WO2006046731A1 - 電源装置、および携帯機器 - Google Patents

電源装置、および携帯機器 Download PDF

Info

Publication number
WO2006046731A1
WO2006046731A1 PCT/JP2005/019952 JP2005019952W WO2006046731A1 WO 2006046731 A1 WO2006046731 A1 WO 2006046731A1 JP 2005019952 W JP2005019952 W JP 2005019952W WO 2006046731 A1 WO2006046731 A1 WO 2006046731A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
power supply
output voltage
negative output
diode
Prior art date
Application number
PCT/JP2005/019952
Other languages
English (en)
French (fr)
Inventor
Atsushi Kitagawa
Original Assignee
Rohm Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm Co., Ltd. filed Critical Rohm Co., Ltd.
Priority to US11/575,980 priority Critical patent/US20070216379A1/en
Publication of WO2006046731A1 publication Critical patent/WO2006046731A1/ja

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/06Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider
    • H02M3/07Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider using capacitors charged and discharged alternately by semiconductor devices with control electrode, e.g. charge pumps
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only

Definitions

  • the present invention has a power supply device that generates a negative output voltage as well as a positive output voltage converted from a power supply voltage using a switching type power supply circuit using a coil, and a load that uses an E voltage and a negative voltage It relates to mobile devices. Background art
  • this switching power supply device obtains a high voltage by turning on and off the current flowing from the DC power supply voltage to the coil by a switch. This high voltage is rectified and slipped to obtain a boosted positive output voltage.
  • the level of the negative output voltage is a voltage level corresponding to the level of the positive output voltage. Therefore, in Patent Document 1, when a positive output voltage of a predetermined level is output, the level of the negative output voltage is automatically determined. From this, it is impossible to obtain an arbitrary level of negative output voltage in the case of Patent Document 1. Further, in the case of Patent Document 1, the negative output voltage can be adjusted to a constant voltage level by using a voltage adjustment circuit. However, in that case, there is a problem that the power loss increases according to the voltage level to be adjusted.
  • the present invention provides a switching power supply device that generates a negative output voltage together with a positive output voltage converted from a power supply voltage.
  • An object is to provide a power supply device that efficiently generates a negative output voltage of a predetermined level together with the voltage.
  • a battery power source that supplies a power supply voltage
  • a switching power supply device that generates a positive output voltage and a negative output voltage converted from the power supply voltage
  • a load device that uses positive and negative voltages. The purpose is to provide a portable device. Disclosure of the invention
  • the power supply device of the present invention includes a coil L l, a switch Q l connected in series with the coil, and switches the energization to the coil from a power supply voltage point to which a power supply voltage V bat is applied.
  • a switching power supply circuit 7 0 having a control circuit 1 3 for performing on / off switching of the switch,
  • connection point A between the coil and the switch and the power supply voltage point Connected between a connection point A between the coil and the switch and the power supply voltage point, and generates a negative output voltage Vn at a predetermined voltage level based on the positive output voltage Vp and the power supply voltage Vbat. And a negative output voltage generation circuit 80 for performing the operation.
  • the negative output voltage generation circuit 80 includes a second capacitor C 2 having one end connected to a connection point between the coil L 1 and the switch Q 1, and the second capacitor C 2 and the second diode D 2. And a third capacitor C3 are connected in series with the switch in parallel so that the cathode of the second diode is connected to the other end of the second capacitor. 3 An anode of a diode D3 is connected to a connection point between the second diode and the second capacitor, a force sword of the third diode is connected to the power supply voltage point side, and charging of the third capacitor A voltage is output as the negative output voltage. Further, a voltage control transistor 21 for controlling the level of the negative output voltage is provided between the force sword of the third diode and the power supply voltage point.
  • the voltage control transistor 21 is controlled such that the cathode side voltage of the third diode D3 is lower than the positive output voltage Vp by a predetermined voltage.
  • the voltage control transistor 21 is controlled such that a feedback voltage corresponding to the negative output voltage becomes a predetermined voltage.
  • the power supply device of the present invention includes a coil L l, a switch Q 1 connected in series with the coil, and switching the energization to the coil from a power supply voltage point to which a power supply voltage V bat is applied.
  • a switching power supply circuit 7 0 having a control circuit 1 3 for performing on / off switching of the switch so that
  • the positive output voltage V is connected between a connection point A between the coil and the switch and the power supply voltage point or a reference voltage point (eg, ground) via a switching switch circuit 23, 24.
  • a negative output voltage generation circuit 80 for generating a negative output voltage V n having a predetermined voltage level based on p and the power supply voltage V bat or the reference voltage.
  • the negative output voltage generation circuit 80 includes a second capacitor C 2 having one end connected to a connection point between the coil L 1 and the switch Q 1, and the second capacitor C 2 and the second diode D 2. And a third capacitor C3 are connected in series with the switch in parallel so that the cathode of the second diode is connected to the other end of the second capacitor. 3 An anode of the diode D3 is connected to a connection point between the second diode and the second capacitor, and the third diode The cathode of the diode is connected to the power supply voltage point or the f reference voltage point through the switching switch circuit, and the charging voltage of the third capacitor is output as the negative output voltage. And
  • a first voltage control transistor 21 for controlling the level of the negative fcH force voltage is provided between the force sword of the third diode and the power supply voltage point, and the third diode
  • a second voltage control transistor 22 for controlling the level of the negative output voltage JE is provided between the cathode and the reference voltage point.
  • the first voltage control transistor 21 and the second voltage control transistor 22 are controlled so that the force-sword side voltage of the third diode D 3 is lower than the positive output voltage by a predetermined voltage. It is characterized by being.
  • first voltage control transistor 21 and the second voltage control transistor 22 are controlled so that a feedback voltage corresponding to a charging voltage of the third capacitor C 3 becomes a predetermined voltage.
  • the portable device of the present invention includes a battery power source BAT that supplies a power source voltage V bat, and a power source described in any of the above that generates a positive output voltage V p and a negative output voltage V n converted from the power source voltage.
  • a load device that uses the positive output voltage and the negative output voltage; and a control device that controls the load device.
  • the positive output voltage Vp and / or the negative output voltage Vn output from the power supply device is supplied to the load device via a voltage regulator.
  • a predetermined positive output voltage V p converted from the power supply voltage V bat is generated by a switching power supply circuit using a coil.
  • a negative output voltage generation circuit is installed between the connection point of coil L 1 and switch Q 1 and the power supply voltage point, and a predetermined voltage level based on the positive output voltage Vp and the power supply voltage Vbat is set. Negative tt ⁇ force generates a voltage V n.
  • the energy of the excess voltage is supplied to the battery voltage BAT that supplies the power supply voltage V bat as the first voltage. Since it returns via the control transistor 21, it is possible to generate an appropriate level of the negative output voltage V n and to improve the efficiency.
  • a negative output voltage generation circuit is provided for generating a negative output voltage V n at a predetermined voltage level based on p and the power supply voltage V bat or the reference voltage.
  • a first voltage control transistor power supply voltage V bat side
  • a second voltage control transistor reference voltage point; darnd side
  • the first and second voltage control transistors are controlled such that the voltage-sword side voltage of the third diode D3 is lower than the positive output voltage Vp by a predetermined voltage. That is, the charging voltage of the inversion second capacitor C2 is controlled to be a predetermined value. Therefore, the negative output voltage V n can be controlled to a predetermined value without feeding back the negative output voltage V n. As a result, the number of terminals of the voltage control IC 90 can be reduced.
  • FIG. 1 is a diagram showing a main configuration of a portable device according to the present invention.
  • FIG. 2 is a diagram showing a configuration according to the first embodiment of the power supply device for positive and negative output voltages of the present invention.
  • FIG. 3 is a diagram illustrating a first configuration example of the negative voltage control circuit 30.
  • FIG. 4 is a diagram illustrating a second configuration example of the negative voltage control circuit 3OA.
  • FIG. 5 is a diagram showing a configuration according to the second embodiment of the power supply device for positive and negative output voltages of the present invention.
  • FIG. 6 is a diagram illustrating a configuration example of the switching control circuit 40.
  • FIG. 7 is a diagram showing a third configuration example of the negative voltage control circuit 30 B.
  • FIG. 8 is a diagram illustrating a fourth configuration example of the negative voltage control circuit 3 ° C. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 is a diagram showing a main configuration of a portable device according to the present invention.
  • a power supply device 100 receives a power supply voltage V bat of a battery power supply BAT and outputs a positive output voltage V p (for example, +15 V) and a negative output voltage (for example, 1-8 V). It is a power supply device for positive / negative output voltage to output.
  • the voltage regulator 1 1 0 is, for example, a series type voltage regulator, and is used when the level of the positive output voltage Vp is adjusted to another voltage V pr.
  • the voltage regulator 1 20 is, for example, a series type voltage regulator, and is used to adjust the level of the negative output voltage Vn to another voltage Vnr.
  • these voltage regulators 1 1 0 and 1 2 0 may omit one or both of them.
  • the positive output voltage V p is a voltage controlled to a predetermined level
  • the negative output voltage Vn If is an unadjusted voltage, the voltage regulator 1 1 0 can be omitted.
  • both voltage regulators 110 and 120 can be omitted.
  • the imaging device 200 is a CCD camera, for example, and receives positive and negative voltages.
  • the display device 300 includes, for example, a display LED (light emitting diode) tb circuit.
  • the control device 400 controls the mobile devices including the imaging device 200 and the display device 300.
  • the control device 400 is supplied with the voltage V r obtained by adjusting the power voltage Vb at by the voltage regulator 130 as the O power source.
  • FIG. 2 is a diagram showing such a configuration of the first embodiment i of the power supply device 100 for positive and negative output voltages according to the present invention.
  • a switching power supply circuit 70 is a power supply circuit that boosts a power supply voltage Vbat (for example, 3.6 V) input from a battery power supply BAT and outputs a boosted IE output voltage Vp. .
  • Vbat for example, 3.6 V
  • the battery power supply BAT may be provided outside the power supply device L00.
  • the coil L 1 and the switch Q 1 that is an N-type MOS transistor are connected in series. From the series connection point A, the voltage of the series connection ⁇ ; A is rectified and smoothed by the first diode D 1 for rectification and the first capacitor C 1 for smoothing, and output as the positive output voltage Vp.
  • the electric potential 0E is a potential with respect to the ground unless otherwise specified.
  • the voltage control IC 90 is L S I in which the control circuit part of the power supply device 100 for positive and negative output voltages is mainly built.
  • P 1 to P 4 are the ends of I C 90.
  • the positive output voltage V p is input to the voltage control IC 90 via the terminal P 1 and is divided by the voltage dividing resistors 14 and 15 to generate the first detection voltage V de t 1.
  • the control circuit 13 inputs the first detection voltage V det 1 and the first reference voltage V ref 1, and sets the switch Q 1 so that the first detection voltage V det 1 is equal to the first reference voltage V ref 1. Generates a switching signal for switching control.
  • the control circuit 1 3 amplifies the difference between the first reference voltage V ref 1 and the first detection voltage V det 1 and outputs the error amplifier 1 1, and P WM based on the output of the error amplifier 1 1 And a PWM control circuit 12 that forms a signal and outputs it as a switching signal.
  • the switching power supply circuit 70 controls the positive output voltage V p to be a predetermined voltage obtained by boosting the power supply voltage V b at force S.
  • the voltage at series connection point A becomes zero and the positive output voltage V P according to the on / off state of switch Q 1.
  • the diodes D1 to D3 use Schottky barrier diodes having a low voltage drop. In the explanation of the operation of the present invention, the voltage drop of the diode may be ignored.
  • the second capacitor C2, the second diode D2, and the third capacitor C3 are connected between the series connection point A and the ground. That is, it is connected to switch Q 1 in parallel.
  • the polarity of the second diode D2 is a force sword on the second capacitor side.
  • the anode of the third diode D3 is connected to the connection point between the second diode D2 and the second capacitor C2.
  • the cathode of the third diode D3 is at the level of the power supply voltage Vbat through the first voltage control transistor 21 which is a P-type MOS transistor for controlling the voltage level of the negative output voltage Vn.
  • the force sword of the third diode D3 is connected to the positive output voltage Vp via the high-resistance pull-up resistor 25, so the negative output setting voltage Vf1y is the positive output. Can be pulled up to voltage V p. This pull-up stabilizes the negative output setting voltage V f l y at the positive output voltage V p when the third die head D 3 is turned off (reverse bias).
  • the first voltage control transistor 21 has a negative voltage control circuit 3 0 to which a positive output voltage V p and a third sword D 3 force sword side voltage (hereinafter referred to as negative output set voltage) V f 1 y are input.
  • V f 1 y a third sword D 3 force sword side voltage
  • FIG. 3 is a diagram illustrating a first configuration example of the negative voltage control circuit 30.
  • a resistor 3 1 resistance value R 1
  • a constant current circuit 32 constant current value I 1
  • resistor 35 resistance value R 2
  • resistor 36 resistance value R 3
  • resistor 35 resistance value R 2
  • resistor 36 resistance value R 3
  • resistor 35 a required number of Zener diodes can be used.
  • the error amplifier 33 is supplied with the point B voltage and the point C voltage, and the output is applied to the gate of the first voltage control transistor 21.
  • the error amplifier 33 controls the first voltage control transistor 21 so that the point C voltage becomes equal to the point B voltage.
  • the negative output setting voltage V f 1 y is a voltage lower than the positive output voltage Vp by a fixed voltage.
  • the negative output setting voltage V f 1 y has a voltage level obtained by adding the voltage across the first voltage control transistor 21 to the power supply voltage Vb at.
  • the switching power supply circuit 70 is subjected to switching control so that the first detection voltage Vd e t 1 and the first reference voltage V r e f 1 are equal in the switch Q 1.
  • a positive output voltage V p of a predetermined level is generated.
  • the voltage at node A is repeatedly generated as zero and positive output voltage Vp according to the on / off state of switch Q1.
  • the first route is formed. This first route is from coil L 1 (i.e., connection point A at the positive output voltage V p) to the second capacitor C 2, the third diode D 3, Via the first voltage control transistor 21 and the battery power supply BAT (good voltage, power supply voltage V bat point).
  • the second capacitor C 2 is charged to the polarity shown.
  • the charging voltage of this second capacitor C2 is the difference voltage I 1 'R l (1 + R 3 / R 2) between the positive output voltage V p at node A and the negative output setting voltage V f 1 y. It has become. That is, the second capacitor C2 is charged to a predetermined voltage.
  • the battery power BAT is charged by the charging current to the second capacitor C 2 through the first voltage control transistor 21, from the power provided by the battery power BAT in the first route. Therefore, the energy corresponding to the voltage exceeding the predetermined power JE of the second capacitor C 2 is recovered in the battery power source BAT.
  • the second route is formed when the voltage at node A is zero, ie when switch Q 1 force S is on.
  • This second route is via the ground, switch Ql, second capacitor C2, second diode D2, and third capacitor C3O series circuit.
  • the charge charged in the second capacitor C2 is distributed to the third capacitor C3.
  • the third capacitor C 3 has a negative polarity as shown in the figure. Charge is charged.
  • the positive output voltage V p 15 V
  • the power supply voltage V bat 3.6 V
  • the negative output setting voltage V f 1 y is
  • the voltage drop at the first voltage control transistor 21 becomes 3.4 V. Actually, it is desirable to consider the voltage drop because the voltage drop of the diode is generated as an error voltage.
  • the negative predetermined voltage charged in the third capacitor c 3 is the negative output voltage Vn. Is output.
  • This negative output voltage V n depends on the value of the negative output setting voltage V f 1 y regardless of the magnitude of the positive output voltage V p, in other words, the constant current ⁇ path 3 2 constant current value I 1,
  • the resistance values R 1 to R 3 of the resistors 3 1, 3 5 and 3 6 are determined.
  • the magnitude of the negative output voltage Vn can be changed as necessary by adjusting the constant current value I1 and the resistance values RL1 to R3.
  • FIG. 4 is a diagram illustrating a second configuration example of the negative voltage control circuit 30 A.
  • the negative voltage control circuit 30 A is a diagram illustrating a second configuration example of the negative voltage control circuit 30 A.
  • the negative output voltage V n is divided by the resistor 4 1 and the resistor 4 2 to form a second detection voltage V de t 2.
  • the error amplifier 43 receives the second reference voltage V r e f 2 and the second detection voltage V de t 2 and applies the output to the gate of the first voltage control transistor 21.
  • the error amplifier 43 controls the first voltage control transistor 21 so that the second detection voltage V de t 2 is equal to the second reference voltage V re f 2.
  • the negative output voltage V n is controlled to a predetermined level.
  • the first voltage control transistor 21 and the negative voltage control circuit 30 may be omitted.
  • the negative output voltage V n has a voltage level equal to the difference voltage between the positive output voltage V p and the power supply voltage V b at. Therefore, the voltage regulator 1 2 0 adjusts the level of the negative output voltage V n as necessary.
  • the switching power supply circuit 70 using the coil L 1 generates the predetermined positive output power JE V p converted from the power supply voltage V bat.
  • the connection point between the coil L 1 and the switch Q 1 and the power source voltage point V bat A negative output voltage generation circuit 80 is provided between them to generate a negative output voltage V ⁇ having a predetermined voltage level based on the positive output power JEVp and the power supply voltage Vbat.
  • the level of the negative output voltage Vn the energy of the excess voltage is returned to the battery power source BAT supplying the power supply voltage Vbat via the first voltage control transistor 21. It can generate an appropriate level of negative output voltage Vn and improve efficiency.
  • ⁇ 7 first voltage control transistor 21 is provided to control the level of negative output voltage Vn.
  • the set negative output voltage V n can be obtained by controlling these voltage control transistors 21.
  • FIG. 5 is a diagram showing a configuration according to the second embodiment of the power supply device 100 for positive and negative output voltages of the present invention.
  • the negative output voltage n can be appropriately output even when the voltage difference in absolute value between the positive output voltage Vp and the negative output voltage V n becomes small. It is. That is, if the voltage difference is not sufficient to charge the battery power supply BAT while outputting the negative output voltage Vn, the battery power supply BAT is not charged and the negative output voltage Vn is not charged. It is configured to output.
  • the switching power supply circuit 70 is the same as that of the first embodiment of FIG. 1, but the force negative output voltage generation circuit 8 OA is different from that of the first embodiment.
  • the different points will be described.
  • the output point of the negative output constant voltage V fly is connected to the battery power source BAT via the first switching switch 23 and the first voltage control transistor 21 or It is connected to the ground via the 2 switch 24 and the second voltage control transistor 22 which is an N-type MOS transistor.
  • One of the first and second switching switches 23 and 24 is turned on and the other is turned off in response to the switching signal CO S from the switching control circuit 40.
  • FIG. 6 is a diagram illustrating a configuration example of the switching control circuit 40.
  • a constant current circuit 51 constant current value I 0
  • a resistor 52 resistance value R 0
  • Is being mirrored. Its series connection point From this, the third detection voltage V det 3 is obtained.
  • the third detection voltage V de t 3 is a voltage obtained by adding the voltage drop I 0 ⁇ R 0 of the power source voltage V b at f resistor 52.
  • the third detection voltage Vdet3 is set to a level at which the negative output voltage V ⁇ can be controlled while charging the battery power source BAT.
  • the operational amplifier 53 compares the third detection voltage V det 3 with the negative output setting voltage V f 1 y and the negative output setting voltage V f 1 y exceeds the third detection voltage Vd et 3 (V f 1 y> V det 3), the switching signal COS that turns on the first switching switch 2 3 and turns off the second switching switch 24 is output.
  • the operational amplifier 5 3 stops the switching signal CO S when the negative output setting voltage V f 1 y is lower than the third detection voltage V det 3 (V fly ⁇ Vd et 3), and the first switching switch 2 3 is turned off, and the 2nd switching switch 2 4 is turned on.
  • the operational amplifier 53 should preferably have a hysteresis characteristic in order to stably switch the first and second switching switches 23, 24.
  • the output point of the negative output setting voltage V f 1 y is connected to the power supply voltage point side while charging the battery power supply BAT. Generate an appropriate level of negative output voltage Vn.
  • the output point of the negative output set voltage Vf1y is used as the reference voltage. Connect to the ground side, which is a point, to generate an appropriate level of negative output voltage V n. Therefore, the required negative output voltage Vn can be generated under a wide range of voltage conditions by switching the first and second switching switches 2 3 and 24 according to the voltage difference.
  • FIG. 7 is a diagram showing a third configuration example of the negative voltage control circuit 30 B used in the second embodiment of FIG.
  • an error amplifier 34 is provided as compared with the negative voltage control circuit 30 of FIG.
  • the error amplifier 34 receives the point B voltage and the point C voltage, and applies the output to the gate of the second voltage control transistor 22. This error amplifier 34 is equal to the point C voltage S B point voltage. Similarly, the second voltage control transistor 22 is controlled.
  • the operation of the negative voltage control circuit 30 B is the same as the operation of the negative voltage control circuit 30 in FIG. 3 when the first switching switch 23 is turned on.
  • the negative voltage control circuit 30 B also sets the error amplifier 44 so that the negative output setting voltage V f 1 y becomes a predetermined voltage level. ⁇ 2 Voltage control transistor 22 is controlled by the output.
  • the negative output setting voltage V f 1 y is a voltage lower than the positive output voltage V p by a constant voltage.
  • the negative output voltage V n of a predetermined voltage level is output.
  • the operation of the positive / negative output voltage power supply device 100 configured as shown in FIGS. 5 to 7 is switched on according to the operation and voltage conditions of the first switching switch 23 or the second switching switch 24. It ’s just different. The operation is almost the same as the operation described in FIG. 2 and FIG.
  • FIG. 8 is a diagram illustrating a fourth configuration example of the negative voltage control circuit 30 C.
  • the negative power BE control circuit 30 C of FIG. 8 is provided with an error amplifier 44 compared to the negative voltage control circuit 30 A of FIG.
  • the error amplifier 44 receives the second detection voltage V de t 2 and the second reference voltage V re f 2 and applies the output to the gate of the second voltage control transistor 22.
  • the error amplifier 44 controls the second voltage control transistor 22 so that the second detection voltage V de t 2 becomes equal to the second reference voltage V re f 2.
  • the operation of the negative voltage control circuit 30 C is the same as that of the negative voltage control circuit 3 OA of FIG. 4 when the first switching switch 23 is turned on.
  • the negative voltage control circuit 30 C also uses the output of the error amplifier 44 so that the negative output voltage EE V n becomes a predetermined voltage level. 2Controls voltage control transistor 2 2. Therefore, the negative output voltage V n is controlled to a predetermined voltage level regardless of which of the first switching switch 23 and the second switching switch 24 is inconsistent. As a result, even if the positive output voltage V p and the power supply voltage V bat change, the negative output voltage V n of a predetermined voltage level is output.
  • the operational amplifier 53 of the switching control circuit 40 has a predetermined level instead of the negative output set voltage V f 1 y.
  • the third reference voltage V ref 3 is input. This point is shown in parentheses in Figure 6.
  • the power supply device 1 O 0 that generates the positive and negative output voltages described in the above embodiments
  • the power source voltage V bat point side Connect to, and generate the negative output voltage V n at an appropriate level while charging the battery power BAT. Therefore, power loss can be reduced and efficiency can be improved.
  • the positive output voltage V p is low or the power supply voltage V bat is high and the voltage difference between them decreases, connect to the ground side, which is the reference voltage point, and Generates negative output voltage V n of level. Therefore, the required negative output voltage V n can be generated under a wide range of voltage conditions.
  • the portable device of the present invention uses a power supply device 100 that generates positive and negative output voltages.
  • the required voltage is supplied to load devices that require positive and negative output voltages, such as a CCD camera, and the efficiency is improved. As a result, the battery power can be used for a long time.
  • the switching type power supply apparatus efficiently generates a negative output voltage of a predetermined level together with a positive output voltage converted from the power supply voltage.
  • the positive output voltage and the negative output voltage can be suitably used for a mobile device such as a mobile phone provided with a load device that uses positive and negative voltages.

Abstract

電源電圧から変換された正出力電圧を発生するスイッチング型の電源装置において、コイルとスイッチとの接続点と、電源電圧点もしくはグランド間に、切替スイッチ回路を介して切替可能に接続された負出力電圧発生回路を備える。これにより、正出力電圧Vpと電源電圧Vbatとの電圧差が、十分に大きいときには電源電圧点に接続し、小さいときにはグランドに接続する。これにより、電源電圧から変換された正出力電圧とともに、所定レベルの負出力電圧を効率よく発生する。

Description

明細書
電源装置、 および携帯機器 技術分野
本発明は、 コイルを用いたスイッチング型の電源回路を用いて、 電源電 から 変換された正出力電圧とともに、 負出力電圧をも発生する電源装置、 及び] E電圧 と負電圧を用いる負荷を有する携帯機器に関する。 背景技術
従来から、 電源電圧と異なる電圧を発生するための直流一直流コンパーダとし て、 コイルを用いたスイッチング電源装置が用いられている。 このスイッ ング 電源装置は、 例えば昇圧型の場合には、 直流電源電圧からコイルに流す電流をス イッチによりオン -オフして高電圧を得る。 そして、 この高電圧を整流し P滑し て、 昇圧された正極性の出力電圧を得ている。
そして、 このスイッチング電源装置に、 極性反転型出力回路を組み合わ ¾:て、 正出力電圧とともに、 負極性の負出力電圧も出力させるようにしたものが攝案さ れている (特許文献 1 ;特開平 1 0— 2 7 1 8 1 5号公報)。
しかし、 特許文献 1のものでは、 負出力電圧のレベルは、 正出力電圧のレベル に応じた電圧レベルになる。 したがって、 特許文献 1のものでは、 所定レベルの 正出力電圧を出力すると、 負出力電圧のレベルは自動的に決定される。 こ Oこと から、 特許文献 1のものでは、 任意レベルの負出力電圧を得ることが出来な^、。 また、 特許文献 1のものでは、 電圧調整回路を用いれば、 負出力電圧を? j 定の 電圧レベルに調整することはできる。 しかし、 その場合には、 その調整さ; る電 圧レベルに応じて電力損失が大きくなってしまう、 という問題がある。
そこで、 本発明は、 電源電圧から変換された正出力電圧とともに負出力 圧も 発生するスィツチング型の電源装置において、 電源電圧から変換された正 カ電 圧とともに、 所定レベルの負出力電圧を効率よく発生する電源装置を提供するこ とを目的とする。
また、 電源電圧を供給する電池電源と、 その電源電圧から変換された正出カ電 圧と負出力電圧を発生するスィツチング型の電源装置と、 正及び負電圧を使用す る負荷装置とを備えた、 携帯機器を提供することを目的とする。 発明の開示
本発明の電源装置は、 コイル L l、 このコイルと直列に接続され、 電源電圧 V b a tが印加される電源電圧点から前記コイルへの通電をスィツチングするスィ ツチ Q l、 前記コイルと前記スィッチとの直列接続点 Aの電圧を整流し平滑し、 正出力電圧 V pとして出力する整流平滑回路 D 1 , C l、 前記正出力電圧に応じ た検出電圧 V d e t 1が基準電圧 V r e f 1と等しくなるように前記スィツチの オンオフスィツチングを行う制御回路 1 3、 を有するスィツチング電源回路 7 0 と、
前記コイルと前記スィツチとの接続点 Aと前記電源電圧点との間に接続され、 前記正出力電圧 V pと前記電源電圧 V b a tとに基づいた所定電圧レベルの負出 力電圧 V nを発生するための負出力電圧発生回路 8 0と、 を備えることを特徴と する。
また、 前記負出力電圧発生回路 8 0は、 一端が前記コイル L 1と前記スィッチ Q 1との接続点に接続された第 2コンデンサ C 2と、 この第 2コンデンサ C 2と 第 2ダイォード D 2と第 3コンデンサ C 3とが前記第 2ダイォードのカソードが 前記第 2コンデンサの他端に接続されるようにこの順序で直列に接続した直列回 路を、 前記スィッチに並列に接続するとともに、 第 3ダイオード D 3のアノード が前記第 2ダイォ一ドと前記第 2コンデンサとの接続点に接続され、 前記第 3ダ ィオードの力ソードが前記電源電圧点側に接続され、 前記第 3コンデンサの充電 電圧を前記負出力電圧として出力する、 ことを特徴とする。 また、 前記第 3ダイオードの力ソードと前記電源電圧点との間に、 前記負出力 電圧のレベルを制御するための電圧制御用トランジスタ 2 1が設けられているこ とを特徴とする。
また、 前記電圧制御用トランジスタ 2 1は、 前記第 3ダイオード D 3のカソー ド側電圧が前記正出力電圧 V pより所定電圧だけ低くなるように制御されること を特徴とする。
また、 前記電圧制御用トランジスタ 2 1は、 前記負出力電圧に応じた帰還電圧 が所定電圧になるように制御されることを特徴とする。
本発明の電源装置は、 コイル L l、 このコイルと直列に接続され、 電源電圧 V b a tが印加される電源電圧点から前記コイルへの通電をスイッチングするスィ ツチ Q 1、 前記コイルと前記スィツチとの直列接続点 Aの電圧を整流し平滑し、 正出力電圧 V pとして出力する整流平滑回路 D 1 , C l、 前記正出力電圧に応じ た検出電圧 V d e t 1が基準電圧 V r e f 1と等しく、なるように前記スィツチの オンオフスィツチングを行う制御回路 1 3、 を有するスィツチング電源回路 7 0 と、
前記コイルと前記スィツチとの接続点 Aと前記電源電圧点もしくは基準電圧点 (例、 グランド) との間に切替スィッチ回路 2 3、 2 4を介して切替可能に接続 され、 前記正出力電圧 V pと前記電源電圧 V b a tもしくは基準電圧とに基づい た所定電圧レベルの負出力電圧 V nを発生するための負出力電圧発生回路 8 0と、 を備えることを特徴とする。
また、 前記負出力電圧発生回路 8 0は、 一端が前記コイル L 1と前記スィッチ Q 1 との接続点に接続された第 2コンデンサ C 2と、 この第 2コンデンサ C 2と 第 2ダイォード D 2と第 3コンデンサ C 3とが前記第 2ダイォードのカソードが 前記第 2コンデンサの他端に接続されるようにこの順序で直列に接続した直列回 路を、 前記スィッチに並列に接続するとともに、 第 3ダイオード D 3のアノード が前記第 2ダイォードと前記第 2コンデンサとの接続点に接続され、 前記第 3ダ ィォ一ドのカソードが前記切替スィツチ回路を介して前記電源電圧点もしく fま基 準電圧点に接続され、 前記第 3 コンデンサの充電電圧を前記負出力電圧として出 力する、 ことを特徴とする。
また、 前記第 3ダイオードの力ソードと前記電源電圧点との間に、 前記負 fcH力 電圧のレベルを制御するための第 1電圧制御用トランジスタ 2 1が設けられ、 且 つ前記第 3ダイォードのカソードと前記基準電圧点との間に、 前記負出力電 JEの レベルを制御するための第 2電圧制御用トランジスタ 2 2が設けられていること を特徴とする。
また、 前記第 1電圧制御用トランジスタ 2 1及び前記第 2電圧制御用トランジ スタ 2 2は、 前記第 3ダイオード D 3の力ソード側電圧が前記正出力電圧 よ り所定電圧だけ低くなるように制御されることを特徴とする。
また、 前記第 1電圧制御用トランジスタ 2 1及び前記第 2電圧制御用トランジ スタ 2 2は、 前記第 3コンデンサ C 3の充電電圧に応じた帰還電圧が所定電圧に なるように制御されることを特徴とする。
本発明の携帯機器は、 電源電圧 V b a tを供給する電池電源 B A Tと、 その電 源電圧から変換された正出力電圧 V pと負出力電圧 V nを発生する上記のいずれ かに記載された電源装置と、 前記正出力電圧及び負出力電圧を使用する負荷装置 と、 該負荷装置を制御する制御装置とを備えたことを特徴とする。
また、 前記電源装置から出力される正出力電圧 V p及びまたは負出力電圧 V n は、 電圧調整器を介して前記負荷装置に供給されることを特徴とする。
本発明によれば、 コイルを用いたスイッチング型電源回路によって、 電源電圧 V b a tから変換された所定の正出力電圧 V pを発生する。 それとともに、 コィ ル L 1とスィッチ Q 1との接続点と電源電圧点との間に負出力電圧発生回路を設 けて、 正出力電圧 V pと電源電圧 V b a tとに基づいた所定電圧レベルの負 tt}力 電圧 V nを発生する。 これにより、 負出力電圧 V nのレベルに応じて、 電源電圧 V b a tを供給する電池電源 B A Tに、 超過した電圧分のエネルギーを第 1電圧 制御用トランジスタ 2 1を介して戻すから、 適切なレベルの負出力電圧 V nを発 生するとともに、 効率を向上することができる。
また、 コイル L 1とスィ ッチ Q 1との接続点と、 電源電圧点もしくは基準電圧 点 (例、 グランド) との間に、 切替スィッチ回路を介して切替可能に接続され、 正出力電圧 V pと電源電圧 V b a tもしくは基準電圧とに基づいた所定電圧レべ ルの負出力電圧 V nを発生するための負出力電圧発生回路を備える。 これにより、 正出力電圧 V pと電源電圧 V b a tとの電圧差が大きいときには、 電源電圧点に 接続し、 適切なレベルの負出力電圧を発生するとともに、 効率を向上する。
一方、正出力電圧 V pが低くなつたり、電源電圧 V b a tが高くなつたりして、 その電圧差が小さくなつたときには、 基準電圧点 (例、 グランド) に接続して、 適切なレベルの負出力電圧 V nを発生させる。 したがって、 広範囲の電圧条件下 で、 所要の負出力電圧 V nを発生させることができる。
また、 負出力電圧 V nのレベルを制御するための、 第 1電圧制御用トランジス タ (電源電圧 V b a t側)、 及び第 2電圧制御用トランジスタ (基準電圧点;ダラ ンド側) を設けている。 これにより、 これらの電圧制御用トランジスタを制御す ることにより、 設定された負出力電圧 V pを得ることができる。
この第 1、 第 2電圧制御用トランジスタは、 第 3ダイオード D 3の力ソード側 電圧が正出力電圧 V pより所定電圧だけ低くなるように制御される。 即ち、 反転 用の第 2コンデンサ C 2の充電電圧が所定値になるように制御される。 したがつ て、負出力電圧 V nを帰還することなく、負出力電圧 V nを所定値に制御できる。 これにより、 電圧制御用 I C 9 0の端子数を少なくできる。
また、 本発明の携帯機器は、 C C Dカメラなど正 '負出力電圧を必要とする負 荷装置に所要の電圧を供給するとともに、 効率を向上して電池電源の使用可能時 間を長くすることができる。 図面の簡単な説明 図 1は、 本発明に係る携帯機器の主要な構成を示す図である。
図 2は、 本発明の正負出力電圧用電源装置の第 1実施例に係る構成を示す図で ある。
図 3は、 負電圧制御回路 3 〇の第 1構成例を示す図である。
図 4は、 負電圧制御回路 3 O Aの第 2構成例を示す図である。
図 5は、 本発明の正負出力電圧用電源装置の第 2実施例に係る構成を示す図で め o。
図 6は、 切替制御回路 40の構成例を示す図である。
図 7は、 負電圧制御回路 3 〇 Bの第 3構成例を示す図である。
図 8は、 負電圧制御回路 3 ◦ Cの第 4構成例を示す図である。 発明を実施するための最良の形態
以下、 本発明の電源装置、 :およびその電源装置を有する携帯機器の実施例につ いて、 図を参照して説明する。
図 1は、 本発明に係る携帯機器の主要な構成を示す図である。 携帯機器として は、 携帯電話機や、 デイジタノレスチルカメラなど、 所定レベルの第 1極性電圧 (以 下、 正電圧) と第 2極性電圧 (以下、 負電圧) を必要とする負荷を有している。 図 1において、 電源装置 1 0 0は、 電池電源 BATの電源電圧 V b a tが入力 され、 正出力電圧 V p (例え ίま、 + 1 5 V) と負出力電圧 (例えば、 一 8 V) を 出力する正負出力電圧用電源装置である。 電圧調整器 1 1 0は、 例えばシリーズ 型電圧調整器であり、 正出力電圧 Vpを他の電圧 V p rにレベル調整する場合に 用いられる。 また、 電圧調整器 1 2 0は、 例えばシリーズ型電圧調整器であり、 負出力電圧 Vnを他の電圧 Vn rにレベル調整する場合に用いられる。
これらの電圧調整器 1 1 0、 1 2 0は、 正負出力電圧 Vp、 Vnおよび他の電 圧 Vp r、 Vn rに応じて、 レ、ずれか一方あるいは両方を省略することもある。 例えば、 正出力電圧 V pが所定レベルに制御された電圧であり、 負出力電圧 Vn が未調整の電圧である場合には、 電圧調整器 1 1 0が省略できる。 また、 正負出 力電圧 Vp、 Vnがそれぞれ所定レベルに調整された電圧である場合には、 電圧 調整器 110、 1 20は両方とも省略できる。
撮像装置 200は、例えば C CDカメラであり、正負電圧が入力される。 また、 表示装置 300は、 例えば表示用の LED (発光ダイォード) 駆 tb回路を有して いる。 また、制御装置 400は、撮像装置 200や表示装置 300を始めとして、 携帯機器の制御を司るものである。 この制御装置 400には、 そ O電源として電 源電圧 Vb a tを電圧調整器 1 30で調整された電圧 V rが供給される。
図 2は、 本発明の正負出力電圧用電源装置 100の第 1実施例 iこ係る構成を示 す図である。
図 2において、 スイ ッチング電源回路 70は、 電池電源 BATカ ら入力される 電源電圧 Vb a t (例えば、 3. 6 V) を昇圧して、 昇圧された IE出力電圧 Vp を出力する電源回路である。 なお、 電池電源 BATは、 電源装置 L 00の外部に 設けても良い。
電源電圧 V b a tとグランド間に、 コイル L 1と N型 M〇 S トランジスタであ るスィッチ Q 1とが直列に接続される。 その直列接続点 Aから、 整流用の第 1ダ ィォード D 1と平滑用の第 1コンデンサ C 1とにより、 直列接続^; Aの電圧が整 流され平滑されて、 正出力電圧 Vpとして出力される。 なお、 電 0Eは、 特に断ら ない場合には、 グランドに対する電位である。
電圧制御用 I C 90は、 正負出力電圧用電源装置 100の主として制御回路部 が作り込まれている L S Iである。 P 1〜P 4は、 I C 90の端チである。
正出力電圧 V pは端子 P 1を介して電圧制御用 I C 90に入力され、 分圧抵抗 器 14、 15で分圧されて、 第 1検出電圧 V d e t 1を発生する。
制御回路 13は、 第 1検出電圧 V d e t 1と第 1基準電圧 V r e f 1とが入力 され、 第 1検出電圧 V d e t 1が第 1基準電圧 V r e f 1に等しくなるように、 スィツチ Q 1をスィツチング制御するためのスィツチング信号を発生する。 ここ では、 制御回路 1 3は、 第 1基準電圧 V r e f 1と第 1検出電圧 V d e t 1との 差を増幅して出力する誤差増幅器 1 1と、 この誤差増幅器 1 1の出力に基づいて P WM信号を形成してスィツチング信号として出力する P WM制御回路 1 2とを 含んで構成されている。
このスィツチング電源回路 7 0により、 正出力電圧 V pは、 電源鼂圧 V b a t 力 S昇圧された所定の電圧になるように制御される。また、直列接続点 Aの電圧は、 スィッチ Q 1のオンとオフに応じて零と正出力電圧 V Pとになる。 なお、 本発明 では、 ダイオード D 1〜D 3は、 電圧降下の低いショットキー 'バリア · ダィォ ードを用いることが望ましい。 また、 本発明の動作の説明において、 そのダイォ ードの電圧降下を無視して説明することがある。
負出力電圧発生回路 8 0は、 第 2コンデンサ C 2と第 2ダイオード D 2と第 3 コンデンサ C 3とが直列接続点 Aとグランド間に接続される。 即ち、 スィッチ Q 1 に並列に接続される。 この第 2ダイオード D 2の極性は第 2コンデンサ側が力 ソードである。 第 2ダイオード D 2と第 2コンデンサ C 2との接続点に第 3ダイ オード D 3のアノードが接続される。
その第 3ダイォード D 3のカソードが、 負出力電圧 V nの電圧レベルを制御す るための P型 M O S トランジスタである第 1電圧制御用トランジスタ 2 1を介し て、 電源電圧 V b a tのレベルにある電源電圧点、 即ち、 電池電源 B A Tに接続 されている。 また、 第 3ダイオード D 3の力ソードは、 高抵抗のプルア ップ抵抗 器 2 5を介して正出力電圧 V pに接続されているから、 負出力用設定電压 V f 1 yは正出力電圧 V pにプルアップされ得る。 このプルアップによって、 第 3ダイ 才一ド D 3のオフ時 (逆バイアス時) に、 負出力用設定電圧 V f l yは正出カ電 圧 V pに安定する。
第 1電圧制御用トランジスタ 2 1は、 正出力電圧 V pと、 第 3ダイォード D 3 の力ソード側電圧 (以下、 負出力用設定電圧) V f 1 yが入力される負電圧制御 回路 3 0により制御される。 図 3は、 負電圧制御回路 30の第 1構成例を示す図である。 図 3において、 抵 抗器 3 1 (抵抗値 R 1) と定電流回路 32 (定電流値 I 1) とが、 正出力電圧 V p点とグランド間に B点で直列に接続される。 また、 正出力電圧 Vp点と負出力 用設定電圧 V f 1 y点の間に抵抗器 35 (抵抗値 R 2) と抵抗器 36 (抵抗値 R 3) とが C点で直列に接続される。 なお、 抵抗器 35の代わりに、 所要個数のッ ェナーダイォ一ドを用いることもできる。
誤差増幅器 33は、 B点電圧と C点電圧とが入力され、 その出力が第 1電圧制 御用トランジスタ 21のゲ一卜に印加される。 この誤差増幅器 33は、 C点電圧 が B点電圧に等しくなるように、 第 1電圧制御用トランジスタ 21を制御する。
B点電圧は、 正出力電圧 V pから抵抗器 31の電圧降下を引いた電圧 ( = Vp 一 I 1 · R 1 ) である。 C点電圧は、 B点電圧に等しい。 したがって、 負出力用 設定電圧 V f l yは、 Vf l y=Vp— I l ' R l (1 +R 3/R 2) になる。 このように、 負出力用設定電圧 V f 1 yは、 正出力電圧 Vpから一定電圧だけ 低い電圧になる。 また、 この負出力用設定電圧 V f 1 yは、電源電圧 Vb a tに、 第 1電圧制御用トランジスタ 2 1の両端間の電圧を加算した電圧レベルになって いる。
この図 2、 図 3のように構成された正負出力電圧用電源装置の動作を説明する。 まず、 スィツチング電源回路 70は、 スィッチ Q 1が第 1検出電圧 Vd e t 1と 第 1基準電圧 V r e f 1とが等しくなるように、 スィツチング制御される。 第 1 検出電圧 V d e t 1と第 1基準電圧 V r e f 1とが等しくなつた状態では、 所定 レベルの正出力電圧 V pが発生されている。
また、 接続点 Aの電圧は、 スィッチ Q 1のオンとオフに応じて零と正出力電圧 Vpとが繰り返して発生されている。
負出力電圧発生回路 80においては、 接続点 Aの電圧が正出力電圧 V pである ときに、 第 1ルートが形成される。 この第 1ルートは、 コイル L 1 (即ち、 正出 力電圧 V pにある接続点 A) から、 第 2コンデンサ C 2、 第 3ダイオード D 3、 第 1電圧制御用トランジスタ 2 1、 及び電池電源 BAT (良卩ち、 電源電圧 V b a t点) を介している。 この第 1ルートにより、 第 2コンデンサ C 2が図示の極性 に充電される。
この第 2コンデンサ C 2の充電電圧は、 接続点 Aの正出力電圧 V pと負出力用 設定電圧 V f 1 yとの差電圧 I 1 ' R l (1 +R 3/R 2) 〖こなっている。 即ち、 第 2コンデンサ C 2は、 所定電圧に充電される。
また、 第 1ルートに、 電池電源 BATが設けられている力 ^ら、 第 1電圧制御用 トランジスタ 2 1を介して第 2コンデンサ C 2への充電電流にて電池電源 BAT が充電される。 したがって、 第 2コンデンサ C 2の所定電 JEを超過した電圧分の エネルギーが、 電池電源 BATに回収される。
次に、接続点 Aの電圧が零であるとき、即ちスィツチ Q 1力 Sオンであるときに、 第 2ルートが形成される。 この第 2ルートは、 グランド、 スィッチ Q l、 第 2コ ンデンサ C 2、 第 2ダイオード D 2、 第 3コンデンサ C 3 O直列回路を介してい る。 この第 2ルートにより、 第 2コンデンサ C 2に充電された電荷が第 3コンデ ンサ C 3に分配される。
この第 1ルートによる第 2コンデンサ C 2の充電と、 第 2ルートによる第 2コ ンデンサ C 2と第 3コンデンサ C 3への電荷配分を通して、 第 3コンデンサ C 3 には図示のような負極性に電荷が充電されていく。 この第 2コンデンサ C 2の充 電電荷は、 充電と電荷配分の繰り返しにより徐々に上昇していき、 定常的には、 負の所定電圧 (=差電圧 I 1 ' R l ( 1 +R 3/R 2)) になる。 各電圧関係を例 示すると、 正出力電圧 V p ; 1 5 V、 負出力電圧 V n ;— 8 V、 電源電圧 V b a t ; 3. 6 Vとすると、 負出力用設定電圧 V f 1 yは 7 Vとなり、 第 1電圧制御 用トランジスタ 2 1での電圧降下は 3. 4Vとなる。 実際 ίこは、 ダイオードの電 圧降下分が誤差電圧として発生するから、 その電圧降下分を考慮することが望ま しい。
この第 3コンデンサ c 3に充電された負の所定電圧が、 負出力電圧 Vnとして 出力される。 この負出力電圧 V nは、 正出力電圧 V pの大きさに関係なく、 負出 力用設定電圧 V f 1 yの値によって、 言い換えれば定電流 Θ路 3 2の定電流値 I 1や、 抵抗器 3 1、 3 5、 3 6の抵抗値 R 1〜R 3によって決定される。 負出力 電圧 V nの大きさは、 必要に応じて定電流値 I 1や抵抗値 RL 1〜R 3の調整など によって、 変更できる。
また、 この負電圧制御回路 3 0においては、 負出力用設 電圧 V f 1 yは正出 力電圧 V pから一定電圧だけ低い電圧になるように制御されるから、 第 2コンデ ンサ C 2はその差電圧 (= V p— V f 1 y ) に充電される。 したがって、 負出力 電圧 V nを検出することなく、 負出力電圧 V nを所定の負電圧に制御することが できる。 この場合には、 電圧制御用 I C 9 0に、 負出力電 IE V nを帰還するため の端子を設ける必要がないから、 電圧制御用 I C 9 0の端子数を削減できる。 図 4は、 負電圧制御回路 3 0 Aの第 2構成例を示す図でおる。 図 4において、 抵抗器 4 1と抵抗器 4 2で負出力電圧 V nを分圧して、 第 2検出電圧 V d e t 2 を形成する。 誤差増幅器 4 3は、 第 2基準電圧 V r e f 2と第 2検出電圧 V d e t 2が入力され、 その出力が第 1電圧制御用トランジスタ 2 1のゲートに印加さ れる。 この誤差増幅器 4 3は、 第 2検出電圧 V d e t 2が第 2基準電圧 V r e f 2に等しくなるように、 第 1電圧制御用トランジスタ 2 1を制御する。 これによ り、 負出力電圧 V nが所定レベルになるように制御される。
また、 図 2の負出力電圧発生回路 8 0において、 第 1電圧制御用トランジスタ 2 1及び負電圧制御回路 3 0、 を省略してもよい。 この場合には、 負出力電圧 V nは、 正出力電圧 V pと電源電圧 V b a tとの差電圧に等しい電圧レベルになる。 したがって、 電圧調整器 1 2 0にて、 必要に応じて負出力霞圧 V nのレベルを調 整することになる。
この第 1実施例によれば、 コイル L 1を用いたスィツチング型電源回路 7 0に よって、 電源電圧 V b a tから変換された所定の正出カ電 JE V pを発生する。 そ れとともに、 コイル L 1 とスィツチ Q 1との接続点 Aと電原電圧点 V b a tとの 間に負出力電圧発生回路 80を設けて、 正出カ電 JEVpと電源電圧 Vb a tとに 基づいた所定電圧レベルの負出力電圧 V ηを発生する。 これにより、 負出力電圧 Vnのレベルに応じて、 電源電圧 Vb a tを供給する電池電?原 B ATに、 超過し た電圧分のエネルギーを第 1電圧制御用トランジスタ 2 1を介して戻すから、 適 切なレベルの負出力電圧 Vnを発生するとともに、 効率を向上することができる。 また、 負出力電圧 Vnのレベルを制御するため <7 第 1電圧制御用トランジスタ 2 1を設けている。 これにより、 これらの電圧制御用トランジスタ 2 1を制御す ることにより、 設定された負出力電圧 V nを得るこ とができる。
図 5は、 本発明の正負出力電圧用電源装置 100の第 2実施例に係る構成を示 す図である。 この第 2実施例では、 正出力電圧 Vp と負出力電圧 V nとの絶対値 での電圧差が小さくなった場合にも、 負出力電圧 nを適切に出力することがで きるようにしたものである。 即ち、その電圧差が、負出力電圧 Vnを出力しつつ、 電池電源 B A Tを充電するには十分な電圧差ではなくなつた場合に、 電池電源 B ATの充電は行わずに負出力電圧 Vnを出力するよ うに、 構成されている。
図 5において、 スイッチング電源回路 70は図 1の第 1実施例と同じである力 負出力電圧発生回路 8 OAが第 1実施例のものと —部異なっている。 以下、 異 なる点について説明する。
負出力電圧発生回路 80 Aにおいて、 負出力用 定電圧 V f l yの出力点は、 第 1切替スィッチ 23と第 1電圧制御用トランジスタ 21とを介して電池電源 B ATに接続されるカ あるいは、 第 2切替スィッチ 24と N型 MO S トランジス タである第 2電圧制御用トランジスタ 2 2とを介して、 グランドに接続される。 第 1、 第 2切替スィッチ 23、 24は、 切替制御回路 40からの切替信号 CO S に応じて、 いずれか一方がオンし他方がオフする。
図 6は、 切替制御回路 40の構成例を示す図でおる。 図 6において、 正出カ電 圧 Vp点と電源電圧 Vb a t点との間に定電流回路 5 1 (定電流値 I 0 ) と抵抗 器 52 (抵抗値 R 0) とが、 この順序で直列に接鏡されている。 その直列接続点 から第 3検出電圧 V d e t 3を得る。
この第 3検出電圧 V d e t 3は、 電源電圧 V b a t fこ抵抗器 5 2の電圧降下 I 0 · R 0を加算した電圧である。 この第 3検出電圧 Vd e t 3は、 電池電源 B A Tへの充電を行いつつ負出力電圧 V ηを制御可能なレベルに設定されている。 演算増幅器 5 3は、 第 3検出電圧 V d e t 3を負出力用設定電圧 V f 1 yと比 較し、負出力用設定電圧 V f 1 yが第 3検出電圧 Vd e t 3を超えているとき (V f 1 y>V d e t 3)、 第 1切替スィツチ 2 3をオンさせ第 2切替スィッチ 24を オフさせる切替信号 COSを出力する。 また、 演算増幅器 5 3は、 負出力用設定 電圧 V f 1 yが第 3検出電圧 V d e t 3を下回るとき (V f l y <Vd e t 3)、 切替信号 CO Sを停止し、 第 1切替スィツチ 2 3をオフさせ第 2切替スィツチ 2 4をオンさせる。 なお、 演算増幅器 5 3は、 第 1、 第 2切替スィツチ 2 3、 2 4 の切替を安定して行うために、 ヒステリシス特性を持 fこせることがよい。
このように、 正出力電圧 Vpと電源電圧 Vb a t間 O電圧差が大きいときには、 負出力用設定電圧 V f 1 yの出力点を電源電圧点側に接続して、 電池電源 BAT を充電しつつ適切なレベルの負出力電圧 Vnを発生させる。 一方、 正出力電圧 V pが低くなつたり、 電源電圧 Vb a tが高くなつたりして、 それらの間の電圧差 が小さくなつたときには、 負出力用設定電圧 V f 1 yの出力点を基準電圧点であ るグランド側に接続して、 適切なレベルの負出力電圧 V nを発生させる。 したが つて、 第 1、 第 2切替スィッチ 2 3、 24を電圧差に応じて切り替えることによ つて、 広範囲の電圧条件下で、 所要の負出力電圧 Vnを発生させることが可能に なる。
図 7は、 図 5の第 2実施例で用いられる負電圧制御回路 3 0 Bの第 3構成例を 示す図である。 図 7の負電圧制御回路 3 0 Bにおいて、 図 3の負電圧制御回路 3 0と比較して、 誤差増幅器 34が設けられている。 この誤差増幅器 34は、 B点 電圧と C点電圧とが入力され、 その出力が第 2電圧制御用トランジスタ 2 2のゲ 一トに印加される。 この誤差増幅器 3 4は、 C点電圧 SB点電圧に等しくなるよ うに、 第 2電圧制御用トランジスタ 2 2を制御する。
この負電圧制御回路 3 0 Bの動作は、 第 1切替スィツチ 2 3がオンされてレ、る 場合には図 3の負電圧制御回路 3 0と同様に動作する。 また、 第 2切替スインチ 2 4がオンされている場合には、 負電圧制御回路 3 0 Bはやはり負出力用設定電 圧 V f 1 yが所定電圧レベルになるように、 誤差増幅器 4 4の出力によって窮 2 電圧制御用トランジスタ 2 2を制御する。
したがって、 第 1切替スィツチ 2 3または第 2切替スィツチ 2 4のいずれ オ ンされている場合でも、 負出力用設定電圧 V f 1 yは、 正出力電圧 V pから一定 電圧だけ低い電圧になる。 これにより、 正出力電圧 V pや電源電圧 V b a t力 S変 わっても、 所定電圧レベルの負出力電圧 V nが出力される。
この図 5〜図 7のように構成された正負出力電圧用電源装置 1 0 0の動作 ί 、 電圧条件に応じて第 1切替スィツチ 2 3がオンされているか第 2切替スィツチ 2 4がオンされているかが異なるだけである。 その動作は、 図 2、 図 3で説明した 動作と、 ほぼ同様であるので、 再度の説明を省略する。
図 8は、 負電圧制御回路 3 0 Cの第 4構成例を示す図である。 図 8の負電 BE制 御回路 3 0 Cにおいて、 図 4の負電圧制御回路 3 0 Aと比較して、 誤差増幅器 4 4が設けられている。 この誤差増幅器 4 4は、 第 2検出電圧 V d e t 2と第 2基 準電圧 V r e f 2とが入力され、 その出力が第 2電圧制御用トランジスタ 2 2の ゲートに印加される。 この誤差増幅器 4 4は、 第 2検出電圧 V d e t 2が第 2基 準電圧 V r e f 2に等しくなるように、 第 2電圧制御用トランジスタ 2 2を U御 する。
この負電圧制御回路 3 0 Cの動作は、 第 1切替スィツチ 2 3がオンされてレ、る 場合には図 4の負電圧制御回路 3 O Aと同様に動作する。 また、 第 2切替スイツ チ 2 4がオンされている場合には、 負電圧制御回路 3 0 Cはやはり負出力電 EE V nが所定電圧レベルになるように、 誤差増幅器 4 4の出力によって第 2電圧制御 用トランジスタ 2 2を制御する。 したがって、 第 1切替スィツチ 2 3または第 2切替スィツチ 2 4のいずれが矛 ンされている場合でも、 負出力電圧 V nは、 所定電圧レベルに制御される。 これ により、 やはり、 正出力電圧 V pや電源電圧 V b a tが変わっても、 所定電圧レ ベルの負出力電圧 V nが出力される。 なお、 図 8の負電圧制御回路 3 0 Cが用レ、 られる場合には、 切替制御回路 4 0の演算増幅器 5 3には、 負出力用設定電圧 V f 1 yに代えて、所定レベルの第 3基準電圧 V r e f 3が入力される。 この点が、 図 6において括弧内に表されている。
このように、 以上の各実施例で説明した正負出力電圧を発生する電源装置 1 O 0では、 正出力電圧 V pと電源電圧 V b a t間の電圧差が大きいときには、 電原 電圧 V b a t点側に接続して、 電池電源 B A Tを充電しつつ適切なレベルの負出 力電圧 V nを発生させる。 したがって、 電力損失を低減し、 効率を向上できる。 また、 正出力電圧 V pが低くなつたり、 電源電圧 V b a tが高くなつたりして、 それらの間の電圧差が小さくなったときには、 基準電圧点であるグランド側に接 続して、 適切なレベルの負出力電圧 V nを発生させる。 したがって、 広範囲の電 圧条件下で、 所要の負出力電圧 V nを発生させることができる。
本発明の携帯機器は、 正負出力電圧を発生する電源装置 1 0 0を用いること【こ よって、 C C Dカメラなど正 ·負出力電圧を必要とする負荷装置に所要の電圧を 供給するとともに、 効率 向上して電池電源の使用可能時間を長くすることがで きる。 産業上の利用可能性
本発明に係るスィツチング型の電源装置は、 電源電圧から変換された正出カ電 圧とともに、 所定レベルの負出力電圧を効率よく発生する。 その正出力電圧と負 出力電圧を、 正及び負電圧を使用する負荷装置とを備えた、 携帯電話機などの携 帯機器に好適に利用できる。

Claims

請求の範囲
1 . コイル、 このコイルと直列に接続され、 電源電圧が印加される電源電圧点 から前記コイルへの通電をスィツチングするスィツチ、 前記コイルと前言己スィッ チとの直列接続点の電圧を整流し平滑し、 正出力電圧として出力する整 平滑回 路、 前記正出力電圧に応じた検出電圧が基準電圧と等しくなるように前言己スィッ チのオンオフスィツチングを行う制御回路を有するスィツチング電源回塔と、 前記コイルと前記スィツチとの接続点と前記電源電圧点との間に接続され、 前 記正出力電圧と前記電源電圧とに基づいた所定電圧レベルの負出力電圧を発生す るための負出力電圧発生回路と、 を備えることを特徴とする電源装置。
2 . 前記負出力電圧発生回路は、 一端が前記コイルと前記スィ ッチとの接続点 に接続された第 2コンデンサと、 この第 2コンデンサと第 2ダイォードと第 3コ ンデンサとが前記第 2ダイォードのカソードが前記第 2コンデンサの他 に接続 されるようにこの順序で直列に接続した直列回路を、 前記スィッチに並歹 IJに接続 するとともに、 第 3ダイォードのァノードが前記第 2ダイォードと前記第 2コン デンサとの接続点に接続され、 前記第 3ダイォードのカソードが前記電'源電圧点 側に接続され、 前記第 3コンデンサの充電電圧を前記負出力電圧として 力する、 ことを特徴とする、 請求項 1に記載の電源装置。
3 . 前記第 3ダイオードの力ソードと前記電源電圧点との間に、 前記負出力電 圧のレベルを制御するための電圧制御用トランジスタが設けられていることを特 徴とする、 請求項 2に記載の電源装置。
4 .
前記電圧制御用トランジスタは、 前記第 3ダイオードの力ソード側電 J3Eが前記 正出力電圧より所定電圧だけ低くなるように制御されることを特徴とする、 請求 項 3に記載の電源装置。
5 . 前記電圧制御用トランジスタは、 前記負出力電圧に応じた帰還電圧が所定 電圧になるように制御されることを特徴とする、 請求項 3に記載の電源装置。
6 . コイル、 このコイルと直列に接続され、 電源電圧が印加される電源電圧点 から前記コイルへの通電をスィツチングするスィツチ、 前記コイルと前言己スィッ チとの直列接続点の電圧を整流し平滑し、 正出力電圧として出力する整 平滑回 路、 前記正出力電圧に応じた検出電圧が基準電圧と等しくなるように前言己スイツ チのオンオフスィツチングを行う制御回路、 を有するスィツチング電源、回路と、 前記コイルと前記スィツチとの接続点と前記電源電圧点もしくは基準電圧点と の間に切替スィツチ回路を介して切替可能に接続され、 前記正 力電圧と前記電 源電圧もしくは基準電圧とに基づいた所定電圧レベルの負出力電圧を 生するた めの負出力電圧発生回路と、 を備えることを特徴とする電源装置。
7 . 前記負出力電圧発生回路は、 一端が前記コイルと前記スィッチとの接続点 に接続された第 2コンデンサと、 この第 2コンデンサと第 2ダイォードと第 3コ ンデンサとが前記第 2ダイォードのカソードが前記第 2コンデンサの他端に接続 されるようにこの順序で直列に接続した直列回路を、 前記スィッチに並歹 IJに接続 するとともに、 第 3タ、'ィオードのァノードが前記第 2ダイォードと前記第 2コン デンサとの接続点に接続され、 前記第 3ダイオードのカソードが前記切替スィッ チ回路を介して前記電源電圧点もしくは基準電圧点に接続され、 前記第 3コンデ ンサの充電電圧を前言己負出力電圧として出力する、 ことを特徴とする、 ft求項 6 に記載の電源装置。
8 . 前記第 3ダイオードの力ソードと前記電源電圧点との間に、 前記負出力電 圧のレベルを制御するための第 1電圧制御用トランジスタが設けられ、 且つ前記 第 3ダイオードの力ソードと前記基準電圧点との間に、 前記負出力電圧のレベル を制御するための第 2電圧制御用トランジスタが設けられていることを特徴とす る、 請求項 7に記載の電源装置。
9 . 前記第 1電圧制御用トランジスタ及び前記第 2電圧制御用トランジスタは、 前言己第 3ダイォードのカソ一ド側電圧が前記正出力電圧より所定電圧だけ低くな る^うに制御されることを特徴とする、 請求項 8に記載の電源装置。
1 O . 前記第 1電圧制御用トランジスタ及び前記第 2電圧制御用トランジスタ は、 前記第 3コンデンサの充電電圧に応じた帰還電圧が所定電圧になるように制 御されることを特徵とする、 請求項 8に記載の電源装置。 1 1 . 電源電圧を供給する電池電源と、 その電源電圧から変換された正出カ電 圧と負出力電圧を発生する請求項 1乃至 1 0のいずれかに記載された電源装置と、 前言己正出力電圧及び負出力電圧を使用する負荷装置と、 該負荷装置を制御する制 御装置とを備えたことを特徴とする携帯機器。 1 2 . 前記電源装置から出力される正出力電圧及びまたは負出力電圧は、 電圧 調整器を介して前記負荷装置に供給されることを特徴とする、 請求項 1 1に記載 の携帯機器。
PCT/JP2005/019952 2004-10-29 2005-10-25 電源装置、および携帯機器 WO2006046731A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/575,980 US20070216379A1 (en) 2004-10-29 2005-10-25 Power supply unit and portable device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004315297A JP4591887B2 (ja) 2004-10-29 2004-10-29 電源装置、および携帯機器
JP2004-315297 2004-10-29

Publications (1)

Publication Number Publication Date
WO2006046731A1 true WO2006046731A1 (ja) 2006-05-04

Family

ID=36227966

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/019952 WO2006046731A1 (ja) 2004-10-29 2005-10-25 電源装置、および携帯機器

Country Status (5)

Country Link
US (1) US20070216379A1 (ja)
JP (1) JP4591887B2 (ja)
CN (1) CN101019299A (ja)
TW (1) TWI377777B (ja)
WO (1) WO2006046731A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8686696B2 (en) 2010-08-26 2014-04-01 Semiconductor Energy Laboratory Co., Ltd. DC-DC converter and semiconductor device

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5043449B2 (ja) * 2007-01-18 2012-10-10 スタンレー電気株式会社 電源装置
US20100007407A1 (en) * 2008-07-08 2010-01-14 Sony Ericsson Mobile Communications Ab Circuit for generating a negative voltage supply signal, and associated power supply device and portable electronic apparatus
US7863968B1 (en) * 2008-11-07 2011-01-04 Altera Corporation Variable-output current-load-independent negative-voltage regulator
TWI412920B (zh) * 2009-01-14 2013-10-21 Wistron Corp 用於一可攜式電子裝置之電源供應裝置
TWI411187B (zh) * 2010-02-26 2013-10-01 Ennoconn Corp 具負電壓抑制功能的電壓控制電路
CN102130490A (zh) * 2011-04-07 2011-07-20 南京工程学院 电动车双电源系统
KR101998078B1 (ko) * 2012-12-10 2019-07-09 삼성전자 주식회사 하이브리드 차지 펌프 및 그 구동 방법, 파워 관리 회로, 및 디스플레이 장치
KR102280433B1 (ko) * 2015-09-23 2021-07-22 삼성전자주식회사 전력 공급 회로 및 이를 포함하는 저장 장치

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6126465A (ja) * 1984-07-12 1986-02-05 Nec Corp 電源回路
JPH09233809A (ja) * 1996-02-20 1997-09-05 Sharp Corp 直流電源回路
JP2001169546A (ja) * 1999-12-09 2001-06-22 Canon Inc 高電圧発生装置及びこれを備えた画像形成装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4622511A (en) * 1985-04-01 1986-11-11 Raytheon Company Switching regulator
JP2807760B2 (ja) * 1988-10-26 1998-10-08 九州大学長 スイッチング電源
JPH05219738A (ja) * 1992-02-07 1993-08-27 Matsushita Electric Ind Co Ltd 多重出力スイッチングレギュレータ
US5412308A (en) * 1994-01-06 1995-05-02 Hewlett-Packard Corporation Dual voltage power supply
IT1308586B1 (it) * 1999-01-20 2002-01-08 St Microelectronics Srl Dispositivo di alimentazione duale con singolo convertitore continua-continua e traslatore capacitivo
US6069472A (en) * 1999-02-05 2000-05-30 General Electronics Applications, Inc. Converter/inverter using a high efficiency switching circuit
US6469919B1 (en) * 1999-07-22 2002-10-22 Eni Technology, Inc. Power supplies having protection circuits
JP3902361B2 (ja) * 1999-09-07 2007-04-04 三洋電機株式会社 電源回路
JP3953239B2 (ja) * 1999-09-09 2007-08-08 三洋電機株式会社 電源回路
US6522110B1 (en) * 2001-10-23 2003-02-18 Texas Instruments Incorporated Multiple output switching regulator
JP3427935B1 (ja) * 2002-10-11 2003-07-22 ローム株式会社 スイッチング電源装置
US20040135562A1 (en) * 2003-01-13 2004-07-15 Oden Thomas Clark Single inductor multiple output switchmode power supply
JP4094487B2 (ja) * 2003-05-21 2008-06-04 ローム株式会社 正負出力電圧用電源装置
TWI273763B (en) * 2005-03-28 2007-02-11 Richtek Technology Corp Control apparatus and method for boost inverting converter
JP4857888B2 (ja) * 2006-04-26 2012-01-18 ミツミ電機株式会社 多出力型dc/dcコンバータ

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6126465A (ja) * 1984-07-12 1986-02-05 Nec Corp 電源回路
JPH09233809A (ja) * 1996-02-20 1997-09-05 Sharp Corp 直流電源回路
JP2001169546A (ja) * 1999-12-09 2001-06-22 Canon Inc 高電圧発生装置及びこれを備えた画像形成装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8686696B2 (en) 2010-08-26 2014-04-01 Semiconductor Energy Laboratory Co., Ltd. DC-DC converter and semiconductor device

Also Published As

Publication number Publication date
TW200620807A (en) 2006-06-16
JP4591887B2 (ja) 2010-12-01
TWI377777B (en) 2012-11-21
US20070216379A1 (en) 2007-09-20
CN101019299A (zh) 2007-08-15
JP2006129630A (ja) 2006-05-18

Similar Documents

Publication Publication Date Title
JP4440869B2 (ja) Dc−dcコンバータ、dc−dcコンバータの制御回路及びdc−dcコンバータの制御方法
WO2006046731A1 (ja) 電源装置、および携帯機器
US8971061B2 (en) Off time control method for switching regulator
KR100967474B1 (ko) 스위칭 레귤레이터 및 이것을 구비한 전자 기기
CN110999053B (zh) 用于向功率开关控制设备供电的可调电源设备
US7336057B2 (en) DC/DC converter
KR20160022807A (ko) 전류 모드 스위칭 조절기를 위한 듀티-싸이클 의존성 기울기 보정
JP2004135442A (ja) スイッチング電源装置
JP4094487B2 (ja) 正負出力電圧用電源装置
JP2013099040A (ja) 充電回路およびそれを利用した電子機器
KR20150017639A (ko) 전원 장치
US20130114310A1 (en) Power Supply Control Circuit and method for sensing voltage in the power supply control circuit
US20050151521A1 (en) Power supply unit and portable apparatus utilizing the same
US7239533B2 (en) DC power supply apparatus
KR20150022161A (ko) 전원 장치
JP6177813B2 (ja) Dc−dcコンバータ
KR20180050455A (ko) 출력 가변 회로 및 이를 이용한 컨버터 제어기
US10700518B2 (en) Constant current limiting protection for series coupled power supplies
US8760887B2 (en) Power supply circuit
US8305009B2 (en) Inverter driver and lamp driver using the same
US20220407419A1 (en) Control circuit of boost dc-dc converter, power supply circuit, and electronic device
JP2006042474A (ja) 直流電源装置
JP3101696B2 (ja) スイッチングレギュレータ
US20050194950A1 (en) Pulse-width-modulated signal to direct-current voltage converting unit
KR102119666B1 (ko) 전원 장치

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GM HR HU ID IL IN IS KE KG KM KP KZ LC LK LR LS LT LU LV LY MA MG MK MN MW MX MZ NA NG NI NZ OM PG PH PL PT RO RU SC SD SE SK SL SM SY TJ TM TN TR TT TZ UA US UZ VC VN YU ZA ZM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SZ TZ UG ZM ZW AM AZ BY KG MD RU TJ TM AT BE BG CH CY DE DK EE ES FI FR GB GR HU IE IS IT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 200580030736.2

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 11575980

Country of ref document: US

Ref document number: 2007216379

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 11575980

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 05799181

Country of ref document: EP

Kind code of ref document: A1