WO2006051595A1 - 大環状ケトン類の製造方法およびその中間体 - Google Patents

大環状ケトン類の製造方法およびその中間体 Download PDF

Info

Publication number
WO2006051595A1
WO2006051595A1 PCT/JP2004/016767 JP2004016767W WO2006051595A1 WO 2006051595 A1 WO2006051595 A1 WO 2006051595A1 JP 2004016767 W JP2004016767 W JP 2004016767W WO 2006051595 A1 WO2006051595 A1 WO 2006051595A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
aromatic ring
substituent containing
branched
linear
Prior art date
Application number
PCT/JP2004/016767
Other languages
English (en)
French (fr)
Inventor
Hiroyuki Matsuda
Shigeru Tanaka
Original Assignee
Takasago International Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takasago International Corporation filed Critical Takasago International Corporation
Priority to CA002587162A priority Critical patent/CA2587162A1/en
Priority to ES04799627.7T priority patent/ES2635371T3/es
Priority to CN2004800443856A priority patent/CN101056843B/zh
Priority to KR1020077009880A priority patent/KR101109845B1/ko
Priority to JP2006544700A priority patent/JP4860481B2/ja
Priority to EP04799627.7A priority patent/EP1845078B1/en
Priority to US11/667,476 priority patent/US7479574B2/en
Priority to PCT/JP2004/016767 priority patent/WO2006051595A1/ja
Publication of WO2006051595A1 publication Critical patent/WO2006051595A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C49/00Ketones; Ketenes; Dimeric ketenes; Ketonic chelates
    • C07C49/29Saturated compounds containing keto groups bound to rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/51Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by pyrolysis, rearrangement or decomposition
    • C07C45/511Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by pyrolysis, rearrangement or decomposition involving transformation of singly bound oxygen functional groups to >C = O groups
    • C07C45/513Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by pyrolysis, rearrangement or decomposition involving transformation of singly bound oxygen functional groups to >C = O groups the singly bound functional group being an etherified hydroxyl group
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/51Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by pyrolysis, rearrangement or decomposition
    • C07C45/511Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by pyrolysis, rearrangement or decomposition involving transformation of singly bound oxygen functional groups to >C = O groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/51Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by pyrolysis, rearrangement or decomposition
    • C07C45/54Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by pyrolysis, rearrangement or decomposition of compounds containing doubly bound oxygen atoms, e.g. esters
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C49/00Ketones; Ketenes; Dimeric ketenes; Ketonic chelates
    • C07C49/385Saturated compounds containing a keto group being part of a ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C49/00Ketones; Ketenes; Dimeric ketenes; Ketonic chelates
    • C07C49/587Unsaturated compounds containing a keto groups being part of a ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/08Preparation of carboxylic acid esters by reacting carboxylic acids or symmetrical anhydrides with the hydroxy or O-metal group of organic compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C68/00Preparation of esters of carbonic or haloformic acids
    • C07C68/06Preparation of esters of carbonic or haloformic acids from organic carbonates
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/013Esters of alcohols having the esterified hydroxy group bound to a carbon atom of a ring other than a six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/96Esters of carbonic or haloformic acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/07Optical isomers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/18Systems containing only non-condensed rings with a ring being at least seven-membered

Definitions

  • the present invention relates to a process for producing muscone, which is a macrocyclic ketone, in particular, a process for producing muscone by 1,4-one-conjugated methyl addition reaction of 2-cyclopentadecenone, and a novel intermediate used in this production. Body compound.
  • Muscon is the main scent component of natural scents and incenses, and is contained in natural scents and incenses by 0.5-2.0%. Muscon was discovered by Walbaum in 1906 and its chemical structure was determined by Ruzicka in 1926.
  • the natural muscone is (1) (R) -3-methylcyclopentadecanone, but the commercial product is a synthetic product and is a dl-form.
  • Non-Patent Document 1 Motoichi Into, Synthetic Fragrance Chemistry and Product Knowledge, Chemical Industry Daily, published on March 6, 1996, pages 492-497
  • Non-Patent Document 2 “Latest Technology of Synthetic Fragrance”, CMC Co., Ltd., published in 1982, pages 72-90
  • Non-Patent Document 4 When experiments were carried out using various chiral phosphite ligands in catalytic amounts, it was reported that a particular compound was particularly effective (see Non-Patent Document 4 below). . However, in this report, the yield is only 53% even at an inefficient low concentration with a solvent Z substrate ratio of about 50 times, which is not satisfactory.
  • other examples include 4- (cis-2,6 dimethylbiperidine)-(R) -dinaphthodioxaphosphepine or 4- (R, R-2,5-diphenylbilysine).
  • Non-Patent Document 3 J. Chem. Soc. Perkin Trans. I, 1193 (1992)
  • Non-Patent Document 4 Synlett 1999, No. 11, pp. 1181-1183
  • Patent Document 1 Korean Published Patent 2001-49811
  • the present invention has been made in view of the above situation, and is directed to a method for producing muscone by 1,4-one-conjugated methyl addition reaction of 2-cyclopentadecenone! It is an object of the present invention to provide a method for producing muscone in a high yield under practical conditions that do not depend on extremely low temperature or low concentration reaction conditions. Means for solving the problem
  • the present invention is as described in 1-13 below.
  • R may have a substituent containing a hetero atom or an aromatic ring, which may have a linear or branched acyl group, a hetero atom or an aromatic ring! , Straight chain Or, it may have a branched alkyloxycarbonyl group, a heteroatom or a substituent containing an aromatic ring, it is linear !, is a branched alkyl group, has a heteroatom! /, Is aromatic A linear or branched silyl group optionally having a substituent containing a ring is shown; the wavy line is as defined above. )
  • R may have a substituent containing a hetero atom or an aromatic ring, which may have a linear or branched acyl group, a hetero atom or an aromatic ring! It may have a linear or branched alkyloxycarbonyl group, a heteroatom or a substituent containing an aromatic ring, and may be a linear chain! Or a branched alkyl group or a heteroatom! / Represents a linear or branched silyl group which may have a substituent containing an aromatic ring; * represents an asymmetric carbon atom; the wavy line has the same meaning as described above.
  • R may have a substituent containing a hetero atom or an aromatic ring, may have a linear or branched acyl group, a hetero atom or a substituent containing an aromatic ring !, linear Or, it may have a branched alkyloxycarbonyl group, a heteroatom or a substituent containing an aromatic ring, it is linear !, is a branched alkyl group, has a heteroatom! /, A linear or branched silyl group which may have a substituent containing an aromatic ring is shown; the wavy line is as defined above.
  • 2-cyclopentadecenones represented by the formula (1) and (4) are subjected to a 1, 4 co-addition reaction with a methylated organometallic reagent in the presence of a copper catalyst or a nickel catalyst, an enol-ion scavenger and an optically active ligand.
  • R may have a substituent containing a hetero atom or an aromatic ring, which may have a linear or branched acyl group, a hetero atom or an aromatic ring! It may have a linear or branched alkyloxycarbonyl group, a heteroatom or a substituent containing an aromatic ring, and may be a linear chain! Or a branched alkyl group or a heteroatom! / Represents a linear or branched silyl group which may have a substituent containing an aromatic ring; * represents an asymmetric carbon atom; the wavy line has the same meaning as described above.
  • R may have a substituent containing a hetero atom or an aromatic ring, which may have a linear or branched acyl group, a hetero atom or an aromatic ring! It may have a linear or branched alkyloxycarbonyl group, a heteroatom or a substituent containing an aromatic ring, and may be a linear chain! Or a branched alkyl group or a heteroatom! / Represents a linear or branched silyl group which may have a substituent containing an aromatic ring; a wavy line indicates a double bond cis-form and a Z- or trans-form.
  • R may have a substituent containing a hetero atom or an aromatic ring, which may have a linear or branched acyl group, a hetero atom or an aromatic ring! It may have a linear or branched alkyloxycarbonyl group, a heteroatom or a substituent containing an aromatic ring, and may be a linear chain! Or a branched alkyl group or a heteroatom!
  • optically active ligand is represented by the general formula (IV):
  • C represents a group that forms a ring, which is substituted or substituted with 2 to 4 carbon atoms together with 2 oxygen atoms and phosphorus atoms
  • R 1 and R 2 are each independently a hydrogen atom, a force indicating an optionally substituted chain or cyclic alkyl, aryl, alkanol or aralkyl group, or a nitrogen atom to which they are bonded.
  • optically active ligand represented by the formula: 8.
  • optically active ligand is represented by the general formula (V):
  • C n represents a group which forms a substituted or unsubstituted ring having 2 to 4 carbon atoms together with two oxygen atoms and a phosphorus atom; 3 represents a hydrogen atom, an optionally substituted chain or cyclic alkyl, aryl, alkanol or aralkyl group.
  • the optically active ligand is 4 (cis 2,6 dimethylbiperidine) (R) —ditetrahydronaphthodioxaphosphepine, 4— (cis—2,6 dimethylbiperidine) — (R) —Dinaphthodia saphosphepine, 4 (((R, R) -2, 5—Diphe-rubi mouth lysine) — (R) —Dinaphthodioxafosue pin, 4 (((R, R) — 2, 5 (5)
  • R 4 may have a substituent containing a hetero atom or an aromatic ring, a linear or branched acyl group, a hetero atom or an aromatic ring! It may have a chain or branched alkyloxycarbonyl group, a heteroatom or a substituent containing an aromatic ring, a straight chain! Or a branched chain alkyl group, a heteroatom!
  • X represents a halogen atom, an alkylsulfo-oxyl group, an arylsulfo-loxy group, OR ′ (R ′ represents hetero An atom may have a substituent containing an aromatic ring, a straight chain !, a branched chain acyl group, or a heteroatom may have a substituent containing an aromatic ring!
  • R 5 may have a substituent containing a hetero atom or an aromatic ring, a linear or branched acyl group, a hetero atom or an aromatic ring!
  • X represents a halogen atom, an alkyl sulfo-oxy group, an aryl sulfo-oxy group, OR, (R, is a hetero atom or an aromatic ring; It may have a substituent containing !, a straight chain or branched chain acyl group, a hetero atom or a substituent containing an aromatic ring, and a straight chain or branched chain alkyloxycarbon group.
  • R may have a substituent containing a hetero atom or an aromatic ring, a linear or branched acyl group, a hetero atom or an aromatic ring! It may have a linear or branched alkyloxycarbonyl group, a heteroatom or a substituent containing an aromatic ring, and may be a linear chain! Or a branched alkyl group or a heteroatom! / Represents a linear or branched silyl group which may have a substituent containing an aromatic ring; a wavy line indicates a double bond cis-form and a Z- or trans-form.
  • R may have a substituent containing a hetero atom or an aromatic ring, a linear or branched acyl group, a hetero atom or an aromatic ring! It may have a linear or branched alkyloxycarbonyl group, a heteroatom or a substituent containing an aromatic ring, and may be a linear chain! Or a branched alkyl group or a heteroatom!
  • a novel enol derivative is obtained by capturing an enol-one generated by 1,4-one-conjugated methyl addition reaction of 2-cyclopentadecenone, and then the enol part is solvolyzed. By doing so, the target muscone can be produced in a high yield at a high concentration.
  • R may have a substituent containing a hetero atom or an aromatic ring, which may have a linear or branched acyl group, a hetero atom or an aromatic ring! It may have a linear or branched alkyloxycarbonyl group, a heteroatom or a substituent containing an aromatic ring, and may be a linear chain! Or a branched alkyl group or a heteroatom! / Represents a linear or branched silyl group which may have a substituent containing an aromatic ring; the wavy line has the same meaning as described above.
  • (E) Power to mention 2-cyclopentadecenone
  • the 2-cyclopentadecenones used in this reaction are not limited to this (Z) — It may be a mixture of bodies.
  • (E) -2-cyclopentadecenone can be produced by a known method (for example, see Patent Document 2, Patent Document 3, and Non-Patent Document 5 below) and a method analogous thereto.
  • 2-cyclopentadecenones there are those known methods, those produced by a method analogous thereto, or commercially available products may be used.
  • Patent Document 2 JP-A-1 321556
  • Patent Document 3 Japanese Patent Laid-Open No. 2001-369422
  • Non-Patent Document 5 J. Korean Chem. Soc., 40, 243 (1996)
  • any of the copper catalysts conventionally used in the 1,4 monoconjugated methyl addition reaction can be used.
  • these copper catalysts include copper ( ⁇ ⁇ ⁇ ) triflate (Cu (OTf)), copper (I) triflate (CuOTf), copper ( ⁇ )
  • Copper cyanide (CuCN), copper perchlorate (CuCIO), copper naphthenate (Cu (OCOC H)),
  • nickel catalyst used in this reaction any of the nickel catalysts that have been used in the conventional 1, 4 and 1-conjugated methyl addition reactions can be used.
  • nickel catalysts include, for example, nickel acetyl ether toner HNi (acac))
  • Nickel chloride NiCl
  • NiBr nickel bromide
  • iodide-Neckel NiO
  • Ni OCOCH
  • Ni nickel acetyl cetate HNi (ac
  • NiCl nickel chloride
  • R 4 may have a substituent containing a hetero atom or an aromatic ring, a linear or branched acyl group, a hetero atom or an aromatic ring! It may have a chain or branched alkyloxycarbonyl group, a heteroatom or a substituent containing an aromatic ring, a straight chain! Or a branched chain alkyl group, a heteroatom!
  • X represents a halogen atom, an alkylsulfo-oxyl group, an arylsulfo-loxy group, OR ′ (R ′ represents hetero An atom may have a substituent containing an aromatic ring, a straight chain !, a branched chain acyl group, or a heteroatom may have a substituent containing an aromatic ring! Chain or branched chain An alkyloxycarbonyl group is shown. ).
  • R 4 is a hetero atom
  • the linear or branched acyl group which may have a substituent containing an aromatic ring includes, for example, a formyl group , Acetyl group, chloroacetyl group, dichloroacetyl group, trichloroacetyl group, trifluoroacetyl group, propiol group, ptylyl group, isoptylyl group, bivaloyl group, valeryl group, isovaleryl group, hexanoyl group, otatanyl group, Lower alkyl groups having 1 to 4 carbon atoms such as decanol group, dodecanol group, benzoyl group, 4-trioyl group, 4 tert butyl benzoyl group, 4-carbol group, 4-chlorobenzoyl group, 4-12 trobenzoyl group (for example, Methyl group, ethyl group, propyl group, iso
  • R 4 may have a substituent containing a hetero atom or an aromatic ring !, a straight chain! / ⁇ is a branched alkyloxycarbonyl group, for example, methoxy Carbon group, Ethoxycarbonyl group, Propoxycarbol group, Butoxycarbol group, tert Butoxycarporo group, Aroxyloxycarboyl group, Benzyloxycarol group, p Lower alkyl groups having 1 to C carbon atoms such as n-dioxycarbol group, p-bromobenzyloxycarbol group, p-methoxybenziloxycarboro group, p-nitrobenzoxycarboro group (for example, , Methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, etc.), lower alkoxy group having 1 to 4 carbon atoms (for example, Methyl
  • R 4 may have a substituent containing a hetero atom or an aromatic ring !, straight chain! / ⁇ ⁇ is a branched chain alkyl group, for example, a methyl group, an ethyl group, n Propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, pentyl group, hexyl group, heptyl group, octyl group, etc. Can be mentioned.
  • the alkyl group may have a substituent that does not participate in the reaction.
  • substituents are, for example, methyl group, ethyl group, n propyl group, isopropyl group, n butyl group, isobutyl group, lower alkyl group having 1 to 4 carbon atoms such as tert-butyl group; 1 to 4 carbon atoms such as methoxy group, ethoxy group, propoxy group, isopropoxy group, n-butoxy group, isobutoxy group, sec-butoxy group, tert-butoxy group, etc.
  • a lower alkoxy group, a halogen atom such as a fluorine atom, a chlorine atom, a bromine atom and an iodine atom, and a nitro group.
  • a straight chain! / ⁇ is a branched silyl group, for example, a trimethylsilyl group, a triethylsilyl group, 1 to 6 alkylsilyl groups such as triisopropyl (2, 3 dimethyl-2-butyl) silyl group, tert-butyldimethylsilyl group and dimethylhexylsilyl group; for example, 1 to 5 carbon atoms such as dimethylcumylsilyl group Alkyl carbon number 6 to 18 arylsilyl group; for example, tert-butyldiphenylsilyl group, diphenylmethylsilyl group and the like 6 to 18 arylene carbon number 1 16 alkylsilyl group; for example, triphenylsilyl group 6 to 18 aryl silyl groups such as tribenzyl silyl groups, tri p
  • the R 4 hetero atom or a substituent containing an aromatic ring may have a linear or branched acyl group, a hetero atom, or an aromatic ring.
  • You may have a substituent that contains a straight-chain or branched alkyloxycarbon group, a heteroatom or a substituent containing an aromatic ring! It may have a substituent containing an alkyl group, a heteroatom or an aromatic ring.
  • linear or branched silyl groups it may have a substituent containing a heteroatom or an aromatic ring.
  • branched chain Preferred are an acyl group and a linear or branched alkyloxycarbonyl group which may have a substituent containing a hetero atom or an aromatic ring.
  • Preferred enolone scavengers used in the present invention are exemplified by compounds such as acid anhydrides such as acetic anhydride, propionic anhydride, butanoic anhydride, pentanoic anhydride, benzoic anhydride, Acid halides such as acetyl acetyl, bromide acetyl, dipropiol bromide, propiol bromide, dihydrobutyryl, butyryl bromide, dihydropentanoyl, pentanoyl bromide, benzoyl chloride, dimethyl dicarbonate, Examples thereof include dicarbonates such as tildicarbonate, dipropyldicarbonate, dibenzyldicarbonate, trimethylsilyl chloride, trimethylsilyltriflate, and the like, and particularly preferred are acetic anhydride, propionic anhydride, butanoic anhydride, Acid anhydrides such as penta
  • methyl organometallic reagents used in this reaction include, for example, dimethyl zinc (ZnMe;), methyl magnesium chloride, methyl magnesium bromide, methyl magnétique compound, methyl magnétique compound, methyl magnesium bromide, methyl magnMe, methyl magnesium chloride, methyl magnesium bromide, methyl magnMe, methyl magnesium chloride, methyl magnesium bromide, methyl magnMe, methyl magnesium magnesium chloride
  • Examples thereof include nesamuzide, methyllithium, and trimethylaluminum, and preferably include dimethylzinc (ZnMe).
  • the solvent used in this reaction may be any inert solvent that does not participate in the reaction.
  • hydrocarbon solvents such as pentane, hexane, heptane, benzene, toluene, Aromatic solvents such as xylene and mesitylene, jetyl ether, diisopropyl ether, methyl tert butyl ether, dibutyl ether, cyclopentyl methyl ether, 1,2-dimethoxyethane, tetrahydrofuran, 1,4 dioxane, 1, 3—
  • An ether solvent such as dioxolane, an ester solvent such as methyl acetate, ethyl acetate and butyl acetate, an organic solvent such as a halogen solvent such as methylene chloride, dichloroethane and black benzene, or a mixed solvent of two or more of these solvents.
  • hydrocarbon solvents such as pentane, hexane, and heptane
  • aromatic solvents such as benzene, toluene, xylene, and mesitylene
  • jetyl ether di-succinic pinoleatenore, methinole tert butinoreatenore, dibutinorea Tenoré
  • cyclopentinoleme Ether solvents such as tilether, l, 2-dimethoxyethane, tetrahydrofuran, 1,4 dioxane, 1,3-dioxolane are preferred.
  • the amount of the solvent used is usually 1 to 200 times, preferably 5 to 100 times, particularly preferably 10 to 50 times the amount of 2-cyclopentadecenones represented by the general formula (III). Capacity.
  • the enol-one scavenger is usually used in an amount of about 1.0 to 5.0 mol, preferably about 1.2 to 3.0 mol, per 1 mol of 2-cyclopentadecenones (III). It is done.
  • the methyli organometallic reagent is usually used in an amount of 1.0-5.0 mol, preferably 1.2-3.0 mol, per 1 mol of 2-cyclopentadecenones (III).
  • this reaction is usually carried out in an inert gas atmosphere such as nitrogen gas or argon gas.
  • the reaction is usually performed at a temperature of about ⁇ 80 to 50 ° C., preferably about 30 to 30 ° C., usually for about 10 minutes to 20 hours, preferably about 30 minutes to 10 hours.
  • the reaction is terminated, but these conditions can be changed as appropriate depending on the amount of reactants and copper compounds used.
  • triphenylphosphine When a racemic 3-methyl-cyclopentadecene derivative is obtained in this reaction, triphenylphosphine, tributylphosphine, tritertbutylbutyl is used as necessary to make the reaction proceed more smoothly.
  • Phosphorus ligands such as phosphine, triphenyl phosphite and triethyl phosphite can be added. These are usually used in an amount of about 110 to 10 mole equivalents, preferably about 1.5 to 5 mole equivalents, per mole of copper catalyst and nickel catalyst.
  • the desired product can be isolated by carrying out usual post-treatment and, if necessary, using a method such as distillation, recrystallization or column chromatography.
  • R may have a substituent containing a hetero atom or an aromatic ring, which may have a linear or branched acyl group, a hetero atom or an aromatic ring! It may have a linear or branched alkyloxycarbonyl group, a heteroatom or a substituent containing an aromatic ring, and may be a linear chain! Or a branched alkyl group or a heteroatom!
  • optically active ligand is not particularly limited as long as the objective optically active 3-methyl-1-cyclopentadecene (II) can be obtained.
  • optically active ligand used in the present invention include, for example, the general formula (IV):
  • C represents a group which forms a ring, substituted or substituted with 2 to 4 carbon atoms together with 2 oxygen atoms and phosphorus atom
  • R 1 and R 2 are each independently a hydrogen atom, a force indicating an optionally substituted chain or cyclic alkyl, aryl, alkanol or aralkyl group, or a nitrogen atom to which they are bonded.
  • C n is as defined above, and R 3 represents a hydrogen atom, an optionally substituted chain or cyclic alkyl, aryl, alkanoyl, or aralkyl group.
  • optically active ligand represented by these can be illustrated.
  • C and Z or R 1 and Z or R 2 and Z or R 3 are optically active, Or part of an optically active component.
  • C preferably has, for example, a predominantly one configuration of chirally substituted ic chain (4 units) with an enantiomeric excess greater than 95%, especially greater than 99%, more especially greater than 99.5%.
  • optionally substituted C atom chain Preferably C
  • optically active ligand represented by the general formula (IV) which is an optically active ligand suitably used in the present invention, include the following.
  • the optically active ligand represented by the general formula (IV) is not limited to those specifically exemplified.
  • the structures related to the respective enantiomers are included, and are selected in a timely manner depending on the optical activity of the target object.
  • specific examples of the general formula (V) that is an optically active ligand suitably used in the present invention include the coordinations exemplified above as examples of the compound represented by the general formula (IV).
  • Examples include compounds in which the NR 2 site in the child compound is replaced with an OR 3 site.
  • Examples of the photoactive ligand represented by the general formula (V) include the following.
  • the optically active ligand represented by the general formula (V) is not limited to those specifically exemplified.
  • the structures related to the respective enantiomers are included, and are selected in a timely manner depending on the optical activity of the target object.
  • optically active ligand having the general formula (IV) and the general formula (V) can be easily produced by a known production method (for example, see Non-Patent Document 6 below).
  • Non-Patent Document 6 Houben—Weyl Methoden der Organischen Chemie Band XII / 2. Organische pho sphor für sphor für . G. Tnieme Verlag, Stuttgart, 1964, Part 2 (4th edition), 99 1 105
  • a method of reacting with R X R 2 NH or R 3 OH in a solvent having a boiling point higher than 80 ° C., for example, toluene is preferable.
  • suitable catalysts for the latter reaction include salt ammonium, tetrazole or benzimidazolium triflate.
  • HO—C—OH examples include chiral bisnaphthols, such as (R) or (S) — 1, 1, -B (2 naphthol); chiral bisphenols, such as (R) or (S) — 6 , 6, dimethoxy 2, 2, 1 bisphenol; diols such as (R, R) or (S, S) — 2, 2, dimethyl-1, 3, dioxolane 4, 5 bis (1, 1-diphenol) methanol (TADDOL) or (S, R) or (R, S) indan 1,2-diol; sugar-based 1,2-diol and 1,3-diol, for example: formula [0081] [Chemical 48]
  • Examples of ⁇ 2 ⁇ include, for example, benzylamine, dibenzylamine, diisopropynoleamine, dicyclohexylamine, 2, 2, 6, 6-tetramethylpiperidine, (R)-or (S) -1-methyl.
  • R 3 OH examples include (IS, 2R) or (IS, 2S) —or (1R, 2R) or (1R, 2R) —2-phenolcyclohexanol, (IS, 2R) — Or (IS, 2S) —or (1R, 2R) —or (1R, 2R) — 2— (1-naphthyl) cyclohexanol, (IS, 2R) —or (IS, 2S) —or (1R, 2R ) — Or (1R, 2R) — 2— (2-naphthyl) cyclohexanol, ⁇ or d menthol, 1 or d isopulegol, (R) or (S) — 1-ethanol, tert-butanol, phen Cole, Borneol, (S) or (R) —2-Hydroxydimethyl-4 tertbutyl-1,3-dioxazoline, (S) or (
  • the optically active ligand can also be easily produced by other known production methods (for example, see Non-Patent Documents 7 and 8 below).
  • This second preferred preparation method comprises reacting a HO—COH compound with PC1 in the presence of a base, such as Et N, followed by a solvent, eg
  • Non-Patent Document 7 Tetrahedron, 56, 2865 (2000)
  • Non-Patent Document 8 Tetrahedron Asymmetry, 9, 1179 (1998)
  • the optically active ligand can also be easily produced by other known production methods (for example, see Non-Patent Documents 9 and 10 below).
  • This third preferred process consists of reacting R 2 N Li, ⁇ ⁇ 2 ⁇ or R 3 OH with PCI, followed preferably by a base such as Et
  • V In principle, it is the same as that shown for manufacturing.
  • Non-Patent Document 9 J. Org. Chem., 58, 7313 (1993)
  • Non-Patent Document 10 Tetrahedron Asymmetry, 13, 801 (2002)
  • the optically active ligand represented by the general formula (IV) or the general formula (V) is usually 0 with respect to 1 mol of the 2-cyclopentadecenones (III). . 1- 20 mole 0/0 degree, preferably used in an amount of about 1. 0 10 mol 0/0.
  • the 3-methyl-1-cyclopentadecene derivative (II) obtained by the enol-one capture reaction described above is a novel compound that has not been known so far, and is stable and usually oily or powdery and preserved. Is possible. Therefore, the 3-methyl-1-cyclopentadecene derivative (II) obtained by the enol-one capture reaction may be stored without being purified, for example, by distillation, recrystallization, or column chromatography. You can take it out of the storage container and use it in the next manufacturing!
  • 3-Methyl-1-cyclopentadecyl formate 3-Methyl-1-cyclopentadecyl acetate, 3-Methyl-1-cyclopentadecyl propionate, 3-Methyl-1-cyclopentadec- Butylate, 3-Methyl-1-cyclopentadecyl isobutyrate, 3-Methyl-1-cyclopentadecyl sec-Butylate, 3-Methyl-1-cyclopentadecyl tert-Butylate, 3-Methyl-1 —Cyclopentadecyl valerate, 3-methyl-1-cyclopentadecyl isovalerate, 3-methyl-1-cyclopentadec Hexanoate, 3-methyl-1-cyclopentadecyl heptanoate, 3-methyl-1-cyclopentadec otanoate, 3-methyl-1-cyclopentadecone nonate, 3-methyl-1- Cyclopentadec
  • Examples of other preferred optically active ligands include 4- (cis-2,6-dimethylbiperidine)-(R) -dinaphthodioxaphosphepine, 4-((R, R ) -2, 5—Diphenyl-Rubicin-lysine) — (R) —Dinaphthodioxaphosphepine, 4 ((R, R) —2, 5-Diphenyl-Rubicin-lysine) — (R) —Di Tetrahydronaphthodioxaphosphepine and the like can be mentioned, but similar results can be obtained when these are used.
  • R may have a substituent containing a hetero atom or an aromatic ring, may have a linear or branched acyl group, a hetero atom or a substituent containing an aromatic ring !, linear Or, it may have a branched alkyloxycarbonyl group, a heteroatom or a substituent containing an aromatic ring, it is linear !, is a branched alkyl group, has a heteroatom! /, A linear or branched silyl group which may have a substituent containing an aromatic ring is shown; the wavy line is as defined above.
  • a Muscon represented by is obtained.
  • solvolysis method As the solvolysis method described above, a commonly known or well-known solvolysis method of enols can be used. As such a method, for example, enol esters and enol carbonates may be reacted in a solvent using a basic catalyst.
  • the basic catalyst used in this solvolysis include, for example, lithium hydroxide, sodium hydroxide, potassium hydroxide, magnesium hydroxide, calcium carbonate, lithium carbonate, sodium carbonate, potassium carbonate.
  • the basic catalyst sodium hydroxide, potassium hydroxide, sodium methoxide, sodium ethoxide and the like are preferable because they are inexpensive, versatile, and have high reaction selectivity and yield. These basic catalysts can be used alone or in combination of two or more However, it is preferable to use one method.
  • enol ethers may be reacted in a solvent using an acidic catalyst.
  • the acidic catalyst used in this solvolysis include hydrofluoric acid, hydrochloric acid, hydrobromic acid, sulfuric acid, phosphoric acid, methanesulfonic acid, p-toluenesulfonic acid, acetic acid, black mouth acetic acid, trifluoroacetic acid, Examples include acidic ion exchange resin.
  • hydrochloric acid, sulfuric acid, p-toluenesulfonic acid and the like are preferable because they are inexpensive, versatile, and have high selectivity and yield. These acidic catalysts can be used singly or in combination of two or more, but the method of using one kind is preferred.
  • silyl enol ethers include a method of reacting in a solvent using the above acidic catalyst, and fluorine compounds such as boron trifluoride and quaternary ammonium salts. .
  • the solvent used in the solvolysis may be any solvent that undergoes solvolysis, such as alcohols such as water, methanol, ethanol, isopropanol, and the like.
  • the mixed solvent is mentioned.
  • methanol and ethanol are preferred because of their low cost, versatility, and high reaction selectivity and yield.
  • a cosolvent may be used as necessary.
  • any solvent that does not participate in the reaction may be used.
  • ether solvents such as jetyl ether, diisopropyl ether, tetrahydrofuran, dimethoxyethane, and dioxane, hexane, heptane, and octane.
  • organic solvents such as aromatic solvents such as benzene, toluene and xylene.
  • the amount of the solvent used is usually 0.5 to 100 times, preferably 1 to 30 times the volume of 1 part by mass of the 3-methyl-1-cyclopentadecene derivative (II).
  • the reaction is usually carried out at a temperature of about 0 to 250 ° C, preferably at a temperature of about 20 to 100 ° C.
  • the reaction is usually carried out for about 10 minutes to 20 hours, preferably about 30 minutes to 10 hours. These conditions can be appropriately changed depending on the amount of solvent or catalyst used.
  • reaction form in the present invention can be carried out either batchwise or continuously.
  • the configuration on the 3-position asymmetric carbon atom in the optically active muscone represented by the formula (I a) is the optically active 3-methyl group represented by the general formula ( ⁇ -a).
  • the configuration of the 1-cyclopentadecene derivative is maintained.
  • the (R) -3-methyl-1-cyclopentadecene derivative is used as the optically active 3-methyl-1-cyclopentadecene derivative represented by the general formula (II-a).
  • the Muscon represented by the formula (I a) can be obtained while maintaining (R) Musconca optical purity. That is, the configuration of the optically active 3-methyl-1-cyclopentadecene derivative is controlled by the configuration of the optically active ligand used during the reaction.
  • the unit of prescription described below means% by mass.
  • This concentrated liquid was distilled (boiling point: 110 ° C., Z50.5 Pa) to obtain 21.4 g (90 mmol) of the title compound in a yield of 97%.
  • the optical purity measured by high performance liquid chromatography was 83% ee.
  • Example 2 The procedure was carried out except that (R) -3-methyl-1-cyclopentadecyl propionate in Example 2 was replaced by (R) -3-methyl-1-cyclopentadecyl acetate obtained in Example 3. Solvent decomposition was performed under the same conditions as in Example 2 to obtain (R) Muscon. The yield was 97%. In addition, the optical purity measured by high performance liquid chromatography was 82% ee.
  • optically active ligand 4 cis 2,6 dimethylbiperidine
  • R -ditetrahydronaphthodioxaphosphepine
  • O dimethylzinc toluene solution
  • optically active ligand 4 cis-2,6-dimethylbiperidine
  • R optically active ligand 4
  • R cis-2,6-dimethylbiperidine
  • R ditetrahydronaphthodioxaphosphepine 45.8 mg (0.10 mmol)
  • Example 6 The crude product synthesized in Example 6 under the same conditions by replacing n-butanoic anhydride in Example 6 with isobutanoic anhydride and 14 g of xylene was isolated and purified by silica gel column chromatography, and the title compound 2.5 g (8.14 mmol), yield 81%. From gas chromatographic analysis, E
  • the optically active ligand of Example 11 was changed to equimolar amount of 4- (cis-2,6 dimethylbiperidine)-(R) -dinaphthodioxaphosphepine (see Patent Document 1), and propionic anhydride
  • Muscon obtained by the production method of the present invention is a compound useful as a fragrance, a pharmaceutical material, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

大環状ケトン類の製造方法およびその中間体
技術分野
[0001] 本発明は、大環状ケトン類であるムスコンの製造方法、特に 2—シクロペンタデセノ ンの 1, 4一共役メチル付加反応によるムスコンの製造方法、及びこの製造に用いられ る新規中間体化合物に関する。
背景技術
[0002] 近年人々の自然志向が高まり、香料に関しても、 自然環境を特徴的にイメージする ような、嗜好性のより高いムスク様香料に関心が集まっている。また、安全性の面から も、天然化合物由来、若しくは天然化合物と同一若しくは類似した新しい香料材料の 開発が強く望まれている。
[0003] ムスコンは、天然じや香の主香成分で、天然じや香には 0. 5-2. 0%含有されてい る。ムスコンは、 1906年に Walbaumによって発見され、 1926年に Ruzickaによって 化学構造が決定された。天然ムスコンは (一) (R)— 3—メチルシクロペンタデカノンで あるが、市販品は合成品で、 dl—体である。(一) (R)—体と(+ ) (S)—体の香気を比 較すると、(R)—体は拡散性のある強いムスク香(閾値: 3ppm)であるのに対して、(S )一体はケミカルで広がりのない貧弱な弱いムスク香(閾値: lOppm)であり、この結果 、匂 、の強度にっ 、ても (R)一体のほうが(S)—体より 3倍強 、ことが知られて 、る(例 えば、下記非特許文献 1及び非特許文献 2参照)。
非特許文献 1:印藤元一著、合成香料 化学と商品知識、化学工業日報社、 1996年 3月 6日発行、 492— 497頁
非特許文献 2 :「合成香料の最新技術」、株式会社シーエムシー、昭和 57年発行、第 72—第 90頁
[0004] このようなこと力 、これまでにムスコン、特に(一)— (R) ムスコンの製造方法の検討 が数多く報告されてきた。その中でも 2—シクロペンタデセノンの 1, 4一共役メチル付 加反応による光学活性ムスコンの製造方法は有望なルートとされ、特に近年、光学 活性配位子を用いた不斉メチルイ匕反応による (一) (R) ムスコンの製造方法が幾つ か報告されている。例えばその例を挙げると、ボルナン骨格を有するアミノアルコー ルキラル補助基を有する化合物を合成時に使用することにより、良好な結果が得られ ることが報告されている(下記非特許文献 3参照)。しかし、報告されたこのキラル補 助基による (一) (R) ムスコンの合成は、反応温度カ 78°Cと極めて低ぐ反応時間 が長くかかり、キラル補助基を 1当量以上の過量で使用しなければならないという短 所を持ち、商用化し難いものである。また、他の例としては、種々のキラルホスファイト 配位子を触媒量で用いて実験を行ったところ、特定の化合物が中でも良力つたことが 報告されている(下記非特許文献 4参照)。しかし、この報告では、溶媒 Z基質比が 約 50倍の非効率な低濃度下でさえ、収率は 53%に留まるもので、満足できるものと はいえない。更に、他の例としては、 4— (シス— 2, 6 ジメチルビペリジン)— (R)—ジナ フトジォキサホスフエピンあるいは 4— (R, R-2, 5—ジフエ-ルビ口リジン)— (R)—ジナ フトジォキサホスフエピンの銅複合体をキラル配位子として用いることにより、高収率 でムスコンを製造できることが記載されている(下記特許文献 1参照)が、この文献で は高濃度で反応を行うことについての開示がない。従来の方法においては、高濃度 で反応を行うと、高分子量の副生成物が生成し満足できる収率が得られな 、と 、う問 題がある。極低温や低濃度、あるいは長時間反応などの反応条件によっては、ムスコ ンの製造コストは高くなる。また、反応収率が低い場合にも製造コストは高くなる。した がって、極低温や低濃度、あるいは長時間反応などの反応条件を必要としないで、 高収率でムスコンを製造するムスコンの経済的製造方法が強く求められている。
[0005] 非特許文献 3 :J. Chem. Soc. Perkin Trans. I, 1193 (1992)
非特許文献 4: Synlett 1999, No. 11, pp. 1181-1183
特許文献 1:韓国公開特許 2001— 49811号公報
発明の開示
発明が解決しょうとする課題
[0006] 本発明は、上記状況に鑑みなされたもので、 2—シクロペンタデセノンの 1, 4一共役 メチル付加反応によるムスコンの製造方法にお!ヽて、極低温や低濃度の反応条件に よることなぐ実用的な条件下において高収率でムスコンを製造する方法を提供する ことを目的とするものである。 課題を解決するための手段
[0007] 本発明者らは、上記課題を解決するために鋭意研究を重ねた結果、 2—シクロペン タデセノンの 1, 4一共役メチル付加反応により生成するエノールァ-オンを、適当な 捕捉剤によりトラップすることで新規なェノール誘導体が形成され、これにより副生成 物の生成を抑制でき、その後定法によりそのェノール誘導体を分解することで、高濃 度下、高収率で目的のムスコンが製造できることを見出し、更に研究を重ねて本発明 を完成した。
[0008] すなわち、本発明は下記 1一 13に記載のとおりのものである。
1. 一般式 (III) :
[0009] [化 19]
Figure imgf000005_0001
[ooio] (式中、波線は二重結合のシス体及び Z又はトランス体であることを示す。 )
で表わされる 2—シクロペンタデセノン類に、銅触媒又はニッケル触媒及びエノールァ 二オン捕捉剤の存在下、メチル化有機金属試薬により、 1, 4一共役付加反応を行い 、一般式 (Π) :
[0011] [化 20]
Figure imgf000005_0002
[0012] (式中、 Rは、ヘテロ原子あるいは芳香環を含む置換基を有してもよい直鎖あるいは 分岐鎖のァシル基、ヘテロ原子あるいは芳香環を含む置換基を有してもよ!、直鎖あ るいは分岐鎖のアルキルォキシカルボ-ル基、ヘテロ原子あるいは芳香環を含む置 換基を有してもょ 、直鎖ある!、は分岐鎖のアルキル基、ヘテロ原子ある!/、は芳香環 を含む置換基を有してもよい直鎖あるいは分岐鎖のシリル基を示し;波線は前記と同 義である。 )
で表わされる 3—メチルー 1ーシクロペンタデセン誘導体を得、次いで、この 3—メチルー 1ーシクロペンタデセン誘導体のエノール部を加溶媒分解することを特徴とする式 (I)
[0013] [化 21]
Figure imgf000006_0001
で表わされるムスコンの製造方法。
2. 一般式 (ΠΙ) :
[化 22]
Figure imgf000006_0002
[0015] (式中、波線は二重結合のシス体及び Z又はトランス体であることを示す。 )
で表わされる 2—シクロペンタデセノン類に、銅触媒又はニッケル触媒、エノールァ- オン捕捉剤及び光学活性配位子の存在下、メチル化有機金属試薬により、 1, 4一共 役付加反応を行い、一般式 (Π - a): [0016] [化 23]
Figure imgf000007_0001
[0017] (式中、 Rは、ヘテロ原子あるいは芳香環を含む置換基を有してもよい直鎖あるいは 分岐鎖のァシル基、ヘテロ原子あるいは芳香環を含む置換基を有してもよ!、直鎖あ るいは分岐鎖のアルキルォキシカルボ-ル基、ヘテロ原子あるいは芳香環を含む置 換基を有してもょ 、直鎖ある!、は分岐鎖のアルキル基、ヘテロ原子ある!/、は芳香環 を含む置換基を有してもよい直鎖あるいは分岐鎖のシリル基を示し; *は、不斉炭素 原子を示し;波線は前記と同義である。 )
で表わされる光学活性 3—メチルー 1ーシクロペンタデセン誘導体を得、次いで、この光 学活性 3—メチルー 1ーシクロペンタデセン誘導体のエノール部を加溶媒分解すること を特徴とする式 (Ii) :
[0018] [化 24]
(卜 a)
Figure imgf000007_0002
で表わされる光学活性ムスコンの製造方法。
[0019] 3. 一般式 (ΠΙ) :
[化 25]
Figure imgf000008_0001
[0020] (式中、波線は二重結合のシス体及び Z又はトランス体であることを示す。 )
で表わされる 2—シクロペンタデセノン類に、銅触媒又はニッケル触媒及びエノールァ ユオン捕捉剤の存在下、メチルイ匕有機金属試薬により、 1, 4一共役付加反応を行うこ とを特徴とする、一般式 (Π) :
[0021] [化 26]
Figure imgf000008_0002
(式中、 Rは、ヘテロ原子あるいは芳香環を含む置換基を有してもよい直鎖あるいは 分岐鎖のァシル基、ヘテロ原子あるいは芳香環を含む置換基を有してもよ!、直鎖あ るいは分岐鎖のアルキルォキシカルボ-ル基、ヘテロ原子あるいは芳香環を含む置 換基を有してもょ 、直鎖ある!、は分岐鎖のアルキル基、ヘテロ原子ある!/、は芳香環 を含む置換基を有してもよい直鎖あるいは分岐鎖のシリル基を示し;波線は前記と同 義である。 )
で表わされる 3—メチルー 1ーシクロペンタデセン誘導体の製造方法。
4. 一般式 (ΠΙ) :
Figure imgf000009_0001
[0023] (式中、波線は二重結合のシス体及び Z又はトランス体であることを示す。 )
で表わされる 2—シクロペンタデセノン類に、銅触媒又はニッケル触媒、エノールァ- オン捕捉剤及び光学活性配位子の存在下、メチル化有機金属試薬により、 1, 4一共 役付加反応を行うことを特徴とする、一般式 (Π - a):
[0024] [化 28]
Figure imgf000009_0002
[0025] (式中、 Rは、ヘテロ原子あるいは芳香環を含む置換基を有してもよい直鎖あるいは 分岐鎖のァシル基、ヘテロ原子あるいは芳香環を含む置換基を有してもよ!、直鎖あ るいは分岐鎖のアルキルォキシカルボ-ル基、ヘテロ原子あるいは芳香環を含む置 換基を有してもょ 、直鎖ある!、は分岐鎖のアルキル基、ヘテロ原子ある!/、は芳香環 を含む置換基を有してもよい直鎖あるいは分岐鎖のシリル基を示し; *は、不斉炭素 原子を示し;波線は前記と同義である。 )
で表わされる光学活性 3—メチルー 1ーシクロペンタデセン誘導体の製造方法。
[0026] 5. 一般式 (Π) :
Figure imgf000010_0001
[0027] (式中、 Rは、ヘテロ原子あるいは芳香環を含む置換基を有してもよい直鎖あるいは 分岐鎖のァシル基、ヘテロ原子あるいは芳香環を含む置換基を有してもよ!、直鎖あ るいは分岐鎖のアルキルォキシカルボ-ル基、ヘテロ原子あるいは芳香環を含む置 換基を有してもょ 、直鎖ある!、は分岐鎖のアルキル基、ヘテロ原子ある!/、は芳香環 を含む置換基を有してもよい直鎖あるいは分岐鎖のシリル基を示し;波線は二重結 合のシス体及び Z又はトランス体であることを示す。 )
で表わされる 3—メチルー 1ーシクロペンタデセン誘導体のエノール部を加溶媒分解す ることを特徴とする式 (I) :
[0028] [化 30]
Figure imgf000010_0002
で表わされるムスコンの製造方法。
6. 一般式 (II a) :
[化 31]
Figure imgf000010_0003
[0030] (式中、 Rは、ヘテロ原子あるいは芳香環を含む置換基を有してもよい直鎖あるいは 分岐鎖のァシル基、ヘテロ原子あるいは芳香環を含む置換基を有してもよ!、直鎖あ るいは分岐鎖のアルキルォキシカルボ-ル基、ヘテロ原子あるいは芳香環を含む置 換基を有してもょ 、直鎖ある!、は分岐鎖のアルキル基、ヘテロ原子ある!/、は芳香環 を含む置換基を有してもよい直鎖あるいは分岐鎖のシリル基を示し; *は、不斉炭素 原子を示し;波線は二重結合のシス体及び Z又はトランス体であることを示す。 ) で表わされる光学活性 3—メチルー 1ーシクロペンタデセン誘導体のエノール部を加溶 媒分解することを特徴とする式 (I a):
[0031] [化 32]
Figure imgf000011_0001
で表わされる光学活性ムスコンの製造方法。
7. 光学活性配位子が一般式 (IV) :
[化 33]
Figure imgf000011_0002
[0033] (式中、 Cは 2個の酸素原子及び燐原子と一緒になつて 2— 4個の炭素原子を持つ 置換された又は置換されて 、な 、環を形成する基を示し、 R1及び R2は夫々独立して 、水素原子、置換されていてもよい鎖状または環状のアルキル、ァリール、アルカノィ ル又はァラルキル基を示す力、又はそれらが結合される窒素原子と一緒になつて複 素環を形成することができる基を示す。 )
で表わされる光学活性配位子であることを特徴とする上記 2又は 4記載の製造方法。 8. 光学活性配位子が一般式 (V) :
[化 34]
Figure imgf000012_0001
[0035] (式中、 Cnは、 2個の酸素原子及び燐原子と一緒になつて 2— 4個の炭素原子を持つ 置換された又は置換されていない環を形成する基を表し、 R3は、水素原子、置換さ れていてもよい鎖状または環状のアルキル、ァリール、アルカノィル又はァラルキル 基を示す。 )
を表わされる光学活性配位子であることを特徴とする上記 2又は 4記載の製造方法。
[0036] 9. 光学活性配位子が 4 (シス 2, 6 ジメチルビペリジン) (R)—ジテトラヒドロナ フトジォキサホスフエピン、 4— (シス— 2, 6 ジメチルビペリジン)— (R)—ジナフトジォキ サホスフエピン、 4一((R, R)-2, 5—ジフエ-ルビ口リジン)— (R)—ジナフトジォキサホ スフエピン、 4一((R, R)— 2, 5—ジフエ-ルビ口リジン)一 (R)—ジテトラヒドロナフトジォ キサホスフエピンであることを特徴とする上記 2又は 4記載の製造方法。
[0037] 10. エノールァ-オン捕捉剤力 次の一般式 (VI) :
R4— X (VI)
(式中、 R4は、ヘテロ原子あるいは芳香環を含む置換基を有してもよい直鎖あるいは 分岐鎖のァシル基、ヘテロ原子あるいは芳香環を含む置換基を有してもよ!、直鎖あ るいは分岐鎖のアルキルォキシカルボ-ル基、ヘテロ原子あるいは芳香環を含む置 換基を有してもょ 、直鎖ある!、は分岐鎖のアルキル基、ヘテロ原子ある!/、は芳香環 を含む置換基を有してもよい直鎖あるいは分岐鎖のシリル基を示し; Xは、ハロゲン 原子、アルキルスルホ-ルォキシ基、ァリールスルホ-ルォキシ基、 OR' (R'は、へ テロ原子ある 、は芳香環を含む置換基を有してもょ 、直鎖ある!、は分岐鎖のァシル 基、ヘテロ原子ある!ヽは芳香環を含む置換基を有してもよ!ヽ直鎖あるいは分岐鎖の アルキルォキシカルボ-ル基を示す。 )を示す。 )
で表わされるエノールァ-オン捕捉剤であることを特徴とする上記 1、 2、 3、 4、 7又は 8記載の製造方法。
[0038] 11. エノールァ-オン捕捉剤力 次の一般式 (VII) :
R5— X (VII)
(式中、 R5は、ヘテロ原子あるいは芳香環を含む置換基を有してもよい直鎖あるいは 分岐鎖のァシル基、ヘテロ原子あるいは芳香環を含む置換基を有してもよ!、直鎖あ るいは分岐鎖のアルキルォキシカルボ-ル基を示し、;Xは、ハロゲン原子、アルキル スルホ-ルォキシ基、ァリールスルホ-ルォキシ基、 OR,(R,は、ヘテロ原子あるい は芳香環を含む置換基を有してもよ!、直鎖あるいは分岐鎖のァシル基、ヘテロ原子 あるいは芳香環を含む置換基を有してもょ 、直鎖あるいは分岐鎖のアルキルォキシ カルボ-ル基を示す。 )を示す。 )
で表わされるエノールァ-オン捕捉剤であることを特徴とする上記 1、 2、 3、 4、 7又は 8記載の製造方法。
[0039] 12. 一般式 (Π) :
[化 35]
Figure imgf000013_0001
[0040] (式中、 Rは、ヘテロ原子あるいは芳香環を含む置換基を有してもよい直鎖あるいは 分岐鎖のァシル基、ヘテロ原子あるいは芳香環を含む置換基を有してもよ!、直鎖あ るいは分岐鎖のアルキルォキシカルボ-ル基、ヘテロ原子あるいは芳香環を含む置 換基を有してもょ 、直鎖ある!、は分岐鎖のアルキル基、ヘテロ原子ある!/、は芳香環 を含む置換基を有してもよい直鎖あるいは分岐鎖のシリル基を示し;波線は二重結 合のシス体及び Z又はトランス体であることを示す。 )
で表わされる 3—メチルー 1ーシクロペンタデセン誘導体。
[0041] 13. 一般式 (Π— a) : [化 36]
Figure imgf000014_0001
[0042] (式中、 Rは、ヘテロ原子あるいは芳香環を含む置換基を有してもよい直鎖あるいは 分岐鎖のァシル基、ヘテロ原子あるいは芳香環を含む置換基を有してもよ!、直鎖あ るいは分岐鎖のアルキルォキシカルボ-ル基、ヘテロ原子あるいは芳香環を含む置 換基を有してもょ 、直鎖ある!、は分岐鎖のアルキル基、ヘテロ原子ある!/、は芳香環 を含む置換基を有してもよい直鎖あるいは分岐鎖のシリル基を示し; *は、不斉炭素 原子を示し;波線は二重結合のシス体及び Z又はトランス体であることを示す。 ) で表わされる光学活性 3—メチルー 1ーシクロペンタデセン誘導体。
発明の効果
[0043] 本発明は、 2—シクロペンタデセノンの 1, 4一共役メチル付加反応により生成するェ ノールァ-オンを捕捉することで新規なェノール誘導体を得ると共に、その後エノー ル部を加溶媒分解することで、高濃度下、高収率で目的とするムスコンを製造するこ とがでさる。
発明の実施するための最良の形態
[0044] 以下に本発明につ 、て詳細に説明する。
本発明では、上記の通り、まず一般式 (III):
[化 37]
Figure imgf000014_0002
[0045] (式中、波線は二重結合のシス体及び Z又はトランス体であることを示す。 ) で表わされる 2—シクロペンタデセノン類に、銅触媒又はニッケル触媒及びエノールァ 二オン捕捉剤の存在下、メチル化有機金属試薬により、 1, 4一共役付加反応を行い 、一般式 (Π) :
[0046] [化 38]
Figure imgf000015_0001
[0047] (式中、 Rは、ヘテロ原子あるいは芳香環を含む置換基を有してもよい直鎖あるいは 分岐鎖のァシル基、ヘテロ原子あるいは芳香環を含む置換基を有してもよ!、直鎖あ るいは分岐鎖のアルキルォキシカルボ-ル基、ヘテロ原子あるいは芳香環を含む置 換基を有してもょ 、直鎖ある!、は分岐鎖のアルキル基、ヘテロ原子ある!/、は芳香環 を含む置換基を有してもよい直鎖あるいは分岐鎖のシリル基を示し;波線は前記と同 義である。 )
で表わされる 3—メチルー 1ーシクロペンタデセン誘導体を得るものである。
[0048] 本反応にお!、て用いられる上記一般式 (III)の 2—シクロペンタデセノン類としては、
(E)— 2—シクロペンタデセノンを挙げることができる力 本反応で用いられる 2—シクロ ペンタデセノン類はこれに限定されるものではなぐ(Z)— 2—シクロペンタデセノンで も、幾何異性体の混合物でもよい。(E)— 2—シクロペンタデセノンは、公知の方法 (例 えば、下記特許文献 2、特許文献 3、非特許文献 5参照)及びこれに準ずる方法によ り製造することができる。本発明においては、 2—シクロペンタデセノン類としては、こ れら公知方法ある 、はこれに準ずる方法によって製造したものを用いてもょ 、し、巿 販品を用いてもよい。
特許文献 2 :特開平 1 321556号公報
特許文献 3:特開 2001— 369422号公報 非特許文献 5 :J. Korean Chem. Soc. , 40, 243 (1996)
[0049] また、本反応にお!ヽて用いられる銅触媒としては、従来 1, 4一共役メチル付加反応 にお 、て用いられて 、る銅触媒の何れをも用いることができる。これら銅触媒を例示 すると、例えば、銅 (Π)トリフレート(Cu (OTf) )、銅 (I)トリフレート(CuOTf)、銅 (Π)
2
ァセチルァセトナート(Cu (acac) )、銅(Π)トリフルォロ酢酸(Cu(OCOCF ) )、酢
2 3 2 酸銅 (II) (Cu (OAc) )、硫酸銅 (II) (CuSO )、塩化銅 (CuCl)、塩化第二銅 (CuCl
2 4
)、臭化銅 (CuBr)、臭化第二銅 (CuBr )、ヨウ化銅 (Cul)、ヨウ化第二銅 (Cul )、
2 2 2 シアン化銅(CuCN)、過塩素酸銅 (CuCIO )、ナフテン酸銅 (Cu (OCOC H ) )、
4 10 9 2 テトラフルォロホウ酸銅 (Π) (Cu (BF ) )、テトラクロ口銅 (Π)ジリチウム(Li CuCl )な
4 2 2 4 どが挙げられ、好ましくは、銅 (Π)トリフレート(Cu (OTf) )、銅 (I)トリフレート(CuOT
2
f)などである。
[0050] また、本反応において用いられるニッケル触媒としては、同じく従来 1, 4一共役メチ ル付加反応にぉ 、て用いられて 、るニッケル触媒の何れをも用いることができる。こ れらニッケル触媒を例示すると、例えば、ニッケルァセチルァセトナー HNi (acac) )
2
、塩化ニッケル(NiCl )、臭化ニッケル(NiBr )、ヨウ化-ッケル(Nil )、酢酸-ッケ
2 2 2
ル Ni (OCOCH )などが挙げられ、好ましくはニッケルァセチルァセトナー HNi (ac
3 2
ac) )、塩化ニッケル (NiCl )などである。
2 2
[0051] また、本反応において用いられるエノールァ-オン捕捉剤としては、次の一般式( VI) :
R4— X (VI)
(式中、 R4は、ヘテロ原子あるいは芳香環を含む置換基を有してもよい直鎖あるいは 分岐鎖のァシル基、ヘテロ原子あるいは芳香環を含む置換基を有してもよ!、直鎖あ るいは分岐鎖のアルキルォキシカルボ-ル基、ヘテロ原子あるいは芳香環を含む置 換基を有してもょ 、直鎖ある!、は分岐鎖のアルキル基、ヘテロ原子ある!/、は芳香環 を含む置換基を有してもよい直鎖あるいは分岐鎖のシリル基を示し; Xは、ハロゲン 原子、アルキルスルホ-ルォキシ基、ァリールスルホ-ルォキシ基、 OR' (R'は、へ テロ原子ある 、は芳香環を含む置換基を有してもょ 、直鎖ある!、は分岐鎖のァシル 基、ヘテロ原子ある!ヽは芳香環を含む置換基を有してもよ!ヽ直鎖あるいは分岐鎖の アルキルォキシカルボ-ル基を示す。)を示す。)
で表されるエノールァ-オン捕捉剤を挙げることができる。
[0052] 上記一般式 (VI)にお 、て、 R4のへテロ原子ある 、は芳香環を含む置換基を有して もよい直鎖あるいは分岐鎖のァシル基としては、例えば、ホルミル基、ァセチル基、ク 口ロアセチル基、ジクロロアセチル基、トリクロロアセチル基、トリフルォロアセチル基、 プロピオ-ル基、プチリル基、イソプチリル基、ビバロイル基、バレリル基、イソバレリル 基、へキサノィル基、オタタノィル基、デカノィル基、ドデカノィル基、ベンゾィル基、 4 —トリオイル基、 4 tert ブチルベンゾィル基、 4—ァ-ソィル基、 4 クロ口ベンゾィル 基、 4一二トロベンゾィル基等の炭素数 1乃至 4の低級アルキル基 (例えば、メチル基、 ェチル基、プロピル基、イソプロピル基、 n ブチル基、イソブチル基、 sec ブチル基 、 tert ブチル基等)、炭素数 1乃至 4の低級アルコキシ基 (例えば、メトキシ基、エト キシ基、プロポキシ基、イソプロポキシ基、 n ブトキシ基、イソブトキシ基、 sec—ブトキ シ基、 tert ブトキシ基等)、ハロゲン原子 (例えば、フッ素原子、塩素原子、臭素原 子、ヨウ素原子等)及び-トロ基等でその水素原子の 1乃至 3個が置換されていてもよ V、ァシル基などが挙げられる。
[0053] また、 R4のへテロ原子あるいは芳香環を含む置換基を有してもよ!、直鎖ある!/ヽは分 岐鎖のアルキルォキシカルボ-ル基としては、例えば、メトキシカルボ-ル基、ェトキ シカルボニル基、プロポキシカルボ-ル基、ブトキシカルボ-ル基、 tert ブトキシカ ルポ-ル基、ァリルォキシカルボ-ル基、ベンジルォキシカルボ-ル基、 p クロ口べ ンジルォキシカルボ-ル基、 p ブロモベンジルォキシカルボ-ル基、 p—メトキシベン ジルォキシカルボ-ル基、 p—二トロべンジルォキシカルボ-ル基等の炭素数 1乃至 の低級アルキル基(例えば、メチル基、ェチル基、プロピル基、イソプロピル基、 n—ブ チル基、イソブチル基、 sec -ブチル基、 tert -ブチル基等)、炭素数 1乃至 4の低級 アルコキシ基 (例えば、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、 n— ブトキシ基、イソブトキシ基、 sec ブトキシ基、 tert ブトキシ基等)、ハロゲン原子 (例 えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子等)及びニトロ基等でその水素 原子の 1乃至 3個が置換されていてもよいアルキルォキシカルボ-ル基などが挙げら れる。 [0054] また、 R4のへテロ原子あるいは芳香環を含む置換基を有してもよ!、直鎖ある!/ヽは分 岐鎖のアルキル基としては、例えば、メチル基、ェチル基、 n プロピル基、イソプロピ ル基、 n -ブチル基、イソブチル基、 sec -ブチル基、 tert -ブチル基、ペンチル基、へ キシル基、ヘプチル基、ォクチル基などの炭素数 1乃至 8のアルキル基等が挙げられ る。
上記アルキル基は、反応に関与しない置換基を有していてよぐここで置換基の具体 例としては、例えば、メチル基、ェチル基、 n プロピル基、イソプロピル基、 n ブチル 基、イソブチル基、 tert ブチル基等の炭素 1乃至 4の低級アルキル基;メトキシ基、 エトキシ基、プロポキシ基、イソプロポキシ基、 n ブトキシ基、イソブトキシ基、 sec—ブ トキシ基、 tert ブトキシ基等の炭素数 1乃至 4の低級アルコキシ基;フッ素原子、塩 素原子、臭素原子、ヨウ素原子等のハロゲン原子及びニトロ基等が挙げられる。
[0055] また、 R4のへテロ原子あるいは芳香環を含む置換基を有してもよ!、直鎖ある!/ヽは分 岐鎖のシリル基としては、例えば、トリメチルシリル基、トリェチルシリル基、トリイソプロ ル(2, 3 ジメチルー 2—ブチル)シリル基、 tert—ブチルジメチルシリル基、ジメチルへ キシルシリル基などのトリー炭素数 1乃至 6アルキルシリル基;例えば、ジメチルクミル シリル基などのジー炭素数 1乃至 5アルキル 炭素数 6乃至 18ァリールシリル基;例え ば、 tert—ブチルジフヱ-ルシリル基、ジフヱ-ルメチルシリル基などのジー炭素数 6 乃至 18ァリ一ルー炭素数 1一 6アルキルシリル基;例えば、トリフエ-ルシリル基などの トリー炭素数 6乃至 18ァリールシリル基;例えば、トリベンジルシリル基、トリー p キシリ ルシリル基などのトリー炭素数 7乃至 19ァラルキルシリル基等のトリ置換シリル基等の シリル基などが挙げられる。
[0056] 本発明にお 、ては、上記 R4のへテロ原子あるいは芳香環を含む置換基を有しても ょ ヽ直鎖あるいは分岐鎖のァシル基、ヘテロ原子ある!、は芳香環を含む置換基を有 してもょ 、直鎖あるいは分岐鎖のアルキルォキシカルボ-ル基、ヘテロ原子あるいは 芳香環を含む置換基を有してもよ!ゝ直鎖ある!ゝは分岐鎖のアルキル基、ヘテロ原子 あるいは芳香環を含む置換基を有してもょ ヽ直鎖あるいは分岐鎖のシリル基の中で は、ヘテロ原子あるいは芳香環を含む置換基を有してもょ 、直鎖あるいは分岐鎖の ァシル基、及び、ヘテロ原子あるいは芳香環を含む置換基を有してもよい直鎖あるい は分岐鎖のアルキルォキシカルボ-ル基が好ましい。
[0057] 本発明にお 、て用いられるエノールァ-オン捕捉剤として好ま 、化合物を例示 すると、例えば、無水酢酸、無水プロピオン酸、無水ブタン酸、無水ペンタン酸、無水 安息香酸などの酸無水物、塩化ァセチル、臭化ァセチル、塩ィヒプロピオ-ル、臭化 プロピオ-ル、塩ィ匕ブチリル、臭化ブチリル、塩ィ匕ペンタノィル、臭化ペンタノィル、塩 化ベンゾィル等の酸ハロゲン化物、ジメチルジカーボネート、ジェチルジカーボネー ト、ジプロピルジカーボネート、ジベンジルジカーボネート等のジカーボネート類、トリ メチルシリルクロリド、トリメチルシリルトリフラートなどを挙げることができ、特に好ましく は、無水酢酸、無水プロピオン酸、無水ブタン酸、無水ペンタン酸、無水安息香酸な どの酸無水物、ジメチルジカーボネート、ジェチルジカーボネート、ジプロピルジカー ボネート、ジベンジルジカーボネート等のジカーボネート類などを挙げることができる
[0058] 本反応にお!、て用いられるメチルイ匕有機金属試薬の例としては、例えばジメチル 亜鉛(ZnMe;)、メチルマグネシウムクロリド、メチルマグネシウムブロミド、メチルマグ
2
ネシゥムョージド、メチルリチウム、トリメチルアルミニウムなどが挙げられ、好ましくは、 ジメチル亜鉛 (ZnMe )などを挙げることができる。
2
[0059] また、本反応において用いられる溶媒は、反応に関与しない不活性な溶媒であれ ばいずれのものでもよぐ例えば、ペンタン、へキサン、ヘプタン等の炭化水素系溶 媒、ベンゼン、トルエン、キシレン、メシチレン等の芳香族系溶媒、ジェチルエーテル 、ジイソプロピルエーテル、メチル tertブチルエーテル、ジブチルエーテル、シクロべ ンチルメチルエーテル、 1, 2—ジメトキシェタン、テトラヒドロフラン、 1, 4 ジォキサン 、 1, 3—ジォキソラン等のエーテル系溶媒、酢酸メチル、酢酸ェチル、酢酸ブチル等 のエステル系溶媒、塩化メチレン、ジクロロェタン、クロ口ベンゼン等のハロゲン系溶 媒などの有機溶媒或いはそれら溶媒の 2種以上の混合溶媒が好適なものとして挙げ られる。これらの中でも、ペンタン、へキサン、ヘプタン等の炭化水素系溶媒、ベンゼ ン、トルエン、キシレン、メシチレン等の芳香族系溶媒、ジェチルエーテル、ジィソプ 口ピノレエーテノレ、メチノレ tertブチノレエーテノレ、ジブチノレエーテノレ、シクロペンチノレメ チルエーテル、 l, 2—ジメトキシェタン、テトラヒドロフラン、 1, 4 ジォキサン、 1, 3- ジォキソラン等のエーテル系溶媒が好ましい。溶媒の使用量は、一般式 (III)で示さ れる 2—シクロペンタデセノン類 1重量部に対し、通常 1一 200倍容量、好ましくは 5— 100倍容量、特に好ましくは、 10— 50倍容量である。
[0060] 本反応にお!ヽては、銅触媒及びニッケル触媒は、 2—シクロペンタデセノン類 (III) 1 モルに対し、通常 0. 1— 20モル0 /0程度、好ましくは 1. 0— 10モル0 /0程度の量で用 いられる。また、エノールァ-オン捕捉剤は、 2—シクロペンタデセノン類(III) 1モルに 対し、通常 1. 0-5. 0モル程度、好ましくは 1. 2-3. 0モル程度の量で用いられる。 更に、メチルイ匕有機金属試薬は、 2—シクロペンタデセノン類 (III) 1モルに対し、通常 1. 0—5. 0モル、好ましくは 1. 2—3. 0モルの量で用いられる。
[0061] 更に、本反応は、通常窒素ガスあるいはアルゴンガス等の不活性ガス雰囲気下で 行われる。また、本反応は、通常— 80— 50°C程度の温度、好ましくは、 30— 30°C 程度の温度で、通常 10分から 20時間程度、好ましくは、 30分から 10時間程度の時 間行われ、反応を終了するが、これらの条件は使用される反応物質や銅化合物など の量により適宜変更され得る。
[0062] また、本反応においてラセミ体の 3—メチルーシクロペンタデセン誘導体を得る場合 には、反応をより円滑に進行させるために、必要に応じてトリフエニルホスフィン、トリ ブチルホスフィン、トリー tertブチルホスフィン、トリフエ-ルホスフアイト、トリェチルホス ファイト等のリン系配位子を添加することができる。これらは銅触媒及びニッケル触媒 1モルに対し、通常 1一 10モル当量程度、好ましくは 1. 5— 5モル当量程度の量で用 いられる。
[0063] 反応終了後は通常の後処理を行なうことにより、また必要に応じ蒸留、再結晶ある いはカラムクロマトグラフィー等の方法を用いて、 目的物を単離することができる。
[0064] 本発明では、前記一般式 (III)で表される 2—シクロペンタデセノン類力 一般式 (II) で表わされる 3—メチルー 1ーシクロペンタデセン誘導体を製造する方法にぉ ヽて、光 学活性配位子の存在下で反応を行うことにより、一般式 (Π— a): [0065] [化 39]
Figure imgf000021_0001
[0066] (式中、 Rは、ヘテロ原子あるいは芳香環を含む置換基を有してもよい直鎖あるいは 分岐鎖のァシル基、ヘテロ原子あるいは芳香環を含む置換基を有してもよ!、直鎖あ るいは分岐鎖のアルキルォキシカルボ-ル基、ヘテロ原子あるいは芳香環を含む置 換基を有してもょ 、直鎖ある!、は分岐鎖のアルキル基、ヘテロ原子ある!/、は芳香環 を含む置換基を有してもよい直鎖あるいは分岐鎖のシリル基を示し; *は、不斉炭素 原子を示し;波線は二重結合のシス体及び Z又はトランス体であることを示す。 ) で表わされる光学活性 3—メチルー 1ーシクロペンタデセン誘導体を得ることができる。
[0067] ここで、光学活性配位子としては、目的とする光学活性 3—メチルー 1ーシクロペンタ デセン (II)を得られるものであれば特に制限されるものではな 、。本発明にお 、て用 いられる光学活性配位子としては、例えば、一般式 (IV):
[化 40]
Figure imgf000021_0002
[0068] (式中、 Cは 2個の酸素原子及び燐原子と一緒になつて 2— 4個の炭素原子を持つ 置換された又は置換されて 、な 、環を形成する基を示し、 R1及び R2は夫々独立して 、水素原子、置換されていてもよい鎖状または環状のアルキル、ァリール、アルカノィ ル又はァラルキル基を示す力、又はそれらが結合される窒素原子と一緒になつて複 素環を形成することができる基を示す。 )
で表わされる光学活性配位子、あるいは、一般式 (V): [0069] [化 41]
Figure imgf000022_0001
[0070] (ここで、 Cnは前記と同義であり、 R3は、水素原子、置換されていてもよい鎖状または 環状のアルキル、ァリール、アルカノィル又はァラルキル基を示す。)
などで表わされる光学活性配位子を例示することができる。
[0071] 一般式 (IV)及び一般式 (V)の光学活性配位子にお!ヽて、 C及び Z又は R1及び Z又は R2及び Z又は R3は、光学活性であるか、又は光学活性構成要素の一部であ る。 Cは好ましくは、例えば、 95%より大きい、とりわけ 99%より大きい、よりとりわけ 9 9. 5%より大きい鏡像体過剰率を持つ、支配的に一つの立体配置のキラル置換され i c鎖 (4個の任意的に置換されていてもよい C原子を持つ鎖)を示す。好ましくは C
4
は二つの O原子及び P原子と一緒になつて 4個の C原子を持つ 7員環を形成し、力 っ該 4個の C原子は 2個ずつでァリール基又はナフチル基の一部を形成するもので ある。本発明で好適に用いられる光学活性配位子である上記一般式 (IV)で表される 光学活性配位子の例としては、例えば次のものが挙げられる。しかし、一般式 (IV)で 表される光学活性配位子がこれら具体的に例示されたものに限られるものではない ことは勿論である。また、それぞれの鏡像体関係の構造も含まれ、目的物の光学活 性により適時選択されるものである。
[0072] [化 42]
Figure imgf000023_0001
Figure imgf000023_0002
Figure imgf000023_0003
5 6
[0073] [化 43]
Figure imgf000023_0004
2a 7
( \ R2 は上記を参照;)
Figure imgf000023_0005
(R\ R2は上記を参照) (R\ R2 は上記を参照;) [0074] [化 44]
Figure imgf000024_0001
o
Figure imgf000024_0002
12 13
Figure imgf000024_0003
Figure imgf000024_0004
18 19
(R1, j は上記を参照) [0075] [化 45]
Figure imgf000025_0001
27
(R1, R2 は上記を参照;!
[0076] [化 46]
Figure imgf000026_0001
R : He, ΟΜθ, S i e3, Br
[0077] また、本発明で好適に用いられる光学活性配位子である一般式 (V)の具体例として は、上記にて一般式 (IV)で示される化合物の例として挙げられた配位子化合物中の NR 2部位を、 OR3部位に置換した化合物が挙げられる。一般式 (V)で示される光 学活性配位子を例示すると、例えば下記のものが挙げられる。しかし、一般式 (V)で 示される光学活性配位子がこれら具体的に例示されたものに限られるものではない ことは勿論である。また、それぞれの鏡像体関係の構造も含まれ、目的物の光学活 性により適時選択されるものである。
Figure imgf000027_0001
[0079] 一般式 (IV)及び一般式 (V)を有する光学活性配位子は、公知製造法 (例えば、下 記非特許文献 6参照)により簡単に製造することができる。
非特許文献 6: Houben— Weyl Methoden der Organischen Chemie Band XII/ 2. Organische pho sphorverbindungen . G. Tnieme Verlag、 Stu ttgart、 1964年、第 2部(第 4版)、第 99一 105頁
[0080] 上記非特許文献 6に記載された第一の好ま 、製造方法は、 HO— Cn— OH化合物 を、 P (NMe ) 又は P (NEt ) (Me=メチルであり、 Et =ェチルである)と反応させ、
2 3 2 3
次いで、好ましくは、 80°Cより高い沸点を有する溶媒、例えばトルエン中で、 RXR2N H又は R3OHと反応させる方法である。後者の反応のために適切な触媒の例として は、塩ィ匕アンモ-ゥム、テトラゾール又はべンゾイミダゾリゥムトリフレートが挙げられる 。 HO— C— OHの例としては、キラルビスナフトール、例えば、(R) または(S)— 1, 1 ,—ビー(2 ナフトール);キラルビスフエノール、例えば、(R) または(S)— 6, 6,—ジメ トキシー 2, 2,一ビスフエノール;ジオール、例えば、(R, R) または(S, S)— 2, 2,ージ メチルー 1, 3—ジォキソラン 4, 5 ビス一(1, 1ージフエ-ル)メタノール (TADDOL) または(S, R) または(R, S) インダン 1, 2—ジオール;糖に基づいた 1, 2—ジォ ール及び 1, 3 -ジオール、例えば、下記式 [0081] [化 48]
Figure imgf000028_0001
を有するジオールが挙げられる。
[0082] Κ 2ΝΗの例としては、例えば、ベンジルァミン、ジベンジルァミン、ジイソプロピノレ ァミン、ジシクロへキシルァミン、 2, 2, 6, 6—テトラメチルピペリジン、(R)—又は(S)— 1ーメチルーベンジルァミン、ピぺリジン、シス— 2, 6 ジメチルビペリジン、(R, R) ま たは , S)— 2, 5—ジフエ-ルビ口リジン、(R, R) または(S, S)— 3, 4—ジフエ-ル ピロリジン、モルホリン、(R, R)—又は(S, S) ビス—(1 メチルベンジル)ァミン等が 挙げられる。
[0083] R3OHの例としては、(IS, 2R) または(IS, 2S)—または(1R, 2R) または(1R , 2R)— 2—フエ-ルシクロへキサノール、(IS, 2R)—または(IS, 2S)—または(1R, 2R)—または(1R, 2R)— 2— (1—ナフチル)シクロへキサノール、(IS, 2R)—または( IS, 2S)—または(1R, 2R)—または(1R, 2R)— 2— (2—ナフチル)シクロへキサノー ル、卜または d メントール、 1 または d イソプレゴール、(R) または(S)— 1 フエ- ルエタノール、 tert—ブタノール、フェンコール、ボルネオール、(S)または(R)— 2—ヒ ドロキシジメチルー 4 tertブチルー 1 , 3—才キサゾリン、(S)または(R)—2—ヒドロキシ ジメチルー 4 イソプロピル 1 , 3—ォキサゾリン等が挙げられる。
[0084] また、光学活性配位子は、他の公知製造方法 (例えば、下記非特許文献 7及び 8参 照)によっても簡単に製造することができる。この第二の好ましい製造法は、 HO— C OH化合物を PC1と塩基、例えば、 Et Nの存在下に反応させ、続いて、溶媒、例
3 3
えば、トルエンの存在下に I^I^NUまたは、塩基、例えば、 Et Nの存在下に R 2N
3
Hまたは R3OHと反応させるものである。 HO— C ΟΗ、 Κ 2ΝΗおよび R3OHの例 は、上記第一の好ましい製造法において示されたものと原則同じである。
非特許文献 7 : Tetrahedron, 56, 2865 (2000) 非特許文献 8 : Tetrahedron Asymmetry, 9, 1179 (1998)
[0085] 光学活性配位子は、更に他の公知製造方法 (例えば、下記非特許文献 9及び 10 参照)によっても簡単に製造することができる。この第三の好ましい製造法は、 R 2N Li、 Ι^ 2ΝΗまたは R3OHを PCIと反応させ、続いて、好ましくは、塩基、例えば、 Et
3
Nの存在下に、かつ溶媒、例えば、トルエンの存在下に HO— C OH化合物と反応
3 n
させるものである。 HO— C ΟΗ、 Ι^Ι^ΝΗおよび R3OHの例は、上記第一の好まし
V、製造にぉ 、て示されたものと原則同じである。
非特許文献 9 :J. Org. Chem. , 58, 7313 (1993)
非特許文献 10 : Tetrahedron Asymmetry, 13, 801 (2002)
[0086] 前記反応にお!、て、一般式 (IV)または一般式 (V)で表される光学活性配位子は、 2—シクロペンタデセノン類(III) 1モルに対し、通常 0. 1— 20モル0 /0程度、好ましくは 1. 0— 10モル0 /0程度の量で用いられる。
[0087] 前記したエノールァ-オン捕捉反応で得られる 3—メチルー 1ーシクロペンタデセン誘 導体 (II)は、従来知られていない新規な化合物であり、安定で通常油状または粉末 状を呈し、保存可能である。そのため前記エノールァ-オン捕捉反応で得られる 3— メチル -1-シクロペンタデセン誘導体 (II)は、例えば、蒸留、再結晶、カラムクロマト グラフィー処理によって精製する力、または精製処理を行わずに保存しておき、次ェ 程の製造時に保存容器から取り出して用いてもよ!、。
[0088] なお、一般式 (II)で表される化合物の具体例としては、例えば次のものが挙げられ る。しかし、これらは単に例示として挙げられているにすぎないもので、上記一般式 (II
)で表される化合物が下記のものに限られるものではない。
[0089] (エノールエステル類)
3—メチルー 1ーシクロペンタデセ-ル フォーメート、 3—メチルー 1ーシクロペンタデセ -ル アセテート、 3—メチルー 1ーシクロペンタデセ-ル プロピオネート、 3—メチルー 1 ーシクロペンタデセ-ル ブチレート、 3—メチルー 1ーシクロペンタデセ-ル イソブチレ ート、 3—メチルー 1ーシクロペンタデセ-ル sec—ブチレート、 3—メチルー 1ーシクロべ ンタデセ-ル tert—ブチレート、 3—メチルー 1—シクロペンタデセ-ル バレレート、 3 ーメチルー 1ーシクロペンタデセ-ル イソバレレート、 3—メチルー 1ーシクロペンタデセ -ル へキサノエート、 3—メチルー 1ーシクロペンタデセ-ル ヘプタノエート、 3—メチ ルー 1ーシクロペンタデセ-ル オタタノエート、 3—メチルー 1ーシクロペンタデセ-ル ノナネート、 3—メチルー 1ーシクロペンタデセ-ル デカノエート、 3—メチルー 1ーシクロ ペンタデセ-ル ゥンデカノエート、 3—メチルー 1ーシクロペンタデセ-ル ドデカノエ ート、 3—メチルー 1ーシクロペンタデセ-ル ベンゾエート、 3—メチルー 1—シクロペンタ デセニル クロ口アセテート、 3—メチルー 1—シクロペンタデセ-ル フエノキシァセテ ート。
[0090] (エノールカーボネート類)
3—メチルー 1ーシクロペンタデセ-ル メチルカーボネート、 3—メチルー 1ーシクロペン タデセ-ル ェチルカーボネート、 3—メチルー 1ーシクロペンタデセ-ル tert—ブチル カーボネート、 3—メチルー 1ーシクロペンタデセ-ル ベンジルカーボネート。
[0091] (エノールエーテル類)
3—メチルー 1ーシクロペンタデセニル メチルエーテル、 3—メチルー 1ーシクロペンタ デセニノレ ェチノレエーテノレ、 3—メチノレー 1ーシクロペンタデセ二ノレ プロピノレエーテノレ 、 3—メチルー 1ーシクロペンタデセ-ル イソプロピルエーテル、 3—メチルー 1ーシクロぺ ンタデセニル ブチルエーテル、 3—メチルー 1ーシクロペンタデセニル イソブチルェ 一テル、 3—メチルー 1ーシクロペンタデセ-ル ベンジルエーテル。
[0092] (シリルエノールエーテル類)
3—メチルー 1ーシクロペンタデセニル トリメチルシリルエーテル、 3—メチルー 1ーシク 口ペンタデセ-ル トリェチルシリルエーテル、 3—メチルー 1ーシクロペンタデセ-ル t ert—ブチノレジェチノレシリノレエーテノレ。
[0093] 上記化合物の例示にお!、ては幾何異性体および光学異性体につ!、て示されて!/ヽ ないが、(E)—体、(Z)—体および (E)—体と (Z)—体の混合物ならびに (R)—体、 (S) 一体および (R)—体と(S)—体の混合物についても上記と同様のものが挙げられる。
[0094] 本反応にお!、て、一般式 (Π)で表される 3—メチルー 1ーシクロペンタデセン誘導体に おける幾何異性の立体配置は、一般式 (III)で表される 2—シクロペンタデセン類の幾 何異性の立体配置により制御され、例えば、一般式 (III)で表される 2—シクロペンタ デセンとして (E)—体を使用した場合は、一般式 (Π)で表される 3-メチル -1-シクロ ペンタデセン誘導体としては (Z)— 3—メチルー 1ーシクロペンタデセン誘導体が主生成 物として得られる。
[0095] 本反応にお!ヽて、光学活性配位子の存在下に得られる、一般式 (Π— a)で表される 光学活性 3—メチルー 1ーシクロペンタデセン誘導体における 3—位の不斉炭素原子上 の立体配置は、反応中で使用する光学活性配位子の立体により制御される。
例えば、光学活性配位子として、式:
[0096] [化 49]
Figure imgf000031_0001
[0097] で表される 4— (シス— 2, 6—ジメチルビペリジン)— (R)—ジテトラヒドロナフトジォキサホ スフエピンが好ましいものとして挙げられる力 これを使用した場合、一般式 (Πι)で 表される光学活性 3—メチルー 1ーシクロペンタデセン誘導体として、(R)—3—メチルー 1 ーシクロペンタデセン誘導体が得られる。また、他の好ましい光学活性配位子の例と して、 4— (シス— 2, 6—ジメチルビペリジン)— (R)—ジナフトジォキサホスフエピン、 4— ( (R, R)-2, 5—ジフエ-ルビ口リジン)— (R)—ジナフトジォキサホスフエピン、 4一((R, R)—2, 5—ジフエ-ルビ口リジン)― (R)—ジテトラヒドロナフトジォキサホスフエピン等も 挙げられるが、これらを使用した際にも同様の結果が得られる。
[0098] 本発明では、次に一般式 (II):
[化 50]
Figure imgf000031_0002
(式中、 Rは、ヘテロ原子あるいは芳香環を含む置換基を有してもよい直鎖あるいは 分岐鎖のァシル基、ヘテロ原子あるいは芳香環を含む置換基を有してもよ!、直鎖あ るいは分岐鎖のアルキルォキシカルボ-ル基、ヘテロ原子あるいは芳香環を含む置 換基を有してもょ 、直鎖ある!、は分岐鎖のアルキル基、ヘテロ原子ある!/、は芳香環 を含む置換基を有してもよい直鎖あるいは分岐鎖のシリル基を示し;波線は前記と同 義である。 )
で表わされる 3—メチルー 1ーシクロペンタデセン誘導体のエノール部を加溶媒分解さ せることにより、式 (I) :
[0099] [化 51]
Figure imgf000032_0001
で表わされるムスコンが得られる。
[0100] 上記加溶媒分解の方法としては、通常の公知あるいは周知のェノール類の加溶媒 分解法を使用することができる。このような方法としては、例えば、ェノールエステル 類やエノールカーボネート類では、塩基性触媒を用いて溶媒中で反応させる方法が 挙げられる。本加溶媒分解において用いられる塩基性触媒としては、例えば、水酸 ィ匕リチウム、水酸化ナトリウム、水酸ィ匕カリウム、水酸化マグネシウム、水酸ィ匕カルシゥ ム、炭酸リチウム、炭酸ナトリム、炭酸カリウム、炭酸マグネシウム、炭酸カルシウム、 炭酸水素リチウム、炭酸水素ナトリウム、炭酸水素カリウム、リチウムアルコキシド (リチ ゥムメトキシド、リチウムエトキシド、リチウム tert—ブトキシド、など)、ナトリウムアルコキ シド (ナトリウムメトキシド、ナトリウムエトキシド、ナトリウム tert—ブトキシド、など)、カリ ゥムアルコキシド(カリウムメトキシド、カリウムエトキシド、カリウム tert—ブトキシド、など )などが挙げられる。塩基性触媒としては、水酸化ナトリウム、水酸ィ匕カリウム、ナトリウ ムメトキシド、ナトリウムエトキシドなどが安価でし力も汎用性があり、反応の選択性お よび収率も高いことから好ましい。これらの塩基性触媒は、 1種または 2種以上を混合 して使用することができるが、 1種で使用する方法が好ましい。
[0101] また、例えば、ェノールエーテル類では、酸性触媒を用いて溶媒中で反応させる方 法が挙げられる。本加溶媒分解において用いられる酸性触媒としては、例えば、フッ 化水素酸、塩酸、臭化水素酸、硫酸、リン酸、メタンスルホン酸、 p—トルエンスルホン 酸、酢酸、クロ口酢酸、トリフルォロ酢酸、酸性イオン交換榭脂などが挙げられる。好 ましい酸性触媒としては、塩酸、硫酸、 p—トルエンスルホン酸などが安価でし力も汎 用性があり、反応の選択性および収率も高いことから好ましい。これらの酸性触媒は 1種または 2種以上を混合して使用することができるが、 1種で使用する方法が好まし い。
[0102] さらに、例えば、シリルエノールエーテル類では、上記酸性触媒を用いて溶媒中で 反応させる方法などが挙げられる他、三フッ化ホウ素、フッ化四級アンモニゥム塩など のフッ素系化合物が挙げられる。
[0103] また、加溶媒分解の際に使用される溶媒は、加溶媒分解が進行する溶媒であれば 何れのものでもよぐ例えば、水、メタノール、エタノール、イソプロパノールなどのァ ルコール類等およびこれらの混合溶媒が挙げられる。なかでもメタノールおよびエタ ノールが安価でし力も汎用性があり、反応の選択性および収率も高いことから好まし い。
さらに、必要に応じ助溶媒が使用されてもよい。助溶媒としては、反応に関与しない 溶媒であれば何れのものを用いてもよぐ例えば、ジェチルエーテル、ジイソプロピル エーテル、テトラヒドロフラン、ジメトキシェタン、ジォキサン等のエーテル系溶媒、へ キサン、ヘプタン、オクタン等の炭化水素系溶媒、ベンゼン、トルエン、キシレン等芳 香族系溶媒等の有機溶媒が挙げられる。
[0104] 溶媒の使用量は、 3—メチルー 1ーシクロペンタデセン誘導体 (II) 1質量部に対し、通 常 0. 5— 100倍容量、好ましくは 1一 30倍容量である。また、反応は通常、 0— 250 °C程度の温度、好ましくは、 20— 100°C程度の温度で行われ、通常 10分一 20時間 程度、好ましくは 30分から 10時間程度の時間反応させることにより終了する力 これ らの条件は使用する溶媒や触媒などの量により適宜変更され得る。
[0105] 反応終了後は通常の後処理を行うことにより、必要に応じて蒸留やカラムクロマトグ ラフィ一等の方法を用いて、目的物を単離することができる。また、本発明における反 応形式は、バッチ式においても連続的においても実施することができる。
[0106] これまで、一般式 (II)で表される 3—メチルー 1ーシクロペンタデセン誘導体のエノー ル部の加溶媒分解について詳しく述べたが、触媒、溶媒、反応の条件などは、一般 式 (Π— a)で表される光学活性 3—メチルー 1ーシクロペンタデセン誘導体に関しても同 様である。すなわち、上記と同様にして、一般式 (Π— a)で表される光学活性 3—メチル - 1 -シクロペンタデセン誘導体を加溶媒分解することにより、式 (I - a)で表される光 学活性ムスコンを製造することができる。
[0107] 本反応において、式 (I a)で表される光学活性ムスコンにおける 3—位の不斉炭素 原子上の立体配置は、一般式 (Π— a)で表される光学活性 3—メチルー 1ーシクロペンタ デセン誘導体の立体配置が維持され、例えば、一般式 (II - a)で表される光学活性 3 ーメチルー 1—シクロペンタデセン誘導体として(R)—3—メチルー 1—シクロペンタデセン 誘導体を使用した場合、式 (I a)で表されるムスコンとしては (R) ムスコンカ 光学 純度を保持して得られる。すなわち、光学活性 3—メチルー 1ーシクロペンタデセン誘導 体の立体配置は反応中使用される光学活性配位子の立体により制御されるのである 実施例
[0108] 以下、本発明を実施例及び比較例を用いて具体的に説明するが、本発明は、これ らにより何ら限定されるものではなぐまた、本発明の範囲を逸脱しない範囲で変化さ せてもよい。
なお、下記に記載する処方の単位は特に言及しない限り、%は質量%を意味する ものとする。
[0109] 本実施例および比較例中での分析においては、次の分析機器を用いて分析が行 われた。
.-,
機器: P-1020 (日本分光工業株式会社製)
プロトン核磁気共鳴スペクトル (¾ NMR):
機器: DRX - 500型装置 (ブルカー社製) 内部標準物質:テトラメチルシラン
赤外吸収スペクトル (IR):
機器: Nicolet AVATAR 360FT— IR (ニコレジャパン株式会社製) 質量スペクトル(MS):
機器: GCMS-QP2010 (株式会社島津製作所製)
ガスクロマトグラフィー:
機器: GC-14A (株式会社島津製作所製)
カラム: Rtx—1(0.25mm X 60m) (RESTEK社製)
高谏液体クロマトグラフィー (HPLC):
機器: Waters2695 (日本ウォーターズ株式会社製)
カラム: CHIRALPAK™ AS— H(0.25cm X 25cm) (ダイセル化学工業株式 会社)、
[0110] 「実施例 1Ί (R)— 3—メチル -1-シクロペンタデセニル プロピオネートの合成
窒素雰囲気下、 1000ml反応フラスコに、光学活性配位子 4- (シス- 2, 6-ジメチ ルビペリジン)— (R)—ジテトラヒドロナフトジォキサホスフエピン 1.32g(2.9mmol)、 Cu (OTf) 0.47g(l.3mmol)、ジメチル亜鉛トルエン溶液(2. Omol/1) 115ml
2
(230mmol)、キシレン 524gを入れ、— 20°Cに冷却した。その後、無水プロピオン酸 20.6g(158mmol)と(2E)—シクロペンタデセノン 32g (144mmol)を 3時間かけて 滴下した。滴下終了後、 4時間攪拌を続けガスクロマトグラフィーにて反応の終了を 確認した。反応終了後 5%硫酸水溶液で反応を停止し、分液後反応溶液を水洗後、 溶媒を減圧除去し、粗生成物 43.2gを得た。この濃縮液を蒸留 (沸点 112°CZ39. 9Pa)することにより、表題ィ匕合物を 39.4g(134mmol)、収率 93%で得た。ガスクロ マトグラフィ一の分析から、 E/Z=l.0/99.0であった。
[0111] 1H—NMR (500MHz, CDC1 , δ): 0.90 (3Η, d, J=12.5Hz), 1.07—1.
3
15 (2H, m), 1.20 (3H, t, J = 7.6Hz), 1.26—1.40(15H, m), 2.14—2. 1 6(1H, m), 2.30—2.39 (2H, m), 2.40 (2H, q, J = 7.6Hz), 4.77(1H, d, J = 9.6Hz)
MS m/z: 293 (M+5), 265(3), 238(90), 220(30), 209(27), 195(13), 180(11), 158(7), 142(7), 125(38), 117(28), 97(60), 84(55), 69(62) , 57(100), 41(37)
IR v (cm—1): 2926, 2856, 1152
max
[a] =79.2。 (c=l.0(CHC1中))
D 3
[0112] 「実施例 2Ί (R)—ムスコンの合成
200mlナスフラスコに、実施例 1で得た (R)— 3—メチルー 1ーシクロペンタデセ-ル プ 口ピオネート 27.3g(93mmol)、トルエン 54.6gを入れ、攪拌した。 20°Cにてナトリ ゥムメトキシド-メタノール 28%溶液 17.9g(93mmol)を滴下後、 1時間攪拌を続け ガスクロマトグラフィーにて反応の終了を確認した。反応終了後 5%硫酸水溶液で反 応を停止し、分液後反応溶液を水洗した後、溶媒を減圧除去し粗 (R) -ムスコン 29. 4gを得た。この濃縮液を蒸留(沸点 110°CZ50.5Pa)し、表題ィ匕合物を 21.4g(90 mmol)、収率 97%で得た。高速液体クロマトグラフィにて光学純度を測定した結果、 83%eeであった。
[0113] 「実施例 3Ί (R)— 3—メチル -1-シクロペンタデセ-ル アセテートの合成
窒素雰囲気下、 2000ml反応フラスコに、光学活性配位子 4- (シス- 2, 6—ジメチ ルビペリジン)— (R)—ジテトラヒドロナフトジォキサホスフエピン 3.30g(7.25mmol) 、 Cu(OTf) 1.31g(3.62mmol)、ジメチル亜鉛トルエン溶液(2.0mol/l)217
2
ml(0.43mol)、トルエン 1420gを入れ攪拌した。— 20。C下無水酢酸 37.0g(0.36 mol)を加えた後、(2E)—シクロペンタデセノン 79.8g(0.36mol)を 1時間かけて滴 下した。滴下終了後、 6時間攪拌を続け、ガスクロマトグラフィーにて反応の終了を確 認した。反応終了後 5%硫酸水溶液で反応を停止し、分液後反応溶液を水洗した後 、溶媒を減圧除去し、粗生成物 152gを得た。この濃縮液を蒸留 (沸点 103°CZ0.3 mmHg)することにより、表題ィ匕合物を 94.8g(0.34mol)、収率 94%で得た。ガス クロマトグラフィーの分析から、 E/Z = 0.3/99.7であった。
[0114] 'H-NMR (500MHz, CDC1 , δ): 0.93 (3Η, d, J = 6.8Hz), 1.07—1.1
3
5(2H, m), 1.20—1.60(20H, m), 2.15—2.18(1H, m), 2.16 (3H, s), 2 .28—2.40 (2H, m), 4.79(1H, d, J = 9.6Hz)
MS m/z: 280 (M+3), 265(3), 238(100), 220(30), 209(25), 195(18) , 180(10), 156(9), 142(9), 125(48), 112(30), 97(85), 84(72), 69(98 ), 55(60), 43(82)
IR v (cm—1): 2927, 2856, 1755, 1458, 1214
max
[a] =82.2。 (c = l.0(CHC1中))
D 3
[0115] 「実施例 4Ί (R) ムスコンの合成
実施例 2の(R)— 3—メチルー 1ーシクロペンタデセ-ル プロピオネートを、実施例 3 で得た (R)— 3—メチルー 1ーシクロペンタデセ-ル アセテートに替えることを除き実施 例 2と同条件下に加溶媒分解して、(R) ムスコンを得た。収率は 97%であった。また 、高速液体クロマトグラフィにて光学純度を測定した結果、 82%eeであった。
[0116] 「実施例 5Ί (R)— 3—メチルー 1ーシクロペンタデセニル アセテートおよび (R)—ムスコ ンの合成
窒素雰囲気下、 30ml反応フラスコに、光学活性配位子 4 (シス 2, 6 ジメチルビ ペリジン)一 (R)—ジテトラヒドロナフトジォキサホスフエピン 55mg(0.121mmol)、 Cu (OTf) 14.5mg(0.04mmol)、ジメチル亜鉛トルエン溶液(1.88mol/l) 2.55
2
ml (4.8mmol)、トルエン 5mlを入れ、—20°Cに冷却した。その後、無水酢酸 410m g (4mmol)と(2E)—シクロペンタデセノン 889mg (4mmol)及びトルエン 5mlの混 合液を 5分間で滴下し、さらに 4時間攪拌を続けガスクロマトグラフィーにて反応の終 了を確認した。反応終了後 5%硫酸水溶液で反応を停止し、(R)— 3—メチルー 1ーシ クロペンタデセ-ル アセテートの粗生成物 1.2gを得た。
得られた混合物をナトリウムメトキシドーメタノール 28%溶液で加溶媒分解することに より、 0.88g(3.7mmol)、収率 92%で (R)—ムスコンを得た。
[0117] 「比較例 1Ί (R) ムスコンの合成
実施例 5での無水酢酸を使用せずに、他は同様の条件で反応させることにより、直 接 (R) ムスコンを合成した。収率は 53%であった。
[0118] 実施例 5及び比較例 1より、エノールァ-オン捕捉剤である無水酢酸を添加物とし て加えて反応させ、ェノール体である 3—メチルー 1ーシクロペンタデセン誘導体 (II)を 経由してムスコンを合成することにより、収率が明らかに向上した。
[0119] [実施例6] 1£}—3—メチルー 1ーシクロペンタぞセ-ル ブチレー よび iR)_ ムスコ ンの合成
100ml反応フラスコに、光学活性配位子 4 (シス— 2, 6—ジメチルビペリジン) (R) —ジテトラヒドロナフトジォキサホスフエピン 45.8mg(0.10mmol)、 Cu(OTf) 16
2
.4mg(0.045mmmol)、ジメチル亜鉛トルエン溶液(2.0mol/l)8. Oml (16mm ol)、キシレン 36gを入れ攪拌した。 20°C下無水 n ブタン酸 1.7g(llmmol)をカロ え、(2E)—シクロペンタデセノン 2.2g(10mmol)を 1時間かけて滴下した。滴下終 了後、 4時間攪拌を続けた。ガスクロマトグラフィーにて反応の終了を確認した。反応 終了後 5%硫酸水溶液で反応を停止し、分液後反応溶液を水洗した後、溶媒を減圧 除去し、粗生成物 3.0gを得た。この濃縮液をシリカゲルカラムクロマトグラフィーで精 製することにより、(R)— 3—メチルー 1ーシクロペンタデセ-ル ブチレートを 2.8g(9. lmmol)、収率 91%で得た。ガスクロマトグラフィーの分析から、 E/Z = 3.8/96. 2であった。
[0120] 'H-NMR (500MHz, CDC1 , δ): 0.92(3Η, d, J = 6.8Hz), 1.00 (3Η, t
3
, J = 7.4Hz), 1.09—1.43(23Η, m), 1.71 (2Η, q, J = 7.4Hz), 2.13—2. 17(1H, m), 2.29—2.38 (2H, m), 2.40 (2H, t, J = 7.4Hz), 4.77(1H, d , J = 9.6Hz)
MS m/z: 307 (M+5), 265(3), 238(95), 220(27), 209(23), 195(10), 180(8), 156(5), 142(5), 125(45), 117(30), 97(53), 84(50), 71(100) , 55(45), 43(96)
IR v (cm—1): 2928, 2857, 1240, 1153, 1103
max
[0121] 得られた (R)— 3—メチルー 1—シクロペンタデセ-ル ブチレートを加溶媒分解し、 ( R) ムスコンに変換した後、高速液体クロマトグラフィにて光学純度を測定したところ 、 85.5%eeであった。
[0122] 「実施例 7Ί (R)— 3—メチルー 1ーシクロペンタデセニル イソブチレートおよび (R)—ム スコンの合成
実施例 6の無水 n ブタン酸を無水イソブタン酸に替え、キシレンを 14gにして同条 件下合成した粗生成物を、シリカゲルカラムクロマトグラフィーで単離精製し、表題ィ匕 合物 2.5g(8.14mmol)、収率 81%で得た。ガスクロマトグラフィーの分析から、 E
gπ) , () () ,¾¾¾ ( ϊϊ mmol CuOTf 25.3m0.07mmol2. Omolν H
g函 ΤlRT(¾j9 Ty入 T崎旦^ 100m/ 7.8m0.1HrCU
〔「:^AA^^y^ 3 /lv/ /v//YirrIrruHU〜1ll
〔〕
〔s012
Figure imgf000039_0001
,,,,, () V IRcm: 292728571236118111391058
,() () 5233100
,,,,,,,,()()() ()()() ()() 1803161212111789720820719
,,,,,,() ()()()() ()/ MS mz: 307M 26238322022209121912+
,,)() m.771H 9.6HZ
,,) OH m 2.
, ,, () () 〔〕NMR OOMHZ CDC1:3H 8HZ 06 。 \ \ 3zl.98.= ZD 9.5ml(19mmol)、キシレン 20gを入れ攪拌した。— 20°C下塩化トリメチルシラ ン 0.84g(7.7mmol)をカロえ、トリェチルァミン 0.78g(7.7mmol)と(2E)—シクロ ペンタデセノン 1.56g(7. Ommol)を 1時間かけて滴下した。滴下終了後、 4時間攪 拌を続けた。ガスクロマトグラフィーにて反応の終了を確認した。反応終了後 5%硫酸 水溶液で反応を停止し、分液後反応溶液を水洗した後、溶媒を減圧除去し、粗生成 物 2.5gを得た。この濃縮液をシリカゲルカラムクロマトグラフィーで精製することによ り、表題化合物を 1.74g(5.59mmol)、収率 80%で得た。ガスクロマトグラフィーの 分析から、 EZZ = 25Z75であった。
[0129] 'H-NMR (500MHz, CDC1 , δ): 0.18 (9Η, s), 0.91 (3Η, d, J = 6.8Hz
3
), 1.03—1.09 (2H, m), 1.13—1.68(20H, m), 1.98—2.06 (2H, m), 2 .43—2.46 (1H, m), 4.20(1H, d, J = 9.3Hz)
MS m/z: 310(M+28), 295(40), 281(5), 267(13), 253(5), 239(3), 2 25(5), 221(10), 197(20), 183(5), 169(68), 157(38), 143(25), 130(5 7), 109(2), 95(5), 73(100), 69(10), 55(13), 41(12),
IR v (cm—1): 2926, 2857, 1670, 1457, 1251, 843
max
[0130] 「実施例 10Ί 3—メチルー 1ーシクロペンタデセニル プロピオネートの合成
窒素雰囲気下、 100ml反応フラスコに、トリフエ-ルホスファイト 41. Omg(0. 13m mol)、 Cu (OTf) 21.7mg (0.06mmol)、ジメチル亜鉛トルエン溶液(2. Omol
2
ZD 4.84ml (9.6mmol)、キシレン 9gを入れ攪拌した。— 20°C下無水プロピオン酸 0.86g(6.6mmol)と(2E)—シクロペンタデセノン 1.33g(6. Ommol)を 3時間かけ て滴下した。滴下終了後、 4時間攪拌を続け、ガスクロマトグラフィーにて反応の終了 を確認した。反応終了後 5%硫酸水溶液で反応を停止し、分液後反応溶液を水洗し た後、溶媒を減圧除去し、粗生成物 63gを得た。この濃縮液をシリカゲルカラムクロマ トグラフィ一で精製することにより、表題ィ匕合物を 1.59g(5.4mmol)、収率 90%で 得た。ガスクロマトグラフィーの分析から、 E/Z=l.0/99.0であった。
[0131] 「実施例 111 (R)— 3—メチルー 1ーシクロペンタデセニル プロピオネート及び (R)—ム スコンの合成
窒素雰囲気下、 100ml反応フラスコに、光学活性配位子 4一((R, R)— 2, 5—ジフヱ -ルピロリジン) -(R)-ジナフトジォキサホスフエピン (非特許文献 10参照) 0. 14g (0 . 25mmol)、 (CuOTf) ·トルエン 43. 2mg (0. 12mmol)、ジメチル亜鉛トルエン溶
2
液(2. 0mol/l) 4. 84ml (9. 6mmol)、トルエン 15gを入れ攪拌した。 40°C下無 水プロピオン酸 0. 86g (6. 6mmol)と(2E)—シクロペンタデセノン 1. 33g (6. 0mm ol)を 3時間かけて滴下した。滴下終了後、 4時間攪拌を続けガスクロマトグラフィーに て反応の終了を確認した。反応終了後 5%硫酸水溶液で反応を停止し、分液後反応 溶液を水洗した後、溶媒を減圧除去し、粗生成物 63gを得た。この濃縮液をシリカゲ ルカラムクロマトグラフィーで精製すること〖こより、(R)— 3-メチル 1-シクロペンタデ セ-ル プロピオネートを 1. 63g (5. 5mmol)、収率 92%で得た。ガスクロマトグラフ ィ一の分析から、 EZZ= 1. 0/99. 0であった。
これを加溶媒分解し (R) ムスコンに変換した後光学純度を測定したところ、 95. 0 %eeであった。
[0132] 「実施例 12Ί 3—メチルー 1ーシクロペンタデセニル アセテート及び (R) ムスコンの合 成
実施例 11の光学活性配位子を当モルの 4— (シス— 2, 6 ジメチルビペリジン) - (R )ージナフトジォキサホスフエピン (特許文献 1参照)に替え、無水プロピオン酸を当モ ルの無水酢酸に替えて 30°C下合成した粗生成物を、シリカゲルカラムクロマトダラ フィ一で単離し、(R)— 3—メチルー 1ーシクロペンタデセ-ル アセテートを収率 91% で得た。ガスクロマトグラフィーの分析から、 E/Z = 0. 3/99. 7であった。
これを加溶媒分解し (R) ムスコンに変換した後高速液体クロマトグラフィにて光学 純度を測定したところ、 89. 0%eeであった。
産業上の利用分野
[0133] 本発明の製造法で得られるムスコンは、香料、医薬材料などとして有用な化合物で ある。

Claims

請求の範囲
一般式 (m)
[化 1]
Figure imgf000042_0001
(式中、波線は二重結合のシス体及び Z又はトランス体であることを示す。 ) で表わされる 2—シクロペンタデセノン類に、銅触媒又はニッケル触媒及びエノールァ ユオン捕捉剤の存在下、メチル化有機金属試薬により 1, 4一共役付加反応を行い、 一般式 (Π) :
[化 2]
Figure imgf000042_0002
(式中、 Rは、ヘテロ原子あるいは芳香環を含む置換基を有してもよい直鎖あるいは 分岐鎖のァシル基、ヘテロ原子あるいは芳香環を含む置換基を有してもよ!、直鎖あ るいは分岐鎖のアルキルォキシカルボ-ル基、ヘテロ原子あるいは芳香環を含む置 換基を有してもょ 、直鎖ある!、は分岐鎖のアルキル基、ヘテロ原子ある!/、は芳香環 を含む置換基を有してもよい直鎖あるいは分岐鎖のシリル基を示し;波線は前記と同 義である。 )
で表わされる 3—メチルー 1ーシクロペンタデセン誘導体を得、次いで、この 3—メチルー 1ーシクロペンタデセン誘導体のエノール部を加溶媒分解することを特徴とする式 (I)
Figure imgf000043_0001
で表わされるムスコンの製造方法。
一般式 (III) :
[化 4]
Figure imgf000043_0002
(式中、波線は二重結合のシス体及び Z又はトランス体であることを示す。 ) で表わされる 2—シクロペンタデセノン類に、銅触媒又はニッケル触媒、エノールァ- オン捕捉剤及び光学活性配位子の存在下、メチル化有機金属試薬により、 1, 4一共 役付加反応を行い、一般式 (Π - a):
[化 5]
Figure imgf000043_0003
(式中、 Rは、ヘテロ原子あるいは芳香環を含む置換基を有してもよい直鎖あるいは 分岐鎖のァシル基、ヘテロ原子あるいは芳香環を含む置換基を有してもよ!、直鎖あ るいは分岐鎖のアルキルォキシカルボ-ル基、ヘテロ原子あるいは芳香環を含む置 換基を有してもょ 、直鎖ある!、は分岐鎖のアルキル基、ヘテロ原子ある!/、は芳香環 を含む置換基を有してもよい直鎖あるいは分岐鎖のシリル基を示し; *は、不斉炭素 原子を示し;波線は前記と同義である。 )
で表わされる光学活性 3—メチルー 1ーシクロペンタデセン誘導体を得、次いで、この光 学活性 3—メチルー 1ーシクロペンタデセン誘導体のエノール部を加溶媒分解すること を特徴とする式 (Ii) :
[化 6]
Figure imgf000044_0001
で表わされる光学活性ムスコンの製造方法。
一般式 (III) :
[化 7]
Figure imgf000044_0002
(式中、波線は二重結合のシス体及び Z又はトランス体であることを示す。 ) で表わされる 2—シクロペンタデセノン類に、銅触媒又はニッケル触媒及びエノールァ 二オン捕捉剤の存在下、メチル化有機金属試薬により、 1, 4一共役付加反応を行うこ とを特徴とする、一般式 (Π) :
[化 8]
Figure imgf000045_0001
(式中、 Rは、ヘテロ原子あるいは芳香環を含む置換基を有してもよい直鎖あるいは 分岐鎖のァシル基、ヘテロ原子あるいは芳香環を含む置換基を有してもよ!、直鎖あ るいは分岐鎖のアルキルォキシカルボ-ル基、ヘテロ原子あるいは芳香環を含む置 換基を有してもょ 、直鎖ある!、は分岐鎖のアルキル基、ヘテロ原子ある!/、は芳香環 を含む置換基を有してもよい直鎖あるいは分岐鎖のシリル基を示し;波線は前記と同 義である。 )
で表わされる 3—メチルー 1ーシクロペンタデセン誘導体の製造方法。
一般式 (III) :
[化 9]
Figure imgf000045_0002
(式中、波線は二重結合のシス体及び Z又はトランス体であることを示す。 ) で表わされる 2—シクロペンタデセノン類に、銅触媒又はニッケル触媒、エノールァ- オン捕捉剤及び光学活性配位子の存在下、メチル化有機金属試薬により、 1, 4一共 役付加反応を行うことを特徴とする、一般式 (Π - a):
[化 10]
Figure imgf000046_0001
(式中、 Rは、ヘテロ原子あるいは芳香環を含む置換基を有してもよい直鎖あるいは 分岐鎖のァシル基、ヘテロ原子あるいは芳香環を含む置換基を有してもよ!、直鎖あ るいは分岐鎖のアルキルォキシカルボ-ル基、ヘテロ原子あるいは芳香環を含む置 換基を有してもょ 、直鎖ある!、は分岐鎖のアルキル基、ヘテロ原子ある!/、は芳香環 を含む置換基を有してもよい直鎖あるいは分岐鎖のシリル基を示し; *は、不斉炭素 原子を示し;波線は前記と同義である。 )
で表わされる光学活性 3—メチルー 1ーシクロペンタデセン誘導体の製造方法。
一般式 (Π) :
[化 11]
Figure imgf000046_0002
(式中、 Rは、ヘテロ原子あるいは芳香環を含む置換基を有してもよい直鎖あるいは 分岐鎖のァシル基、ヘテロ原子あるいは芳香環を含む置換基を有してもよ!、直鎖あ るいは分岐鎖のアルキルォキシカルボ-ル基、ヘテロ原子あるいは芳香環を含む置 換基を有してもょ 、直鎖ある!、は分岐鎖のアルキル基、ヘテロ原子ある!/、は芳香環 を含む置換基を有してもよい直鎖あるいは分岐鎖のシリル基を示し;波線は二重結 合のシス体及び Z又はトランス体であることを示す。 )
で表わされる 3—メチルー 1ーシクロペンタデセン誘導体のエノール部を加溶媒分解す ることを特徴とする式 (I) :
Figure imgf000047_0001
で表わされるムスコンの製造方法。
Figure imgf000047_0002
(式中、 Rは、ヘテロ原子あるいは芳香環を含む置換基を有してもよい直鎖あるいは 分岐鎖のァシル基、ヘテロ原子あるいは芳香環を含む置換基を有してもよ!、直鎖あ るいは分岐鎖のアルキルォキシカルボ-ル基、ヘテロ原子あるいは芳香環を含む置 換基を有してもょ 、直鎖ある!、は分岐鎖のアルキル基、ヘテロ原子ある!/、は芳香環 を含む置換基を有してもよい直鎖あるいは分岐鎖のシリル基を示し; *は、不斉炭素 原子を示し;波線は二重結合のシス体及び Z又はトランス体であることを示す。 ) で表わされる光学活性 3—メチルー 1ーシクロペンタデセン誘導体のエノール部を加溶 媒分解することを特徴とする式 (I a):
[化 14]
Figure imgf000048_0001
で表わされる光学活性ムスコンの製造方法。
光学活性配位子が一般式 (IV):
[化 15]
Figure imgf000048_0002
(式中、 Cは 2個の酸素原子及び燐原子と一緒になつて 2— 4個の炭素原子を持つ 置換された又は置換されて 、な 、環を形成する基を示し、 R1及び R2は夫々独立して 、水素原子、置換されていてもよい鎖状または環状のアルキル、ァリール、アルカノィ ル又はァラルキル基を示す力、又はそれらが結合される窒素原子と一緒になつて複 素環を形成することができる基を示す。 )
で表わされる光学活性配位子であることを特徴とする請求項 2又は 4記載の製造方 法。
光学活性配位子が一般式 (V):
[化 16]
Figure imgf000048_0003
(式中、 Cは 2個の酸素原子及び燐原子と一緒になつて 2— 4個の炭素原子を持つ 置換された又は置換されていない環を形成する基を表し、 R3は、水素原子、置換さ れていてもよい鎖状または環状のアルキル、ァリール、アルカノィル又はァラルキル 基を示す。 )
を表わされる光学活性配位子であることを特徴とする請求項 2又は 4記載の製造方法
[9] 光学活性配位子が 4- (シス- 2, 6-ジメチルビペリジン) -(R)-ジテトラヒドロナフトジ ォキサホスフエピン、 4— (シス— 2, 6—ジメチルビペリジン)— (R)—ジナフトジォキサホ スフエピン、 4一((R, R)-2, 5—ジフエ-ルビ口リジン)— (R)—ジナフトジォキサホスフ ェピン、 4一((R, R)— 2, 5—ジフエ-ルビ口リジン)— (R)—ジテトラヒドロナフトジォキサ ホスフエピンであることを特徴とする請求項 2又は 4記載の製造方法。
[10] ヱノールァ-オン捕捉剤が、次の一般式 (VI):
R4— X (VI)
(式中、 R4は、ヘテロ原子あるいは芳香環を含む置換基を有してもよい直鎖あるいは 分岐鎖のァシル基、ヘテロ原子あるいは芳香環を含む置換基を有してもよ!、直鎖あ るいは分岐鎖のアルキルォキシカルボ-ル基、ヘテロ原子あるいは芳香環を含む置 換基を有してもょ 、直鎖ある!、は分岐鎖のアルキル基、ヘテロ原子ある!/、は芳香環 を含む置換基を有してもよい直鎖あるいは分岐鎖のシリル基を示し; Xは、ハロゲン 原子、アルキルスルホ-ルォキシ基、ァリールスルホ-ルォキシ基、 OR' (R'は、へ テロ原子ある 、は芳香環を含む置換基を有してもょ 、直鎖ある!、は分岐鎖のァシル 基、ヘテロ原子ある!ヽは芳香環を含む置換基を有してもよ!ヽ直鎖あるいは分岐鎖の アルキルォキシカルボ-ル基を示す。 )を示す。 )
で表わされるエノールァ-オン捕捉剤であることを特徴とする請求項 1、 2、 3、 4、 7又 は 8記載の製造方法。
[11] エノールァ-オン捕捉剤が、次の一般式 (VII):
R5— X (VII)
(式中、 R5は、ヘテロ原子あるいは芳香環を含む置換基を有してもよい直鎖あるいは 分岐鎖のァシル基、ヘテロ原子あるいは芳香環を含む置換基を有してもよ!、直鎖あ るいは分岐鎖のアルキルォキシカルボ-ル基を示し、;Xは、ハロゲン原子、アルキル スルホ-ルォキシ基、ァリールスルホ-ルォキシ基、 OR,(R,は、ヘテロ原子あるい は芳香環を含む置換基を有してもよ!、直鎖あるいは分岐鎖のァシル基、ヘテロ原子 あるいは芳香環を含む置換基を有してもょ 、直鎖あるいは分岐鎖のアルキルォキシ カルボ-ル基を示す。 )を示す。 )
で表わされるエノールァ-オン捕捉剤であることを特徴とする請求項 1、 2、 3、 4、 7又 は 8記載の製造方法。
Figure imgf000050_0001
(式中、 Rは、ヘテロ原子あるいは芳香環を含む置換基を有してもよい直鎖あるいは 分岐鎖のァシル基、ヘテロ原子あるいは芳香環を含む置換基を有してもよ!、直鎖あ るいは分岐鎖のアルキルォキシカルボ-ル基、ヘテロ原子あるいは芳香環を含む置 換基を有してもょ 、直鎖ある!、は分岐鎖のアルキル基、ヘテロ原子ある!/、は芳香環 を含む置換基を有してもよい直鎖あるいは分岐鎖のシリル基を示し;波線は二重結 合のシス体及び Z又はトランス体であることを示す。 )
で表わされる 3—メチルー 1ーシクロペンタデセン誘導体。
一般式 (II a) :
[化 18]
Figure imgf000050_0002
(式中、 Rは、ヘテロ原子あるいは芳香環を含む置換基を有してもよい直鎖あるいは 分岐鎖のァシル基、ヘテロ原子あるいは芳香環を含む置換基を有してもよ!、直鎖あ るいは分岐鎖のアルキルォキシカルボ-ル基、ヘテロ原子あるいは芳香環を含む置 換基を有してもょ 、直鎖ある!、は分岐鎖のアルキル基、ヘテロ原子ある!/、は芳香環 を含む置換基を有してもよい直鎖あるいは分岐鎖のシリル基を示し; *は、不斉炭素 原子を示し;波線は二重結合のシス体及び Z又はトランス体であることを示す。 ) で表わされる光学活性 3—メチルー 1ーシクロペンタデセン誘導体。
PCT/JP2004/016767 2004-11-11 2004-11-11 大環状ケトン類の製造方法およびその中間体 WO2006051595A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
CA002587162A CA2587162A1 (en) 2004-11-11 2004-11-11 Method of producing macrocyclic ketone, and intermediate thereof
ES04799627.7T ES2635371T3 (es) 2004-11-11 2004-11-11 Proceso para la producción de una cetona cíclica grande y compuestos intermedios para la misma
CN2004800443856A CN101056843B (zh) 2004-11-11 2004-11-11 大环状酮类的制造方法及其中间体
KR1020077009880A KR101109845B1 (ko) 2004-11-11 2004-11-11 대환상 케톤류의 제조 방법 및 그 중간체
JP2006544700A JP4860481B2 (ja) 2004-11-11 2004-11-11 大環状ケトン類の製造方法およびその中間体
EP04799627.7A EP1845078B1 (en) 2004-11-11 2004-11-11 Process for producing large cyclic ketone and intermediate therefor
US11/667,476 US7479574B2 (en) 2004-11-11 2004-11-11 Method of producing macrocyclic ketone, and intermediate thereof
PCT/JP2004/016767 WO2006051595A1 (ja) 2004-11-11 2004-11-11 大環状ケトン類の製造方法およびその中間体

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2004/016767 WO2006051595A1 (ja) 2004-11-11 2004-11-11 大環状ケトン類の製造方法およびその中間体

Publications (1)

Publication Number Publication Date
WO2006051595A1 true WO2006051595A1 (ja) 2006-05-18

Family

ID=36336281

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/016767 WO2006051595A1 (ja) 2004-11-11 2004-11-11 大環状ケトン類の製造方法およびその中間体

Country Status (8)

Country Link
US (1) US7479574B2 (ja)
EP (1) EP1845078B1 (ja)
JP (1) JP4860481B2 (ja)
KR (1) KR101109845B1 (ja)
CN (1) CN101056843B (ja)
CA (1) CA2587162A1 (ja)
ES (1) ES2635371T3 (ja)
WO (1) WO2006051595A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006126428A1 (ja) 2005-05-23 2006-11-30 Takasago International Corporation 光学活性3-メチルシクロペンタデカノン及びその中間体の製造方法
JP2012531389A (ja) * 2009-06-29 2012-12-10 メルツ・ファルマ・ゲーエムベーハー・ウント・コ・カーゲーアーアー 3,3,5,5−テトラメチルシクロヘキサノンを調製する方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6419198B2 (ja) * 2014-01-14 2018-11-07 フイルメニツヒ ソシエテ アノニムFirmenich Sa パウダリーなムスキー付香剤大環状分子
EP3170828A1 (de) * 2015-11-23 2017-05-24 Basf Se Verfahren zur herstellung von verbindungen mit 16-oxabicyclo[10.3.1]pentadecengerüst und deren folgeprodukten
JP2020500889A (ja) 2016-12-05 2020-01-16 アガン アロマ アンド ファイン ケミカルズ リミテッドAgan Aroma & Fine Chemicals Ltd. 精製された不飽和大環状化合物を得るための方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07267968A (ja) * 1994-03-30 1995-10-17 Takasago Internatl Corp (z)−3−メチル−2−シクロペンタデセン−1−オンの製造法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03184935A (ja) 1989-12-13 1991-08-12 Nippon Mining Co Ltd 大環状α,β―不飽和ケトンの製造方法
KR100340760B1 (ko) 2000-05-02 2002-06-20 김권 (알)-(-)-무스콘의 입체선택적 제조 방법
JP4651155B2 (ja) * 2000-05-16 2011-03-16 長谷川香料株式会社 光学活性ムスコンの製法
JP4649743B2 (ja) * 2001-01-26 2011-03-16 Jx日鉱日石エネルギー株式会社 大環状ケトン化合物の製造方法
JP3973889B2 (ja) 2001-12-04 2007-09-12 株式会社ジャパンエナジー 大環状ケトン化合物の製造方法
CN1207258C (zh) * 2003-07-10 2005-06-22 西北大学 2,15-十六烷二酮的合成方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07267968A (ja) * 1994-03-30 1995-10-17 Takasago Internatl Corp (z)−3−メチル−2−シクロペンタデセン−1−オンの製造法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006126428A1 (ja) 2005-05-23 2006-11-30 Takasago International Corporation 光学活性3-メチルシクロペンタデカノン及びその中間体の製造方法
US7728177B2 (en) 2005-05-23 2010-06-01 Takasago International Corporation Optically active 3-methylcyclopentadecanone and method for producing intermediate thereof
JP4932707B2 (ja) * 2005-05-23 2012-05-16 高砂香料工業株式会社 光学活性3−メチルシクロペンタデカノン及びその中間体の製造方法
JP2012531389A (ja) * 2009-06-29 2012-12-10 メルツ・ファルマ・ゲーエムベーハー・ウント・コ・カーゲーアーアー 3,3,5,5−テトラメチルシクロヘキサノンを調製する方法

Also Published As

Publication number Publication date
CN101056843B (zh) 2011-02-16
US7479574B2 (en) 2009-01-20
JP4860481B2 (ja) 2012-01-25
KR20070083879A (ko) 2007-08-24
KR101109845B1 (ko) 2012-03-13
EP1845078A1 (en) 2007-10-17
JPWO2006051595A1 (ja) 2008-05-29
US20070287870A1 (en) 2007-12-13
EP1845078B1 (en) 2017-06-07
ES2635371T3 (es) 2017-10-03
EP1845078A4 (en) 2008-06-25
CA2587162A1 (en) 2006-05-18
CN101056843A (zh) 2007-10-17

Similar Documents

Publication Publication Date Title
JP6389307B2 (ja) アルミニウム触媒の製造方法
EP2376411B1 (en) Aluminium complexes and use thereof as a catalyst in intramolecular ring closure reactions
WO2006051595A1 (ja) 大環状ケトン類の製造方法およびその中間体
KR101753937B1 (ko) 5-아세톡시-(e3)-3-펜테닐-메톡시메틸에테르의 제조 방법 및 5-아세톡시-(e3)-3-펜테닐-메톡시메틸에테르를 이용한 (e3)-3-알케닐아세테이트의 제조 방법
JP6219884B2 (ja) (z)−3−メチル−2−シクロペンタデセノンの製造方法および(r)−(−)−3−メチルシクロペンタデカノンの製造方法
EP1650212B1 (en) Optically active quaternary ammonium salt, process for producing the same, and process for producing optically active alpha-amino acid derivative with the same
JP7250738B2 (ja) 3,3-ジメチル-1-ブテン-1,4-ジカルボキシレート化合物及び1,3,3-トリメチル-1-ブテン-1,4-ジカルボキシレート化合物、並びに、これらを用いた5,5-ジメチル-2-オキソ-3-シクロペンテン-1-カルボキシレート化合物及び3,5,5-トリメチル-2-オキソ-3-シクロペンテン-1-カルボキシレート化合物の製造方法
CN1286247A (zh) 制备番茄红素及其中间体的方法
JP2013103904A (ja) 光学活性ビスオキサゾリン化合物、不斉触媒およびそれを用いた光学活性シクロプロパン化合物の製造方法
JP2009057297A (ja) ホスホニウムイオン液体、ビアリール化合物の製造方法およびイオン液体の使用方法
WO2003074534A9 (en) Reagents for asymmetric allylation, aldol, and tandem aldol and allylation reactions
EP2341042A1 (en) Method for producing optically active cyclopropane carboxylic acid ester compound, asymmetric copper complex, and optically active salicylideneaminoalcohol compound
US11084835B2 (en) 2,3-bisphosphinopyrazine derivative, method for producing same, transition metal complex, asymmetric catalyst, and method for producing organic boron compound
JP6154818B2 (ja) オキソビニルイオノール及びそのo保護誘導体の製造方法
JPH11255759A (ja) 光学活住β−ラクトン類の製造方法
JP4407191B2 (ja) 光学活性ハロゲノヒドロキシプロピル化合物およびグリシジル化合物の製造法
JP2024091067A (ja) 中間体化合物の製造方法、配位子の製造方法、および四級不斉炭素含有化合物の製造方法
JP5623103B2 (ja) N−アシル−(2s)−オキシカルボニル−(5r)−ホスホニルピロリジン誘導体の製造方法
JP3243979B2 (ja) 光学活性な3−オキシ−5−オキソ−6−ヘプテン酸誘導体及びその製法
US7358400B2 (en) Process for producing cyclopropane monoacetal derivative and intermediate therefor
JP3727428B2 (ja) 11−シス型レチナールの製造方法および該方法に有用な合成中間体
JP2023020020A (ja) カルベン化合物及びその製造方法
JP5623099B2 (ja) N−オキシカルボニル−(2s)−オキシカルボニル−(5s)−ホスホニルピロリジン誘導体の製造方法
JP2001278851A (ja) 不斉銅錯体の製造法およびそれを用いる光学活性シクロプロパン化合物の製造法
JP2005041792A (ja) フッ素含有光学活性四級アンモニウム塩、その製造方法、並びにそれを用いた光学活性α−アミノ酸誘導体の製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006544700

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020077009880

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2587162

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 200480044385.6

Country of ref document: CN

Ref document number: 11667476

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 3610/DELNP/2007

Country of ref document: IN

REEP Request for entry into the european phase

Ref document number: 2004799627

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2004799627

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2004799627

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11667476

Country of ref document: US