EP1320407B1 - Aeronef telecommandable - Google Patents

Aeronef telecommandable Download PDF

Info

Publication number
EP1320407B1
EP1320407B1 EP02719960A EP02719960A EP1320407B1 EP 1320407 B1 EP1320407 B1 EP 1320407B1 EP 02719960 A EP02719960 A EP 02719960A EP 02719960 A EP02719960 A EP 02719960A EP 1320407 B1 EP1320407 B1 EP 1320407B1
Authority
EP
European Patent Office
Prior art keywords
flying machine
remotely controllable
machine according
pitch
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02719960A
Other languages
German (de)
English (en)
Other versions
EP1320407A2 (fr
Inventor
Heribert Vogel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE10125734A external-priority patent/DE10125734B4/de
Application filed by Individual filed Critical Individual
Publication of EP1320407A2 publication Critical patent/EP1320407A2/fr
Application granted granted Critical
Publication of EP1320407B1 publication Critical patent/EP1320407B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63HTOYS, e.g. TOPS, DOLLS, HOOPS OR BUILDING BLOCKS
    • A63H27/00Toy aircraft; Other flying toys
    • A63H27/12Helicopters ; Flying tops

Definitions

  • the present invention relates to a remotely controllable aircraft, especially a remote controllable ultralight model helicopter, with at least one rotor blade, the Setting angle is adjustable.
  • the main rotor In connection with model helicopters it is known to lift and pitch / roll the main rotor to control via a complex linkage that is used on servo motors connected.
  • two solutions are particularly common.
  • the first Solution is the connection of the tail rotor with the Main drive via a gearbox, which is operated by a servo motor is controlled, an optional clutch and a Output shaft.
  • the second solution is the tail rotor powered by a separate motor.
  • the first solution is usually used when an internal combustion engine is used as the main drive.
  • a second, only Internal combustion engine intended to drive the tail rotor would be, especially in the area of the tail rotor, too heavy.
  • An electric motor requires a complex one Generator or heavy batteries.
  • the second solution is especially with electrically powered models used because due to the drive for the tail rotor the low power required at the moment Electric motors can be used. Furthermore, it is known the gyro system that is used to stabilize around the Main rotor shaft regulates the tail rotor thrust (respectively other spatial axes such as Nick or Roll), as a separate system in its own housing to be provided, which are connected to the overall system can.
  • the buoyancy of the main rotor Variable control (pitch, nick and roll) is used in conventional Main rotor controls a variable control the setting angle of the rotor blades via servo motors, Swashplate, Hiller paddle and so on reached.
  • servo motors Swashplate
  • Hiller paddle Hiller paddle
  • the invention has for its object a remote controllable Aircraft, in particular a remotely controllable Ultralight model helicopter, to indicate that inexpensive can be manufactured and assembled relatively easily and compared to known remote-controlled aircraft has a reduced weight.
  • the coil is controlled so that the Desired setting angle results if the Forces acting on the rotor blade with respect to the setting angle are in balance. This is advantageously done in the form of a regulation.
  • the at least one coil is preferably pulse-shaped driven. This enables, for example, fully digital Control or regulation of the setting angle.
  • the adjustment of the setting angle of the at least one rotor blade Force over a connection angle as torsional force is transferred into the rotor blade, which is such is articulated on the at least one rotor blade that the position of the connection angle the setting angle of the at least one rotor blade.
  • a Connection angle is assigned to a rotor blade or that a connection angle is assigned to each rotor blade is. The latter solution comes in particular Consider if several rotor blades are provided whose setting angle can be adjusted independently are.
  • the connecting lever about an axis perpendicular to the rotor axis of rotation is pivotable.
  • the swivel axis cuts preferably the main rotor axis.
  • Aircraft can be provided that the at least a coil is arranged on a rotor plate which with is connected to a rotor axis.
  • the embodiment can be used for power transmission used plunger and the like waived become.
  • the electrical control of the at least a coil is made via sliding contacts.
  • This Sliding contacts can, for example, on a rotor plate be arranged, the one or more rotor blades outsourced.
  • At least one connecting lever arranged at least one permanent magnet that makes a contribution to the magnetic field.
  • a permanent magnet can also serve as a counterweight act and about the centrifugal force contribute to one or more rotor blades of the setting angle is moved to a predetermined position be, for example in a rest position or in a Position in the equilibrium of forces with respect to the setting angle prevails.
  • suitable stop elements are also provided be, for example between a rotor plate and a connection angle.
  • the present invention further relates to embodiments where it is envisaged that the Adjustment of the setting angle of at least one Rotor blade causing force over at least one Ram is transmitted.
  • a pestle is preferably in the region of the axis of rotation of the at least one Rotor blade arranged rotor and can for example, extend into the fuselage of the aircraft, around there with non-rotating elements co.
  • connection in particular provision can also be made be that of the at least one plunger on the connecting lever is articulated. For example over an angled section of the ram and a eyelet provided on the connecting lever. ever after arranging the eyelet along the radially guided part the connecting lever also results in a Stop between angled section of the plunger and the connection angle, which means a maximum setting angle is set.
  • the at least one plunger has at least one permanent magnet is arranged, which contributes to the magnetic field supplies. This embodiment comes without it to be limited, especially if the Tappet in the fuselage of the aircraft with non-rotating Elements interacts.
  • the at least one coil adjacent to a non-rotating element of the aircraft arranged to the at least one permanent magnet is. Solutions are conceivable, for example, in which the permanent magnet at one axial end of the Tappet is arranged above the coil or in which the coil is radially adjacent to the plunger Permanent magnet is arranged.
  • Aircraft can be provided that there are at least two Has rotor blades, the pitch angle independently are adjustable from each other, and that each of at least two rotor blades assigned at least one coil is. If the setting angle of the rotor blades by a appropriate control of the respective coils independently can be adjusted from each other, are special achieved advantageous flight characteristics.
  • connection in particular, provision can also be made be that a flexurally elastic connecting element so the connecting bracket connects in pairs that centrifugal forces acting perpendicular to the axes of rotation cancel each other and an additional resetting force arises which the rotational axes in the original position transferred.
  • the remote-controllable aircraft can be provided be that the two connected to the rotor blades Connection lever, the setting angle is independent is adjustable from each other via a flexible elastic Element are interconnected.
  • control of a to a main rotor axis coaxial part of the lift includes at least two coils, one of which each is assigned to a rotor blade, in each case in this way can be controlled that the setting angle of the at least two rotor blades adjusted in the same direction become.
  • This adjustment of the setting angle in the same direction can, for example, by creating a DC voltage to the at least one coil, especially a pulsed DC voltage caused by fully digital means can be provided.
  • controlling one to a main rotor axis non-coaxial buoyancy component includes at least two coils, each one Rotor blade is assigned, each controlled in this way be that the setting angle of at least two Rotor blades can be adjusted in opposite directions. This can be achieved, for example, by the two rotor blades at the same time within a certain time the period of the main rotor again and again with opposite polarity impulses. there the length of these impulses determines the strength of the pitch / roll forces.
  • the present invention also relates to embodiments where it is provided that the remotely controllable Aircraft has at least two rotor blades, the Entry angle are adjustable coupled.
  • the remotely controllable Aircraft has at least two rotor blades, the Entry angle are adjustable coupled.
  • a single connection angle can be used be used to adjust the Entry angle transmits required force.
  • a corresponding Coupling the rotor blades enables particularly simple and therefore light and inexpensive constructions.
  • control of a to a main rotor axis coaxial part of the lift includes that DC voltage, in particular a pulsed DC voltage to the at least one Coil is applied, which is assigned to at least one rotor blade is.
  • the control of a non-coaxial to a main rotor axis Buoyancy component that an AC voltage, especially a pulse-shaped one AC voltage applied to the at least one coil is assigned to at least one rotor blade is.
  • an AC voltage, especially a pulse-shaped one AC voltage applied to the at least one coil is assigned to at least one rotor blade.
  • both the coaxial buoyancy portion as well as the non-coaxial part of the buoyancy pulsed voltages can be set distinguish the respective pulse durations and, for example be determined by a control circuit.
  • Aircraft is intended to control the at least one coil is fully digital. This is especially true if a digital control device is used.
  • Figure 1a shows a top and side view of a first Embodiment of a main rotor of the invention Aircraft.
  • a main rotor plate 103 On a main rotor plate 103, the is connected to a mounted main rotor axis 108, are two over (not shown) tapping contacts electrically connected coils 106 symmetrical to Main rotor axis 108 attached.
  • Also on the main rotor plate 103 are attached to two rotary bearings 102, in which a connection bracket 101 is mounted on each the opposite ends of which are permanent magnets 105 and a rotor blade 104 are attached.
  • the permanent magnet 105 is arranged so that a direct current 107 through the coils 106 to deflect the Connection angle 101 and thus a changed Inflow or setting angle ⁇ of the rotor blades leads. Due to the changed setting angle ⁇ changes also the speed of the spinning Rotor head down through the rotor blades 104 or above accelerated air and thus the Construction buoyancy. If the coil current 107 interrupted again, act through the centrifugal force the connecting bracket 101 and the attached Permanent magnet 105 and by the at the Rotor blades 104 attacking forces for acceleration the air towards the deflection, so that the Connection angle 101 again in a zero position is deferred. An overshoot is caused by the damping properties of the rotor blades 104 largely prevented.
