydrogenation for the purpose of reducing the amount of hydrogen. Furthermore, exodextranase, One or more dextranases selected from endodextranase, isomaltodextranase, etc.
  • the dextran-containing solution is used after further purification.
  • a purification method a normal method used for sugar purification may be adopted as appropriate.
  • decolorization with activated carbon desalting with H-type or ⁇ H-type ion exchange resins, fractionation with organic solvents such as alcohol and acetone, moderate Separation with a membrane having excellent separation performance, and further, decomposition and removal of residual carbohydrates by fermentation treatment with microorganisms such as yeast, which assimilate and decompose contaminated carbohydrates without using dextran, etc.
  • One or more purification methods can be appropriately employed.
  • the dextrin dextranase of the present invention hardly produces low-molecular-weight oligosaccharides such as gnolecose and maltose when allowed to act on gelatinized starch and a partially degraded starch having a relatively low DE, preferably less than DE 20. Therefore, although it is not necessary to purify the dextran produced by the enzyme of the present invention by a purification means such as column chromatography, it is optional to further fractionate depending on the purpose such as use. When ion exchange chromatography is used for fractionation, for example, column chromatography using a strongly acidic cation exchange resin disclosed in JP-A-58-23799 and JP-A-58-72598 is advantageous. Can be used. At this time, it is optional to adopt any of the fixed floor method, moving bed method and simulated moving bed method.
  • the aqueous solution containing dextran thus obtained or an aqueous solution with an improved content thereof is usually a saccharide containing 10% by mass or more, preferably 40% by mass or more of dextran per solid. It is usually a concentrated aqueous solution, which is concentrated and dried to a powdered product.
  • the dextran obtained by the dextrin dextranase of the present invention is less prone to acid fermentation by microorganisms in the oral cavity, and also produces insoluble dextran that causes plaque when used in combination with sucrose. Since it has an inhibitory action, it can be advantageously used as a low cariogenic or anti-cariogenic carbohydrate. In addition, it is hardly decomposed by amylase or monoglycosidase, so it is not digested and absorbed even when taken orally, and it is an extremely low-calorie carbohydrate that is difficult to ferment by intestinal bacteria. Furthermore, it can be used as a water-soluble dietary fiber. It is useful for preventing lifestyle-related diseases because it has a roller improvement effect and a mineral absorption promotion effect. Furthermore, dextran itself is non-toxic and harmless.
  • dextran obtained by the enzyme of the present invention has osmotic pressure controllability, shapeability, irradiability, moisture retention, viscosity, starch aging inhibition, anti-crystallization of other sugars, and hardly fermentable. It has the following properties. Accordingly, the dextran or the saccharide containing the dextran in the present invention has various compositions such as water-soluble dietary fiber, quality improver, stabilizer, excipient, etc., such as food and drink, favorite food, feed, feed, cosmetics, and pharmaceuticals. It can be used to advantage.
  • the dextran according to the present invention includes, for example, powder koji, glucose, isomerized sugar, sugar, maltose, trenoise, honey, maple sugar, sonorebitonore, manoletithonole, dihydro force norecone, stevioside, monoglycosyl stevioside, lacan With other sweeteners such as strength sweeteners, glycyrrhizin, thaumatin, sucralose, L-asparatylphenylalanine methyl ester, saccharin, glycine, alanine, etc., and bulking agents such as dextrin, starch, lactose It can also be used by mixing.
  • sweeteners such as strength sweeteners, glycyrrhizin, thaumatin, sucralose, L-asparatylphenylalanine methyl ester, saccharin, glycine, alanine, etc.
  • bulking agents such
  • the dextran powder product according to the present invention may be used as it is or mixed with a bulking agent, an excipient, a binder, or the like as it is, to form granules, spheres, short bars, plates, cubes. It is optional to use it in various shapes.
  • dextran according to the present invention is difficult to digest even when taken orally, it can be advantageously used as a water-soluble dietary fiber in general foods and drinks.
  • soy sauce, powdered soy sauce, miso, powdered miso, moromi, horsetail, flicker, mayonnaise, dressing, vinegar, three cups of vinegar, powdered sushi vinegar, Chinese soup, tempura soup, salmon soup, sauce, ketchup, grilled meat sauce, curry roux, stew
  • seasonings such as Nomoto, soup, dashi, compound seasonings, mirin, new mirin, table sugar, coffee sugar, etc. it can.
  • various kinds of Japanese sweets such as rice crackers, hail, rice cakes, fertilizers, potatoes, manjus, eels, bean pastes, sheep pods, jellyfish, jelly, castella, candy balls, bread, biscuits, crackers, cookies, pie , Pudding, butter cream, force Stard cream, cream puff, cream cake, sponge cake, donut, chocolate, chewing gum, caramel, nougat, candy and other Western confectionery, ice cream, sorbet and other ice confections, fruit syrup pickles, honey Syrups, flower paste , Pastes such as peanut paste and funolec paste, fruits such as jam, marmalade, syrup pickles, sugar cane, processed foods of vegetables, pickles such as pickled Fukujin pickles, lettuce pickles, thousand pickles, pickles Pickles, pickles such as Chinese cabbage pickles, livestock meat products such as ham and sausage, fish ham, fish sausages, scallops, chita salmon, tempura fish products, sea urchin, squid Various de
  • livestock, poultry, and others can also be used as feed and feed for domestic animals such as bees, sharks, and fish for the purpose of improving the bowel, improving constipation, and preventing obesity.
  • various solids such as tobacco, toothpaste, lipstick, lip balm, oral solution, tablets, troches, liver oil drops, mouth fresheners, mouth fragrances, gargles, etc. It can be advantageously used as a taste improver, quality improver, stabilizer, etc. for various compositions such as drugs.
  • the quality improver and stabilizer can be advantageously applied to various physiologically active substances that tend to lose active ingredients, activity, and the like, or health foods, functional foods, and pharmaceuticals containing the same.
  • interferon ⁇ j3 ⁇ humor 'necrosis' factor ⁇ —— ⁇ , — ⁇ , macaque phage migration inhibitory factor, colony stimulating factor, transfer factor, lymphokine-containing solution such as interleukin II, insulin, growth hormone, prolatatin Hormone-containing fluids such as erythropoietin and egg-cell stimulating hormone, BCG vaccine, Japanese encephalitis vaccine, measles vaccine, polio vaccine, seedling, tetanus toxoid, hub antitoxin, human anti-globulin and other biologic-containing fluids, penicillin, Antibiotic-containing liquids such as erythromycin, chloramphenicol, tetracycline, streptomycin, kanamycin sulfate,
  • Ginseng extract, subibon extract, chlorella extract, aloe extract, propolis extract, and other bioactive substances such as viruses, lactic acid bacteria, yeast, and other bioactive substances, and royal jelly are stable without losing their active ingredients and activities.
  • High quality liquid, pasty or solid health foods, functional foods and pharmaceuticals can be easily manufactured.
  • dextran As a method of adding dextran to various compositions as described above, it may be included in the process until the product is completed. For example, mixing, kneading, dissolution, melting, immersion, penetration Well-known methods such as spraying, coating, coating, spraying, pouring, and solidification are appropriately selected.
  • the amount is usually 0.1% by mass or more, preferably 1% by mass or more.
  • Partially decomposed starch (trade name “Pinedettas # 4”, manufactured by Matsutani Chemical Co., Ltd.) 1.5 w / v%, yeast extract (trade name “Polypeptone”, manufactured by Nippon Pharmaceutical Co., Ltd.) 0.5 w / v% , Yeast extract (trade name “Yeast Extract S”, manufactured by Nippon Pharmaceutical Co., Ltd.) 0. lw / v%, dipotassium phosphate 0.
  • Example 2 Purification of dextrin dextranase derived from Bacillus circulans P7> About 7 L (total activity: about 36,400 units) of the culture supernatant obtained in Experiment 1 will be 80% saturated. Ammonium sulfate was added to and dissolved in the solution, and salted out by standing at 4 ° C for 24 hours. The precipitated salted-out product is collected by centrifugation (11,000 rpm, 30 minutes), dissolved in 20 mM acetate buffer (pH 4.5), dialyzed against the same buffer, and approximately 640 ml of crude enzyme solution. Got.
  • the dextrin dextranase activity in the crude enzyme solution was approximately 50 units Zml (total activity approximately 32,000 units).
  • This crude enzyme solution was subjected to cation exchange column chromatography (gel volume: 3,000 ml) using “CM-Toyopeari 6503” gel manufactured by Tosoh Corporation.
  • Dextrin dextranase activity is adsorbed on a “CM —Toyopearl 650S” gel equilibrated with 20 mM acetate buffer ( ⁇ 4 ⁇ 5), and eluted with a linear gradient of 0.5 M salt with a salt concentration of 0 M As a result, it eluted at a salt concentration of about 0.4M.
  • the dextrin dextranase activity of the present invention is adsorbed on a “Butyl-Toyopearl 650M” gel equilibrated with 20 mM acetate buffer (pH 6.0) containing 1 M ammonium sulfate, and the ammonium sulfate concentration is 1 M to 0 M. As a result, it was eluted at an ammonium sulfate concentration of about 0.2 M. This active fraction was collected, dissolved in 20 mM acetate buffer (pH 6.0), and dialyzed against the same buffer. Table 1 shows the dextrin dextranase activity, the specific activity and yield of dextrin dextranase in each step of each purification.
  • the purified sample of dextrin dextranase obtained by the method of Experiment 2 was subjected to SDS-polyacrylamide gel electrophoresis (concentration gradient 5 to 20 w / v%), and simultaneously migrated with a molecular weight of 1 (Japan Bio'Rad'Laboratories)
  • the molecular weight of the dextrin dextranase of the present invention was found to be 90,000 ⁇ 10,000 danoleton as measured by comparison with the molecular weight of the product.
  • Fig. 1 optimum temperature
  • Fig. 2 optimum pH
  • the optimum temperature of the dextrin dextranase of the present invention is 50 to 55 ° C under the condition of pH 6.0 and 30 minutes reaction
  • the optimum pH is 5.0 under the reaction condition of 40 ° C and 30 minutes. It turned out to be 6.3.
  • the temperature stability and pH stability of the enzyme were examined. Temperature stability was determined by holding an enzyme solution (20 mM acetate buffer, pH 6.0) at each temperature for 60 minutes, cooling with water, and then measuring the remaining enzyme activity. The pH stability was determined by maintaining the enzyme in 20 mM buffer at each pH at 4 ° C for 24 hours, adjusting the pH to 6.0, and measuring the remaining enzyme activity. These The results are shown in Fig. 3 (temperature stability) and Fig. 4 (pH stability). As is clear from FIG. 3, the temperature stability of the dextrin dextranase of the present invention was found to be up to 40 ° C, and as is clear from FIG. 4, the pH stability of the dextrin dextranase of the present invention was Sex was found to be in the range of ⁇ 3 ⁇ 5 to 8.4.
  • amino acid sequences of the four types of peptide fragments eluted at about 33 minutes, about 41 minutes, about 44 minutes, and about 67 minutes were also analyzed using the same method as in Experiment 3-5. It has the amino acid sequence shown in the numbers 7 to 10.
  • a liquid medium with exactly the same composition as in Experiment 1 was prepared, sterilized, and cooled in exactly the same way, and then inoculated with ALSO ROBACTA. Globiformis 1349 (FERM BP-10414). C, cultured at 230 rpm for 48 hours with shaking, was used as seed culture.
  • This active fraction was collected, dialyzed against 20 mM acetate buffer ( PH 6.0), and then subjected to anion exchange column chromatography using “DEAE-Toyopearl 650S” gel manufactured by Tosoh Corporation. The sample was subjected to a graph (gel volume: 100 ml). Dextrin dextranase activity is adsorbed on “DEAE_Toyopearl 650S” gel equilibrated with 20 mM acetate buffer (pH 6.0) and eluted with a linear gradient from 0 M to 0.5 M in salt concentration. As a result, the salt concentration eluted at around 0.1M.
  • This active fraction was collected, dialyzed against 20 mM acetate buffer (pH 6.0), and then subjected to anion exchange using a “Polyanion SI” column manufactured by Amersham Pharmacia Quiorad Co., Ltd. Column chromatography was used. Dextrin dextranase activity was adsorbed on a “Poluanion SI” gel equilibrated with 20 mM acetate buffer (pH 6.0) and eluted with a linear gradient from 0 M to 1 M in salt concentration. Elution was performed at a salt concentration of about 0.4M. Table 3 shows the dextrin dextranase activity, the specific activity and yield of dextrin dextranase in each purification step.
  • the purified sample of dextrin dextranase obtained by the method of Experiment 5 was subjected to SDS-polyacrylamide gel electrophoresis (5 to 20 wZv% concentration gradient), and simultaneously migrated, the molecular weight of the force (Nippon Bio Rad Laboratories Inc.) The molecular weight of this dextrin dextranase was found to be 90,000 ⁇ 10,000 danoleton.
  • the optimum temperature of the dextrin dextranase of the present invention is about 50 ° C under the reaction condition of pH 6.0 for 30 minutes, and the optimum pH is about 6.0 under the reaction condition of 40 ° C for 30 minutes. It turned out to be.
  • the temperature stability of the dextrin dextranase derived from Althropacter 'globiformis of the present invention was found to be up to 40 ° C, and as is clear from FIG.
  • the pH stability of dextrin dextranase was found to be in the range of pH 4.0 to 8.0.
  • Experiment 7 Cloning of DNA encoding dextrin dextranase from Bacillus circulans P7 (FERM BP-10091) and preparation of recombinant DNA and transformant containing the same>
  • liquid medium ⁇ 7.0
  • liquid medium ⁇ 7.0
  • polypeptone 0.5%
  • yeast extract 0.5%
  • w / v sodium chloride
  • the mixture was sterilized by autoclaving at 121 ° C for 20 minutes, cooled, and inoculated with Bacillus circulans P7 (FE RM BP-10091), and cultured with shaking at 27 ° C for 24 hours.
  • the culture is centrifuged to separate the cells, suspended in an appropriate amount of TES buffer (pH 8.0), and lysozyme is added at 0 ⁇ 05% (w / v) force at 37 ° C. Incubate for 30 minutes and freeze at 80 ° C for 1 hour. Then, add TSS buffer (pH 9.0), prepare TES buffer / phenol mixture preheated to 60 ° C, cool, The supernatant was collected by centrifugation. Add 2 volumes of cold ethanol to this supernatant, collect the precipitate containing chromosomal DNA, dissolve in SSC buffer (pH 7.1), and add ribonuclease 7.5 xg and protease 125 xg respectively.
  • TES buffer pH 8.0
  • lysozyme is added at 0 ⁇ 05% (w / v) force at 37 ° C. Incubate for 30 minutes and freeze at 80 ° C for 1 hour. Then, add TSS buffer (p
  • Experiment 7-2 Cloning of dextrin dextranase gene by colony hybridization> Take 7 ml of purified chromosomal DNA solution obtained by the method of Experiment 7-1, add about 30 units of the restriction enzyme Sau 3AI, and react for 20 minutes at 37 ° C to partially cleave the chromosomal DNA. Thereafter, a DNA fragment consisting of about 3,000 to 7,000 base pairs was recovered by low melting point agarose gel electrophoresis.
  • the plasmid vector pBluescriptll KS (+) was cleaved with the restriction enzyme Bam HI, and 0.1 ⁇ g of the vector fragment and 1 ⁇ g of the DNA fragment were commercially available (trade name “DNA Ligation Kit”, manufactured by Takara Shuzo).
  • the first to seventh amino acid sequences 1J in the amino acid sequence represented by SEQ ID NO: 1 in the sequence listing which is the N-terminal amino acid sequence of dextrin dextranase in the sequence listing which is the internal partial amino acid sequence 6th to 12th amino acid sequence 1J in the amino acid sequence represented by SEQ ID NO: 8, 4th to 10th in the amino acid sequence represented by SEQ ID NO: 9 in the sequence listing which is also the internal partial amino acid sequence
  • the amino acid sequences of the amino acid sequences 6 and 12 in the amino acid sequence represented by SEQ ID NO: 10 in the Sequence Listing which is also the internal partial amino acid sequence, and SEQ ID NOS: 15 to 18 in the Sequence Listing Four kinds of synthetic oligonucleotides having the indicated base sequences were synthesized, respectively, and labeled with the isotope 32 P as probes.
  • the E. coli of the genomic library was inoculated into an agar plate medium ( ⁇ 7.0) containing 50 / ig / ml of 5 bromo-4 chloro-3 indolyl ⁇ -galactosid, and cultured at 37 ° C for 18 hours. Approximately 2,000 colonies formed above were fixed on Amersham nylon membrane “Hybond_N +”. As a primary screening, colony hybridization was performed by a conventional method using probes having the nucleotide sequences shown in SEQ ID NOs: 15 and 16 in the sequence listing, and colonies that showed remarkable association were selected.
  • the selected colonies were then subjected to colony hybridization in the same manner using the probes having the nucleotide sequences shown in SEQ ID NOs: 17 and 18 in the sequence listing as secondary screening.
  • One strain was selected.
  • Selected transformants are ampicillin 100 Inoculated into L-broth medium (pH 7.0) containing / ig / ml and cultured with shaking at 37 ° C for 24 hours.
  • the bacterial cells are collected from the culture by centrifugation, and the recombinant DNA is eluted out of the bacterial cells by a general alkaline method. After purification and analysis by a conventional method, approximately 5,200 base pairs are inserted. I have recombinant DNA with DNA fragments.
  • This recombinant DNA was named “pBD77”, and the transformant holding this recombinant DNA was named “BD77”.
  • the recombinant DNA, pBD77 is shown in FIG.
  • Experiment 7 3: Determination of the base sequence of DNA encoding dextrin dextranase> Base sequence determination using Beckman Coulter's DTCS “Quick 'Start' Kit” and “Gene Analysis System C EQ8000” went. That is, 1 ⁇ g of recombinant DNA pBD77 obtained by the method of Experiment 7-2, sequencing 'primer 0.02 ⁇ g and DTCS type' start 'master' mix 8 ⁇ 1, 5 ⁇ betaine 4 ⁇ 1 Furthermore, an appropriate amount of water was added to make the total amount 20 ⁇ .
  • the recombinant DNA was derived from Bacillus circulans P7 (FERM BP-10091) and represented by SEQ ID NO: 5 in the sequence listing. It contained DNA with a chain length of 2,556 base pairs.
  • the amino acid sequence deduced from this base sequence is as shown in the base sequence represented by SEQ ID NO: 5, and this amino acid sequence and the dextrin dextran of the present invention confirmed by the method of Experiment 3-5 were used.
  • N-terminal amino acid sequence of nuclease and experiments 3 When compared with the amino acid sequences shown in SEQ ID NO: 1 and SEQ ID NOS: 7 to 10 in the partial amino acid sequence revealed by the method of 16 Array
  • the amino acid sequence shown by No. 1 completely matched the 43rd to 49th amino acid sequences in the amino acid sequence written together with the base sequence shown by SEQ ID No. 5 in the sequence listing.
  • the amino acid sequences shown in SEQ ID NOs: 7, 8, 9 and 10 in the sequence listing are respectively the 337th to 343rd and 582th to 594th amino acids in the amino acid sequence shown together with the base sequence shown in SEQ ID NO: 5 in the sequence listing.
  • the dextrin dextranase of the present invention may contain the amino acid sequence represented by SEQ ID NO: 3 in the Sequence Listing.
  • the enzyme is represented in the Sequence Listing in Bacillus circulans P7 (FERM BP-10091). It is encoded by the DNA of the base sequence shown by SEQ ID NO: 5 in FIG.
  • the 1st to 42nd amino acid sequences in the amino acid sequence shown together with the nucleotide sequence represented by SEQ ID NO: 5 in the sequence listing were presumed to be the secretion signal sequence of the enzyme.
  • the pre-secretion precursor of the enzyme consists of the amino acid sequence shown in SEQ ID NO: 5 in the sequence listing, and the amino acid sequence is encoded in the base sequence shown in SEQ ID NO: 5 in the sequence listing. Turned out to be.
  • the dextrin dextranase gene in the recombinant DNA “pBD77” was inserted into an expression vector, and expression of the recombinant dextrin dextranase in E. coli was examined.
  • PCR was performed for the purpose of introducing the I recognition site downstream of the Bam HI recognition site.
  • PCR using pBD77 as a saddle type, combination of a sense primer having the base sequence shown by SEQ ID NO: 22 in the synthesized sequence listing and an antisense primer having the base sequence shown by SEQ ID NO: 23 in the sequence listing
  • the target dextrin dextranase gene was amplified.
  • An expression vector pET_3a (manufactured by Novazien) digested with the restriction enzymes Nde I and Bam HI and amplified by the above method, and then the DNA obtained by integrating Nde I and Bam HI digested DNA by a conventional method.
  • pEBD7 the recombinant DNA was named “pEBD7”.
  • pEBD7 is shown in FIG.
  • the obtained pEB D7 was used to transform E. coli BL21 (DE3) (manufactured by Novagen) to prepare a transformant “EB D7”.
  • Liquid medium consisting of lOg / 1 tryptone (trade name “Bacto_tryptone”, sold by Dif co), 5 g / l yeast extract (trade name “Bacto_yeast extract”, sold by Difco), and lOgZl salt and water in a 500 ml Erlenmeyer flask 100 ml each was added, sterilized by autoclaving at 121 ° C for 20 minutes, cooled and aseptically adjusted to pH 7.5, and then 2 mg kanamycin was aseptically added to prepare a liquid medium.
  • This liquid medium was inoculated with the transformant EBD7 obtained by the method of Experiment 8-1 and cultured at 27 ° C by rotary shaking until the turbidity reached about 0.6.
  • ⁇ -D-galactopyranoside IPTG was added to a final concentration of 0.4 mM to induce expression of the dextrin dextranase gene, and the cells were further cultured for 3 hours.
  • the obtained culture was centrifuged according to a conventional method, separated into a culture supernatant and cells and collected.
  • the whole extract from the cell was prepared by the ultrasonic crushing method.
  • the ultrasonic disruption method cells are suspended in 20 mM Tris-HCl buffer (pH 7.5), and then the cell suspension is cooled in ice water while using an ultrasonic homogenizer (Model UH-600, SMT Co., Ltd.). The whole cell extract was used as the whole cell extract.
  • E. coli from the genomic library was inoculated in an agar plate medium (pH 7.0) containing 50 ⁇ g / ml of 5-promo 4 chloro-3-yndolyl- / 3-galatatoside in the same manner as in Experiment 7-2. After the cultivation, about 2,000 colonies formed on the medium were fixed on Amersham nylon membrane “Hybond_N +”. As a primary screening, colony hybridization was performed by a conventional method using probes having the nucleotide sequences represented by SEQ ID NOs: 19 and 20 in the sequence listing, and colonies that showed remarkable association were selected.
  • ⁇ Experiment 9-3 Determination of the base sequence of DNA encoding dextrin dextranase> The base sequence was determined according to the method used in Experiment 7-3. Analysis of the base sequence of the recombinant DNA, the inserted DNA fragment in pAD13, revealed that the recombinant DNA is represented by SEQ ID NO: 6 in the sequence listing derived from ALS ROBACTA. Globiformis 1349 (FERM BP-10414). Including DNA having a base sequence of 2,703 base pairs.
  • the amino acid sequence deduced from this base sequence is as shown together with the base sequence represented by SEQ ID NO: 6, and this amino acid sequence and the dextrin dextran of the present invention confirmed by the method of Experiment 6-5 were used.
  • SEQ ID NO: 2 and SEQ ID NO: 11 to 14 in the sequence listing which is the partial amino acid sequence revealed by the method of Experiment 6-6 and the N-terminal amino acid sequence of nuclease.
  • the amino acid sequence shown in SEQ ID NO: 2 completely matched the 84th to 98th amino acid sequences in the amino acid sequence shown in the sequence listing together with the base sequence shown in SEQ ID NO: 6.
  • the amino acid sequences shown in SEQ ID NOs: 11, 12, 13, and 14 in the sequence listing are respectively the 855th to 868th and 550th to 561th amino acids in the amino acid sequence shown together with the base sequence shown in SEQ ID NO: 6 in the sequence listing. , 883th to 900th and 160th to 173rd amino acid sequences were completely matched.
  • the dextrin dextranase of the present invention may contain the amino acid sequence represented by SEQ ID NO: 3 in the Sequence Listing, and the enzyme is expressed in Alsulopactor 'Globiformis 1349 (FERM BP-10414). It shows that it is encoded by the DNA of the base sequence shown in SEQ ID NO: 6 in the column table.
  • the 1st to 83rd amino acid sequence in the amino acid sequence written together with the nucleotide sequence shown in SEQ ID NO: 6 in the sequence listing is a secretory signal sequence of the enzyme. And a pro-sequence that is cleaved after secretion.
  • the precursor before secretion of the enzyme consists of the amino acid sequence shown in SEQ ID NO: 6 in the sequence listing, and the amino acid sequence is the nucleotide sequence shown in SEQ ID NO: 6 in the sequence listing. Turned out to be coded.
  • the dextrin dextranase gene in the recombinant DNA “pADl 3” was inserted into an expression vector, and expression of the recombinant dextrin dextranase in E. coli was examined.
  • PCR was performed for the purpose of introducing restriction enzyme NdeI recognition sites upstream and downstream of the structural gene of dextrin dextranase.
  • pAD 13 as a saddle type, PCR was performed with a combination of a sense primer having the base sequence shown in SEQ ID NO: 24 in the synthesized sequence listing and an antisense primer having the base sequence shown in SEQ ID NO: 25 in the sequence listing.
  • the dextrin dextranase gene was amplified.
  • pEAD 1349 is shown in FIG.
  • the obtained pEAD 1349 was used to transform E. coli BL21 (DE 3) (manufactured by Novagen) to prepare a transformant “EAD 1349”.
  • the transformant EAD 1349 obtained by the method of Experiment 10_1 was cultivated in the same way as Experiment 8_2, and isopropyl-1-thio-1-beta-D_galactopyranoside (IPTG) was added to the final concentration 0 It was added to 4 mM to induce dextrin dextranase gene expression.
  • the obtained culture was centrifuged and separated into a culture supernatant and cells and collected according to a conventional method, and the cells were ultrasonically disrupted to obtain a whole cell extract. [0105]
  • the dextrin dextranase activity of each of the culture supernatant and the whole cell extract thus prepared was measured, and each activity value was converted per 1 ml of the culture.
  • E. coli BL21 (DE3) carrying the plasmid pET-3a was cultured under the same conditions as in the case of the above-mentioned transformant, and the culture supernatant and whole cell extract were prepared from the culture. Stranase activity was measured. These results are shown in Table 6.
  • optimum P H is 30 ° C, approximately under the conditions of 30 minutes reaction 6.0, temperature stability, under conditions that at different temperatures for 60 minutes, is stable up to about 40 ° C, pH The stability was stable in the range of about 4.0 to 8.0 under the conditions of holding each pH at 4 ° C for 24 hours.
  • dextran dextranase purified preparation obtained by the methods of Experiments 2 and 5 are each 5 grams per gram of substrate solids.
  • the substrate concentration was adjusted to 2 w / v%, and this was allowed to act at 40 ° C and pH 6.0 for 24 hours.
  • Substrate Action Substrate Action Glucose One Maltoheptaoose ++ Sucrose-Isomaltotriose ++ Maltose ++ Panose ++ Isomaltose Isopanose ++ Trehalose-Multi!
  • the dextrin dextranase of the present invention is selected from among the tested carbohydrates, manoletos, manoletotriose, manoletotetraose, manoletopentaose, manolethexaose. It acted well on manoletoheptaose, isomaleretose, isomaretotriose, panose and isopanose, and acted on maltitol, maltotritol and glycogen. Furthermore, the dextrin dextranase of the present invention also worked well on amylose and soluble starch.
  • the structure of the produced sugar was examined when it was allowed to act on maltose, which is the smallest substrate.
  • the results were the same when using dextrin dextranase derived from Bacillus circulans ⁇ 7 and using dextrin dextranase derived from alsulopactor globiformis 1349.
  • the results using a purified dextrin dextranase preparation derived from Bacillus circulans ⁇ 7 are shown.
  • HPLC HPLC is performed using two columns of “MCI GEL CK04SS” (manufactured by Mitsubishi Chemical Co., Ltd.) and water as the eluent at a column temperature of 80 ° C and a flow rate of 0.4 mlZ.
  • a differential refractometer RID-10A manufactured by Shimadzu Corporation was used.
  • GC is converted to TMS according to a conventional method, and then 2% Silicon OV—17 Chromosorb WZAW_DMS (GL Science Co., Ltd.) is used for the column, and the heating rate is 7.5 ° C per minute.
  • the temperature was raised from 160 ° C to 320 ° C. Nitrogen gas was used as the carrier gas, and carbohydrates were detected by the FID method. The results are shown in Table 8.
  • Carbohydrate X means an unknown carbohydrate with a retention time of 46.2 minutes in HP LC
  • Carbohydrate Y means an unknown carbohydrate with a retention time of 43. 3 minutes in HP LC.
  • Carbohydrate Z means an unknown carbohydrate with a retention time of 40.8 minutes in HP LC.
  • glucose, maltotriose and panose were produced from the substrate maltose by the action of the dextrin dextranase of the present invention at the initial stage of the reaction (1 hour of reaction). It was also found that small amounts of unknown carbohydrates X and Y were produced. Furthermore, in the middle of the reaction (5 hours and 10 hours of reaction), it was found that with the increase of these produced carbohydrates, unknown carbohydrate Z was also produced. Furthermore, at the end of the reaction (25 hours and 50 hours of reaction), among these produced sugars, glucose, panose, unknown carbohydrates X and Y increased, and the unknown carbohydrate Z also increased slightly. Diminished. In addition, isomalenose, isopanose, and isomaltotriose were produced.
  • the dextrin dextranase of the present invention acts on maltose, catalyzes the a-1, 4 darcosyl transition and -1, 6 darcosyl transition, and glucose, maltotriose and Panose is produced, and as the reaction proceeds, unknown carbohydrates X, Y, and Z are produced.
  • isomaltose a product that undergoes a 1,6-dalcosyl transfer to glucose. It was found that isopanose and isomaltotriose, products of ⁇ -1,1,4 darcosyl transition and ⁇ -1,6 glucosyl transition, were formed on the isomaltose.
  • the unknown carbohydrates X, ⁇ and ⁇ were presumed to be products due to ⁇ -1,6 gnorecosyl transfer.
  • a decomposition test was conducted by applying an isomaltdextranase derived from Arthrobacter globiformis to an aqueous solution (final concentration lw / v%) of an unknown carbohydrate X purified sample obtained by the method of Experiment 12-2. Add 10 units of isomaltodextranase per gram of substrate solids and allow to act at 50 ° C, pH 5.0 for 8 hours, 100. After the reaction was stopped by holding at C for 10 minutes, the product was analyzed by the TLC method described in Experiment 11 and the HPLC method described in Experiment 12-1, and isomaltose and maltose were formed in approximately equimolar amounts.
  • unknown carbohydrate X has a structure in which isomaltose molecules and maltose molecules are linked by a single glycoside, and isomaltose force is located on the non-reducing end side of the structure, and maltose is located on the reducing end side. did.
  • the ratio of 2, 3, 4_trimethylated product, 2, 3, 6_trimethylated product and 2, 3, 4, 6-tetramethyl compound is about 2: 1: 1. Therefore, out of the 4 glucose molecules that make up the unknown carbohydrate X, 2 molecules are glucose that has a darcoside bond at the 1- and 6-positions. It was found that one molecule is glucose that is dalcoside-bonded at positions 1 and 4 or only at position 4, and the other one molecule is dalcoside-bonded dalcose only at position 1. From this result, it was found that the bond between isomaltose and maltose in the unknown carbohydrate X is an ⁇ -1,6 darcoside bond.
  • the mass of the unknown sugar ⁇ purified sample obtained by the method of Experiment 12-2 was analyzed using mass spectrometer “LCQ _ Advantage” (manufactured by Thermo Electron).
  • the mass number of unknown carbohydrate Y was found to be 828, and it was found from this mass number that unknown carbohydrate Y was composed of 5 glucose molecules.
  • the unknown carbohydrate Y has a structure in which one isomaltose molecule and one panose molecule are ⁇ -gnolecoside-bonded, and the panose is located on the non-reducing end side of the structure on the non-reducing end side. found. [0128] ⁇ Experiment 12— 4 3: Methylation analysis>
  • This enzyme has maltose as a substrate and a-1, 4 gnore strength with glucose polymerization degree of 3 or more
  • the non-reducing terminal dalcosinore residue is transferred to the 4- and 6-position hydroxyl groups of other ⁇ - 1 and 4-glucan non-reducing terminal glucose residues.
  • ⁇ _ 1, 6 The degree of glucose polymerization was increased by 1 by catalyzing the dalcosinore transition, and glucose was bound to the 6-position of the non-reducing terminal glucose of ⁇ -1, 4 glucan or -1,4 glucan. Produces dalcosyl _ 1,4 ggnolecan and gluco 1,1 glucan with 1 degree of glucose polymerization.
  • _1,4 glucan and 6_a-darcosyl _1,4 glucan produced in 1) are again subjected to the action of this enzyme, and the 1,4 glucan is the glucose donor for the transfer reaction.
  • 6_a-darcosyl-1,4-glucan is used as a glucose receptor for transfer reaction. Therefore, _ 1,4 gnolecan is decomposed without accumulating, while 6 _ a-dalcosyl mono-1,4-glucan further undergoes the dalcosyl transition, and 6 _ a-isomaltosyl mono-1,4-glucan
  • One isomaltotriosyl-one 1,4 glucan and 6 dalcoside-linked gnolecose chain extend.
  • hi-dalcosidase Amano L a commercially available hi-dalcosidase (trade name “Trans-Dalcosidase Amano L”) produces isomaltoligosaccharides from maltose through a 1,6-dalcosyl transfer.
  • this hignorecosidase it was tested in accordance with the method of Experiment 13, and the transfer reaction characteristics of the dextrin dextranase of the present invention and hiidarcosidase were compared.
  • the reaction solution of the dextrin dextranase of the present invention had a gnolecose content in the sugar composition of 8 hours after the reaction in which the maltose content in the sugar composition became 10% or less. It was 9%, whereas that of the reaction mixture of hyaldarcosidase was 74.4%, which clearly had a high content of gnolecose.
  • the content of isomaltose which is thought to be caused by the transfer of glucose by 1,6 to the genolecose produced by the reaction, is 8.1% in the reaction solution of dextrin dextranase and 7% in that of ⁇ -darcosidase.
  • the dextrin dextranase of the present invention clearly has a strong ability to produce a saccharide having a relatively high degree of glucose polymerization and a higher degree of glucose polymerization than ⁇ -gnorecosidase.
  • dextrin dextranase derived from ALSLOPACTOR 'Globiformis 1349 almost the same result was obtained.
  • Dextran was prepared by allowing the dextrin dextranase of the present invention to act on a partially decomposed starch, and its structural characteristics were examined.
  • Starch partially decomposed product (trade name “Pinedettas # 1”, manufactured by Matsutani Chemical Co., Ltd.) was dissolved in water to a concentration of 30% by mass, adjusted to pH 6.0, and batyl obtained by the method of Experiment 2 Circulance P7-derived dextrin dextranase purified preparation or Arthrobacter globformis 1349-derived dextrin dextranase purified preparation obtained in the method of Experiment 5 with 5 units per gram of solid, 40 ° After acting for 48 hours at C, pH 6.0, the reaction was boiled for 10 minutes to stop the reaction.
  • reaction solution was decolorized and filtered by the method described in Experiment 12_2, concentrated with an evaporator, vacuum-dried and pulverized, and powdered dextran was removed from the P7-derived dextrin dextranase reaction product per solid. 5. Obtained 84.4% yield per solid from reaction of 8% and 1349 derived dextrin dextranase.
  • Dextran prepared by the method described in Experiment 16-1 was analyzed by digestion with isomaltdextranase by the method described in Experiment 12-2-2. Isomaltose dextranase digestion does not produce isomaltose from the partial starch degradation product of the substrate, whereas dextran and Arturobacter i globiformis 1349 dextrin dextran produced by Bacillus circulans P7
  • the dextran produced by the enzyme produced 45.4% and 41.0% isomaltose in terms of sugar composition, respectively. This indicates that the dextran produced by the dextrin dextranase of the present invention contains 45.4% and 41.0% isomaltose structure as a whole.
  • the molecular weight distribution of dextran prepared by the method described in Experiment 16-1 was analyzed by gel filtration HPLC by a conventional method.
  • Gel filtration HPLC is performed by connecting two “TSK GEL GM PWXL” (Tosohichi Co., Ltd.) to the column, using water as the eluent at a column temperature of 35 ° C, and a flow rate of 0.5 mlZ.
  • Detection is differential refractometer RID-10A (manufactured by Shimadzu Corporation) Production).
  • dextrin dextranase in the case of dextrin produced by dextrin dextranase derived from Alslobacter globiformis 1349, peaks were observed at positions corresponding to glucose polymerization degrees 83 and 12 (reference numeral 5 in FIG. 14). And 6), each changed to a mixture of carbohydrates.
  • the dextrin dextranase of the present invention acts on both dextrins with a glucose polymerization degree of about 90 and maltooligosaccharides with a glucose polymerization degree of about 6 in the starch degradation product. It was thought that dextrin was converted to the low molecular weight side and malto-oligosaccharide was converted to the high molecular weight oligosaccharide side.
  • dextrin dextranase derived from Bacillus circulans ⁇ 7 and dextrin dextranase derived from Arthrobacter i globiformis 1349 was 57.9% and 54.1%, respectively. It was.
  • the dextrin dextranase of the present invention only transfers glucose 1 to 6 to the non-reducing terminal gnolecose of the transfer receptor. It was also found that there are cases in which a transfer of 1, 6 to the 6-position of the gnolecose residue at the inner end of the transfer receptor or at the reducing end is also possible.
  • Experiment 16 Use the dextran obtained by the method of 1 in the method of Oshima et al. Described in “Infection and Immunity”, 39th pp. 43-49 (1983). Accordingly, an acid fermentability test was carried out with cariogenic bacteria. As cariogenic bacteria, Two strains, Streptococcus sobrinus 6715 and Streptococcus mutans OMZ-176, were used. As a control, the same operation was performed using sucrose. The results are shown in Table 15.
  • dextran obtained by the reaction of dextrin dextranase of the present invention is streptococcus. Almost no acid fermentation by 'Sobrinas and Streptococcus' mutans, the pH is maintained at about 6, and the pH is higher than 5.5, which is the critical pH for demineralization of tooth enamel. It was. It was confirmed that dextran obtained by the reaction of dextrin dextranase of the present invention has extremely low cariogenicity.
  • dextran obtained by the reaction of the dextrin dextranase of the present invention is not digested at all by salivary amylase or artificial gastric juice, but is slightly degraded by liquid amylase. It was done.
  • the degradation rate of the indigestible carbohydrate of the control by the small intestinal mucosal enzyme was 41.1%, whereas the degradation rate of dextran obtained by the reaction of the dextrin dextranase of the present invention was 23.
  • dextran obtained by the method of Experiment 16-1 an increase in blood glucose level and an increase in insulin were examined.
  • a group of five 7-week-old male male Wistar rats was fasted for 1 day and orally administered with an aqueous solution of dextran using a stomach tube.
  • the dose was 1.5 g as a solid per kg body weight of rat.
  • Blood was also collected from the tail vein force immediately before oral administration, 15 minutes, 30 minutes, 60 minutes, and 120 minutes after oral administration. Each blood was collected in a heparin-treated hematocrit tube and centrifuged (2, OOOrpm, 10 minutes) to obtain plasma.
  • the blood glucose level was measured by the glucose oxidase method, and the amount of insulin was measured using a rat insulin measurement kit (manufactured by Morinaga Bioscience Research Institute).
  • a rat insulin measurement kit manufactured by Morinaga Bioscience Research Institute.
  • gnole course was used, and as the control 2, commercially available indigestible dextrin (trade name “Pine Fiber” manufactured by Matsutani Chemical Industry Co., Ltd.) was used.
  • the results of blood glucose level and insulin amount in each test system are shown in Table 17 and Table 18, respectively.
  • dextran obtained from the partially degraded starch by the dextrin dextranase of the present invention increases the blood glucose level and increases the level of blood glucose as well as commercially resistant indigestible dextrin. The increase in insulin was found to be lower than glucose.
  • mice Using mice, the dextran obtained by the method of Experiment 16-1 was orally administered to conduct an acute toxicity test. As a result, the dextran obtained by the dextrin dextranase of the present invention was low in toxicity, and no death was observed even at the maximum dose that could be administered, and the D value was 5 gZkg_mouse body weight or more.
  • dextran obtained from the partially decomposed starch by the dextrin dextranase of the present invention has a low calorie content that is difficult to be digested and absorbed even if it is taken orally.
  • an edible material it can be advantageously used as a thickener, extender, excipient, water-soluble food fiber, fat substitute food material, and the like.
  • Example 7 shows a starch aging inhibitor comprising the dextrin dextranase of the present invention
  • Examples 8 and 9 show methods for modifying starch using the dextrin dextranase of the present invention.
  • Examples 10 to 21 show compositions containing dextran obtained by the dextrin dextranase of the present invention.
  • Bacillus circulans P7 (FERM BP-10091) was cultured in a fermenter for about 24 hours. After culturing, the culture supernatant was collected by centrifugation and salted out by adding ammonium sulfate to 80% saturation and leaving it at 4 ° C for 24 hours. The salted-out product was collected by centrifugation, dissolved in 20 mM acetate buffer (pH 6.0), dialyzed against the same buffer, and concentrated to prepare a concentrated enzyme solution. The dextrin dextranase activity of this concentrated enzyme solution was 2,000 units / ml. The concentrated enzyme solution also showed ⁇ -amylase activity of about 600 units / ml.
  • Example 2 This product can be advantageously used for the manufacture of dextran using a starchy substrate, and for improving the quality of starchy substances contained in food and drink.
  • Example 1 Method of Example 1 by partially dissolving starch decomposed product (trade name “Pindettas # 1” manufactured by Matsutani Chemical Co., Ltd.) in water to a concentration of 30% by mass, adjusting this to ⁇ 6.0.
  • the dextrin dextranase enzyme agent obtained in step 1 was used as a substrate solid as dextrin dextranase activity. 5 units per gram were added and allowed to act at 40 ° C for 48 hours. After completion of the reaction, the reaction solution is heated to 95 ° C, kept for 10 minutes, then cooled and filtered, and the filtrate obtained is decolorized with activated charcoal according to a conventional method, and desalted with H-type and OH-type ion resins.
  • the dextran syrup having a concentration of 65% was obtained by further purification.
  • Figure 15 shows the molecular weight distribution of this product.
  • This product had a reducing power of 7.7%, and the content of isomaltose structure after digestion with isomaltdextranase was 41.4%.
  • This product is a mixture of carbohydrates having a peak at the position corresponding to the degree of glucose polymerization 13 in the molecular weight distribution analysis (symbol 7 in FIG. 15).
  • the number average molecular weight is 1,576 danoleton, and the weight average molecular weight is about 44. , 000 danoleton.
  • the reason for the low molecular weight of the obtained dextran was considered to be the influence of a-amylase activity mixed in dextrin dextranase.
  • This product has non-tactile properties, indigestible properties, moderate viscosity, water-soluble dietary fiber, fat substitute food materials, food and drink for diet, quality improver, stabilizer, excipient, increase It can be advantageously used in various compositions such as foods, cosmetics, and pharmaceuticals as a sticking agent and bulking agent.
  • 6% potato starch milk is gelatinized by heating, then adjusted to pH 4.5, temperature 50 ° C, and isoamylase (produced by Hayashibara Biochemical Laboratories Co., Ltd.) at a ratio of 2500 units per gram starch. And allowed to react for 20 hours.
  • the reaction solution was adjusted to pH 6.0, auto-tarbed (120 ° C) for 10 minutes, cooled to 40 ° C, and dextrin dextranase prepared by the method of Example 2 was added to the starch gram.
  • Hiichi Amylase manufactured by Nagase Seikagaku Corporation, trade name Neospitase PK-2
  • the reaction solution is heated to 95 ° C, kept for 10 minutes, cooled, and the filtrate obtained by filtration is decolorized with activated carbon and purified by desalting with H-type and OH-type ion resins according to a conventional method. Further concentration was carried out to obtain a dextran syrup having a concentration of 65%.
  • This product had a reducing power of 7.5%, and the content of isomaltose structure in the digestion of isomalt dextranase was 47.5%.
  • This product has non-tactile and indigestible properties, moderate viscosity, water-soluble dietary fiber, fat substitute food material, diet food and drink, quality improver, stabilizer, excipient, increase It can be advantageously used in various compositions such as foods, cosmetics, and pharmaceuticals as a sticking agent and bulking agent.
  • Example 5
  • dextrin dextranase prepared by the method of Example 1 was added at a rate of 10 units per gram starch and allowed to react for 60 hours.
  • the reaction solution is kept at 95 ° C. for 10 minutes, then cooled and filtered, and the filtrate obtained is decolorized with activated charcoal, purified by desalting with H-type and OH-type ion resins, and further purified. Concentration and spray drying gave dextran powder.
  • This product had a reducing power of 11 ⁇ 3% and the content of isomaltose structure in the digestion of isomaltdextranase was 47.1%.
  • This product has non-tactile, indigestible properties, moderate viscosity, water-soluble dietary fiber, fat substitute food materials, food and drink for diet, quality improver, stabilizer, excipient, increase It can be advantageously used in various compositions such as foods, cosmetics, and pharmaceuticals as a sticking agent and bulking agent.
  • This product has non-tactile, indigestible properties, moderate viscosity, water-soluble dietary fiber, fat substitute food materials, and dietary drinks.
  • a food quality improver, stabilizer, excipient, thickener, extender, etc., it can be advantageously used in various compositions such as foods, cosmetics, and pharmaceuticals.
  • Example 1 400 parts by weight of anhydrous maltose (registered trademark “Fine Tose”, sold by Hayashibara Corporation), 200 parts by weight of trehalose (registered trademark “Trehha”, sold by Hayashibara Corporation) and the dextrin of the present invention obtained by the method of Example 1
  • An enzyme agent containing dextrin dextranase was prepared by uniformly mixing 2 parts by mass of a dextranase solution and drying by ventilation in a conventional manner.
  • This product can be advantageously used as a quality improver, especially a starch aging inhibitor, because it can modify starch quality and suppress starch aging by blending it when producing foods and drinks containing starch.
  • This product is a high-quality koji that has improved starch quality due to the action of dextrin dextranase, which suppresses aging, maintains softness, stretches, and is crisp.
  • This product has a gelatinized starch modified by the action of dextrin dextranase to suppress aging, and it has softness immediately after preparation that does not generate water separation even after thawing after refrigeration or frozen storage. It is a high quality oat that is preserved.
  • This product can be advantageously used for seasoning fruits, coffee, cocoa, tea, etc. as a sweetened condensed milk containing mild water-soluble dietary fiber with a good sweet taste.
  • skim milk powder 175 parts by weight of skim milk powder, 50 parts by weight of powdered dextran obtained by the method of Example 5 and 50 parts by weight of a powder containing high ratatosucrose (sales traded by Hayashibara Shoji Co., Ltd., “trademark“ milk fruit oligo ”) Dissolve in parts by mass, sterilize at 65 ° C for 30 minutes, cool to 40 ° C, inoculate 30 parts by mass of a lactic acid bacteria starter in accordance with the usual method, and incubate at 37 ° C for 8 hours. I got a drink.
  • This product has good flavor, contains dextran and oligosaccharides as water-soluble dietary fiber, and is suitable as a lactic acid bacteria beverage that has a bifidobacteria growth promoting action and an intestinal regulating action that can be achieved simply by keeping the lactic acid bacteria stable.
  • dextran syrup obtained by the method of Example 3 was sprayed as a binder at 40 ° C., granulated for 30 minutes, weighed and packaged to obtain a product.
  • This product has a fruit juice content of about 30. /. Of powdered juice.
  • this product is a high-quality product with an off-flavor and off-flavor, and has a high commercial value as a low-calorie juice rich in water-soluble dietary fiber.
  • water was boiled and boiled in 10 parts by mass of raw material azuki, and then astringently cut and drained to remove water-soluble impurities to obtain about 21 parts by mass of azuki bean paste.
  • This product is stable without color burns and water separation, contains a lot of dietary fiber, has a good touch and taste, and is suitable as a confectionery material such as bread, manju, dumplings, and ice confectionery.
  • Example 17 40% food-grade soy peptide solution (Fuji Oil Co., Ltd., trade name “Hynewt S”) 1 part by weight of powdered dextran obtained by the method of Example 6 was mixed to make a plastic bat And dried under reduced pressure at 50 ° C. and pulverized to obtain a powdered peptide.
  • This product has a good taste and is useful not only as a low-calorie confectionery material such as premixes and frozen desserts, but also as an indigestible dietary fiber for enteral liquid foods and tube liquid foods, and as an intestinal preparation.
  • Example 17 40% food-grade soy peptide solution (Fuji Oil Co., Ltd., trade name “Hynewt S”) 1 part by weight of powdered dextran obtained by the method of Example 6 was mixed to make a plastic bat And dried under reduced pressure at 50 ° C. and pulverized to obtain a powdered peptide.
  • This product has a good taste and is useful not only as a low-
  • G rutin 1 part by weight, 1 part by weight liquid paraffin, 10 parts by weight glyceryl trioctanoate and an appropriate amount of preservatives are heated and dissolved according to a conventional method, and 2 parts by weight of L-lactic acid, 5 parts by weight of 1,3-butylene glycol Then, 66 parts by mass of purified water was added, emulsified with a homogenizer, and an appropriate amount of perfume was added and stirred and mixed to produce a cosmetic cream.
  • This product has excellent moisturizing properties and high stability. It can be advantageously used as a high-quality sunscreen, skin beautifying agent, lightening agent, etc.
  • Example 19 45 parts by weight of dicalcium phosphate, 1.5 parts by weight of sodium lauryl sulfate, 25 parts by weight of glycerin, 0.5 parts by weight of polyoxyethylene sorbitan laurate, 15 parts by weight of dextran syrup obtained by the method of Example 4, 0. Toothpaste was obtained by mixing 02 parts by weight with 18 parts by weight of water. This product improves taste and taste after use without degrading the detergency of the surfactant.
  • Example 19 45 parts by weight of dicalcium phosphate, 1.5 parts by weight of sodium lauryl sulfate, 25 parts by weight of glycerin, 0.5 parts by weight of polyoxyethylene sorbitan laurate, 15 parts by weight of dextran syrup obtained by the method of Example 4, 0. Toothpaste was obtained by mixing 02 parts by weight with 18 parts by weight of water. This product improves taste and taste after use without degrading the detergency of the surfactant.
  • Example 19 45 parts by weight of dicalcium phosphate,
  • This product strengthens indigestible water-soluble dietary fiber with dextran, makes it a liquid food excellent for intestinal adjustment, and is used orally or by tube use to the nasal cavity, stomach, intestine, etc. It can be advantageously used for energy supply to a living body.
  • Aspirin is mixed with 50 parts by mass of water-containing trehalose crystal powder, 14 parts by mass, and 4 parts by mass of powdered dextran prepared by the method of Example 6. 25mm, 1 tablet 680mg tablet was produced.
  • This product uses the formability of dextran and trehalose, has sufficient physical strength without hygroscopicity, and has excellent strength and disintegration in water. Moreover, since dextran works as a water-soluble dietary fiber, it is a tablet having an intestinal regulating action.
  • dextran which has been conventionally produced using sucrose as a raw material, can be efficiently produced in a large amount in a large amount using a starch partial decomposition product as a substrate.
  • the obtained dextran is useful as a plasma expander and as a resistant water-soluble dietary fiber.
  • the present invention which provides a new industrial production method for dextran, will contribute to various fields of use such as food and drink, cosmetics and pharmaceuticals, and its industrial significance is extremely great.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nutrition Science (AREA)
  • Mycology (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

 澱粉や澱粉部分分解物などのα-1,4グルカンから簡便に効率良くデキストランを生成する新規なデキストリンデキストラナーゼと、水溶性食物繊維としてのデキストランを製造する手段を提供することを課題とし、マルトース及びグルコース重合度3以上のα-1,4グルカンから、デキストランを高収率で生成するデキストリンデキストラナーゼとその製造方法と用途、それを産生する微生物、当該酵素をコードするDNAとこれを含んでなる組換えDNA及び形質転換体、更には、該酵素を用いたデキストランの製造方法並びに得られるデキストランの水溶性食物繊維としての用途を提供することにより上記課題を解決する。  

Description

明 細 書
デキストリンデキストラナーゼとその製造方法並びに用途
技術分野
[0001] 本発明は、新規なデキストリンデキストラナーゼとその製造方法並びに用途に関し、 詳細には、マルトース及びグノレコース重合度 3以上のひ—1 , 4グルカンに作用し、デ キストランを高収率で生成するデキストリンデキストラナーゼとその製造方法と用途、 それを産生する微生物、当該酵素をコードする DNAとこれを含んでなる組換え DN A及び形質転換体、更には、該酵素を用いたデキストランの製造方法並びにその用 途に関する。
背景技術
[0002] 食物繊維はカルシウムと並んで日本人の食生活で不足してレ、る栄養素と言われて いる。現在の日本人の平均的な食物繊維摂取量は、平成 6年に出された第 5次改訂 「日本人の栄養所要量」において示された食物繊維の目標摂取量 20〜25g/日に 対し、現在は目標の 5〜8割にしか達していないことが指摘されている(例えば、『食 物繊維の市場動向を探る』、「食品と開発」、第 34卷、第 2号、第 24乃至 27頁(1999 年)などを参照)。近年、食物繊維はその本来の機能としての整腸作用、血中コレス テロール低下作用、血糖調節作用などのみならず、腸内フローラを改善するプレバイ ォテイクスとしての機能も注目されつつある。水溶性食物繊維として、例えば、難消化 デキストリン、難消化澱粉、グァーガム分解物、グノレコマンナン、低分子アルギン酸な どの天然多糖類の部分分解物や誘導体など多種多様な素材が提案され用いられて レ、るものの、さらなる素材の開発が求められている。
[0003] 微生物産生多糖類の一種であるデキストランは、 a - 1 , 6結合を主体とし、 a - 1 , 2結合及びひ一 1 , 3結合の分岐を有する場合もある粘性ダルカンであり、一般的に は、乳酸菌に属するロイコノストック'メセンテロイデス(Leuconostoc mesenteroid es)由来のデキストランスクラーゼ (EC 2. 4. 1. 5)によりスクロースを原料として製 造されている。デキストランの部分分解物(分子量約 75, 000ダルトン)は血漿増量 剤として有効なことが見出され、クリニカルデキストランとして工業規模で生産され、利 用されている。し力 ながら、デキストランの部分分解物若しくはデキストランを水溶性 食物繊維として利用しょうとする試みはほとんどなされていなかった。
[0004] 一方、 α—1 , 4グルカンからデキストランを生成する酵素として、デキストリンデキス トラナーゼ (別名:デキストリン 6—ダルコシルトランスフェラーゼ)が知られている(例 えば、山本一也ら、「バイオサイエンス 'バイオテクノロジー 'バイオケミストリー」、第 56 卷、(1992年)、第 169頁乃至 173頁を参照)。デキストリンデキストラナーゼは、澱粉 部分分解物(デキストリン)に作用し、主としてひ一1 , 6グノレコシノレ転移を触媒するこ とによりデキストランを効率よく生成する酵素であるものの、従来から知られている、酢 酸菌に属するァセトパクター '力プスラタム(Acetobacter capsulatum)由来のデ キストリンデキストラナーゼは、デキストランの生成量が少なレ、(例えば、鈴木 雅之ら 、「ジャーナル ·ォブ ·アプライド'グリコサイエンス (Journal of Applied Glycosci ence)」、第 48卷、第 2号、第 143乃至 151頁(2001年などを参照)こと、また、酵素 自体の安定性が低いことなどの問題点があり、現実に使用されるに至っていない。
[0005] このような状況下、新たなデキストリンデキストラナーゼ、及び、水溶性食物繊維とし てのデキストランを製造する手段の提供が強く望まれる。
発明の開示
[0006] 本発明の課題は、澱粉や澱粉部分分解物などのひ— 1 , 4グノレカン力 簡便に効 率良くデキストランを生成する新規なデキストリンデキストラナーゼと、水溶性食物繊 維としてのデキストランを製造する手段を提供することにある。
[0007] 本発明者等は上記課題を解決するために、澱粉部分分解物を原料とし、 ひ一 1, 6 グノレコシル転移することにより、効率よくデキストランを生成する酵素に期待を込めて
、その酵素を産生する微生物を自然界より広く検索した。その結果、土壌から分離し た微生物、例えば、バチルス'サーキュランス(Bacillus circulans)に属する微生物 P7、及び、ァルスロパクター 'グロビホルミス(Arthrobacter globiformis)に属する 微生物 1349が、いずれも菌体外に新規なデキストリンデキストラナーゼを産生するこ とを見出した。また、これら 2菌株の産生するデキストリンデキストラナーゼを、それぞ れマルトース及びグルコース重合度 3以上の α— 1 , 4グルカンに作用させたところ、 意外にも、デキストランを効率良く製造し得ることを見出し、本発明を完成した。 [0008] すなわち、本発明は、マルトース及びグルコース重合度 3以上の α— 1 , 4グルカン から、デキストランを高収率で生成するデキストリンデキストラナーゼとその製造方法と 用途、それを産生する微生物、当該酵素をコードする DNA、これを含んでなる組換 え DNA及び形質転換体、更には、該酵素を用いたデキストランの製造方法並びに 得られるデキストランの水溶性食物繊維としての用途を提供することにより上記課題 を解決するものである。
[0009] 本発明のデキストリンデキストラナーゼを用いることにより、澱粉や澱粉部分分解物 など安価なマルトース及び/又はグルコース重合度 3以上のひ— 1, 4グルカンを原 料とし、デキストランを高収率に製造することができ、より簡便、安価にデキストランを 提供することが可能となる。
図面の簡単な説明
[0010] [図 1]バチルス ·サーキュランス P7由来デキストリンデキストラナーゼの至適温度を 示す図である。
[図 2]バチルス ·サーキュランス P7由来デキストリンデキストラナ一ゼの至適 pHを示 す図である。
[図 3]バチルス'サーキュランス P7由来デキストリンデキストラナーゼの温度安定性 を示す図である。
[図 4]バチルス ·サーキュランス P7由来デキストリンデキストラナーゼの pH安定性を 示す図である。
[図 5]ァルスロバクタ^ ~ ·グロビホルミス 1349由来デキストリンデキストラナ一ゼの至 適温度を示す図である。
[図 6]ァルスロバクタ^ ~ ·グロビホルミス 1349由来デキストリンデキストラナ一ゼの至 適 pHを示す図である。
[図 7]ァルスロバクタ一'グロビホルミス 1349由来デキストリンデキストラナ一ゼの温 度安定性を示す図である。
[図 8]ァルスロバクタ一'グロビホルミス 1349由来デキストリンデキストラナーゼの pH 安定性を示す図である。
[図 9]組換え DNA、 pBD77を示す図である。図中、黒い太線で示した部分は、バチ ルス.サーキュランス P7 (FERM BP— 10091)由来の本発明のデキストリンデキ ストラナーゼをコードする DNAである。
[図 10]発現用組換え DNA、 pEBD7を示す図である。図中、黒い太線で示した部分 は、バチルス'サーキュランス P7 (FERM BP—10091)由来の本発明のデキスト リンデキストラナーゼをコードする DNAである。
[図 11]組換え DNA、 pAD13を示す図である。図中、黒い太線で示した部分は、ァ ルスロパクター.グロビホルミス 1349 (FERM BP— 10414)由来の本発明のデキ ストリンデキストラナーゼをコードする DNAである。
[図 12]発現用組換え DNA、 pEAD1349を示す図である。図中、黒い太線で示した 部分は、ァルスロパクター 'グロビホルミス 1349 (FERM BP— 10414)由来の本 発明のデキストリンデキストラナーゼをコードする DNAである。
[図 13]バチルス'サーキュランス P7由来のデキストリンデキストラナーゼを用いて澱 粉部分分解物より調製したデキストランの分子量分布と基質である澱粉部分分解物 のそれとの比較を示す図である。
[図 14]ァルスロバクタ一'グロビホルミス 1349由来のデキストリンデキストラナーゼを 用いて澱粉部分分解物より調製したデキストランの分子量分布と基質である澱粉部 分分解物のそれとの比較を示す図である。
園 15]バチルス'サーキュランス P7由来のデキストリンデキストラナーゼ粗酵素剤を 用いて澱粉部分分解物より調製したデキストランの分子量分布と基質である澱粉部 分分解物のそれとの比較を示す図である。
符号の説明
破線:本発明のデキストリンデキストラナーゼを用いて調製したデキストラン 実線:基質として用レ、た澱粉部分分解物
1:グノレコース重合度 88に相当する位置
2 :グノレコース重合度 5· 4に相当する位置
3:グノレコース重合度 84に相当する位置
4 :グノレコース重合度 12· 2に相当する位置
5 :グノレコース重合度 83に相当する位置 6:グノレコース重合度 12に相当する位置
7:グノレコース重合度 13に相当する位置
発明を実施するための最良の形態
[0012] 本発明でいうデキストリンデキストラナーゼとは、マルトース及びグルコース重合度 3 以上のひ _ 1, 4グルカンに作用し、 ひ _ 1, 6ダルコシル転移を触媒することにより、 グノレコースが主としてひ一1 , 6ダルコシド結合で結合した多糖であるデキストランを 生成する酵素を意味する。本発明のデキストリンデキストラナーゼの特徴は、後述す る実験の項で詳細に説明するように、マルトースに作用させた場合においては、反応 液の還元力をほとんど増加させることなぐグルコースを α— 1 , 6転移する作用を有 しており、イソマルトオリゴ糖並びにデキストランを生成し、また、グルコース重合度 3 以上の α— 1, 4グルカンを主体とする澱粉部分分解物に作用させた場合には、デキ ストランを主として生成することにある。本発明のデキストリンデキストラナーゼは、マ ルトースに作用しデキストランを生成する点、及び、高濃度の基質溶液から効率良く デキストランを生成する点で、公知の酢酸菌由来デキストリンデキストラナーゼとは異 なる酵素である。
[0013] 本発明でいうデキストランとは、グルコースが主としてひ 一 1 , 6結合した多糖を意味 し、分子内にひ _ 1, 2、 ひ—1 , 3及び/又はひ _ 1, 4結合を有するものを包含する 。また、その分子量や分岐の程度は特に限定されない。
[0014] 本発明のデキストリンデキストラナーゼの酵素活性は、次のようにして測定すること ができる。マルトースを最終濃度 lwZv%となるよう 20mM酢酸緩衝液(ρΗ6. 0)に 溶解させ基質液とし、その基質液 5mlに、酵素液 0. 5mlをカ卩ぇ 40°Cで 30分間酵素 反応させ、その反応液を沸騰水浴中で 10分間加熱することにより反応停止させた後 、反応液中のグルコース量を、常法に従ってグルコースォキシダーゼ法で測定し、反 応によって生成したグルコース量を算出する。デキストリンデキストラナーゼの活性 1 単位は、上記の条件下で 1分間に 1 μモルのグルコースを生成する酵素量と定義す る。
[0015] 本発明のデキストリンデキストラナーゼの 1つの具体例としては、下記の理化学的性 質を有するデキストリンデキストラナーゼが挙げられる。 (1)分子量
SDS—ゲノレ電気永動法 ίこおレヽて、 90, 000 ± 10, 000タ、、ノレ卜ン。
(2)至適温度
ρΗ6. 0、 30分間反応の条件下で、 50乃至 55°C。
(3)至適 pH
40°C、 30分間反応の条件下で 5. 0乃至 6. 3。
(4)温度安定性
pH6. 0、 60分間保持の条件下で 40°Cまで安定。
(5) pH安定性
4°C、 24時間保持の条件下で pH3. 5乃至 8. 4で安定。
[0016] 本発明のデキストリンデキストラナーゼの別の具体例としては、下記の理化学的性 質を有するデキストリンデキストラナーゼが挙げられる。
(1)分子量
SDS—ゲノレ電気永動法 ίこおレヽて、 90, 000 ± 10, 000タ、、ノレ卜ン。
(2)至適温度
ρΗ6. 0、 30分間反応の条件下で、約 50°C。
(3)至適 pH
40°C、 30分間反応の条件下で約 6. 0。
(4)温度安定性
pH6. 0、 60分間保持の条件下で 40°Cまで安定。
(5) pH安定性
4°C、 24時間保持の条件下で pH4. 0乃至 8. 0で安定。
[0017] また、上記理化学的性質を有する本発明のデキストリンデキストラナーゼは、上記 理化学的性質のみならず、その N末端配列として、配列表における配列番号 1又は 2 で表されるアミノ酸配列を有してレ、る場合がある。
[0018] 本発明のデキストリンデキストラナーゼは、通常、所定のアミノ酸配列を有しており、 その一例としては、例えば、配列表における配列番号 3又は 4で示されるアミノ酸配 歹 IJ、又はそれらに相同的なアミノ酸配列が挙げられる。配列表における配列番号 3又 は 4で示されるアミノ酸配列に相同的なアミノ酸配列を有する変異体酵素としては、マ ルトース及びグルコース重合度 3以上の α— 1, 4グルカンに作用し、 α— 1, 6グノレコ シノレ転移を触媒することにより、グノレコースが主として α— 1 , 6ダルコシド結合で結合 した多糖であるデキストランを生成するという酵素活性を保持する範囲で、配列番号 3又は 4で示されるアミノ酸配列において 1個又は 2個以上のアミノ酸が欠失、置換若 しくは付加したアミノ酸配列を有するものが挙げられ、配列番号 3又は 4で示されるァ ミノ酸配列に対し、通常、 60%以上、望ましくは、 70%以上、さらに望ましくは、 80% 以上、よりさらに望ましくは、 90%以上の相同性を有するアミノ酸配列を有するものが 好適である。
[0019] し力、しながら、上記理化学的性質又はアミノ酸配列を有するデキストリンデキストラ ナーゼはあくまで一例であって、上記と異なる理化学的性質又はアミノ酸配列を有す る酵素も、マルトース及びグルコース重合度 3以上のひ _ 1, 4グノレカンに作用し、 α 1 , 6ダルコシル転移を触媒することにより、グルコースが主として α— 1 , 6ダルコシ ド結合で結合した多糖であるデキストランを生成するかぎり本発明に包含されることは レ、うまでもない。
[0020] 本発明のデキストリンデキストラナーゼはその給源によって制限されないものの、好 ましい給源として、微生物が挙げられ、とりわけ本発明者らが土壌より単離した微生 物 Ρ7株又は 1349株が好適に用いられる。以下、デキストリンデキストラナーゼ産生 能を有する微生物 Ρ7株及び 1349株の同定試験結果を示す。なお、同定試験は、『 微生物の分類と同定』 (長谷川武治編、学会出版センター、 1985年)に準じて行った
[0021] <微生物 Ρ7株の菌学的諸性質 >
ぐ Α:細胞形態 >
(1)肉汁寒天培養、 27°C
通常 0. 5 X 1. 0乃至 2. 0 X 6. O x mの桿菌。
運動性なし。胞子。グラム陽性。
[0022] < 8 :培養性質>
(1) 肉汁寒天平板培養、 27°C 形状: 円形 大きさは 2日間で 1乃至 2mm。
周縁: 全縁
隆起: 半レンズ状
光沢: 鈍光
表面: 平滑
色調: 半透明、灰白色
(2) 肉汁寒天斜面培養、 27°C
生育: 中程度
形状: 糸状
(3) 肉汁ゼラチン穿刺培養、 27°C
液化しない。
< C :生理学的性質 >
(1) VP試験: 陰性
(2) インドールの生成: 陰性
(3) ジハイド口ォキシアセトン )生成:陰性
(4) 澱粉の加水分解: 陽性
(5) 色素の生成: 可溶性色素の生成はなレ
(6) ゥレアーゼ: 陰性
(7) ォキシダーゼ: 陰性
(8) カタラーゼ: 陽性
(9) 生育の範囲: pH5. 5乃至 10. 0、 温度 15乃至 37°C
(10) グルコースからの酸生成 : 陽性
(11) グルコースからのガス生成: 陰性
(12) クェン酸の利用: 陽性
(13) チロシンの分解: 陰性
(14) フエニノレアラニンの脱アミソ化: 陰性
(15) 硝酸塩の還元: 陽性 (16) 酸素に対する態度: 好気性
(17) リゾチーム存在下での生育: 陽性
(18) DNAの GC含量: 53· 4%
[0024] く微生物 1349株の菌学的諸性質〉
ぐ A:細胞形態 >
(1)肉汁寒天培養、 27°C
通常 0. 4 X 1. 0乃至 0. 6 X 3. O x mの球菌または桿菌であり、培養初期に主に桿 菌、培養後期に短桿菌又は球菌へと形態を変える桿菌一球菌サイクルを有する多形 性を示す菌である。
運動性なし。胞子を形成しない。グラム陽性。
[0025] < 8 :培養性質>
(1) 肉汁寒天平板培養、 27°C
形状: 円形 大きさは 2日間で 1乃至 2mm。
周縁: 全縁
隆起: 半レンズ状
光沢: 湿光
表面: 平滑
色調: 半透明、薄黄色
(2) 肉汁寒天斜面培養、 27°C
生育: 中程度
形状: 均質
(3) 肉汁ゼラチン穿刺培養、 27°C
液化しない。
< C :生理学的性質 >
(1) 酸素に対する態度: 好気性
(2) 細胞壁主要ジアミノ酸: リジン
(3) ペプチドダリカン: リジン、ァラニン
(4) 細胞壁 N_ァシル型: (5) 細胞壁構成主要糖成分: ガラクトース、グルコース
(6) カタラーゼ: 陽性
(7) 細胞外 DNase : 陽性
(8) デンプンの分解: 陽性
(9) ビタミン要求性: 陰性
(10)ァルスロバクタ^ ~ ·グロビホルミスのタイプカルチャー(DSM20124)の 16S r DNAとの相同 '性: 97%
[0027] 以上の菌学的性質に基づいて、『バージーズ 'マニュアル'ォブ'システマティック' ノ クテリォロジ一』 (Bergey' s Manual of Systematic Bacteriology)、第 2卷 (1986年)、及び、『リボソーマノレデータベース』(URL : http:ZZrdp. cme. msu. edu/index. jsp)を参考にして、公知菌との異同を検討した。その結果、微生物 P7 株は、バチルス ·サーキュランス(Bacillus circulans)に属する微生物であり、微生 物 1349株は、ァルスロバクタ^ ~ ·グロビホルミス(Arthrobacter globiformis)に属 する微生物であることが判明した。これらの結果より本発明者等は、これら 2菌株をそ れぞれ、新規微生物バチルス'サーキュランス P7及びアルスロバクタ一'グロビホル ミス 1349と命名し、平成 16年 8月 12日付及び平成 17年 9月 8日付で日本国茨城 県つくば巿東 1丁目 1番地 1 中央第 6所在の独立行政法人産業技術総合研究所 特許生物寄託センターに寄託し、それぞれ受託番号 FERM BP— 10091及び F ERM BP— 10414として受託された。本発明のデキストリンデキストラナーゼ産生 能を有する微生物には、上記菌株はもとよりそれらの変異株なども包含される。
[0028] 本発明の DNAとは、上記デキストリンデキストラナーゼをコードするもの全般を意味 する。本発明の DNAは、それが本発明のデキストリンデキストラナーゼをコードするも のである限り、天然由来のものであっても、人為的に合成されたものであってもよい。 天然の給源としては、例えば、バチルス'サーキュランス P7 (FERM BP- 10091 )を含むバチルス属又はアルスロバクタ^ ~ ·グロビホルミス 1349 (FERM BP— 10 414)を含むァルスロパクター属の微生物が挙げられ、これらの菌体力、ら本発明の D NAを含む遺伝子 DNAを得ることができる。すなわち、斯かる微生物を栄養培地に 接種し、好気的条件下で約 1乃至 3日間培養後、培養物から菌体を採取し、リゾチ一 ムゃ βーグノレカナーゼなどの細胞壁溶解酵素や超音波で処理することにより当該 D NAを含む遺伝子 DNAを菌体外に溶出させる。このとき、プロテアーゼなどの蛋白 質分解酵素を併用したり、 SDSなどの界面活性剤を共存させたり凍結融解してもよ レ、。斯くして得られる処理物に、例えば、フヱノール抽出、アルコール沈殿、遠心分離 、リボヌクレアーゼ処理などの常法を適用すれば目的の遺伝子 DNAが得られる。本 発明の DNAを人為的に合成するには、例えば、配列表における配列番号 3又は 4で 示されるアミノ酸配列に基づいて化学合成すればよい。また、当該 DNAを含む遺伝 子 DNAを铸型として、適当なプライマーとなる化学合成 DNAを用いて PCR合成す ることも有禾 Uに実施できる。
[0029] 本発明の DNAは、通常、所定の塩基配列を有しており、その一例としては、例えば 、配列表における配列番号 5又は 6で示される塩基配列又はそれに相同的な塩基配 列が挙げられる。配列表における配列番号 5又は 6で示される塩基配列に相同的な 塩基配列を有する変異体 DNAとしては、コードする酵素の活性を保持する範囲で、 配列番号 5又は 6で示される塩基配列において 1個又は 2個以上の塩基が欠失、置 換若しくは付加した塩基配列を有するものが挙げられ、配列番号 5又は 6で示される 塩基配列に対し、通常、 60%以上、望ましくは、 70%以上、さらに望ましくは、 80% 以上、よりさらに望ましくは、 90%以上の相同性を有する塩基配列を有するものが好 適である。また、遺伝子コードの縮重に基づき、そのコードする酵素のアミノ酸配列を 変えることなく塩基の 1個又は 2個以上を他の塩基に置換したものも当然、本発明の DNAに包含される。
[0030] 本発明の DNAを、自律複製可能な適宜ベクターに挿入して組換え DNAとすること も有利に実施できる。組換え DNAは、通常、 DNAと自律複製可能なベクターとから なり、 DNAが入手できれば、常法の組換え DNA技術により比較的容易に調製する こと力 Sできる。斯かるべクタ一の例としては、 pBR322、 pUC18、 pBluescript II K S ( + )、 pUB110、 pTZ4、 pC194、 pHV14、 TRp7、 YEp7、 pBS7などのプラスミ ドベクターや g ; I C、 gt - λ Β p 11 , φ 1、 φ 105などのファージベクターが挙 げられる。この内、本発明の DNAを大腸菌で発現させるには、 pBR322、 pUC18、 Bluescript II KS ( + )、 え gt ' λ C及び λ gt ' λ Bが好適であり、一方、枯草菌で 発現させるには、 pUB110、 pTZ4、 pC194、 11, φ 1及び φ 105力 S好適である。 pHV14、 TRp7、 YEp7及び pBS7は、組換え DNAを二種以上の宿主内で複製さ せる場合に有用である。 DNAを斯力るベクターに挿入するには、斯界において通常 一般の方法が採用される。具体的には、まず、 DNAを含む遺伝子 DNAと自律複製 可能なベクターとを制限酵素及び Z又は超音波により切断し、次に、生成した DNA 断片とベクター断片とを連結する。遺伝子 DNA及びベクターの切断にヌクレオチド に特異的に作用する制限酵素、とりわけ II型の制限酵素、詳細には、 Sau 3AI、 Ec o RI、 Hin dIII、 Bam HI、 Sal I、 Xba I、 Sac I、 Pst Iなどを使用すれば、 D NA断片とベクター断片とを連結するのが容易である。必要に応じて、両者をァニーリ ングした後、生体内又は生体外で DNAリガーゼを作用させればよレ、。斯くして得ら れる組換え DNAは、適宜宿主に導入して形質転換体とし、これを培養することにより 無限に複製可能である。
[0031] このようにして得られる組換え DNAは、大腸菌、枯草菌、放線菌、酵母をはじめと する適宜の宿主微生物に導入することができる。形質転換体を取得するには、コロニ 一ハイブリダィゼーシヨン法を適用するか、マルトース及び/又はグルコース重合度 3 以上の α— 1, 4グルカンを含む栄養培地で培養し、該糖質よりデキストリンデキストラ ナーゼを生成するものを選択すればょレ、。
[0032] 本発明のデキストリンデキストラナーゼ産生能を有する形質転換体も含めた微生物 の培養に用いる培地は、微生物が生育でき、本発明のデキストリンデキストラナーゼ を産生しうる栄養培地であればよぐ合成培地および天然培地のいずれでもよい。炭 素源としては、微生物が生育に利用できるものであればよぐ例えば、植物由来の澱 粉ゃフイトグリコーゲン、動物や微生物由来のグリコーゲンやプルラン、デキストラン、 また、これらの部分分解物やグルコース、フラクトース、ラタトース、スクロース、マンニ トール、ソルビトール、糖蜜などの糖質、また、クェン酸、コハク酸などの有機酸も使 用すること力 Sできる。培地におけるこれらの炭素源の濃度は炭素源の種類により適宜 選択できる。窒素源としては、例えば、アンモニゥム塩、硝酸塩などの無機窒素化合 物および、例えば、尿素、コーン'スティープ 'リカー、カゼイン、ペプトン、酵母エキス 、肉エキスなどの有機窒素含有物を適宜用いることができる。また、無機成分としては 、例えば、カルシウム塩、マグネシウム塩、カリウム塩、ナトリウム塩、リン酸塩、マンガ ン塩、亜鉛塩、鉄塩、銅塩、モリブデン塩、コバルト塩などの塩類を適宜用いることが できる。更に、必要に応じて、アミノ酸、ビタミンなども適宜用いることができる。
[0033] 培養は、通常、温度 15乃至 37°Cで pH5. 5乃至 10の範囲、好ましくは温度 20乃 至 34°Cで pH5. 5乃至 8. 5の範囲から選ばれる条件で好気的に行われる。培養時 間は当該微生物が増殖し得る時間であればよぐ好ましくは 10時間乃至 150時間で ある。また、培養条件における培養液の溶存酸素濃度には特に制限はないが、通常 は、 0. 5乃至 20ppmが好ましい。そのために、通気量を調節したり、攪拌したりする などの手段を適宜採用する。また、培養方式は、回分培養、半連続培養又は連続培 養のいずれでもよい。
[0034] このようにしてデキストリンデキストラナーゼ産生能を有する微生物を培養した後、 本発明のデキストリンデキストラナーゼを含む培養物を回収する。デキストリンデキスト ラナーゼ活性は、培養微生物がバチルス'サーキュランス P7 (FERM BP— 1009 1)及び、ァルスロバクタ^ ~ ·グロビホルミス 1349 (FERM BP— 10414)のいずれ の場合も、主に培養物の除菌液に認められ、除菌液を粗酵素液として採取することも 、培養物全体を粗酵素液として用いることもできる。培養物から菌体を除去するには 常法の固液分離法が採用される。例えば、培養物そのものを遠心分離する方法、あ るいは、プレコートフィルターなどを用いて濾過分離する方法、平膜、中空糸膜など の膜濾過により分離する方法などが適宜採用される。除菌液をそのまま粗酵素液とし て用いることができるものの、一般的には、濃縮して用いられる。濃縮法としては、硫 安塩析法、アセトン及びアルコール沈殿法、平膜、中空膜などを用いた膜濃縮法な どを採用することができる。
[0035] 更に、デキストリンデキストラナーゼ活性を有する除菌液及びその濃縮液を用いて、 デキストリンデキストラナーゼを斯界において常用されている適宜の方法により固定 ィ匕することもできる。固定化の方法としては、例えば、イオン交換体への結合法、樹脂 及び膜などとの共有結合法'吸着法、高分子物質を用いた包括法などを適宜採用で きる。
[0036] 上記のように本発明のデキストリンデキストラナーゼは、粗酵素液をそのまま又は濃 縮して用いることができるものの、必要に応じて、斯界において常用されている適宜 の方法によって、さらに分離 '精製して利用することもできる。例えば、バチルス'サー キュランス P7 (FERM BP— 10091)の培養液の上清又は破砕処理物を硫安塩 析した酵素標品を透析後、『CM_トヨパール (Toyopeari) 650S』樹脂を用いた陽 イオン交換カラムクロマトグラフィー、続いて、『ブチル一トヨパール(Butyl—Toyope ari) 650M』樹脂を用いた疎水クロマトグラフィーを用いて精製することにより、本発 明のバチルス.サーキュランス P7 (FERM BP— 10091)由来のデキストリンデキス トラナーゼを、電気泳動的に単一バンドを示す精製酵素として得ることができる。また 、ァルスロバクタ^ ~ ·グロビホルミス 1349 (FERM BP— 10414)の培養液の上清 又は破砕処理物を硫安塩析した酵素標品を透析後、『フエニル—トヨパール (Pheny l—Toyopearl) 650M』樹脂を用いた疎水カラムクロマトグラフィー、続いて、『DEA E—トヨパール(DEAE—Toyopeari) 650S』樹脂を用いた陰イオンクロマトグラフィ 一、続いて、『ポリア二オン (Polyanion) SI』樹脂を用いた陰イオン交換クロマトグラフ ィーを用いて精製することにより、本発明のァルスロバクタ一'グロビホルミス 1349 ( FERM BP— 10414)由来のデキストリンデキストラナーゼを、電気泳動的に単一バ ンドを示す精製酵素として得ることができる。
[0037] デキストリンデキストラナーゼが組換え型酵素である場合には、宿主の種類によって は菌体内に酵素が蓄積することがある。このような場合には、菌体又は培養物をその まま使用することも可能であるものの、通常は使用に先立ち、必要に応じて、浸透圧 ショックや界面活性剤により菌体から抽出した後、又は、超音波や細胞壁溶解酵素 により菌体を破砕した後、濾過、遠心分離などにより組換え型酵素を菌体又は菌体 破砕物から分離して用いることも有利に実施できる。
[0038] 本発明のデキストリンデキストラナーゼの基質となるマルトース及びグノレコース重合 度 3以上のひ一 1, 4グルカンとしては、澱粉、アミロース、アミロぺクチン、グリコーゲ ンなどや、それらをアミラーゼまたは酸などによって部分的に加水分解して得られる アミロデキストリン、マルトデキストリン、及びマルトース以上のマルトオリゴ糖などの澱 粉部分分解物が挙げられる。アミラーゼで分解した部分分解物としては、例えば、『 ハンドブック ·ォブ ·アミレーシズ 'アンド ·リレーテッド ·ェンザィム』(Handbook of Amylases and Related Enzymes) (1988年)パーガモン ·プレス社(東京)に記 載されている、 α—アミラーゼ(EC 3. 2. 1. 1)、 アミラーゼ(EC 3. 2. 1. 2) 、マルトテトラオース生成アミラーゼ(EC 3. 2. 1. 60)、マルトペンタオース生成アミ ラーゼ、マルトへキサオース生成アミラーゼ(EC 3. 2. 1. 98)などのアミラーゼを用 レ、て澱粉、アミロース、アミロぺクチン、グリコーゲンなどを分解して得られる部分分解 物を用いることができる。また、部分分解物を調製する際、プルラナーゼ (EC 3. 2. 1. 41)、イソアミラーゼ (EC 3. 2. 1. 68)などの澱粉枝切酵素を作用させることも 随意である。さらには、上記の種々のアミラーゼと本発明のデキストリンデキストラナー ゼを併用して澱粉質に作用させ、デキストランを生成させることも有利に実施できる。 澱粉は、例えば、とうもろこし、小麦、米など由来の地上澱粉であっても、また、馬鈴 薯、さつまいも、タピオ力など由来の地下澱粉であってもよぐ好ましくは、澱粉を糊化 及び/又は液化した溶液として用いられる。
[0039] 本発明のデキストリンデキストラナーゼを基質に作用させるに際し、その基質濃度は 特に限定されず、例えば、基質濃度 0. 5% (w/v)の比較的低濃度の溶液を用いた 場合でも、本発明のデキストリンデキストラナーゼの反応は進行してデキストランを生 成する。工業的には、基質濃度 1 % (w/v)以上、好ましくは 5% (w/v)以上が好適 であり、この条件下で、デキストランを有利に生成できる。反応温度は反応が進行す る温度、即ち 60°C付近までで行えばよい。好ましくは 30乃至 50°C付近の温度を用 いる。反応 pHは、通常、 4乃至 8の範囲、好ましくは pH5乃至 7の範囲に調整するの がよい。酵素の使用量と反応時間とは密接に関係しており、 目的とする酵素反応の 進行により適宜選択すればよい。
[0040] 例えば、基質濃度 1 % (w/v)の澱粉又はその部分分解物やアミロースの水溶液に 、本発明のデキストリンデキストラナーゼを作用させた場合のデキストランの生成メカ ニズムは、以下のように推察される。
1) 本酵素は、グルコース重合度が 3以上のひ _ 1, 4グルカンに作用し、 ひ _ 1, 6 グノレコシル転移反応を触媒することにより、主として非還元末端グノレコース残基の 6 位水酸基にグルコースがひ 一 1, 6結合したひ一 1 , 4グノレカンと、グルコース重合度 力 ^減じたひ _ 1, 4グノレカンを生成する。 2) 本酵素はさらに、 1)で生じたグルコース重合度力 S 1減じた α—1 , 4グノレカンに作 用し、 1)と同様に分子間 α— 1, 6グノレコシル転移反応を触媒することにより、 1)で生 成した非還元末端グノレコース残基の 6位水酸基にグルコースが α— 1 , 6結合した α —1 , 4グルカンにおけるひ一1 , 6結合したグルコース残基の 6位にグルコースをさら に転移し、 ひ 一 1, 6結合からなる鎖長を伸長する。
3)上記 1)及び 2)の反応を繰り返すことにより、マルトース及びグノレコース重合度 3以 上のひ _ 1, 4グルカンからデキストランを生成する。
[0041] 上記のような作用を有する本発明のデキストリンデキストラナーゼは、マルトース及 び/又はグルコース重合度 3以上のひ 一 1, 4グルカンを改質する目的で用いること ができる。例えば、マルトース、マノレトトリオース、マルトテトラオース、マルトペンタォ ースなどのマルトオリゴ糖を含有する澱粉由来の糖質甘味料、又は飲食物の原料及 び/又は中間製品に含まれる澱粉、澱粉部分分解物などの澱粉質に本発明のデキ ストリンデキストラナーゼを作用させて、澱粉質に含まれる α—1 , 4ダルコシド構造を 部分的に α— 1, 6ダルコシド構造に変換し、例えば、低甘味性、澱粉老化防止性、 保湿性、保存安定性など優れた加工特性を有する改質された糖質甘味料及び/又 は澱粉質を製造することも有利に実施できる。従って、本発明のデキストリンデキスト ラナーゼを、例えば、餅、団子、ケーキ、パンなどの菓子、米飯、おかゆ、おはぎ、甘 酒、ピラフなどの米加工品など、澱粉質を比較的多く含む飲食物を製造する際にそ の原料及び/又は製造途中の中間製品に配合することにより、老化防止剤、品質改 良剤などとしての機能を発揮させ、高品質の澱粉含有飲食物を製造することも有利 に実施できる。本発明のデキストリンデキストラナーゼの添加量は、各種飲食物製造 時の水量、澱粉質含量、 ρΗ、品温などによって異なるため特定の範囲に限定するこ とはできず、 目的に応じて適宜調節するのが望ましい。
[0042] また、本発明のデキストリンデキストラナーゼは、澱粉質基質溶液に作用させてデキ ストラン含有液を製造することもできる。このデキストラン含有液に、必要に応じて、 β —アミラーゼ、ダルコアミラーゼ及びひ—ダルコシダーゼから選ばれる 1種又は 2種以 上を作用させて、夾雑するオリゴ糖を加水分解したり、また、還元力を低減させる目 的で水素添加したりすることも有利に実施できる。さらには、ェキソデキストラナーゼ、 エンドデキストラナーゼ、イソマルトデキストラナーゼなどから選ばれる 1種又は 2種以 上のデキストラナーゼを作用させて、生成したデキストランを部分分解してグノレコース 重合度を適宜調整することも随意である。一般的には、デキストラン含有液はさらに 精製して用いられる。精製方法としては、糖の精製に用いられる通常の方法を適宜 採用すればよぐ例えば、活性炭による脱色、 H型、〇H型イオン交換樹脂による脱 塩、アルコールおよびアセトンなど有機溶媒による分別、適度な分離性能を有する膜 による分離、更には、デキストランを利用せず夾雑糖質を資化、分解する微生物、例 えば酵母などによる発酵処理などにより残存している夾雑糖質を分解除去するなど の 1種または 2種以上の精製方法が適宜採用できる。
[0043] 本発明のデキストリンデキストラナーゼは、糊化澱粉や比較的低 DE、好ましくは DE 20未満の澱粉部分分解物に作用させた場合、グノレコースやマルトースなどの低分子 オリゴ糖をほとんど生成しないので、本発明の酵素によって生成されたデキストランを カラムクロマトグラフィーなどの精製手段で精製する必要は特にないものの、用途な ど目的に応じてさらに分画することも随意である。分画にイオン交換クロマトグラフィー を採用する場合、例えば、特開昭 58— 23799号公報、特開昭 58— 72598号公報 などに開示されている強酸性カチオン交換樹脂を用いるカラムクロマトグラフィーを有 利に用いることができる。この際、固定床方式、移動床方式、擬似移動床方式のいず れの方式を採用することも随意である。
[0044] このようにして得られたデキストランを含む水溶液、又はその含量を向上させた水溶 液は、通常、デキストランを、固形物当たり、 10質量%以上、望ましくは 40質量%以 上含有する糖質水溶液で、通常、これを濃縮し、乾燥して粉末状製品とする。
[0045] 本発明のデキストリンデキストラナーゼにより得られるデキストランは、 口腔内の微生 物によって、酸発酵を起こし難ぐまた、スクロースと併用した場合にも歯垢の原因と なる不溶性デキストランの生成を抑制する作用を有しているので低う蝕性又は抗ぅ蝕 性糖質としても有利に利用できる。また、アミラーゼやひ一グノレコシダーゼによってほ とんど分解されないことから、経口摂取しても消化吸収されず、また、腸内細菌によつ て発酵されにくぐ極めて低カロリーの糖質である。さらに、水溶性食物繊維として利 用することができ、整腸作用、血中コレステロール低下作用、血糖調節作用、腸内フ ローラ改善作用、ミネラル吸収促進作用を有していることから生活習慣病の予防に有 用である。さらに、デキストラン自体は、無毒、無害である。
[0046] また、本発明の酵素により得られるデキストランは、浸透圧調節性、賦形性、照り付 与性、保湿性、粘性、澱粉の老化抑制、他の糖の結晶防止性、難発酵性などの性質 を具備している。従って、本発明におけるデキストラン、又はこれを含む糖質は、水溶 性食物繊維、品質改良剤、安定剤、賦形剤などとして、飲食物、嗜好物、飼料、餌料 、化粧品、医薬品などの各種組成物に有利に利用できる。
[0047] 本発明によるデキストランは、例えば、粉飴、ブドウ糖、異性化糖、砂糖、麦芽糖、ト レノヽロース、蜂蜜、メープルシュガー、ソノレビトーノレ、 マノレチトーノレ、ジヒドロ力ノレコン、 ステビオシド、 ひ一グリコシルステビオシド、ラカン力甘味物、グリチルリチン、ソーマ チン、スクラロース、 L—ァスパラチルフエ二ルァラニンメチルエステル、サッカリン、グ リシン、ァラニンなどのような他の甘味料と、また、デキストリン、澱粉、乳糖などのよう な増量剤と混合して使用することもできる。
[0048] また、本発明によるデキストランの粉末状製品は、そのままで、または必要に応じて 、増量剤、賦形剤、結合剤などと混合して、顆粒、球状、短棒状、板状、立方体など 各種形状に成形して使用することも随意である。
[0049] また、本発明によるデキストランは、経口摂取しても消化され難いので、水溶性食物 繊維として一般の飲食物などに有利に利用できる。例えば、醤油、粉末醤油、味噌、 粉末味噌、もろみ、ひしお、フリカケ、マヨネーズ、ドレッシング、食酢、三杯酢、粉末 すし酢、中華の素、天つゆ、麵つゆ、ソース、ケチャップ、焼き肉のタレ、カレールゥ、 シチューの素、スープの素、ダシの素、複合調味料、みりん、新みりん、テーブルシュ ガー、コーヒーシュガーなどの各種調味料への呈味改良剤、品質改良剤などとして 使用することも有利に実施できる。また、例えば、せんべい、あられ、おこし、求肥、餅 類、まんじゅう、ういろう、あん類、羊羹、水羊羹、錦玉、ゼリー、カステラ、飴玉などの 各種和菓子、パン、ビスケット、クラッカー、クッキー、パイ、プリン、バタークリーム、力 スタードクリーム、シュークリーム、ヮッフノレ、スポンジケーキ、ドーナツ、チョコレート、 チューインガム、キャラメル、ヌガー、キャンディーなどの各種洋菓子、アイスクリーム、 シャーベットなどの氷菓、果実のシロップ漬、氷蜜などのシロップ類、フラワーペースト 、ピーナッツペースト、フノレーッペーストなどのペースト類、ジャム、マーマレード、シロ ップ漬、糖果などの果実、野菜の加工食品類、福神漬け、べつたら漬、千枚漬、らっ きょう漬などの漬物類、たくあん漬の素、白菜漬の素などの漬物の素、ハム、ソーセ一 ジなどの畜肉製品類、魚肉ハム、魚肉ソーセージ、力マボコ、チタヮ、天ぷらなどの魚 肉製品、ゥニ、イカの塩辛、酢コンブ、さきするめ、ふぐのみりん干し、タラ、タイ、ェビ などの田麩などの各種珍味類、海苔、山菜、するめ、小魚、貝などで製造される佃煮 類、煮豆、ポテトサラダ、コンブ卷などの惣菜食品、乳製品、魚肉、畜肉、果実、野菜 の瓶詰、缶詰類、合成酒、増醸酒、清酒、果実酒、発泡酒、ビールなどの酒類、珈琲 、ココア、ジュース、炭酸飲料、乳酸飲料、乳酸菌飲料などの清涼飲料水、プリンミツ タス、ホットケーキミックス、即席ジュース、即席コーヒー、即席しるこ、即席スープなど の即席食品、更には、離乳食、治療食、ドリンク剤、ペプチド食品、冷凍食品などの 各種飲食物に配合可能な水溶性食物繊維として有利に利用できる。
[0050] また、家畜、家禽、その他は蜜蜂、蚕、魚などの飼育動物のための飼料、餌料など として整腸、便秘の改善、肥満の防止目的で使用することもできる。その他、タバコ、 練歯磨、口紅、リップクリーム、内服液、錠剤、トローチ、肝油ドロップ、口中清涼剤、 口中香剤、うがい剤など各種の固形物、ペースト状、液状などで嗜好物、化粧品、医 薬品などの各種組成物への呈味改良剤、品質改良剤、安定剤などとして有利に利 用できる。
[0051] 品質改良剤、安定剤としては、有効成分、活性などを失い易い各種生理活性物質 またはこれを含む健康食品、機能性食品、医薬品などに有利に適用できる。例えば 、インターフェロン α j3 γ、ッモア 'ネクロシス'ファクタ^—— α、— β、マク 口ファージ遊走阻止因子、コロニー刺激因子、トランスファーファクター、インターロイ キン IIなどのリンホカイン含有液、インシュリン、成長ホルモン、プロラタチン、エリトロ ポェチン、卵細胞刺激ホルモンなどのホルモン含有液、 BCGワクチン、 日本脳炎ワク チン、はしかワクチン、ポリオ生ワクチン、痘苗、破傷風トキソイド、ハブ抗毒素、ヒト免 疫グロブリンなどの生物製剤含有液、ペニシリン、エリスロマイシン、クロラムフエニコ ール、テトラサイクリン、ストレプトマイシン、硫酸カナマイシンなどの抗生物質含有液 、チアミン、リボフラビン、 L—ァスコルビン酸、肝油、カロチノイド、エルゴステロール、 トコフエロールなどのビタミン含有液、 EPA、 DHA、ァラキドン酸、などの高度不飽和 脂肪酸又はそのエステル誘導体、リパーゼ、エステラーゼ、ゥロキナーゼ、プロテア ーゼ、 β アミラーゼ、イソアミラーゼ、ダルカナーゼ、ラタターゼなどの酵素含有液、 薬用人参エキス、スツボンエキス、クロレラエキス、アロエエキス、プロポリスエキスなど のエキス類、ウィルス、乳酸菌、酵母などの生菌ペースト、ローヤルゼリーなどの各種 生理活性物質も、その有効成分、活性を失うことなぐ安定で高品質の液状、ペース ト状または固状の健康食品、機能性食品や医薬品などを容易に製造できることとなる
[0052] 以上述べたような各種組成物に、デキストランを含有させる方法としては、その製品 が完成するまでの工程に含有せしめればよぐ例えば、混和、混捏、溶解、融解、浸 漬、浸透、散布、塗布、被覆、噴霧、注入、固化など公知の方法が適宜選ばれる。そ の量は、通常 0. 1質量%以上、望ましくは 1質量%以上含有せしめるのが好適であ る。
[0053] 以下、実験により本発明を詳細に説明する。
[0054] く実験 1 :バチルス.サーキュランス P7 (FERM BP— 10091)由来デキストリンデ キストラナーゼの調製 >
澱粉部分分解物(商品名『パインデッタス # 4』、松谷化学工業株式会社製造) 1. 5 w/v%、酵母抽出物(商品名『ポリペプトン』、 日本製薬株式会社製造) 0. 5w/v% 、酵母抽出物(商品名『酵母エキス S』、 日本製薬株式会社製造) 0. lw/v%、リン 酸二カリウム 0. lw/v%、リン酸一ナトリウム · 2水和物 0. 06w/v%、硫酸マグネシ ゥム · 7水和物 0. 05w/v%、及び水からなる液体培地を、 500ml容三角フラスコ 2 本に 100mlずつ入れ、オートクレーブで 121°C、 20分間滅菌し、冷却して、バチルス 'サーキュランス P7 (FERM 8?_ 10091)を接種し、 27で、 230で 111で483寺間回 転振盪培養したものを種培養とした。
[0055] 容量 30Lのフアーメンターに種培養と同じ組成の液体培地を約 20L入れて、加熱 滅菌、冷却して温度 27°Cとした後、種培養液約 200mlを接種し、温度 27°C、 pH5. 5乃至 8. 0に保ちつつ、 24時間通気攪拌培養した。培養後、フアーメンターから培養 液を抜き出し、遠心分離(8, OOOrpm, 20分間)して菌体を除き、培養上清約 18Lを 得た。培養液及び培養上清について、デキストリンデキストラナーゼ活性を測定した ところ、培養液の該酵素活性は約 5. 3単位/ ml、培養上清の該酵素活性は約 5. 2 単位/ mlであった。バチルス'サーキュランス P7によって生産される本発明のデキ ストリンデキストラナーゼはその大部分が菌体外に存在することがわかった。
[0056] く実験 2 :バチルス'サーキュランス P7由来デキストリンデキストラナーゼの精製 > 実験 1で得た培養上清のうち、約 7L (総活性約 36, 400単位)に、 80%飽和となる ように硫安を添加、溶解し、 4°C、 24時間放置することにより塩析した。沈殿した塩析 物を遠心分離(11, 000rpm、 30分間)にて回収し、これを 20mM酢酸緩衝液(pH4 . 5)に溶解後、同緩衝液に対して透析し、粗酵素液約 640mlを得た。粗酵素液中の デキストリンデキストラナーゼ活性は約 50単位 Zmlであった(総活性約 32, 000単 位)。この粗酵素液を東ソー株式会社製『CM—トヨパール (Toyopeari) 6503』ゲ ルを用いた陽イオン交換カラムクロマトグラフィー(ゲル容量 3, 000ml)に供した。デ キストリンデキストラナーゼ活性は、 20mM酢酸緩衝液(ρΗ4· 5)で平衡化した『CM —トヨパール (Toyopearl) 650S』ゲルに吸着し、食塩濃度 0M力ら 0· 5Mのリニア グラジェントで溶出させたところ、食塩濃度約 0. 4M付近に溶出した。この活性画分 を回収し、終濃度 1Mとなるように硫安を添加して 4°C、 24時間放置した後、遠心分 離して不溶物を除き、東ソー株式会社製『プチル—トヨパール(Butyl— Toyopearl) 650M』ゲルを用いた疎水カラムクロマトグラフィー(ゲル容量 300ml)に供した。本 発明のデキストリンデキストラナーゼ活性は、 1M硫安を含む 20mM酢酸緩衝液(pH 6. 0)で平衡化した『ブチルートヨパール(Butyl— Toyopearl) 650M』ゲルに吸着 し、硫安濃度 1Mから 0Mのリニアグラジェントで溶出させたところ、硫安濃度約 0. 2 M付近に溶出した。この活性画分を回収し、これを 20mM酢酸緩衝液(pH6. 0)に 溶解後、同緩衝液に対して透析した。各精製の各工程におけるデキストリンデキスト ラナーゼ活性、デキストリンデキストラナーゼの比活性及び収率を表 1に示す。
[0057] [表 1] デキストリンデキス デキストリンデキス
収率 ェ 程 トラナーゼ活性 トラナーゼ比活性 (%)
(単位) (単位 Zm g蛋白)
培養上清 36, 400 162 100 硫安塩析後の透析液 32, 000 168 87. 9 イオン交換カラム溶出液 14, 730 195 40. 5 疎水カラム溶出液 2, 400 460 6. 6
[0058] 精製したデキストリンデキストラナーゼ標品を 5乃至 20w/v%濃度勾配ポリアクリル アミドゲル電気泳動により酵素標品の純度を検定したところ、蛋白バンドは単一であり 、純度の高い標品であった。
[0059] く実験 3 :バチルス.サーキュランス P7由来デキストリンデキストラナーゼの性質 >
[0060] <実験 3— 1 :分子量 >
実験 2の方法で得たデキストリンデキストラナーゼ精製標品を SDS—ポリアクリルァ ミドゲル電気泳動法(5乃至 20w/v%濃度勾配)に供し、同時に泳動した分子量マ 一力一(日本バイオ'ラッド 'ラボラトリーズ株式会社製)と比較して分子量を測定したと ころ、本発明のデキストリンデキストラナーゼの分子量は 90, 000 ± 10, 000ダノレトン であることが判明した。
[0061] <実験 3— 2 :酵素反応の至適温度及び至適 pH >
実験 2の方法で得たバチルス'サーキュランス P7由来デキストリンデキストラナー ゼ精製標品を用いて、酵素活性に及ぼす温度、 pHの影響を活性測定の方法に準じ て調べた。これらの結果を図 1 (至適温度)、図 2 (至適 pH)に示した。本発明のデキ ストリンデキストラナーゼの至適温度は pH6. 0、 30分間反応の条件下で 50乃至 55 °Cであり、至適 pHは 40°C、 30分間反応の条件下で 5. 0乃至 6. 3であることが判明 した。
[0062] <実験 3— 3:酵素の温度安定性及び PH安定性 >
実験 2の方法で得たデキストリンデキストラナーゼ精製標品を用いて、本酵素の温 度安定性及び pH安定性を調べた。温度安定性は、酵素溶液(20mM酢酸緩衝液、 PH6. 0)を各温度に 60分間保持し、水冷した後、残存する酵素活性を測定すること により求めた。 pH安定性は、本酵素を各 pHの 20mM緩衝液中で 4°C、 24時間保持 した後、 pHを 6. 0に調整し、残存する酵素活性を測定することにより求めた。これら の結果を図 3 (温度安定性)、図 4 (pH安定性)に示した。図 3から明らかなように、本 デキストリンデキストラナーゼの温度安定性は、 40°Cまでであることが判明し、また、 図 4から明らかなように、本発明のデキストリンデキストラナーゼの pH安定性は ρΗ3· 5乃至 8. 4の範囲であることが判明した。
[0063] <実験 3— 4:酵素活性に及ぼす金属塩の影響 >
実験 2の方法で得たデキストリンデキストラナーゼ精製標品を用いて、酵素活性に 及ぼす金属塩の影響を濃度 ImMの各種金属塩存在下で活性測定の方法に準じて 調べた。結果を表 2に示す。
[0064] [表 2]
Figure imgf000024_0001
[0065] 表 2の結果から明らかなように、本デキストリンデキストラナーゼの活性は、 Hg2+ィ オンで著しく阻害され、 Cu2+イオンで阻害されることが判明した。
[0066] ぐ実験 3— 5 : N末端アミノ酸配列 >
実験 2の方法で得たデキストリンデキストラナーゼ精製標品を用いて、本酵素の N 末端アミノ酸配列を、プロテインシーケンサー モデル 492HT (アプライドバイオシス テムズ社製)を用いて分析したところ、配列表における配列番号 1で示されるアミノ酸 配列を有していることが判明した。
[0067] <実験 3— 6 :部分アミノ酸配列 >
実験 2の方法で得たデキストリンデキストラナーゼ精製標品を適量とり、常法により S DS—ゲル電気泳動を行い、デキストリンデキストラナーゼの蛋白バンドを切り出し 0. 2M炭酸水素アンモニゥム溶液 (pH8. 0)に浸漬した。これに修飾トリプシン (プロメガ 株式会社販売) 0. 5 / gを加えて、 37°C、 16時間保持して酵素蛋白を加水分解した 。加水分解物をァセトニトリルにて抽出した後、予め 0. 065% (vZv)トリフルォロ酢 酸で平衡化させておいた HPLC用カラム(商品名 C2/C18 SC2. 1/1 0』、直径 2· Imm X長さ 100mm、アマシャム'バイオサイエンス株式会社製)に注入 し、流速 0. 1ml/分、室温の条件下、 0. 065% (v/v)トリフルォロ酢酸溶液から 0. 055% (v/v)トリフルォロ酢酸— 80% (vZv)ァセトニトリル溶液の 140分間のリニア グラジェントで通液し、ペプチド断片を分画した。カラムから溶出したペプチド断片は 波長 214nmの吸光度を測定することにより検出した。通液開始力も約 33分、約 41 分、約 44分及び約 67分に溶出した 4種のペプチド断片のアミノ酸配列を、それぞれ 実験 3— 5と同じ方法で分析したところ、それぞれ配列表における配列番号 7乃至 10 に示されるアミノ酸配列を有してレ、た。
[0068] く実験 4 :ァルスロバクタ^ ~ ·グロビホルミス 1349 (FERM BP— 10414)由来デキ ストリンデキストラナーゼの調製〉
実験 1と全く同じ組成の液体培地を全く同じ方法にて調製、滅菌、冷却して、ァルス ロバクタ一.グロビホルミス 1349 (FERM BP— 10414)を接種し、 27。C、 230rp mで 48時間回転振盪培養したものを種培養とした。
[0069] 容量 30Lのフアーメンターに種培養と同じ組成の液体培地を約 20L入れて、加熱 滅菌、冷却して温度 27°Cとした後、種培養液約 200mlを接種し、温度 27°C、 pH5. 5乃至 7. 0に保ちつつ、 24時間通気攪拌培養した。培養後、フアーメンターから培養 液を抜き出し、遠心分離(8, 000rpm、 20分間)して菌体を除き、培養上清約 18Lを 得た。培養液及び培養上清について、デキストリンデキストラナーゼ活性を測定した ところ、培養液の該酵素活性は約 0. 36単位/ ml、培養上清の該酵素活性は約 0. 42単位/ mlであった。ァルスロバクタ一'グロビホルミス 1349によって生産される 本発明のデキストリンデキストラナーゼもその大部分が菌体外に存在することがわか つた。
[0070] く実験 5 :ァルスロバクタ一'グロビホルミス 1349由来デキストリンデキストラナーゼ の精製 >
実験 4で得た培養上清のうち、約 18L (総活性約 7, 560単位)に、 80%飽和となる ように硫安を添加、溶解し、 4°C、 24時間放置することにより塩析した。沈殿した塩析 物を遠心分離(11, 000rpm、 30分間)にて回収し、これを 20mM酢酸緩衝液(pH6 . o)に溶解後、同緩衝液に対して透析し、遠心分離して不溶物を除き、粗酵素液約 500mlを得た。粗酵素液中のデキストリンデキストラナーゼ活性は約 14単位/ mlで あった(総活性約 7, 000単位)。この粗酵素液を終濃度 2Mとなるように硫安を添カロ し、遠心分離して不溶物を除き、 2M硫安を含む 20mM酢酸緩衝液 (pH6. 0)で平 衡化した東ソー株式会社製『フエニル一トヨパール(Phenyl— Toyopearl) 650MJ ゲルを用いた疎水カラムクロマトグラフィー(ゲル容量 300ml、)に供した。デキストリ ンデキストラナーゼ活性は、ゲルに吸着し、硫安濃度 2Mから 0Mのリニアグラジェン トで溶出させたところ、硫安濃度約 0. 9M付近に溶出した。この活性画分を回収し、 20mM酢酸緩衝液 (PH6. 0)に対して透析後、東ソー株式会社製『DEAE—トヨパ ール(DEAE— Toyopearl) 650S』ゲルを用いた陰イオン交換カラムクロマトグラフ ィー(ゲル容量 100ml)に供した。デキストリンデキストラナーゼ活性は、 20mM酢酸 緩衝液(pH6. 0)で平衡化した『DEAE_トヨパール(DEAE—Toyopearl) 650S 』ゲルに吸着し、食塩濃度 0Mから 0. 5Mのリニアグラジェントで溶出させたところ、食 塩濃度約 0. 1M付近に溶出した。この活性画分を回収し、これを 20mM酢酸緩衝液 (pH6. 0)に対して透析後、アマシャムフアルマシアノくィオラド株式会社製『ポリア二 オン(Polyanion) SI』カラムを用いた陰イオン交換カラムクロマトグラフィーに供した。 デキストリンデキストラナーゼ活性は、 20mM酢酸緩衝液 (pH6. 0)で平衡化した『ポ リア二オン(Poluanion) SI』ゲルに吸着し、食塩濃度 0Mから 1Mのリニアグラジェン トで溶出させたところ、食塩濃度約 0. 4M付近に溶出した。各精製の各工程におけ るデキストリンデキストラナーゼ活性、デキストリンデキストラナーゼの比活性及び収率 を表 3に示す。
[表 3] デキストリンデキス デキストリンデキス
収率 ェ 程 トラナ一ゼ活性 トラナーゼ比活性 ( )
(単位) (単位/ m g蛋白)
培養上清 7, 560 1. 6 100 硫安塩析後の透析液 7, 000 5. 4 92. 6 疎水カラム溶出液 1 , 750 130 23. 1 イオン交換カラム溶出液 868 415 1 1. 5 イオン交換カラム溶出液 154 415 2. 0 [0072] 精製したデキストリンデキストラナーゼ標品を 5乃至 20w/v%濃度勾配ポリアクリル アミドゲル電気泳動により酵素標品の純度を検定したところ、蛋白バンドは単一であり 、純度の高い標品であった。
[0073] く実験 6 :ァルスロパクター 'グロビホルミス 1349由来デキストリンデキストラナーゼ の性質 >
[0074] <実験 6— 1 :分子量 >
実験 5の方法で得たデキストリンデキストラナーゼ精製標品を SDS—ポリアクリルァ ミドゲル電気泳動法(5乃至 20wZv%濃度勾配)に供し、同時に泳動した分子量マ 一力一(日本バイオ 'ラッド '·ラボラトリーズ株式会社製)と比較して分子量を測定したと ころ、本デキストリンデキストラナーゼの分子量は 90, 000± 10, 000ダノレトンである ことが判明した。
[0075] <実験 6— 2 :酵素反応の至適温度及び至適 PH >
実験 5の方法で得たデキストリンデキストラナーゼ精製標品を用いて、酵素活性に 及ぼす温度、 pHの影響を活性測定の方法に準じて調べた。これらの結果を図 5 (至 適温度)、図 6 (至適 pH)に示した。本発明のデキストリンデキストラナーゼの至適温 度は pH6. 0、 30分間反応の条件下で約 50°Cであり、至適 pHは 40°C、 30分間反 応の条件下で約 6. 0であることが判明した。
[0076] <実験 6— 3:酵素の温度安定性及び pH安定性 >
実験 5方法で得たデキストリンデキストラナーゼ精製標品を用いて、本酵素の温度 安定性及び pH安定性を調べた。温度安定性は、酵素溶液(20mM酢酸緩衝液、 p H6. 0)を各温度に 60分間保持し、水冷した後、残存する酵素活性を測定することに より求めた。 pH安定性は、本酵素を各 pHの 20mM緩衝液中で 4°C、 24時間保持し た後、 pHを 6. 0に調整し、残存する酵素活性を測定することにより求めた。これらの 結果を図 7 (温度安定性)、図 8 (pH安定性)に示した。図 7から明らかなように、本発 明のァルスロパクター 'グロビホルミス由来デキストリンデキストラナーゼの温度安定性 は、 40°Cまでであることが判明し、また、図 8から明らかなように、本発明のデキストリ ンデキストラナーゼの pH安定性は pH4. 0乃至 8. 0の範囲であることが判明した。
[0077] <実験 6— 4:酵素活性に及ぼす金属塩の影響 > 実験 5の方法で得たデキストリンデキストラナーゼ精製標品を用いて、酵素活性に 及ぼす金属塩の影響を濃度 ImMの各種金属塩存在下で活性測定の方法に準じて 調べた。結果を表 4に示す。
[表 4]
Figure imgf000028_0001
[0078] 表 4の結果から明らかなように、本デキストリンデキストラナーゼの活性は、 Hg2+ィ オンで著しく阻害され、 Cu2+イオンで阻害されることが判明した。
[0079] ぐ実験 6— 5 : N末端アミノ酸配列 >
実験 5の方法で得たデキストリンデキストラナーゼ精製標品を用いて、本酵素の N 末端アミノ酸配列を、プロテインシーケンサー モデル 492HT (アプライドバイオシス テムズ社製)を用いて分析したところ、配列表における配列番号 2で示されるアミノ酸 配列を有していることが判明した。
[0080] <実験 6— 6 :部分アミノ酸配列 >
実験 5の方法で得たデキストリンデキストラナーゼ精製標品を適量とり、常法により S DS—ゲル電気泳動を行い、デキストリンデキストラナーゼの蛋白バンドを切り出し 0. 2M炭酸水素アンモニゥム溶液 (pH8. 0)に浸漬した。これに修飾トリプシン (プロメガ 株式会社販売) 0. 5 / gを加えて、 37°C、 16時間保持して酵素蛋白を加水分解した 。加水分解物をァセトニトリルにて抽出した後、予め 0. 065% (v/v)トリフルォロ酢 酸で平衡化させておいた HPLC用カラム(商品名 C2/C18 SC2. 1/1 0』、直径 2· Imm X長さ 100mm、アマシャム'バイオサイエンス株式会社製)に注入 し、流速 0. 1ml/分、室温の条件下、 0. 065% (v/v)トリフルォロ酢酸溶液から 0. 055% (v/v)トリフルォロ酢酸— 80% (v/v)ァセトニトリル溶液の 140分間のリニア グラジェントで通液し、ペプチド断片を分画した。カラムから溶出したペプチド断片は 波長 214nmの吸光度を測定することにより検出した。通液開始力 約 25分、約 36 分、約 39分及び約 47分に溶出した 4種のペプチド断片のアミノ酸配列を、それぞれ 実験 6— 6と同じ方法で分析したところ、それぞれ配列表における配列番号 11乃至 1 4に示されるアミノ酸配列を有してレ、た。
[0081] く実験 7 :バチルス 'サーキュランス P7 (FERM BP— 10091)由来デキストリンデ キストラナーゼをコードする DNAのクローニング及びこれを含む組換え DNAと形質 転換体の調製 >
デキストリンデキストラナーゼをコードする DNAをバチルス.サーキュランス P7 (F ERM BP— 10091)力もクローニングし、自律複製可能な組換え DNAの作製、酵 素をコードする DNAの塩基配列の決定、及び形質転換体の調製を行った。
[0082] <実験 7— 1 :染色体 DNAの調製 >
500ml容フラスコに l % (w/v)ポリペプトン、 0· 5% (w/v)酵母エキス、 0· 5% ( w/v)塩化ナトリウム及び水からなる液体培地(ρΗ7· 0)を 100mlずっとり、 121°C で 20分間オートクレーブして滅菌し、冷却した後、バチルス'サーキュランス P7 (FE RM BP— 10091)を接種し、 27°Cで 24時間回転振盪培養した。
[0083] 培養物を遠心分離して菌体を分離し、適量の TES緩衝液 (pH8. 0)に浮遊させ、リ ゾチームを 0· 05% (w/v)力 Qえ、 37°Cで 30分間インキュベートし、 80°Cで 1時間 凍結した後、 TSS緩衝液(pH9. 0)をカ卩え、 60°Cに予温した TES緩衝液/フエノー ル混液をカ卩え、冷却し、遠心分離して上清を採取した。この上清に 2倍容の冷ェタノ ールをカ卩え、染色体 DNAを含む沈澱部を採取し、 SSC緩衝液 (pH7. 1)に溶解し、 リボヌクレアーゼ 7. 5 x gとプロテアーゼ 125 x gをそれぞれ加え、 37°Cで 1時間反応 させた。反応物にクロ口ホルム Zイソアミルアルコール混液を加えて染色体 DNAを抽 出し、抽出物に冷エタノールをカ卩え、静置したところ、精製染色体 DNAを含む沈澱 が得られた。この沈澱を濃度約 lmg/mlになるように SSC緩衝液 (PH7. 1)に溶解 し、 _ 80°Cで凍結した。
[0084] く実験 7— 2 :コロニーハイブリダィゼーシヨンによるデキストリンデキストラナーゼ遺伝 子のクローニング> 実験 7— 1の方法により得た精製染色体 DNAの溶液を lmlとり、これに制限酵素 S au 3AIを約 30単位カ卩え、 37°Cで 20分間反応させて染色体 DNAを部分的に切断 した後、低融点ァガロースゲル電気泳動法により約 3, 000乃至 7, 000塩基対から なる DNA断片を回収した。別途、プラスミドベクター pBluescriptll KS ( + )を制限 酵素 Bam HIにより切断し、そのベクター断片 0. 1 μ gと DNA断片 1 μ gを市販のキ ット(商品名『DNA Ligation Kit』、宝酒造製)を用いて連結した。得られた組換え DNAにコンビテントセル(商品名『E. coli XL2-Blue MRF'』、ストラタジーン社 製)を 30 μ ΐカ卩え、氷冷下で 30分間静置した後、 42°Cに加温し、 SOCブロスを加え、 37°Cで 1時間インキュベートして組換え DNAを大腸菌に導入し、ゲノミックライブラリ 一を作成した。
[0085] 次いで、デキストリンデキストラナーゼの N末端アミノ酸配列である配列表における 配列番号 1で表されるアミノ酸配列における第 1乃至第 7番目のアミノ酸配歹 1J、内部 部分アミノ酸配列である配列表における配列番号 8で表されるアミノ酸配列における 第 6乃至第 12番目のアミノ酸配歹 1J、同じく内部部分アミノ酸配列である配列表におけ る配列番号 9で表されるアミノ酸配列における第 4乃至第 10番目のアミノ酸配列、及 び、同じく内部部分アミノ酸配列である配列表における配列番号 10で表されるァミノ 酸配列における第 6乃至第 12番目のアミノ酸配列に基づき、配列表における配列番 号 15乃至 18で示される塩基配列を有する 4種の合成オリゴヌクレオチドをそれぞれ 合成し、同位体32 Pで標識してプローブとした。
[0086] ゲノミックライブラリーの大腸菌を 5 ブロモー 4 クロロー 3 インドリル βーガラ クトシドを 50 /i g/ml含む寒天平板培地(ρΗ7. 0)に植菌し、 37°Cで 18時間培養し た後、培地上に形成された約 2, 000個のコロニーをアマシャム製ナイロン膜『Hybo nd_N +』上に固定した。 1次スクリーニングとして、配列表における配列番号 15及 び 16で示される塩基配列を有するプローブを用いて常法によりコロニーハイブリダィ ゼーシヨンを行い、顕著な会合を示したコロニーを選別した。次いで、選別したコロニ 一に対し、 2次スクリーニングとして、配列表における配列番号 17及び 18で示される 塩基配列を有するプローブを用いて同様にコロニーハイブリダィゼーシヨンを行い、 顕著な会合を示すコロニーを 1株選択した。選択した形質転換体をアンピシリン 100 /i g/mlを含む L—ブロス培地(pH7. 0)に植菌し、 37°Cで 24時間回転振盪培養し た。遠心分離により培養物から菌体を採取し、通常一般のアルカリ法により組換え D NAを菌体外に溶出させ、これを常法により精製し分析したところ、約 5, 200塩基対 の揷入 DNA断片を有する組換え DNAを有してレ、た。この組換え DNAを「pBD77」 と命名し、これを保持する形質転換体を「BD77」と命名した。組換え DNA、 pBD77 を図 9に示した。
[0087] く実験 7— 3 :デキストリンデキストラナーゼをコードする DNAの塩基配列の決定 > ベックマン'コールター製 DTCS『クイック 'スタート 'キット』と『遺伝子解析システム C EQ8000』を用いて塩基配列決定を行った。すなわち、実験 7— 2の方法により得た 組換え DNA、 pBD77を 1 μ g、シーケンシング 'プライマー 0. 02 μ gと DTCSタイツ ク'スタート'マスター'ミックス液 8 μ 1、 5Μベタイン 4 μ 1、さらに適量の水を加えて全 量を 20 μ ΐとした。この混液に適量のミネラルオイルを重層した後、パーキン 'エルマ 一製 DNAサーマノレサイクラ一『Ρ】2000型』【こより 96°Cで 20禾少 、 50°Cで 20禾少 Γ 、 さらに、 60°Cで 4分間この順序で 30回繰り返し反応させ相補鎖 DNAを含む反応物 を得た。その後、ストップ 'ソリューション 5 /i l、 99. 5%エタノール 60 μ ΐを加え、遠心 残渣を回収、 70%エタノールで 2回洗浄後、ペレットを乾燥し、サンプルローデイング ソリューション 30 μ 1に溶解して全量を CEQサンプルプレートに移し、ミネラルオイル を 1滴滴下して、ベックマン'コールター製遺伝子解析システム CEQ8000を用いて 塩基配列を決定した。塩基配列解析には市販のソフトウェア(商品名『GENETYX —WIN』、ジエネテイクス社販売』を用いた。
[0088] 組換え DNA、pBD77における挿入 DNA断片の塩基配列を分析したところ、当該 組換え DNAは、バチルス'サーキュランス P7 (FERM BP— 10091)に由来する 、配列表における配列番号 5で示される鎖長 2, 556塩基対の塩基配列を有する DN Aを含んでいた。一方、この塩基配列から推定されるアミノ酸配列は、その配列番号 5で示される塩基配列に併記したとおりであり、このアミノ酸配列と、実験 3— 5の方法 で確認された本発明のデキストリンデキストラナーゼの N末端アミノ酸配列及び実験 3 一 6の方法で明らかにされた部分アミノ酸配列である、配列表における配列番号 1及 び配列番号 7乃至 10で示されるアミノ酸配列と比較したところ、配列表における配列 番号 1で示されるアミノ酸配列は、配列表における配列番号 5で示される塩基配列に 併記したアミノ酸配列における第 43乃至 49番目のアミノ酸配列と完全に一致した。 また、配列表における配列番号 7、 8、 9及び 10に示されるアミノ酸配列は、それぞれ 、配列表における配列番号 5で示される塩基配列に併記したアミノ酸配列における第 337乃至 343番目、第 582乃至 594番目、第 73乃至 83番目及び第 686乃至 700 番目のアミノ酸配列と完全に一致した。以上のことは、本発明のデキストリンデキストラ ナーゼが、配列表における配列番号 3に示されるアミノ酸配列を含むことがあり、当該 酵素はバチルス.サーキュランス P7 (FERM BP—10091)においては、配列表に おける配列番号 5で示される塩基配列の DNAによりコードされていることを示してい る。また、配列表における配列番号 5で示される塩基配列に併記したアミノ酸配列に おける第 1乃至 42番目のアミノ酸配列は、当該酵素の分泌シグナル配列と推定され た。これらのこと力 、当該酵素の分泌前の前駆体は、配列表における配列番号 5の 塩基配列に併記されたアミノ酸配列からなり、そのアミノ酸配列は、配列表における 配列番号 5に示す塩基配列にコードされていることが判明した。
[0089] <実験 8 :発現用組換え DNA、 pEBD7の作製とその形質転換体 EBD7による組換 え型デキストリンデキストラナーゼの産生〉
組換え DNA『pBD77』中のデキストリンデキストラナーゼ遺伝子を発現用ベクター に挿入し、組換え型デキストリンデキストラナーゼの大腸菌における発現を検討した。
[0090] <実験 8— 1:発現用組換え DNA、 pEBD7の作製及び形質転換体 EBD7の調製 > 組換え DNA、 pBD77中のデキストリンデキストラナーゼ遺伝子を発現用ベクター に組込むに際し、デキストリンデキストラナーゼの構造遺伝子の上流に制限酵素 Nde
I認識部位を、下流に Bam HI認識部位を導入する目的で PCRを行った。 pBD77 を錡型として用レ、、合成した配列表における配列番号 22で示される塩基配列を有す るセンスプライマーと配列表における配列番号 23で示される塩基配列を有するアン チセンスプライマーの組合せで PCRを行レ、、 目的とするデキストリンデキストラナーゼ 遺伝子を増幅した。常法により、制限酵素 Nde I及び Bam HIで消化した発現用べ クタ一 pET_ 3a (ノバジヱン社製)に、上記で増幅した後、 Nde I及び Bam HI消化 した DNAを組込んで得られた組換え DNAの揷入配列を実験 7 _ 3の方法に準じて 確認し、組換え DNAを『pEBD7』と命名した。 pEBD7を図 10に示す。得られた pEB D7を用いて大腸菌 BL21 (DE3) (ノバジェン社製)を形質転換して形質転換体『EB D7』を調製した。
[0091] <実験 8_ 2:形質転換体 EBD7による組換え型デキストリンデキストラナ一ゼの産生
>
lOg/1トリプトン(商品名『Bacto_tryptone』、 Dif co社販売)、 5g/l酵母エキス( 商品名『Bacto_yeast extract』、 Difco社販売)及び lOgZl食塩及び水からなる 液体培地を、 500ml容三角フラスコに 100mlずつ入れ、オートクレーブで 121°C、 2 0分間滅菌し、冷却して、無菌的に pH7. 5に調整した後、カナマイシン 2mgを無菌 的に添加して液体培地を調製した。この液体培地に実験 8— 1の方法で得た形質転 換体 EBD7を接種し、 27°Cで回転振盪培養して濁度が約 0. 6に達した時点でイソプ 口ピル一 1—チォ一 β— D—ガラクトピラノシド(IPTG)を終濃度 0. 4mMになるよう に添加してデキストリンデキストラナーゼ遺伝子の発現を誘導し、さらに 3時間培養し た。得られた培養物を、常法に従い、遠心分離して培養上清と菌体とに分離して回 収した。菌体については、超音波破砕法により細胞からの全抽出物を調製した。超 音波破砕法は、菌体を 20mMトリスー塩酸緩衝液 (pH7. 5)に懸濁した後、その菌 体懸濁液を氷水中で冷却しながら超音波ホモジナイザー(モデル UH— 600、株式 会社エスエムテー製)で細胞破砕することによって行い、その破砕物を全細胞抽出 物とした。
[0092] このようにして調製した培養上清と全細胞抽出物とについて、それぞれのデキストリ ンデキストラナーゼ活性を測定し、それぞれの活性値を培養物 lml当りに換算した。 なお、対照としてプラスミド pET_ 3aを保持する大腸菌 BL21 (DE3)を上述の形質 転換体の場合と同一条件で培養し、培養物から培養上清と全細胞抽出物を調製し、 同様にデキストリンデキストラナーゼ活性を測定した。これらの結果を表 5に示す。
[0093] [表 5] デキストリンデキストラナ一ゼ
菌株 活性 (単位 Zm l —培養物)
培養上清 全細胞抽出物
E B D 7
0. 00 0. 58
(本発明)
E . c o 1 i
0. 00 0. 00
(対照)
[0094] 表 5の結果から明らかなように、形質転換体 EBD7は、本発明のデキストリンデキス トラナーゼを細胞内に産生することが判明した。宿主である対照の大腸菌では培養 上清、全細胞抽出物のいずれにも当該酵素活性は全く認められなかった。
[0095] この実験 8の方法で得た全細胞抽出物を、さらに実験 2に示した方法に準じて、塩 析、透析し、 DEAE—トヨパール 650Sゲル、ブチル—トヨパール 650Mゲルを用 レ、たカラムクロマトグラフィーに供して精製し、さらにこの精製酵素標品を実験 3に示 した方法に準じて分析した。その結果、 SDS _ポリアクリルアミドゲル電気泳動法に よる分子量は約 90, 000± 10, 000ダノレトン、デキストリンデキストラナーゼ活性の至 適温度は、 ρΗ6. 0、 30分間反応の条件下で約 50乃至 55°C、至適 pHは 30°C、 30 分間反応の条件下で約 5. 0乃至 6. 3、温度安定性は、各温度に 60分間保持する 条件下で、約 40°Cまで安定であり、 pH安定性は、各 pHに 4°Cで 24時間保持する条 件下で約 3. 5乃至 8. 4の範囲で安定であった。これらの理化学的性質は、実験 2に 示された方法で調製された当該酵素のそれと実質的に同一であった。以上の結果は 、本発明のデキストリンデキストラナーゼは、組換え DNA技術によって良好に製造で きることを示している。
[0096] く実験 9 :ァルスロバクタ一'グロビホルミス 1349 (FERM BP— 10414)由来デキ ストリンデキストラナーゼをコードする DNAのクローニング及びこれを含む組換え DN Aと形質転換体の調製 >
デキストリンデキストラナーゼをコードする DNAをァルスロバクタ一'グロビホルミス 1349 (FERM BP— 10414)からクローニングし、 自律複製可能な糸且換え DNAの 作製、酵素をコードする DNAの塩基配列の決定、及び形質転換体の調製を行った [0097] <実験 9 1 :染色体 DNAの調製 >
実験 7—1と同じ培地にァルスロパクター 'グロビホルミス 1349 (FERM BP— 10
414)を接種し、 27°Cで 24時間回転振盪培養した。その後、実験 7—1と同じ方法に よって、 lmg/ml濃度の精製染色体 DNAを調製した。
[0098] く実験 9— 2 :コロニーハイブリダィゼーシヨンによるデキストリンデキストラナーゼ遺伝 子のクローニング>
実験 9 _ 1の方法により得た精製染色体 DNAの溶液を 1mlとり、実験 7 _ 2と同様 に制限酵素 Sau 3AIにて染色体 DNAを部分的に切断した後、低融点ァガロース ゲル電気泳動法により約 3, 000乃至 7, 000塩基対からなる DNA断片を回収し、制 限酵素 Bam HIにより切断したプラスミドベクター pBluescriptll KS ( + )に連結し た。得られた組換え DNAを用いてコンビテントセル(商品名『E. coli XL2— Blue MRF'』、ストラタジーン社製)を形質転換し、ゲノミックライブラリーを作成した。
[0099] 次いで、デキストリンデキストラナーゼの N末端アミノ酸配列である配列表における 配列番号 2で表されるアミノ酸配列における第 10乃至第 15番目のアミノ酸配歹 1J、内 部部分アミノ酸配列である配列表における配列番号 13で表されるアミノ酸配列にお ける第 12乃至第 17番目のアミノ酸配歹 lj、及び、同じく内部部分アミノ酸配列である配 列表における配列番号 14で表されるアミノ酸配列における第 1乃至第 6番目のァミノ 酸配列に基づき、配列表における配列番号 19乃至 21で示される塩基配列を有する 3種の合成オリゴヌクレオチドをそれぞれ合成し、同位体32 Pで標識してプローブとし た。
[0100] ゲノミックライブラリーの大腸菌を実験 7— 2と同様に 5—プロモー 4 クロロー 3—ィ ンドリル— /3—ガラタトシドを 50 μ g/ml含む寒天平板培地 (pH7. 0)に植菌し、培 養した後、培地上に形成された約 2, 000個のコロニーをアマシャム製ナイロン膜『H ybond_N +』上に固定した。 1次スクリーニングとして、配列表における配列番号 19 及び 20で示される塩基配列を有するプローブを用いて常法によりコロニーハイブリダ ィゼーシヨンを行い、顕著な会合を示したコロニーを選別した。次いで、選別したコロ ニーに対し、 2次スクリーニングとして、配列表における配列番号 21で示される塩基 配列を有するプローブを用いて同様にコロニーハイブリダィゼーシヨンを行レ、、顕著 な会合を示すコロニーを 1株選択した。選択した形質転換体をアンピシリン 100 μ g /mlを含む L—ブロス培地 (pH7. 0)に植菌し、 37°Cで 24時間回転振盪培養した。 遠心分離により培養物から菌体を採取し、通常一般のアルカリ法により組換え DNA を菌体外に溶出させ、これを常法により精製し分析したところ、約 6, 000塩基対の揷 入 DNA断片を有する組換え DNAを有していた。この組換え DNAを「pAD13」と命 名し、これを保持する形質転換体を「AD 13」と命名した。組換え DNA、 pAD13を図 11に示した。
く実験 9— 3 :デキストリンデキストラナーゼをコードする DNAの塩基配列の決定 > 実験 7— 3で用いた方法に準じて塩基配列決定を行った。組換え DNA、 pAD13 における揷入 DNA断片の塩基配列を分析したところ、当該組換え DNAは、ァルス ロバクタ一.グロビホルミス 1349 (FERM BP— 10414)に由来する、配列表にお ける配列番号 6で示される鎖長 2, 703塩基対の塩基配列を有する DNAを含んでレ、 た。一方、この塩基配列から推定されるアミノ酸配列は、その配列番号 6で示される 塩基配列に併記したとおりであり、このアミノ酸配列と、実験 6— 5の方法で確認され た本発明のデキストリンデキストラナーゼの N末端アミノ酸配列及び実験 6— 6の方法 で明らかにされた部分アミノ酸配列である、配列表における配列番号 2及び配列番 号 11乃至 14で示されるアミノ酸配列と比較したところ、配列表における配列番号 2で 示されるアミノ酸配列は、配列表における配列番号 6で示される塩基配列に併記した アミノ酸配列における第 84乃至 98番目のアミノ酸配列と完全に一致した。また、配列 表における配列番号 11、 12、 13及び 14に示されるアミノ酸配列は、それぞれ、配列 表における配列番号 6で示される塩基配列に併記したアミノ酸配列における第 855 乃至 868番目、第 550乃至 561番目、第 883乃至 900番目及び第 160乃至 173番 目のアミノ酸配列と完全に一致した。以上のことは、本発明のデキストリンデキストラナ ーゼが、配列表における配列番号 3に示されるアミノ酸配列を含むことがあり、当該酵 素はァルスロパクター 'グロビホルミス 1349 (FERM BP— 10414)においては、 配列表における配列番号 6で示される塩基配列の DNAによりコードされていることを 示している。また、配列表における配列番号 6で示される塩基配列に併記したァミノ 酸配列における第 1乃至 83番目のアミノ酸配列は、当該酵素の分泌シグナル配列 及び分泌後に切断されるプロ配列を合わせたものと推定された。これらのこと力ら、当 該酵素の分泌前の前駆体は、配列表における配列番号 6の塩基配列に併記された アミノ酸配列からなり、そのアミノ酸配列は、配列表における配列番号 6に示す塩基 配列にコードされていることが判明した。
[0102] <実験 10 :発現用組換え DNA、 pEAD1349の作製とその形質転換体 EAD1349 による組換え型デキストリンデキストラナ一ゼの産生〉
組換え DNA『pADl 3』中のデキストリンデキストラナーゼ遺伝子を発現用ベクター に揷入し、組換え型デキストリンデキストラナーゼの大腸菌における発現を検討した。
[0103] <実験 10 _ 1:発現用組換え DNA、 pEAD1349の作製及び形質転換体 EAD 134
9の調製 >
組換え DNA、 pADl 3中のデキストリンデキストラナーゼ遺伝子を発現用ベクター に組込むに際し、デキストリンデキストラナーゼの構造遺伝子の上流及び下流に制限 酵素 Nde I認識部位を導入する目的で PCRを行った。 pAD 13を铸型として用い、 合成した配列表における配列番号 24で示される塩基配列を有するセンスプライマー と配列表における配列番号 25で示される塩基配列を有するアンチセンスプライマー の組合せで PCRを行い、 目的とするデキストリンデキストラナーゼ遺伝子を増幅した 。常法により、制限酵素 Nde Iで消化した発現用ベクター pET— 3a (ノバジヱン社製 )に、上記で増幅した DNAを Nde Iで消化した後組込み、得られた組換え DNAの 挿入配列を実験 7— 3の方法に準じて確認し、組換え DNAを『pEADl 349』と命名 した。 pEAD 1349を図 12に示す。得られた pEAD 1349を用いて大腸菌 BL21 (DE 3) (ノバジェン社製)を形質転換して形質転換体『EAD 1349』を調製した。
[0104] く実験 10— 2 :形質転換体 EAD 1349による組換え型デキストリンデキストラナーゼ の産生 >
実験 8 _ 2と同様の方法で、実験 10 _ 1の方法で得た形質転換体 EAD 1349を培 養し、イソプロピル一 1 _チォ一 β _ D _ガラクトピラノシド(IPTG)を終濃度 0. 4m Mになるように添加してデキストリンデキストラナーゼ遺伝子の発現を誘導した。得ら れた培養物を、常法に従い、遠心分離して培養上清と菌体とに分離して回収し、菌 体については超音波破砕して破砕物を全細胞抽出物とした。 [0105] このようにして調製した培養上清と全細胞抽出物とについて、それぞれのデキストリ ンデキストラナーゼ活性を測定し、それぞれの活性値を培養物 lml当りに換算した。 なお、対照としてプラスミド pET— 3aを保持する大腸菌 BL21 (DE3)を上述の形質 転換体の場合と同一条件で培養し、培養物から培養上清と全細胞抽出物を調製し、 同様にデキストリンデキストラナーゼ活性を測定した。これらの結果を表 6に示す。
[0106] [表 6]
Figure imgf000038_0001
[0107] 表 6の結果から明らかなように、形質転換体 EAD1349は、本発明のデキストリンデ キストラナーゼを細胞内に産生することが判明した。宿主である対照の大腸菌では培 養上清、全細胞抽出物のいずれにも当該酵素活性は全く認められなかった。
[0108] この実験 10の方法で得た全細胞抽出物を、さらに実験 5に示した方法に準じて、塩 析、透析し、 DEAE—トヨパール 650Sゲル、ブチル—トヨパール 650Mゲルを用 レ、たカラムクロマトグラフィーに供して精製し、さらにこの精製酵素標品を実験 6に示 した方法に準じて分析した。その結果、 SDS _ポリアクリルアミドゲル電気泳動法に よる分子量は約 90, 000± 10, 000ダノレトン、デキストリンデキストラナーゼ活性の至 適温度は、 pH6. 0、 30分間反応の条件下で約 50°C、至適 PHは 30°C、 30分間反 応の条件下で約 6. 0、温度安定性は、各温度に 60分間保持する条件下で、約 40°C まで安定であり、 pH安定性は、各 pHに 4°Cで 24時間保持する条件下で約 4. 0乃至 8. 0の範囲で安定であった。これらの理化学的性質は、実験 5に示された方法で調 製された当該酵素のそれと実質的に同一であった。以上の結果は、本発明のデキス トリンデキストラナーゼは、組換え DNA技術によって良好に製造できることを示してい る。
[0109] <実験 11 :各種糖質への作用 > 各種糖質を用いて、本発明のデキストリンデキストラナーゼの基質特異性を調べた 。グノレコース、スクロース、マノレトース、イソマノレトース、トレノヽロース、コージビオース、 ニゲロース、ラタトース、 マノレトトリオース、 マノレトテトラオース、 マノレトペンタオース、マ ノレトへキサオース、 マノレトヘプタオース、イソマノレトトリオース、ノ ノース、イソパノース 、マルチトール、マノレトトリイトール、 ひ 一、 /3—又は γ—サイクロデキストリン、アミ口 ース、可溶性澱粉又はグリコーゲンを含む水溶液を調製した。これらの基質溶液に、 最終濃度 20mM酢酸緩衝液 (ΡΗ6. 0)を加えた後、実験 2及び 5の方法で得たデキ ストリンデキストラナーゼ精製標品を基質固形物 1グラム当たりそれぞれ 5単位ずつ加 え、基質濃度を 2w/v%になるように調製し、これを 40°C、 pH6. 0で 24時間作用さ せた。酵素反応前後の反応液の糖質を調べるため、展開溶媒として n—ブタノール、 ピリジン、水混液(容量比 6 : 4 : 1)を、また、薄層プレートとしてメルク社製『キーゼル ゲノレ 60』(ァノレミプレート、 10 X 20cm)を用レ、、 2回展開するシリカゲル薄層クロマト グラフィー(以下、 TLCと略す)を行い、 10%硫酸 メタノール溶液を噴霧した後、加 熱することにより糖質を検出した。 TLCにおける基質糖質以外の反応生成物 (イソマ ルトオリゴ糖など)の生成の有無を調べ、それぞれの糖質に対する酵素作用の有無 又は強さの程度を確認した。なお、バチルス'サーキュランス P7由来及びァルスロ バクタ一.グロビホノレミス 1349由来のデキストリンデキストラナーゼはレ、ずれも同じ 基質特異性を示した。結果を表 7に示す。
[表 7]
基質 作用 基質 作用 グルコース 一 マルトへプタオ一ス ++ スクロース - イソマルトトリオース ++ マルトース ++ パノース ++ イソマルトース イソパノース ++ トレハロース - マルチ! ^一ル + コージビオース - マルトトリィトール + ニゲロース - α—サイクロデキストリン - ラク卜ース - —サイクロデキストリン - マルトトリオース ++ τ—サイクロデキストリン - マルトテトラオース ++ アミロース ++ マルトペン夕オース ++ 可溶性澱粉 ++ マルトへキサオース ++ グリコーゲン + 注) 表中、 -は、 「作用しない」 を示し、 +は、 「作用する」 を示し、 + +は、 「よく作用する」
¾示す。
[0111] 表 7の結果から明らかなように、本発明のデキストリンデキストラナーゼは、試験した 糖質のうち、マノレトース、マノレトトリオース、マノレトテトラオース、マノレトペンタオース、マ ノレトへキサオース、マノレトヘプタオース、イソマノレトース、イソマノレトトリオース、パノー ス、イソパノースによく作用し、また、マルチトール、マルトトリィトール、グリコーゲンに 作用した。さらに、アミロース、可溶性澱粉にも、本発明のデキストリンデキストラナー ゼはよく作用した。スクロース、トレハロース、コージビオース、ニゲロース、ラタトース やサイクロデキストリンなどには作用が認められなかった。これらの結果より、本酵素 はマルトース及びグルコース重合度 3以上の α— 1, 4グルカン又はイソマルトオリゴ 糖に作用することが判明した。
[0112] <実験 12 :作用メカニズム >
本発明のデキストリンデキストラナーゼの作用メカニズムを検討するため、最小の基 質であるマルトースに作用させた場合の生成糖の構造を調べた。なお、バチルス'サ ーキュランス Ρ7由来デキストリンデキストラナーゼを用いた場合と、ァルスロパクター 'グロビホルミス 1349由来のデキストリンデキストラナーゼを用いた場合の結果は同 等であった。本実験では、バチルス 'サーキュランス Ρ7由来デキストリンデキストラナ ーゼ精製標品を用いた結果を示す。
[0113] <実験 12_ 1:マルトースからの生成物 >
最終濃度 2w/v%のマルトース水溶液に、最終濃度 10mM酢酸緩衝液 (pH6. 0) をカ卩えた後、実験 2の方法で得たデキストリンデキストラナーゼ精製標品を、それぞれ 基質固形分 1グラム当たり 2単位加え、 40°C、 pH6. 0で作用させ、経時的にサンプリ ングを行い、 100°Cで 10分間保持して反応を停止した。その酵素反応液の糖組成を 高速液体クロマトグラフィー(以下、 HPLCと略称することもある。)及びガスクロマトグ ラフィー(以下、 GCと略称することもある。)を用いて測定した。 HPLCは、カラムに『 MCI GEL CK04SS』(株式会社三菱化学製造) 2本を用レ、、溶離液に水を用い て、カラム温度 80°C、流速 0. 4mlZ分の条件で行い、検出は示差屈折計 RID— 10 A (株式会社島津製作所製造)を用いて行った。 GCは、常法に従って TMS化した後 、カラムに『2%シリコン OV—17 Chromosorb WZAW_DMS』(株式会社ジー •エル.サイエンス製造)を用レ、、 1分間当り 7. 5°Cの昇温速度で温度 160°Cから 320 °Cまで昇温した。キャリアーガスとして窒素ガスを用レ、、糖質の検出は FID法で行つ た。結果を表 8に示す。
[表 8]
反応
糖 組 成 (%)
時間
グルコ マル卜 イソマル マル卜トリ イソパ イソマルト
(時間) パノース 糖質 X 糖質 Y 糖質 Z ース ース 卜ース 才一ス ノース 卜リオース
0 0.3 99.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0,0
1 3.6 89.0 0.0 3.6 2.5 0.0 0.0 1.2 1.1 0.0
5 11.4 59.6 0.0 12.1 11.3 0.0 0.0 4.5 2.5 0.5
10 18.4 35.2 0.0 14.6 18.9 0.0 0.0 9.7 5.1 2.0
25 24.4 15.9 2.5 8.4 26.9 0.2 0.0 14.5 5.1 2.0
50 27.7 7.7 5.7 2.0 25.8 0.4 1.3 17.0 10.3 2.1 注) 表中の
糖質 Xは、 HP LCにおいて保持時間 46. 2分の未知糖質を意味し、
糖質 Yは、 HP LCにおいて保持時間 43. 3分の未知糖質を意味し、
糖質 Zは、 HP LCにおいて保持時間 40. 8分の未知糖質を意味する。
[0115] 表 8の結果から明らかなように、反応初期(反応 1時間)において、本発明のデキスト リンデキストラナーゼの作用により、基質マルトースから、グルコース、マルトトリオース 及びパノースが生成した。また、少量ながら、未知糖質 X及び Yが生成することもわか つた。さらに、反応中期(反応 5時間及び 10時間)では、これら生成糖質の増加ととも に、未知糖質 Zも生成することがわかった。また、さらに、反応終期(反応 25時間及び 50時間)では、これら生成糖のうち、グルコース、パノース、未知糖質 X及び Yが増加 し、未知糖質 Zもわずかに増加した力 マルトトリオースは減少した。また、イソマノレト ース、イソパノース、イソマルトトリオースが生成した。これらの結果から推察すると、反 応初期において、本発明のデキストリンデキストラナーゼはマルトースに作用し、 a - 1 , 4ダルコシル転移及びひ— 1 , 6ダルコシル転移を触媒し、グルコース、マルトトリオ ース及びパノースを生成し、反応の進行にともなレ、、未知糖質 X、 Y及び Zを生成し、 また、さらに反応が進行すると、グルコースにひ — 1, 6ダルコシル転移した生成物の イソマルトースゃ、そのイソマルトースに α—1 , 4ダルコシル転移及び α—1 , 6グル コシル転移した生成物のイソパノース及びイソマルトトリオースが生成することがわか つた。また、未知糖質 X、 Υ及び Ζは α— 1 , 6グノレコシル転移による生成物と推定さ れた。
[0116] く実験 12— 2 :未知糖質 X及び Υの単離 >
最終濃度 2w/v%のマルトース水溶液 100mlに、最終濃度 10mM酢酸緩衝液 (p H6. 0)を加えた後、実験 2の方法で得たデキストリンデキストラナーゼ精製標品を、 基質固形物 1グラム当たり 2単位加え、 40°C、 pH6. 0で 50時間作用させた後、 100 °Cで 10分間保持して反応を停止させた。不溶物を濾過して除去した後、三菱化学製 イオン交換樹脂『ダイヤイオン WA30』を用レ、て脱色、脱塩し、さらに、三菱化学製力 チオン交換樹脂『ダイヤイオン SK_ 1B』とオルガノ製ァ二オン交換樹脂『IRA41 1 S 』を用いて脱色、脱塩し、精密濾過した後、エバポレーターで濃縮し、分画原料とした 。これのうち、固形分として 50mgの原料を実験 5—1に記載の HPLCに 50回に分け て供して精製し、上記のマルトースからの反応物から、純度 99%以上の未知糖質 X 標品を固形分収率約 13. 6 %で、また、純度 98. 5%の未知糖質 Y標品を固形分収 率約 7. 5%で得た。 [0117] く実験 12— 3 :未知糖質 Xの構造解析〉
[0118] <実験 12— 3— 1 :質量分析 >
実験 12— 2の方法で得た未知糖質 X精製標品につレ、て、質量分析装置『LCQ— Advantage』(サーモエレクトロン社製)を用いて質量分析したところ、質量数 689の ナトリウム付加分子イオンが顕著に検出され、未知糖質 Xの質量数が 666であること が判明し、この質量数から、未知糖質 Xはグノレコース 4分子で構成されていることがわ かった。
[0119] く実験 12— 3— 2 :イソマルトデキストラナーゼによる分解試験〉
実験 12— 2の方法で得た未知糖質 X精製標品の水溶液 (最終濃度 lw/v%)にァ ノレスロバクタ一 .グロビホルミス(Arthrobacter globiformis)由来のイソマルトデキ ストラナーゼを作用させ分解試験を行った。基質固形物 1グラム当たりイソマルトデキ ストラナーゼを 10単位加え、 50°C、 pH5. 0で 8時間作用させ、 100。Cで 10分間保 持して反応を停止した後、実験 1 1記載の TLC法及び実験 12— 1記載の HPLC法で 分析し、生成物を調べたところ、イソマルトースとマルトースがほぼ等モル生成するこ とが判明した。即ち、未知糖質 Xは、イソマルトース分子とマルトース分子とがひ一グ ルコシド結合した構造を有し、その構造の非還元末端側にイソマルトース力 還元末 端側にマルトースが位置することが判明した。
[0120] <実験 12— 3— 3 :メチル化分析 >
実験 12— 2の方法で得た未知糖質 X標品を用いて、常法に従ってメチルイ匕分析を 行レ、、ガスクロマトグラフィー法でメチル化物を調べた。結果を表 9にまとめた。
[0121] [表 9]
Figure imgf000044_0001
表 9の結果から明らかなように、 2, 3, 4 _トリメチル化物と 2, 3, 6 _トリメチル化物 と 2, 3, 4, 6—テトラメチルイ匕物が約 2 : 1 : 1の比率であることから、未知糖質 Xを構成 するグルコース 4分子のうち、 2分子は 1位と 6位でダルコシド結合しているグルコース であり、 1分子は 1位と 4位、若しくは、 4位のみでダルコシド結合しているグルコース であり、他の 1分子は 1位のみがダルコシド結合したダルコースであることが判明した 。また、この結果から、未知糖質 Xにおけるイソマルトースとマルトースとの結合は α —1 , 6ダルコシド結合であることが判明した。
[0123] 実験 12— 3の結果から、本発明のデキストリンデキストラナーゼによってマルトース から生成する未知糖質 Xは、本酵素のひ — 1, 6グノレコシル転移反応によって生じた パノースに、再度、グルコースがひ 一 1, 6転移して生じる糖質であり、その構造はパ ノースの非還元末端グルコース残基の 6位水酸基にグノレコシル基がひ結合した 4糖 で、構造式 1で表される 62_ a—イソマルトシルマルトースであることが判明した。
[0124] 構造式 1 :
[化 1] -D-Glq?-(l→6)- a-D-Glcp-(l→6)- a-D-Glcp-il→4)- -D-Glc/?
[0125] <実験 12 _ 4 :未知糖質 Yの構造解析 >
[0126] <実験 12— 4一 1 :質量分析 >
実験 12— 2の方法で得た未知糖質 Υ精製標品について、質量分析装置『LCQ _ Advantage』(サーモエレクトロン社製)を用いて質量分析したところ、質量数 851の ナトリウム付加分子イオンが顕著に検出され、未知糖質 Yの質量数は 828であること が判明し、この質量数から、未知糖質 Yはグルコース 5分子で構成されていることが わかった。
[0127] く実験 12— 4— 2 :イソマルトデキストラナーゼによる分解試験〉
実験 12— 2の方法で得た未知糖質 Y精製標品の水溶液 (最終濃度 lw/v%)に、 実験 12— 3— 2に記載の方法でイソマルトデキストラナーゼを作用させ分解試験を行 つた。生成物を調べたところ、イソマルトースとグルコースがそれぞれ約 1 · 8 : 0. 8の モル比で生成し、部分分解物としてパノースが約 0. 2のモル比ですることが判明した 。即ち、未知糖質 Yは、イソマルトース 1分子とパノース 1分子とが α—グノレコシド結合 した構造を有し、その構造の非還元末端側にイソマルトース力 還元末端側にパノー スが位置することが判明した。 [0128] <実験 12— 4 3 :メチル化分析 >
実験 12— 2の方法で得た未知糖質 Y標品を用いて、常法に従ってメチル化分析を 行レ、、ガスクロマトグラフィー法でメチル化物を調べた。結果を表 10にまとめた。
[0129] [表 10]
Figure imgf000046_0001
[0130] 表 10の結果から明らかなように、 2, 3, 4_トリメチル化物と 2, 3, 6 _トリメチル化物 と 2, 3, 4, 6—テトラメチルイ匕物が約 3 : 1 : 1の比率であることから、未知糖質 Yを構成 するグルコース 5分子のうち、 3分子は 1位と 6位でダルコシド結合しているグルコース であり、 1分子は 1位と 4位、若しくは、 4位のみでダルコシド結合しているグルコース であり、他の 1分子は 1位のみがダルコシド結合したダルコースであることが判明した 。また、この結果から、未知糖質 Yにおけるイソマルトースとパノースとの結合は α—1 , 6グノレコシド結合であることが判明した。
[0131] 実験 12— 4の結果から、本発明のデキストリンデキストラナーゼによってマルトース から生成する未知糖質 Υは、本酵素の α— 1 , 6グノレコシノレ転移によって生じたパノ ースにさらにグルコースが α—1 , 6転移することにより生じる 62 a イソマルトシル マルトースに、またさらに、グルコースが α—1 , 6転移することで生じる糖質であり、 構造式 2で表される 62— a イソマルトトリオシルマルトースであることが判明した。
[0132] 構造式 2 :
[化 2] a-D-Glcp-(l→6)- a-D-Glq7-(l→6)- -D-Glcp-(l→6)- a-D-Glq?- (1→4)- a-D-Glqp
[0133] 以上のことから、本発明のデキストリンデキストラナーゼの反応メカニズムは以下の ように考えられた。
1) 本酵素は、基質としてマルトース及びグルコース重合度 3以上の a— 1 , 4グノレ力 ンに作用し、その非還元性末端のダルコシノレ残基を他の α— 1 , 4グルカンの非還元 性末端グルコース残基の 4位及び 6位水酸基に転移する α— 1 , 4ダルコシル転移及 び α— 1 , 6ダルコシノレ転移を触媒することにより、グルコース重合度が 1増加した α —1 , 4グルカン又はひ—1 , 4グルカンの非還元末端グルコースの 6位にグルコース が結合した 6 _ α—ダルコシル一ひ _ 1, 4グノレカンと、グルコース重合度が 1減じた ひ一 1 , 4グルカンを生成する。
2) 1 )で生成したひ _ 1, 4グルカン及び 6 _ a—ダルコシル一ひ _ 1, 4グルカンは 、再度、本酵素の作用を受け、 ひ一 1, 4グルカンは転移反応のグルコース供与体又 は受容体として、 6 _ a—ダルコシル一ひ _ 1, 4グルカンは転移反応のグルコース 受容体として利用される。従って、 ひ _ 1, 4グノレカンは蓄積することなく分解され、一 方、 6 _ a—ダルコシル一ひ一1 , 4グルカンはさらにダルコシル転移を受け、 6 _ a —イソマルトシル一ひ _ 1, 4グルカン、 ひ一イソマルトトリオシル一ひ _ 1, 4グルカン と、 6ダルコシド結合したグノレコース鎖が伸長する。
3) 1 )の反応でグルコースが生成した場合、グノレコースは、本酵素の α—1 , 6グノレ コシル転移の受容体となり、 2)と同様な反応によりイソマルトース、イソマルトトリオ一 スが生成する。
[0134] <実験 13: α— 1 , 6ダルコシル転移反応と反応液の還元力 >
マルトース水溶液 (最終濃度 1又は 30w/v%)に、最終濃度 20mM酢酸緩衝液 (p H6. 0)を加えた後、実験 2の方法で得たバチルス'サーキュランス P7由来デキスト リンデキストラナーゼ精製標品を、基質固形物 1グラム当たり 4単位加え、 40°C、 pH6 . 0で作用させ、経時的にサンプリングを行レ、、 100°Cで 10分間保持して反応を停止 した。反応液中に残存するマルトース量を実験 5—1に記載の HPLC法で定量した。 また、酵素反応液の還元糖量をソモギー'ネルソン法で、全糖量をアンスロン法で定 量し、次式、 還元力 = (還元糖量 Z全糖量) X I 00 で還元力を算出した。結果を 表 1 1に示す。
[0135] [表 11] マルト- -ス濃度
反応時間 1 w/ v % 3 0 w/ v
マル ス マルトース
(時間) 還元力 (相対 還元力 (相対 %) 残存量 ) 残存量 (%)
0 99. 7 99. 7
4 64. 2 68. 8 43. 6 (讓)
8 43. 0 46. 0 (106¾) 51. 8 43. 6 (100%)
16 20. 9 28. 8
24 8. 1 13. 3 43. 8 (101%)
[0136] 表 11の結果から明らかなように、本発明のデキストリンデキストラナーゼをマルトー スに作用させたところ、マルトース濃度が lw/v%と比較的低い場合には、ごく僅か な還元力の増加が認められ、また、マルトース濃度が 30w/v%と比較的高い場合 には、ほとんど反応液の還元力の増加は認められな力 た。マルトース濃度が lw/ v%と比較的低ぐ且つ、マルトースの残存量が 10%以下の場合においても反応液 の還元力の増加がごく僅かであることは、本発明のデキストリンデキストラナーゼは本 質的に転移反応を触媒する酵素であり、反応に際してほとんど加水分解を行わない ことを意味している。本発明のデキストリンデキストラナーゼは効率良くひ一1 , 6ダル コシル転移を行う酵素であることがわかった。なお、ァルスロバクタ一'グロビホルミス
1349由来のデキストリンデキストラナーゼを用いて同様に試験した場合も、ほぼ同 様な結果が得られた。
[0137] <実験 14 :巿販ひーグノレコシダーゼの転移反応特性との比較 >
市販のひ一ダルコシダーゼ(商品名『トランスダルコシダーゼァマノ L』)は、マルトー スからひ一 1, 6ダルコシル転移によりイソマルトオリゴ糖を生成することが知られてい る。このひ—グノレコシダーゼを用いて、実験 13の方法に準じて試験し、本発明のデ キストリンデキストラナーゼとひ一ダルコシダーゼとの転移反応特性を比較した。マル トース水溶液 (最終濃度 lw/v%)に最終濃度 20mMになるよう酢酸緩衝液 (pH6. 0)をカ卩えた後、実験 2の方法で得たバチラス'サーキュランス P7由来のデキストリン デキストラナーゼ精製標品を 20単位 40°Cで作用させた場合と、市販の α—ダルコシ ダーゼをマルトース分解活性として 20単位、及び酢酸緩衝液(ρΗ5. 0)をカ卩えた以 外は同様に反応させた場合との反応液の組成を比較した。それらの結果を表 12に 示す。 [0138] [表 12]
Figure imgf000049_0001
* :グルコース重合度 3以上の糖質
** :商品名 「トランスグルコシダ一ゼァマノ L」
[0139] 表 12の結果から明らかなように、糖組成中マルトース含量が 10%以下になった反 応 8時間において、本発明のデキストリンデキストラナーゼの反応液は糖組成中グノレ コース含量が 27. 9%であるのに対し、 ひ—ダルコシダーゼの反応液のそれは 74. 4 %と明らかにグノレコースの含量が多かった。反応により生じたグノレコースに対してグ ルコースがひ一1 , 6転移することによって生じたと考えられるイソマルトースの含量は 、デキストリンデキストラナーゼの反応液で 8· 1 %、 α—ダルコシダーゼのそれで 7· 1 %と、ほぼ同じ値を示した。一方、グルコース重合度 3以上の糖質の含量は、デキス トリンデキストラナーゼの反応液で糖組成中 55. 3%であるのに対し、 α—ダルコシダ ーゼのそれでは 8· 6%と少なかった。本発明のデキストリンデキストラナーゼは、 α— グノレコシダーゼよりもダルコシル転移能が強ぐ比較的グルコース重合度が高い糖質 の生成能が強いことが明ら力となった。なお、ァルスロパクター 'グロビホルミス 134 9由来のデキストリンデキストラナーゼを用いて同様に試験した場合も、ほぼ同様な結 果が得られた。
[0140] <実験 15 :デキストリンデキストラナーゼによる高分子デキストラン生成の有無 > 本発明のデキストリンデキストラナーゼと公知のデキストリンデキストラナーゼとの異 同を調べる目的で、本発明のデキストリンデキストラナーゼの高分子デキストラン生成 能を検討した。山本一也ら、「バイオサイエンス 'バイオテクノロジー 'バイオケミストリ 一」、第 56卷、(1992年)、第 169頁乃至 173頁に記載の方法に準じて、マルトテトラ オース水溶液 (最終濃度 lw/v%)に最終濃度 20mMになるよう酢酸緩衝液 (pH6 . 0)を加えた後、実験 2の方法で得たバチルス'サーキュランス P7由来デキストリン デキストラナーゼ精製標品又は実験 5の方法で得たァルスロパクター 'グロビホルミス
1349由来デキストリンデキストラナーゼ精製標品を基質固形分 1グラム当たり、 25 単位加え、 40°C、 pH6. 0で作用させ、経時的にサンプリングを行レ、、 100°Cで 10分 間保持して反応を停止した。反応停止液 lmlに対して 3mlのエタノールをカ卩え、 4°C で 30分間静置後、 4°Cで、 15, 000rpm、 15分間遠心分離し、上清を除き、 4°Cに冷 却した 75%エタノール 4mlを加え、攪拌し、 4°Cで、 15, OOOrpm, 15分間遠心分離 して高分子デキストランを沈殿させたところ沈殿物はほとんど認められなかった。さら に上清を完全に除き、脱イオン水 lmlをカ卩え、アンスロン硫酸法によって、高分子デ キストランを定量したところ、本発明のデキストリンデキストラナーゼはいずれも高分子 デキストランを全く生成しないことが判明した。山本一也ら、「バイオサイエンス 'バイ ォテクノロジ一.バイオケミストリー」、第 56卷、(1992年)、第 169頁乃至 173頁によ れば、公知のデキストリンデキストラナーゼを上記と同様に操作した場合、沈殿物が 認められたこと力 、高分子デキストランを生成していると考えられる。これに対し、本 発明のデキストリンデキストラナーゼは 75%エタノールで沈殿する高分子のデキスト ランを生成しないことから、公知のデキストリンデキストラナーゼとは異なる酵素である と考えられる。
[0141] く実験 16 :デキストリンデキストラナーゼにより得られるデキストラン〉
本発明のデキストリンデキストラナーゼを澱粉部分分解物に作用させてデキストラン を調製し、その構造的な特徴を検討した。
[0142] く実験 16 _ 1:澱粉部分分解物からのデキストランの調製 >
澱粉部分分解物(商品名『パインデッタス # 1』、松谷化学株式会社製造)を濃度 3 0質量%になるよう水に溶解し、これを pH6. 0に調整し、実験 2の方法で得たバチル ス.サーキュランス P7由来デキストリンデキストラナーゼ精製標品又は、実験 5の方 法で得たアルスロバクタ一'グロビホルミス 1349由来デキストリンデキストラナーゼ 精製標品を固形物 1グラム当たり 5単位カ卩え、 40°C、 pH6. 0で 48時間作用させた後 、その反応液を 10分間煮沸して反応を停止させた。この反応液を、それぞれ実験 12 _ 2に記載の方法で脱色、濾過し、エバポレーターで濃縮後、真空乾燥し粉砕して、 粉末状のデキストランを P7由来デキストリンデキストラナーゼ反応物から固形物当り 8 5. 8%及び 1349由来デキストリンデキストラナーゼの反応物から固形物当り 84. 4 %の収率で得た。それぞれのデキストランの還元力を実験 13に記載の方法で調べ たところ、反応基質である澱粉部分分解物の還元力が 7. 1 %であったのに対し、反 応により得たデキストランの還元力は、バチルス'サーキュランス P7由来デキストリン デキストラナーゼの反応物では 7. 7%、ァルスロパクター 'グロビホルミス 1349由来 デキストリンデキストラナーゼの反応物では 7. 8%であり、いずれも酵素反応による還 元力の増加はごく僅かであった。
[0143] く実験 16— 2 :デキストランのイソマルトデキストラナーゼ消化試験 >
実験 16— 1に記載の方法で調製したデキストランを、実験 12— 3— 2に記載の方法 でイソマルトデキストラナーゼ消化することにより分析した。イソマルトデキストラナーゼ 消化により、基質の澱粉部分分解物からイソマルトースは全く生成しないのに対し、 バチルス 'サーキュランス P7由来デキストリンデキストラナーゼにより生成したデキス トラン及びアルスロバクタ一'グロビホルミス 1349由来デキストリンデキストラナーゼ により生成したデキストランからは糖組成としてそれぞれ 45. 4%及び 41. 0%のイソ マルトースが生成した。このことは、本発明のデキストリンデキストラナーゼによって、 生成したデキストランは全体としてイソマルトース構造を 45. 4%及び 41. 0%含んで レ、ることを示してレ、る。
[0144] <実験 16— 3 :分子量分布分析 >
実験 16— 1に記載の方法で調製したデキストランについて、分子量分布を、常法に よりゲル濾過 HPLCにて分析した。ゲル濾過 HPLCは、カラムに『TSK GEL GM PWXL』 (株式会社東ソ一) 2本連結し、溶離液に水を用いて、カラム温度 35°C、流 速 0. 5mlZ分の条件で行い、検出は示差屈折計 RID— 10A (株式会社島津製作 所製造)を用いて行った。バチルス'サーキュランス P7由来デキストリンデキストラナ ーゼにより生成したデキストラン及びアルスロバクタ一.グロビホルミス 1349由来デ キストリンデキストラナーゼにより生成したデキストランの分子量分布を、それぞれ基 質として用いた澱粉部分分解物(商品名『パインデッタス # 1』)のそれと比較しつつ、 それぞれ図 13及び図 14に示した。また、分子量分布分析の結果を表 13に示した。
[表 13]
Figure imgf000052_0001
* :商品名 「パインデックス # 1」
[0146] 図 13及び表 13の結果から明らかなように、基質として用いた澱粉部分分解物が、 分子量分布分析においてグノレコース重合度 88及び 5. 4に相当する位置に 2つのピ ーク(図 13における符号 1及び 2)を有する糖質混合物であるのに対して、バチルス- サーキュランス P7由来デキストリンデキストラナーゼにより生成したデキストランは、 グノレコース重合度 84と 12· 2に相当する位置にピーク(図 13における符号 3及び 4) を有する糖質の混合物に変化した。また、図 14及び表 13の結果から明らかなように 、ァルスロバクタ一.グロビホルミス 1349由来デキストリンデキストラナーゼにより生 成したデキストランではグルコース重合度 83と 12に相当する位置にピーク(図 14に おける符号 5及び 6)を有する糖質の混合物にそれぞれ変化した。本発明のデキスト リンデキストラナーゼは、澱粉分解物中のグルコース重合度 90付近のデキストリン及 びグルコース重合度 6付近のマルトオリゴ糖両方に作用し、 a - 1 , 6分子間転移反 応により高分子デキストリンを低分子側に、マルトオリゴ糖を高分子オリゴ糖側に変換 したと考えられた。
[0147] く実験 16 _4:メチル化分析 >
実験 16— 1に記載の方法で調製したデキストランを、常法に従ってそれぞれメチル 化分析に供し、ガスクロマトグラフィーでメチル化物を調べた。結果を表 14にまとめた [0148] [表 14]
Figure imgf000053_0001
*:澱粉部分分解物
[0149] 表 14の結果から明らかなように、調製デキストランから生じたメチル化物を澱粉部 分分解物のそれと比較すると、 2, 3, 6 トリメチル化物が著しく減少しており、 2, 3, 4—トリメチル化物が著しく増加していた。このことから、本発明のデキストリンデキスト ラナーゼの反応によって、主にひ 1 , 4結合により構成されるグルコース重合体であ る澱粉部分分解物が、主に α— 1, 6結合により構成される低分子デキストランに変 換されることが判明した。バチルス 'サーキュランス Ρ7由来デキストリンデキストラナ ーゼ及びアルスロバクタ一'グロビホルミス 1349由来デキストリンデキストラナーゼ により得られたデキストランのひ— 1 , 6結合の含有率はそれぞれ 57. 9%及び 54. 1 %であった。また、 2, 3 _ジメチルイ匕物が反応によって少量増加していることから、本 発明のデキストリンデキストラナーゼは、グルコースを転移受容体の非還元末端グノレ コースにひ一 1 , 6転移するだけでなぐ転移受容体の内部若しくは還元末端のグノレ コース残基の 6位にもひ 一 1, 6転移する場合もあることが判明した。
[0150] 本発明のデキストリンデキストラナーゼにより得られるデキストランの有用性を評価 する目的で、バチノレス'サーキュランス Ρ7由来デキストリンデキストラナーゼを用い て調製したデキストランを用いて、当該デキストランのう蝕原性、消化性、血糖値とィ ンスリン量に及ぼす影響、及び急性毒性を実験 17乃至 20で調べた。
[0151] く実験 17 :う蝕原性菌による調製デキストランの酸発酵性試験〉
実験 16 1の方法で得たデキストランを用レ、、『インフエクシヨン'アンド ·ィムニティ 一(Infection and Immunity)』、第 39卷、 43乃至 49頁(1983年)に記載の大島 らの方法に準じて、う蝕原性菌での酸発酵性試験を行った。う蝕原性菌として、ストレ プトコッカス.ソブリナス(Streptococcus sobrinus) 6715株及びストレプトコッカス' ミュータンス(Streptococcus mutans) OMZ— 176株の 2株を用いた。対照として 、スクロースを用いて同様に操作した。結果を表 15に示す。
[表 15]
Figure imgf000054_0001
[0153] 表 15の結果から明らかなように、酸発酵を受けるスクロースの場合は pH約 4にまで 低下することに対して、本発明のデキストリンデキストラナーゼの反応により得られた デキストランは、ストレプトコッカス 'ソブリナス及びストレプトコッカス'ミュータンスによ る酸発酵をほとんど受けず、 pHは約 6を維持しており、歯のエナメル質が脱灰する臨 界 pHである 5· 5より高レ、 pHであった。本発明のデキストリンデキストラナーゼの反応 により得られたデキストランは、う蝕原性の極めて低いことが確認された。
[0154] <実験 18:デキストランの消化性試験 >
実験 16— 1の方法で得たデキストランを用いて、 日本栄養食糧学会誌、第 43卷、 第 23乃至 29頁(1990)に記載の岡田らの方法に準じて、試験管内において唾液ァ ミラーゼ、人工胃液、勝液アミラーゼ及び小腸粘膜酵素による本発明によるデキスト ランの消化性を調べた。対照として、市販の難消化性デキストリン (商品名『パインフ アイバー』、松谷化学工業株式会社製造)を用いた。結果を表 16に示す。
[0155] [表 16] 分解率 (%)
消化酵素 難消化性デキストリン デキストラン
(対照)
唾液アミラーゼ 0. 0 0. 3 人工胃液 0. 0 0. 0 塍液アミラーゼ 0. 2 2. 4
小腸粘膜酵素 23. 3 41. 1
[0156] 表 16の結果から明らかなように、本発明のデキストリンデキストラナーゼの反応によ り得られたデキストランは、唾液アミラーゼ、人工胃液によっては全く消化されず、陴 液アミラーゼでごく僅か分解された。また、対照の難消化性糖質の小腸粘膜酵素によ る分解率が 41. 1 %であるのに対して、本発明のデキストリンデキストラナーゼの反応 により得られたデキストランの分解率は 23· 3%と低ぐ当該デキストランは市販の難 消化性糖質よりもさらに消化されにくい糖質であることが判明した。
[0157] <実験 19:デキストランの摂取が血糖値及びインスリン量に与える影響 >
実験 16— 1の方法で得たデキストランを用いて、血糖値の上昇及びインスリンの上 昇を調べた。 7週齢のウィスター系雄ラット各群 5匹を用いて、 1日絶食後、胃ゾンデ にてデキストランの水溶液を経口投与した。投与量はラット体重 lKg当り固形物とし て 1. 5gとした。血液を、経口投与直前、経口投与 15分後、 30分後、 60分後、 120 分後に尾静脈力も採血した。それぞれの血液を、へパリン処理済へマトクリック管に 採取し、遠心分離(2, OOOrpm, 10分間)して、血漿を得た。血糖値はグルコースォ キシダーゼ法で測定し、インスリン量はラットインスリン測定キット (株式会社森永生科 学研究所製造)を用いて測定した。対照 1としてグノレコースを、また、対照 2として市販 の難消化性デキストリン (商品名『パインファイバー』、松谷化学工業株式会社製造) を用いた。それぞれの試験系における血糖値及びインスリン量の結果をそれぞれ表 17及び表 18に示す。
[0158] [表 17] 血糖値 (mg/d 1)
時間 (分) グルコース 難消化性デキストリン デキストラン
(対照 1 ) (対照 2) 投与直前 73±7 76±10 66±15
15 127±31 149±52 109±20
30 169±20 192±35 151±18
60 164±13 193土 18 150±3
120 137±9 143±19 113±15
[0159] [:表 18] インスリン量 (n g/m 1 )
時間 (分) グルコース 難消化性デキストリン デキストラン
(対照 1 ) (対照 2 ) 投与直前 0.14±0.11 0.28±0.25 0.24±0.21
15 0.53±0.55 1.67±1.20 0.46±0.12
30 0.84±0·62 1.34±0.58 0.95±0.40
60 0.37±0.22 1.05±0·37 0.48±0.25
120 0.35±0.20 0.54±0·22 0.31±0.22
[0160] 表 17及び表 18の結果から明らかなように、本発明のデキストリンデキストラナーゼ により澱粉部分分解物から得られるデキストランは、市販の難消化性デキストリンと同 様に、血糖値の上昇及びインスリン量の上昇が、グルコースに比べ低いことが判明し た。
[0161] <実験 20:急性毒性試験 >
マウスを使用して、実験 16— 1の方法で得たデキストランを経口投与して急性毒性 試験を行った。その結果、本発明のデキストリンデキストラナーゼにより得られるデキ ストランは低毒性であり、投与可能な最大量においても死亡例は認められず、そのし D 値は、 5gZkg_マウス体重以上であった。
50
[0162] 以上の実験 17乃至 20の結果から、本発明のデキストリンデキストラナーゼにより澱 粉部分分解物より得られるデキストランは、経口摂取しても虫歯になり難ぐ消化吸収 され難ぐ低カロリーの可食素材として、増粘剤、増量剤、賦形剤、更には、水溶性食 物繊維、脂肪代替食品材料などとして有利に利用することができる。
[0163] 以下、本発明のデキストリンデキストラナーゼの製造法を実施例 1及び 2に、本発明 のデキストリンデキストラナーゼを用いたデキストランの製造方法を実施例 3乃至 6に 示す。また、本発明のデキストリンデキストラナーゼを含んでなる澱粉老化防止剤を 実施例 7に、本発明のデキストリンデキストラナーゼを用いた澱粉質の改質方法を実 施例 8及び 9に示す。さらに、本発明のデキストリンデキストラナーゼにより得られるデ キストランを含有せしめた組成物を実施例 10乃至 21に示す。
実施例 1
[0164] バチルス 'サーキュランス P7 (FERM BP— 10091)を実験 1の方法に準じて、フ アーメンターで約 24時間培養した。培養後、遠心分離して培養液上清を回収し、 80 %飽和となるように硫安を添加して 4°C、 24時間放置することにより塩析した。塩析物 を遠心分離して回収し、これに 20mM酢酸緩衝液 (pH6. 0)に溶解後、同緩衝液に 対して透析し、膜濃縮して濃縮酵素液を調製した。本濃縮酵素液のデキストリンデキ ストラナーゼ活性は 2, 000単位/ mlであった。また、本濃縮酵素液には約 600単位 /mlの α—アミラーゼ活性も認められた。本品は、澱粉質の基質を用いたデキストラ ンの製造に、また、飲食物に含まれる澱粉質の品質改良剤などに有利に利用できる 実施例 2
[0165] ァルスロバクタ^ ~ ·グロビホルミス 1349 (FERM BP— 10414)を実験 4の方法に 準じて、フアーメンターで約 24時間培養した。培養後、遠心分離して培養液上清を 回収し、 80%飽和となるように硫安を添加して 4°C、 24時間放置することにより塩析し た。塩析物を遠心分離して回収し、これに 20mM酢酸緩衝液 (pH6. 0)に溶解後、 同緩衝液に対して透析し、膜濃縮して濃縮酵素液を調製した。本濃縮酵素液のデキ ストリンデキストラナーゼ活性は 500単位/ mlであった。また、本濃縮酵素液には約 70単位/ mlの α—アミラーゼ活性も認められた。本品は、澱粉質の基質を用いたデ キストランの製造に、また、飲食物に含まれる澱粉質の品質改良剤などに有利に利 用できる。
実施例 3
[0166] 澱粉部分分解物(商品名『パインデッタス # 1』、松谷化学株式会社製造)を濃度 3 0質量%になるよう水に溶解し、これを ρΗ6. 0に調整し、実施例 1の方法で得たデキ ストリンデキストラナーゼ酵素剤を、デキストリンデキストラナーゼ活性として基質固形 物 1グラム当たり 5単位加え、 40°C、 48時間作用させた。反応終了後、反応液を 95 °Cに加熱し、 10分間保った後、冷却し、濾過して得られる濾液を常法に従って、活性 炭で脱色し、 H型及び OH型イオン樹脂により脱塩して精製し、更に濃縮して濃度 65 %のデキストランシラップを得た。本品の分子量分布を図 15に示した。本品は、還元 力 7. 7%であり、イソマルトデキストラナーゼ消化におけるイソマルトース構造の含量 は 41. 4%であった。また、本品は、分子量分布分析においてグルコース重合度 13 に相当する位置にピーク(図 15における符号 7)を有する糖質の混合物であり、数平 均分子量 1 , 576ダノレトン、重量平均分子量約 44, 000ダノレトンであった。得られる デキストランが低分子である理由として、デキストリンデキストラナーゼに混在している a一アミラーゼ活性の影響が考えられた。本品は、非う触性、難消化性の性質、適度 の粘度を有し、水溶性食物繊維、脂肪代替食品材料、ダイエット用飲食物、品質改 良剤、安定剤、賦形剤、増粘剤、増量剤などとして、食品、化粧品、医薬品など各種 組成物に有利に利用できる。
実施例 4
6%馬鈴薯澱粉乳を加熱糊化させた後、 pH4. 5、温度 50°Cに調整し、これにイソ アミラーゼ (株式会社林原生物化学研究所製造)を澱粉グラム当たり 2500単位の割 合になるように加え、 20時間反応させた。その反応液を pH6. 0に調整し、オートタレ ーブ(120°C)を 10分間行った後、 40°Cに冷却し、これに実施例 2の方法で調製した デキストリンデキストラナーゼを澱粉グラム当たり 5単位、 ひ一アミラーゼ (ナガセ生化 学工業株式会社製造、商品名ネオスピターゼ PK - 2)を澱粉グラム当たり 3単位の 割合になるように加え、 60時間反応させた。その反応液を 95°Cに加熱し、 10分間保 つた後、冷却し、濾過して得られる濾液を常法に従って、活性炭で脱色し、 H型及び OH型イオン樹脂により脱塩して精製し、更に濃縮して濃度 65%のデキストランシラッ プを得た。本品は、還元力 7. 5%であり、イソマルトデキストラナーゼ消化におけるィ ソマルトース構造の含量は 47. 5%であった。本品は、非う触性、難消化性の性質、 適度の粘度を有し、水溶性食物繊維、脂肪代替食品材料、ダイエット用飲食物、品 質改良剤、安定剤、賦形剤、増粘剤、増量剤などとして、食品、化粧品、医薬品など 各種組成物に有利に利用できる。 実施例 5
[0168] 30。/oとうもろこし澱粉乳に最終濃度 0. 1質量%となるように炭酸カルシウムをカロえ た後、 pH6. 5に調整し、これにひ—アミラーゼ(ノボ社製造、商品名ターマミール 60 L)を澱粉グラム当たり 0. 2質量%になるように加え、 95°Cで 15分間反応させた。そ の反応液を、オートクレーブ(120°C)を 10分間行った後、 40°Cに冷却し、これにひ —アミラーゼ (ナガセ生化学工業株式会社製造、商品名ネオスピターゼ PK—2)を澱 粉グラム当たり 5単位カ卩え、実施例 1の方法で調製したデキストリンデキストラナーゼ を澱粉グラム当たり 10単位の割合になるように加え、 60時間反応させた。その反応 液を 95°Cで 10分間保った後、冷却し、濾過して得られる濾液を常法に従って、活性 炭で脱色し、 H型及び OH型イオン樹脂により脱塩して精製し、更に濃縮、噴霧乾燥 してデキストラン粉末を得た。本品は、還元力 11 · 3%であり、イソマルトデキストラナ ーゼ消化におけるイソマルトース構造の含量は 47. 1%であった。本品は、非う触性 、難消化性の性質、適度の粘度を有し、水溶性食物繊維、脂肪代替食品材料、ダイ エツト用飲食物、品質改良剤、安定剤、賦形剤、増粘剤、増量剤などとして、食品、 化粧品、医薬品など各種組成物に有利に利用できる。
実施例 6
[0169] 30%タピオ力澱粉乳に最終濃度 0. 1質量%となるように炭酸カルシウムをカ卩えた 後、 pH6. 5に調整した。これにひ一アミラーゼ(ノボ社製造、商品名ターマミール 60 L)を澱粉グラム当たり 0. 1質量%になるように加え、 95°Cで 15分間反応させた。そ の反応液を、オートクレープ(120°C)を 10分間行った後、 40°Cに冷却し、これにマ ルトテトラオース生成アミラーゼ (株式会社林原生物化学研究所製造)を澱粉グラム 当たり 1単位加え、実施例 2の方法で調製したデキストリンデキストラナーゼを澱粉グ ラム当たり 8単位の割合になるように加え、 60時間反応させた。その反応液を 95°Cで 10分間保った後、冷却し、濾過して得られる濾液を常法に従って、活性炭で脱色し、 H型及び OH型イオン樹脂により脱塩して精製し、更に濃縮、噴霧乾燥してデキスト ラン粉末を得た。本品は、還元力 10. 0%であり、イソマルトデキストラナーゼ消化に おけるイソマルトース構造の含量は 44. 9%であった。本品は、非う触性、難消化性 の性質、適度の粘度を有し、水溶性食物繊維、脂肪代替食品材料、ダイエット用飲 食物、品質改良剤、安定剤、賦形剤、増粘剤、増量剤などとして、食品、化粧品、医 薬品など各種組成物に有利に利用できる。
実施例 7
[0170] <品質改良剤 >
無水マルトース (登録商標『ファイントース』、株式会社林原商事販売) 400質量部、 トレハロース (登録商標『トレハ』、株式会社林原商事販売) 200質量部及び実施例 1 の方法で得た本発明のデキストリンデキストラナーゼ溶液 2質量部を均一に混合し、 常法により通風乾燥してデキストリンデキストラナーゼを含有する酵素剤を調製した。 本品は、澱粉質を含む飲食物を製造する際に配合することにより、澱粉質を改質し、 澱粉の老化を抑制できることから、品質改良剤、とりわけ澱粉老化防止剤として有利 に利用できる。
実施例 8
[0171] <餅>
白玉粉 500質量部と上新粉 500質量部を均一に混合した後、水 700質量部を加え て混合し、水蒸気で 40分間蒸した。次いで、蒸したものをミキサー (ACM20LVW、 株式会社愛ェ舎製作所)で攪拌しながら生地が約 55°Cになったところで、スクロース 360質量部、トレハロース (登録商標『トレハ』、株式会社林原商事販売) 240質量部 及び実験 5の方法で精製して得た本発明のデキストリンデキストラナーゼを、デキスト リンデキストラナーゼ活性が最終で澱粉質 1グラム当たり 50単位になるよう 4回に分け て添加'混合し、その後さらに 3分間混合してからプラスチック製の内径 60mm、高さ 22mmの容器に詰めて成形し、放冷し保存した。本品は、デキストリンデキストラナー ゼの作用により澱粉質が改質されて老化が抑制され、柔らかさが持続してのびがあり 、歯切れがよい高品質の餅である。
実施例 9
[0172] ぐおはぎ >
マルトース (登録商標『サンマルト』、株式会社林原商事販売) 350質量部、トレハロ ース (登録商標『トレハ』、株式会社林原商事販売) 150質量部を温水に溶解し、濃 度 70質量%の糖液を調製して 55°Cに保温した。次いで、予め水に浸漬しておいた 1 000質量部の餅米を常法により蒸し器で蒸し上げ、 55°Cまで冷却した後、前記糖液 500質量部と実験 2の方法で精製して得た本発明のデキストリンデキストラナーゼを 澱粉質 1グラム当たり 25単位になるよう加えて均質に攪拌した。これを保温容器に入 れて約 1時間、 45〜50°Cに保持した後、取り出し、こし餡を用いておはぎを調製した 。本品は、デキストリンデキストラナーゼの作用により糊化澱粉が改質されて老化が抑 制されており、冷蔵、或いは冷凍保存後に解凍しても離水などの発生もなぐ調製直 後の柔らかさが保持される高品質のおはぎである。
実施例 10
[0173] <加糖練乳 >
原乳 100質量部に実施例 3の方法で得たデキストランシラップ 2質量部及び蔗糖 3 重量を溶解し、プレートヒーターで加熱殺菌し、次いで濃度 70%に濃縮し、無菌状 態で缶詰して製品を得た。本品は、温和な甘味で風味も良ぐ水溶性食物繊維を多 く含む加糖練乳として、フルーツ、コーヒー、ココア、紅茶などの調味用に有利に利用 できる。
実施例 11
[0174] <乳酸菌飲料 >
脱脂粉乳 175質量部、実施例 5の方法で得た粉末状デキストラン 50質量部及びラ タトスクロース高含有粉末 (株式会社林原商事販売、登録商標『乳果オリゴ』) 50質量 部を水 1、 500質量部に溶解し、 65°Cで 30分間殺菌し、 40°Cに冷却後、これに、常 法に従って、乳酸菌のスターターを 30質量部植菌し、 37°Cで 8時間培養して乳酸菌 飲料を得た。本品は、風味良好で、水溶性食物繊維としてのデキストランやオリゴ糖 を含有し、乳酸菌を安定に保つだけでなぐビフィズス菌増殖促進作用、整腸作用を 有する乳酸菌飲料として好適である。
実施例 12
[0175] <粉末ジュース >
噴霧乾燥により製造したオレンジ果汁粉末 33質量部に対して、実施例 6の方法で 得た粉末状デキストラン 10質量部、含水結晶トレハロース 20質量部、無水結晶マル チトール 20質量部、無水クェン酸 0. 65質量部、リンゴ酸 0. 1質量部、 2-0- α - ダルコシルー Lーァスコルビン酸 0. 2質量部、クェン酸ソーダ 0. 1質量部、及び粉末 香料の適量をよく混合攪拌し、粉砕し微粉末にして、これを流動層造粒機に仕込み、 排風温度 40°Cとし、これに実施例 3の方法で得たデキストランシラップをバインダーと して適量スプレーし、 30分間造粒し、計量し、包装して製品を得た。本品は、果汁含 有率約 30。/。の粉末ジュースである。又、本品は、異味、異臭がなぐ高品質で、水溶 性食物繊維を多く含む低カロリーのジュースとして商品価値の高いものである。
実施例 13
[0176] <カスタードクリーム >
コーンスターチ 100質量部、実施例 4の方法で得たデキストランシラップ 30質量部 、トレハロース含水結晶 70質量部、蔗糖 40質量部、および食塩 1質量部を充分に混 合し、鶏卵 280質量部を加えて攪拌し、これに沸騰した牛乳 1、 000質量部を徐々に 加え、更に火にかけて攪拌を続け、コーンスターチが完全に糊化して全体が半透明 になった時に火を止め、これを冷却して適量のバニラ香料を加え、計量、充填、包装 して製品を得た。本品は、なめらかな光沢を有し、風味良好で、水溶性食物繊維とし てのデキストランを多く含む、高品質のカスタードクリームである。
実施例 14
[0177] <あん >
原料あずき 10質量部に、常法に従って、水をカ卩えて煮沸し、渋切り、あく抜きし、水 溶性夾雑物を除去して、あずきつぶあん約 21質量部を得た。この生あんに蔗糖 14 質量部、実施例 3の方法で得たデキストランシラップ 5質量部と水 4質量部をカ卩えて煮 沸し、これに少量のサラダオイルをカ卩えてつぶあんを壊さないように練り上げ、製品の あんを約 35質量部得た。本品は、色焼け、離水もなく安定で、食物繊維を多く含み、 舌触り、風味良好で、あんパン、まんじゅう、団子、最中、氷菓などの製菓材料として 好適である。
実施例 15
[0178] <パン >
小麦粉 100質量部、イースト菌 2質量部、蔗糖 5質量部、実施例 5の方法で得た粉 末状デキストラン 1質量部および無機フード 0. 1質量部を、常法に従って、水でこね 、中種を 26°Cで 2時間発酵させ、その後 30分間熟成、焼き上げた。本品は、色相、 すだちとも良好で、食物繊維を多く含み、適度の弾力、温和な甘味を有する高品質 のパンである。
実施例 16
[0179] <粉末ペプチド >
40%食品用大豆ペプチド溶液 (不二製油株式会社販売、商品名『ハイニュート S』) 1質量部に、実施例 6の方法で得た粉末状デキストラン 2質量部を混合し、プラスチッ ク製バットに入れ、 50°Cで減圧乾燥し、粉砕して粉末ペプチドを得た。本品は風味良 好で、プレミックス、冷菓などの低カロリー製菓材料として有用であるのみならず、経 口流動食、経管流動食のための難消化性の食物繊維、整腸剤量としても有用である 実施例 17
[0180] <化粧用クリーム >
モノステアリン酸ポリオキシエチレングリコール 2質量部、 自己乳化型モノステアリン 酸グリセリン 5質量部、実施例 5の方法で得た粉末状デキストラン 2質量部、 ひーグノレ コシル ルチン (株式会社林原販売、商品名ひ Gルチン) 1質量部、流動パラフィン 1 質量部、トリオクタン酸グリセリン 10質量部および防腐剤の適量を常法に従って加熱 溶解し、これに L—乳酸 2質量部、 1、 3—ブチレングリコール 5質量部および精製水 6 6質量部を加え、ホモゲナイザーにかけ乳化し、更に香料の適量を加えて攪拌混合 し、化粧用クリームを製造した。本品は、優れた保湿性を有しており、安定性は高ぐ 高品質の日焼け止め、美肌剤、色白剤などとして有利に利用できる。
実施例 18
[0181] <練歯磨 >
第二リン酸カルシウム 45質量部、ラウリル硫酸ナトリウム 1. 5質量部、グリセリン 25 質量部、ポリオキシエチレンソルビタンラウレート 0. 5質量部、実施例 4の方法で得た デキストランシラップ 15質量部、サッカリン 0. 02質量部を水 18質量部と混合して練 歯磨を得た。本品は、界面活性剤の洗浄力を落とすことなぐ嫌味を改良し、使用後 感も良好である。 実施例 19
[0182] ぐ流動食用固体製剤 >
実施例 5の方法で得た粉末状デキストラン 100質量部、トレハロース含水結晶 200 質量部、マルトテトラオース高含有粉末 200質量部、粉末卵黄 270質量部、脱脂粉 乳 209質量部、塩化ナトリウム 4. 4質量部、塩ィ匕カリウム 1. 8質量部、硫酸マグネシ ゥム 4質量部、チアミン 0. 01質量部、 L—ァスコルビン酸ナトリウム 0. 1質量部、ビタ ミン Eアセテート 0. 6質量部およびニコチン酸アミド 0. 04質量部からなる配合物を調 製し、この配合物を 25グラムずつ防湿性ラミネート小袋に充填し、ヒートシールして製 品を得た。本品は、デキストランにより難消化性の水溶性食物繊維を強化し、整腸作 用に優れた流動食とし、経口的、または鼻腔、胃、腸などへ経管的使用方法により利 用され、生体へのエネルギー補給用に有利に利用できる。
実施例 20
[0183] <錠剤 >
アスピリン 50質量部にトレハロース含水結晶粉末 14質量部、実施例 6の方法で調 製した粉末状デキストラン 4質量部を充分に混合した後、常法に従って打錠機により 打錠して厚さ 5. 25mm, 1錠 680mgの錠剤を製造した。本品は、デキストランとトレ ハロースの賦形性を利用したもので、吸湿性がなぐ物理的強度も充分にあり、し力、も 水中での崩壊はきわめて良好である。また、デキストランが水溶性食物繊維として働 くことから、整腸作用をも有する錠剤である。
実施例 21
[0184] <外傷治療用膏薬 >
マノレトース 400質量部に、ヨウ素 3質量部を溶解したメタノール 50質量部を力卩ぇ混 合し、更に実施例 5の方法で調製した粉末状デキストランの 10w/v%水溶液 200質 量部を加えて混合し、適度の延び、付着性を示す外傷治療用膏薬を得た。本品は、 デキストランによる適度な粘度、保湿性を有しており、経時変化が少ない商品価値の 高い膏薬である。また、本品は、ヨウ素による殺菌作用のみならず、マルトースによる 細胞へのエネルギー補給剤としても作用することから治癒期間が短縮され、創面もき れいに治る。 産業上の利用可能性
本発明によれば、従来、スクロースを原料として製造されていたデキストランを、澱 粉部分分解物を基質として、大量に、且つ、効率良く製造することが可能となる。得ら れるデキストランは、血漿増量剤としても、また、難消化性の水溶性食物繊維としても 有用である。デキストランの新たな工業的製造法を提供する本発明は、飲食物、化粧 品、医薬品など種々の利用分野に貢献することとなり、その産業的意義はきわめて大 さい。

Claims

請求の範囲 [1] マルトース及びグルコース重合度 3以上のひ一1 , 4グルカンに作用し、デキストラン を生成するデキストリンデキストラナーゼ。 [2] 下記の理化学的性質を有する請求項 1記載のデキストリンデキストラナーゼ。
(1)分子量
SDS—ゲノレ電気 動法 ίこおレヽて、 90, 000 ± 10, 000タ"ノレ卜ン。
(2)至適温度
ρΗ6. 0、 30分間反応の条件下で、 50乃至 55°Cの範囲にある。
(3)至適 pH
40°C、 30分間反応の条件下で 5. 0乃至 6. 3の範囲にある。
(4)温度安定性
pH6. 0、 60分間保持の条件下で 40°Cまで安定。
(5) pH安定性
4°C、 24時間保持の条件下で少なくとも pH4. 0乃至 8. 0で安定。
[3] 配列表における配列番号 1又は 2で示されるアミノ酸配列を N末端アミノ酸配列とし て有する請求項 1又は 2記載のデキストリンデキストラナーゼ。
[4] 配列表における配列番号 3又は 4で示されるアミノ酸配歹 1Jか、又は配列表における 配列番号 3又は 4で示されるアミノ酸配列において、その酵素活性を保持する範囲で 1個又は 2個以上のアミノ酸が欠失、置換若しくは付加したアミノ酸配列を有する請求 項 1乃至 3のいずれかに記載のデキストリンデキストラナーゼ。
[5] バチルス属またはァルスロパクター属に属する微生物に由来する請求項 1乃至 4の いずれかに記載のデキストリンデキストラナーゼ。
[6] バチルス属に属する微生物力 バチルス.サーキュランス(Bacillus circulans) P
7 (独立行政法人産業技術総合研究所 特許生物寄託センター、受託番号 FERM BP— 10091)又はその変異株である請求項 5記載のデキストリンデキストラナーゼ。
[7] ァルスロパクター属に属する微生物力 ァルスロバクタ一'グロビホルミス(Arthrob acter globiformis) 1349 (独立行政法人産業技術総合研究所 特許生物寄託セ ンター、受託番号 FERM BP— 10414)又はその変異株である請求項 5記載のデ キストリンデキストラナーゼ。
[8] 請求項 1乃至 7のいずれかに記載のデキストリンデキストラナーゼの産生能を有す る微生物を培養して得られる培養物から請求項 1乃至 7のいずれかに記載のデキスト リンデキストラナーゼを採取することを特徴とするデキストリンデキストラナーゼの製造 方法。
[9] バチルス.サーキュランス(Bacillus circulans) P7 (独立行政法人産業技術総合 研究所 特許生物寄託センター、受託番号 FERM BP_ 10091)、ァルスロバクタ ~ ·グロビホルミス(Arthrobacter globiformis) 1349 (独立行政法人産業技術総 合研究所 特許生物寄託センター、受託番号 FERM BP— 10414)又は、これらの 変異株である請求項 1乃至 7のいずれかに記載のデキストリンデキストラナーゼ産生 能を有する微生物。
[10] 請求項 1乃至 7のいずれかに記載のデキストリンデキストラナーゼをコードする DN A。
[11] 配列表における配列番号 5又は 6で示される塩基配列か、又は配列表における配 列番号 5又は 6で示される塩基配列において、コードする酵素の活性を保持する範 囲で 1個又は 2個以上の塩基が欠失、置換若しくは付加した塩基配歹 U、又はそれら に相補的な塩基配列を有する請求項 10記載の DNA。
[12] 遺伝子コードの縮重に基づき、コードするアミノ酸配列を変えることなぐ配列表に おける配列番号 5又は 6で示される塩基配列における塩基の 1個又は 2個以上を他 の塩基で置換した請求項 10又は 11記載の DNA。
[13] バチルス属又はァルスロパクター属の微生物に由来する請求項 10乃至 12のいず れかに記載の DNA。
[14] 請求項 10乃至 13のいずれかに記載の DNAと、 自律複製可能なベクターを含んで なる複製可能な組換え DNA。
[15] 請求項 14記載の組換え DNAを適宜の宿主に導入してなる形質転換体。
[16] 宿主が大腸菌である請求の範囲第 15項記載の形質転換体。
[17] マルトース及び/又はグルコース重合度 3以上のひ一 1, 4グノレカンを含有する基 質溶液に請求項 1乃至 7のいずれかに記載のデキストリンデキストラナーゼを作用さ せてデキストランを生成せしめる工程と、これを採取する工程を含んでなることを特徴 とするデキストランの製造方法。
[18] 請求項 1乃至 7のいずれかに記載のデキストリンデキストラナーゼを有効成分とする マルトース及び/又はグルコース重合度 3以上のひ — 1, 4グルカンのための品質改 良剤。
[19] 請求項 1乃至 7のいずれかに記載のデキストリンデキストラナーゼを作用させること を特徴とするマルトース及び Z又はグルコース重合度 3以上のひ— 1 , 4グルカンの 改質方法。
[20] マルトース及び/又はグルコース重合度 3以上のひ — 1, 4グルカン力 澱粉由来 の糖質甘味料、又は飲食物の原料及び Z又は中間製品に含まれている澱粉質であ る請求項 19記載のマルトース及び/又はグルコース重合度 3以上のひ — 1, 4グノレ力 ンの改質方法。
PCT/JP2005/020584 2004-11-17 2005-11-10 デキストリンデキストラナーゼとその製造方法並びに用途 WO2006054474A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004332916 2004-11-17
JP2004-332916 2004-11-17

Publications (1)

Publication Number Publication Date
WO2006054474A1 true WO2006054474A1 (ja) 2006-05-26

Family

ID=36407017

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/020584 WO2006054474A1 (ja) 2004-11-17 2005-11-10 デキストリンデキストラナーゼとその製造方法並びに用途

Country Status (1)

Country Link
WO (1) WO2006054474A1 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008136331A1 (ja) * 2007-04-26 2008-11-13 Kabushiki Kaisha Hayashibara Seibutsu Kagaku Kenkyujo 分岐α-グルカン及びこれを生成するα-グルコシル転移酵素とそれらの製造方法並びに用途
WO2009011125A1 (ja) * 2007-07-19 2009-01-22 National University Corporation Hokkaido University 新規イソマルトオリゴ糖合成酵素
CN103343099A (zh) * 2013-07-02 2013-10-09 淮海工学院 来自海洋的节杆菌及其产低温右旋糖苷酶的方法
WO2015183714A1 (en) 2014-05-29 2015-12-03 E. I. Du Pont De Nemours And Company Enzymatic synthesis of soluble glucan fiber
WO2015183722A1 (en) 2014-05-29 2015-12-03 E. I. Du Pont De Nemours And Company Enzymatic synthesis of soluble glucan fiber
WO2016047616A1 (ja) * 2014-09-22 2016-03-31 日本食品化工株式会社 遅消化性持続型エネルギー補給剤
JPWO2014133060A1 (ja) * 2013-03-01 2017-02-02 株式会社林原 抗生活習慣病用剤及びそれを含んでなる経口組成物
US10822383B2 (en) 2015-11-26 2020-11-03 E I Du Pont De Nemours And Company Polypeptides capable of producing glucans having alpha-1,2 branches and use of the same
US10907185B2 (en) 2014-05-29 2021-02-02 Dupont Industrial Biosciences Usa, Llc Enzymatic synthesis of soluble glucan fiber
CN112522161A (zh) * 2020-12-24 2021-03-19 江苏海洋大学 芽孢杆菌gn02及其产右旋糖酐酶的方法与用途
CN113567371A (zh) * 2021-07-23 2021-10-29 广西南宁市桃源兽药厂 一种用于控制右旋糖酐原料质量的糖酐含量的检测方法
CN115786308A (zh) * 2022-11-24 2023-03-14 江苏海洋大学 一种提高右旋糖酐酶热稳定性的方法及突变体
CN115786308B (zh) * 2022-11-24 2024-05-31 江苏海洋大学 一种提高右旋糖酐酶热稳定性的方法及突变体

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002010361A1 (fr) * 2000-08-01 2002-02-07 Kabushiki Kaisha Hayashibara Seibutsu Kagaku Kenkyujo Synthase d'$g(a)-isomaltosylglucosaccharide, procede de preparation et utilisation associes
WO2002088374A1 (fr) * 2001-04-27 2002-11-07 Kabushiki Kaisha Hayashibara Seibutsu Kagaku Kenkyujo Processus de production d'isomaltose et utilisation de celui-ci
JP2005162677A (ja) * 2003-12-03 2005-06-23 Hayashibara Biochem Lab Inc 環状五糖及びそのグリコシル誘導体とそれらの製造方法並びに用途

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002010361A1 (fr) * 2000-08-01 2002-02-07 Kabushiki Kaisha Hayashibara Seibutsu Kagaku Kenkyujo Synthase d'$g(a)-isomaltosylglucosaccharide, procede de preparation et utilisation associes
WO2002088374A1 (fr) * 2001-04-27 2002-11-07 Kabushiki Kaisha Hayashibara Seibutsu Kagaku Kenkyujo Processus de production d'isomaltose et utilisation de celui-ci
JP2005162677A (ja) * 2003-12-03 2005-06-23 Hayashibara Biochem Lab Inc 環状五糖及びそのグリコシル誘導体とそれらの製造方法並びに用途

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
HEHRE E.J. ET AL.: "The biological synthesis of dextran from dextrins", J. BIOL. CHEM., vol. 192, no. 1, 1951, pages 161 - 174, XP002996549 *
YAMAMOTO K. ET AL.: "Effective dextran production from starch by dextrin dextranase with debranching enzyme", J. FERMENT. BIOENG., vol. 76, no. 5, 1993, pages 411 - 413, XP002996551 *
YAMAMOTO K. ET AL.: "Purification and some properties of dextrin dextranase from acetobacter capsulatus ATCC 11894", BIOSC. BIOTECH. BIOCHEM., vol. 56, no. 2, 1992, pages 169 - 173, XP001194723 *
YAMAMOTO K. ET AL.: "Substrate specificity of dextrin dextranase from acetobacter capsulatus ATCC 11894", BIOSCI. BIOTECH. BIOCHEM., vol. 58, no. 2, 1994, pages 330 - 333, XP002996550 *

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10076130B2 (en) 2007-04-26 2018-09-18 Hayashibara Co., Ltd. Branched alpha-glucan, alpha-glucosyltransferase which forms the glucan, their preparation and uses
US8673608B2 (en) 2007-04-26 2014-03-18 Hayashibara Co., Ltd. Branched α-glucan, α-glucosyltransferase which forms the glucan, their preparation and uses
US9528134B2 (en) 2007-04-26 2016-12-27 Hayashibara Co., Ltd. Branched α-glucan, α-glucosyltransferase which forms the glucan, their preparation and uses
JP2010202883A (ja) * 2007-04-26 2010-09-16 Hayashibara Biochem Lab Inc 分岐α−グルカン及びこれを生成するα−グルコシル転移酵素とそれらの製造方法並びに用途
JP2010202884A (ja) * 2007-04-26 2010-09-16 Hayashibara Biochem Lab Inc 分岐α−グルカン及びこれを生成するα−グルコシル転移酵素とそれらの製造方法並びに用途
JP2010202882A (ja) * 2007-04-26 2010-09-16 Hayashibara Biochem Lab Inc 分岐α−グルカン及びこれを生成するα−グルコシル転移酵素とそれらの製造方法並びに用途
US8324375B2 (en) 2007-04-26 2012-12-04 Hayashibara Co., Ltd. Branched α-glucan, α-glucosyltransferase which forms the glucan, their preparation and uses
US20130065293A1 (en) * 2007-04-26 2013-03-14 Hayashibara Co., Ltd. Branched alpha-glucan, alpha-glucosyltransferase which forms the glucan, their preparation and uses
EP3115452A1 (en) * 2007-04-26 2017-01-11 Hayashibara Co., Ltd. Branched alpha-glucan, alpha-glucosyltransferase which forms glucan, their preparation and uses
JP2017137506A (ja) * 2007-04-26 2017-08-10 株式会社林原 分岐α−グルカン及びこれを生成するα−グルコシル転移酵素とそれらの製造方法並びに用途
CN103865967A (zh) * 2007-04-26 2014-06-18 株式会社林原 支链α-葡聚糖及生成其的α-葡糖基转移酶和它们的制造方法以及用途
US9090923B2 (en) 2007-04-26 2015-07-28 Hayashibara Co., Ltd. Branched alpha-glucan, alpha-glucosyltransferase which forms the glucan, their preparation and uses
KR101540230B1 (ko) * 2007-04-26 2015-07-29 가부시기가이샤하야시바라 분기 α-글루칸, 이를 생성하는 α-글루코실 전이 효소, 및 그의 제조 방법 및 용도
WO2008136331A1 (ja) * 2007-04-26 2008-11-13 Kabushiki Kaisha Hayashibara Seibutsu Kagaku Kenkyujo 分岐α-グルカン及びこれを生成するα-グルコシル転移酵素とそれらの製造方法並びに用途
JPWO2009011125A1 (ja) * 2007-07-19 2010-09-16 国立大学法人北海道大学 新規イソマルトオリゴ糖合成酵素
WO2009011125A1 (ja) * 2007-07-19 2009-01-22 National University Corporation Hokkaido University 新規イソマルトオリゴ糖合成酵素
JPWO2014133060A1 (ja) * 2013-03-01 2017-02-02 株式会社林原 抗生活習慣病用剤及びそれを含んでなる経口組成物
CN103343099A (zh) * 2013-07-02 2013-10-09 淮海工学院 来自海洋的节杆菌及其产低温右旋糖苷酶的方法
US10351633B2 (en) 2014-05-29 2019-07-16 E I Du Pont De Nemours And Company Enzymatic synthesis of soluble glucan fiber
WO2015183714A1 (en) 2014-05-29 2015-12-03 E. I. Du Pont De Nemours And Company Enzymatic synthesis of soluble glucan fiber
WO2015183722A1 (en) 2014-05-29 2015-12-03 E. I. Du Pont De Nemours And Company Enzymatic synthesis of soluble glucan fiber
US10907185B2 (en) 2014-05-29 2021-02-02 Dupont Industrial Biosciences Usa, Llc Enzymatic synthesis of soluble glucan fiber
JPWO2016047616A1 (ja) * 2014-09-22 2017-07-27 日本食品化工株式会社 遅消化性持続型エネルギー補給剤
US10702545B2 (en) 2014-09-22 2020-07-07 Nihon Shokuhin Co., Ltd. Slowly digestible, sustained-type energy supplying agent
WO2016047616A1 (ja) * 2014-09-22 2016-03-31 日本食品化工株式会社 遅消化性持続型エネルギー補給剤
US10822383B2 (en) 2015-11-26 2020-11-03 E I Du Pont De Nemours And Company Polypeptides capable of producing glucans having alpha-1,2 branches and use of the same
CN112522161A (zh) * 2020-12-24 2021-03-19 江苏海洋大学 芽孢杆菌gn02及其产右旋糖酐酶的方法与用途
CN112522161B (zh) * 2020-12-24 2022-05-20 江苏海洋大学 芽孢杆菌gn02及其产右旋糖酐酶的方法与用途
CN113567371A (zh) * 2021-07-23 2021-10-29 广西南宁市桃源兽药厂 一种用于控制右旋糖酐原料质量的糖酐含量的检测方法
CN115786308B (zh) * 2022-11-24 2024-05-31 江苏海洋大学 一种提高右旋糖酐酶热稳定性的方法及突变体
CN115786308A (zh) * 2022-11-24 2023-03-14 江苏海洋大学 一种提高右旋糖酐酶热稳定性的方法及突变体

Similar Documents

Publication Publication Date Title
KR101540230B1 (ko) 분기 α-글루칸, 이를 생성하는 α-글루코실 전이 효소, 및 그의 제조 방법 및 용도
JP4983258B2 (ja) イソサイクロマルトオリゴ糖及びイソサイクロマルトオリゴ糖生成酵素とそれらの製造方法並びに用途
WO2006054474A1 (ja) デキストリンデキストラナーゼとその製造方法並びに用途
KR100362689B1 (ko) 환원성이감소된당질조성물과그제조방법및용도
KR20020037056A (ko) α-이소말토실글루코 당질생성 효소와 그 제조방법 및 용도
KR100391375B1 (ko) 내열성 비환원성 당질 생성 효소와 그 제조방법 및 용도
JP4568035B2 (ja) 環状マルトシルマルトース及び環状マルトシルマルトース生成酵素とそれらの製造方法並びに用途
JP2010100583A (ja) 脂質代謝改善剤
KR100379784B1 (ko) 비환원성당질과그제조방법및용도
KR20020082843A (ko) α-이소말토실 전이효소 활성을 가진 폴리펩티드
JP5255603B2 (ja) 環状マルトシルマルトース及び環状マルトシルマルトース生成酵素とそれらの製造方法並びに用途
JP3967438B2 (ja) コージビオースホスホリラーゼとその製造方法並びに用途
JP4982716B2 (ja) 糖質混合物とその製造方法並びに用途
JP3967437B2 (ja) トレハロースホスホリラーゼとその製造方法並びに用途
JP4171761B2 (ja) コージビオースホスホリラーゼとその製造方法並びに用途
KR20210104074A (ko) 시클로이소말토테트라오스, 시클로이소말토테트라오스 생성효소, 및 그 제조방법과 용도

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05805975

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP