WO2006053506A1 - Systeme et procede d'amplificateur de radiofrequences fonctionnant en veilleuse 'a chaud' et commutateur a micro-ondes et procede de sauvegarde de securite - Google Patents

Systeme et procede d'amplificateur de radiofrequences fonctionnant en veilleuse 'a chaud' et commutateur a micro-ondes et procede de sauvegarde de securite Download PDF

Info

Publication number
WO2006053506A1
WO2006053506A1 PCT/CN2005/001969 CN2005001969W WO2006053506A1 WO 2006053506 A1 WO2006053506 A1 WO 2006053506A1 CN 2005001969 W CN2005001969 W CN 2005001969W WO 2006053506 A1 WO2006053506 A1 WO 2006053506A1
Authority
WO
WIPO (PCT)
Prior art keywords
port
transmission line
pole double
switching device
throw switch
Prior art date
Application number
PCT/CN2005/001969
Other languages
English (en)
French (fr)
Inventor
Pinghua He
Wenxin Yuan
Original Assignee
Huawei Technologies Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CNB200410052278XA external-priority patent/CN100334774C/zh
Priority claimed from CNB2004100776875A external-priority patent/CN100365947C/zh
Application filed by Huawei Technologies Co., Ltd. filed Critical Huawei Technologies Co., Ltd.
Priority to BRPI0518340A priority Critical patent/BRPI0518340B1/pt
Publication of WO2006053506A1 publication Critical patent/WO2006053506A1/zh
Priority to US11/750,435 priority patent/US7525396B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B1/0483Transmitters with multiple parallel paths
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/52Circuit arrangements for protecting such amplifiers
    • H03F1/526Circuit arrangements for protecting such amplifiers protecting by using redundant amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/24Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/60Amplifiers in which coupling networks have distributed constants, e.g. with waveguide resonators
    • H03F3/602Combinations of several amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/68Combinations of amplifiers, e.g. multi-channel amplifiers for stereophonics
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/72Gated amplifiers, i.e. amplifiers which are rendered operative or inoperative by means of a control signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B1/0466Fault detection or indication
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/192A hybrid coupler being used at the input of an amplifier circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/198A hybrid coupler being used as coupling circuit between stages of an amplifier circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/204A hybrid coupler being used at the output of an amplifier circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/72Indexing scheme relating to gated amplifiers, i.e. amplifiers which are rendered operative or inoperative by means of a control signal
    • H03F2203/7215Indexing scheme relating to gated amplifiers, i.e. amplifiers which are rendered operative or inoperative by means of a control signal the gated amplifier being switched on or off by a switch at the input of the amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/72Indexing scheme relating to gated amplifiers, i.e. amplifiers which are rendered operative or inoperative by means of a control signal
    • H03F2203/7221Indexing scheme relating to gated amplifiers, i.e. amplifiers which are rendered operative or inoperative by means of a control signal the gated amplifier being switched on or off by a switch at the output of the amplifier

Definitions

  • the invention relates to a wireless transmission technology, in particular to a radio frequency power amplifier hot backup system and a microwave switch and backup method.
  • BACKGROUND OF THE INVENTION RF power amplifiers are widely used in wireless access and microwave systems to amplify signals, which is an important component in the system.
  • CDMA wireless access multi-carrier systems if a sector's power amplifier is faulty, Mobile phone users in this sector will not be able to make calls, which will have a negative impact on the quality of service of mobile communication operators. Therefore, CDMA wireless access multi-carrier systems place high demands on the stability and reliability of power amplifiers.
  • the power amplifier operates in a high current, high voltage state, and the thermal environment is not good, which is prone to problems. Therefore, the power backup technology of the power amplifier should be developed to improve stability.
  • each sector has at least one power amplifier, and any one of the power amplifiers only amplifies the input signal of the sector, and has nothing to do with the other sectors, and there is no relationship between the power amplifiers. Isolated from each other.
  • the input signal of IN1 is amplified by the power amplifier PA1, and reaches the antenna feed SI of a certain sector.
  • the input signal of I 2 is amplified by the power amplifier PA2 and reaches S2.
  • the input signal of IN3 is amplified by the power amplifier PA3 and reaches S3. If PA1 is damaged, there is no signal output in this sector, and all terminal mobile users in this sector cannot access the system. This can damage the reputation of the mobile operator and also adversely affect the reputation of the equipment manufacturer.
  • This conventional hot standby and mutual device solution requires high reliability of the power amplifier.
  • the technical solution adopts a 3dB bridge coupler mixing matrix (illustrated by taking a 4 ⁇ 4 matrix as an example), which consists of a front mixing matrix, a power amplifier matrix, and a post-mixing matrix.
  • a 3dB bridge coupler mixing matrix illustrated by taking a 4 ⁇ 4 matrix as an example
  • any one of the power amplifier matrices amplifies the input signals of three sectors.
  • the front mixing matrix acts as a shunt
  • the post-mixing matrix acts as a combined path.
  • the input signal I 1 passes through the pre-mixing matrix, and is divided into four signals with equal amplitudes and phase differences of 90 degrees in order, reaching the input ends of the four power amplifiers respectively. After the four signals are amplified, they are input to the post-mixing matrix of the same structure, and synthesized into one signal, reaching the antenna feed S1 of the sector 1. Since there is a phase difference of 90 degrees between the signals, in an ideal situation, after the signal of IN1 is split, amplified, and combined, it will not be output on the antennas S2 and S3, nor will it be matched. There is a signal on it. By the same token, the IN2 input signal only outputs the signal at the S2 terminal, and does not output the signal at other ports. The IN3 input signal only outputs the signal at the S3 terminal, and does not output signals at other ports.
  • the signal power output per antenna to the antenna can be increased by 1.23dB.
  • each signal is required to be divided into four signals with equal amplitude and phase difference of 90 degrees, so that the mixed signal is only combined by the amplitude and phase difference between the signals when the mixed matrix is combined.
  • PA1, PA2, PA3, and PA4 are inconsistent, mainly due to gain and phase difference. This requirement is very high. Power amplifiers must undergo rigorous selection and matching. Generally, the gain difference is within 0.5dB and the phase difference is within 5 degrees.
  • Microwave single-pole double-throw switch is widely used in wireless RF systems or microwave systems to switch signals.
  • Power splitters are also widely used in RF systems to distribute a certain input power to each branch circuit in a certain proportion, or vice versa.
  • the wavelength is much larger than the transmission line or component size, it belongs to the lumped parameter circuit.
  • the potentials of the points on the transmission line are equal, but in the microwave field, as the wavelength is shortened to a level comparable to the length of the transmission line, The characteristics of the transmission line are completely different, and the potentials on the transmission line are not equal everywhere. For example, a 25% wavelength transmission line is an important distributed parameter component in a microwave circuit.
  • the transmission from port one to port two is the main signal path. If a 25% wavelength transmission line is also connected to the main signal path, and the other end is short-circuited, it is equivalent to the 25% wavelength.
  • the transmission line has no effect on the microwave signal.
  • the transmission line terminal is a short-circuit point to the ground, it must be the ground-opening point at a distance of 25% of the wavelength on the transmission line.
  • the microwave signal does not go to the ground point to disappear, but can only be smoothly transmitted from port 1 to port 2, and can be smoothly transmitted from port 2 to port 1.
  • the prior art wave single-pole double-throw switch has three ports of a combined port, a first branch port, and a second branch port, and is connected by a three-segment transmission line with a characteristic impedance of Z0. Connected together, when the switching device SW1 is closed and the SW2 is disconnected, the first shunt port and the second shunt port are in communication; when SW1 is disconnected and SW2 is closed, the combined port and the first shunt port are Connected, the switching devices SW1, SW2 can be microwave PIN diodes.
  • the single-pole double-throw switch has only two states. One state is that the first branch port has a signal, the second branch port has no signal, and the other state is a second point.
  • the port has a signal, the first branch port has no signal, and the single-pole double-throw switch function is implemented on the signal.
  • the signal of the combined port can reach the first branch port, and can also reach the second branch port, but this circuit state has certain disadvantages: In point A, "three mouths", the impedance is not continuous, from any port The microwave signal transmitted in 05 001969 will have a reflected signal to the input end, and theoretically, the return loss of any port is -9.5dB, which is a poor indicator, and the return loss index of conventional microwave equipment is The general requirement is at least -18dB.
  • This single-pole double-throw switch has poor power distribution and combining functions, so its practical value is not 4 ⁇ .
  • a microwave electronic switch chip or a microwave relay and a power splitter are combined to form a topology structure, which can realize the switching of the microwave signal, the signal splitting and combining functions, but the circuit is complicated, and the device is used more. , resulting in reduced reliability and increased costs.
  • the first main object of the present invention is to provide a 1 + 1 hot backup system for a radio frequency power amplifier, which can reduce the process and device consistency requirements.
  • the second main objective of the present invention is to provide two microwave single-pole double-throw switches that can be applied to a thermal backup system of a radio frequency power amplifier, and the microwave single-pole double-throw switch has both signal switching function and power distribution and combining Features.
  • a third main object of the present invention is to provide an N + 1 hot backup system for a radio frequency power amplifier having a hot backup and mutual assistance function of a sector RF power amplifier, and capable of reducing process and device uniformity. Requirements to improve the isolation between sectors.
  • a fourth main object of the present invention is to provide a 1 + 1 thermal backup method for a radio frequency power amplifier, which can reduce the process and device consistency requirements.
  • the fifth main objective of the present invention is to provide an N + 1 thermal backup method for a radio frequency power amplifier, which can implement the hot backup and mutual assistance functions of the N sector RF power amplifiers, and can reduce the consistency of the process and the device. Sexual requirements to improve the isolation between sectors.
  • the present invention provides a 1 + 1 hot backup system for a radio frequency power amplifier, the system comprising a main RF power amplifier, the system further comprising Includes: a backup RF power amplifier identical to the primary RF power amplifier and two identical microwave single pole double throw switches;
  • the combined port of the first microwave single-pole double-throw switch is a signal receiving end.
  • the signal is sent from the combined port of the single-pole double-throw switch to the main RF power amplifier through the first branch port.
  • Input port when the main RF power amplifier fails, the signal is sent from the combined port of the single-pole double-throw switch to the input end of the backup RF power amplifier through the second branch port;
  • the combined port of the second single-pole double-throw switch is a signal output end; the first branch port of the single-pole double-throw switch is connected to the output port of the main RF power amplifier, and when the primary RF power amplifier is normal, the first branch port receives The amplified signal of the main RF power amplifier is sent to the combined port of the single-pole double-throw switch; the second shunt port of the single-pole double-throw switch is connected to the output of the backup RF power amplifier, when the main RF power amplifier fails, The two-way port receives the amplified RF power amplifier and the amplified signal is sent to the combined end of the single-pole double-throw switch.
  • the microwave single-pole double-throw switch may further comprise a 7-segment transmission line and three switching devices;
  • the combined port of the microwave single-pole double-throw switch is connected to the first ends of the fourth transmission line, the first transmission line and the second transmission line; the second ends of the fourth transmission line and the first ends of the sixth transmission line and the seventh transmission line are mutually connected Connecting, connecting a third switching device between the intersection thereof and the ground; the second end of the second transmission line is connected to the first end of the fifth transmission line, and the second switching device is connected between the intersection thereof and the ground; the fifth transmission line The second end is connected to the second end of the seventh transmission line, and the intersection thereof is connected to the first branch port; the second end of the first transmission line is connected to the first end of the third transmission line, and the intersection thereof is between the ground and the ground Connecting the first switching device; the second end of the third transmission line is connected to the second end of the sixth transmission line, and the intersection thereof is connected to the second branch port; when the signal is input from the combining port, and the first switching device and The third switching device is closed, the first When the two switching devices are disconnected, the input signal reaches
  • the input signal When the signal is input from the first shunt port, the first switching device and the third switching device are closed, and the second switching device is disconnected, the input signal reaches the combining port through the fifth and second transmission lines; when the signal is from the second shunt Port input, the second switching device and the third switching device are closed, when the first switching device is disconnected, the input signal reaches the combining port through the third and first transmission lines; when the two signals are respectively separated from the first and second branch ports Input, when the first switching device and the second switching device are closed, and the third switching device is disconnected, the two signals are respectively connected through the seventh and sixth transmission lines at the intersection of the seventh and sixth transmission lines, and then arrive through the fourth transmission line. Combined port.
  • the transmission line in the microwave single-pole double-throw switch may be a 25% wavelength line; the characteristic impedances of the first, second, third, fifth, sixth, and seventh transmission lines may each be Z0, and the The characteristic impedance of the fourth transmission line is; f.
  • the same switching device in the first and second microwave single-pole double-throw switches are interlocked; when the main RF power amplifier is normal, the first and third switching devices of the first and second microwave single-pole double-throw switches are closed, The second switching device is turned off; or the first and second switching devices of the first and second microwave single-pole silent throw switches are closed, and the third switching device is turned off; when the primary RF power amplifier fails, the first And the second and third switching devices of the second microwave single-pole double-throw switch are closed, and the first switching device is disconnected.
  • the microwave single-pole double-throw switch may further include an 8-segment transmission line and four switching devices; the combined port of the microwave single-pole double-throw switch and the first end of the first transmission line, the first end of the second transmission line, and the fourth The first ends of the a transmission line and the fourth b transmission line are connected to each other; a second end of the transmission line is connected to the first end of the sixth transmission line, and a junction between the intersection and the ground is connected to the third switching device; the second end of the fourth transmission line is connected to the first end of the seventh transmission line, a fourth switching device is connected between the intersection and the ground; and a matching resistor R is connected between the second end of the fourth a transmission line and the second end of the fourth b transmission line; the second end of the first transmission line and the third transmission line The first end is connected, and the first switching device is connected between the intersection thereof and the ground; the second end of the second transmission line is connected to the first end of the fifth transmission line, and the second switching device is connected between the intersection thereof
  • the input signal When the signal is input from the combining port, and the first, third, and fourth switching devices are closed, and the second switching device is turned off, the input signal reaches the first branching port through the second and fifth transmission lines; when the signal is combined Port input, and the second, third, and fourth switching devices are closed, and when the first switching device is turned off, the input signal reaches the second branching port through the first and third transmission lines; when the signal is input from the combining port, and the 1.
  • the second switching device is closed.
  • the input signal is divided into two paths, one through the fourth b, the seventh transmission line to reach the first branch port, and the other through the fourth &,
  • the sixth transmission line reaches the second branch port; when the signal is input from the first branch port, the first, third, and fourth switching devices are closed, and the second switching device is turned off, the input signal is reached through the fifth and second transmission lines.
  • the second, third, and fourth switching devices When the signal is input from the second branch port, the second, third, and fourth switching devices are closed, and when the first switching device is turned off, the input signal passes through the third, first pass The transmission line reaches the combined port; when the two signals are input from the first and second branch ports respectively, the first and second switching devices are closed, and the third and fourth switching devices are disconnected, one signal is passed through the sixth and the sixth
  • the four a transmission line arrives at the combined port, and the other path reaches the combined port via the seventh and fourth b transmission lines.
  • the transmission lines of the microwave single-pole double-throw switch may each be a 25% wavelength line; the characteristic impedances of the first, second, third, fifth, sixth, and seventh transmission lines may each be Z0, and the The characteristic impedance of the fourth and fourth b transmission lines is Z0, and the resistance of the matching resistor is 2 Z0.
  • the same switching device in the first and second microwave single-pole double-throw switches are linked; when the primary RF power amplifier is normal, the first, third, and fourth switches of the first and second microwave single-pole double-throw switches are respectively The device is closed, the second switching device is turned off; or the first and second switching devices of the first and second microwave single-pole double-throw switches are closed, and the third and fourth switching devices are turned off;
  • the second, third, and fourth switching devices of the first and second microwave single-pole silent throw switches are closed, and the first switching device is turned off.
  • the switching device in the microwave single-pole double-throw switch can adopt a PIN diode.
  • the present invention provides two microwave single pole double throw switches.
  • the first microwave single-pole double-throw switch provided by the present invention comprises: a combination port, a first branch port, a second branch port, and a transmission line and a switching device, wherein: the microwave single-pole double-throw switch includes 7 Segment transmission line and three switching devices;
  • the combined port of the microwave single-pole double-throw switch is connected to the first ends of the fourth transmission line, the first transmission line and the second transmission line; the second ends of the fourth transmission line and the first ends of the sixth transmission line and the seventh transmission line are mutually connected Connecting, connecting a third switching device between the intersection thereof and the ground; the second end of the second transmission line is connected to the first end of the fifth transmission line, and the second switching device is connected between the intersection thereof and the ground; The second end is connected to the second end of the seventh transmission line, and the intersection thereof is connected to the first branch port; the second end of the first transmission line is connected to the first end of the third transmission line, and the intersection thereof is between the ground and the ground Connecting the first switching device; the second end of the third transmission line is connected to the second end of the sixth transmission line, and the intersection thereof is connected to the second branch port;
  • the input signal When the signal is input from the combining port, and the first switching device and the third switching device are closed, and the second switching device is disconnected, the input signal reaches the first branching port through the second and fifth transmission lines; when the signal is from the combining port Input, and the second switching device and the third switching device are closed, when the first switching device is disconnected, the input signal reaches the second branching port through the first and third transmission lines; When the signal is input from the combining port, and the first switching device and the second switching device are closed, and the third switching device is disconnected, the input signal is divided into two paths through the fourth transmission line, respectively, reaching the first through the seventh and sixth transmission lines respectively. And a second shunt port;
  • the input signal When the signal is input from the first shunt port, the first switching device and the third switching device are closed, and the second switching device is disconnected, the input signal reaches the combining port through the fifth and second transmission lines; when the signal is from the second shunt Port input, the second switching device and the third switching device are closed, when the first switching device is disconnected, the input signal reaches the combining port through the third and first transmission lines; when the two signals are respectively separated from the first and second branch ports Input, when the first switching device and the second switching device are closed, and the third switching device is disconnected, the two signals are respectively connected through the seventh and sixth transmission lines at the intersection of the seventh and sixth transmission lines, and then arrive through the fourth transmission line. Combined port.
  • the transmission lines may each be a 25% wavelength line; the characteristic impedances of the first, second, third, fifth, sixth, and seventh transmission lines are all Z0, and the characteristic impedance of the fourth transmission line is
  • the second microwave single-pole double-throw switch provided by the invention comprises: a combination port, a first branch port, a second branch port, and a transmission line and a switching device, wherein: the chopper single-pole double-throw switch comprises 8 segments Transmission line and 4 switching devices;
  • the combined port of the microwave single-pole double-throw switch is connected to the first end of the first transmission line, the first end of the second transmission line, the first end of the fourth a transmission line and the fourth end of the fourth b transmission line;
  • the second end is connected to the first end of the sixth transmission line, and the third switching device is connected between the intersection and the ground;
  • the second end of the fourth b transmission line is connected to the first end of the seventh transmission line, and the intersection thereof is grounded
  • Connecting a fourth switching device and connecting a matching resistor R between the second end of the fourth a transmission line and the second end of the fourth b transmission line;
  • the second end of the first transmission line is connected to the first end of the third transmission line
  • the second end of the second transmission line is connected to the first end of the fifth transmission line, and the second switching device is connected between the intersection thereof and the ground;
  • the fifth transmission line The second end is connected to the second end of the seventh transmission line, 05
  • the input signal When the signal is input from the combining port, and the first, third, and fourth switching devices are closed, and the second switching device is turned off, the input signal reaches the first branching port through the second and fifth transmission lines; when the signal is combined Port input, and the second, third, and fourth switching devices are closed, and when the first switching device is turned off, the input signal reaches the second branching port through the first and third transmission lines; when the signal is input from the combining port, and the 1.
  • the second switching device is closed.
  • the input signal is divided into two paths, one through the fourth b, seven transmission lines to the first branch port, and the other through the fourth &,
  • the sixth transmission line reaches the second branch port; when the signal is input from the first branch port, the first, third, and fourth switching devices are closed, and the second switching device is turned off, the input signal is reached through the fifth and second transmission lines.
  • the second, third, and fourth switching devices When the signal is input from the second branch port, the second, third, and fourth switching devices are closed, and when the first switching device is turned off, the input signal passes through the third, first pass The transmission line reaches the combined port; when the two signals are input from the first and second branch ports respectively, the first and second switching devices are closed, and the third and fourth switching devices are disconnected, one signal is passed through the sixth and the sixth
  • the four a transmission line arrives at the combined port, and the other path reaches the combined port via the seventh and fourth b transmission lines.
  • the transmission lines may each be a 25% wavelength line; the characteristic impedances of the first, second, third, fifth, sixth, and seventh transmission lines are all Z0, and the fourth a and fourth b transmission lines
  • the characteristic impedance is that the resistance of the matching resistor is 2 Z0.
  • the present invention provides an N + 1 hot backup system for a radio frequency power amplifier, comprising N identical main RF power amplifiers, characterized in that the system further comprises: The same backup RF power amplifier and 2N identical microwave single-pole double-throw switches of the main RF power amplifier;
  • N microwave single-pole double-throw switches are respectively set at the input ends of N main RF power amplifiers, and the other N single-pole double-throw switches are respectively set in the transmission of N main RF power amplifiers. 05 001969 origin;
  • Each of the combined ports of the microwave single-pole double-throw switch disposed at the input of the main RF power amplifier receives an input signal
  • the first branch port is connected to the input of the main RF power amplifier
  • the second branch port is connected with the backup RF power amplifier.
  • the input terminal is connected; when the main RF power amplifier connected thereto is normal, the signal is sent from the combined port of the single-pole double-throw switch to the input port of the main RF power amplifier through the first branch port; when the main RF power amplifier fails a signal is sent from the combined port of the single-pole double-throw switch to the input end of the backup RF power amplifier through the second branch port;
  • Each combined port of the microwave single-pole double-throw switch disposed at the output of the main RF power amplifier is used to output a signal
  • the first branch port is connected to the output of the main RF power amplifier
  • the second branch port is connected with the backup RF power.
  • the output of the amplifier is connected; when the main RF power amplifier connected thereto is normal, the first branch port receives the signal amplified by the main RF power and sends the signal to the combined port of the single-pole double-throw switch; when the main RF power amplifier fails,
  • the second shunt port receives the amplified RF power amplifier amplified signal and sends it to the combined port of the single pole double throw switch.
  • the microwave single-pole double-throw switch may further include a 7-segment transmission line and three switching devices; the combined port of the microwave single-pole double-throw switch is connected to the first ends of the fourth transmission line, the first transmission line, and the second transmission line; The second end of the fourth transmission line is connected to the first end of the sixth transmission line and the seventh transmission line, and the third switching device is connected between the intersection of the second transmission line and the ground; the second end of the second transmission line and the first end of the fifth transmission line Connecting, and connecting the second switching device between the intersection thereof and the ground; the second end of the fifth transmission line is connected to the second end of the seventh transmission line, and the intersection thereof is connected to the first branch port; The two ends are connected to the first end of the third transmission line, and the first switching device is connected between the intersection thereof and the ground; the second end of the third transmission line is connected to the second end of the sixth transmission line, and the intersection thereof The two-way port is connected;
  • the input signal When the signal is input from the combining port, and the first switching device and the third switching device are closed, When the two switching devices are disconnected, the input signal reaches the first branching port through the second and fifth transmission lines; when the signal is input from the combining port, and the second switching device and the third switching device are closed, the first switching device is disconnected The input signal reaches the second branch port through the first and third transmission lines; when the signal is input from the combining port, and the first switching device and the second switching device are closed, and the third switching device is disconnected, the input signal passes through the fourth The transmission line is divided into two paths to reach the first and second branch ports respectively through the seventh and sixth transmission lines;
  • the input signal When the signal is input from the first shunt port, the first switching device and the third switching device are closed, and the second switching device is disconnected, the input signal reaches the combining port through the fifth and second transmission lines; when the signal is from the second shunt Port input, the second switching device and the third switching device are closed, when the first switching device is disconnected, the input signal reaches the combining port through the third and first transmission lines; when the two signals are respectively separated from the first and second branch ports Input, when the first switching device and the second switching device are closed, and the third switching device is disconnected, the two signals are respectively connected through the seventh and sixth transmission lines at the intersection of the seventh and sixth transmission lines, and then reach the fourth transmission line. Combined port.
  • the transmission line in the microwave single-pole double-throw switch may be a 25% wavelength line; the characteristic impedances of the first, second, third, fifth, sixth, and seventh transmission lines are all Z0, and the The characteristic impedance of the four transmission lines is ".
  • the first and third switching devices of the microwave single-pole double-throw switch disposed at the input and output ends of the primary RF power amplifier are closed, and the second switching device is turned off; or is disposed at the primary RF
  • the first and second switching devices of the microwave single-pole double-throw switch of the input and output terminals of the power amplifier are closed, and the third switching device is disconnected;
  • the microwave single-pole double-throw switch according to 01969 may further include an 8-segment transmission line and four switching devices; the combined port of the microwave single-pole double-throw switch and the first end of the first transmission line, the first end of the second transmission line, and the first The first ends of the fourth a transmission line and the fourth b transmission line are connected to each other; the second end of the fourth a transmission line is connected to the first end of the sixth transmission line, and the third switching device is connected between the intersection and the ground; a second end of the transmission line is connected to the first end of the seventh transmission line, and a fourth switching device is connected between the intersection thereof and the ground; and a connection between the second end of the fourth a transmission line and the second end of the fourth b transmission line a matching resistor R; the second end of the first
  • the input signal When the signal is input from the combining port, and the first, third, and fourth switching devices are closed, and the second switching device is turned off, the input signal reaches the first branching port through the second and fifth transmission lines; when the signal is combined Port input, and the second, third, and fourth switching devices are closed, and when the first switching device is turned off, the input signal reaches the second branching port through the first and third transmission lines; when the signal is input from the combining port, and the 1.
  • the second switching device is closed.
  • the input signal is divided into two paths, one through the fourth b, the seventh transmission line to reach the first branch port, and the other through the fourth &,
  • the sixth transmission line reaches the second branch port; when the signal is input from the first branch port, the first, third, and fourth switching devices are closed, and the second switching device is turned off, the input signal is reached through the fifth and second transmission lines.
  • the signal is input from the second branch port, the second, third, and fourth switching devices are closed, and when the first switching device is turned off, the input signal passes through the third and first transmission lines.
  • the transmission lines of the microwave single-pole double-throw switch may each be a 25% wavelength line; the characteristic impedances of the first, second, third, fifth, sixth, and seventh transmission lines are all Z0, and the fourth a And the characteristic impedance of the fourth b transmission line is ⁇ , and the resistance of the matching resistor is 2 Z0.
  • the first, third, and fourth switching devices of the microwave single-pole double-throw switch are respectively closed at the input and output terminals of the primary RF power amplifier, and the second switching device is turned off; or The first and second switching devices of the microwave single-pole double-throw switch of the input and output terminals of the main RF power amplifier are closed, and the third and fourth switching devices are disconnected;
  • the second, third, and fourth switching devices of the microwave single-pole double-throw switch disposed at the input and output of the primary RF power amplifier are closed, and the first switching device is turned off.
  • the present invention provides a 1 + 1 hot backup method for a radio frequency power amplifier, using the above 1 + 1 hot backup system, the method comprising the following steps:
  • the input signal is sent from the combined port of the first single-pole double-throw switch to the primary RF power amplifier through the first branch port by setting the states of the first and second single-pole double-throw switches.
  • the main RF power amplifier transmits the signal to the combined output of the second single-pole double-throw switch through the first branch port of the second single-pole double-throw switch;
  • the input signal is sent from the combined port of the first single-pole double-throw switch to the backup RF power amplifier through the second branch port by setting the states of the first and second single-pole double-throw switches.
  • Input port, backup RF power amplifier pair signal After amplification, the second branch port of the second single-pole double-throw switch is sent to the combined port output of the second single-pole double-throw switch.
  • the microwave single-pole double-throw switch may further include a 7-segment transmission line and three switching devices.
  • the first switching device and the third switching device of the first and second microwave single-pole double-throw switches are respectively closed.
  • the second switching device is disconnected;
  • the input signal is input from the combined port of the first microwave single-pole double-throw switch, and is sent to the first RF power amplifier through the second and fifth transmission lines to the first branching port, and amplified by the main RF power amplifier.
  • step A the first switching device and the second switching device of the first and second microwave single-pole double-throw switches are respectively closed, and the third switching device is turned off; the input signal is from the combined port of the first microwave single-pole double-throw switch
  • the input is divided into two paths after the fourth transmission line, and reaches the first and second branch ports through the seventh and sixth transmission lines respectively, and then sent to the main and standby RF power amplifiers respectively, and amplified by the main and standby RF power amplifiers.
  • the second switching device and the third switching device of the first and second microwave single-pole double-throw switches are respectively closed, the first switching device is turned off; and the input signal is combined from the first microwave single-pole double-throw switch
  • the port input is sent to the second branch port through the first and third transmission lines, and then sent to the backup RF power amplifier, amplified by the backup RF power amplifier, and input to the second branch port of the second microwave single-pole double-throw switch, and then
  • the third and first transmission lines of the second microwave single-pole double-throw switch are output through the combined port of the second microwave single-pole double-throw switch.
  • the microwave single-pole double-throw switch may further comprise an 8-segment transmission line and 4 switching devices; in the step A, the first and the second of the first and second microwave single-pole double-throw switches are respectively set. 3.
  • the fourth switching device is closed and the second switching device is disconnected; the input signal is input from the combined port of the first microwave single-pole double-throw switch, and reaches the first branch port through the second and fifth transmission lines and sent to the main RF power amplifier. After being amplified by the main RF power amplifier, input to the first branch port of the second microwave single-pole double-throw switch, and then through the second and second transmission lines of the second microwave single-pole double-throw switch through the second microwave single-pole double-throw switch Port port output;
  • the first and second switching devices of the first and second microwave single-pole double-throw switches are respectively closed, and the third and fourth switching devices are disconnected; the input signal is from the first microwave single-pole double-throw switch
  • the first path passes through the fourth b, the seventh transmission line to the first branch port, and is sent to the main RF power amplifier, and the other path passes through the fourth a, sixth transmission line to the second point.
  • the port is sent to the backup RF power amplifier, and the main RF power amplifier and the standby RF power amplifier respectively amplify the signal, and the first and second shunt ports, the seventh and fourth b, of the second microwave single-pole double-throw switch
  • the sixth and fourth a transmission lines are combined and output to the combined port of the second microwave single-pole double-throw switch;
  • the second, third, and fourth switching devices of the first and second microwave single-pole double-throw switches are respectively closed, and the first switching device is turned off; the input signal is from the first microwave single-pole double-throw switch.
  • the combined port input is sent to the backup RF power amplifier through the first and third transmission lines to the second branch port, amplified by the backup RF power amplifier, and input to the second branch port of the second microwave single-pole double-throw switch, and then The third and first transmission lines of the second microwave single-pole double-throw switch are output through the combined port of the second microwave single-pole double-throw switch.
  • the present invention provides an N + 1 hot backup method for a radio frequency power amplifier, which employs the above-described N + 1 hot backup system, the method comprising the following steps:
  • the input signal is sent from the combined port of the single-pole double-throw switch disposed at the input end of the main RF power amplifier to the main through the first shunt port by setting the state of each single-pole double-throw switch.
  • RF power amplifier input port main After the RF power amplifier amplifies the signal, it is sent to the combined port output of the second single-pole double-throw switch through the first branch port of the single-pole double-throw switch disposed at the output end of the main RF power amplifier;
  • the input signal is passed from the combined port of the single-pole double-throw switch at the input end through the second branch port.
  • the input port is sent to the backup RF power amplifier.
  • the second branch port of the single-pole double-throw switch of the output of the main RF power amplifier is sent to the combined port output of the single-pole double-throw switch.
  • the microwave single-pole double-throw switch may further include a segment transmission line and three switching devices.
  • the first switching device and the third switch of the microwave single-pole double-throw switch of the input end and the output end of the RF power amplifier are set.
  • the device is closed, and the second switching device is disconnected; the input signal is input from the combined port of the microwave micro-single-throw switch at the input end, and reaches the first shunt port through the second and fifth transmission lines, and is sent to the main RF power amplifier through the main RF power.
  • the first branch port of the microwave single-pole double-throw switch input to the output end, and the fifth and second transmission lines of the microwave single-pole double-throw switch of the output end are output through the combined port of the microwave single-pole double-throw switch;
  • step A the first switching device and the second switching device of the microwave single-pole double-throw switch of the RF power amplifier input end and the output terminal are closed, and the third switching device is turned off; the input signal is input from the microwave single-pole double-throw switch of the input end
  • the combined port input is divided into two paths after the fourth transmission line, and reaches the first and second branch ports through the seventh and sixth transmission lines, respectively, and then sent to the primary and backup RF power amplifiers respectively, through the primary and backup RF powers.
  • the first and second branch ports of the microwave single-pole double-throw switch input to the output end are passed through the seventh and sixth transmission lines of the microwave single-pole double-throw switch at the output end, and then merged through the fourth transmission line to the output.
  • step B The combined output of the microwave single-pole double-throw switch at the end;
  • step B the second switching device and the third switching device of the microwave single-pole double-throw switch of the input end and the output end of the radio frequency power amplifier are closed, the first switching device is turned off; the microwave single-pole double-throw switch of the input signal from the input end
  • the port, and the third and first transmission lines of the microwave single-pole double-throw switch through the output end are output through the combined port of the microwave single-pole and throw-off switch.
  • the microwave single-pole double-throw switch may further comprise an 8-segment transmission line and four switching devices; in the step A, the first, third, fourth of the microwave single-pole double-throw switch of the input end of the radio frequency power amplifier and the output end are respectively set.
  • the switching device is closed and the second switching device is disconnected; the input signal is input from the combined port of the microwave single-pole double-throw switch at the input end, and reaches the first branch port through the second and fifth transmission lines, and is sent to the main RF power amplifier through the main RF After the power amplifier is amplified, the first branch port of the 4-wave single-pole double-throw switch input to the output end, and the fifth and second transmission lines of the second wave single-pole double-throw switch pass through the combined port of the second microwave single-pole double-throw switch Output
  • the first and second switching devices of the microwave single-pole double-throw switch of the RF power amplifier input end and the output terminal are respectively closed, and the third and fourth switching devices are disconnected; the input signal is from the input end of the microwave single-pole double
  • the input port of the throw switch is divided into two paths.
  • the first path passes through the fourth b and the seventh transmission line to the first branch port, and is sent to the main RF power amplifier, and the other path passes through the fourth a and sixth transmission lines.
  • the second shunt port is sent to the backup RF power amplifier, and the main RF power amplifier and the standby RF power amplifier respectively amplify the signal, and the first and second shunt ports of the microwave single-pole double-throw switch through the output end, the seventh, the first The four b, sixth, and fourth a transmission lines are combined and output to the combined port of the microwave single-pole double-throw switch; in the step B, the microwave single-pole double-throw switch of the input end and the output end of the radio frequency power amplifier are respectively set to be second, The third and fourth switching devices are closed, and the first switching device is turned off;
  • the input signal is input from the combined port of the microwave single-pole double-throw switch at the input end, and is sent to the backup RF power amplifier through the first and third transmission lines to the second branch port, and amplified by the backup RF power amplifier, and the microwave single-pole input to the output end
  • the second branch port of the double throw switch is outputted through the combined port of the microwave single pole double throw
  • the present invention adds a backup RF power amplifier to the system, and uses a microwave single-pole double-throw switch at the input end and the output end of the RF power amplifier to control whether to use a backup RF power amplifier. Since each of the signals in the hot backup system has a power amplifier and there is a backup power amplifier in the system, the backup power amplifier is not owned by the system. In this way, when one of the power amplifiers fails, the backup power amplifier immediately replaces the failed power amplifier to achieve the backup function without power failure. Since any of the N power amplifiers amplifies only one signal, the isolation between the signals is independent of the consistency of the power amplifier and has high isolation.
  • the present invention adopts a microwave single-pole double-throw switch for active/standby switching, and the consistency requirements for devices such as power amplifiers are not high. Therefore, the hot backup system and method of the present invention have high practical use value and are more easily promoted and adopted in communication equipment.
  • the two microwave single-pole double-throw switches provided by the invention have the functions of signal switching, power distribution and power combining, and widen the use environment of the microwave single-pole double-throw switch; the ingenious and fine tube described by the technical solution is adopted.
  • the transmission line topology, simple circuit, mature technology, low cost, easy to implement, and good impedance matching characteristics of the port, the port has no reflection signal, so it has strong practicability and can be applied to the amplifier hot backup and mutual aid system. .
  • Figure 1 is a schematic diagram of a three-sector power amplifier with no hot backup and mutual assistance functions in the prior art.
  • FIG. 2 is a schematic diagram of a hot backup system composed of a prior art 3dB bridge coupler hybrid matrix
  • Figure 3 is a schematic diagram of a 25% wavelength transmission line with a terminal shorted to ground;
  • FIG. 4 is a schematic structural view of a prior art microwave single-pole double-throw switch
  • FIG. 5 is a schematic structural diagram of a system of a first preferred embodiment of implementing a 1+1 thermal backup of a radio frequency power amplifier according to the present invention
  • FIG. 6 is a schematic structural diagram of a system according to a second preferred embodiment of the present invention for implementing 1 + 1 hot backup of a radio frequency power amplifier
  • FIG. 7 is a schematic diagram of a microwave single-pole double-throw switch equivalent to a common divider in the system shown in FIG. 6;
  • FIG. 8 is a schematic structural diagram of a third preferred embodiment of implementing a 1+1 thermal backup of a radio frequency power amplifier according to the present invention.
  • FIG. 9 is a schematic structural diagram of a system of a first preferred embodiment of implementing N+1 hot backup of a radio frequency power amplifier according to the present invention.
  • FIG. 10 is a schematic structural diagram of a system for implementing a second preferred embodiment of N + 1 hot backup of a radio frequency power amplifier according to the present invention
  • FIG. 11 is a schematic structural diagram of a system of a third preferred embodiment of implementing N+1 hot backup of a radio frequency power amplifier according to the present invention. Mode for carrying out the invention
  • the invention provides a system and method for realizing 1 + 1 hot backup and N + 1 hot backup of a radio frequency power amplifier by using a microwave single-pole double-throw switch and adding an RF power amplifier, and also providing two kinds of hot backups which can be applied to the RF power amplifier.
  • the system's microwave single-pole double-throw switch First, a system and method for realizing 1 + 1 hot backup of a radio frequency power amplifier provided by the present invention, and two microwave single pole double throw switches which can be applied to a radio frequency power amplifier hot backup system provided by the present invention are provided by three preferred embodiments. Detailed description.
  • FIG. 5 is a schematic structural diagram of a system according to a first preferred embodiment of the present invention for implementing 1+1 thermal backup of a radio frequency power amplifier.
  • the system consists of two identical single-pole double-throw switches: the first single-pole double-throw switch and the second single-pole double-throw switch, which also include two identical RF power amplifiers (hereinafter referred to as power amplifiers), PA1 and PA.
  • the PA can be backed up as an RF power amplifier.
  • PA1 can also be used as the backup.
  • the combined port of the first single-pole double-throw switch is a signal receiving end, and the first branching port of the single-pole double-throw switch is connected to the input port of the PA1, and the second branching port of the single-pole double-throwing switch and the input of the PA Connected to the end.
  • the combined port of the second single-pole double-throw switch is a signal output end, and the port is connected to the RF antenna S.
  • the first branch port of the single-pole double-throw switch is connected to the output port of the PA1, and the second point of the single-pole double-throw switch The port is connected to the output of the PA.
  • the first single pole double throw switch and the second single pole double throw switch in this embodiment all adopt the prior art microwave single pole double throw switch shown in FIG.
  • the switching device SW1 in the first single-pole double-throw switch and the switching device SW2 in the second single-pole double-throw switch are linked; the switching device SW3 in the first single-pole double-throw switch and the switching device SW4 in the second single-pole double-throw switch are linked.
  • PA1 is the main power amplifier and PA is the backup power amplifier.
  • SW3 and SW4 are closed, and SW1 and SW2 are disconnected.
  • the signal is input from the combined port of the first single-pole double-throw switch, amplified by the transmission line A to PA1, and output to the RF antenna S via the transmission line B.
  • PA1 fails, the first single pole double throw switch and the second single pole double throw switch are switched, SW3 and SW4 are disconnected, and SW1 and SW2 are closed.
  • the signal is input from the combined port of the first single-pole double-throw switch, amplified by the transmission lines C, E, X to PA, and output to the RF antenna S via the transmission lines Y, F, and D.
  • the system should also have a third working state: SW1, SW2, SW3, SW4 are all disconnected, but due to the shortcomings of the single-pole double-throw switch itself used in this embodiment, the return loss of each port in this state Too large, power distribution and combining functions are poor, and cannot be used to achieve mutual assistance. Therefore, the implementation of the embodiment is not recommended in practical applications, and the implementation of the second preferred embodiment or the third preferred embodiment is recommended.
  • FIG. 6 is a schematic structural diagram of a second preferred embodiment of a 1+1 thermal backup of a radio frequency power amplifier according to the present invention.
  • the system consists of two identical single-pole double-throw switches: the first single-pole double-throw switch and the second single-pole double-throw switch, which also include two identical RF power amplifiers, RF power amplifier PA1 and RF power amplifier PA, of which PA1 can For the main RF power amplifier, the PA can be backed up as an RF power amplifier.
  • the combined port of the first single-pole double-throw switch is a signal receiving end, and the first branching port of the single-pole double-throw switch is connected to the input port of the PA1, and the second branching port of the single-pole double-throwing switch and the input of the PA Connected to the end.
  • the combined port of the second single-pole double-throw switch is a signal output end, and the port is connected to the RF antenna S.
  • the first branch port of the single-pole double-throw switch is connected to the output port of the PA1, and the second point of the single-pole double-throw switch The port is connected to the output of the PA.
  • the first microwave single-pole double-throw switch in this embodiment comprises: a combined port, a first branch port and a second branch port, and three transmission lines A, B, C, D, E, F and G, And three switching devices SW1, SW2, and SW3.
  • the length of the seven-segment transmission line is 25% wavelength transmission line, which are connected to each other to form a "day" type, and each transmission line can form a microwave switch together with a certain switching device.
  • the combining port of the first microwave single-pole double-throw switch is connected to the first ends of the fourth transmission line D, the first transmission line A and the second transmission line B; the second end of the fourth transmission line D and the sixth transmission line F And the first ends of the seventh transmission line G are connected to each other, and the third switching device SW3 is connected between the intersections and the ground; the second end of the second transmission line B is connected to the first end of the fifth transmission line E, and the intersection thereof is Connecting the second switching device SW2 between the ground; the fifth transmission The second end of the line E is connected to the second end of the seventh transmission line G, and the intersection thereof is connected to the first branch port.
  • the second end of the first transmission line A is connected to the first end of the third transmission line C, and the first switching device SW1 is connected between the intersection thereof and the ground; the second end of the third transmission line C and the sixth transmission line F The second ends are connected, and the intersection thereof is connected to the second branch port.
  • the characteristic impedance of the transmission lines A, B, C, E, F, G is Z0, and the characteristic impedance of the transmission line D is ⁇ .
  • the working state of the microwave single-pole double-throw switch of the above structure and the signal switching and branching functions are as follows:
  • State 1 Set SW1 to close, SW2 to open, and SW3 to close. Since SW1 is short-circuited to ground, the microwave signal of the combined port will not pass through the transmission line A. Similarly, since SW3 is closed, the microwave signal will not pass through the transmission line D. Therefore, the microwave signal can only pass through the transmission lines B and E; and since the SW3 is closed, the signal on the transmission line E cannot pass through the transmission line G, but can only reach the first branch port. That is, the combined port and the first shunt port are straight-through and are isolated from the first shunt port, that is, the input microwave signal can be output through the first shunt port.
  • State 2 Set SW1 to open, SW2 to close, and SW3 to close. Since SW2 is short-circuited to ground, the microwave signal of the combined port will not pass through the transmission line B. Similarly, since SW3 is closed, the microwave signal will not pass through the transmission line D. Therefore, the microwave signal can only pass through the transmission lines A, C; and since the SW3 is closed, the signal on the transmission line C cannot pass through the transmission line F, but can only reach the second branch port. That is, the combined port and the second shunt port are straight-through and are isolated from the first shunt port, that is, the input microwave signal can be output through the second shunt port.
  • FIG. 7 is a schematic diagram of the microwave single-pole double-throw switch equivalent to the power divider in the system of FIG.
  • the input signal of the junction is equally divided into two signals, which respectively reach the first branch port and the second branch port, that is, have a power distribution function.
  • both ends of the transmission line D satisfies the following conditions:
  • the input impedance of the upper end of the transmission line D is Z0, and the lower end of the transmission line D is equivalent to two transmission lines F and G with characteristic impedance Z0, so the input impedance is Z0/2;
  • the D characteristic impedance of the transmission line is, the length of the transmission line D is 25%. Wavelength; Therefore, transmission line D is a standard impedance converter. At the center frequency point, there is no reflected signal, and at the point near the center frequency, the reflected signal is negligible, which is of practical value.
  • the microwave single-pole double-throw switch of the above structure if the microwave signal is input only from the first branch port or only from the second branch port, the analysis process is the same as above, which is equivalent to the conventional single-pole double-throw switch. If the first shunt port and the second shunt port input a microwave signal of equal amplitude and the like, and SWK SW2 is closed, and the SW3 is turned off, the microwave single-pole double-throw switch has a power combining function.
  • the second single pole double throw switch in Figure 6 is the case for this application.
  • the second microwave single-pole double-throw switch in Fig. 6 has the same structure as the first microwave single-pole double-throw switch, except that the transmission line and the switching device have different numbers.
  • the second single pole double throw switch if the signal is only input from the first branch port, SW6, SW4 are closed, SW5 is disconnected, and the signal is output to the RF antenna S via the transmission line L, I to the combined port; if the signal is only from the second Shunt port input In, SW5, SW6 are closed, SW4 is disconnected, and the signal is output to the RF antenna S via the transmission line J, H to the combined port; if two signals of equal amplitude and the like are input from the first branch port and the second branch port respectively SW4 and SW5 are closed, and SW6 is disconnected.
  • the two signals are respectively transmitted through the transmission lines M and N, and after being combined at the intersection of M and N, they are output to the RF antenna 8 via the transmission line K to the combined port.
  • the topology of the microwave single-pole double-throw switch according to the present invention is very clever, and each of the transmission lines A, B, C, D, E, F, G can form a microwave switch together with a certain switching device, for example, the sixth transmission line F
  • the microwave switch is formed by the third switch SW3, and the transmission lines D and G also form a microwave switch with the SW3.
  • the functions of the seven microwave switches are realized by only three switching devices, and the circuit structure is single; and, the transmission lines can be It is realized by the microstrip line or strip line on the PCB. This is a very mature PCB manufacturing process; each switching device can use microwave PIN diode, but it is not limited to microwave PIN diode. PIN diode is also a mature device, easy to purchase, so The solution of the invention has no difficulty in implementation and is low in cost.
  • the SW3 of the throw switch and the SW6 of the second single pole double throw switch realize the hot backup and mutual assistance of the RF power amplifier.
  • the first state is that SW1, SW3, SW4, SW6 are closed, and when SW2 and SW5 are disconnected, according to the principle of the microwave single-pole double-throw switch with power distribution and combining function, the input signal is combined from the first single-pole double-throw switch.
  • the port enters the transmission line B, E, to the first branch port of the first single-pole double-throw switch, and then amplified by the power amplifier PA1, to the first branch port of the second single-pole double-throw switch, and then through the transmission line L, I to the RF antenna S.
  • Backup Power Amplifier PA has no input signal and of course no output signal. Therefore, the power amplifier PA does not work.
  • the second state SW2, SW3, SW5, SW6 is closed, when SW1 and SW4 are disconnected,
  • the input signal enters from the combined port of the first single-pole double-throw switch to the transmission line A, C, to the second branch port of the first single-pole double-throw switch, and then amplified by the backup power amplifier PA to the second single-pole double-throw switch
  • the second branch port is then transmitted to the antenna feeder S via the transmission lines J and H. At this time, the power amplifier PA1 does not function.
  • the third state SW1, SW2, SW4, SW5 is closed, and when SW3 and SW6 are disconnected, the input signal enters the transmission line D from the combined port of the first single-pole double-throw switch, and is then distributed into two signals of equal amplitude and same phase.
  • a signal is transmitted through the transmission line G to the first branch port of the first single-pole double-throw switch, and then amplified by the power amplifier PA to the first branch port of the second single-pole double-throw switch to the transmission line] VI.
  • the other signal passes through the transmission line F to the second branch port of the first single-pole double-throw switch, and is amplified by the power amplifier PA1 to the second branch port of the second single-pole double-throw switch to the transmission line ⁇ . If the gain and phase consistency of the power amplifier is good, the amplitude and phase of the signal on the transmission lines M and N are the same, and the two signals are combined, and the transmission line K to the RF antenna So
  • FIG. 8 is a schematic structural diagram of a third preferred embodiment of implementing 1+1 thermal backup of a radio frequency power amplifier according to the present invention.
  • the system consists of two identical single-pole double-throw switches: the first single-pole double-throw switch and the second single-pole double-throw switch, which also contain two identical RF power amplifiers, PA1 and PA, of which PA1 can be the main RF power amplifier, The PA can be backed up as an RF power amplifier.
  • the combined port of the first single-pole double-throw switch is a signal receiving end
  • the first branching port of the single-pole double-throw switch is connected to the input port of the PA1, and the second branching port of the single-pole double-throwing switch and the input of the PA Connected to the end.
  • the combined port of the second single pole double throw switch is a signal output end. 69
  • the port is connected to the RF antenna S.
  • the first branch port of the single-pole double-throw switch is connected to the output port of the PA1, and the second branch port of the single-pole double-throw switch is connected to the output end of the PA.
  • This embodiment is based on the embodiment shown in Fig. 6, and the microwave single-pole double-throw switch is improved.
  • the first microwave single-pole double-throw switch in this embodiment includes: a combined port, a first branch port, and a second branch port, A, B, C, Dl, D2, E, F, and G eight-segment transmission line and four switching devices SW1, SW2, SW3 and SW4, and a matching resistor R; the eight-segment transmission line and the matching resistor R are connected to each other to form an approximate "mesh" shape.
  • the combined port of the first microwave single-pole double-throw switch and the first end of the first transmission line A, the first end of the second transmission line B, the first ends of the fourth a transmission line D1 and the fourth b transmission line D2 are mutually Connecting; the second end of the fourth a transmission line D1 is connected to the first end of the sixth transmission line F, and the third switching device SW3 is connected between the intersection thereof and the ground; the second end and the seventh transmission line of the fourth b transmission line D2
  • the first end of G is connected, the intersection of the fourth switching device SW4 is connected to the ground; and a matching resistor R is connected between the second end of the fourth a transmission line D1 and the second end of the fourth b transmission line D2;
  • the second end of the first transmission line A is connected to the first end of the third transmission line C, and the first switching device SW1 is connected between the intersection thereof and the ground; the first end of the second transmission line B and the first end of the fifth transmission line E
  • the second connection device SW2 is connected between
  • the microwave single-pole double-throw switch of the structure the length of the eight-section transmission line is 25% wavelength transmission line, the characteristic impedance of the transmission lines A, B, C, E, F, G is Z0, and the characteristic impedance of the transmission lines D1 and D2 is ZO , and the resistance of the matching resistor is equal to 2Z0.
  • the transmission lines D1, D2 and the resistor R form a standard power splitter such as Wilkinson.
  • the matching resistors can provide isolation and help improve the matching characteristics of the ports.
  • the microwave single pole double throw switch of this embodiment also has three states:
  • the second, third, and fourth switching devices are set to be closed, and the first switching device is turned off.
  • the signal is input from the combining port, the input signal reaches the second branching port through the first and third transmission lines;
  • the first and second switching devices are set to be closed, and the third and fourth switching devices are disconnected.
  • the signal is input from the combining port, the input signal is divided into two paths, and one way passes through the fourth b and the seventh transmission line to reach the first branch.
  • the port, the other way reaches the second branch port through the fourth & sixth transmission line.
  • the microwave single-pole double-throw switch in this embodiment, if the signal is only input from the first branch port, the first, third, and fourth switching devices are closed, and the second switching device is turned off, the input signal passes through the fifth and second The transmission line reaches the combined port; if the signal is only input from the second branch port, the second, third, and fourth switching devices are closed, and when the first switching device is turned off, the input signal reaches the combined port through the third and first transmission lines. If two signals are input from the first and second branch ports respectively, the first and second switching devices are closed, and the third and fourth switching devices are disconnected, one signal reaches the sixth and fourth a transmission lines. The way port, the other way to the combined port via the seventh and fourth b transmission lines.
  • the second microwave single-pole double-throw switch has the same structure as the first microwave single-pole double-throw switch, except that the transmission line and the switching device have different numbers.
  • the active and standby switching is implemented by the linkage of the same switching devices in the first and second microwave single-pole double-throw switches.
  • the first and second microwave single-pole double-throwing openings When the primary RF power amplifier is normal, the first and second microwave single-pole double-throwing openings: the respective first, third, and fourth switching devices are closed, and the second switching device is turned off; or the first And the first and second switching devices of the second microwave single-pole double-throw switch are closed, and the third and fourth switching devices are disconnected;
  • the second, third, and fourth switching devices of the first and second microwave single-pole double-throw switches are closed, and the first switching device is turned off.
  • the microwave single-pole double-throw switch in the embodiment is used for signal switching, signal distribution, the working process of the combining function, the analysis of the working state, and the functions thereof, as shown in FIG.
  • the microwave single-pole double-throw switch in the embodiment is the same.
  • SW3 and SW4 are regarded as one linkage switch in the application process, and are closed or simultaneously disconnected, and the switching function is equivalent to SW3 or SW6 in FIG. Therefore, the working principle of the backup system in this embodiment is the same as that of the embodiment shown in FIG. 6, and will not be repeated here.
  • the microwave single-pole double-throw switch in this embodiment is the same as the microwave single-pole double-throw switch in the embodiment shown in FIG. 6, and has the functions of signal switching, power distribution and combining; although the second structure is comparatively One structure adds a length of transmission line and a matching resistor, but also each transmission line A, B, C, Dl, D2, E, F, G can form a basic microwave switch together with a certain switching device, and each transmission line is also the same It can be realized by microstrip line or strip line on the PCB. Each switching device can adopt microwave PIN diode. Therefore, it still has the advantages of simple circuit, mature process, low cost and strong practicability.
  • each sector has its own backup power amplifier PA used alone.
  • two power amplifiers PA1 and PA operate simultaneously.
  • the mutual help state when any one of them fails, the failed power amplifier is switched out by switching, and the other power amplifier is still working, but the output power is reduced by 3dB.
  • This device can be applied to any sector separately, if each sector (for example: three sectors) adopts the scheme of Figure 6 or Figure 8, since each sector is independent The sectors are insulated from each other, so there is no problem of sector isolation at all. Referring to the working principle of the RF power amplifier 1 + 1 hot backup, the RF power amplifier N + 1 hot backup can be realized.
  • a system and method for realizing N + 1 hot backup of a radio frequency power amplifier provided by the present invention will be described in detail with reference to three preferred embodiments for implementing a radio frequency power amplifier 3 + 1 hot backup.
  • FIG. 9 is a schematic structural diagram of a system for implementing a N+1 hot backup of a radio frequency power amplifier according to a first preferred embodiment of the present invention.
  • This embodiment implements a 3 + 1 hot backup of a three-sector RF power amplifier with reference to the working principle of the embodiment shown in FIG.
  • the system shown in Figure 9 contains the first to sixth six identical single-pole double-throw switches, four identical RF power amplifiers, PAK PA2, PA3, and PA.
  • the six single pole double throw switches are the same as the single pole double throw switches of the embodiment shown in Figure 5; PA1 ⁇ PA3 are the respective power amplifiers of the three sectors, and PA is the backup power amplifier.
  • the combined port of the first single-pole double-throw switch receives the input signal of the first sector, and the first branch port of the single-pole double-throw switch is connected to the input end of the PA1, and the single-pole double-throw switch
  • the two-way port is connected to the input of the PA via the transmission line X.
  • the first shunt port of the second single-pole double-throw switch is connected to the output of the PA1, and the second shunt port of the single-pole double-throw switch is connected to the output end of the PA through the transmission line Y, and the combined end of the single-pole double-throw switch A sector of radio frequency antenna S1 is connected.
  • the combined port of the three-pole single-throw double-throw switch receives the input signal of the second sector, and the first branch port of the single-pole double-throw switch intersects with the second branch port of the first single-pole double-throw switch, the single-pole double-throw switch
  • the second shunt port is connected to the input of the PA2.
  • the first shunt port of the fourth single pole double throw switch intersects the second shunt port of the second single pole double throw switch, and the second shunt port of the fourth single pole double throw switch is connected to the output end of the PA2, the single pole double throw The combined end of the switch is connected to the radio frequency antenna S2 of the second sector.
  • the combined port of the fifth single-pole double-throw switch receives the input signal of the third sector, the single-pole double 2005/001969
  • the first shunt port of the throw switch intersects the second shunt port of the first single pole double throw switch, and the second shunt port of the single throw throw switch is connected to the input of the PA3.
  • the first shunt port of the sixth single pole double throw switch intersects the second shunt port of the second single pole double throw switch, and the second shunt port of the sixth single pole double throw switch is connected to the output end of the PA3, the single pole double throw
  • the combined end of the switch is connected to the radio frequency antenna S3 of the third sector.
  • the first single-pole double-throw switch is linked with the corresponding single-pole double-throw switch, the third single-pole double-throw switch and the fourth single-pole double-throw switch are connected, and the fifth is connected.
  • the single-pole double-throw switch and the sixth single-pole double-throw switch correspond to the switching devices to achieve hot backup and mutual assistance. There are four states:
  • the first state is that three power amplifiers PA1, PA2, and PA3 work normally, and the backup power amplifier PA does not work.
  • SW3, SW4, SW5, SW6, SW9, and SW10 are closed, and SW1, SW2, SW7, SW8, and SW11 are disconnected.
  • the input signals pass through the first, third, and
  • the combined port of the five single-pole double-throw switch enters the first branch port of the transmission line VIII, K, 0 to the first, third, and fifth single-pole double-throw switches, and is amplified by the power amplifiers ⁇ 1, ⁇ 2, ⁇ 3, respectively.
  • the second shunt port of the fourth and sixth single-pole double-throw switch is respectively output to the radio frequency antennas S1, S2, and S3 via the transmission lines B, L, and P.
  • the first, third, and fifth single-pole double-throw switches may be referred to as pre-microwave switches. Since SW3, SW5 > SW9 of each pre-microwave switch are short-circuited to ground, respectively, the wavelength impedance is changed to 1/4 of the waveguide to The PA input is open, so the amplifier PA has no input signal.
  • the second, fourth, and sixth single-pole double-throw switches can be referred to as rear-mounted microwave switches. Since SW4, SW6, and SW10 of each rear-wave switch are short-circuited to ground, respectively, the 1/4 waveguide wavelength impedance is passed. Switching to the PA output is an open circuit, so there is no output signal to the PA.
  • the second state is that the sector-amplifier PA1 is damaged, the sector two, three of the PA2, the PA3 is working normally, and the backup power amplifier PA is replacing the PA1.
  • Set SW1, SW2 SW5, SW6, SW9, SW10 are closed, SW3, SW4, SW7, SW8, SW11, SW12 are disconnected, and the input signal of the first sector enters the transmission line through the combined port of the first single-pole double-throw switch (, E to the first single-pole double-throw switch
  • the second branch port is amplified by the transmission line X to the backup power amplifier PA, to the second branch port of the second single pole double throw switch, and then to the combined port of the second single pole double throw switch through the transmission line ? Output to the RF antenna S1 of the first sector.
  • the SW1 of the first single-pole double-throw switch is short-circuited to ground, so the 1/4-wavelength wavelength impedance is converted to an open input, so the input signal does not pass through the transmission line A.
  • the power amplifier PA1 has no input signal.
  • the SW2 of the second single-pole double-throw switch is short-circuited to ground, after the 1/4 waveguide wavelength impedance is converted to the output end, the signal amplified by the PA is directly output through the transmission lines F and B. , and will not flow into PA1 via transmission line B.
  • the third state is the power amplifier of sector 2, PA2 is damaged, the first and third sectors of PA1, PA3 are working normally, and the backup power amplifier PA is replaced by PA2.
  • SW3, SW4, SW7, SW8, SW9, and SW10 are closed, and SW1, SW2, SW5, SW6, SW11, and SW12 are disconnected.
  • the working principle is exactly the same as the second state.
  • the fourth state is that the power amplifier of sector three is damaged, the PA1 and PA2 of sector one and two are working normally, and the backup power amplifier PA is replaced by PA3.
  • SW3, SW4, SW5, SW6, SW11, and SW12 are closed, and SW1, SW2, SW7, SW8, SW9, and SW10 are disconnected.
  • the working principle is exactly the same as the second state.
  • the second, third, and fourth states are equivalent to the hot backup.
  • the power amplifier PA is a backup of the power amplifiers PA1, PA2, PA3, does not belong to any sector.
  • the microwave single-pole double-throw switch of the sector is switched, so that the backup power amplifier PA is in the In the case of no power failure, the faulty power amplifier is immediately replaced and a hot backup is realized.
  • any of the four power amplifiers PA1, PA2, PA3, and PA are only amplifying the signal of one sector while operating, so this system is used.
  • the isolation index between sectors can be made very high.
  • FIG. 10 is a schematic structural diagram of a system according to a second preferred embodiment of the present invention for implementing N+1 hot backup of a radio frequency power amplifier.
  • This embodiment implements a 3 + 1 hot backup of a three sector RF power amplifier with reference to the operation of the embodiment shown in FIG.
  • the system shown in Figure 10 contains six identical single-pole double-throw switches from the first to the sixth, and four identical RF power amplifiers, PA1, PA2, PA3, and PA.
  • Six of the single pole double throw switches are the same as the single pole double throw switches of the embodiment shown in Figure 6; PA1 PA3 is the power amplifier for each of the three sectors, and PA is the backup power amplifier.
  • the combined port of the first single-pole double-throw switch receives the input signal of the first sector, and the first branch port of the single-pole double-throw switch is connected to the input end of the PA1, and the single-pole double-throw switch The two-way port is connected to the input of the PA.
  • the first shunt port of the second single-throw throw switch is connected to the output of the PA1
  • the second shunt port of the single-pole double-throw switch is connected to the output end of the PA, and the combined end of the single-pole double-throw switch and the first sector
  • the radio frequency antenna S1 is connected.
  • the combined port of the third single-pole double-throw switch receives the input signal of the second sector, and the first branch port of the single-pole double-throw switch is connected to the input end of the PA2, and the second branch port of the single-pole double-throw switch and the PA The inputs are connected.
  • the first shunt port of the fourth single-pole double-throw switch is connected to the output end of the PA2, and the second shunt port of the single-pole double-throw switch is connected to the output end of the PA, and the combined port and the second fan of the single-pole double-throw switch
  • the area's RF antenna S2 is connected.
  • the combined port of the fifth single-pole double-throw switch receives the input signal of the third sector, and the first branch port of the single-pole double-throw switch is connected to the input end of the PA3, and the second branch port of the single-pole double-throw switch and the PA The inputs are connected.
  • the first shunt port of the sixth single-pole double-throw switch is connected to the output end of the PA3, and the second shunt port of the single-pole double-throw switch is connected to the output end of the PA, and the combined end of the single-pole double-throw switch It is connected to the radio frequency antenna S3 of the third sector.
  • the switching device corresponding to the first single-pole double-throw switch and the second single-pole double-throw switch, the third single-pole double-throw switch and the fourth single-pole double-throw switch, and the fifth single-pole double-throwing The switch and the corresponding switch device of the sixth single-pole double-throw switch are linked to realize hot backup and mutual assistance. There are three working states, as follows:
  • PA1, PA2, and PA3 all work normally, and the backup power amplifier PA does not work or is in standby state;
  • the switch In the second state, when any one of PA1, PA2, PA3 is faulty, the switch is switched, so that the faulty power amplifier does not work, and the backup power amplifier PA is switched back to replace the faulty power amplifier, which is the backup state.
  • the microwave switch of the first sector is switched to SW11, SW13, SW14, SW16 is closed, SW12, SW15 are disconnected, and the backup power amplifier PA replaces the normal operation of PA1.
  • PA1, PA2, and PA3 all work normally.
  • the backup power amplifier PA can work in parallel with any of the power amplifiers to increase the output power of this sector.
  • the first sector and the third sector maintain the first state, and the microwave switch of the second sector is set to SW21, SW22, SW24, SW25 closed, SW23 and SW26 are disconnected, and PA2 and PA work simultaneously.
  • the N+1 hot backup and mutual aid system of the radio frequency power amplifier of the embodiment has a power amplifier in each sector, and there is also a backup power amplifier in the system, which does not belong to any sector.
  • the backup power amplifier immediately replaces the failed power amplifier and stops the hot standby without power failure.
  • this backup power amplifier can also be used for any sector, theoretically can increase the output power of this sector by 3dB. More importantly, any of the four power amplifiers only amplifies the signal of one sector, so With this system, the isolation between sectors is independent of the consistency of the power amplifier. Under normal conditions, the inter-sector isolation can be achieved by 30 dB.
  • FIG. 11 is a schematic structural diagram of a system according to a third preferred embodiment of the present invention for implementing N+1 hot backup of a radio frequency power amplifier.
  • This embodiment implements a 3 + 1 hot backup of a three sector RF power amplifier with reference to the working principle of the embodiment shown in FIG.
  • connection mode, working state and working process of this embodiment are the same as those of the embodiment system shown in Fig. 10, except that the single-pole double-throw switch adopts the single-pole double-throw switch shown in Fig. 8. Since the system uses a matching resistor between the shunt ports of the microwave single-pole double-throw switch with power distribution and combining functions, the matching resistor can be used for isolation. If the input and output ports of the power amplifier do not match, the reflection The signal is not transmitted to the input and output of another power amplifier, that is, it does not affect the operating state of the other power amplifier, which helps to improve the matching characteristics of the input and output ports of the amplifier. Therefore, compared with the first RF power.
  • the amplifier's N+1 thermal backup and mutual aid system provides superior isolation between the two power amplifiers in a mutual-assisted mode of operation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Amplifiers (AREA)
  • Transmitters (AREA)
  • Microwave Amplifiers (AREA)

Description

T/CN2005/001969 射频功率放大器热备份系统及微波开关和备份方法
技术领域
本发明涉及无线发射技术, 特别涉及射频功率放大器热备份系统及 微波开关和备份方法。 发明背景 射频功率放大器广泛应用在无线接入及微波系统中, 进行信号的放 大, 在系统中是一个重要的部件, 在 CDMA无线接入多载波系统中, 如果某个扇区的功放有故障, 这个扇区的手机用户就打不通电话, 将对 移动通信运营商的服务质量产生负面影响, 所以, CDMA无线接入多载 波系统对功率放大器的稳定性和可靠性提出了很高的要求。 但功率放大 器工作在大电流、 高电压状态, 热环境也不好, 容易出问题。 所以要开 发功率放大器的热备份技术, 以提高稳定性。
以下都以三扇区为例。 如图 1所示, 常规的技术是每个扇区都有至 少一个功率放大器, 任何一个功率放大器都是只放大本扇区的输入信 号, 与其它扇区信号无关, 功率放大器之间没有关系, 互相隔离。 IN1 的输入信号经功率放大器 PA1放大后, 到达某扇区的天馈 SI , I 2的输 入信号经功率放大器 PA2放大后到达 S2, 同样, IN3的输入信号经功率 放大器 PA3放大后到达 S3。 如果 PA1损坏, 则本扇区无信号输出, 本 扇区的所有终端移动用户都无法接入系统。 这样会损害移动运营商的信 誉, 同样对设备制造商的信誉有不利的影响。 这种常规的无热备份和互 助装置的方案, 要求功率放大器有很高的可靠性。
目前, 有一种功率放大器热备份与互助技术方案, 如图 2所示。 该 技术方案采用了 3dB电桥耦合器混合矩阵, (以 4X4矩阵为例说明) , 由前混合矩阵、 功率放大器矩阵、 后混合矩阵组成。 与传统的无热备份 和互助技术方案不同的是, 功率放大器矩阵中的任何一个功率放大器, 都共同放大三个扇区的输入信号。 前混合矩阵起分路作用, 后混合矩阵 起合路作用。 其工作原理如下: 输入信号 I 1经过前混合矩阵, 分成四 路幅度相等、 相位按次序各相差 90度的信号, 分别到达四个功率放大 器的输入端。 四路信号经过放大后, 再输入到同样结构的后混合矩阵, 合成为一路信号, 到达扇区 1的天馈 Sl。 由于各路信号间存在按次序相 位差 90度的关系, 在理想情况下, IN1的信号经分路、 放大、 合路后, 不会在天馈 S2、 S3端口输出, 也不会在匹配电阻上有信号。 同样的道 理, IN2的输入信号仅在 S2端输出信号, 不会在其它端口输出信号; 而 IN3的输入信号仅在 S3端输出信号, 不会在其它端口输出信号。
与传统的无热备份与互助功能的方案相比, 本方案如果不考虑合分 路的损耗, 理论上每扇区输出到天馈的信号功率都可提高 1.23dB。
采用上述技术方案, 当其中任何一个功率放大器失效后, 剩下的三 个功率放大器仍正常工作, IN1 的输入信号经过此系统放大后, 可到达 扇区 1的天馈 Sl。 I 2、 I 3输入信号也同样分别到达 S2、 S3。 三个扇 区的手机用户都能接入系统, 不会出现在常规技术方案中, 某扇区所有 手机用户无法接入系统的情况, 可以实现功率放大器的热备份及互助。
但是, 由于在前混合矩阵分路时, 要求每路信号都分成四路幅度相 等、 相位相差各 90度的信号, 这样混合信号在后混合矩阵合路时, 仅 是靠信号间幅度和相位差的关系来抵消非本扇区的信号, 因此对信号幅 度和相位的要求非常高, 下述因素都会导致抵消不彻底而发生扇区间串 扰现象, 造成扇区隔离度下降。 这是一个致命的缺陷, 所以没有大规模 推广开来。 影响分合路时的幅度和相位关系而导致抵消不彻底的因素 有:
1、 设计和工艺加工上的原因, 3dB电桥耦合器的耦合度, 不是理想 的 3dB。
2、 即使是理想的 3dB电桥耦合器, 也只有在中心频率点才同时符合 相位和耦合度要求, 偏离中心频率, 幅度和相位差在理论上就不 能同时符合要求。
3、 前混合矩阵中的 Al、 A2、 A3、 A4四段传输线的电长度如果不一 致, 会导致附加的相位差。
4、 连接前混合矩阵与功率放大器间的传输线 Bl、 B2、 B3、 B4的电 长度不一致, 会导致附加的相位差。
5、 连接后混合矩阵与功率放大器间的传输线 Cl、 C2、 C3、 C4的电 长度不一致, 会导致附加的相位差。
6、 后混合矩阵中的 Dl、 D2、 D3、 D4四段传输线的电长度不一致, 会导致附加的相位差。
7、 功率放大器 PA1、 PA2、 PA3、 PA4之间的特性不一致, 主要是增 益和相位差, 这个要求非常高。 功率放大器一定要经过严格的挑选 配对, 一般要求增益差在 0.5dB内 , 相位差在 5度以内。
由此可见, 该技术方案对工艺及器件一致性要求极高, 近乎苛刻, 否则扇区间的隔离度很难做到 25dB, 而这个指标己经满足不了 CDMA 系统的协议要求, 更远远满足不了特殊扇区配置条件下的邻频干扰要 求。 除此而外, 当系统在商用过程中, 需要更换其中一个功率放大器时, 则要找到与更换的功率放大器增益和相位完全一致的功率放大器才行, 一^^要找到同一个厂家的同批次产品, 或者, 四个功率放大器都要同时 更换成经过挑选配对的, 器件的互换性差也限制了该方案的推广和采 用。 N2005/001969 微波单刀双掷开关广泛应用于无线射频系统或微波系统中, 进行信 号的切换。 功分器也在射频系统中得到广泛应用, 将某一输入功率按一 定的比例分配到各分支电路中, 或者反过来用于功率合路。 在低频电路 中, 由于波长远大于传输线或元件尺寸,属于集总参数电路,任何时刻, 传输线上的各点电位处处相等, 但在微波领域, 随着波长缩短至与传输 线长度相比拟的程度, 传输线的特性就完全不同了, 传输线上的电位不 是处处相等的。 例如, 25%波长的传输线, 在微波电路是一个重要的分 布参数元件。 如图 3所示, 端口一到端口二之间的传输是主信号通路, 如果有一段 25%波长的传输线也接在这段主信号通路, 且另一端短路, 相当于这段 25%波长的传输线对微波信号没有作用, 虽然传输线终端是 对地短路点,但在传输线上相隔 25%波长的地方,就一定是对地开路点。 与低频电路不一样, 在图 3中, 微波信号不会跑到接地点消失, 而只能 从端口一顺利传输到端口二, 也能从端口二顺利传输到端口一。
。 利用传输线的这种特征,把接地点换成开关,就成为微波开关电路。 如图 4所示, 现有技术的 波单刀双掷开关具有合路端口、 第一分路端 口和第二分路端口三个端口, 其由三段特征阻抗为 Z0的传输线呈星形 接法, 连接在一起, 当开关器件 SW1闭合、 SW2断开时, 第一分路端 口与第二分路端口是连通的; 当 SW1断开、 SW2闭合时, 合路端口与 第一分路端口是连通的, 开关器件 SW1、 SW2可采用微波 PIN二极管。 由此可见, 在合路端口输入微波信号时, 单刀双掷开关只有两种状态, 一种状态是第一分路端口有信号、 第二分路端口无信号, 另一种状态是 第二分路端口有信号、 第一分路端口无信号, 对信号实现了单刀双掷开 关功能。 若按照低频电路的思路, SW2、 SW3同时断开时, 合路端口的 信号能到达第一分路端口, 也能到达第二分路端口, 但这种电路状态有 一定的缺点: 在图 4中的 A点"三岔口 "处, 阻抗不连续, 从任一端口向 05 001969 内传输的微波信号, 都会有反射信号到输入端, 并且理论上可计算出, 任意端口的回波损耗都是 -9.5dB, 这个指标比较差, 而常规微波设备的 回波损耗指标的一般要求是至少优于 -18dB, 这种单刀双掷开关的功率 分配与合路功能较差, 因此其实用价值不是 4艮高。
现有技术中还有一种用微波电子开关芯片或微波继电器、 功分器组 合出一种拓朴结构,可以实现微波信号的切换、信号的分路与合路功能, 但电路复杂, 使用器件多, 从而导致可靠性下降、 成本上升。 发明内容
有鉴于此, 本发明的第一个主要目的在于: 提供一种射频功率放大 器的 1 + 1 热备份系统, 应用该系统能够降低对工艺及器件一致性的要 求。
本发明的第二个主要目的在于: 提供两种可应用于射频功率放大器 的热备份系统的微波单刀双掷开关, 该微波单刀双掷开关既具有信号切 换功能, 又可以实现功率分配与合路功能。
本发明的第三个主要目的在于: 提供一种射频功率放大器的 N + 1 热备份系统, 该系统具有 个扇区射频功率放大器的热备份与互助功 能, 而且能够降低对工艺及器件一致性的要求, 提高扇区间隔离度。
本发明的第四个主要目的在于: 提供一种射频功率放大器的 1 + 1 热备份方法, 应用该方法能够系统降低对工艺及器件一致性的要求。
本发明的第五个主要目的在于: 提供一种射频功率放大器的 N + 1 热备份方法,该方法能够实现 N个扇区射频功率放大器的热备份与互助 功能, 而且能够降低对工艺及器件一致性的要求, 提高扇区间隔离度。
为达到上述目的的第一个方面, 本发明提供了一种射频功率放大器 的 1 + 1 热备份系统, 该系统包含一个主射频功率放大器, 该系统还包 含: 一个与所述主射频功率放大器相同的备份射频功率放大器和两个相 同的微波单刀双掷开关;
所述第一微波单刀双掷开关的合路端口为信号接收端, 在主射频功 率放大器正常时, 信号从该单刀双掷开关的合路端口通过第一分路端口 发送给主射频功率放大器的输入端口; 在主射频功率放大器故障时, 信 号从该单刀双掷开关的合路端口通过第二分路端口发送给备份射频功 率放大器的输入端;
第二单刀双掷开关的合路端口为信号输出端; 该单刀双掷开关的第 一分路端口与主射频功率放大器的输出端口相连, 在主射频功率放大器 正常时, 第一分路端口接收主射频功率放大器放大后的信号发送到该单 刀双掷开关的合路端口; 该单刀双掷开关的第二分路端口与备份射频功 率放大器的输出端相连, 在主射频功率放大器故障时, 第二分路端口接 收备份射频功率放大器放大后的信号发送到该单刀双掷开关的合路端 Π。 '
其中 , 所述的微波单刀双掷开关还可以包含 7段传输线和 3个开关 器件;
所述微波单刀双掷开关的合路端口与第四传输线、 第一传输线及第 二传输线的第一端互相连接; 第四传输线的第二端与第六传输线及第七 传输线的第一端互相连接, 其相交处与地之间连接第三开关器件; 第二 传输线的第二端与笫五传输线的第一端连接, 并且其相交处与地之间连 接第二开关器件; 第五传输线的第二端与第七传输线的第二端相接, 其 相交处与第一分路端口相连; 第一传输线的第二端与第三传输线的第一 端连接, 并且其相交处与地之间连接第一开关器件; 第三传输线的第二 端与所第六传输线的第二端相接, 其相交处与第二分路端口相连; 当信号从合路端口输入, 且第一开关器件和第三开关器件闭合, 第 二开关器件断开时,输入信号通过第二、第五传输线到达第一分路端口; 当信号从合路端口输入, 且第二开关器件和第三开关器件闭合, 第 一开关器件断开时,输入信号通过第一、第三传输线到达第二分路端口; 当信号从合路端口输入, 且第一开关器件和第二开关器件闭合, 第 三开关器件断开时, 输入信号通过第四传输线分为两路分别通过第七和 第六传输线分别到达第一和第二分路端口;
当信号从第一分路端口输入, 第一开关器件和第三开关器件闭合, 第二开关器件断开时, 输入信号通过第五、 第二传输线到达合路端口; 当信号从第二分路端口输入, 第二开关器件和第三开关器件闭合, 第一开关器件断开时, 输入信号通过第三、 第一传输线到达合路端口; 当两路信号从第一和第二分路端口分别输入, 第一开关器件和第二 开关器件闭合、 第三开关器件断开时, 两路信号分别经第七、 第六传输 线在第七、 第六传输线相交处合路后, 经第四传输线到达合路端口。
所述的微波单刀双掷开关中的传输线均可以为 25%波长线; 所述第 一及第二、 第三、 第五、 第六、 第七传输线的特征阻抗均可以为 Z0, 而 所述第四传输线的特征阻抗为; f。
所述第一和第二微波单刀双掷开关中相同的开关器件联动; 在主射频功率放大器正常时, 所述第一和第二微波单刀双掷开关各 自的第一、 第三开关器件闭合、 第二开关器件断开; 或所述第一和第二 微波单刀默掷开关各自的第一、第二开关器件闭合、第三开关器件断开; 在主射频功率放大器故障时, 所述第一和第二微波单刀双掷开关各 自的第二、 第三开关器件闭合、 第一开关器件断开。
所述的微波单刀双掷开关还可以包含 8段传输线和 4个开关器件; 所述微波单刀双掷开关的合路端口与第一传输线的第一端、 第二传 输线的第一端、 第四 a传输线及第四 b传输线的第一端互相连接; 第四 a传输线的第二端与第六传输线的第一端相接, 其相交处与地之间连接 笫三开关器件; 第四 b传输线的第二端与第七传输线的第一端相接, 其 相交处与地之间连接第四开关器件; 并且第四 a传输线的第二端与第四 b传输线的第二端之间连接一匹配电阻 R; 第一传输线的第二端与第三 传输线的第一端连接, 并且其相交处与地之间连接第一开关器件; 第二 传输线的第二端与第五传输线的第一端连接, 并且其相交处与地之间连 接第二开关器件; 第五传输线的第二端与第七传输线的第二端相接, 其 相交处与第一分路端口相连; 第三传输线的第二端与所述第六传输线的 第二端相接, 其相交处与第二分路端口相连;
当信号从合路端口输入, 且第一、 第三、 第四开关器件闭合, 第二 开关器件断开时, 输入信号通过第二、 第五传输线到达第一分路端口; 当信号从合路端口输入, 且第二、 第三、 第四开关器件闭合, 第一 开关器件断开时, 输入信号通过第一、 第三传输线到达第二分路端口; 当信号从合路端口输入, 且第一、 第二开关器件闭合, 第三、 第四 开关器件断开时, 输入信号分为两路, 一路通过第四 b、 第七传输线到 达第一分路端口, 另一路通过第四&、 第六传输线到达第二分路端口; 当信号从第一分路端口输入, 第一、 第三、 第四开关器件闭合, 第 二开关器件断开时, 输入信号通过第五、 第二传输线到达合路端口; 当信号从第二分路端口输入, 第二、 第三、 第四开关器件闭合, 第 一开关器件断开时, 输入信号通过第三、 第一传输线到达合路端口; 当两路信号从第一和第二分路端口分別输入, 第一、 第二开关器件 闭合, 第三、 第四开关器件断开时, 一路信号经第六、 第四 a传输线到 达合路端口, 另一路经第七、 第四 b传输线到达合路端口。
所述微波单刀双掷开关的传输线均可以为 25%波长线; 所述第一及 第二、 第三、 第五、 第六、 第七传输线的特征阻抗均可以为 Z0, 而所述 笫四 a及第四 b传输线的特征阻抗为 Z0 ,所述匹配电阻的阻值为 2 Z0。 所述第一和第二微波单刀双掷开关中相同的开关器件联动; 在主射频功率放大器正常时, 所述第一和第二微波单刀双掷开关各 自的第一、 第三、 第四开关器件闭合、 第二开关器件断开; 或所述第一 和第二微波单刀双掷开关各自的第一、 第二开关器件闭合、 第三、 第四 开关器件断开;
在主射频功率放大器故障时, 所述第一和第二微波单刀默掷开关各 自的第二、 第三、 第四开关器件闭合、 第一开关器件断开。
所述的微波单刀双掷开关中的开关器件可以采用 PIN二极管。
为达到上述目的的第二个方面, 本发明提供了两种微波单刀双掷开 关。 本发明提供的第一种微波单刀双掷开关包含: 合路端口、 第一分路 端口、 第二分路端口以及传输线和开关器件, 其特征在于': 所述的微波 单刀双掷开关包含 7段传输线和 3个开关器件;
所述微波单刀双掷开关的合路端口与第四传输线、 第一传输线及第 二传输线的第一端互相连接; 第四传输线的第二端与第六传输线及第七 传输线的第一端互相连接, 其相交处与地之间连接第三开关器件; 第二 传输线的第二端与第五传输线的第一端连接, 并且其相交处与地之间连 接第二开关器件; 笫五传输线的第二端与第七传输线的第二端相接, 其 相交处与第一分路端口相连; 第一传输线的第二端与第三传输线的第一 端连接, 并且其相交处与地之间连接第一开关器件; 第三传输线的第二 端与所第六传输线的第二端相接, 其相交处与第二分路端口相连;
当信号从合路端口输入, 且第一开关器件和第三开关器件闭合, 第 二开关器件断开时,输入信号通过第二、第五传输线到达第一分路端口; 当信号从合路端口输入, 且第二开关器件和第三开关器件闭合, 第 一开关器件断开时,输入信号通过第一、第三传输线到达第二分路端口; 当信号从合路端口输入, 且第一开关器件和第二开关器件闭合, 第 三开关器件断开时, 输入信号通过第四传输线分为两路分别通过第七和 第六传输线分别到达第一和第二分路端口;
当信号从第一分路端口输入, 第一开关器件和第三开关器件闭合, 第二开关器件断开时, 输入信号通过第五、 第二传输线到达合路端口; 当信号从第二分路端口输入, 第二开关器件和第三开关器件闭合, 第一开关器件断开时, 输入信号通过第三、 第一传输线到达合路端口; 当两路信号从第一和第二分路端口分别输入, 第一开关器件和第二 开关器件闭合、 第三开关器件断开时, 两路信号分别经第七、 第六传输 线在第七、 第六传输线相交处合路后, 经第四传输线到达合路端口。
所述的传输线均可以为 25%波长线; 所述第一及第二、 第三、 第五、 第六、 第七传输线的特征阻抗均为 Z0, 而所述第四传输线的特征阻抗为 本发明提供的第二种微波单刀双掷开关包含: 合路端口、 第一分路 端口、 第二分路端口以及传输线和开关器件, 其特征在于: 所述的 吏波 单刀双掷开关包含 8段传输线和 4个开关器件;
所述微波单刀双掷开关的合路端口与第一传输线的第一端、 第二传 输线的第一端、 第四 a传输线及第四 b传输线的第一端互相连接; 第四 a传输线的第二端与第六传输线的第一端相接, 其相交处与地之间连接 第三开关器件; 第四 b传输线的第二端与第七传输线的第一端相接, 其 相交处与地之间连接第四开关器件; 并且第四 a传输线的第二端与第四 b传输线的第二端之间连接一匹配电阻 R; 第一传输线的第二端与第三 传输线的第一端连接, 并且其相交处与地之间连接第一开关器件; 第二 传输线的第二端与第五传输线的第一端连接, 并且其相交处与地之间连 接第二开关器件; 第五传输线的第二端与第七传输线的第二端相接, 其 05 001969 相交处与第一分路端口相连; 第三传输线的第二端与所述第六传输线的 笫二端相接, 其相交处与第二分路端口相连;
当信号从合路端口输入, 且第一、 第三、 第四开关器件闭合, 第二 开关器件断开时, 输入信号通过笫二、 笫五传输线到达第一分路端口; 当信号从合路端口输入, 且第二、 第三、 第四开关器件闭合, 第一 开关器件断开时, 输入信号通过第一、 第三传输线到达第二分路端口; 当信号从合路端口输入, 且第一、 第二开关器件闭合, 第三、 第四 开关器件断开时, 输入信号分为两路, 一路通过第四 b、 笫七传输线到 达第一分路端口, 另一路通过第四&、 第六传输线到达第二分路端口; 当信号从第一分路端口输入, 第一、 第三、 第四开关器件闭合, 第 二开关器件断开时, 输入信号通过第五、 第二传输线到达合路端口; 当信号从第二分路端口输入, 第二、 第三、 第四开关器件闭合, 第 一开关器件断开时, 输入信号通过第三、 第一传输线到达合路端口; 当两路信号从第一和第二分路端口分别输入, 第一、 第二开关器件 闭合, 第三、 第四开关器件断开时, 一路信号经第六、 第四 a传输线到 达合路端口, 另一路经第七、 第四 b传输线到达合路端口。
所述的传输线均可以为 25%波长线; 所述第一及第二、 第三、 第五、 第六、 第七传输线的特征阻抗均为 Z0, 而所述第四 a及第四 b传输线的 特征阻抗为 所述匹配电阻的阻值为 2 Z0。
为达到上述目的的第三个方面, 本发明提供了一种射频功率放大器 的 N + 1热备份系统, 其包含 N个相同的主射频功率放大器, 其特征在 于, 该系统还包含: 一个与所述主射频功率放大器相同的备份射频功率 放大器和 2N个相同的微波单刀双掷开关;
其中 N个微波单刀双掷开关分别设置在 N个主射频功率放大器的输 入端,另 N个微波单刀双掷开关分别设置在 N个主射频功率放大器的输 05 001969 出端;
每个设置在主射频功率放大器输入端的微波单刀双掷开关的合路端 口接收一路输入信号, 第一分路端口与该主射频功率放大器输入端相 连, 第二分路端口都与备份射频功率放大器输入端相连; 在与其相连的 主射频功率放大器正常时, 信号从该单刀双掷开关的合路端口通过第一 分路端口发送给主射频功率放大器的输入端口; 在该主射频功率放大器 故障时, 信号从该单刀双掷开关的合路端口通过第二分路端口发送给备 份射频功率放大器的输入端;
每个设置在主射频功率放大器输出端的微波单刀双掷开关的合路端 口用于输出一路信号, 第一分路端口与该主射频功率放大器输出端相 连, 第二分路端口都与备份射频功率放大器输出端相连; 在与其相连的 主射频功率放大器正常时, 第一分路端口接收主射频功率放大后的信号 发送到该单刀双掷开关的合路端口; 在该主射频功率放大器故障时, 第 二分路端口接收备份射频功率放大器放大后的信号发送到该单刀双掷 开关的合路端口。
所述的微波单刀双掷开关还可以包含 7段传输线和 3个开关器件; 所述微波单刀双掷开关的合路端口与第四传输线、 第一传输线及第 二传输线的第一端互相连接; 第四传输线的第二端与第六传输线及第七 传输线的第一端互相连接, 其相交处与地之间连接第三开关器件; 第二 传输线的第二端与第五传输线的第一端连接, 并且其相交处与地之间连 接第二开关器件; 第五传输线的第二端与第七传输线的第二端相接, 其 相交处与第一分路端口相连; 第一传输线的第二端与第三传输线的第一 端连接, 并且其相交处与地之间连接第一开关器件; 第三传输线的第二 端与所第六传输线的第二端相接 , 其相交处与第二分路端口相连;
当信号从合路端口输入, 且第一开关器件和第三开关器件闭合, 第 二开关器件断开时,输入信号通过第二、第五传输线到达第一分路端口; 当信号从合路端口输入, 且第二开关器件和第三开关器件闭合, 第 一开关器件断开时,输入信号通过第一、第三传输线到达第二分路端口; 当信号从合路端口输入, 且第一开关器件和笫二开关器件闭合, 第 三开关器件断开时, 输入信号通过第四传输线分为两路分别通过第七和 第六传输线分别到达第一和第二分路端口;
当信号从第一分路端口输入, 第一开关器件和第三开关器件闭合, 第二开关器件断开时, 输入信号通过第五、 第二传输线到达合路端口; 当信号从第二分路端口输入, 第二开关器件和第三开关器件闭合, 第一开关器件断开时, 输入信号通过第三、 第一传输线到达合路端口; 当两路信号从第一和第二分路端口分别输入, 第一开关器件和第二 开关器件闭合、 第三开关器件断开时, 两路信号分别经第七、 第六传输 线在笫七、 第六传输线相交处合路后, 经第四传输线到达合路端口。
所述的微波单刀双掷开关中的传输线均可以为 25%波长线; 所述第 一及第二、 第三、 第五、 第六、 第七传输线的特征阻抗均为 Z0, 而所述 第四传输线的特征阻抗为 "。
相同的开关器件联动;
在一个主射频功率放大器正常时, 设置在该主射频功率放大器输入 端和输出端的微波单刀双掷开关各自的第一、 第三开关器件闭合、 第二 开关器件断开; 或设置在该主射频功率放大器输入端和输出端的微波单 刀双掷开关各自的第一、 第二开关器件闭合、 第三开关器件断开;
在一个主射频功率放大器故障时, 设置在该主射频功率放大器输入 端和输出端的微波单刀双掷开关各自的第二、 第三开关器件闭合、 第一 开关器件断开。 01969 所述的微波单刀双掷开关还可以包含 8段传输线和 4个开关器件; 所述微波单刀双掷开关的合路端口与第一传输线的第一端、 第二传 输线的第一端、 第四 a传输线及第四 b传输线的第一端互相连接; 第四 a传输线的第二端与第六传输线的第一端相接, 其相交处与地之间连接 第三开关器件; 第四 b传输线的第二端与第七传输线的第一端相接, 其 相交处与地之间连接第四开关器件; 并且第四 a传输线的第二端与第四 b传输线的第二端之间连接一匹配电阻 R; 第一传输线的第二端与第三 传输线的第一端连接, 并且其相交处与地之间连接第一开关器件; 第二 传输线的第二端与第五传输线的第一端连接, 并且其相交处与地之间连 接第二开关器件; 第五传输线的第二端与第七传输线的第二端相接, 其 相交处与第一分路端口相连; 第三传输线的第二端与所述第六传输线的 第二端相接, 其相交处与第二分路端口相连;
当信号从合路端口输入, 且第一、 第三、 第四开关器件闭合, 第二 开关器件断开时, 输入信号通过第二、 第五传输线到达第一分路端口; 当信号从合路端口输入, 且第二、 第三、 第四开关器件闭合, 第一 开关器件断开时, 输入信号通过第一、 第三传输线到达第二分路端口; 当信号从合路端口输入, 且第一、 第二开关器件闭合, 第三、 第四 开关器件断开时, 输入信号分为两路, 一路通过第四 b、 第七传输线到 达第一分路端口, 另一路通过第四&、 第六传输线到达第二分路端口; 当信号从第一分路端口输入, 第一、 第三、 第四开关器件闭合, 第 二开关器件断开时, 输入信号通过第五、 第二传输线到达合路端口; 当信号从第二分路端口输入, 第二、 第三、 第四开关器件闭合, 第 一开关器件断开时, 输入信号通过第三、 第一传输线到达合路端口; 当两路信号从第一和第二分路端口分别输入, 第一、 第二开关器件 闭合, 第三、 第四开关器件断开时, 一路信号经第六、 第四 a传输线到 达合路端口, 另一路经第七、 第四 b传输线到达合路端口。
所述微波单刀双掷开关的传输线均可以为 25%波长线; 所述第一及 第二、 第三、 第五、 第六、 第七传输线的特征阻抗均为 Z0, 而所述第四 a及第四 b传输线的特征阻抗为 ^ΖΟ, 所述匹配电阻的阻值为 2 Z0。
所述各个主射频功率放大器输入端和输出端的微波单刀双掷开关中 相同的开关器件联动;
在一主射频功率放大器正常时, 设置在该主射频功率放大器输入端 和输出端微波单刀双掷开关各自的第一、 第三、 第四开关器件闭合、 第 二开关器件断开; 或设置在该主射频功率放大器输入端和输出端的微波 单刀双掷开关各自的第一、 第二开关器件闭合、 第三、 第四开关器件断 开;
在一主射频功率放大器故障时, 设置在该主射频功率放大器输入端 和输出端的微波单刀双掷开关各自的第二、 第三、 第四开关器件闭合、 第一开关器件断开。
为达到上述目的的第四个方面, 本发明提供了一种射频功率放大器 的 1 + 1热备份方法, 采用上述的 1 + 1热备份系统, 该方法包括以下步 骤:
A、 在主射频功率放大器正常时, 通过设置第一、 第二单刀双掷开 关的状态, 使输入信号从第一单刀双掷开关的合路端口通过第一分路端 口发送给主射频功率放大器的输入端口, 主射频功率放大器对信号放大 后通过第二单刀双掷开关的第一分路端口发送给第二单刀双掷开关的 合路端口输出;
B、 在主射频功率放大器故障时, 通过设置第一、 第二单刀双掷开 关的状态, 使输入信号从第一单刀双掷开关的合路端口通过第二分路端 口发送给备份射频功率放大器的输入端口 , 备份射频功率放大器对信号 放大后通过第二单刀双掷开关的第二分路端口发送给第二单刀双掷开 关的合路端口输出。
所述的微波单刀双掷开关还可以包含 7段传输线和 3个开关器件; 所述步驟 A中, 设置第一、 第二微波单刀双掷开关各自的第一开关 器件和第三开关器件闭合, 第二开关器件断开; 输入信号从第一微波单 刀双掷开关的合路端口输入, 通过第二、 第五传输线到达第一分路端口 发送给主射频功率放大器, 经主射频功率放大器放大后输入到第二微波 单刀双掷开关的第一分路端口, 再经第二微波单刀双掷开关的第五、 第 二传输线经第二微波单刀双掷开关的合路端口输出;
或者步骤 A中, 设置第一、 第二微波单刀双掷开关各自的第一开关 器件和第二开关器件闭合, 第三开关器件断开; 输入信号从第一微波单 刀双掷开关的合路端口输入,经第四传输线后分为两路,分别通过第七、 第六传输线到达第一、 第二分路端口, 再分别发送给主、 备用.射频功率 放大器, 经主、 备用射频功率放大器放大后, 输入到第二微波单刀双掷 开关的第一、 第二分路端口, 再经第二微波单刀双掷开关的第七、 第六 传输线, 合路后经第四传输线, 到第二微波单刀双掷开关的合路端口输 出;
所述步骤 B中, 设置第一、 第二微波单刀双掷开关各自的第二开关 器件和第三开关器件闭合, 第一开关器件断开; 输入信号从第一微波单 刀双掷开关的合路端口输入,通过第一、第三传输线到达第二分路端口, 再发送给备份射频功率放大器, 经备份射频功率放大器放大后, 输入到 第二微波单刀双掷开关的第二分路端口, 再经第二微波单刀双掷开关的 第三、 第一传输线经第二微波单刀双掷开关的合路端口输出。
所述的微波单刀双掷开关还可以包含 8段传输线和 4个开关器件; 所述步骤 A中, 设置第一和第二微波单刀双掷开关各自的第一、 第 三、 第四开关器件闭合、 第二开关器件断开; 输入信号从第一微波单刀 双掷开关的合路端口输入, 通过第二、 第五传输线到达第一分路端口发 送给主射频功率放大器, 经主射频功率放大器放大后输入到第二微波单 刀双掷开关的第一分路端口, 再经第二微波单刀双掷开关的第五、 第二 传输线经第二微波单刀双掷开关的合路端口输出;
或所述步骤 A中, 设置第一和第二微波单刀双掷开关各自的第一、 第二开关器件闭合、 第三、 第四开关器件断开; 输入信号从第一微波单 刀双掷开关的合路端口输入, 分为两路后, 第一路经第四 b、 第七传输 线到第一分路端口, 发送给主射频功率放大器, 另一路经第四 a、 第六 传输线到第二分路端口, 发送给备份射频功率放大器, 主射频功率放大 器和备射频功率放大器分别将信号放大后, 经第二微波单刀双掷开关的 第一、 第二分路端口、 第七、 第四 b、 第六、 第四 a传输线合并后到第 二微波单刀双掷开关的合路端口输出;
所述步骤 B中,设置所述第一和第二微波单刀双掷开关各自的第二、 第三、 第四开关器件闭合、 第一开关器件断开; 输入信号从第一微波单 刀双掷开关的合路端口输入, 通过第一、 第三传输线到达第二分路端口 发送给备份射频功率放大器, 经备份射频功率放大器放大后输入到第二 微波单刀双掷开关的第二分路端口, 再经第二微波单刀双掷开关的第 三、 第一传输线经第二微波单刀双掷开关的合路端口输出。
为达到上述目的的第五个方面, 本发明提供了一种射频功率放大器 的 N + 1热备份方法,采用权利上述的 N + 1热备份系统,该方法包括以 下步骤:
A、 在所有主射频功率放大器正常时, 通过设置各个单刀双掷开关 的状态, 使输入信号从设置在主射频功率放大器输入端的单刀双掷开关 的合路端口通过第一分路端口发送给主射频功率放大器的输入端口, 主 射频功率放大器对信号放大后, 通过设置在主射频功率放大器输出端的 单刀双掷开关的第一分路端口发送给第二单刀双掷开关的合路端口输 出;
B、 在一个主射频功率放大器故障时, 通过设置该主射频功率放大 器输入端和输出端的单刀双掷开关的状态, 使输入信号从输入端的单刀 双掷开关的合路端口通过第二分路端口发送给备份射频功率放大器的 输入端口, 备份射频功率放大器对信号放大后, 通过该主射频功率放大 器输出端的单刀双掷开关的第二分路端口发送给该单刀双掷开关的合 路端口输出。
所述的微波单刀双掷开关还可以包含 Ί段传输线和 3个开关器件; 所述步骤 A中,设置射频功率放大器输入端和输出端的微波单刀双 掷开关各自的第一开关器件和第三开关器件闭合, 第二开关器件断开; 输入信号从输入端微波单刀默掷开关的合路端口输入, 通过第二、 第五 传输线到达第一分路端口发送给主射频功率放大器, 经主射频功率放大 器放大后, 输入到输出端的微波单刀双掷开关的第一分路端口, 再经输 出端的微波单刀双掷开关的第五、 第二传输线经该微波单刀双掷开关的 合路端口输出;
或者步骤 A中,设置射频功率放大器输入端和输出端的微波单刀双 掷开关各自的第一开关器件和第二开关器件闭合, 第三开关器件断开; 输入信号从输入端的微波单刀双掷开关的合路端口输入, 经第四传输线 后分为两路, 分别通过第七、 第六传输线到达第一、 第二分路端口, 再 分别发送给主、 备用射频功率放大器, 经主、 备用射频功率放大器放大 后, 输入到输出端的微波单刀双掷开关的第一、 第二分路端口, 再经输 出端的微波单刀双掷开关的第七、 第六传输线, 合路后经第四传输线, 到输出端的微波单刀双掷开关的合路端口输出; 所述步骤 B中,设置射频功率放大器输入端和输出端的微波单刀双 掷开关各自的第二开关器件和第三开关器件闭合, 第一开关器件断开; 输入信号从输入端的微波单刀双掷开关的合路端口输入, 通过第一、 第 三传输线到达第二分路端口, 再发送给备份射频功率放大器, 经备份射 频功率放大器放大后, 输入到输出端微波单刀双掷开关的第二分路端 口, 再经输出端的微波单刀双掷开关的第三、 第一传输线经该微波单刀 ^又掷开关的合路端口输出。
所述的微波单刀双掷开关还可以包含 8段传输线和 4个开关器件; 所述步骤 A中, 设置射频功率放大器输入端和输出端的微波单刀双 掷开关各自的第一、 第三、 第四开关器件闭合、 第二开关器件断开; 输 入信号从输入端的微波单刀双掷开关的合路端口输入, 通过第二、 第五 传输线到达第一分路端口发送给主射频功率放大器, 经主射频功率放大 器放大后输入到输出端的 4啟波单刀双掷开关的第一分路端口, 再经第二 波单刀双掷开关的第五、 第二传输线经第二微波单刀双掷开关的合路 端口输出;
或所述步骤 A中, 设置射频功率放大器输入端和输出端的微波单刀 双掷开关各自的第一、 第二开关器件闭合、 第三、 第四开关器件断开; 输入信号从输入端的微波单刀双掷开关的合路端口输入, 分为两路后, 第一路经第四 b、 第七传输线到第一分路端口, 发送给主射频功率放大 器, 另一路经第四 a、 第六传输线到第二分路端口, 发送给备份射频功 率放大器, 主射频功率放大器和备射频功率放大器分别将信号放大后, 经输出端的微波单刀双掷开关的第一、 第二分路端口、 第七、 第四 b、 第六、 第四 a传输线合并后到该微波单刀双掷开关的合路端口输出; 所述步驟 B中, 设置射频功率放大器输入端和输出端的微波单刀双 掷开关各自的第二、 第三、 第四开关器件闭合、 第一开关器件断开; 输 入信号从输入端的微波单刀双掷开关的合路端口输入, 通过第一、 第三 传输线到达第二分路端口发送给备份射频功率放大器, 经备份射频功率 放大器放大后, 输入到输出端的微波单刀双掷开关的第二分路端口, 再 经输出端的微波单刀双掷开关的第三、 第一传输线经该微波单刀双掷开 关的合路端口输出。
由上述的技术方案可见,本发明在系统中增加备份射频功率放大器, 并在射频功率放大器输入端和输出端分别采用微波单刀双掷开关来控 制是否采用备份射频功率放大器。 由于所述的热备份系统中每路信号都 有一个功率放大器, 并且系统中还有备份的功率放大器, 该备份功率放 大器为系统所共有不属于任何一路。 这样, 当其中一个功率放大器出现 故障时, 备份的功率放大器在不停电停机的情况下, 立即替代出故障的 功率放大器工作实现备份功能。 由于 N个功率放大器中的任何一个, 都 只放大一路的信号, 所以采用此系统, 信号间的隔离度与功率放大器的 一致性无关, 具有很高的隔离度。 同时本发明采用微波单刀双掷开关进 行主备切换, 对功率放大器等器件的一致性要求不高。 因此, 本发明的 热备份系统和方法具有很高的实际使用价值, 更易于在通信设备中推广 和采用。
另外, 本发明所提供的两种微波单刀双掷开关具有信号切换及功率 分配与功率合路功能, 拓宽了微波单刀双掷开关的使用环境; 由于采用 了技术方案所述的非常巧妙和精筒的传输线拓朴结构, 电路简单、 工艺 成熟、 成本低、 易于实现, 并使端口的阻抗匹配特性好, 端口无反射信 号, 因此具有 ί艮强的实用性, 能够应用于放大器热备份与互助系统。 附图简要说明
图 1 为现有技术的无热备份和互助功能的三扇区功率放大器示意 图;
图 2 为现有技术 3dB 电桥耦合器混合矩阵组成的热备份系统示意 图;
图 3为终端对地短路的 25%波长传输线示意图;
图 4为现有技术微波单刀双掷开关结构示意图;
图 5为本发明实现射频功率放大器的 1 + 1热备份的第一较佳实施 例的系统结构示意图;
图 6为本发明实现射频功率放大器的 1 + 1热备份的第二较佳实施 例的系统结构示意图;
图 7为图 6示系统中的微波单刀双掷开关等效为共分器的示意图; 图 8为本发明实现射频功率放大器的 1 + 1热备份的第三较佳实施 例的结构示意图;
图 9为本发明实现射频功率放大器的 N + 1热备份的第一较佳实施 例的系统结构示意图;
图 10为本发明实现射频功率放大器的 N + 1热备份的第二较佳实施 例的系统结构示意图;
图 11为本发明实现射频功率放大器的 N + 1热备份的第三较佳实施 例的系统结构示意图。 实施本发明的方式
为了使本发明的目的、 技术方案和优点更加清楚明白, 以下参照附 图并举具体实施例, 对本发明进行详细地说明。
本发明提供了采用微波单刀双掷开关和增加射频功率放大器来实 现射频功率放大器的 1 + 1热备份和 N + 1热备份的系统和方法,还提供 了两种可以应用于射频功率放大器热备份系统的微波单刀双掷开关。 首先举三个较佳实施例对本发明提供的实现射频功率放大器的 1 + 1 热备份的系统和方法, 以及本发明提供的两种可以应用于射频功率放 大器热备份系统的微波单刀双掷开关进行详细说明。
参见图 5, 图 5为本发明实现射频功率放大器的 1 + 1热备份的第一 较佳实施例的系统结构示意图。 该系统包含了两个相同的单刀双掷开 关: 第一单刀双掷开关和第二单刀双掷开关, 还包含了 PA1和 PA两个 相同的射频功率放大器 (以下简称功率放大器), 其中 PA1可以为主射 频功率放大器、 PA可以为备份为射频功率放大器, 当然也可以 PA1为 备, PA为主。
其中, 第一单刀双掷开关的合路端口为信号接收端, 该单刀双掷开 关的第一分路端口与 PA1的输入端口相连,该单刀双掷开关的第二分路 端口与 PA的输入端相连。第二单刀双掷开关的合路端口为信号输出端, 该端口与射频天线 S相连,该单刀双掷开关的第一分路端口与 PA1的输 出端口相连, 该单刀双掷开关的第二分路端口与 PA的输出端相连。
本实施例中的第一单刀双掷开关和第二单刀双掷开关, 都采用了图 4所示的现有技术微波单刀双掷开关。 第一单刀双掷开关中的开关器件 SW1和第二单刀双掷开关中的开关器件 SW2联动; 第一单刀双掷开关 中的开关器件 SW3和第二单刀双掷开关中的开关器件 SW4联动。
假设 PA1为主功率放大器, PA为备份功率放大器, 正常工作时, SW3和 SW4闭合, SW1和 SW2断开。 信号从第一单刀双掷开关的合 路端口输入,经传输线 A到 PA1放大后,经传输线 B输出给射频天线 S。 PA1故障时, 第一单刀双掷开关和第二单刀双掷开关进行切换, 将 SW3 和 SW4断开, SW1和 SW2闭合。 信号从第一单刀双掷开关的合路端口 输入, 经传输线 C、 E、 X到 PA放大后, 经传输线 Y、 F、 D输出给射 频天线 S。 这样就实现了射频功率放大器的 1 + 1热备份。 实际上,本系统还应存在第三种工作状态: SW1、 SW2、 SW3、 SW4 都断开, 但由于本实施例采用的单刀双掷开关本身的缺点, 这种状态下 各个端口的回波损耗过大, 功率分配与合路功能较差, 不能用来实现互 助。 因此, 实际应用中不推荐使用本实施例的实现方案, 推荐使用第二 较佳实施例或第三较佳实施例的实现方案。
参见图 6, 图 6为本发明实现射频功率放大器的 1 + 1热备份的第二 较佳实施例的系统结构示意图。 该系统包含了两个相同的单刀双掷开 关: 第一单刀双掷开关和第二单刀双掷开关, 还包含了射频功率放大器 PA1和射频功率放大器 PA两个相同的射频功率放大器, 其中 PA1可以 为主射频功率放大器、 PA可以为备份为射频功率放大器。
其中, 第一单刀双掷开关的合路端口为信号接收端, 该单刀双掷开 关的第一分路端口与 PA1的输入端口相连,该单刀双掷开关的第二分路 端口与 PA的输入端相连。第二单刀双掷开关的合路端口为信号输出端, 该端口与射频天线 S相连,该单刀双掷开关的第一分路端口与 PA1的输 出端口相连, 该单刀双掷开关的第二分路端口与 PA的输出端相连。
本实施例中的第一微波单刀双掷开关包含: 合路端口、 第一分路端 口和第二分路端口三个端口, A、 B、 C、 D、 E、 F和 G七段传输线, 以及 SW1、 SW2、 SW3 三个开关器件。 其中, 七段传输线的长度均为 25%波长传输线, 互相连接, 构成一个 "日" 字型, 并且每段传输线都 能与某个开关器件一起构成微波开关。
具体来说, 第一微波单刀双掷开关的合路端口与第四传输线 D、 第 一传输线 A及第二传输线 B的第一端互相连接; 第四传输线 D的第二 端与第六传输线 F及第七传输线 G的第一端互相连接,其相交处与地之 间连接第三开关器件 SW3; 第二传输线 B的第二端与第五传输线 E的 第一端连接, 并且其相交处与地之间连接第二开关器件 SW2; 第五传输 线 E的第二端与所述第七传输线 G的第二端相接,其相交处与第一分路 端口相连。第一传输线 A的第二端与第三传输线 C的第一端连接, 并且 其相交处与地之间连接第一开关器件 SW1 ;第三传输线 C的第二端与所 述第六传输线 F的第二端相接, 其相交处与第二分路端口相连。
上述结构中, 传输线 A、 B、 C, E、 F、 G的特征阻抗为 Z0, 而传 输线 D的特征阻抗为^。
当从合路端口输入一微波信号时, 上述结构的微波单刀双掷开关的 工作状态及实现信号切换及分路功能如下:
状态一: 设置 SW1 闭合、 SW2断开、 SW3闭合, 由于 SW1 闭合 短路到地, 合路端口的微波信号不会从传输线 A通过, 同样, 由于 SW3 闭合,微波信号也不会从传输线 D通过,所以微波信号只能从传输线 B、 E通过; 又由于 SW3闭合, 传输线 E上的信号不能从传输线 G通过, 而只能到达第一分路端口。 也就是说, 合路端口和第一分路端口是直通 的, 而与第一分路端口是隔离的, 即输入的微波信号可以通过第一分路 端口输出。
状态二: 设置 SW1断开、 SW2闭合、 SW3闭合, 由于 SW2闭合 短路到地,合路端口的微波信号不会从传输线 B通过, 同样, 由于 SW3 闭合,微波信号也不会从传输线 D通过,所以微波信号只能从传输线 A、 C通过; 又由于 SW3闭合, 传输线 C上的信号不能从传输线 F通过, 而只能到达第二分路端口。 也就是说, 合路端口和第二分路端口是直通 的, 而与第一分路端口是隔离的, 即输入的微波信号可以通过第二分路 端口输出。
由状态一和状态二的分析可见, 该结构的微波单刀双掷开关可以实 现信号切换功能。
状态三: 设置 SW1闭合、 SW2闭合、 SW3断开, 此时, 由于 SW1 闭合, 端口一的微波信号不能从传输线 A通过, 由于 SW2闭合, 分路 端口二的微波信号也不能从传输线 B通过,所以,只能从传输线 D通过。 微波信号到达传输线 F、 G相交处之后, 分成等功率的两路信号, 一路 信号经过传输线 F, 由于 SW1是闭合的, 信号不能通过传输线 C, 所以 只能到达第二分路端口; 同样, 另一路信号经过传输线 G到第一分路端 口。 在这种状态下, 整个电路等效如图 7, 图 7为图 6示系统中的微波 单刀双掷开关等效为功分器的示意图。 合路路口的输入信号等功率地分 成两路信号, 分别到达第一分路端口和第二分路端口, 也就是具有功率 分配功能。
在如图 7所示的状态三时, 与现有技术图 2所示的 "三岔口" A点不 同,传输线 D的两端位置, 虽然都是阻抗不连续, 但是由于传输线 D满 足下列条件: 传输线 D上端的输入阻抗是 Z0, 传输线 D下端相当于两 段特征阻抗为 Z0的传输线 F、 G并联, 所以其输入阻抗是 Z0/2; 传输 线的 D特征阻抗是 , 传输线 D的长度是 25%波长; 所以传输线 D是 一个标准的阻抗变换器, 在中心频率点处, 无反射信号, 而在接近中心 频率点处, 反射信号也可忽略, 从而具有实用价值。
上述结构的微波单刀双掷开关, 如果微波信号仅从第一分路端口或 仅从第二分路端口输入, 分析过程与上面相同, 相当于常规的单刀双掷 开关。 如果第一分路端口和第二分路端口输入等幅等相位的微波信号, 且 SWK SW2闭合, SW3断开时, 这个微波单刀双掷开关就具有功率 合路功能。 图 6中的第二单刀双掷开关就是这种应用情况。
图 6 中第二微波单刀双掷开关与第一微波单刀双掷开关的结构相 同, 只是传输线和开关器件的编号不同。 对于第二单刀双掷开关, 如果 信号仅从第一分路端口输入, SW6、 SW4 闭合, SW5 断开, 信号经传 输线 L、 I到合路端口输出给射频天线 S; 如果信号仅从第二分路端口输 入, SW5、 SW6闭合, SW4断开, 信号经传输线 J、 H到合路端口输出 给射频天线 S; 如果等幅等相位的两路信号分别从第一分路端口和第二 分路端口输入, SW4、 SW5 闭合, SW6 断开, 两路信号分别经传输线 M、 N, 在 M和 N相交处合路后, 经传输线 K到合路端口输出给射频天 线8。
本发明所述的微波单刀双掷开关的拓朴结构很巧妙,每段传输线 A、 B、 C、 D、 E、 F、 G都能与某个开关器件一起构成微波开关, 例如第六 传输线 F与第三开关 SW3构成微波开关, 传输线 D和 G也与 SW3构 成微波开关, 由此可见, 仅用三个开关器件就实现了七个微波开关的功 能, 电路结构筒单; 并且, 各传输线可以采用 PCB上的微带线或带状线 实现, 这已是很成熟 PCB制造工艺; 各开关器件可采用微波 PIN二极 管, 但不限于微波 PIN二极管, PIN二极管也是很成熟的器件, 易于采 购, 所以, 本发明方案实现起来没有任何困难, 而且成本很低。
图 6所示系统中第一单刀双掷开关的 SW1和第二单刀双掷开关的 SW4联动、第一单刀双掷开关的 S W2和第二单刀双掷开关的 S W5联动、 第一单刀双掷开关的 SW3和第二单刀双掷开关的 SW6联动, 实现射频 功率放大器的热备份和互助。
具体来说, 图 6所示系统具有三种状态:
第一种状态是 SW1、 SW3、 SW4、 SW6闭合, SW2、 SW5断开时, 根据前述具有功率分配与合路功能的微波单刀双掷开关的原理, 输入信 号从第一单刀双掷开关的合路端口进入到传输线 B、 E, 到第一单刀双 掷开关的第一分路端口, 再经功率放大器 PA1放大后, 到第二单刀双掷 开关的第一分路端口, 再经传输线 L、 I到射频天线 S。 备份功率放大器 PA没有输入信号,当然也没有输出信号。所以功率放大器 PA不起作用。
第二种状态 SW2、 SW3、 SW5、 SW6闭合, SW1、 SW4断开时, 输入信号从第一单刀双掷开关的合路端口进入到传输线 A、 C, 到第一 单刀双掷开关的第二分路端口, 再经备份功率放大器 PA放大后, 到第 二单刀双掷开关的第二分路端口, 再经传输线 J、 H到天馈 S。 此时, 功 率放大器 PA1不起作用。
第三种状态 SW1、 SW2、 SW4、 SW5闭合, SW3、 SW6断开时, 输入信号从第一单刀双掷开关的合路端口进入到传输线 D, 再分配成等 幅度、 同相位的两路信号, 一路信号经传输线 G到第一单刀双掷开关的 第一分路端口, 再经功率放大器 PA放大, 到第二单刀双掷开关的第一 分路端口, 到传输线] VI。 另一路信号经传输线 F到第一单刀双掷开关的 第二分路端口, 再经功率放大器 PA1放大, 到第二单刀双掷开关的第二 分路端口, 到传输线^^。 如果功率放大器增益和相位一致性较好, 则传 输线 M、 N上的信号幅度和相位一致, 这两路信号合路, 经传输线 K到 射频天线 So
上述三种状态, 如果把第一种状态 (PA1 工作, PA不起作用) 当 做功率放大器的正常状态, 则第二种状态 (PA工作, PA1 不起作用) 相当于热备份, 第三种状态(PA1、 PA同时工作)相当于互助, 而功率 放大器 PA是功率放大器 PA1的备份。
参见图 8, 图 8为本发明实现射频功率放大器的 1 + 1热备份的第三 较佳实施例的结构示意图。 该系统包含了两个相同的单刀双掷开关: 第 一单刀双掷开关和第二单刀双掷开关, 还包含了 PA1和 PA两个相同的 射频功率放大器, 其中 PA1可以为主射频功率放大器、 PA可以为备份 为射频功率放大器。
其中, 第一单刀双掷开关的合路端口为信号接收端, 该单刀双掷开 关的第一分路端口与 PA1的输入端口相连,该单刀双掷开关的第二分路 端口与 PA的输入端相连。第二单刀双掷开关的合路端口为信号输出端, 69 该端口与射频天线 S相连,该单刀双掷开关的第一分路端口与 PA1的输 出端口相连, 该单刀双掷开关的第二分路端口与 PA的输出端相连。
本实施例是在图 6所示实施例的基础上, 对采用的微波单刀双掷开 关进行了改进。
如图 8所示,本实施例中的第一微波单刀双掷开关包含:合路端口、 第一分路端口、 第二分路端口, A、 B、 C、 Dl、 D2、 E、 F和 G八段传 输线及 SW1、 SW2、 SW3和 SW4四个开关器件, 及一匹配电阻 R; 所 述八段传输线及匹配电阻 R互相连接, 构成一个近似 "目"字型。
具体来说,第一微波单刀双掷开关的合路端口与第一传输线 A的第 一端、 第二传输线 B的第一端、 第四 a传输线 D1及第四 b传输线 D2 的第一端互相连接; 第四 a传输线 D1的第二端与第六传输线 F的第一 端相接, 其相交处与地之间连接第三开关器件 SW3; 第四 b传输线 D2 的第二端与第七传输线 G的第一端相接,其相交处与地之间连接第四开 关器件 SW4; 并且第四 a传输线 D1的第二端与第四 b传输线 D2的第 二端之间连接一匹配电阻 R;第一传输线 A的第二端与第三传输线 C的 第一端连接, 并且其相交处与地之间连接第一开关器件 SW1 ; 第二传输 线 B的第二端与第五传输线 E的第一端连接,并且其相交处与地之间连 接第二开关器件 SW2; 第五传输线 E的第二端与所述第七传输线 G的 第二端相接, 其相交处与第一分路端口相连; 第三传输线 C的第二端与 所述第六传输线 F的第二端相接, 其相交处与第二分路端口相连。
该结构的微波单刀双掷开关, 所述八段传输线的长度均为 25%波长 传输线, 传输线 A、 B、 C、 E、 F、 G的特征阻抗为 Z0, 传输线 Dl及 D2的特征阻抗为 ZO, 而匹配电阻的阻值等于 2Z0。 传输线 Dl、 D2和 电阻 R构成一个标准的威尔金森等功率功分器, 匹配电阻可以起到隔离 作用, 有助于改善端口的匹配特性。 本实施例的微波单刀双掷开关也有三种状态:
状态一:
设置第一、 第三、 第四开关器件闭合, 第二开关器件断开, 当信号 从合路端口输入, 时, 输入信号通过第二、 第五传输线到达第一分路端 口;
状态二:
设置第二、 第三、 第四开关器件闭合, 第一开关器件断开, 当信号 从合路端口输入时,输入信号通过第一、第三传输线到达第二分路端口; 状态三:
设置第一、 第二开关器件闭合, 第三、 第四开关器件断开, 当信号 从合路端口输入时, 输入信号分为两路, 一路通过第四 b、 第七传输线 到达第一分路端口, 另一路通过第四&、 第六传输线到达第二分路端口。
本实施例中的微波单刀双掷开关, 如果信号仅从第一分路端口输 入, 第一、 第三、 第四开关器件闭合, 第二开关器件断开时, 输入信号 通过第五、第二传输线到达合路端口;如果信号仅从第二分路端口输入, 第二、 第三、 第四开关器件闭合, 第一开关器件断开时, 输入信号通过 第三、 第一传输线到达合路端口; 如果有两路信号从第一和第二分路端 口分别输入, 第一、 第二开关器件闭合, 第三、 第四开关器件断开时, 一路信号经第六、 第四 a传输线到达合路端口, 另一路经第七、 第四 b 传输线到达合路端口。
图 8 中第二微波单刀双掷开关与第一微波单刀双掷开关的结构相 同, 只是传输线和开关器件的编号不同。 本实施例中通过所述第一和第 二微波单刀双掷开关中相同的开关器件联动来实现主备切换。
在主射频功率放大器正常时, 所述第一和第二微波单刀双掷开^:各 自的第一、 第三、 第四开关器件闭合、 第二开关器件断开; 或所述第一 和第二微波单刀双掷开关各自的第一、 第二开关器件闭合、 第三、 第四 开关器件断开;
在主射频功率放大器故障时, 所述第一和第二微波单刀双掷开关各 自的第二、 第三、 第四开关器件闭合、 第一开关器件断开。
也就是说, 对于本实施例中的第一微波单刀双掷开关和第二微波单 刀双掷开关, 无论是从合路端口输入一微波信号, 还是从第一分路端口 或 /和从第二分路端口输入微波信号时,本实施例中的微波单刀双掷开关 用于信号切换、 信号分配、 合路功能时的工作过程、 工作状态的分析以 及所具有的功能, 都与图 6所示实施例中的微波单刀双掷开关相同, 不 同之处, 在应用过程中 SW3和 SW4视为一个联动开关, 同时闭合或同 时断开, 其切换功能与图 6中的 SW3或 SW6等效。 因此, 本实施例中 备份系统的工作原理与也图 6所示实施例相同, 这里不再重复。
本实施例中的微波单刀双掷开关与图 6所示实施例中的微波单刀双 掷开关一样, 同时具有信号切换、功率分配与合路功能; 虽然相比之下, 第二种结构较第一种结构增加了一段传输线和一个匹配电阻, 但同样是 每段传输线 A、 B、 C、 Dl、 D2、 E、 F、 G都能与某个开关器件一起构 成基本的微波开关,各传输线同样可以采用 PCB上的微带线或带状线实 现, 各开关器件可采用微波 PIN二极管, 因此, 仍具有电路简单, 工艺 成熟、 成本 <、 实用性强的优点。
在图 6、 图 8所示的射频功率放大器的 1+1热备份系统中, 每个扇 区都有属于自己单独使用的备份功率放大器 PA,正常情况下两个功率放 大器 PA1和 PA同时工作于互助状态, 当其中任意一个失效时, 通过开 关切换,失效的功率放大器退出工作,另一个功率放大器则仍然在工作, 只是输出功率下降 3dB。 此装置可单独应用于任意一个扇区, 如果每个 扇区 (例如: 三个扇区)都采用图 6或图 8的方案, 由于各扇区都是独 立的, 扇区之间是互相绝缘的, 因此, 则根本不存在扇区隔离度问题。 参照射频功率放大器 1 + 1 热备份的工作原理, 可以实现射频功率 放大器 N + 1热备份。 下面, 就再举三个实现射频功率放大器 3 + 1热备 份的较佳实施例, 对本发明提供的实现射频功率放大器的 N + 1热备份 的系统和方法进行详细说明。
参见图 9, 图 9为本发明实现射频功率放大器的 N + 1热备份的第 一较佳实施例的系统结构示意图。 本实施例是参照图 5所示实施例的工 作原理来实现三扇区的射频功率放大器的 3 + 1热备份。
图 9 所示系统中包含了第一〜第六共六个相同的单刀双掷开关, PAK PA2、 PA3、 和 PA四个相同的射频功率放大器。 其中的六个单刀 双掷开关与图 5所示实施例的单刀双掷开关相同; PA1 ~ PA3是三个扇 区各自的功率放大器, PA为备份功率放大器。
如图 9所示, 第一单刀双掷开关的合路端口接收第一扇区的输入信 号, 该单刀双掷开关的第一分路端口与 PA1的输入端相连, 该单刀双掷 开关的第二分路端口经过传输线 X与 PA的输入端相连。
第二单刀双掷开关的第一分路端口与 PA1的输出相连,该单刀双掷 开关的第二分路端口经过传输线 Y与 PA的输出端相连, 该单刀双掷开 关的合路端与第一扇区的射频天线 S1相连。
笫三单刀双掷开关的合路端口接收第二扇区的输入信号, 该单刀双 掷开关的第一分路端口与第一单刀双掷开关的第二分路端口相交, 该单 刀双掷开关的第二分路端口与 PA2的输入端相连。
第四单刀双掷开关的第一分路端口与第二单刀双掷开关的第二分 路端口相交, 第四单刀双掷开关的第二分路端口与 PA2的输出端相连, 该单刀双掷开关的合路端与第二扇区的射频天线 S2相连。
第五单刀双掷开关的合路端口接收第三扇区的输入信号, 该单刀双 2005/001969 掷开关的第一分路端口与第一单刀双掷开关的第二分路端口相交, 该单 刀 又掷开关的第二分路端口与 PA3的输入端相连。
第六单刀双掷开关的第一分路端口与第二单刀双掷开关的第二分 路端口相交, 第六单刀双掷开关的第二分路端口与 PA3的输出端相连, 该单刀双掷开关的合路端与第三扇区的射频天线 S3相连。
图 9所示的整个系统中, 通过第一单刀双掷开关与第二单刀双掷开 关相应的开关器件联动、 第三单刀双掷开关与第四单刀双掷开关相应的 开关器件联动、 第五单刀双掷开关与第六单刀双掷开关相应的开关器件 联动实现热备份和互助, 具体有四种状态:
第一种状态是三个扇区的三个功放 PA1、 PA2、 PA3正常工作、 备 份功放 PA不工作。 此时设置 SW3、 SW4、 SW5、 SW6、 SW9、 SW10 闭合, SW1、 SW2、 SW7、 SW8、 SW11 SW12断开, 根据上述微波单 刀双掷开关的原理, 输入信号分别通过第一、 第三、 第五单刀双掷开关 的合路端口进入传输线八、 K、 0到第一、 第三、 第五单刀双掷开关的 第一分路端口, 经功率放大器 ΡΑ1、 ΡΑ2、 ΡΑ3放大后, 分别到第二、 第四、 第六单刀双掷开关的第二分路端口, 再经传输线 B、 L、 P, 分别 输出到射频天线 Sl、 S2、 S3。
在输入端方面, 第一、 第三、 第五单刀双掷开关可称为前置微波开 关, 由于各前置微波开关的 SW3、 SW5 > SW9短路接地, 分别经过 1/4 波导波长阻抗变换至 PA输入端为开路, 因此功放 PA没有输入信号。 在输出端方面, 第二、 第四、 第六单刀双掷开关可称为后置微波开关, 由于各后置^:波开关的 SW4、 SW6、 SW10短路接地, 分别经过 1/4波 导波长阻抗变换至 PA输出端为开路, 因此也没有输出信号窜到 PA。
第二种状态是扇区一功放 PA1损坏、 扇区二、 三的 PA2、 PA3正常 工作、备份功放 PA顶替 PA1工作。 此时设置 SW1、 SW2 SW5、 SW6、 SW9、 SW10闭合, SW3、 SW4、 SW7, SW8、 SW11、 SW12断开, 第一扇区的输入信号通过第一单刀双掷开关的合路端口进入传输 线( 、 E到第一单刀双掷开关的第二分路端口, 再经传输线 X到备份功 率放大器 PA放大后, 到第二单刀双掷开关的第二分路端口, 再经传输 线?、 D到第二单刀双掷开关的合路端口, 输出到第一扇区的射频天线 Sl。 在输入端, 由于第一单刀双掷开关的 SW1短路接地, 经过 1/4波导 波长阻抗变换至输入端为开路, 因此输入信号不会从传输线 A通过, 功 放 PA1没有输入信号。 在输出端, 由于第二单刀双掷开关的 SW2短路 接地, 经过 1/4波导波长阻抗变换至输出端为开路, 因此经 PA放大的 信号经传输线 F、 B直接输出, 而不会经传输线 B流入 PA1。
第三种状态是扇区二的功放 PA2损坏、 扇区一、 三的 PA1、 PA3正 常工作、备份功放 PA顶替 PA2工作。此时设置 SW3、 SW4、 SW7、 SW8、 SW9、 SW10闭合, SW1、 SW2、 SW5、 SW6、 SW11、 SW12断开, 其 工作原理与第二种状态完全相同。
第四种状态是是扇区三的功放 PA3损坏、 扇区一、 二的 PA1、 PA2 正常工作、 备份功放 PA顶替 PA3工作。 此时设置 SW3、 SW4、 SW5、 SW6、 SW11、 SW12闭合, SW1、 SW2、 SW7、 SW8、 SW9、 SW10断 开, 其工作原理与第二种状态完全相同。
以上所述, 如果把第一种状态当做功率放大器的正常状态, 则第二 种、 第三种、 第四种状态相当于热备份。 功率放大器 PA是功率放大器 PA1、 PA2、 PA3 的备份, 不属于任何扇区, 当其中一个扇区的功率放 大器出现故障时, 切换该扇区的微波单刀双掷开关, 使备份的功率放大 器 PA在不停电停机的情况下, 立即替代出现故障的功率放大器工作, 实现了热备份。 更为重要的是, 四个功率放大器 PA1、 PA2、 PA3、 PA 中的任何一个在工作时, 都只放大一个扇区的信号, 所以采用此系统, 扇区间的隔离度指标可以做得很高。
参见图 10, 图 10为本发明实现射频功率放大器的 N + 1热备份的 第二较佳实施例的系统结构示意图。 本实施例是参照图 6所示实施例的 工作原理来实现三扇区的射频功率放大器的 3 + 1热备份。
图 10所示系统中包含了第一~第六共六个相同的单刀双掷开关, PA1、 PA2、 PA3、 和 PA四个相同的射频功率放大器。 其中的六个单刀 双掷开关与图 6所示实施例的单刀双掷开关相同; PA1 PA3是三个扇 区各自的功率放大器, PA为备份功率放大器。
如图 10 所示, 第一单刀双掷开关的合路端口接收第一扇区的输入 信号, 该单刀双掷开关的第一分路端口与 PA1的输入端相连, 该单刀双 掷开关的第二分路端口与 PA的输入端相连。
第二单刀 掷开关的第一分路端口与 PA1的输出相连,该单刀双掷 开关的第二分路端口与 PA的输出端相连, 该单刀双掷开关的合路端与 第一扇区的射频天线 S1相连。
第三单刀双掷开关的合路端口接收第二扇区的输入信号, 该单刀双 掷开关的第一分路端口与 PA2的输入端相连,该单刀双掷开关的第二分 路端口与 PA的输入端相连。
第四单刀双掷开关的第一分路端口与 PA2的输出端相连,该单刀双 掷开关的第二分路端口与 PA的输出端相连, 该单刀双掷开关的合路端 口与第二扇区的射频天线 S2相连。
第五单刀双掷开关的合路端口接收第三扇区的输入信号, 该单刀双 掷开关的第一分路端口与 PA3的输入端相连,该单刀双掷开关的第二分 路端口与 PA的输入端相连。
第六单刀双掷开关的第一分路端口与 PA3的输出端相连,该单刀双 掷开关的第二分路端口与 PA的输出端相连, 该单刀双掷开关的合路端 与第三扇区的射频天线 S3相连。
本实施例系统中, 通过第一单刀双掷开关与第二单刀双掷开关相应 的开关器件联动、 第三单刀双掷开关与第四单刀双掷开关相应的开关器 件联动、 第五单刀双掷开关与第六单刀双掷开关相应的开关器件联动实 现热备份和互助, 具体有三种工作状态, 如下:
第一种状态, PA1、 PA2、 PA3都正常工作, 备份功率放大器 PA不 工作或处于待机状态;
第二种状态, 当 PA1、 PA2、 PA3中的任何一个有故障时, 切换开 关, 使有故障的功率放大器不工作, 备份功率放大器 PA再切换上去, 顶替有故障的功率放大器, 这就是备份状态。 例如: 第一扇区的放大器 PA1发生故障时, 将第一扇区的微波开关切换成 SW11、 SW13、 SW14、 SW16闭合, SW12、 SW15断开的状态, 备份功率放大器 PA顶替 PA1 正常工作。
第三种状态, PA1、 PA2、 PA3都正常工作, 备份功率放大器 PA可 与其中任何一个功率放大器并行工作, 以增加此扇区的输出功率, 这就 是互助状态。 例如: 第一扇区和第三扇区保持第一种状态, 第二扃区的 微波开关设置在 SW21 、 SW22 、 SW24、 SW25闭合, SW23和 SW26 断开的状态, PA2与 PA同时工作。
从上述分析中可以看出,本实施例的射频功率放大器的 N+1热备份 与互助系统, 每个扇区都有一个功率放大器, 系统中还有一个备份的功 率放大器, 不属于任何扇区, 当其中一个功率放大器出现故障时, 备份 的功率放大器在不停电停机的情况下, 立即替代出现故障的功率放大器 工作, 实现了热备份。 同时在正常情况下, 此备份的功率放大器也可用 于任意一个扇区, 理论上可使此扇区的输出功率增大 3dB。 更为重要的 是, 四个功率放大器中的任何一个, 都只放大一个扇区的信号, 所以采 用此系统,扇区间的隔离度与功率放大器的一致性无关,在正常情况下, 扇区间隔离度可做到 30dB, 这个特点是现有技术 3dB电桥耦合器混合 矩阵方案远不能比拟的。 并且, 由于功率放大器的一致性不影响扇区隔 离度, 仅对互助情况下的合成功率增益有影响, 因此, 功率放大器虽然 也挑选配对, 但配对要求很宽松, 使器件的互换性好, 与 3dB电桥耦合 器矩阵方案相比, 这也是很大的优点。
参见图 11 ,图 11为本发明实现射频功率放大器的 N + 1热备份的第 三较佳实施例的系统结构示意图。 本实施例是参照图 8所示实施例的工 作原理来实现三扇区的射频功率放大器的 3 + 1热备份。
本实施例的连接方式、 工作状态及工作过程都与图 10 所示实施例 系统相同, 只是单刀双掷开关采用了图 8所示的单刀双掷开关。 由于系 统采用的具有功率分配与合路功能的微波单刀双掷开关的分路端口之 间连接有一匹配电阻, 该匹配电阻可以起到隔离作用, 如果功率放大器 的输入和输出端口不匹配, 其反射信号不会传输到另一个功率放大器的 输入和输出端, 也就是不影响另一个功率放大器的工作状态, 有助于改 善放大器输入和输出端口的匹配特性, 因此, 较之前述第一种射频功率 放大器的 N+1热备份与互助系统,处于互助工作方式的两个功率放大器 之间的隔离度更加优异。
可以理解的是, 对本领域普通技术人员来说, 可以根据本发明的技 术方案及其发明构思加以等同替换或改变, 而所有这些改变或替换都应 属于本发明所附的权利要求的保护范围。

Claims

权利要求书
1、 一种射频功率放大器的 1 + 1热备份系统, 包含一个主射频功率 放大器, 其特征在于, 该系统还包含: 一个与所述主射频功率放大器相 所述第一微波单刀双掷开关的合路端口为信号接收端, 在主射频功 率放大器正常时, 信号从该单刀双掷开关的合路端口通过第一分路端口 发送给主射频功率放大器的输入端口; 在主射频功率放大器故障时, 信 号从该单刀双掷开关的合路端口通过第二分路端口发送给备份射频功 率放大器的输入端;
第二单刀双掷开关的合路端口为信号输出端; 该单刀汉掷开关的第 一分路端口与主射频功率放大器的输出端口相连, 在主射频功率放大器 正常时, 第一分路端口接收主射频功率放大器放大后的信号发送到该单 刀双掷开关的合路端口; 该单刀双掷开关的第二分路端口与备份射频功 率放大器的输出端相连, 在主射频功率放大器故障时, 第二分路端口接 收备份射频功率放大器放大后的信号发送到该单刀双掷开关的合路端 π。
2、 如权利要求 1所述的热备份系统, 其特征在于: 所述的微波单刀 双掷开关还包含 Ί段传输线和 3个开关器件;
所述微波单刀双掷开关的合路端口与第四传输线、 第一传输线及第 二传输线的第一端互相连接; 第四传输线的第二端与第六传输线及第七 传输线的第一端互相连接, 其相交处与地之间连接第三开关器件; 第二 传输线的第二端与第五传输线的第一端连接, 并且其相交处与地之间连 接第二开关器件; 第五传输线的第二端与第七传输线的第二端相接, 其 相交处与第一分路端口相连; 第一传输线的第二端与第三传输线的第一 端连接, 并且其相交处与地之间连接第一开关器件; 第三传输线的第二 端与所第六传输线的第二端相接, 其相交处与第二分路端口相连;
当信号从合路端口输入, 且第一开关器件和第三开关器件闭合, 第 二开关器件断开时,输入信号通过第二、第五传输线到达第一分路端口; 当信号从合路端口输入, 且第二开关器件和第三开关器件闭合, 第 一开关器件断开时,输入信号通过第一、第三传输线到达第二分路端口; 当信号从合路端口输入, 且第一开关器件和第二开关器件闭合, 第 三开关器件断开时, 输入信号通过第四传输线分为两路分别通过第七和 第六传输线分别到达第一和第二分路端口;
当信号从第一分路端口输入, 第一开关器件和第三开关器件闭合, 第二开关器件断开时, 输入信号通过第五、 第二传输线到达合路端口; 当信号从第二分路端口输入, 第二开关器件和第三开关器件闭合, 第一开关器件断开时, 输入信号通过第三、 第一传输线到达合路端口; 当两路信号从第一和第二分路端口分别输入, 第一开关器件和第二 开关器件闭合、 第三开关器件断开时, 两路信号分别经第七、 第六传输 线在第七、 第六传输线相交处合路后, 经第四传输线到达合路端口。
3、 如权利要求 2所述的热备份系统, 其特征在于: 所述的微波单刀 双掷开关中的传输线均为 25%波长线; 所述第一及第二、 第三、 第五、 第六、 第七传输线的特征阻抗均为 Z0, 而所述第四传输线的特征阻抗为
4、 如权利要求 3所述的热备份系统, 其特征在于: 所述第一和第二 波单刀默掷开关中相同的开关器件联动;
在主射频功率放大器正常时, 所述第一和第二微波单刀双掷开关各 自的第一、 第三开关器件闭合、 第二开关器件断开; 或所述第一和第二 微波单刀双掷开关各自的第一、第二开关器件闭合、第三开关器件断开; 在主射频功率放大器故障时, 所述第一和第二微波单刀双掷开关各 自的第二、 第三开关器件闭合、 第一开关器件断开。
5、 如权利要求 1所述的热备份系统, 其特征在于: 所述的微波单刀 双掷开关还包含 8段传输线和 4个开关器件;
所述微波单刀双掷开关的合路端口与第一传输线的第一端、 第二传 输线的第一端、 第四 a传输线及第四 b传输线的第一端互相连接; 第四 a传输线的第二端与第六传输线的第一端相接, 其相交处与地之间连接 第三开关器件; 第四 b传输线的第二端与第七传输线的第一端相接, 其 相交处与地之间连接第四开关器件; 并且第四 a传输线的第二端与第四 b传输线的第二端之间连接一匹配电阻 R; 第一传输线的第二端与第三 传输线的第一端连接, 并且其相交处与地之间连接第一开关器件; 第二 传输线的第二端与第五传输线的第一端连接, 并且其相交处与地之间连 接第二开关器件; 第五传输线的第二端与第七传输线的第二端相接, 其 相交处与第一分路端口相连; 第三传输线的第二端与所述第六传输线的 第二端相接, 其相交处与第二分路端口相连;
当信号从合路端口输入, 且第一、 第三、 第四开关器件闭合, 第二 开关器件断开时, 输入信号通过第二、 第五传输线到达第一分路端口; 当信号从合路端口输入, 且第二、 第三、 第四开关器件闭合, 第一 开关器件断开时, 输入信号通过第一、 第三传输线到达第二分路端口; 当信号从合路端口输入, 且第一、 第二开关器件闭合, 第三、 第四 开关器件断开时, 输入信号分为两路, 一路通过第四 b、 第七传输线到 达第一分路端口, 另一路通过第四 、 第六传输线到达第二分路端口; 当信号从第一分路端口输入, 第一、 第三、 第四开关器件闭合, 第 二开关器件断开时, 输入信号通过第五、 第二传输线到达合路端口; 当信号从第二分路端口输入, 第二、 第三、 第四开关器件闭合, 第 一开关器件断开时, 输入信号通过第三、 第一传输线到达合路端口; 当两路信号从第一和第二分路端口分别输入, 第一、 第二开关器件 闭合, 第三、 第四开关器件断开时, 一路信号经第六、 第四 a传输线到 达合路端口, 另一路经第七、 第四 b传输线到达合路端口。
6、 如权利要求 5所述的热备份系统, 其特征在于: 所述微波单刀双 掷开关的传输线均为 25%波长线; 所述第一及第二、 第三、 第五、 第六、 第七传输线的特征阻抗均为 Z0,而所述第四 a及第四 b传输线的特征阻 抗为 IZ0, 所述匹配电阻的阻值为 2 Z0。
7、 如权利要求 5所述的热备份系统, 其特征在于: 所述第一和第二 微波单刀双掷开关中相同的开关器件联动;
在主射频功率放大器正常时, 所述第一和第二微波单刀双掷开关各 自的第一、 第三、 第四开关器件闭合、 第二开关器件断开; 或所述第一 和第二微波单刀双掷开关各自的第一、 第二开关器件闭合、 第三、 第四 开关器件断开;
在主射频功率放大器故障时, 所述第一和第二微波单刀双掷开关各 自的第二、 第三、 第四开关器件闭合、 第一开关器件断开。
8、 如权利要求 2或 5所述的热备份系统, 其特征在于: 所述的微波 单刀双掷开关中的开关器件采用 PIN二极管。
9、 一种微波单刀双掷开关, 包含合路端口、 第一分路端口、 第二分 路端口以及传输线和开关器件, 其特征在于: 所述的微波单刀双掷开关 包含 7段传输线和 3个开关器件;
所述微波单刀双掷开关的合路端口与第四传输线、 第一传输线及第 二传输线的第一端互相连接; 第四传输线的第二端与第六传输线及第七 传输线的第一端互相连接, 其相交处与地之间连接第三开关器件; 第二 传输线的第二端与第五传输线的第一端连接, 并且其相交处与地之间连 接第二开关器件; 第五传输线的第二端与第七传输线的第二端相接, 其 相交处与第一分路端口相连; 第一传输线的第二端与第三传输线的第一 端连接, 并且其相交处与地之间连接第一开关器件; 第三传输线的第二 端与所第六传输线的第二端相接, 其相交处与第二分路端口相连;
当信号从合路端口输入, 且第一开关器件和第三开关器件闭合, 第 二开关器件断开时,输入信号通过第二、第五传输线到达第一分路端口; 当信号从合路端口输入, 且第二开关器件和第三开关器件闭合, 第 一开关器件断开时,输入信号通过第一、第三传输线到达第二分路端口; 当信号从合路端口输入, 且第一开关器件和第二开关器件闭合, 第 三开关器件断开时, 输入信号通过第四传输线分为两路分别通过第七和 第六传输线分别到达第一和第二分路端口;
当信号从第一分路端口输入, 第一开关器件和第三开关器件闭合, 第二开关器件断开时, 输入信号通过第五、 第二传输线到达合路端口; 当信号从第二分路端口输入, 第二开关器件和第三开关器件闭合, 第一开关器件断开时, 输入信号通过第三、 第一传输线到达合路端口; 当两路信号从第一和第二分路端口分别输入, 第一开关器件和第二 开关器件闭合、 第三开关器件断开时, 两路信号分别经第七、 第六传输 线在第七、 第六传输线相交处合路后, 经第四传输线到达合路端口。
10、 如权利要求 9所述的微波单刀默掷开关, 其特征在于: 所述的 传输线均为 25%波长线; 所述第一及第二、 第三、 第五、 第六、 第七传 输线的特征阻抗均为 Z0, 而所述第四传输线的特征阻抗为 。
11、 一种微波单刀双掷开关, 包含合路端口、 第一分路端口、 第二 分路端口以及传输线和开关器件, 其特征在于: 所述的微波单刀双掷开 关包含 8段传输线和 4个开关器件;
所述微波单刀双掷开关的合路端口与第一传输线的第一端、 第二传 输线的第一端、 第四 a传输线及第四 b传输线的第一端互相连接; 第四 a传输线的第二端与第六传输线的第一端相接, 其相交处与地之间连接 第三开关器件; 第四 b传输线的第二端与第七传输线的第一端相接, 其 相交处与地之间连接第四开关器件; 并且第四 a传输线的第二端与第四 b传输线的第二端之间连接一匹配电阻 R; 第一传输线的第二端与第三 传输线的第一端连接, 并且其相交处与地之间连接第一开关器件; 第二 传输线的第二端与第五传输线的笫一端连接, 并且其相交处与地之间连 接第二开关器件; 第五传输线的第二端与第七传输线的第二端相接, 其 相交处与第一分路端口相连; 第三传输线的第二端与所述第六传输线的 第二端相接, 其相交处与第二分路端口相连;
当信号从合路端口输入, 且第一、 第三、 第四开关器件闭合, 第二 开关器件断开时, 输入信号通过第二、 第五传输线到达第一分路端口; 当信号从合路端口输入, 且第二、 第三、 第四开关器件闭合, 第一 开关器件断开时, 输入信号通过第一、 第三传输线到达第二分路端口; 当信号从合路端口输入, 且第一、 第二开关器件闭合, 第三、 第四 开关器件断开时, 输入信号分为两路, 一路通过第四 b、 第七传输线到 达第一分路端口, 另一路通过第四&、 第六传输线到达第二分路端口; 当信号从第一分路端口输入, 第一、 第三、 第四开关器件闭合, 第 二开关器件断开时, 输入信号通过第五、 第二传输线到达合路端口; 当信号从第二分路端口输入, 第二、 第三、 第四开关器件闭合, 第 一开关器件断开时, 输入信号通过第三、 第一传输线到达合路端口; 当两路信号从第一和第二分路端口分别输入, 第一、 第二开关器件 闭合, 第三、 第四开关器件断开时, 一路信号经第六、 第四 a传输线到 达合路端口, 另一路经第七、 第四 b传输线到达合路端口。
12、 如权利要求 11所述的微波单刀双掷开关, 其特征在于: 所述的 传输线均为 25%波长线; 所述第一及第二、 第三、 第五、 第六、 第七传 输线的特征阻抗均为 Z0, 而所述第四 a及第四 b传输线的特征阻抗为 /2Z0, 所述匹配电阻的阻值为 2 Z0。
13、 一种射频功率放大器的 N + 1热备份系统, 包含 N个相同的主 射频功率放大器, 其特征在于, 该系统还包含: 一个与所述主射频功率 放大器相同的备份射频功率放大器和 2N个相同的微波单刀双掷开关; 其中 N个微波单刀双掷开关分别设置在 N个主射频功率放大器的输 入端,另 N个微波单刀双掷开关分别设置在 N个主射频功率放大器的输 出端;
每个设置在主射频功率放大器输入端的微波单刀双掷开关的合路端 口接收一路输入信号, 第一分路端口与该主射频功率放大器输入端相 连, 第二分路端口都与备份射频功率放大器输入端相连; 在与其相连的 主射频功率放大器正常时, 信号从该单刀双掷开关的合路端口通过第一 分路端口发送给主射频功率放大器的输入端口; 在该主射频功率放大器 故障时, 信号从该单刀双掷开关的合路端口通过第二分路端口发送给备 份射频功率放大器的输入端;
每个设置在主射频功率放大器输出端的微波单刀双掷开关的合路端 口用于输出一路信号, 第一分路端口与该主射频功率放大器输出端相 连, 第二分路端口都与备份射频功率放大器输出端相连; 在与其相连的 主射频功率放大器正常时, 第一分路端口接收主射频功率放大后的信号 发送到该单刀双掷开关的合路端口; 在该主射频功率放大器故障时, 第 二分路端口接收备份射频功率放大器放大后的信号发送到该单刀双掷 开关的合路端口。
14、 如权利要求 13所述的热备份系统, 其特征在于, 所述的微波单 刀双掷开关还包含 7段传输线和 3个开关器件; 所述微波单刀双掷开关的合路端口与第四传输线、 第一传输线及第 二传输线的第一端互相连接; 第四传输线的第二端与第六传输线及第七 传输线的第一端互相连接, 其相交处与地之间连接第三开关器件; 第二 传输线的第二端与第五传输线的第一端连接, 并且其相交处与地之间连 接第二开关器件; 第五传输线的第二端与第七传输线的第二端相接, 其 相交处与第一分路端口相连; 第一传输线的第二端与第三传输线的第一 端连接, 并且其相交处与地之间连接第一开关器件; 第三传输线的第二 端与所第六传输线的第二端相接 , 其相交处与第二分路端口相连;
当信号从合路端口输入, 且第一开关器件和第三开关器件闭合, 第 二开关器件断开时,输入信号通过第二、第五传输线到达第一分路端口; 当信号从合路端口输入, 且第二开关器件和第三开关器件闭合, 第 一开关器件断开时,输入信号通过第一、第三传输线到达第二分路端口; 当信号从合路端口输入, 且第一开关器件和第二开关器件闭合, 第 三开关器件断开时, 输入信号通过第四传输线分为两路分别通过第七和 第六传输线分别到达第一和第二分路端口;
当信号从第一分路端口输入, 第一开关器件和第三开关器件闭合 , 第二开关器件断开时, 输入信号通过第五、 第二传输线到达合路端口; 当信号从第二分路端口输入, 第二开关器件和第三开关器件闭合 , 第一开关器件断开时, 输入信号通过第三、 第一传输线到达合路端口; 当两路信号从第一和第二分路端口分别输入, 第一开关器件和笫二 开关器件闭合、 第三开关器件断开时, 两路信号分别经第七、 第六传输 线在第七、 第六传输线相交处合路后, 经第四传输线到达合路端口。
15、 如权利要求 14所述的热备份系统, 其特征在于: 所述的微波单 刀双掷开关中的传输线均为 25%波长线; 所述第一及第二、 第三、第五、 第六、 第七传输线的特征阻抗均为 Z0, 而所述第四传输线的特征阻抗为
16、 如权利要求 14所述的热备份系统, 其特征在于: 所述各个主射 频功率放大器输入端和输出端的微波单刀双掷开关中相同的开关器件 联动;
在一个主射频功率放大器正常时, 设置在该主射频功率放大器输入 端和输出端的微波单刀双掷开关各自的第一、 第三开关器件闭合、 第二 开关器件断开; 或设置在该主射频功率放大器输入端和输出端的微波单 刀双掷开关各自的第一、 第二开关器件闭合、 第三开关器件断开; 在一个主射频功率放大器故障时, 设置在该主射频功率放大器输入 端和输出端的 波单刀双掷开关各自的第二、 第三开关器件闭合、 第一 开关器件断开。
17、 如权利要求 13所述的热备份系统, 其特征在于: 所述的微波单 刀双掷开关还包含 8段传输线和 4个开关器件;
所述微波单刀双掷开关的合路端口与第一传输线的第一端、 第二传 输线的第一端、 第四 a传输线及第四 b传输线的第一端互相连接; 第四 a传输线的第二端与第六传输线的第一端相接, 其相交处与地之间连接 第三开关器件; 第四 b传输线的第二端与第七传输线的第一端相接, 其 相交处与地之间连接第四开关器件; 并且第四 a传输线的第二端与第四 b传输线的第二端之间连接一匹配电阻 R; 第一传输线的第二端与第三 传输线的第一端连接, 并且其相交处与地之间连接第一开关器件; 第二 传输线的第二端与第五传输线的第一端连接, 并且其相交处与地之间连 接第二开关器件; 第五传输线的第二端与第七传输线的第二端相接, 其 相交处与第一分路端口相连; 第三传输线的第二端与所述第六传输线的 第二端相接, 其相交处与第二分路端口相连;
当信号从合路端口输入, 且第一、 第三、 第四开关器件闭合, 第二 开关器件断开时, 输入信号通过第二、 第五传输线到达第一分路端口; 当信号从合路端口输入, 且第二、 第三、 第四开关器件闭合, 第一 开关器件断开时, 输入信号通过第一、 第三传输线到达第二分路端口; 当信号从合路端口输入, 且第一、 第二开关器件闭合, 第三、 第四 开关器件断开时, 输入信号分为两路, 一路通过第四 b、 第七传输线到 达第一分路端口, 另一路通过第四&、 第六传输线到达第二分路端口; 当信号从第一分路端口输入, 第一、 第三、 第四开关器件闭合, 第 二开关器件断开时, 输入信号通过第五、 第二传输线到达合路端口; 当信号从第二分路端口输入, 第二、 第三、 第四开关器件闭合, 第 一开关器件断开时, 输入信号通过第三、 第一传输线到达合路端口; 当两路信号从第一和第二分路端口分别输入, 第一、 第二开关器件 闭合, 第三、 第四开关器件断开时, 一路信号经第六、 第四 a传输线到 达合路端口, 另一路经第七、 第四 b传输线到达合路端口。
18、 如权利要求 17所述的热备份系统, 其特征在于: 所述微波单刀 双掷开关的传输线均为 25%波长线; 所述第一及第二、 第三、 第五、 第 六、 第七传输线的特征阻抗均为 Z0, 而所述第四 a及第四 b传输线的特 征阻抗为 所述匹配电阻的阻值为 2 Z0。
19、 如权利要求 17所述的热备份系统, 其特征在于: 所述各个主射 频功率放大器输入端和输出端的微波单刀双掷开关中相同的开关器件 联动; .
在一主射频功率放大器正常时, 设置在该主射频功率'放大器输入端 和输出端微波单刀双掷开关各自的第一、 第三、 第四开关器件闭合、 第 二开关器件断开; 或设置在该主射频功率放大器输入端和输出端的微波 单刀双掷开关各自的第一、 第二开关器件闭合、 第三、 第四开关器件断 开; 在一主射频功率放大器故障时, 设置在该主射频功率放大器输入端 和输出端的微波单刀双掷开关各自的第二、 第三、 第四开关器件闭合、 第一开关器件断开。
20、一种射频功率放大器的 1 + 1热备份实现方法, 其特征在于: 采 用权利要求 1所述的 1 + 1热备份系统, 该方法包括以下步骤:
A、 在主射频功率放大器正常时, 通过设置第一、 第二单 '刀双掷开 关的状态, 使输入信号从第一单刀双掷开关的合路端口通过第一分路端 口发送给主射频功率放大器的输入端口, 主射频功率放大器对信号放大 后通过第二单刀双掷开关的第一分路端口发送给第二单刀双掷开关的 合路端口输出;
B、 在主射频功率放大器故障时, 通过设置第一、 第二单刀双掷开 关的状态, 使输入信号从第一单刀双掷开关的合路端口通过第二分路端 口发送给备份射频功率放大器的输入端口, 备份射频功率放大器对信号 放大后通过第二单刀双掷开关的第二分路端口发送给第二单刀双掷开 关的合路端口输出。
21、 如权利要求 20所述的热备份实现方法, 其特征在于: 所述的微 波单刀双掷开关还包含 7段传输线和 3个开关器件;
所述步骤 A中, 设置第一、 第二微波单刀双掷开关各自的第一开关 器件和第三开关器件闭合, 第二开关器件断开; 输入信号从第一微波单 刀双掷开关的合路端口输入, 通过第二、 第五传输线到达第一分路端口 发送给主射频功率放大器, 经主射频功率放大器放大后输入到第二微波 单刀双掷开关的第一分路端口, 再经第二微波单刀双掷开关的第五、 第 二传输线经第二微波单刀双掷开关的合路端口输出;
或者步驟 A中, 设置第一、 第二微波单刀双掷开关各自的第一开关 器件和第二开关器件闭合, 第三开关器件断开; 输入信号从第一微波单 刀双掷开关的合路端口输入,经第四传输线后分为两路,分别通过第七、 第六传输线到达第一、 第二分路端口, 再分别发送给主、 备用射频功率 放大器, 经主、 备用射频功率放大器放大后, 输入到第二微波单刀双掷 开关的第一、 第二分路端口, 再经第二微波单刀双掷开关的第七、 第六 传输线, 合路后经第四传输线, 到第二微波单刀双掷开关的合路端口输 出;
所述步骤 B中, 设置第一、 第二微波单刀汉掷开关各自的第二开关 器件和第三开关器件闭合, 第一开关器件断开; 输入信号从第一微波单 刀双掷开关的合路端口输入,通过第一、第三传输线到达第二分路端口, 再发送给备份射频功率放大器, 经备份射频功率放大器放大后, 输入到 第二^:波单刀双掷开关的第二分路端口, 再经第二微波单刀双掷开关的 第三、 第一传输线经第二微波单刀双掷开关的合路端口输出。
22、 如权利要求 20所述的热备份实现方法, 其特征在于: 所述的微 波单刀双掷开关还包含 8段传输线和 4个开关器件;
所述步骤 A中, 设置第一和第二微波单刀双掷开关各自的第一、 第 三、 第四开关器件闭合、 第二开关器件断开; 输入信号从第一微波单刀 双掷开关的合路端口输入, 通过第二、 第五传输线到达第一分路端口发 送给主射频功率放大器, 经主射频功率放大器放大后输入到第二微波单 刀双掷开关的第一分路端口, 再经第二微波单刀双掷开关的第五、 第二 传输线经第二微波单刀双掷开关的合路端口输出;
或所述步骤 A中, 设置第一和第二微波单刀汉掷开关各自的第一、 第二开关器件闭合、 第三、 第四开关器件断开; 输入信号从第一微波单 刀双掷开关的合路端口输入, 分为两路后, 第一路经第四 b、 第七传输 线到第一分路端口, 发送给主射频功率放大器, 另一路经第四 a、 第六 传输线到第二分路端口, 发送给备份射频功率放大器, 主射频功率放大 器和备射频功率放大器分别将信号放大后, 经第二微波单刀双掷开关的 第一、 第二分路端口、 第七、 第四 b、 第六、 第四 a传输线合并后到第 二微波单刀双掷开关的合路端口输出;
所述步骤 B中,设置所述第一和第二微波单刀双掷开关各自的第二、 第三、 第四开关器件闭合、 第一开关器件断开; 输入信号从第一微波单 刀双掷开关的合路端口输入, 通过第一、 第三传输线到达第二分路端口 发送给备份射频功率放大器, 经备份射频功率放大器放大后输入到第二 微波单刀双掷开关的第二分路端口, 再经第二微波单刀双掷开关的第 三、 第一传输线经第二微波单刀双掷开关的合路端口输出。
23、 一种射频功率放大器的 N + 1 热备份实现方法, 其特征在于: 采用权利要求 13所述的 N + 1热备份系统, 该方法包括以下步骤:
A、 在所有主射频功率放大器正常时, 通过设置各个单刀双掷开关 的状态, 使输入信号从设置在主射频功率放大器输入端的单刀双掷开关 的合路端口通过第一分路端口发送给主射频功率放大器的输入端口, 主 射频功率放大器对信号放大后, 通过设置在主射频功率放大器输出端的 单刀双掷开关的第一分路端口发送给第二单刀双掷开关的合路端口输 出;
B、 在一个主射频功率放大器故障时, 通过设置该主射频功率放大 器输入端和输出端的单刀双掷开关的状态, 使输入信号从输入端的单刀 双掷开关的合路端口通过第二分路端口发送给备份射频功率放大器的 输入端口, 备份射频功率放大器对信号放大后, 通过该主射频功率放大 器输出端的单刀双掷开关的第二分路端口发送给该单刀双掷开关的合 路端口输出。
24、 如权利要求 23所述的热备份实现方法, 其特征在于: 所述的微 波单刀双掷开关还包含 7段传输线和 3个开关器件; 所述步骤 A中,设置射频功率放大器输入端和输出端的微波单刀双 掷开关各自的第一开关器件和第三开关器件闭合, 第二开关器件断开; 输入信号从输入端微波单刀双掷开关的合路端口输入, 通过第二、 第五 传输线到达第一命路端口发送给主射频功率放大器, 经主射频功率放大 器放大后, 输入到输出端的微波单刀双掷开关的第一分路端口, 再经输 出端的微波单刀双掷开关的第五、 第二传输线经该微波单刀双掷开关的 合路端口输出;
或者步骤 A中,设置射频功率放大器输入端和输出端的微波单刀双 掷开关各自的第一开关器件和第二开关器件闭合, 第三开关器件断开; 输入信号从输入端的微波单刀双掷开关的合路端口输入 , 经第四传输线 后分为两路, 分別通过第七、 第六传输线到达第一、 第二分路端口, 再 分别发送给主、 备用射频功率放大器, 经主、 备用射频功率放大器放大 后, 输入到输出端的微波单刀双掷开关的第一、 第二分路端口, 再经输 出端的微波单刀双掷开关的第七、 第六传输线, 合路后经第四传输线, 到输出端的微波单刀双掷开关的合路端口输出;
所述步骤 B中,设置射频功率放大器输入端和输出端的微波单刀双 掷开关各自的第二开关器件和第三开关器件闭合, 第一开关器件断开; 输入信号从输入端的微波单刀双掷开关的合路端口输入, 通过第一、 第 三传输线到达第二分路端口, 再发送给备份射频功率放大器, 经备份射 频功率放大器放大后, 输入到输出端微波单刀双掷开关的第二分路端 口, 再经输出端的微波单刀双掷开关的第三、 第一传输线经该微波单刀 双掷开关的合路端口输出。
25、 如权利要求 23所述的热备份实现方法, 其特征在于: 所述的微 波单刀双掷开关还包含 8段传输线和 4个开关器件;
所述步骤 A中, 设置射频功率放大器输入端和输出端的微波单刀双 掷开关各自的第一、 第三、 第四开关器件闭合、 第二开关器件断开; 输 入信号从输入端的微波单刀双掷开关的合路端口输入, 通过第二、 第五 传输线到达第一分路端口发送给主射频功率放大器, 经主射频功率放大 器放大后输入到输出端的微波单刀双掷开关的第一分路端口, 再经第二 微波单刀双掷开关的第五、 第二传输线经第二微波单刀双掷开关的合路 端口输出;
或所述步骤 A中, 设置射频功率放大器输入端和输出端的微波单刀 双掷开关各自的第一、 第二开关器件闭合、 第三、 第四开关器件断开; 输入信号从输入端的微波单刀双掷开关的合路端口输入, 分为两路后, 第一路经第四 b、 第七传输线到第一分路端口, 发送给主射频功率放大 器, 另一路经第四 a、 第六传输线到第二分路端口, 发送给备份射频功 率放大器, 主射频功率放大器和备射频功率放大器分别将信号放大后, 经输出端的微波单刀双掷开关的第一、 第二分路端口、 第七、 第四 b、 第六、 第四 a传输线合并后到该微波单刀双掷开关的合路端口输出; 所述步驟 B中, 设置射频功率放大器输入端和输出端的微波单刀双 掷开关各自的第二、 第三、 第四开关器件闭合、 第一开关器件断开; 输 入信号从输入端的微波单刀双掷开关的合路端口输入, 通过第一、 第三 传输线到达第二分路端口发送给备份射频功率放大器, 经备份射频功率 放大器放大后, 输入到输出端的微波单刀双掷开关的第二分路端口, 再 经输出端的微波单刀双掷开关的第三、 第一传输线经该微波单刀双掷开 关的合路端口输出。
PCT/CN2005/001969 2004-11-19 2005-11-21 Systeme et procede d'amplificateur de radiofrequences fonctionnant en veilleuse 'a chaud' et commutateur a micro-ondes et procede de sauvegarde de securite WO2006053506A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
BRPI0518340A BRPI0518340B1 (pt) 2004-11-19 2005-11-21 sistema e método de redundância tipo hot standby para amplificador de potência de radiofrequência
US11/750,435 US7525396B2 (en) 2004-11-19 2007-05-18 System, microwave switch and method for hot standby of radio frequency power amplifier

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CNB200410052278XA CN100334774C (zh) 2004-11-19 2004-11-19 微波开关及功率放大器热备份与互助系统及其实现方法
CN200410052278.X 2004-11-19
CNB2004100776875A CN100365947C (zh) 2004-12-17 2004-12-17 一种射频功率放大器的热备份系统及方法
CN200410077687.5 2004-12-17

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/750,435 Continuation US7525396B2 (en) 2004-11-19 2007-05-18 System, microwave switch and method for hot standby of radio frequency power amplifier

Publications (1)

Publication Number Publication Date
WO2006053506A1 true WO2006053506A1 (fr) 2006-05-26

Family

ID=36406839

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2005/001969 WO2006053506A1 (fr) 2004-11-19 2005-11-21 Systeme et procede d'amplificateur de radiofrequences fonctionnant en veilleuse 'a chaud' et commutateur a micro-ondes et procede de sauvegarde de securite

Country Status (3)

Country Link
US (1) US7525396B2 (zh)
BR (1) BRPI0518340B1 (zh)
WO (1) WO2006053506A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102118149A (zh) * 2009-12-31 2011-07-06 华为技术有限公司 信号切换的方法和装置

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE546880T1 (de) * 2008-09-24 2012-03-15 Alcatel Lucent Hochleistungs-dual-leistungsverstärker
US7859333B2 (en) * 2009-02-03 2010-12-28 Triquint Semiconductor, Inc. Power amplifier with reconfigurable direct current coupling
US8411447B2 (en) * 2009-12-18 2013-04-02 Teledyne Paradise Datacom, Llc Power amplifier chassis
US8189338B2 (en) * 2009-12-18 2012-05-29 Paradise Datacom, LLC Power amplifier system
CN101753203B (zh) * 2010-01-22 2013-03-13 华为技术有限公司 微波通信中发送、接收业务的方法,终端及系统结构
CN102711161B (zh) * 2012-06-25 2016-07-13 华为技术有限公司 告警方法和装置
US9031158B2 (en) 2012-10-08 2015-05-12 Qualcomm Incorporated Transmit diversity architecture with optimized power consumption and area for UMTS and LTE systems
EP3005556B1 (en) * 2013-05-27 2018-11-21 Telefonaktiebolaget LM Ericsson (publ) Amplifier circuit and method
JP6539119B2 (ja) * 2014-06-13 2019-07-03 住友電気工業株式会社 電子装置
CN105429605B (zh) 2014-09-16 2019-03-08 天工方案公司 具有减小的频带加载的多频带设备
CN104485940B (zh) * 2014-11-20 2018-01-09 苏州富欣智能交通控制有限公司 双机热备切换电路
US10910714B2 (en) 2017-09-11 2021-02-02 Qualcomm Incorporated Configurable power combiner and splitter
US10742176B2 (en) * 2017-11-14 2020-08-11 Mediatek Singapore Pte. Ltd. Programmable power combiner and splitter
CN109995419B (zh) * 2019-03-25 2021-11-16 睿高(广州)通信技术有限公司 卫星变频功放系统及其终端备份方法和装置
CN112583456B (zh) * 2019-09-30 2022-03-29 上海华为技术有限公司 一种通信装置
US20220131253A1 (en) * 2020-10-27 2022-04-28 Mixcomm, Inc. Reconfigurable power divider/combiner
TWI826096B (zh) * 2022-11-03 2023-12-11 財團法人工業技術研究院 開關電路以及提供開關電路的方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0454736A (ja) * 1990-06-22 1992-02-21 Mitsubishi Electric Corp 高出力増幅器のマトリツクス冗長システム

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6029074A (en) 1997-05-02 2000-02-22 Ericsson, Inc. Hand-held cellular telephone with power management features
JP3176596B2 (ja) * 1998-06-11 2001-06-18 株式會社エイステクノロジ 低雑音増幅器
US7061315B2 (en) 2003-06-06 2006-06-13 Anaren, Inc. Auxiliary amplifier network
JP4150314B2 (ja) * 2003-09-09 2008-09-17 株式会社エヌ・ティ・ティ・ドコモ 90°ハイブリッド回路
CN100426660C (zh) * 2005-12-08 2008-10-15 华为技术有限公司 功率放大器的热备份和互助系统

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0454736A (ja) * 1990-06-22 1992-02-21 Mitsubishi Electric Corp 高出力増幅器のマトリツクス冗長システム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102118149A (zh) * 2009-12-31 2011-07-06 华为技术有限公司 信号切换的方法和装置

Also Published As

Publication number Publication date
BRPI0518340A2 (pt) 2008-11-11
BRPI0518340B1 (pt) 2018-12-04
US20080136554A1 (en) 2008-06-12
US7525396B2 (en) 2009-04-28

Similar Documents

Publication Publication Date Title
WO2006053506A1 (fr) Systeme et procede d&#39;amplificateur de radiofrequences fonctionnant en veilleuse &#39;a chaud&#39; et commutateur a micro-ondes et procede de sauvegarde de securite
CN100571024C (zh) 功率放大器的热备份和互助系统
US4916410A (en) Hybrid-balun for splitting/combining RF power
US6518856B1 (en) RF power divider/combiner circuit
CN100334774C (zh) 微波开关及功率放大器热备份与互助系统及其实现方法
CN101611544B (zh) 具有旁路分支的平衡放大装置及包括该装置的无线接入点
US8130874B2 (en) By-pass arrangement of a low noise amplifier
CN101667854B (zh) 射频功率合成电路
CN106099295B (zh) 准平面宽带功分端口/路数可重构功分器
JP3084517B2 (ja) N−ウェイ(way)電力分配機/合成機
US6121853A (en) Broadband coupled-line power combiner/divider
US20050225385A1 (en) Auxiliary amplifier network
KR20030043577A (ko) 스위칭 전력 합성기
KR100346746B1 (ko) 스위칭 가능한 2-웨이 전력 분배기/합성기
CN100365947C (zh) 一种射频功率放大器的热备份系统及方法
KR20010039467A (ko) 합성 채널수에 따른 임피던스 정합 선로를 갖는 n경로
JP2002217657A (ja) 電力増幅器の並列運転システム
CN111509351A (zh) 射频吉赛尔功分器
JPH0423605A (ja) 増幅装置
JP3056086B2 (ja) 増幅回路
CN101316107A (zh) 发送装置
WO2002023757A1 (en) Switchable power divider
JPH06318829A (ja) 高周波電力分配・合成器
KR20040025424A (ko) 임피던스 정합 합성 및 분배기
JPH0786812A (ja) 電力分配器又は合成器

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2385/CHENP/2007

Country of ref document: IN

122 Ep: pct application non-entry in european phase

Ref document number: 05812377

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: PI0518340

Country of ref document: BR