WO2006048205A1 - Helicoptere a vitesse de rotation regulee - Google Patents

Helicoptere a vitesse de rotation regulee Download PDF

Info

Publication number
WO2006048205A1
WO2006048205A1 PCT/EP2005/011589 EP2005011589W WO2006048205A1 WO 2006048205 A1 WO2006048205 A1 WO 2006048205A1 EP 2005011589 W EP2005011589 W EP 2005011589W WO 2006048205 A1 WO2006048205 A1 WO 2006048205A1
Authority
WO
WIPO (PCT)
Prior art keywords
helicopter
rotor
motor
helicopter according
sensor
Prior art date
Application number
PCT/EP2005/011589
Other languages
German (de)
English (en)
Inventor
Stefan Dolch
Original Assignee
Stefan Dolch
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE202004017173U external-priority patent/DE202004017173U1/de
Application filed by Stefan Dolch filed Critical Stefan Dolch
Publication of WO2006048205A1 publication Critical patent/WO2006048205A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • B64U50/10Propulsion
    • B64U50/19Propulsion using electrically powered motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/13Flying platforms
    • B64U10/14Flying platforms with four distinct rotor axes, e.g. quadcopters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U30/00Means for producing lift; Empennages; Arrangements thereof
    • B64U30/20Rotors; Rotor supports
    • B64U30/29Constructional aspects of rotors or rotor supports; Arrangements thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2101/00UAVs specially adapted for particular uses or applications
    • B64U2101/30UAVs specially adapted for particular uses or applications for imaging, photography or videography
    • B64U2101/31UAVs specially adapted for particular uses or applications for imaging, photography or videography for surveillance

Definitions

  • Helicopters are rotary-wing aircraft, with at least one motor-driven rotor. Helicopters are available in numerous embodiments.
  • helicopters with several rotors for Auftriebser ⁇ generation there are helicopter types with several rotors for Auftriebser ⁇ generation. Of these, helicopters with two counter-rotating rotors have gained importance. These are then either side by side (combing or further apart), arranged coaxially one above the other or one behind the other (Tandemhub ⁇ screwdriver).
  • electrically powered helicopters are currently mainly of interest for small sizes (model aircraft, micro drones, flying camera carriers, etc.). The electrically powered helicopter therefore also depends on energy efficiency in order to achieve a sufficiently long flight time and a sufficiently high payload with not too large rotor diameter.
  • Proven have special sensors that detect the rotational movement of the aircraft, so-called gyro or Gyros sensors. Their signals are detected in an electronic unit, further processed and fed to speed controllers of the corresponding motors. It all happens in fractions of a second.
  • the invention has for its object to provide an electrically driven multi-rotor renhubschrauber whose attitude is better stabilized.
  • the invention is also based on the object of specifying an improved driving method for drives of Mehrrotorenhubschraubern. Brief outline of the invention
  • a speed-controlled helicopter with three or more lifting units each with at least one rotor and at least one electronically commutated DC motor driving the motor, at least one sensor for detecting the rotational movement of a rotating component of the lifting unit for at least one lifting unit or all lifting units ⁇ unit is provided.
  • a speed controller for controlling at least one of the direct current motors may be provided taking into account the sensor signals.
  • the Ansteu ⁇ erfrequenz of the speed controller may be more than 50 Hz, more than 100 Hz or more than 200 Hz.
  • the sensors for detecting the rotational movement can operate on a magnetic principle. Examples include Hall sensors. It is also possible to use optical sensors or sensors which are based on other physical principles. The sensors can be based on incremental measuring methods, with different degrees of graduation. For example, a toothed disc can be used. Tick marks are also possible.
  • one sensor per motor is sufficient.
  • several sensors per engine preferably three (eg for each engine phase of one).
  • the sensor signals can also be used for other purposes. So signals can z. B. fed into the central control unit and / or be integrated into the logic of the flight attitude stabilization.
  • the sensors are mounted on the outside of the DC motors. This approach makes it possible to retrofit conventional drives.
  • the sensors are integrated in the DC motors.
  • the sensors are arranged in the rotor region, in particular in the region of the respective rotor shaft.
  • the DC motors may be external rotor or internal rotor. External runners based on the LRK principle (Lucas, Retzbach, Kühfuss) are preferred. According to the LRK principle, the stator is wound according to a special winding scheme, z. B. only every second tooth. The measure increases the torque.
  • the individual lifting units are expediently gearless.
  • a gearless design can be achieved in that the DC motor of a lifting unit has a motor shaft which simultaneously represents the rotor shaft of the lifting unit.
  • the motor shafts are preferably at least twice roller bearings. Deep groove ball bearings can be used as rolling bearings.
  • the DC motors may each have a weight-specific specific torque of at least 1 Nmm / g. Also DC motors with a torque of more than about 3 Nmm / g can be used. The corresponding values can be achieved by the combination of various structural features and parameters, in particular by external rotors with a larger number of poles.
  • the helicopter may have a higher or lower take-off mass.
  • the Ab ⁇ flight mass may be less than about 10 kg.
  • a take-off mass of less than about 5.0 kg, and more preferably less than about 0.75 kg.
  • the helicopter may have three, four or more lifting units. If four lifting units are present, they can be arranged in a plan view at the corners of a quadrilateral, in particular a square.
  • a helicopter having three or more, in particular four lifting units, each with a rotor and a rotor driving, electronically commutated DC motor.
  • the DC motors can be designed as external rotor.
  • the lifting units can be gearless.
  • the at least three lifting units can each contain at least one rotating permanent magnet in whose magnetic field windings are located.
  • the invention also provides a method for improved propulsion control of multi-rotor helicopters, with at least three rotors driven by electronically commutated DC motors.
  • the method includes the steps of (preferably continuously) detecting the rotational movement of a ro- Component of a lifting unit (for example, a rotor position, in particular the position of a rotor shaft, or a rotational speed of a component of the DC motor) and the generation of drive signals for the respective DC motor, taking into account the respective detected speed or position on.
  • a ro- Component of a lifting unit for example, a rotor position, in particular the position of a rotor shaft, or a rotational speed of a component of the DC motor
  • the detection of the rotational movement can be done incrementally.
  • the respective increment can be constant or variable. As appropriate, an increment of less than about 5 ° or less than about 2 °, preferably less than about 0.5 °, has been found.
