WO2006049018A1 - 高分子電解質形燃料電池 - Google Patents

高分子電解質形燃料電池 Download PDF

Info

Publication number
WO2006049018A1
WO2006049018A1 PCT/JP2005/019369 JP2005019369W WO2006049018A1 WO 2006049018 A1 WO2006049018 A1 WO 2006049018A1 JP 2005019369 W JP2005019369 W JP 2005019369W WO 2006049018 A1 WO2006049018 A1 WO 2006049018A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling fluid
supply pipe
polymer electrolyte
gas
fuel cell
Prior art date
Application number
PCT/JP2005/019369
Other languages
English (en)
French (fr)
Inventor
Hiroki Kusakabe
Kazuhito Hatoh
Toshihiro Matsumoto
Norihiko Kawabata
Yoshiki Nagao
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Publication of WO2006049018A1 publication Critical patent/WO2006049018A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0247Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/242Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes comprising framed electrodes or intermediary frame-like gaskets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/247Arrangements for tightening a stack, for accommodation of a stack in a tank or for assembling different tanks
    • H01M8/248Means for compression of the fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2483Details of groupings of fuel cells characterised by internal manifolds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/20Fuel cells in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04291Arrangements for managing water in solid electrolyte fuel cell systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Definitions

  • the present invention relates to a fuel cell using a polymer electrolyte used for a portable power source, an electric vehicle power source, a home cogeneration system, and the like, and particularly relates to improvement of a fastening portion thereof.
  • FIG. 9 is a schematic cross-sectional view showing the basic structure of a conventional polymer electrolyte fuel cell.
  • FIG. 10 is a side view of a conventional fuel cell 200 composed of a laminate 110 in which two or more unit cells 101 shown in FIG. 9 are laminated.
  • a unit cell 101 which is a basic configuration of a conventional fuel cell, mainly includes a polymer electrolyte membrane 111 that selectively transports cations (hydrogen ions), and a pair of gas diffusion electrodes disposed on both sides thereof. 112, 113.
  • the electrodes 112 and 113 are a catalyst layer in which a carbon powder supporting an electrode catalyst (for example, platinum metal) is mixed with a polymer electrolyte having hydrogen ion conductivity, and air permeability and electronic conductivity formed on the outer surface of the catalyst layer.
  • a gas diffusion layer made of carbon paper with water repellent treatment.
  • a gas seal material 114 such as a gasket is disposed across the polymer electrolyte membrane 111.
  • the sealing material 114 is integrated with the gas diffusion electrodes 112 and 113 and the polymer electrolyte membrane 111 to form a membrane electrode assembly (MEA).
  • MEA membrane electrode assembly
  • Reacting gas (fuel gas or oxidant gas) is supplied to the gas diffusion electrodes 112 and 113 to the portions of the separator plates 116 and 117 that are in contact with the MEA, respectively, and the generated gas and surplus gas are carried.
  • Gas passages 118 and 120 for leaving are formed.
  • the gas flow paths 118 and 120 can be provided separately from the separator plates 116 and 117. However, as shown in FIG. 9, the gas flow paths 118 and 120 are configured by providing grooves on the surfaces of the separator plates 116 and 117. It is common.
  • ME A and separator plates 116 and 117 constitute a unit cell 101, and MEAs and separator plates 116 and 117 are alternately stacked via a cooling unit (not shown) (that is, the unit cell 101 is combined with 10 units).
  • the laminated body 110 shown in FIG. 10 is configured. Then, the laminate 110 is sandwiched between the end plate 130 through the current collector plate 122 and the insulating plate 123, and both ends are fixed with the fastening bolts 135 and nuts 136, and the polymer electrolyte fuel cell 200 is placed. It is common to do this.
  • the separator plates 116 and 117 are made of carbon plates and are in contact with the gas diffusion electrodes 112 and 113. Are formed with flow paths 118, 120 for supplying fuel gas or oxidant gas to the electrodes 112, 113 and flow paths 119, 121 for circulating a cooling fluid for cooling the fuel cell.
  • a fuel gas inlet side hold and an oxidant gas inlet side hold (not shown) for supplying fuel gas and oxidant gas to these flow paths 118 and 120
  • cooling fluid inlet side manifolds (not shown) for supplying the cooling fluid to the flow paths 119 and 121 are provided in the surface of the separator plates 116 and 117 or outside the separator plates 116 and 117, respectively.
  • the fuel gas supply pipe 124, the oxidant gas supply pipe 126, and the cooling fluid supply pipe 128 are connected in a state of extending in a direction substantially parallel to the normal direction of each main surface of the MEA. Speak.
  • a fuel gas outlet side hold and an oxidant gas outlet side hold for discharging fuel gas and oxidant gas from these flow paths 118, 120, and flow Cooling fluid outlet side manifolds (not shown) for discharging the cooling fluid from the passages 119 and 121 are provided in the surface of the separator plates 116 and 117 or outside, respectively.
  • the fuel gas discharge pipe 125, the oxidant gas discharge pipe 127, and the cooling fluid discharge pipe 129 are connected so as to extend in a direction substantially parallel to the normal direction of the main surface of each MEA. ! RU
  • an end plate is used.
  • the discharge pipe 129 is integrally coupled to the end plate 130 or configured to be in physical contact with the end plate 130 (for example, Patent Document 1). .
  • Patent Document 1 Japanese Patent Laid-Open No. 9-22720
  • the conventional polymer electrolyte fuel cell 200 has the following points to be improved. That is, since the polymer electrolyte membrane 111 exhibits high conductivity in a state where it absorbs moisture, the reaction gas is supplied to the fuel cell in a moistened state. In particular, considering the stability and durability of fuel cell performance, the reaction gas to be supplied should be 100% relative humidity or higher. There is a need to.
  • the fuel cell when used for cogeneration purposes, it is desirable to recover the heat of the exhaust gas and the cooling fluid.
  • the amount of heat that can be recovered has decreased and the heat recovery efficiency has been reduced.
  • the present invention has been made in view of the above problems, and the end plate generates heat from a fuel gas supply pipe, an oxidant gas supply pipe, a fuel gas discharge pipe, and an oxidant gas discharge pipe. And prevent condensation of reaction gas in the above supply pipe and flooding in the gas flow path of the separator plate, making stable operation easy and reducing exhaust gas and cooling fluid power. It is an object of the present invention to provide a highly reliable polymer electrolyte fuel cell that enables efficient heat recovery.
  • a membrane electrode assembly including a polymer electrolyte membrane, an anode sandwiching the polymer electrolyte membrane and a force sword, and an anode separator plate and a cathode separator plate disposed with the membrane electrode assembly sandwiched therebetween
  • a fuel cell comprising a laminate having a battery and a pair of end plates sandwiching the laminate
  • the stack includes a fuel gas inlet side manifold and a fuel gas outlet side manifold for supplying and discharging fuel gas to and from the unit cell, and an oxidant for supplying and discharging oxidant gas to the unit cell. It has a gas inlet side hold and an oxidant gas outlet side hold,
  • the inlet of the fuel gas inlet side and the inlet of the oxidant gas inlet side of the manifold respectively extend in a direction substantially parallel to the normal direction of the main surface of the unit cell.
  • a fuel gas supply pipe and an oxidant gas supply pipe are connected, and the outlet direction of the fuel gas outlet side and the outlet of the oxidant gas outlet are respectively in the normal direction of the main surface of the single battery.
  • a fuel gas discharge pipe and an oxidant gas supply pipe extending in a direction substantially parallel to the
  • the pair of end plates are located at positions corresponding to the fuel gas supply pipe, the oxidant gas supply pipe, the fuel gas discharge pipe, and the oxidant gas discharge pipe.
  • a polymer electrolyte fuel cell comprising a notch for allowing the fuel gas discharge pipe and the oxidant gas discharge pipe to escape is provided.
  • the “laminate” in the present invention may be a laminate having one single cell or a laminate having two or more unit cells.
  • a laminated body is formed by arranging a current collecting plate and an insulating plate on both sides of one or two or more unit cells.
  • the “end portion” of a laminate that also has a single cell force in the present invention refers to the end portions on both sides of the laminate. Any of them may be used. That is, the laminate in the present invention has a fuel gas inlet side hold, a fuel gas outlet side hold, an oxidant gas inlet side hold and an oxidant gas exit side hold, These are connected to a fuel gas supply pipe, an oxidant gas supply pipe, a fuel gas discharge pipe and an oxidant gas discharge pipe, respectively.
  • the gas discharge pipe and the oxidant gas discharge pipe may be provided at either one end or the other end, respectively.
  • the "direction substantially parallel to the normal direction of the main surface of the unit cell” refers to a direction substantially parallel to the normal direction formed only by the direction parallel to the normal direction, that is, at least the method It also means a direction partially including a direction parallel to the line direction.
  • the fuel gas supply pipe, the oxidant gas supply pipe, the fuel gas discharge pipe, and the oxidant gas discharge pipe described above in the present invention are parallel to the normal direction of the main surface of the unit cell. It may have a portion where the reaction gas flows in the direction, for example, a portion extending obliquely with respect to the normal direction or a portion extending perpendicularly.
  • the fuel gas supply pipe, the oxidant gas supply pipe, the fuel gas discharge pipe and the oxidant gas discharge pipe are allowed to escape means that the end plate in the present invention is a fuel gas. It has a shape that does not come into contact with the supply pipe for oxidant gas, the supply pipe for oxidant gas, the discharge pipe for fuel gas, and the discharge pipe for oxidant gas.
  • the end plate has the above-described configuration, whereby a fuel gas supply pipe, an oxidant gas supply pipe, a fuel gas discharge pipe, and an oxidation gas are supplied. Since the exhaust pipe for the agent gas is not in physical contact with the end plate, the heat of the supply pipe and the exhaust pipe is not deprived by the end plate. It is possible to suppress flooding in the gas flow path of the separator plate and to efficiently recover heat from the exhaust gas and the cooling fluid.
  • the shape of the end plate does not contact the fuel gas supply pipe, the oxidizing gas supply pipe, the fuel gas discharge pipe, and the oxidant gas discharge pipe. like
  • the shape it is possible to reliably prevent the heat of the above-mentioned supply pipe and discharge pipe force from being taken away by the end plate, and the dew condensation of gas in the above supply pipe and discharge pipe will cause the gas flow path of the separator plate.
  • By suppressing flooding in the fuel cell it is possible to provide a highly reliable polymer electrolyte fuel cell that can perform stable operation and efficiently recover heat from exhaust gas or cooling fluid.
  • FIG. 1 is a schematic sectional view showing a basic configuration of a first embodiment of a polymer electrolyte fuel cell of the present invention.
  • FIG. 2 is a side view of the polymer electrolyte fuel cell according to the first embodiment of the present invention.
  • FIG. 3 is a front view of the polymer electrolyte fuel cell according to the first embodiment of the present invention shown in FIG. 2.
  • FIG. 4 A rear view of the polymer electrolyte fuel cell according to the first embodiment of the present invention shown in FIG.
  • FIG. 5 is a front view of a polymer electrolyte fuel cell according to a second embodiment of the present invention.
  • FIG. 6 is a front view of a polymer electrolyte fuel cell according to a third embodiment of the present invention.
  • FIG. 7 is a front view of a polymer electrolyte fuel cell according to a fourth embodiment of the present invention.
  • FIG. 8 is a front view of a polymer electrolyte fuel cell according to a fifth embodiment of the present invention.
  • FIG. 9 is a schematic cross-sectional view showing the basic structure of a conventional polymer electrolyte fuel cell.
  • FIG. 10 is a side view of a conventional polymer electrolyte fuel cell.
  • FIG. 1 is a schematic cross-sectional view showing the basic configuration of the first embodiment of the polymer electrolyte fuel cell of the present invention.
  • FIG. 2 is a side view of the polymer electrolyte fuel cell 100 of this embodiment, which is composed of a laminate 10 in which two or more single cells 1 are laminated.
  • 3 is a front view of the polymer electrolyte fuel cell 100 of this embodiment shown in FIG. 2 (viewed from the direction of the arrow X).
  • FIG. 4 is a rear view of the polymer electrolyte fuel cell 100 of the present embodiment shown in FIG. 2 (viewed in the direction of arrow Y).
  • a unit cell 1 in a polymer electrolyte fuel cell of the present invention basically includes a polymer electrolyte membrane 11 that selectively transports cations (hydrogen ions), and its It consists of a pair of gas diffusion electrodes 12 and 13 arranged on both sides.
  • the gas diffusion electrodes 12 and 13 mainly include a catalyst layer and a gas diffusion layer disposed on the outer surface of the catalyst layer.
  • the catalyst layer is composed of a mixture of carbon powder supporting an electrode catalyst (for example, platinum metal) and a polymer electrolyte having hydrogen ion conductivity.
  • the gas diffusion layer is made of, for example, carbon paper that has both air permeability and electron conductivity, for example, water-repellent treatment.
  • a gas seal material 14 such as a gasket is disposed across the polymer electrolyte membrane 11.
  • the sealing material 14 is integrated with the gas diffusion electrodes 12 and 13 and the polymer electrolyte membrane 11 to constitute a membrane electrode assembly (MEA).
  • MEA membrane electrode assembly
  • conductive separator plates 16 and 17 are arranged for mechanically fixing the MEA and connecting adjacent MEAs electrically in series with each other.
  • Reacting gases are supplied to the gas diffusion electrodes 12 and 13 to the portions of the anode side and force sword side separator plates 16 and 17 that are in contact with the MEA, respectively.
  • the gas passages 18 and 20 for carrying the gas away may be formed.
  • the gas flow paths 18 and 20 can be provided separately from the separator plates 16 and 17. In the present embodiment, as shown in FIG. 20 is configured.
  • MEA and separator plates 16 and 17 constitute a unit cell, and MEA and separator plates 16 and 17 are alternately stacked via a cooling unit (not shown).
  • Laminated body 10 is configured by stacking up to 200 pieces. The laminated body 10 is sandwiched between the end plate 30 via the current collector plate 22 and the insulating plate 23, and these are fixed from both ends with fastening bolts 35 and nuts 36, whereby the polymer electrolyte fuel cell of the present embodiment. 100 is configured.
  • the paralator plates 16 and 17 are made of carbon or metal flat plates. Further, on the surface in contact with the gas diffusion electrodes 12 and 13, the flow paths 18 and 20 for supplying the fuel gas or the oxidant gas to the gas diffusion electrodes 12 and 13 and the polymer electrolyte fuel cell 100 are cooled. Channels 19 and 21 for flowing a cooling fluid (for example, cooling water) are formed.
  • a cooling fluid for example, cooling water
  • a fuel gas inlet side manifold and an oxidant gas inlet side mask for supplying fuel gas and oxidant gas to the flow paths 18, 20 are provided.
  • -A hold (not shown) and a cooling fluid inlet side hold (not shown) for supplying cooling fluid to the channels 19 and 21 are provided.
  • a fuel gas supply pipe 24, an oxidant gas supply pipe 26, and a cooling fluid supply pipe 28 are connected to the MEA inlets at the inlets of the respective ends of the stacked body 10. That is, they are connected in a state extending in a direction substantially parallel to the normal direction of the main surface of the unit cell 1.
  • the fuel gas outlet side manifold and the oxidant gas outlet side mask for discharging the fuel gas and the oxidant gas from the flow paths 18 and 20 are provided.
  • -A hold (not shown) and a cooling fluid outlet side hold (not shown) for discharging the cooling fluid from the channels 19 and 21 are provided.
  • the anode-side separator plate 16 constituting the unit cell 1 has a fuel gas flow path 18 on the surface facing the anode 12 and a cooling fluid flow path 19 on the back surface.
  • the separator plate 17 on the side of the force sword constituting the unit cell 1 has an oxidant gas passage 20 on the surface facing the force sword 13 and a cooling fluid passage 21 on the back.
  • the fuel gas flow path 18 communicates the inlet side manifold communicating with the fuel gas supply pipe 24 and the outlet side manifold communicating with the fuel gas discharge pipe 25.
  • the oxidant gas flow path 20 communicates the inlet side manifold communicating with the oxidant gas supply pipe 26 and the outlet side manifold communicating with the oxidant gas discharge pipe 27.
  • a flow passage 19 and a flow passage 21 form one cooling fluid flow path.
  • the flow path of the cooling fluid communicates the inlet manifold that communicates with the cooling fluid supply pipe 28 and the outlet manifold that communicates with the cooling fluid discharge pipe 29.
  • the fuel gas supply pipe 24, the oxidant, A gas discharge pipe 27 and a cooling fluid discharge pipe 29 are attached to the front end (left side in FIG. 2) of the laminate 10.
  • a fuel gas discharge pipe 25, an oxidant gas supply pipe 26, and a cooling fluid supply pipe 28 are attached to the end of the laminated body 10 on the rear side (right side in FIG. 2). It has been.
  • a fuel gas discharge pipe 25, an oxidant gas discharge pipe 27, and a cooling fluid discharge pipe 29 are MEA, that is, the unit cell 1 Are connected in a state extending in a direction substantially parallel to the normal direction of the main surface of the main body, and the fuel gas supply pipe 24 and the oxidant gas are connected to the inlets of the respective mall ends at the end of the laminate 10.
  • the supply pipe 26 and the cooling fluid supply pipe 28 are connected in a state extending in a direction substantially parallel to the normal direction of the main surface of the MEA, that is, the unit cell 1.
  • moisture is deprived by the end plate, causing moisture condensation in the gas and flooding in the gas flow path, and reducing the efficiency of heat recovery from the exhaust gas and the cooling fluid.
  • end plates 1A and 1B having a structure as shown in FIGS. 3 and 4 are used.
  • the end plates 1A and IB sandwich the laminated body 10 through the panel 37, and are produced by providing partial cutouts on a flexible plate material.
  • the panel 37 is positioned by providing a groove or a recess (not shown) having a shape corresponding to, for example, the panel 37 in the end plates 1A and IB and fitting into the groove or the recess.
  • the end plates 1 A and IB are configured to have bolt holes at the four corners corresponding to the bolt holes provided at the four corners of the laminate 10.
  • the front end plate 1A has a notch 2A at the left end corresponding to the fuel gas supply pipe 24 and the oxidant gas discharge pipe 27, and the lower end corresponding to the cooling fluid discharge pipe 29.
  • the rear end plate 1B is provided with a notch 2B at the end corresponding to the fuel gas discharge pipe 25 and the oxidant gas supply pipe 26, and corresponds to the cooling fluid supply pipe 28. It has a notch 3B at its end. That is, due to the notches 2B and 3B, the end plate 1B does not physically contact the fuel gas discharge pipe 25, the oxidant gas supply pipe 26, and the cooling fluid supply pipe 28.
  • the end plates 1A and IB described above can be manufactured by punching a plate material having appropriate elasticity.
  • a plate material having a shape corresponding to a square or a rectangle which is the shape of the end face of the unit cell 1 is manufactured by punching so as to be point-symmetric with respect to the center portion.
  • the punching process in order to eliminate contact with the supply pipe and discharge pipe for fuel gas, oxidant gas, and cooling fluid, the notch 2A and the notch 2B that allow these pipes to escape are easily and reliably formed. be able to.
  • the end plates 1A and IB have the above-described configuration, so that the fuel gas supply pipe 24 and the fuel gas discharge pipe 25 attached to the end of the laminate 10 are provided.
  • the oxidant gas supply pipe 26, the oxidant gas discharge pipe 27, the cooling fluid supply pipe 28, and the cooling fluid discharge pipe 29 are not in contact with each other. Therefore, the end plates 1A and IB can prevent condensation of water vapor due to humidification of the reaction gas flowing through the supply pipe and the discharge pipe, which does not take heat from the supply pipe and the discharge pipe.
  • the reaction gas and cooling fluid that are exhausted can continue to retain their heat.
  • the position of the panel 37 can be selected relatively freely in the plane portions of the end plates 1A and IB.
  • the present embodiment it is possible to suppress flooding due to condensation in the reaction gas flow path and to improve the thermal efficiency of the polymer electrolyte fuel cell. That is, the above supply pipe and discharge pipe are not thermally related to the end plates 1A and IB. Therefore, heat dissipation through the end plates 1A and IB is avoided. As a result, condensation of humidified water and heat generated by the polymer electrolyte fuel cell caused by heat dissipation through the end plates 1A and IB are avoided. It is possible to reduce inconveniences such as loss.
  • the polymer electrolyte fuel cell of the second embodiment is obtained by replacing the end plate 30 in the polymer electrolyte fuel cell 100 of the first embodiment shown in FIG.
  • the configuration other than the end plate is the same as that of the polymer electrolyte fuel cell 100 of the first embodiment.
  • FIG. 5 is a front view of the polymer electrolyte fuel cell 100 of the present embodiment shown in FIG. 2 (a view also showing the directional force of arrow X).
  • the pair of end plates 30 that sandwich the laminate 10 via the panel 37 is produced by punching a flexible plate, and the shape of the unit cell 1 (square ) In the form of a cross having four strip-shaped pieces 31 having bolt holes corresponding to the bolt holes provided at the four corners. That is, due to the cutout portions 30A, 30B, 30C and 30D, the end plate 30 does not physically contact the fuel gas supply pipe 24, the oxidant gas discharge pipe 27 and the cooling fluid discharge pipe 29. Yes.
  • a nut 36 is screwed onto the tip of the bolt 35 loosely engaged with the bolt holes at the four corners of the laminate 10 and the end plate 30, and is interposed between the end plate 30 and the end of the laminate 10.
  • the polymer electrolyte fuel cell 100 of this embodiment is configured by constantly applying a fastening pressure to the laminate 10 by the panel 37.
  • a total of five panel 37 are used, one arranged at the center of the end plate 30 and the other arranged at the same central force of the four pieces 31.
  • end plate 30 In order to effectively relieve the stress based on the local strain generated in the laminate 10 by the stagnation of the end plate 30, as shown in FIG. It has a point-symmetric shape, and the position where the fastener is mounted and the position where the panel 37 is mounted are It is preferable that they are arranged point-symmetrically with respect to the central portion. Also end plate
  • end plate on the back side (arrow Y side in FIG. 2) of the polymer electrolyte fuel cell 100 of the present embodiment also has the same shape as the end plate 30 described above.
  • the thermal efficiency of the polymer electrolyte fuel cell can be improved. That is, since the supply pipe and the discharge pipe are not physically in contact with the end plate 30 and are not thermally related to each other, heat dissipation through the end plate 30 is avoided, and as a result, the heat passing through the end plate 30 is avoided. Condensation of humidified water caused by heat dissipation and thermal loss of polymer electrolyte fuel cells can be reduced.
  • the fastening pressure by the bolt 35 and the nut 36 that fasten the pair of end plates 30 as fasteners is always applied to the laminate 10 via the panel 37.
  • the end plate 30 has a cross shape, and the four strip-shaped pieces 31 are flexible so that they can be squeezed independently of the other pieces. Therefore, even when local distortion occurs in the laminate 10 due to thermal expansion or the like, the portion of the end plate 30 corresponding to the panel 37 to which the distortion is applied can be held. In this way, the difference in reaction force against each panel 37 from the laminate 10 that receives the fastening pressure by the fastener is absorbed by the stagnation of the end plate 30.
  • the polymer electrolyte fuel cell according to the third embodiment is obtained by replacing the end plate 30 in the polymer electrolyte fuel cell 100 according to the first embodiment shown in FIG.
  • the configuration other than the end plate is the same as that of the polymer electrolyte fuel cell 100 of the first embodiment.
  • FIG. 1 is a front view of a polymer electrolyte fuel cell 100 according to an embodiment (a view also showing a directional force indicated by an arrow X).
  • FIG. 1 is a front view of a polymer electrolyte fuel cell 100 according to an embodiment (a view also showing a directional force indicated by an arrow X).
  • the end plate 40 in the present embodiment includes a central square portion 41 and four strip-shaped pieces 42, and the pieces 42 are formed from the corners of the portion 41. In addition, it is configured to extend outward on a line connecting the corner and the center of the portion 41. That is, due to the cutouts 4 OA, 40B, 40C, and 40D, the end plate 40 does not physically contact the fuel gas supply pipe 24, the oxidizing gas discharge pipe 27, and the cooling fluid discharge pipe 29. Have.
  • the piece 42 has bolt holes at positions corresponding to the bolt holes provided at the four corners of the laminate 10.
  • the end plate 40 of the present embodiment has a point-symmetric shape with respect to the center thereof, as in the second embodiment, and the position where the fastener is mounted and the panel 37 are Positional force to be mounted It is arranged point-symmetrically with respect to the central part.
  • the end plate on the back side (the arrow Y side in FIG. 2) of the polymer electrolyte fuel cell 100 of the present embodiment also has the same shape as the end plate 40 described above.
  • the fastening pressure by the bolt 35 and the nut 36 that fasten the pair of end plates 4 as fasteners is always applied to the laminate 10 through the panel 37.
  • the end plate 40 has a substantially cross shape, and the four strip-shaped pieces 42 are flexible so that they can be squeezed independently of the other pieces. Therefore, such as thermal expansion Therefore, even when local strain is generated in the laminate 10, the portion of the end plate 40 corresponding to the panel 37 to which the strain is applied can be squeezed. In this way, the difference in reaction force against each panel 37 from the laminate 10 that receives the fastening pressure by the fastener is absorbed by the stagnation of the end plate 40.
  • the polymer electrolyte fuel cell of the fourth embodiment is obtained by replacing the end plate 30 in the polymer electrolyte fuel cell 100 of the first embodiment shown in FIG.
  • the configuration other than the end plate is the same as that of the polymer electrolyte fuel cell 100 of the first embodiment.
  • FIG. 7 is a front view of the polymer electrolyte fuel cell 100 of the present embodiment shown in FIG. 2 (a view also showing the directional force of arrow X).
  • the end plate 50 in the present embodiment includes a central square portion 51 and four strip-shaped pieces 52, and the pieces 52 are formed from the corners of the portion 51. In addition, it is configured to extend outward on a line connecting the corner and the center of the portion 51. In other words, the end plate 50 is not physically in contact with the fuel gas supply pipe 24, the oxidizing agent gas discharge pipe 27, and the cooling fluid discharge pipe 29 due to the notches 50 A, 50 B, 50 C and 50 D. have.
  • the piece 52 has bolt holes at positions corresponding to the bolt holes provided at the four corners of the laminate 10. Further, four substantially equilateral triangular openings 53 are provided in the central portion 51 of the end plate 50. Further, in the same manner as in the third embodiment described above, a total of nine panel 37 that are interposed between the end plate 50 and the laminated body 10 are arranged, and the central portion of the portion 41, the vicinity of the four corner portions, And it is distribute
  • the end plate 50 of the present embodiment has a point-symmetric shape with respect to the center thereof, as in the second embodiment, and the position where the fastener is mounted and the panel 37 are Positional force to be mounted It is arranged point-symmetrically with respect to the central part.
  • the end plate on the back side (arrow Y side in FIG. 2) of the polymer electrolyte fuel cell 100 of the present embodiment also has the same shape as the end plate 50 described above.
  • the fastening pressure by the bolt 35 and the nut 36 that fasten the pair of end plates 50 as fasteners is constantly applied to the laminate 10 through the panel 37.
  • the end plate 50 has a substantially cross shape, and the four strip-shaped pieces 52 are flexible so that they can be squeezed independently of the other pieces. Therefore, even when local strain occurs in the laminate 10 due to thermal expansion or the like, the portion of the end plate 50 corresponding to the panel 37 to which the strain is applied can be held. In this way, the difference in reaction force against each panel 37 from the laminate 10 that receives the clamping pressure by the fastener is absorbed by the stagnation of the end plate 50.
  • the end plate 50 has the substantially equilateral triangular opening 53 as described above, whereby the laminate 10 is fastened to form the polymer electrolyte fuel cell 100.
  • the amount of stagnation that is, the degree of stagnation
  • FIG. 8 is a front view of the polymer electrolyte fuel cell 100 of the present embodiment shown in FIG. 2 (a view also showing the directional force of arrow X).
  • the end plate 60 in this embodiment includes a central circular portion 61 and four strip-shaped pieces 62, and the pieces 62 are formed from the peripheral edge of the portion 61. It is configured to extend radially.
  • the end plate 50 is configured so that it does not come into physical contact with the fuel gas supply pipe 24, the oxidant gas discharge pipe 27, and the cooling fluid discharge pipe 29 due to the good cutouts and notches 60A, 60B, 60C and 60D. Have.
  • the piece 62 has bolt holes at positions corresponding to the bolt holes provided at the four corners of the laminate 10, and the central portion 61 of the end plate 60 is circular. Further, in the same manner as in the third embodiment described above, a total of nine panel 37 that are interposed between the end plate 60 and the laminate 10 are arranged, and the center of the portion 61, the vicinity of the four corners, and It is arranged between the panels near the adjacent corners.
  • the end plate 60 of the present embodiment has a point-symmetric shape with respect to the center thereof, as in the second embodiment, and the position where the fastener is mounted and the panel 37 are Positional force to be mounted It is arranged point-symmetrically with respect to the central part.
  • end plate on the back side (arrow Y side in FIG. 2) of the polymer electrolyte fuel cell 100 of the present embodiment also has the same shape as the end plate 60 described above.
  • the fastening pressure by the bolt 35 and the nut 36 that fasten the pair of end plates 60 as fasteners is always applied to the laminate 10 through the panel 37.
  • the end plate 60 has a substantially cross shape, and the four strip-shaped pieces 62 are flexible so that they can be squeezed independently of the other pieces. Therefore, even when local strain occurs in the laminate 10 due to thermal expansion or the like, the portion of the end plate 60 corresponding to the panel 37 to which the strain is applied can be held. In this way, the difference in reaction force against each panel 37 from the laminate 10 that receives the clamping pressure by the fastener is absorbed by the stagnation of the end plate 60.
  • the shape of the end plates arranged on both sides of the laminate 10 is the same, but it is different between one side and the other side as long as the effects of the present invention are not impaired. It is also possible to use a shaped end plate.
  • the inlet side manifold and the outlet side holder of the cooling fluid are communicated between the anode side separator plate and the adjacent force sword side separator plate.
  • the cooling fluid channel may not be provided between the single cells, and for example, a cooling fluid channel may be provided for every two cells.
  • a single separator plate having a fuel gas channel on one side and an anode side separator plate and a force sword side separator plate having an oxidant gas channel on the other side is provided. It can also be used together.
  • conductive carbon particles having an average primary particle diameter of 30 nm were supported with 50% by weight of platinum particles having an average particle diameter of about 30 A. This was used as the power sword side catalyst powder.
  • platinum particles and ruthenium particles having an average particle diameter of about 30 A were supported on the same conductive carbon particles as described above at 25% by weight. This was used as the catalyst powder on the anode side.
  • Each of these catalyst powders was dispersed in isopropanol, and the resulting dispersion was A sword catalyst paste and an anode catalyst paste were prepared by mixing an ethyl alcohol dispersion of one fluorocarbon sulfonic acid powder.
  • a force sword catalyst paste is used as a raw material and is applied to one side of a 250 ⁇ m thick carbon non-woven fabric using a screen printing method to form a force sword catalyst layer, and an anode catalyst paste is used as a raw material.
  • an anode catalyst layer was formed by coating on one side of another carbon non-woven fabric having a thickness of 250 m.
  • the amount of catalytic metal contained in the electrode thus formed was 0.5 mg / cm 2 and the amount of perfluorocarbon sulfonic acid was 1.2 mgZcm 2 .
  • the carbon non-woven fabric having the anode catalyst layer and the carbon non-woven fabric having the force sword catalyst layer are formed in the central portion of the hydrogen ion conductive polymer electrolyte membrane having an area slightly larger than these electrodes.
  • the two catalyst layers were joined by hot pressing so that each catalyst layer was in contact with the polymer electrolyte membrane.
  • As the polymer electrolyte membrane a thin film of perfluorocarbon sulfonic acid (Naphion 112 (trade name) manufactured by DuPont, USA) was used. Further, a MEA was fabricated by hot-pressing a gasket punched out in the same shape as the outer periphery of the separator plate with a polymer electrolyte membrane sandwiched around the outer periphery of the electrode.
  • a comparative polymer electrolyte fuel cell was produced in the same manner as in Example 1 except that the end plate was a square plate-like end plate that has been used in the past. However, the positions of the piping and the panel were the same as in the second embodiment.
  • the amount of heat recovered by the cooling fluid (W) was measured by a method of calculating using the flow rate of cooling water (LZhr), specific heat CFZ kg-k), and temperature rise (K). The results are shown in Table 1.
  • the polymer electrolyte fuel cell according to the present invention is useful for a portable power source, a power source for an electric vehicle, a domestic cogeneration system, and the like.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

 反応ガスの供給管および排出管とエンドプレートとの物理的な接触によりエンドプレートからの放熱を回避するようにして、十分に加湿された反応ガスを安定して供給することができ、しかも熱効率が向上した燃料電池を提供する。単電池の積層体、並びに積層体をバネを介して挟持する一対のエンドプレートを具備し、積層体は、その端部に燃料ガス、酸化剤ガス、および冷却流体をそれぞれ供給および排出するための供給管および排出管を単電池の主面の法線方向と略平行な方向に延びるように設ける。一対のエンドプレートは、各供給管および排出管と対応する位置には、供給管および排出管を逃がす切欠部を有する。                                                                                 

Description

明 細 書
高分子電解質形燃料電池
技術分野
[0001] 本発明は、ポータブル電源、電気自動車用電源、家庭内コージェネレーションシス テム等に使用される高分子電解質を用いた燃料電池に関し、特にその締結部の改 良に関する。
背景技術
[0002] 高分子電解質を用いた燃料電池は、水素を含有する燃料ガスと、空気など酸素を 含有する酸化剤ガスとを、電気化学的に反応させることで、電力と熱とを同時に発生 させるものである。図 9は、従来の高分子電解質形燃料電池の基本構成を示す概略 断面図である。また、図 10は、図 9に示した単電池 101を 2以上積層してなる積層体 110からなる従来の燃料電池 200の側面図である。
[0003] 従来の燃料電池における基本構成である単電池 101は、主として、陽イオン (水素ィ オン)を選択的に輸送する高分子電解質膜 111、およびその両面に配置された一対 のガス拡散電極 112、 113からなる。電極 112、 113は、電極触媒 (例えば白金金属 )を担持したカーボン粉末に水素イオン伝導性を有する高分子電解質を混合した触 媒層、この触媒層の外面に形成された、通気性と電子伝導性を併せ持つ、例えば撥 水処理を施したカーボンペーパーからなるガス拡散層力 構成される。
[0004] そして、燃料ガスや酸化剤ガスが外部に漏れたり、燃料ガスと酸化剤ガスとが互い に混合したりしないように、ガス拡散電極 (アノードおよび力ソード) 112、 113の周囲 には高分子電解質膜 111を挟んでガスケットなどのガスシール材 114が配置される。 このシール材 114は、ガス拡散電極 112、 113及び高分子電解質膜 111と一体化さ れ、膜電極接合体 (MEA)を構成する。 MEAの外側には、当該 MEAを機械的に固 定するとともに、隣接する MEAを互いに電気的に直列に接続するための導電性セ パレータ板 116、 117が配置されている。
[0005] セパレータ板 116、 117の MEAと接触する部分には、それぞれガス拡散電極 112 、 113に反応ガス (燃料ガスまたは酸化剤ガス)を供給し、生成ガスや余剰ガスを運 び去るためのガス流路 118、 120が形成される。ガス流路 118、 120は、セパレータ 板 116、 117と別に設けることもできるが、図 9に示すようにセパレータ板 116、 117の 表面に溝を設けてガス流路 118、 120を構成する方式が一般的である。これらの ME Aとセパレータ板 116、 117とが単電池 101を構成し、冷却部(図示せず)を介して M EAとセパレータ板 116、 117を交互に積層して(即ち単電池 101を 10〜200個積層 して)、図 10に示す積層体 110が構成される。そして、積層体 110を集電板 122およ び絶縁板 123を介してエンドプレート 130で挟み、これらを締結用のボルト 135およ びナット 136で両端力も固定して高分子電解質形燃料電池 200とするのが一般的で ある。
[0006] このような積層体 110からなる従来の高分子電解質形燃料電池 200では、セパレ ータ板 116、 117は、カーボン製の平板で構成され、ガス拡散電極 112、 113に接す る面には燃料ガスまたは酸化剤ガスを電極 112、 113に供給する流路 118、 120や 燃料電池を冷却するための冷却流体を流通する流路 119、 121が形成されている。
[0007] そして、これらの流路 118、 120に燃料ガスおよび酸化剤ガスを供給するための燃料 ガス用入口側マ-ホールドおよび酸化剤ガス用入口側マ-ホールド(図示せず)、な らびに流路 119、 121に冷却流体を供給するための冷却流体用入口側マ二ホールド (図示せず)が、セパレータ板 116、 117の面内かあるいは外部に設けられ、各マ- ホールドの入口には、燃料ガス用供給管 124、酸化剤ガス用供給管 126および冷却 流体用供給管 128が、 MEAのそれぞれ主面の法線方向に対して略平行な方向に 延びた状態で接続されて ヽる。
[0008] さらに、これらの流路 118、 120から燃料ガスおよび酸化剤ガスを排出するための 燃料ガス用出口側マ-ホールドおよび酸化剤ガス用出口側マ-ホールド(図示せず )、ならびに流路 119、 121から冷却流体を排出するための冷却流体用出口側マ二 ホールド(図示せず)が、セパレータ板 116、 117の面内かあるいは外部に設けられ、 各マ-ホールドの出口には、燃料ガス用排出管 125、酸化剤ガス用排出管 127およ び冷却流体用排出管 129が、 MEAのそれぞれ主面の法線方向に対して略平行な 方向に延びた状態で接続されて!、る。
[0009] 以上のような構成を有する従来の高分子電解質形燃料電池 200では、エンドプレ ート 130が平板状であり、上述の燃料ガス用供給管 124、酸化剤ガス用供給管 126 および冷却流体用供給管 128、燃料ガス用排出管 125、酸化剤ガス用排出管 127 および冷却流体用排出管 129が、エンドプレート 130に一体的に結合されたり、また は、エンドプレート 130と物理的に接触するように構成されたりしているのが一般的で あった (例えば特許文献 1)。
特許文献 1:特開平 9— 22720号公報
発明の開示
発明が解決しょうとする課題
[0010] し力しながら、従来の高分子電解質形燃料電池 200においては、次のような改善す べき点があった。即ち、高分子電解質膜 111が水分を吸収した状態で高い導電性を 示すため、燃料電池には反応ガスはあら力じめ加湿した状態で供給されている。特 に、燃料電池の性能の安定性や耐久性を考慮すると、供給する反応ガスは相対湿 度 100%以上であることが望ましぐ加湿されたガスを結露させな 、ために配管を保 温する必要がある。そのため、上述の従来技術におけるように供給管および排出管 力 エンドプレート 130と一体に結合されていたり、物理的に接触させたりして構成さ れていると、エンドプレート 130が上述の供給管および排出管の熱を奪い、供給管に おいては反応ガス中の加湿用の水蒸気成分の結露が生じ、 MEAに供給される反応 ガスの水分量が減少してしまう。
[0011] また、結露によって生じた凝縮水がセパレータ板 116、 117のガス流路 118、 120 に供給されるため、ガス流路 118、 120にフラッデイングが発生して水詰まりが生じ、 反応ガスの供給を阻害してしまう場合もあり、十分な信頼性を得るには未だ改善の余 地があった。
更には、燃料電池をコージェネレーションの目的に使用する場合は、排出ガスや冷 却流体の熱は回収することが熱効率の面力 望まし 、のにもかかわらず、排出管の 熱がエンドプレート 130によって奪われると、回収できる熱の量が減少し、熱回収効 率が低下してしまっていた。
[0012] 本発明は以上の問題を鑑みてなされたものであり、エンドプレートが燃料ガス用供 給管、酸化剤ガス用供給管、燃料ガス用排出管および酸化剤ガス用排出管から熱を 奪うことを防止し、上記の供給管における反応ガスの水分の結露や、セパレータ板の ガス流路におけるフラッデイングを抑制して安定な運転を容易に可能とするとともに、 排出ガスや冷却流体力 の効率的な熱回収を可能とする信頼性の高い高分子電解 質形燃料電池を提供することを目的とする。
課題を解決するための手段
[0013] 上記課題を解決すベぐ本発明は、
高分子電解質膜および高分子電解質膜を挟むアノードおよび力ソードを有する膜電 極接合体と、膜電極接合体を挟持して配置されたアノード側セパレータ板およびカソ 一ド側セパレータ板とを含む単電池を有する積層体、並びに積層体を挟持する一対 のエンドプレートを具備する燃料電池であって、
積層体は、単電池に燃料ガスを供給および排出するための燃料ガス用入口側マ- ホールドおよび燃料ガス用出口側マ-ホールド、並びに単電池に酸化剤ガスを供給 および排出するための酸化剤ガス用入口側マ-ホールドおよび酸化剤ガス用出口 側マ-ホールドを有し、
積層体の端部にお 、て、燃料ガス用入口側マ-ホールドおよび酸化剤ガス用入口 側マ-ホールドの入口には、それぞれ単電池の主面の法線方向と略平行な方向に 延びる燃料ガス用供給管および酸化剤ガス用供給管が接続され、燃料ガス用出口 側マ-ホールドおよび酸化剤ガス用出口側マ-ホールドの出口には、それぞれ単電 池の主面の法線方向と略平行な方向に延びる燃料ガス用排出管および酸化剤ガス 用供給管が接続され、
一対のエンドプレートは、燃料ガス用供給管、酸化剤ガス用供給管、燃料ガス用排 出管および酸化剤ガス用排出管と対応する位置に、燃料ガス用供給管、酸化剤ガス 用供給管、燃料ガス用排出管および酸化剤ガス用排出管を逃がす切欠部を有する こと、を特徴とする高分子電解質形燃料電池を提供する。
[0014] ここで、本発明における「積層体」は、単電池 1つ力 なる積層体であっても、 2以上 の単電池力もなる積層体であっても構わない。通常は、 1または 2以上の単電池の両 側に、集電板および絶縁板を配置することによって積層体を構成する。
また、本発明における単電池力もなる積層体の「端部」とは、積層体の両側の端部の うちいずれであっても構わない。即ち、本発明における積層体は、燃料ガス用入口側 マ-ホールド、燃料ガス用出口側マ-ホールド、酸化剤ガス用入口側マ-ホールド および酸化剤ガス用出口側マ-ホールドを有し、これらに燃料ガス用供給管、酸ィ匕 剤ガス用供給管、燃料ガス用排出管および酸化剤ガス用排出管がそれぞれ接続さ れるが、燃料ガス用供給管、酸化剤ガス用供給管、燃料ガス用排出管および酸化剤 ガス用排出管は、それぞれ一方の端部および他方の端部のいずれに設けられてい てもよい。
[0015] 更に、本発明における「単電池の主面の法線方向と略平行な方向」とは、法線方向と 平行な方向だけでなぐ法線方向と略平行な方向、即ち、少なくとも法線方向と平行 な方向を部分的に含む方向をも意味する。
より具体的には、本発明における上述の燃料ガス用供給管、酸化剤ガス用供給管、 燃料ガス用排出管および酸化剤ガス用排出管は、単電池の主面の法線方向と平行 な方向に反応ガスが流れる部分を有して 、ればよぐ例えば法線方向に対して斜め に延びる部分や垂直に延びる部分を有して 、ても構わな 、。