  • Figures 1bi - 1biii show examples of electrical Control profiles for adjusting setting angles.
  • the pitch control is carried out by an even pulse train achieved for both rotor blades as in Figure 1bi is shown.
  • the pulse train should be a Have period that is small compared to time which is required to set a rotor blade 104 from rest / normal position to maximum pitch and back to rest / normal position to move.
  • the pitch / roll control can be done by the two rotor blades 104 simultaneously at a certain time within the period T of the main rotor 100 always with opposite poles Pulses are applied, as shown in Figure 1bii is shown. The length of these pulses determines the strength of the pitch / roll forces.
  • Figure 1c shows a top and side view of a second Embodiment of a main rotor of the invention Aircraft.
  • Sliding contacts for establishing an electrical connection to avoid the coils 106 are the coils 106 in the embodiment shown in FIG. 1c in relocated the non-rotating part of the helicopter.
  • the connection between the rotor blades 104 and Permanent magnets 105 take place here via connection angles 101, eyelets 110 and push rods 111, on which the Permanent magnets 105 are attached.
  • the through the push rod 105 over the eyelet 110 in the connection angle 101 initiated vertical force leads to that already described deflection of the connecting angle 101 and the described control behavior, i.e. the Adjustment of the setting angle ⁇ .
  • the provision of the Rotor blades 104 is shown in FIG. 1c Embodiment ensured by instead of the practical weight of the permanent magnet laid in the axis of rotation 105 weights 112 are provided.
  • Figure 1d shows a side view of a tappet arrangement to transmit a force to change a setting angle.
  • the representation according to FIG. 1d can be in particular with the embodiment shown in Figure 1c combine.
  • the two permanent magnets 105a, 105b on the Ends of two pushrods that can be easily moved into each other 111a, 111b attached.
  • the thin push rod 111b is driven by magnetic force through which permanent magnet 105b attached to its end by through the coil 106b, which is coradial to a plain bearing 115b is arranged, a current flows.
  • Figure 1e shows a top and side view of a third Embodiment of a main rotor of the invention Aircraft.
  • the one shown in Figure 1e Embodiment is a simpler too Realizing variant of the main rotor control, however nevertheless has pitch / roll control options.
  • the representation of Figure 1e is on the Main rotor plate 103, which is connected to the main rotor axis 108 is connected, via (not shown) tapping contacts electrically connected coil 106 attached.
  • two pivot bearings 102 in which exactly one connection angle 101 is mounted, the two rotor blades 104 rigid connects with each other and at the cross boom ends a permanent magnet 105 and a counterweight 114 are attached are.
  • the permanent magnet 105 is arranged that a direct current 107 through the coil 106 to one Deflection of the connection angle 101 and thus one changed inflow or setting angle ⁇ the rotor blades 104 leads.
  • the rotor blades are the embodiment according to FIG. 1a 104 but always deflected in opposite directions. Will the Interrupted coil current 107 again, acts Centrifugal force of the connection angle 101, that of it attached permanent magnet 105 and the counterweight 114 against the deflection, so that the Connection angle 101 again in a zero position is deferred.
  • a fixed, not resilient stop 109 on the main rotor plate 103 below the connection angle 101 this can be done Overshoot can be prevented almost completely.
  • This principle can be applied to the main rotor control as follows exploit: by applying an AC voltage, whose period is synchronized with the speed the main rotor axis 108 can generate a force vector which is non-coaxial with the main rotor axis 108.
  • the embodiment shown in Figure 1e is one considerably simplified variant of the embodiment according to Figure 1a. Instead of controlling pitch and nick / roll enables the embodiment shown in Figure 1e only the pitch / roll control of the rotor blades 104. Therefore, this embodiment assumes that the blade geometry of the rotor blades 104 depending on the speed generates a certain buoyancy and thus a firm one Pitch corresponds.
  • the pulse sequence for activation can the description of the pitch / roll control in Used in connection with the embodiment of Figure 1a be shown in Figure 1bii.
  • Figure 1f shows a top and side view of a fourth Embodiment of a main rotor of the invention Aircraft.
  • the coil 106 To be prone to errors Sliding contacts for establishing an electrical connection to avoid the coil 106 according to FIG. 1e, is the coil 106 as shown in FIG. 1f in relocated the non-rotating part of the helicopter.
  • the connection between the rotor blades 104 and Permanent magnet 105 takes place here via the connection angle 101, the eyelet 110 and the (angled) push rod 111 to which the permanent magnet 105 is attached is.
  • the reset of the rotor blades 104 will ensured by the weight of the practically in the Axis of rotation placed permanent magnet 105 by weights 112 is replaced on the outer areas of the connecting bracket 101 are provided.
  • the damping of a Damping element can be reinforced by one of the Counterweights 112 to remove the unbalance on the Main rotor plate 103 is attached, and not on the connecting bracket 101.
  • leads the increased bearing friction may also become one increased wear of the bearings 102.
  • the embodiment 1f essentially corresponds to that of the embodiment of Figure 1d, optionally one of the push rods 111 with associated permanent magnet arrangement 105 and coil 106 are omitted.

Landscapes

  • Toys (AREA)
  • Catching Or Destruction (AREA)
  • Selective Calling Equipment (AREA)
  • Burglar Alarm Systems (AREA)

Claims (24)

  1. Aéronef télécommandable, notamment un hélicoptère-modèle ultra léger télécommandable, comprenant au moins une pale du rotor (104) effectuant une rotation autour d'un axe principale de rotation (108), l'angle de pas (α) de ladite au moins une pale du rotor étant réglable, le réglage de l'angle de pas (α) de l'au moins une pale du rotor (104) s'effectuant par une force, notamment une force de torsion exercée directement sur l'axe de rotation, laquelle force étant engendrée par un champ magnétique pouvant être varié par la commande électrique d'au moins une bobine (106),
    caractérisé en ce que
    la commande électrique de l'au moins une bobine (106) est synchronisée avec la vitesse de rotation de l'au moins une pale du rotor et s'effectue pendant une durée prédéterminable d'un cycle déterminé par une rotation de 360° de l'au moins une pale du rotor (104) autour de l'axe principale (108).
  2. Aéronef télécommandable selon la revendication 1, caractérisé en ce que le champ magnétique est généré par au moins un aimant permanent (105) et l'au moins une bobine (106).
  3. Aéronef télécommandable selon la revendication 1, caractérisé en ce que l'au moins une bobine (106) est commandée par impulsions.
  4. Aéronef télécommandable selon l'une des revendications précédentes, caractérisé en ce que la force provoquant le réglage de l'angle de pas (α) de l'au moins une pale du rotor (104) est transmise en tant que force de torsion via un levier de jonction (101) sur la pale du rotor (104) lequel étant articulé sur l'au moins une pale du rotor (104) de manière à ce que la position du levier de jonction (101) définisse l'angle de pas (α) de l'au moins une pale du rotor (104).
  5. Aéronef télécommandable selon l'une des revendications précédentes, caractérisé en ce que le levier de jonction (101) est orientable autour d'un axe perpendiculairement à l'axe de rotation du rotor (108).
  6. Aéronef télécommandable selon l'une des revendications précédentes, caractérisé en ce que l'au moins une bobine (106) est disposée sur une plaque du rotor (103) laquelle communique avec un axe du rotor (108).
  7. Aéronef télécommandable selon l'une des revendications précédentes, caractérisé en ce que la commande électrique de l'au moins une bobine (106) s'effectue par l'intermédiaire de contacts à frottement.
  8. Aéronef télécommandable selon l'une des revendications précédentes, caractérisé en ce que sur au moins un levier de jonction (101) est disposé au moins un aimant permanent (105) qui fournit sa contribution au champ magnétique.
  9. Aéronef télécommandable selon l'une des revendications précédentes, caractérisé en ce que la force provoquant le réglage de l'angle de pas (α) de l'au moins une pale du rotor (104) est transmise via au moins un poussoir (111).
  10. Aéronef télécommandable selon l'une des revendications précédentes, caractérisé en ce que l'au moins un poussoir (111) est articulé sur le levier de jonction (101).
  11. Aéronef télécommandable selon l'une des revendications précédentes, caractérisé en ce que sur l'au moins un poussoir (111) est disposé un aimant permanent (105) qui fournit sa contribution au champ magnétique.
  12. Aéronef télécommandable selon l'une des revendications précédentes, caractérisé en ce que l'au moins une bobine (106) est disposée sur un élément non tournant de l'aéronef à proximité immédiate de l'au moins un aimant permanent (105).
  13. Aéronef télécommandable selon l'une des revendications précédentes, caractérisé en ce qu'il comporte au moins deux pales du rotor (104) dont les angles de pas (α) sont réglables indépendamment l'un de l'autre et qu'à chacune des au moins deux pales du rotor (104) est associée au moins une bobine (106).
  14. Aéronef télécommandable selon l'une des revendications précédentes, caractérisé en ce que les deux leviers de jonction (101) reliés aux pales du rotor (104) dont les angles de pas (α) sont réglables de manière indépendante l'un de l'autre, sont reliés entre eux par un élément souple en flexion (113).
  15. Aéronef télécommandable - selon l'une des revendications précédentes, caractérisé en ce que la commande d'une partie de sustentation (pitch) coaxiale à un axe principal du rotor (108) implique qu'au moins deux bobines (106) dont chacune est associée à une pale du rotor (104), sont susceptibles d'être commandées de manière à permettre la variation dans le même sens des angles de pas (α) des au moins deux pales du rotor (104).
  16. Aéronef télécommandable selon l'une des revendications précédentes, caractérisé en ce que la commande d'une partie de sustentation (nick et/ou roll) non coaxiale à un axe principal du rotor (108) implique qu'au moins deux bobines (106) dont chacune est associée à une pale du rotor (104) sont susceptibles d'être commandées de manière à permettre la variation dans le sens contraire des angles de pas (α) des au moins deux pales du rotor (104).
  17. Aéronef télécommandable selon l'une des revendications précédentes, caractérisé en ce qu'il présente au moins deux pales du rotor (106) dont les angles de pas (α) sont réglables de manière conjuguée.
  18. Aéronef télécommandable selon l'une des revendications précédentes, caractérisé en ce que la commande d'une partie de sustentation (pitch) coaxiale à un axe principal du rotor (108) implique qu'une tension continue, notamment une tension continue par impulsions, est appliquée à au moins une bobine (106) associée à au moins une pale du rotor (104).
  19. Aéronef télécommandable selon l'une des revendications précédentes, caractérisé en ce que la commande d'une partie de sustentation (nick et/ou roll) non coaxiale à un axe principal du rotor (108) implique qu'une tension alternative, notamment une tension continue par impulsions, est appliquée à au moins une bobine (106) associée à au moins une pale du rotor (104).
  20. Aéronef télécommandable selon l'une des revendications précédentes, caractérisé en ce que la période de la tension appliquée à l'au moins une bobine (106) est synchronisée avec la vitesse de l'au moins une pale du rotor (104).
  21. Aéronef télécommandable selon l'une des revendications précédentes, caractérisé par la superposition de la commande d'une partie de sustentation (pitch) coaxiale à un axe principal du rotor (108) et de la commande d'une partie de sustentation (nick et/ou roll) non coaxiale à un axe principal du rotor (108).
  22. Aéronef télécommandable selon l'une des revendications précédentes, caractérisé en ce que la commande de l'au moins une bobine (106) se fait par voie entièrement numérique.
  23. Aéronef télécommandable selon l'une des revendications précédentes, caractérisé en ce que la commande de l'au moins une bobine simultanée à une commande pitch et une commande nick/roll subit une correction de la durée d'impulsions.
  24. Kit de fabrication d'un aéronef télécommandable, notamment d'un hélicoptère-modèle ultra léger, selon l'une des revendications précédentes.
EP02719960A 2001-03-06 2002-02-28 Aeronef telecommandable Expired - Lifetime EP1320407B1 (fr)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE10110659 2001-03-06
DE10110659 2001-03-06
DE10125734 2001-05-16
DE10125734A DE10125734B4 (de) 2001-03-06 2001-05-16 Fernsteuerbares Fluggerät
PCT/EP2002/002154 WO2002070094A2 (fr) 2001-03-06 2002-02-28 Aeronef telecommandable

Publications (2)

Publication Number Publication Date
EP1320407A2 EP1320407A2 (fr) 2003-06-25
EP1320407B1 true EP1320407B1 (fr) 2004-12-08

Family

ID=26008687

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02719960A Expired - Lifetime EP1320407B1 (fr) 2001-03-06 2002-02-28 Aeronef telecommandable

Country Status (9)

Country Link
US (1) US7134840B2 (fr)
EP (1) EP1320407B1 (fr)
JP (1) JP2004521803A (fr)
CN (1) CN1272084C (fr)
AT (1) ATE284255T1 (fr)
AU (1) AU2002251044A1 (fr)
CA (1) CA2440076A1 (fr)
DE (1) DE20121609U1 (fr)
WO (1) WO2002070094A2 (fr)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2851932A1 (fr) * 2003-03-04 2004-09-10 Jean Marie Piednoir Dispositif permettant de modifier l'orientation de la poussee d'un rotor d'aeronef, notamment de modele reduit d'helicoptere
FR2852857A1 (fr) * 2003-03-25 2004-10-01 Franck Maurice Higuet Plateau cyclique magnetique
DE10348981B4 (de) 2003-10-22 2009-04-09 Eurocopter Deutschland Gmbh Rotor, insbesondere für ein Drehflugzeug
DE102004032530B4 (de) 2004-03-08 2015-01-08 Stefan Reich Drehflügler und Steuerung
JP4343167B2 (ja) * 2005-11-10 2009-10-14 株式会社タイヨー 無線操縦ヘリコプタ玩具
DE102006013402B4 (de) * 2006-03-23 2011-04-21 Deutsches Zentrum für Luft- und Raumfahrt e.V. Modulares unbemanntes Fluggerät
US7568888B2 (en) * 2006-10-24 2009-08-04 Gm Global Technology Operations, Inc. Fan blades having variable pitch compliantly responsive to a linear actuator
TWI361095B (en) * 2007-03-23 2012-04-01 Yu Tuan Lee Remote-controlled motion apparatus with acceleration self-sense and remote control apparatus therefor
US8109802B2 (en) 2007-09-15 2012-02-07 Mattel, Inc. Toy helicopter having a stabilizing bumper
CN101433766B (zh) * 2007-11-16 2012-01-04 上海九鹰电子科技有限公司 遥控模型直升机平衡系统
US8258737B2 (en) * 2009-06-24 2012-09-04 Casey John R Electric machine with non-coaxial rotors
CN102631787B (zh) * 2012-03-26 2016-08-31 江阴市翔诺电子科技有限公司 一种航模飞机双轴增稳控制器及控制方法
EP2821344B1 (fr) 2013-07-02 2015-10-14 AIRBUS HELICOPTERS DEUTSCHLAND GmbH Système d'entraînement de rotor
NO20150105A1 (en) * 2015-01-21 2016-07-18 FLIR Unmanned Aerial Systems AS Thrust-generating rotor assembly
NO341222B1 (en) * 2016-01-20 2017-09-18 FLIR Unmanned Aerial Systems AS Resonant Operating Rotor Assembly
JP7217543B2 (ja) * 2017-11-14 2023-02-03 フライボティックス ソシエテアノニム 例えば回転中にプロペラのブレードのピッチ角を変化させる、2自由度アクチュエータを形成するシステム
EP3597539B1 (fr) * 2018-07-17 2022-12-28 AIRBUS HELICOPTERS DEUTSCHLAND GmbH Rotor à appareil de commande de pas
US11220332B2 (en) 2019-11-19 2022-01-11 Airbus Helicopters Deutschland GmbH Rotor with pitch control apparatus
WO2022043899A1 (fr) * 2020-08-25 2022-03-03 Prithvi Kaviraj Système et procédé d'actionnement d'hélice

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2149372B (en) 1983-11-09 1987-04-01 Gec Avionics System for producing angular displacement
EP0167625A4 (fr) * 1983-12-02 1986-05-14 Kiyonobu Izutsuya Petit helicoptere industriel radiocommande.
JPH07102838B2 (ja) * 1989-06-14 1995-11-08 光 菅野 ラジオコントロールヘリコプタ
US5628620A (en) * 1991-09-30 1997-05-13 Arlton; Paul E. Main rotor system for helicopters
ES2141982T3 (es) * 1995-02-15 2000-04-01 Bruno Ziegler Giravion con estabilizacion giroscopica del rotor.
DE29919462U1 (de) * 1999-11-05 2000-02-17 Puetz Engelbert Rotorkopf für Modellhubschrauber

Also Published As

Publication number Publication date
WO2002070094A2 (fr) 2002-09-12
WO2002070094A3 (fr) 2002-11-21
CN1507364A (zh) 2004-06-23
ATE284255T1 (de) 2004-12-15
JP2004521803A (ja) 2004-07-22
US20040198136A1 (en) 2004-10-07
DE20121609U1 (de) 2003-04-10
CN1272084C (zh) 2006-08-30
EP1320407A2 (fr) 2003-06-25
CA2440076A1 (fr) 2002-09-12
AU2002251044A1 (en) 2002-09-19
US7134840B2 (en) 2006-11-14

Similar Documents

Publication Publication Date Title
EP1320407B1 (fr) Aeronef telecommandable
DE102005046155B4 (de) Hubschrauber mit koaxialen Hauptrotoren
DE60310483T2 (de) Stellantrieb für Flugzeugsteuerflächen
DE102007035759B4 (de) Schlagflügelanordnung
EP2028099B1 (fr) Système de propulsion avec une hélice à pas variable
AT523262B1 (de) Vorrichtung zur Verstellung der Neigung von Rotorblättern eines Rotors
WO2005087587A1 (fr) Giravion, systeme de rotor et commande
DE60130534T2 (de) Klappenstellantriebssystem
DE1456013A1 (de) Dynamischer Schwingungsdaempfer und Hubschrauber mit solchem Schwingungsdaempfer
DE10125734B4 (de) Fernsteuerbares Fluggerät
EP2885533A1 (fr) Installation génératrice d'énergie à flux
DE69722752T2 (de) Lineare Reibsschweissvorrichtung
DE60037366T2 (de) Verfahren und Vorrichtung zur Lageregelung eines Satelliten
DE102007035760B4 (de) Schlagflügelanordnung
DE3117996C2 (fr)
EP1365847B1 (fr) Embrayage
DE202007018525U1 (de) Schlagflügelanordnung
DE102013111114B4 (de) Rotorsteuervorrichtung mit Taumelscheibeninnenringmitnehmer
AT510493A1 (de) Hubschrauber
EP3404256B1 (fr) Dispositif d'ajustement des pales de rotor d'une installation génératrice d'énergie à flux
DE102005027764B4 (de) Vibrationsgenerierungsvorrichtung
WO2014118322A1 (fr) Dispositif de commande pour un système de lacet d'éolienne
DE10125733A1 (de) Kupplung
DE202005004207U1 (de) Drehflügler und Rotorsystem
EP4237329A1 (fr) Unité d'entraînement pour un giravion et giravion

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030423

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1058494

Country of ref document: HK

Ref country code: HK

Ref legal event code: DE

Ref document number: 1058493

Country of ref document: HK

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

REG Reference to a national code

Ref country code: HK

Ref legal event code: WD

Ref document number: 1058494

Country of ref document: HK

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041208

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041208

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041208

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041208

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 50201720

Country of ref document: DE

Date of ref document: 20050113

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050228

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050228

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050228

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050308

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050308

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050308

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20050214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050319

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20050909

ET Fr: translation filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20060223

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20070222

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050508

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20080226

Year of fee payment: 7

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080229

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080229

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20090225

Year of fee payment: 8

BERE Be: lapsed

Owner name: *VOGEL HERIBERT

Effective date: 20090228

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20090225

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090228

REG Reference to a national code

Ref country code: HK

Ref legal event code: WD

Ref document number: 1058493

Country of ref document: HK

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20100228

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20101029

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100228

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20120229

Year of fee payment: 11

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50201720

Country of ref document: DE

Effective date: 20130903

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130903