  • the sensor signals can also be used for purposes other than motor control. Examples relating to this will be explained in more detail below.
  • Figure 1 shows a plan view of a 4-rotor helicopter according to an embodiment of the invention
  • Figure 2 shows a side view of the helicopter of FIG. 1;
  • FIG. 3 shows a cross-sectional view of a lifting unit according to a first embodiment of the invention.
  • Figure 4 shows a cross-sectional view of a lifting unit according to a second embodiment of the invention.
  • FIG. 5 shows a schematic representation of the processing of a sensor signal in a lifting unit according to FIG. 3 or FIG. 4. Description of preferred embodiments of the invention
  • the basis for an improved attitude stabilization is a sufficient dynamics of the rotor drives.
  • the speed of the motors should be able to change very quickly.
  • one sensor is used for detecting the rotational movement in the exemplary embodiments.
  • Its near-real-time signal is used in the commutation of the associated motor.
  • the control of the motors is improved in such a way that the drives can follow speed changes more quickly. In combination with other measures, this also increases the flight stability.
  • the Fign. Figures 1 and 2 show a 4-rotor helicopter 10 which is suitable as a micro drone for aerial reconnaissance in urban terrain.
  • the helicopter 10 comprises a total of four lifting units 12.
  • the lifting units 12 each have a rotor 14 which is two-lobed in the exemplary embodiment and an electronically commutated (brushless) direct current motor 16 which drives the rotor 14.
  • the lifting units 12 are attached to a support frame 18 and connected by this mitein ⁇ other.
  • the support frame 18 also carries a payload 20.
  • the payload 20 is a camera.
  • the camera sparks a video picture realtime close to the ground. There it is displayed in video glasses or on a monitor.
  • the helicopter 10 can be controlled via a "cockpit view", even without direct visual contact from the operator to the helicopter.
  • the technical data of the helicopter 10 are as follows:
  • FIGS. 3 and 4 show two different lifting units 12 for the helicopter 10 according to FIGS. 1 and 2 shown in cross section. Identical or coincident elements are provided with the same reference numerals.
  • the lifting unit 12 comprises, in addition to the rotor 14 and the electronically commutated DC motor 16, a sensor 22 based on the Hall principle and a speed controller 24.
  • the sensor 22 is connected via an electrical supply line 26 the speed controller 24 and this in turn electrically coupled via an electrical supply line 28 to the motor 16.
  • the motor 16 has a motor shaft 49, which simultaneously acts as a rotor shaft 30.
  • the lifting unit 12 is therefore in the embodiment without gear, so it is gearless.
  • the motor shaft 49 is rotatably mounted in a bearing plate 36 by means of two trained as deep groove ball bearing bearings 32, 34.
  • the bearing plate 36 is fastened in a rotationally fixed manner to the support frame 18, which also functions as a motor mounting.
  • the motor 16 designed as an external rotor comprises a laminated core with windings.
  • the stator 38 is rigidly connected to the bearing plate 36.
  • the component of the motor 16 which rotates about the stator 38 is formed by a motor bell 40.
  • the motor bell 40 includes magnets 42 which are secured to a yoke ring 44.
  • the return ring 44 in turn is rigidly coupled to the motor shaft 49 by means of a motor bearing plate 46. In this way, a rotation of the motor bell 40 is transmitted to the motor shaft 49, which carries the rotor 14.
  • a ferromag netic pulley 50 is mounted, the teeth are scanned by the sensor 22 and form the basis for the sensor output signal.
  • the motor 16 While in the embodiment of the lifting unit 12 shown in FIG. 3 the motor 16 is arranged between the support frame 18 and the rotor 14, in the embodiment shown in FIG. 4 the motor 16 is fastened below the support frame 18. In other words, in the embodiment according to FIG. 4, the support frame 18 is arranged between the rotor 14 and the motor 16.
  • the sensor according to FIG. 3 extends radially to the motor shaft 49, while the sensor 22 according to FIG. 4 essentially extends in a plane parallel to the motor shaft 49 lies.
  • the drive of the motor 16 will be described together for the embodiments shown in FIGS. 3 and 4.
  • the output signal of the sensor 22 is supplied to the rotary number plate 24.
  • the speed controller receives a drive signal via a further electrical supply line 48 from a central control unit (not shown). Based on the output signal of the sensor 22 and this drive signal, the speed controller 24 determines a speed control signal, the so-called commutation signal, which is supplied to the power section of the actuator. The outputs of the power unit lead via the electrical supply line 28 to the motor 16.
  • the upper timeline in FIG. 5 shows the timestamps of the incremental sensor signal up to a time t0.
  • the three underlying time beams form the switching states of the total of three outputs of the speed controller 24.
  • the signal processing in the speed controller 24 is shown schematically.
  • the switching states of the speed controller 24 are shown in Fig. 5 simplifying at full load. In reality, the drives are constantly working at partial load (pulse width modulation).
  • a base circuit 51 of the speed controller 24 used is designed for operation on motors without sensors.
  • a commutation signal B generated by the base circuit 51 is therefore generated in a conventional manner from the respectively open output A of the motor winding. For this purpose, the zero crossing of the magnetic induction voltage is used.
  • This (raw) commutation signal B is fed to an additional, (logically) separate circuit 52 of the speed controller 24, which also receives and processes the sensor signal D.
  • the commutation signal B is corrected with the (processed) sensor signal D.
  • a corrected commutation signal C is then fed to a power section 53 of the speed controller 24, which energizes the motor windings. During the correction, the respective motor currents are also taken into account.
  • the corrected commutation signal C is closer to the respective time optimum.
  • the respective optimum is the ideal timing (timing) for the commutation, in which the engine develops its maximum, design-related torque. If more power is demanded, the torque of the engine therefore increases earlier and steeper, and thus also the lift on the rotor.
  • safety circuits can be implemented which prevent the correction of the commutation signal if implausible signals are present (fail-safe function).
  • the commutation time ti is generated at an exemplary output 3 from information which was collected up to the time t0.
  • the most recent information comes from the sensor (timestamps immediately before to). Even the most recent speed trends are taken into account during commutation. Illustratively, this means that, until shortly before the respective commutation, its "planned" time is calculated again and again, with the respectively latest sensor data and optionally further (other) parameters.
  • the individual precalculated commutation times may be slightly before (-) or after (+) ti. The last value is "released" immediately before the commutation and defines the actual time of the commutation.
  • the quality of the speed information from the sensor is approximately independent of the speed. Because of the higher aerodynamic efficiency and noise reasons, large and slow rotating rotors are often used. In this case, the use of sensors is particularly worthwhile.
  • the used motor of the embodiment is optimized in many respects to a high torque at low speeds: about 400 mm rotor diameter and 1500 l / min speed with only about 0.035 kg engine mass.
  • Engines of this weight class conventionally drive rotors with a diameter of approximately 250 mm, at much higher speeds from approximately 4000 l / min.
  • a large number of poles contribute to the high torque.
  • a high number of poles also means that more commutations take place per revolution. This means that the commutation must also fit more precisely to the respective rotor position. Otherwise it may happen that the pole pieces of the stator select the wrong magnets as "partners" and the motor runs at a different specific speed, which is associated with efficiency losses.
  • the high resolution (small increment) sensor used here eliminates the problem.
  • the components of the speed controller 24 can be implemented in hardware in modern microcontroller architecture. In the software, it is particularly important to resource-saving programming, since the processes are extremely fast (must) and only limited computing power is available.
  • the start-up process is problematic, especially with large rotors. Some drive stops completely, others start with a time delay, eg. T. rough and connected with noise.
  • the background is that the motor does not yet output a readable induction voltage at standstill to control the cumming. So the speed controller must first accelerate the engine to a certain minimum speed without this information, so to speak "blind". For this purpose, a set rotary field is generated in the speed controller. This, however, the engine can not follow from case to case.
  • the sensors effectively support the process, because even at low angles of rotation reliable signals are available for further rotational acceleration (low incre- ment).
  • the signals of the sensors can also be processed for other purposes: speed monitoring, gust detection (as a result of speed fluctuations), feeding into a central control electronics for various purposes, eg. B. Integration into the logic of attitude stabilization.
  • the flying capacity depends on each individual drive. If one of the drives fails, the device crashes. The probability of falling due to drive failure increases linearly with the number of drives. Each multi-rotor helicopter crashes at some point when the brushes are worn out. Often, this "worst case" does not even announce itself.
  • the invention thus enables a silent, highly efficient, all-axis controllable, extremely flight-stable, reliable, variably configurable by the software konfigu ⁇ rable, universally applicable helicopter, which has no wear parts except 8 ball bearings.
  • the aircraft according to the invention is very easy to use: without (internal or external) control intervention, for example, the device remains hovering on the spot, with only minor deviations around a central position. Even small disturbances, such as wind, lead to drifting away only to a small extent. With control actions, the device can be "moved” to another location. No aviator skill is required for this. If, for example, the joystick of a remote control (cable or radio) is released, the helicopter will remain in the air again. Because the technology works without GPS, the aircraft can also be used inside buildings where GPS signals can not be received.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Remote Sensing (AREA)
  • Toys (AREA)

Abstract

L'invention concerne un hélicoptère (10) pourvu d'au moins trois unités de sustentation (12) comprenant chacune au moins un rotor (14) et au moins un moteur à courant continu à commutation électronique (16) entraînant ledit rotor (14). De préférence chaque unité de sustentation (12) présente au moins un capteur servant à détecter le mouvement de rotation d'un composant rotatif de l'unité de sustentation (12). Les moteurs à courant continu à commutation électronique (16) des unités de sustentation (12) se présentent de préférence sous la forme d'induits extérieurs.
PCT/EP2005/011589 2004-11-06 2005-10-28 Helicoptere a vitesse de rotation regulee WO2006048205A1 (fr)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE202004017173U DE202004017173U1 (de) 2004-11-06 2004-11-06 Vierrotoriger Hubschrauber mit Elektroantrieb
DE202004017173.2 2004-11-06
DE102005010336.7 2005-03-07
DE102005010336A DE102005010336B4 (de) 2004-11-06 2005-03-07 Drehzahlgesteuerter Hubschrauber

Publications (1)

Publication Number Publication Date
WO2006048205A1 true WO2006048205A1 (fr) 2006-05-11

Family

ID=35520147

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2005/011589 WO2006048205A1 (fr) 2004-11-06 2005-10-28 Helicoptere a vitesse de rotation regulee

Country Status (2)

Country Link
DE (1) DE102005010336B4 (fr)
WO (1) WO2006048205A1 (fr)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103213681A (zh) * 2013-04-09 2013-07-24 皖西学院 六自由度四轴飞行器
RU2500577C1 (ru) * 2012-08-29 2013-12-10 Яков Кузьмич Борзенко Многовинтовой вертолет
CN103786891A (zh) * 2014-01-10 2014-05-14 江苏艾锐泰克无人飞行器科技有限公司 无人飞行器及无人飞行器线路的整理方法
CN103895462A (zh) * 2014-04-15 2014-07-02 北京航空航天大学 一种可实现人脸检测和光伏发电的陆空两用搜救装置
CN103935514A (zh) * 2014-05-06 2014-07-23 上海交通大学 双层螺旋桨式多自由度四轴飞行器
CN104002978A (zh) * 2014-05-16 2014-08-27 哈尔滨工程大学 一种小型探照旋翼飞行器
CN105252980A (zh) * 2015-10-20 2016-01-20 南京市锅炉压力容器检验研究院 一种陆空两栖的应急救援侦查机器人及其用途
CN107512396A (zh) * 2017-08-22 2017-12-26 严杰豪 一种无人机物品运送装置
WO2018158833A1 (fr) * 2017-02-28 2018-09-07 正 星野 Corps mobile
JP6841545B1 (ja) * 2020-07-07 2021-03-10 株式会社エアロネクスト 飛行体及び動力装置

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8328128B2 (en) * 2006-06-26 2012-12-11 Burkhard Wiggerich Aircraft
DE102007054126A1 (de) * 2007-11-11 2009-05-20 Stefan Reich Unbemanntes Banner-tragendes Fluggerät und Verfahren zum Lufttransport eines Darstellungsobjekts
DE102008014853B4 (de) * 2008-03-18 2010-11-18 Ascending Technologies Gmbh Drehflügelfluggerät
DE202008012191U1 (de) * 2008-09-15 2008-11-27 Geiger Engineering Elektrisches Antriebssystem
ITBO20110769A1 (it) * 2011-12-29 2013-06-30 Univ Bologna Alma Mater Elicottero quadrirotore (soluzione b).
EP2817219B1 (fr) 2012-02-22 2020-06-03 Volocopter GmbH Aéronef
WO2013174751A2 (fr) * 2012-05-21 2013-11-28 E-Volo Gmbh Procédé de commande d'un appareil volant sous forme d'un multicoptère et système de commande correspondant
DE102013000168B4 (de) * 2013-01-09 2021-06-17 Mdgroup Germany Gmbh Aerodynamischer Multikopter / Quadrokopter
CN103387051B (zh) * 2013-07-23 2016-01-20 中国科学院长春光学精密机械与物理研究所 四旋翼飞行器
DE102013108076A1 (de) * 2013-07-29 2015-01-29 OIC-GmbH Fluggerät zum Befördern von einem oder mehreren Aufnahmegeräten sowie System hierzu
DE102013219724A1 (de) * 2013-09-30 2015-04-02 Siemens Aktiengesellschaft Elektrisch angetriebenes Flugzeug
FR3012968B1 (fr) 2013-11-13 2016-01-08 Parrot Drone a voilure tournante avec helices a entrainement direct et montage rapide
CN103786878A (zh) * 2014-02-08 2014-05-14 江苏艾锐泰克无人飞行器科技有限公司 一种多轴飞行器
US10046853B2 (en) 2014-08-19 2018-08-14 Aergility LLC Hybrid gyrodyne aircraft employing a managed autorotation flight control system
DE102014113191A1 (de) 2014-09-12 2016-03-17 Hochschule für Angewandte Wissenschaften Hamburg (HAW Hamburg) Dezentrale redundante Architektur für ein unbemanntes Luftfahrzeug zur vereinfachten Integration von Sensorsystemen
CN104908954A (zh) * 2015-05-14 2015-09-16 苏州绿农航空植保科技有限公司 一种多旋翼飞行器电机底座
CN104975942A (zh) * 2015-06-29 2015-10-14 田悦丰 一种多台驱动装置组合产生组合驱动力的方法及系统
WO2017000528A1 (fr) 2015-06-29 2017-01-05 田悦丰 Ensemble dispositif d'entraînement comprenant de multiples dispositifs d'entraînement, et son application
ITUB20153090A1 (it) * 2015-07-31 2017-01-31 Sab Heli Div S R L gruppo motore di elicottero radiocomandato
DE102016010873A1 (de) 2016-09-02 2018-03-08 Mario Hintze Multicopter-Tragwerk in Leichtbauweise
DE102017127775A1 (de) * 2017-11-24 2019-05-29 Minebea Mitsumi Inc. Multikopter
EP3959125A4 (fr) 2019-04-26 2023-03-22 Aergility Corporation Aéronef de type girodyne hybride
DE102019123726A1 (de) * 2019-09-04 2021-03-04 Flynow Aviation Gmbh Auftriebseinheit für ein Fluggerät und Fluggerät
DE102020200056A1 (de) 2020-01-07 2021-07-08 Volkswagen Aktiengesellschaft Kontrolleinheit zur kontinuierlichen Steuersignalüberprüfung bei Multirotorfluggeräten vor und während eines Flugbetriebs
DE102020109008A1 (de) 2020-04-01 2021-10-07 Ebm-Papst St. Georgen Gmbh & Co. Kg Luftfördervorrichtung mit Axialkraftmessung

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01201294A (ja) * 1988-02-05 1989-08-14 Keyence Corp 垂直離着陸機の玩具
DE19543284A1 (de) * 1995-11-21 1997-05-22 Robbe Modellsport Gmbh & Co Kg Antriebseinheit für ein Modellflugzeug
DE19826752A1 (de) * 1998-06-13 1999-12-16 Abb Daimler Benz Transp Vorrichtung zur Steuerung der Phase und/oder Amplitude von einem hochpoligen Synchronmotor zugeführten Strömen
WO2004059830A2 (fr) * 2002-12-31 2004-07-15 Emb-Papst St. Georgen Gmbh & Co. Kg Ensemble de detection de la position d'un rotor et procede de detection de la position d'un rotor
DE202004010057U1 (de) 2004-06-26 2004-08-26 Braun, Andrea Elektrohubschrauber mit 4 Hubrotoren
DE202004016509U1 (de) 2004-10-26 2004-12-16 Braun, Andrea Hubschrauber mit 4 elektrisch angetriebenen Hubrotoren

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE29607484U1 (de) * 1996-04-25 1996-08-29 Köhler, Jochen, 70563 Stuttgart Gleichstrommotor, insbesondere zum Antrieb der Luftschraube eines Flugmodells

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01201294A (ja) * 1988-02-05 1989-08-14 Keyence Corp 垂直離着陸機の玩具
DE19543284A1 (de) * 1995-11-21 1997-05-22 Robbe Modellsport Gmbh & Co Kg Antriebseinheit für ein Modellflugzeug
DE19826752A1 (de) * 1998-06-13 1999-12-16 Abb Daimler Benz Transp Vorrichtung zur Steuerung der Phase und/oder Amplitude von einem hochpoligen Synchronmotor zugeführten Strömen
WO2004059830A2 (fr) * 2002-12-31 2004-07-15 Emb-Papst St. Georgen Gmbh & Co. Kg Ensemble de detection de la position d'un rotor et procede de detection de la position d'un rotor
DE202004010057U1 (de) 2004-06-26 2004-08-26 Braun, Andrea Elektrohubschrauber mit 4 Hubrotoren
DE202004016509U1 (de) 2004-10-26 2004-12-16 Braun, Andrea Hubschrauber mit 4 elektrisch angetriebenen Hubrotoren

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LUDWIG RETZBACH: "Selbstbaumotor TORQUEMAX LRK, 2.Teil", August 2001 (2001-08-01), XP002365857, Retrieved from the Internet <URL:http://www.torcman.de/peterslrk/EM-1-2001/LRK_EM_1_2001.htm> [retrieved on 20060202] *
PATENT ABSTRACTS OF JAPAN vol. 013, no. 504 (C - 653) 13 November 1989 (1989-11-13) *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2500577C1 (ru) * 2012-08-29 2013-12-10 Яков Кузьмич Борзенко Многовинтовой вертолет
CN103213681B (zh) * 2013-04-09 2015-10-14 皖西学院 六自由度四轴飞行器
CN103213681A (zh) * 2013-04-09 2013-07-24 皖西学院 六自由度四轴飞行器
CN103786891A (zh) * 2014-01-10 2014-05-14 江苏艾锐泰克无人飞行器科技有限公司 无人飞行器及无人飞行器线路的整理方法
CN103895462A (zh) * 2014-04-15 2014-07-02 北京航空航天大学 一种可实现人脸检测和光伏发电的陆空两用搜救装置
CN103935514A (zh) * 2014-05-06 2014-07-23 上海交通大学 双层螺旋桨式多自由度四轴飞行器
CN104002978A (zh) * 2014-05-16 2014-08-27 哈尔滨工程大学 一种小型探照旋翼飞行器
CN105252980A (zh) * 2015-10-20 2016-01-20 南京市锅炉压力容器检验研究院 一种陆空两栖的应急救援侦查机器人及其用途
WO2018158833A1 (fr) * 2017-02-28 2018-09-07 正 星野 Corps mobile
JPWO2018158833A1 (ja) * 2017-02-28 2019-07-18 正 星野 走行体
CN107512396A (zh) * 2017-08-22 2017-12-26 严杰豪 一种无人机物品运送装置
JP6841545B1 (ja) * 2020-07-07 2021-03-10 株式会社エアロネクスト 飛行体及び動力装置
WO2022009319A1 (fr) * 2020-07-07 2022-01-13 株式会社エアロネクスト Corps volant et dispositif moteur

Also Published As

Publication number Publication date
DE102005010336A1 (de) 2006-05-11
DE102005010336B4 (de) 2007-09-06

Similar Documents

Publication Publication Date Title
DE102005010336B4 (de) Drehzahlgesteuerter Hubschrauber
DE602004002376T2 (de) Rotor und flugzeug, die im schwebeflug passiv stabil sind
EP3375707B1 (fr) Aéronef et système de vol
AT523262B1 (de) Vorrichtung zur Verstellung der Neigung von Rotorblättern eines Rotors
EP3409589B1 (fr) Système d&#39;entraînement pour un véhicule
EP2035276A1 (fr) Aéronef
WO2007122245A2 (fr) Avion
DE102005046155A1 (de) Hubschrauber mit koaxialen Hauptrotoren
AT517539B1 (de) VTOL-Luftfahrzeug mit bewegbarer Masse zur Steuerung
DE1531371A1 (de) Flugzeug
CN206704537U (zh) 一种固定翼无人机
EP1320407B1 (fr) Aeronef telecommandable
DE3873176T2 (de) Rotoranordnung eines drehfluegelflugzeuges.
CN109455295B (zh) 旋翼控制装置及旋翼飞行器
DE19828720B4 (de) Segelflugzeug mit Hilfsantrieb
DE102005020594A1 (de) Hubschrauber zur Beobachtung aus der Luft
CN104888466A (zh) 垂直起降固定翼飞机
DE102017215269A1 (de) Elektromotor, Antriebssystem und Verfahren zum Antreiben von Einzelpropellern eines Doppelpropellersystems
DE10053134B4 (de) Neuartiges Auftriebssystem für schuberzeugende Rotoren
DE10241608A1 (de) VTLO-Fluggerät mit Koaxialrotor und neuartigem Auftriebssystem
AT510493A1 (de) Hubschrauber
DE102020201579B4 (de) Fluggerät
DE102005022705A1 (de) Hubschrauber mit Kamera
DE102019006342A1 (de) Vorrichtung zur Fortbewegung auf weitgehend glatten Oberflächen mittels eines Bodeneffektgerätes
DE102017123536B4 (de) Luftfahrzeug

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05802416

Country of ref document: EP

Kind code of ref document: A1