[0016] また、本発明における「燃料ガス用供給管、酸化剤ガス用供給管、燃料ガス用排出 管および酸化剤ガス用排出管を逃がす」とは、本発明におけるエンドプレートが、燃 料ガス用供給管、酸化剤ガス用供給管、燃料ガス用排出管および酸化剤ガス用排 出管に接触しないような形状を有することを意味する。
[0017] 本発明の高分子電解質形燃料電池においては、エンドプレートが上記のような構 成をとることにより、燃料ガス用供給管、酸化剤ガス用供給管、燃料ガス用排出管お よび酸化剤ガス用排出管がエンドプレートと物理的に接触しないため、上記の供給 管および排出管力 の熱がエンドプレートにより奪われることがなぐ上記の供給管お よび排出管におけるガスの水分の結露ゃセパレータ板のガス流路におけるフラッデ イングを抑制することができるとともに、排出ガスや冷却流体からの熱回収を効率的な ちのとすることがでさる。
発明の効果
[0018] 以上のように、本発明によれば、エンドプレートの形状を、燃料ガス用供給管、酸ィ匕 剤ガス用供給管、燃料ガス用排出管および酸化剤ガス用排出管に接触しないような 形状とすることにより、上記の供給管および排出管力 の熱がエンドプレートによって 奪われることを確実に防止し、上記の供給管および排出管におけるガスの水分の結 露ゃセパレータ板のガス流路におけるフラッデイングを抑制することによって、安定し た運転が行えるとともに、排出ガスや冷却流体からの効率的な熱回収を可能とする 信頼性の高い高分子電解質形燃料電池を提供することができる。
図面の簡単な説明
[0019] [図 1]本発明の高分子電解質形燃料電池の第一実施形態の基本構成を示す概略断 面図である。
[図 2]本発明の第一実施形態の高分子電解質形燃料電池の側面図である。
[図 3]図 2に示される本発明の第一実施形態の高分子電解質形燃料電池の正面図 である。
圆 4]図 2に示される本発明の第一実施形態の高分子電解質形燃料電池の背面図 である。
[図 5]本発明の第二実施形態の高分子電解質形燃料電池の正面図である。
[図 6]本発明の第三実施形態の高分子電解質形燃料電池の正面図である。
[図 7]本発明の第四実施形態の高分子電解質形燃料電池の正面図である。
[図 8]本発明の第五実施形態の高分子電解質形燃料電池の正面図である。
[図 9]従来の高分子電解質形燃料電池の基本構成を示す概略断面図である。
[図 10]従来の高分子電解質形燃料電池の側面図である。
発明の実施するための最良の形態
[0020] 以下、図面を参照しながら本発明の好適な実施形態について説明する。なお、以下 の説明では、同一または相当部分には同一符号を付し、重複する説明は省略するこ とちある。
[第一実施形態]
図 1は、本発明の高分子電解質形燃料電池の第一実施形態の基本構成を示す概 略断面図である。また、図 2は、単電池 1を 2以上積層してなる積層体 10からなる本 実施形態の高分子電解質形燃料電池 100の側面図である。また、図 3は、図 2に示 される本実施形態の高分子電解質形燃料電池 100の正面図(矢印 Xの方向から見 た図)であり、図 4は、図 2に示される本実施形態の高分子電解質形燃料電池 100の 背面図(矢印 Yの方向力 見た図)である。
[0021] 本発明の高分子電解質形燃料電池における単電池 1は、図 1に示すように、基本的 には、陽イオン (水素イオン)を選択的に輸送する高分子電解質膜 11、およびその両 面に配置された一対のガス拡散電極 12、 13からなる。ガス拡散電極 12、 13は、主と して触媒層と当該触媒層の外面に配置されたガス拡散層とを具備する。触媒層は、 電極触媒 (例えば白金金属)を担持したカーボン粉末と水素イオン伝導性を有する 高分子電解質との混合物で構成されている。また、ガス拡散層は、通気性と電子伝 導性を併せ持つ、例えば撥水処理を施したカーボンペーパーで構成されて 、る。
[0022] ガス拡散電極 (アノードおよび力ソード) 12、 13の周囲には、供給する燃料ガスや 酸化剤ガスが外部に漏れたり、燃料ガスと酸化剤ガスとが互いに混合したりしないよう に、高分子電解質膜 11を挟んでガスケットなどのガスシール材 14が配置される。この シール材 14は、ガス拡散電極 12、 13及び高分子電解質膜 11と一体化され、膜電 極接合体 (MEA)を構成する。 MEAの外側には、当該 MEAを機械的に固定すると ともに、隣接する MEAを互 ヽに電気的に直列に接続するための導電性のセパレー タ板 16、 17が配置される。
[0023] アノード側および力ソード側のセパレータ板 16、 17の MEAと接触する部分には、 それぞれガス拡散電極 12、 13に反応ガス (燃料ガスおよび酸化剤ガス)を供給し、 生成ガスや余剰ガスを運び去るためのガス流路 18、 20が形成された構成となって ヽ る。ガス流路 18、 20は、セパレータ板 16、 17と別に設けることもできる力 本実施形 態においては、図 1に示すようにセパレータ板 16、 17の表面に溝を設けてガス流路 18、 20が構成されている。
[0024] これらの MEAとセパレータ板 16、 17とが単電池を構成し、冷却部(図示せず)を介し て MEAとセパレータ板 16、 17を交互に積層して、即ち単電池 1を 10〜200個積層 して、積層体 10が構成される。この積層体 10を集電板 22および絶縁板 23を介して エンドプレート 30で挟み、これらを締結用のボルト 35およびナット 36で両端から固定 することによって、本実施形態の高分子電解質形燃料電池 100が構成されている。
[0025] このような積層体 10からなる本実施形態の高分子電解質形燃料電池 100では、セ パレータ板 16、 17は、カーボン製または金属製の平板で構成されている。また、ガス 拡散電極 12、 13に接する面には、燃料ガスまたは酸化剤ガスをガス拡散電極 12、 1 3に供給する流路 18、 20、ならびに高分子電解質形燃料電池 100を冷却するため の冷却流体 (例えば冷却水)を流通させるための流路 19、 21が形成されている。
[0026] セパレータ板 16、 17の面内には、これらの流路 18、 20に燃料ガスおよび酸化剤ガ スを供給するための燃料ガス用入口側マ-ホールドおよび酸化剤ガス用入口側マ- ホールド(図示せず)、ならびに流路 19、 21に冷却流体を供給するための冷却流体 用入口側マ-ホールド(図示せず)が設けられている。そして、図 2に示すように、積 層体 10の端部における各マ-ホールドの入口には、燃料ガス用供給管 24、酸化剤 ガス用供給管 26および冷却流体用供給管 28が、 MEA、即ち単電池 1の主面の法 線方向に対して略平行な方向に延びた状態で接続されて 、る。
[0027] また、セパレータ板 16、 17の面内には、流路 18、 20から燃料ガスおよび酸化剤ガ スを排出するための燃料ガス用出口側マ-ホールドおよび酸化剤ガス用出口側マ- ホールド(図示せず)、ならびに流路 19、 21から冷却流体を排出するための冷却流 体用出口側マ二ホールド(図示せず)が設けられている。
より具体的には、単電池 1を構成するアノード側のセパレータ板 16は、アノード 12と 対向する面に燃料ガスの流路 18を有し、背面には冷却流体の流路 19を有する。ま た、単電池 1を構成する力ソード側のセパレータ板 17は、力ソード 13と対向する面に 酸化剤ガスの流路 20を有し、背面には冷却流体の流路 21を有する。
[0028] 燃料ガスの流路 18は、燃料ガス用供給管 24に連通する入口側マ-ホールドと、燃 料ガス用排出管 25に連通する出口側マ-ホールドと、を連絡する。また、酸化剤ガス の流路 20は、酸化剤ガス用供給管 26に連通する入口側マ-ホールドと、酸化剤ガ ス用排出管 27に連通する出口側マ-ホールドと、を連絡する。
[0029] そして、アノード側のセパレータ板 16とこれに隣接する力ソード側のセパレータ板 17 との間には、流路 19と流路 21とによって 1つの冷却流体の流路が形成され、この冷 却流体の流路は、冷却流体用供給管 28に連通する入口側マ二ホールドと、冷却流 体用排出管 29に連通する出口側マ-ホールドと、を連絡する。
[0030] ここで、本実施形態においては、図 3に示すように、燃料ガス用供給管 24、酸化剤 ガス用排出管 27および冷却流体用排出管 29が積層体 10の正面側(図 2における左 側)の端部に取り付けられている。また、図 4に示すように、積層体 10の背面側(図 2 における右側)の端部には、燃料ガス用排出管 25、酸化剤ガス用供給管 26および 冷却流体用供給管 28が取り付けられている。
[0031] 即ち、積層体 10の端部における各マ-ホールドの出口には、燃料ガス用排出管 25 、酸化剤ガス用排出管 27および冷却流体用排出管 29が、 MEA、即ち単電池 1の主 面の法線方向に対して略平行な方向に延びた状態で接続されており、積層体 10の 端部における各マ-ホールドの入口には、燃料ガス用供給管 24、酸化剤ガス用供 給管 26および冷却流体用供給管 28が、 MEA、即ち単電池 1の主面の法線方向に 対して略平行な方向に延びた状態で接続されて!、る。
[0032] ここで、上述のように、従来の高分子電解質形燃料電池においては、絶縁板の外側 に重ね合わせたエンドプレートに、単電池へ反応ガスおよび冷却流体を供給および 排出するための供給管および排出管が取り付けられたり、または、当該エンドプレー トに、上記の供給管および排出管が物理的に接触する構造がとられたりしていたた め、上記の供給管および排出管の熱がエンドプレートにより奪われ、ガスの水分の結 露やガス流路におけるフラッデイングを生じさせてしまうとともに、排出ガスや冷却流 体からの熱回収の効率が低下してしまうという問題があった。
[0033] これに対し、本発明の高分子電解質形燃料電池 100におけるエンドプレート 30とし て、図 3および図 4に示されるような構造を有するエンドプレート 1Aおよび 1Bを用い る。エンドプレート 1A、 IBはパネ 37を介して積層体 10を挟持するものであり、可撓 性を有する板材に部分的な切欠部を設けることによって作製されたものである。なお 、パネ 37は、エンドプレート 1A、 IBに、例えばパネ 37に対応する形状を有する溝ま たはくぼみ(図示せず)を設け、当該溝またはくぼみにはめ込むことによって位置決 めされている。
[0034] エンドプレート 1A、 IBは、積層体 10の四隅に設けたボルト孔に対応して四隅にボル ト孔を有するように構成されている。正面側のエンドプレート 1 Aは、燃料ガス用供給 管 24および酸化剤ガス用排出管 27に対応する左側の端に切欠部 2Aを有し、冷却 流体用排出管 29に対応する下側の端に切欠部 3Aを有している。即ち、切欠部 2A および 3Aにより、エンドプレート 1Aは、燃料ガス用供給管 24、酸化剤ガス用排出管 27および冷却流体用排出管 29と物理的に接触しない構成を有している。
[0035] また、背面側のエンドプレート 1Bは、燃料ガス用排出管 25および酸化剤ガス用供給 管 26に対応する部分の端に切欠部 2Bを設け、冷却流体用供給管 28に対応する上 側の端に切欠部 3Bを有している。即ち、切欠部 2Bおよび 3Bにより、エンドプレート 1 Bは、燃料ガス用排出管 25、酸化剤ガス用供給管 26および冷却流体用供給管 28と 物理的に接触しな 、構成を有して 、る。
[0036] 上記のエンドプレート 1A、 IBは、適度の弾性を有する板材を打ち抜き加工すること により作製することができる。例えば、単電池 1の端面の形状である正方形または長 方形に合わせた形状の板材を、中心部に対して点対称となるように打ち抜きにより作 製するのが好ましい。打ち抜き加工によれば、燃料ガス、酸化剤ガスおよび冷却流体 の供給管および排出管との接触をなくすために、これらの管を逃がす切欠部 2Aおよ び切欠部 2Bを容易かつ確実に形成することができる。また、中心部および四隅の締 結ボルトを取り付ける部分などがバランスよく配置されるように切欠部 2Aおよび切欠 部 2Bを設けることにより、エンドプレート 1A、 IBに適度の可撓性を付与することがで きる。
[0037] 本実施形態においては、エンドプレート 1A、 IBが上記のような構成を有することに より、積層体 10の端部に取り付けられている燃料ガス用供給管 24、燃料ガス用排出 管 25、酸化剤ガス用供給管 26、酸化剤ガス用排出管 27、冷却流体用供給管 28お よび冷却流体用排出管 29とは接触しない。したがって、エンドプレート 1A、 IBは、こ れら供給管および排出管力も熱を奪うことがなぐ上記の供給管および排出管を流れ る反応ガスの加湿のための水蒸気の凝縮を防止することができ、かつ排出される反 応ガスおよび冷却流体はそれらの熱量を保持し続けることができる。また、エンドプレ ート 1A、 IBの平面部分において、パネ 37の位置を比較的自由に選択することがで きる。
[0038] 以上のように、本実施形態によれば、反応ガスの流路における結露によるフラッディ ングを抑制するとともに、高分子電解質形燃料電池の熱効率を向上させることが可能 となる。即ち、上記の供給管および排出管はエンドプレート 1A、 IBと熱的に無関係 となる力ら、エンドプレート 1A、 IBを介しての放熱が回避され、その結果、エンドプレ ート 1A、 IBを介しての放熱により生じていた加湿水の結露や高分子電解質形燃料 電池の熱的損失などの不都合を軽減することができる。
[0039] [第二実施形態]
次に、本発明の高分子電解質形燃料電池の第二実施形態について説明する。こ の第二実施形態の高分子電解質形燃料電池は、図 2に示した第一実施形態の高分 子電解質形燃料電池 100に於けるエンドプレート 30を異なる構成に代えたものであ り、エンドプレート以外の構成は第一実施形態の高分子電解質形燃料電池 100と同 様である。
以下、第二実施形態の高分子電解質形燃料電池に備えられるエンドプレート (本 発明のエンドプレートの第二実施形態)について説明する。図 5は、図 2に示される本 実施形態の高分子電解質形燃料電池 100の正面図(矢印 Xの方向力も見た図)であ る。
[0040] 本実施形態において、パネ 37を介して積層体 10を挟持する一対のエンドプレート 30は、可撓性を有する板材を打ち抜き加工により作製されたものであり、単電池 1の 形状 (正方形)に合わせて、その四隅に設けたボルト孔に対応するボルト孔をもつ 4 個の帯状の部片 31を有する十字状の形状を有する。即ち、切欠部 30A、 30B、 30C および 30Dにより、エンドプレート 30は、燃料ガス用供給管 24、酸化剤ガス用排出 管 27および冷却流体用排出管 29と物理的に接触しない構成を有している。
[0041] 積層体 10およびエンドプレート 30の四隅にあるボルト孔に遊合させたボルト 35の 先端に、ナット 36が螺合され、エンドプレート 30と積層体 10の端部との間に介在させ たパネ 37によって常時積層体 10に締結圧を印加することによって、本実施形態の高 分子電解質形燃料電池 100が構成されている。ここで、パネ 37は、エンドプレート 30 の中心部に配置されるものと、 4つの部片 31の前記中心部力 等距離のところに配 置されるものとの計 5個が用いられて 、る。
[0042] 積層体 10に生じた局所的な歪みに基づく応力をエンドプレート 30の橈みにより効 果的に緩和するには、図 5に示すように、エンドプレート 30は、その中心部に対して 点対称の形状を有し、締結具が装着される位置およびパネ 37が装着される位置が、 上記の中心部に対して点対称に配置されていることが好ましい。また、エンドプレート
30は、積層体 10に取り付けられている燃料ガス、酸化剤ガス、および冷却流体の供 給管および排出管とは接触しない。
なお、本実施形態の高分子電解質形燃料電池 100の背面側(図 2の矢印 Y側)に おけるエンドプレートも、上記のエンドプレート 30と同じ形状を有する。
[0043] 以上のように構成された本実施形態の高分子電解質形燃料電池にお!ヽては、上 述した第一実施形態と同様に、反応ガスの流路における結露によるフラッデイングを 抑制するとともに、高分子電解質形燃料電池の熱効率を向上させることが可能となる 。即ち、上記の供給管および排出管はエンドプレート 30と物理的に接触せず熱的に 無関係となるから、エンドプレート 30を介しての放熱が回避され、その結果、エンドプ レート 30を介しての放熱により生じていた加湿水の結露や高分子電解質形燃料電 池の熱的損失を軽減することができる。
[0044] また、本実施形態においては、締結具として一対のエンドプレート 30を締結するボ ルト 35およびナット 36による締結圧がパネ 37を介して積層体 10に常時印加される。 エンドプレート 30は、十字状の形状をしており、帯状の 4個の部片 31はそれぞれ他 の部片とは独立して橈み得るよう可撓性を有している。したがって、熱膨張などの理 由で、積層体 10に局所的な歪が生じた場合でも、その歪みが加わるパネ 37に対応 するエンドプレート 30の部分が橈むことができる。このようにして、締結具による締結 圧を受ける積層体 10からの各パネ 37に対する反力の差が当該エンドプレート 30の 橈みにより吸収される。
[0045] [第三実施形態]
次に、本発明の高分子電解質形燃料電池の第三実施形態について説明する。こ の第三実施形態の高分子電解質形燃料電池は、図 2に示した第一実施形態の高分 子電解質形燃料電池 100に於けるエンドプレート 30を異なる構成に代えたものであ り、エンドプレート以外の構成は第一実施形態の高分子電解質形燃料電池 100と同 様である。
以下、第三実施形態の高分子電解質形燃料電池に備えられるエンドプレート (本 発明のエンドプレートの第三実施形態)について説明する。図 6は、図 2に示される本 実施形態の高分子電解質形燃料電池 100の正面図(矢印 Xの方向力も見た図)であ る。
[0046] 本実施形態におけるエンドプレート 40は、図 6に示すように、中央の正方形の部分 41と、帯状の 4個の部片 42とからなり、部片 42は、部分 41の角部から、当該角部と 部分 41の中心とを結ぶ線上を、外側に延びるように構成されている。即ち、切欠部 4 OA、 40B、 40Cおよび 40Dにより、エンドプレート 40は、燃料ガス用供給管 24、酸 ィ匕剤ガス用排出管 27および冷却流体用排出管 29と物理的に接触しない構成を有し ている。
[0047] また、部片 42は積層体 10の四隅に設けたボルト孔と対応する位置にボルト孔を有 する。エンドプレート 40と積層体 10との間に介在させるパネ 37は、計 9個配置されて おり、部分 41の中心部、 4つの角部近傍、および隣接する角部近傍のパネとパネと の間に配されている。
[0048] 即ち、本実施形態のエンドプレート 40は、上記の第二実施形態と同様に、その中 心部に対して点対称の形状を有し、締結具が装着される位置およびパネ 37が装着 される位置力 上記の中心部に対して点対称に配置されている。
なお、本実施形態の高分子電解質形燃料電池 100の背面側(図 2の矢印 Y側)にお けるエンドプレートも、上記のエンドプレート 40と同じ形状を有する。
[0049] 以上のように構成された本実施形態の高分子電解質形燃料電池においては、上述 した第一実施形態と同様に、反応ガスの流路における結露によるフラッディングを抑 制するとともに、高分子電解質形燃料電池の熱効率を向上させることが可能となる。 即ち、上記の供給管および排出管はエンドプレート 40と熱的に無関係となるから、ェ ンドプレート 40を介しての放熱が回避され、その結果、エンドプレート 40を介しての 放熱により生じていた加湿水の結露や高分子電解質形燃料電池の熱的損失などの 不都合を軽減することができる。
[0050] また、本実施形態にぉ 、ては、締結具として一対のエンドプレート 4を締結するボル ト 35およびナット 36による締結圧がパネ 37を介して積層体 10に常時印加される。ェ ンドプレート 40は、略十字状の形状をしており、帯状の 4個の部片 42はそれぞれ他 の部片とは独立して橈み得るよう可撓性を有している。したがって、熱膨張などの理 由で、積層体 10に局所的な歪が生じた場合でも、その歪みが加わるパネ 37に対応 するエンドプレート 40の部分が橈むことができる。このようにして、締結具による締結 圧を受ける積層体 10からの各パネ 37に対する反力の差が当該エンドプレート 40の 橈みにより吸収される。
[0051] [第四実施形態]
次に、本発明の高分子電解質形燃料電池の第四実施形態について説明する。こ の第四実施形態の高分子電解質形燃料電池は、図 2に示した第一実施形態の高分 子電解質形燃料電池 100に於けるエンドプレート 30を異なる構成に代えたものであ り、エンドプレート以外の構成は第一実施形態の高分子電解質形燃料電池 100と同 様である。
以下、第四実施形態の高分子電解質形燃料電池に備えられるエンドプレート (本 発明のエンドプレートの第四実施形態)について説明する。図 7は、図 2に示される本 実施形態の高分子電解質形燃料電池 100の正面図(矢印 Xの方向力も見た図)であ る。
[0052] 本実施形態におけるエンドプレート 50は、図 7に示すように、中央の正方形の部分 51と、帯状の 4個の部片 52とからなり、部片 52は、部分 51の角部から、当該角部と 部分 51の中心とを結ぶ線上を、外側に延びるように構成されている。即ち、切欠部 5 0A、 50B、 50Cおよび 50Dにより、エンドプレー卜 50は、燃料ガス用供給管 24、酸 ィ匕剤ガス用排出管 27および冷却流体用排出管 29と物理的に接触しない構成を有し ている。
[0053] また、部片 52は積層体 10の四隅に設けたボルト孔と対応する位置にボルト孔を有 する。そして、エンドプレート 50の中央の部分 51に、 4つの略正三角形の開口部 53 が設けられている。さらに、上記の第三実施形態と同様に、エンドプレート 50と積層 体 10との間に介在させるパネ 37は、計 9個配置されており、部分 41の中心部、 4つ の角部近傍、および隣接する角部近傍のパネとパネとの間に配されている。
[0054] 即ち、本実施形態のエンドプレート 50は、上記の第二実施形態と同様に、その中 心部に対して点対称の形状を有し、締結具が装着される位置およびパネ 37が装着 される位置力 上記の中心部に対して点対称に配置されている。 なお、本実施形態の高分子電解質形燃料電池 100の背面側(図 2の矢印 Y側)にお けるエンドプレートも、上記のエンドプレート 50と同じ形状を有する。
[0055] 以上のように構成された本実施形態の高分子電解質形燃料電池においては、上述 した第一実施形態と同様に、反応ガスの流路における結露によるフラッディングを抑 制するとともに、高分子電解質形燃料電池の熱効率を向上させることが可能となる。 即ち、上記の供給管および排出管はエンドプレート 50と熱的に無関係となるから、ェ ンドプレート 50を介しての放熱が回避され、その結果、エンドプレート 50を介しての 放熱により生じていた加湿水の結露や高分子電解質形燃料電池の熱的損失などの 不都合を軽減することができる。
[0056] また、本実施形態においては、締結具として一対のエンドプレート 50を締結するボ ルト 35およびナット 36による締結圧がパネ 37を介して積層体 10に常時印加される。 エンドプレート 50は、略十字状の形状をしており、帯状の 4個の部片 52はそれぞれ 他の部片とは独立して橈み得るよう可撓性を有している。したがって、熱膨張などの 理由で、積層体 10に局所的な歪が生じた場合でも、その歪みが加わるパネ 37に対 応するエンドプレート 50の部分が橈むことができる。このようにして、締結具による締 結圧を受ける積層体 10からの各パネ 37に対する反力の差が当該エンドプレート 50 の橈みにより吸収される。
[0057] さらに本実施形態によれば、エンドプレート 50が先に述べたような略正三角形の開 口部 53を有することにより、積層体 10を締結して高分子電解質形燃料電池 100を構 成した場合における、エンドプレート 50の面内における橈みの量 (即ち橈みの程度) を調整することができ、エンドプレート 50の橈みをその面内においてより容易に均一 ィ匕させることができ、橈み部分の偏在化をより確実に抑制することができる。
[0058] [第五実施形態]
次に、本発明の高分子電解質形燃料電池の第五実施形態について説明する。こ の第五実施形態の高分子電解質形燃料電池は、図 2に示した第一実施形態の高分 子電解質形燃料電池 100に於けるエンドプレート 30を異なる構成に代えたものであ り、エンドプレート以外の構成は第一実施形態の高分子電解質形燃料電池 100と同 様である。 以下、第五実施形態の高分子電解質形燃料電池に備えられるエンドプレート (本 発明のエンドプレートの第五実施形態)について説明する。図 8は、図 2に示される本 実施形態の高分子電解質形燃料電池 100の正面図(矢印 Xの方向力も見た図)であ る。
[0059] 本実施形態におけるエンドプレート 60は、図 8に示すように、中央の円形の部分 61 と、 4個の帯状の部片 62とからなり、部片 62は、部分 61の周縁部から、放射状に延 びるように構成されている。良口ち、切欠咅 60A、 60B、 60Cおよび 60Dにより、エンド プレート 50は、燃料ガス用供給管 24、酸化剤ガス用排出管 27および冷却流体用排 出管 29と物理的に接触しない構成を有している。
[0060] また、部片 62は積層体 10の四隅に設けたボルト孔と対応する位置にボルト孔を有 し、エンドプレート 60の中央の部分 61は円形である。さらに、上記の第三実施形態と 同様に、エンドプレート 60と積層体 10との間に介在させるパネ 37は、計 9個配置され ており、部分 61の中心部、 4つの角部近傍、および隣接する角部近傍のパネとパネ との間に配されている。
[0061] 即ち、本実施形態のエンドプレート 60は、上記の第二実施形態と同様に、その中 心部に対して点対称の形状を有し、締結具が装着される位置およびパネ 37が装着 される位置力 上記の中心部に対して点対称に配置されている。
なお、本実施形態の高分子電解質形燃料電池 100の背面側(図 2の矢印 Y側)にお けるエンドプレートも、上記のエンドプレート 60と同じ形状を有する。
[0062] 以上のように構成された本実施形態の高分子電解質形燃料電池においては、上述 した第一実施形態と同様に、反応ガスの流路における結露によるフラッディングを抑 制するとともに、高分子電解質形燃料電池の熱効率を向上させることが可能となる。 即ち、上記の供給管および排出管はエンドプレート 60と熱的に無関係となるから、ェ ンドプレート 60を介しての放熱が回避され、その結果、エンドプレート 60を介しての 放熱により生じていた加湿水の結露や高分子電解質形燃料電池の熱的損失などの 不都合を軽減することができる。
[0063] また、本実施形態においては、締結具として一対のエンドプレート 60を締結するボ ルト 35およびナット 36による締結圧がパネ 37を介して積層体 10に常時印加される。 エンドプレート 60は、略十字状の形状をしており、帯状の 4個の部片 62はそれぞれ 他の部片とは独立して橈み得るよう可撓性を有している。したがって、熱膨張などの 理由で、積層体 10に局所的な歪が生じた場合でも、その歪みが加わるパネ 37に対 応するエンドプレート 60の部分が橈むことができる。このようにして、締結具による締 結圧を受ける積層体 10からの各パネ 37に対する反力の差が当該エンドプレート 60 の橈みにより吸収される。
[0064] 以上、本発明の実施形態について詳細に説明した力 本発明は上述した各実施 形態に限定されるものではな 、。
例えば、上述の各実施形態においては、積層体 10の両側に配するエンドプレート の形状を同一としたが、本発明の効果を損なわない範囲であれば、一方の側と他方 の側とで異なる形状のエンドプレートを用いることも可能である。
[0065] また、上記実施形態においては、アノード側セパレータ板と隣接する力ソード側セパ レータ板との間に、冷却流体の入口側マ-ホールドと出口側マ-ホールドとを連絡す るように、冷却流体の流路を有するよう構成したが、各単電池間に冷却流体の流路を 設けず、例えば 2セル毎に冷却流体の流路を設けてもよい。そのような場合、一方の 面に燃料ガスの流路を有し、他方の面に酸化剤ガスの流路を有するアノード側セパ レータ板と力ソード側セパレータ板とを兼ねる単一のセパレータ板を併用することも可 能である。
実施例
[0066] 以下に、実施例を用いて本発明をより詳細に説明するが、本発明は、これらのみに 限定されるものではない。
《実施例 1〜5》
まず、 30nmの平均一次粒子径を持つ導電性カーボン粒子(オランダ国、 AKZO Chemie社:ケッチェンブラック EC)に、平均粒径約 30 Aの白金粒子を 50重量%担 持させた。これを力ソード側の触媒粉末とした。また、上記と同じ導電性カーボン粒子 に、平均粒径約 30Aの白金粒子とルテニウム粒子とを、それぞれ 25重量%担持さ せた。これをアノード側の触媒粉末とした。
[0067] これらの触媒粉末をそれぞれイソプロパノールに分散させ、得られた分散液に、パ 一フルォロカーボンスルホン酸粉末のエチルアルコール分散液を混合し、力ソード触 媒用ペーストおよびアノード触媒用ペーストを調製した。力ソード触媒用ペーストを原 料とし、スクリーン印刷法を用いて、厚み 250 μ mのカーボン不織布の一方の面に塗 ェして力ソード触媒層を形成し、アノード触媒用ペーストを原料とし、スクリーン印刷 法を用いて、厚み 250 mの別のカーボン不織布の一方の面に塗工してアノード触 媒層を形成した。こうして形成した電極中に含まれる触媒金属量は 0. 5mg/cm2、 パーフルォロカーボンスルホン酸の量は 1. 2mgZcm2であった。
[0068] 次に、これらのアノード触媒層を有するカーボン不織布および力ソード触媒層を有 するカーボン不織布を、これらの電極より一回り大きい面積を有する水素イオン伝導 性の高分子電解質膜の中心部の両面に、各触媒層が高分子電解質膜と接するよう にホットプレスによって接合した。高分子電解質膜としては、パーフルォロカーボンス ルホン酸を薄膜ィ匕したもの (米国デュポン社製のナフイオン 112 (商品名))を用いた 。さらに、電極の外周には、高分子電解質膜を挟んで、セパレータ板の外周部とほぼ 同じ形状に打ち抜かれたガスケットをホットプレスによって接合し、 MEAを作製した。
[0069] この MEAにアノード側セパレータ板および力ソード側セパレータ板を組み合わせ た単電池を 60個積層して積層体を得、その両端にそれぞれ集電板および絶縁板を 重ね合わせ、一対のエンドプレート、パネおよび締結具を用いて図 2示す構造を有 する高分子電解質形燃料電池を構成した。
ここで、実施例 1〜5においては、上記第一実施形態〜第五実施形態におけるエンド プレートを用い、積層体 10にカ卩わる締結荷重は 750kgfとした。
[0070] 《比較例 1》
また、エンドプレートとして、従来力も用いられている正方形の平板状のエンドプレ ートを用いた他は、実施例 1と同様にして比較用の高分子電解質形燃料電池を作製 した。ただし、配管およびパネの位置は、第二実施形態と同様とした。
[0071] [評価試験 1]
これらの高分子電解質形燃料電池アノードには水素ガスを、力ソードには空気を、 それぞれ露点が 75°Cとなるように加湿して供給し、冷却水の入口温度を 80°C、燃料 利用率を 80%、空気利用率を 40%に調整した。そして、電流密度を 0. 2AZcm2に して初期電圧 (mV)を測定した。結果を表 1に示した。なお、このときガスの利用率が 上述の値になるようにガス量を調節した。
[0072] [評価試験 2]
次に、劣化率 VZhr)を、上述の運転状態で、 1000時間連続運転した時の電 圧低下量力も算出するという方法で測定した。結果を表 1に示した。
[0073] [評価試験 3]
また、冷却流体によって回収された熱量 (W)を、冷却水の流量 (LZhr)、比熱 CFZ kg-k)、及び、温度上昇 (K)を用いて算出するという方法で測定した。結果を表 1に 示した。
[0074] [表 1]
Figure imgf000021_0001
[0075] 表 1から、本発明の実施形態における高分子電解質形燃料電池においては、比較 例に比べて初期電圧が向上し、劣化率が低下し、かつ回収熱量が増加していること が確認された。
産業上の利用可能性
[0076] 以上のように、本発明によれば、反応ガスや冷却流体の供給管および排出管の熱 をエンドプレートを介して放出するのを回避し、高分子電解質形燃料電池に十分な 水蒸気を供給することができる。また、高分子電解質形燃料電池の熱回収効率を向 上することができる。したがって、本発明による高分子電解質形燃料電池は、ポータ ブル電源、電気自動車用電源、家庭内コージェネレーションシステム等に有用である

Claims

請求の範囲
[1] 高分子電解質膜および前記高分子電解質膜を挟むアノードおよび力ソードを有す る膜電極接合体と、前記膜電極接合体を挟持して配置されたアノード側セパレータ 板および力ソード側セパレータ板とを含む単電池を有する積層体、並びに前記積層 体を挟持する一対のエンドプレートを具備する燃料電池であって、
前記積層体は、前記単電池に燃料ガスを供給および排出するための燃料ガス用 入口側マ-ホールドおよび燃料ガス用出口側マ-ホールド、並びに前記単電池に酸 ィ匕剤ガスを供給および排出するための酸化剤ガス用入口側マ二ホールドおよび酸ィ匕 剤ガス用出口側マ-ホールドを有し、
前記積層体の端部にお 、て、前記燃料ガス用入口側マ-ホールドおよび前記酸 ィ匕剤ガス用入口側マ-ホールドの入口には、それぞれ前記単電池の主面の法線方 向と略平行な方向に延びる燃料ガス用供給管および酸化剤ガス用供給管が接続さ れ、前記燃料ガス用出口側マ二ホールドおよび前記酸化剤ガス用出口側マ二ホー ルドの出口には、それぞれ前記単電池の主面の法線方向と略平行な方向に延びる 燃料ガス用排出管および酸化剤ガス用供給管が接続され、
前記一対のエンドプレートの少なくとも一方は、前記燃料ガス用供給管、前記酸ィ匕 剤ガス用供給管、前記燃料ガス用排出管および前記酸化剤ガス用排出管と対応す る位置に、前記燃料ガス用供給管、前記酸化剤ガス用供給管、前記燃料ガス用排 出管および前記酸化剤ガス用排出管を逃がす切欠部を有すること、を特徴とする高 分子電解質形燃料電池。
[2] 前記積層体は、前記単電池を冷却する冷却流体を供給するための冷却流体用入 口側マ二ホールドおよび前記冷却流体を排出するための冷却流体用出口側マニホ 一ノレドを有し、
前記積層体の端部において、前記冷却流体用入口側マ二ホールドの入口には、 前記単電池の主面の法線方向と略平行な方向に延びる冷却流体用供給管が接続さ れ、前記冷却流体用出口側マ二ホールドの出口には、前記単電池の主面の法線方 向と略平行な方向に延びる冷却流体用排出管が接続され、
前記少なくとも一方のエンドプレートは、前記冷却流体用供給管および前記冷却流 体用排出管と対応する位置に、前記冷却流体用供給管および前記冷却流体用排出 管を逃がす切欠部を有すること、を特徴とする請求項 1に記載の高分子電解質形燃 料電池。
PCT/JP2005/019369 2004-11-01 2005-10-21 高分子電解質形燃料電池 WO2006049018A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-318314 2004-11-01
JP2004318314 2004-11-01

Publications (1)

Publication Number Publication Date
WO2006049018A1 true WO2006049018A1 (ja) 2006-05-11

Family

ID=36319032

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/019369 WO2006049018A1 (ja) 2004-11-01 2005-10-21 高分子電解質形燃料電池

Country Status (1)

Country Link
WO (1) WO2006049018A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6093765A (ja) * 1983-10-28 1985-05-25 Toshiba Corp 燃料電池
JPS62271366A (ja) * 1986-05-19 1987-11-25 Yamaha Motor Co Ltd 燃料電池のスタツク締付構造
JPS62271364A (ja) * 1986-05-19 1987-11-25 Yamaha Motor Co Ltd 燃料電池
JPH08130028A (ja) * 1994-10-31 1996-05-21 Fuji Electric Co Ltd 固体高分子電解質型燃料電池
JPH08203553A (ja) * 1995-01-23 1996-08-09 Fuji Electric Co Ltd 固体高分子電解質型燃料電池
JPH1012262A (ja) * 1996-06-25 1998-01-16 Kansai Electric Power Co Inc:The 固体高分子電解質型燃料電池
JP2003331905A (ja) * 2002-05-14 2003-11-21 Matsushita Electric Ind Co Ltd 高分子電解質型燃料電池

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6093765A (ja) * 1983-10-28 1985-05-25 Toshiba Corp 燃料電池
JPS62271366A (ja) * 1986-05-19 1987-11-25 Yamaha Motor Co Ltd 燃料電池のスタツク締付構造
JPS62271364A (ja) * 1986-05-19 1987-11-25 Yamaha Motor Co Ltd 燃料電池
JPH08130028A (ja) * 1994-10-31 1996-05-21 Fuji Electric Co Ltd 固体高分子電解質型燃料電池
JPH08203553A (ja) * 1995-01-23 1996-08-09 Fuji Electric Co Ltd 固体高分子電解質型燃料電池
JPH1012262A (ja) * 1996-06-25 1998-01-16 Kansai Electric Power Co Inc:The 固体高分子電解質型燃料電池
JP2003331905A (ja) * 2002-05-14 2003-11-21 Matsushita Electric Ind Co Ltd 高分子電解質型燃料電池

Similar Documents

Publication Publication Date Title
JP3596761B2 (ja) 高分子電解質型燃料電池
JP3841347B2 (ja) 高分子電解質型燃料電池
JP4051076B2 (ja) 高分子電解質型燃料電池
US7678490B2 (en) Polymer electrolyte fuel cell
KR100699659B1 (ko) 고분자 전해질형 연료전지
US7851105B2 (en) Electrochemical fuel cell stack having staggered fuel and oxidant plenums
WO2002015312A1 (fr) Pile a combustible a electrolyte polymere
JP2002260689A (ja) 固体高分子型セルアセンブリ、燃料電池スタックおよび燃料電池の反応ガス供給方法
KR20090017650A (ko) 고분자 전해질형 연료전지
JPWO2007123191A1 (ja) 固体高分子型燃料電池
JP2001297777A (ja) 高分子電解質型燃料電池
JP3483116B2 (ja) 高分子電解質型燃料電池
WO2004075326A1 (ja) 高分子電解質型燃料電池および高分子電解質型燃料電池の運転方法
JP2001126750A (ja) 高分子電解質型燃料電池およびその締結方法
JP2003163015A (ja) 高分子電解質型燃料電池およびその導電性セパレータ板
JP4122047B2 (ja) 燃料電池
JP2004164969A (ja) 燃料電池スタック
JP3963716B2 (ja) 燃料電池スタック
JP4314696B2 (ja) 高分子電解質型燃料電池スタック
US8530106B2 (en) End cell thermal barrier having variable properties
WO2006049019A1 (ja) 高分子電解質形燃料電池
WO2006049018A1 (ja) 高分子電解質形燃料電池
JP2001167789A (ja) 高分子電解質型燃料電池
KR100758773B1 (ko) 고분자 전해질형 연료전지
JP2006210212A (ja) 高分子電解質型燃料電池

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05795302

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP