KR20150017639A - 전원 장치 - Google Patents
전원 장치 Download PDFInfo
- Publication number
- KR20150017639A KR20150017639A KR1020130093854A KR20130093854A KR20150017639A KR 20150017639 A KR20150017639 A KR 20150017639A KR 1020130093854 A KR1020130093854 A KR 1020130093854A KR 20130093854 A KR20130093854 A KR 20130093854A KR 20150017639 A KR20150017639 A KR 20150017639A
- Authority
- KR
- South Korea
- Prior art keywords
- voltage
- output
- amplifying
- unit
- power supply
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/02—Conversion of dc power input into dc power output without intermediate conversion into ac
- H02M3/04—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
- H02M3/10—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M3/145—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M3/155—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/42—Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
- H02M1/4208—Arrangements for improving power factor of AC input
- H02M1/4225—Arrangements for improving power factor of AC input using a non-isolated boost converter
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/02—Conversion of dc power input into dc power output without intermediate conversion into ac
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/02—Conversion of dc power input into dc power output without intermediate conversion into ac
- H02M3/04—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/02—Conversion of dc power input into dc power output without intermediate conversion into ac
- H02M3/04—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
- H02M3/10—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M3/145—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/02—Conversion of dc power input into dc power output without intermediate conversion into ac
- H02M3/04—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
- H02M3/10—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M3/145—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M3/155—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/156—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
- H02M3/158—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/02—Conversion of ac power input into dc power output without possibility of reversal
- H02M7/04—Conversion of ac power input into dc power output without possibility of reversal by static converters
- H02M7/06—Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0067—Converter structures employing plural converter units, other than for parallel operation of the units on a single load
- H02M1/0077—Plural converter units whose outputs are connected in series
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0083—Converters characterised by their input or output configuration
- H02M1/009—Converters characterised by their input or output configuration having two or more independently controlled outputs
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B70/00—Technologies for an efficient end-user side electric power management and consumption
- Y02B70/10—Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Dc-Dc Converters (AREA)
Abstract
본 발명의 실시예에 따르면 에너지 저장 소자를 공유하는 제1 및 제2 증폭부를 구비한 전원 장치를 이용하여 반도체 소자의 전압 스트레스를 저감할 수 있고, 상기 제1 및 제2 증폭부의 증폭 비율을 개별적으로 조절하면서 상기 제1 및 제2 증폭부에 출력되는 출력 전압을 일정하게 유지할 수 있다.
Description
본 발명은 전원 장치에 관한 것이다.
일반적으로 전자기기용 전원으로 이용되는 스위칭 전원으로 대부분 커패시터 입력형의 정류 회로가 사용된다. 이러한 커패시터로 인해 펄스 형태의 입력 전류가 발생하고, 펄스 형태의 입력 전류는 각각의 전자, 정보, 통신 기기의 입력에서 동시에 발생하기 때문에 배전선에서 동 위상으로 더해져 전력 계통에 고조파 왜곡 및 상용 전원의 역률 저하를 초래한다.
이러한 문제를 해결하기 위해 역률 보정 기능을 가지는 부스트(boost) 형 PFC(Power Factor Corrections)의 제어회로에 대한 연구가 활발하다.
도 1은 종래의 부스트 컨버터(Boost Converter) 타입의 전원 장치에 대한 도면이다.
도 1을 참조하면, 종래의 전원 장치(1)는 정류기(2) 양단에 입력 전원이 연결되고, 상기 정류기(2)와 스위칭 소자(4) 사이에는 에너지 저장 소자인 인덕터(3)가 연결되고, 상기 스위칭 소자(4)와 커패시터 사이에는 다이오드가 연결되는 구조를 가진다.
이러한 전원 장치(1)는 입력 측의 전압을 일정 비율만큼 증폭 시켜 출력단(5)으로 출력한다.
3상 계통에서의 선간 전압과 같은 고전압이 전원 장치(1)에 인가되는 경우 출력 단(5)에는 매우 큰 고 전압이 인가된다. 따라서 출력 단의 반도체 소자의 전압 스트레스가 높아져 스위칭 소자로 FET(Field Effect Transistor) 소자 보다 IGBT(Insulated Gate Bipolar Transistor) 소자를 사용하게 된다. 따라서 상기 IGBT 소자를 사용함에 따라 낮은 스위칭 주파수를 사용해야 하는 단점이 있다. 또한 수동 소자의 사이즈 증가 및 제반 비용 상승 등 전원 장치 설계에 제약이 있다.
실시예는 전원 장치 내의 반도체 소자의 전압 스트레스를 줄이는 전원 장치를 제공한다.
실시예는 전원 장치의 내의 제1 및 제2 출력부의 출력 전압을 일정하게 제어하는 전원 장치를 제공한다.
실시예에 따른 전원 장치는 교류 전원을 정류하는 입력 전원부; 및 상기 입력 전압을 n(n은 1보다 큰 실수)배 증폭하는 증폭부를 포함하고, 상기 증폭부는 제1 및 제2 증폭부 및 인덕터를 포함하고, 상기 제1 증폭부는 제1 스위칭 소자의 동작에 따라 제1 출력부로 상기 입력 전압의 n1(n1은 양의 실수)배에 해당하는 제1 출력 전압을 출력하고. 상기 제2 증폭부는 제2 스위칭 소자의 동작에 따라 제2 출력부로 상기 입력 전압의 n2(n2는 양의 실수)배에 해당하는 제2 출력 전압을 출력한다.
실시예에 따른 전원 장치의 상기 제1 증폭부, 제2 증폭부 및 인덕터는 서로 직렬 연결된다.
실시예에 따른 전원 장치의 상기 인덕터는 상기 제1 증폭부와 상기 제2 증폭부 사이에 연결된다.
실시예에 따른 전원 장치의 상기 제1 및 제2 증폭부는 서로 동일한 구성을 가진다.
실시예에 따른 전원 장치의 상기 입력 전원부는 정류기를 포함하고, 상기 정류기는 브릿지 정류기이다.
실시예에 따른 전원 장치의 상기 제1 증폭부는 상기 제1 스위칭 소자와 병렬로 연결된 제1 출력부를 포함하고, 상기 제2 증폭부는 상기 제2 스위칭 소자와 병렬로 연결된 제2 출력부를 포함한다.
실시예에 따른 전원 장치의 상기 제1 출력부는 서로 직렬 연결된 제1 다이오드와 제1 커패시터-저항부를 포함하고, 상기 제2 출력부는 서로 직렬 연결된 제2 다이오드와 제2 커패시터-저항부를 포함한다.
실시예에 따른 전원 장치의 상기 제1 및 제2 커패시터-저항부에 포함된 커패시터와 저항은 서로 병렬 연결된다.
실시예에 따른 전원 장치의 상기 n는 n1 과 n2의 합이다.
실시예에 따른 전원 장치의 상기 n1과 상기 n2는 서로 동일한 값을 가진다.
실시예에 따른 전원 장치의 상기 제1 및 제2 스위칭 소자는 동시에 턴-온(Turn-On)되고 동시에 턴-오프(Turn-Off)된다.
실시예에 따른 전원 장치의 상기 제1 스위칭 소자는 제1 시점에 턴-오프되고, 상기 제2 스위칭 소자는 제2 시점에 턴-오프되며, 상기 n1이 n2보다 큰 값을 가지는 경우, 상기 제1 시점은 제2 시점 이후에 도래한다.
실시예에 따른 전원 장치의 상기 제1 및 제2 스위칭 소자는 동시에 턴-온된다.
실시예에 따른 전원 장치는 교류 전원을 제1 전압으로 정류하는 정류부, 그리고 상기 정류부로부터 상기 제1 전압을 받아 승압하고, 상기 승압된 전압을 분배하여 제2 전압 및 제3 전압으로 출력하는 증폭부를 포함한다.
실시예에 따른 전원 장치의 상기 증폭부는 상기 제1 전압을 받아 증폭하여 상기 제2 전압을 출력하는 제1 증폭부, 상기 제1 증폭부와 직렬 연결되며, 상기 제1 전압을 받아 증폭하여 상기 제3 전압을 출력하는 제2 증폭부, 그리고 상기 제1 및 제2 증폭부와 직렬 연결되어 있는 인덕터를 포함한다.
실시예에 따른 전원 장치의 상기 인덕터는 제1 및 제2 증폭부 사이에 연결된다.
실시예에 따른 전원 장치의 상기 제2 및 제3 전압은 동일한 전압이다.
실시예에 따른 전원 장치의 상기 제1 및 제2 증폭부는 각각 제1 및 제2 스위칭 소자를 포함하고, 상기 제1 및 제2 스위칭 소자의 동작 주파수에 따라 상기 제2 및 제3 전압이 제어된다.
실시예에 따른 전원 장치의 상기 제1 및 제2 스위칭 소자는 동시에 턴-온 및 턴-오프 된다.
실시예에 따른 전원 장치의 상기 제2 및 제3 전압이 동일한 경우, 상기 제1 및 제2 스위칭 소자는 동시에 턴-온 및 턴-오프 된다.
실시예에 따른 전원 장치는 상기 제2 및 제3 전압이 동일한 제1 구간 동안, 상기 제1 및 제2 스위칭 소자는 동시에 턴-온 및 턴-오프되고, 상기 제2 및 제3 전압이 상이한 제2 구간 동안, 상기 제1 스위칭 소자는 제1 시점에 턴-오프 되고, 상기 제2 스위칭 소자는 제2 시점에 턴-오프된다.
실시예에 따른 전원 장치의 상기 제2 구간 동안 제1 및 제2 스위칭 소자는 동시에 턴-온 된다.
실시예에 따르면 에너지 저장 소자를 공유하는 제1 및 제2 증폭부를 구비한 전원 장치를 이용하여 반도체 소자의 전압 스트레스를 줄일 수 있다. 그리고 상기 제1 및 제2 증폭부의 증폭 비율을 개별적으로 조절하여 상기 제1 및 제2 증폭부에 출력되는 출력 전압을 일정하게 유지할 수 있다.
도 1은 종래의 부스트 컨버터(Boost Converter) 타입의 전원 장치에 대한 도면
도 2는 본 발명의 실시예에 따른 전원 장치(1000)의 블록도
도 3은 본 발명의 실시예에 따른 전원 장치를 나타낸 도면
도 4는 본 발명의 제1 실시예에 따른 전원 장치의 제1 및 제2 스위칭 소자(Qs, Qm)가 턴-온 되는 경우의 동작 방식을 나타낸 도면
도 5는 본 발명의 제1 실시예에 따른 전원 장치의 제1 및 제2 스위칭 소자(Qs, Qm)가 턴-오프 되는 경우의 동작 방식을 나타낸 도면
도 6은 본 발명의 제1 실시예에 따른 전원 장치의 제1 스위칭 소자(Qs)가 턴-오프 되고, 제2 스위칭 소자(Qm)가 턴-온 되는 경우의 동작 방식을 나타낸 도면
도 7은 본 발명의 제1 실시예에 따른 전원 장치의 제1 스위칭 소자(Qs)가 턴-온 되고, 제2 스위칭 소자(Qm)가 턴-오프 되는 경우의 동작 방식을 나타낸 도면
도 8은 본 발명의 제2 실시예에 따른 밸런스 출력 전원 장치를 나타낸 도면
도 9는 본 발명의 제2 실시예에 따른 밸런스 출력 전원 장치의 제어부를 나타낸 도면
도 10은 본 발명의 제2 실시예에 따른 밸런스 출력 전원 장치의 아날로그 제어부를 나타낸 도면
도 11은 제1 및 제2 듀얼 피드백부의 회로도를 나타낸 도면이다.
도 12 및 13은 본 발명의 실시예에 따른 전원 장치 및 상기 전원 장치를 구동하기 위한 제어부의 회로도
도 14는 본 발명의 실시예에 따른 전원 장치의 시뮬레이션 결과를 나타낸 도면
도 2는 본 발명의 실시예에 따른 전원 장치(1000)의 블록도
도 3은 본 발명의 실시예에 따른 전원 장치를 나타낸 도면
도 4는 본 발명의 제1 실시예에 따른 전원 장치의 제1 및 제2 스위칭 소자(Qs, Qm)가 턴-온 되는 경우의 동작 방식을 나타낸 도면
도 5는 본 발명의 제1 실시예에 따른 전원 장치의 제1 및 제2 스위칭 소자(Qs, Qm)가 턴-오프 되는 경우의 동작 방식을 나타낸 도면
도 6은 본 발명의 제1 실시예에 따른 전원 장치의 제1 스위칭 소자(Qs)가 턴-오프 되고, 제2 스위칭 소자(Qm)가 턴-온 되는 경우의 동작 방식을 나타낸 도면
도 7은 본 발명의 제1 실시예에 따른 전원 장치의 제1 스위칭 소자(Qs)가 턴-온 되고, 제2 스위칭 소자(Qm)가 턴-오프 되는 경우의 동작 방식을 나타낸 도면
도 8은 본 발명의 제2 실시예에 따른 밸런스 출력 전원 장치를 나타낸 도면
도 9는 본 발명의 제2 실시예에 따른 밸런스 출력 전원 장치의 제어부를 나타낸 도면
도 10은 본 발명의 제2 실시예에 따른 밸런스 출력 전원 장치의 아날로그 제어부를 나타낸 도면
도 11은 제1 및 제2 듀얼 피드백부의 회로도를 나타낸 도면이다.
도 12 및 13은 본 발명의 실시예에 따른 전원 장치 및 상기 전원 장치를 구동하기 위한 제어부의 회로도
도 14는 본 발명의 실시예에 따른 전원 장치의 시뮬레이션 결과를 나타낸 도면
이하, 본 발명의 실시예에 의한 전원 장치의 도면을 참고하여 상세하게 설명한다. 다음에 소개되는 실시 예들은 당업자에게 본 발명의 사상이 충분히 전달될 수 있도록 하기 위해 예로서 제공되는 것이다. 따라서, 본 발명은 이하 설명되는 실시 예들에 한정되지 않고 다른 형태로 구체화될 수도 있다.
도 2는 본 발명의 실시예에 따른 전원 장치(1000)의 블록도이고, 도 3은 본 발명의 실시예에 따른 전원 장치(1000)를 나타낸 도면이다.
본 발명의 실시예에 따른 전원 장치(1000)는 특히 입력 전압보다 높은 출력 전압, 즉 전력 승압을 필요로 하는 시스템에서 사용될 수 있다.
예를 들어 배터리, 솔라 패널(Solar panel), 정류기 및 직류 생성 장치 등에서 사용될 수 있으며, LED패널의 전압 공급 장치로 사용되거나, LCD 패널의 게이트 드라이브 전압 승압용 장치로 사용될 수 있으나 이에 한정되는 것은 아니다.
도 2 및 3을 참조하면, 본 발명의 실시예에 따른 전원 장치(1000)는 정류부(10)를 포함하는 전원부(11), 제1 및 제2 증폭부(20, 30) 및 에너지 저장 소자인 인덕터(40)를 포함할 수 있다.
정류부(10)는 입력 교류 전원을 인가 받아 정류하여 출력한다. 상기 정류부(10)는 브릿지 정류기일 수 있으며, 제1 내지 제4 다이오드(D1~D4)를 포함할 수 있다.
상기 정류부(10)는 제1 및 제2 노드로 입력 교류 전원을 인가 받아 정류하여 제3 노드 및 제4 노드로 출력할 수 있다.
상기 정류부(10)의 제1 내지 제4 다이오드(D1~D4)의 연결관계를 설명한다.
상기 제1 내지 제4 다이오드(D1~D4)의 P영역에 연결된 전극인 애노드(anode)와 N영역에 연결된 전극인 캐소드(cathode)를 포함한다.
상기 제1 다이오드(D1)의 애노드 단자는 제1 노드(N1)에 연결되고, 캐소드 단자는 제3 노드(N3)에 연결된다.
상기 제2 다이오드(D2)의 애노드 단자는 제4 노드(N4)에 연결되고, 캐소드 단자는 제2 노드(N2)에 연결된다.
상기 제3 다이오드(D3)의 애노드 단자는 제2 노드(N2)에 연결되고, 캐소드 단자는 제3 노드(N3)에 연결된다.
상기 제4 다이오드(D4)의 애노드 단자는 제4 노드(N4)에 연결되고, 캐소드 단자는 제2 노드(N2)에 연결된다.
제1 및 제2 스위칭 소자(Qs, Qm)의 동작에 동기되는 에너지 저장 소자인 인덕터(40)는 에너지를 축적하고, 이 축적한 에너지를 제1 및 제2 증폭부(20, 30)로 공급하는 동작을 반복할 수 있다.
제1 및 제2 증폭부(20, 30)는 인덕터(40)와 동기화되고 입력 전압을 증폭하여 출력할 수 있다.
제1 증폭부(20), 제2 증폭부(30) 및 인덕터(40)는 서로 직렬 연결될 수 있다. 도면 상으로 인덕터(40)가 제1 증폭부(20) 및 제2 증폭부(30) 사이에 배치되고 있으나 이에 한정되는 것은 아니다.
인덕터(40), 제1 증폭부(20) 및 제2 증폭부(30) 순으로 직렬 배치되거나, 제1 증폭부(20), 제2 증폭부(30) 및 인덕터(40) 순으로 직렬 배치될 수 있다.
상기 제1 및 제2 증폭부(20, 30)는 도3과 같은 회로 구성을 가질 수 있다.
이하 제5 노드(N5)는 제6 노드(N6) 및 제7 노드(N7)의 슈퍼노드(SuperNode)라고 정의한다.
상기 제1 증폭부(20)는 제 3노드(N3) 및 제5 노드(N5) 사이에 연결될 수 있다.
제2 증폭부(30)는 제5 노드(N5) 및 제4 노드(N4) 사이에 연결될 수 있다. 따라서 상기 제1 및 제2 증폭부(20, 30)는 서로 직렬 연결일 수 있다.
상기 제6 노드(N6) 및 제7 노드(N7) 사이에는 인덕터(40)가 연결될 수 있다.
상기 인덕터(40)의 위치는 전술한 바에 한정되는 것은 아니다.
정류기(10)와 제1 증폭부(20) 사이의 제3 노드(N3) 상에 연결될 수 있고, 상기 정류기(10)와 제2 증폭부(30) 사이의 제4 노드(N4) 상에 연결될 수도 있다. 따라서 상기 정류기(10)와 제1 및 제2 증폭부(20, 30) 및 인덕터(40)는 서로 직렬 연결일 수 있다.
상기 제1 증폭부(20)는 제1 스위칭 소자(Qs) 및 이와 병렬 연결인 제1 출력부(21)를 포함할 수 있다.
상기 제2 증폭부(30)는 제2 스위칭 소자(Qm) 및 이와 병렬 연결인 제2 출력부(31)를 포함할 수 있다.
상기 제1 출력부(21)는 제1 커패시터(22), 제1 저항(23) 및 제1 출력부 다이오드(24)를 포함할 수 있다.
상기 제1 커패시터(22)와 제1 저항(23)은 서로 병렬 연결될 수 있으며, 이들과 직렬로 상기 제1 출력부 다이오드(24)가 연결될 수 있다.
도면 상으로는 제1 출력부 다이오드(24)가 제5 노드(N5)와 제8 노드(N8)사이에 연결되어 있지만 이에 한정되는 것은 아니고 상기 제1 출력부 다이오드(24)가 제1 스위칭 소자(Qs)와 제1 커패시터(22) 사이에서 순방향으로 제3 노드(N3) 상에 연결될 수 있다.
상기 제2 출력부(31)는 제2 커패시터(32), 제2 저항(33) 및 제2 출력부 다이오드(34)를 포함할 수 있다.
상기 제2 커패시터(32)와 제2 저항(33)은 서로 병렬 연결될 수 있고, 이들과 직렬로 상기 제2 출력부 다이오드(34)가 연결될 수 있다.
도면 상으로는 제2 출력부 다이오드(34)가 제5 노드(N5)와 제9 노드(N9)사이에 연결되어 있지만 이에 한정되는 것은 아니다.
상기 제2 출력부 다이오드(34)는 제2 스위칭 소자(Qm)와 제2 커패시터(32) 사이에서 순방향으로 제4 노드(N4) 상에 연결될 수 있다.
한편 상기 제1 및 제2 커패시터(22, 32)는 제1 및 제2 저항(23, 33)에 공급되는 전류를 안정화 시킬 수 있고, 상기 제1 및 제2 출력부 다이오드(24, 34)는 정류 다이오드 기능을 하여 역방향 전류가 흐르지 않도록 할 수 있다.
제1 및 제2 스위칭 소자(Qs, Qm)는 인덕터(40)로부터 제1 및 제2 출력부(21, 31)로 공급되는 전류를 제어하는 역할을 한다.
즉, 제1 및 제2 스위칭 소자(Qs, Qm)는 펄스폭 변조신호(PWM)에 의해 온 또는 오프 동작을 반복함으로써, 상기 인덕터(40)로부터 상기 제1 및 제2 출력부(21, 31)로 공급되는 전류의 크기를 제어할 수 있다.
도면 상에서 제1 및 제2 스위칭 소자(Qs, Qm)는 편의상 전력용 MOSFET으로 표기되어 있을 뿐 이에 한정되는 것은 아니다. 따라서 상기 제1 및 제2 스위칭 소자(Qs, Qm)는 전력 용량에 따라 온-오프 제어 가능한 소자가 될 수 있다.
전원 장치(1000)는 입력 전압을 인가 받는다. 그리고 제1 스위칭 소자(Qs)의 동작에 따라 제1 출력부(21)로 제1 출력 전압을 발생할 수 있다. 또한 제2 스위칭 소자(Qm)의 동작에 따라 제2 출력부(31)로 제2 출력 전압을 발생할 수 있다.
다시 말해 상기 제1 증폭부(20) 및 제2 증폭부(30)는 입력 전원부(11)로부터의 입력 전압을 n배 증폭할 수 있다.
출력 전압이 입력 전압보다 낮은 Buck 컨버터와는 달리 실시예에 따른 전원 장치(1000)는 출력 전압이 입력 전압보다 클 수 있다. 따라서 상기 n은 1보다 큰 실수 값을 가질 수 있다. 그리고 수학식1과 같은 전압 전달비를 가질 수 있다.
상기 제1 증폭부(20)는 입력 전압의 n1배에 해당하는 제1 출력 전압을 제1 출력부(21)로 출력할 수 있다. 그리고 상기 제2 증폭부(30)는 제2 출력부(31)로 입력 전압의 n2배에 해당하는 제2 출력 전압을 출력할 수 있다.
상기 제1 증폭부(20)의 증폭비는 제1 스위칭 소자(Qs)의 스위칭 주파수에 따라서 제어될 수 있고, 상기 제2 증폭부(20)의 증폭비는 제2 스위칭 소자(Qm)의 동작에 따라 제어될 수 있다.
증폭부(50)의 증폭비와 상기 증폭부(50)를 구성하는 제1 및 제2 증폭부(20, 30)의 증폭비는 수학식2과 같은 관계가 성립한다.
즉 증폭부(50)는 입력 전압을 n배 증폭할 수 있다. 이렇게 증폭 전압은 제1 증폭부(20)에 의하여 n1배 증폭된 입력 전압과 제2 증폭부(30)에 의하여 n2배 증폭된 입력 전압의 합과 같다.
상기 n1 및 n2는 서로 동일한 값을 가지거나 상이한 값을 가질 수 있다.
상기 n1 및 n2가 동일한 값을 가지는 경우에는 제1 및 제2 증폭부(20, 30) 각각에서 입력 전압의 증폭 정도가 동일하다. 따라서 제1 및 제2 출력부(21, 31)로부터 동일한 출력 전압을 얻을 수 있다.
상기 n1 및 n2가 서로 상이한 값을 가지는 경우에는 제1 및 제2 증폭부(20, 30) 각각에서 입력 전압의 증폭 정도가 다르다. 따라서 제1 및 제2 출력부(21, 31)로부터 서로 상이한 출력 전압을 얻을 수 있다.
이하에서는 도면 4 내지 7을 통해서 본 발명 제1 실시예에 따른 전원 장치(1000)의 동작 방식을 설명한다. 다만 설명의 편의를 위하여 각 소자는 이상적인 특성에 가까운 것으로 전제하고 설명한다.
제1 및 제2 스위칭 소자(Qs, Qm)의 동작 방식에 따라서 4가지 동작모드를 가질 수 있다.
제1 및 제2 스위칭 소자(Qs, Qm)의 온 오프에 의해 제1 및 제2 출력부(21, 31)의 출력 전압을 제어할 수 있다.
도 4는 본 발명의 제1 실시예에 따른 전원 장치(1000)의 제1 및 제2 스위칭 소자(Qs, Qm)가 턴-온 되는 경우의 동작 방식을 나타낸 도면이다.
도 4를 참조하면, 제1 동작 모드에서 제1 및 제2 스위칭 소자(Qs, Qm)가 동시에 턴-온된다. 이 경우 상기 제1 및 제2 스위칭 소자(Qs, Qm)에 걸리는 전압은 0V가 될 수 있다. 그리고 제1 및 제2 스위칭 소자(Qs, Qm)에 흐르는 전류는 인덕터(40)에 흐르는 전류가 될 수 있다.
제1 및 제2 출력부 다이오드(24, 34)에 흐르는 전류는 0A가 된다. 그리고 상기 제1 및 제2 출력부 다이오드(24, 34) 각각에는 입력 전압의 분배 전압이 인가 된다.
인덕터(40)에는 정류된 입력 전압이 인가되고 상기 인덕터(40)에 흐르는 전류는 증가한다.
도 5는 본 발명의 제1 실시예에 따른 전원 장치(1000)의 제1 및 제2 스위칭 소자(Qs, Qm)가 턴-오프 되는 경우의 동작 방식을 나타낸 도면이다.
도 5를 참조하면, 제2 동작 모드에서 제1 및 제2 스위칭 소자(Qs, Qm)가 동시에 턴 오프된다. 이 경우 상기 제1 및 제2 스위칭 소자(Qs, Qm)에는 입력 전압이 전압 분배되어 걸리게 된다. 그리고 상기 제1 및 제2 스위칭 소자(Qs, Qm)에 흐르는 전류는 0 A가된다.
제1 및 제2 출력부 다이오드(24, 34)는 온 되므로 상기 제1 및 제2 출력부 다이오드(24, 34)에 걸리는 전압은 0V가 된다. 그리고 상기 제1 및 제2 출력부 다이오드(24, 34)에 흐르는 전류는 인덕터(40)에 흐르는 전류가 된다.
상기 인덕터(40)에 인가되는 전압은 입력 전압에서 제1 출력부(21)의 전압과 제2 출력부(31)의 전압을 뺀 전압이 되므로 음의 전압이 걸리게 된다. 따라서 상기 인덕터(40)에 흐르는 전류는 감소하게 된다.
이하 제1 및 제2 동작 모드가 교번하는 경우를 설명한다.
제1 동작 모드 시 인덕터(40)에 흐르는 전류는 증가한다. 이 때 전원장치(1000)가 제2 동작 모드로 들어가는 경우 상기 인덕터(40)에 흐르는 전류를 유지하기 위하여 상기 인덕터(40) 양단 전압이 높아진다. 그리고 제1 및 제2 출력부(21, 31) 상에 전류가 흐르게 된다. 그리고 상기 인덕터(40) 전류가 점점 감소하는 중에 다시 제1 동작 모드로 전환 시 상기 제1 및 제2 스위칭 소자(Qs, Qm)가 턴-온되어 상기 인덕터(40)에 흐르는 전류는 증가한다.
전술한 바와 같이 상기 제1 및 제2 스위칭 소자가 동시에 턴-온 및 턴-오프 되어 제1 및 제2 동작 모드가 반복할 때, 즉 제1 및 제2 스위칭 소자(Qs, Qm)의 온/오프 비율은 제1 및 제2 출력부(21, 31)의 출력 전압을 감지하여 결정하게 된다. 따라서 일정한 제1 및 제2 출력 전압을 얻을 수 있다. 또한 입력 전압이 증폭되고, 상기 증폭된 전압은 제1 및 제2 출력부(21, 31)에 균등하게 전압 분배될 수 있다.
입력전압이 제1 및 제2 출력부(21, 31)에 전달되는 전압 전달 비에 관한 식은 다음과 같은 수학식 3을 충족한다.
이 때, 듀티비 D를 0에서 1사이 범위 내에서 변경함으로써 제1 및 제2 출력부(21, 31)의 전압을 조절할 수 있다.
전술한 바와 같이 본 발명의 전원 장치(1000)에 따르면 입력 전압을 증폭하여 증폭된 전압을 제1 및 제2 출력부(21, 31)에 분배하여 인가한다. 따라서 회로 소자의 전압 스트레스가 감소된다. 따라서 스위칭 소자로서 IGBT뿐만 아니라 FET소자를 이용할 수가 있다.
즉, 본 발명에 적용될 부품 소자의 선택의 제한이 완화되어 각종 소자의 사이즈나 비용 증가 등을 회피할 수 있도록 설계 가능성을 높여준다.
각종 소자의 전압 스트레스를 낮추는 효과뿐만 아니라 출력부를 두 개로 분할 구동함으로써 각 출력부 서로 다른 기능을 가지는 회로 측에 각각 전력을 전달할 수 있다. 이로써 본 발명의 실시예에 따른 전원 장치(1000)는 하나의 전력 공급원을 이용하여 복수의 전력 공급원을 제공할 수 있는 이점을 가지고 이를 통해 회로 전체의 사이즈 축소 및 비용 절감 등의 효과를 가질 수 있다.
전술한 바에 의하면 제1 및 제2 스위칭 소자(Qs, Qm)는 동시에 턴온되고, 동시에 턴 오프되는 것으로 설명되어 있으나 이에 한정되는 것은 아니다.
전원 장치(1000)가 사용되는 제품에 따라서 서로 다른 전압을 가지는 두 개의 출력부가 필요할 수 있다. 따라서 이 경우는 상기 제1 및 제2 스위칭 소자(Qs, Qm)를 개별적으로 구동시킬 수 있다. 즉, 상기 제1 및 제2 스위칭 소자(Qs, Qm)에 인가되는 PWM 신호를 개별적으로 공급하여 상기 제1 및 제2 스위칭 소자(Qs, Qm)를 개별적 제어할 수 있다. 그리하여 제1 및 제2 출력부(21, 31)에 서로 상이한 전압이 출력되도록 할 수 있다.
도 6은 본 발명의 제1 실시예에 따른 전원 장치(1000)의 제1 스위칭 소자(Qs)가 턴-오프 되고, 제2 스위칭 소자(Qm)가 턴-온 되는 경우의 동작 방식을 나타낸 도면이다.
도 6을 참조하면, 제3 동작모드에 의하여 제1 스위칭 소자(Qs)는 턴 오프되고, 동시에 제2 스위칭 소자(Qm)는 턴 온 될 수 있다.
상기 제1 스위칭 소자(Qs)가 턴 오프되고, 제2 스위칭 소자(Qm)가 턴 온되는 경우, 상기 제1 스위칭 소자(Qs)에 걸리는 전압은 0V가 되고 흐르는 전류는 인덕터(40)에 흐르는 전류가 된다. 그리고 상기 제2 스위칭 소자(Qm)에는 입력 전압이 증폭되어 걸리게 되고 흐르는 전류는 0A가 된다. 또한 상기 인덕터(40)에는 입력전압과 제2 스위칭 소자(Qm)에 걸리는 전압의 차 전압이 걸리게 되고, 상기 차 전압은 음의 전압이 되면서 상기 인덕터(40)에 흐르는 전류는 감소하게 된다.
도 7은 본 발명의 제1 실시예에 따른 전원 장치(1000)의 제1 스위칭 소자(Qs)가 턴-온 되고, 제2 스위칭 소자(Qm)가 턴-오프 되는 경우의 동작 방식을 나타낸 도면이다.
도 7을 참조하면, 제4 동작모드에 의하여 제1 스위칭 소자(Qs)는 턴 온되고, 동시에 제2 스위칭 소자(Qm)는 턴 오프 될 수 있다.
상기 제1 스위칭 소자(Qs)가 턴 온되고, 제2 스위칭 소자(Qm)가 턴 오프되는 경우, 상기 제1 스위칭 소자(Qs)에는 입력 전압이 증폭되어 걸리게 되고 흐르는 전류는 0A가된다. 그리고 상기 제2 스위칭 소자(Qm)에 걸리는 전압은 0V가 되고, 이에 흐르는 전류는 인덕터(40)에 흐르는 전류가 된다. 또한 상기 인덕터(40)에는 입력전압과 제1 스위칭 소자(Qs)에 걸리는 전압의 차 전압이 걸리게 되고, 상기 차 전압은 음의 전압이 되면서 상기 인덕터(40)에 흐르는 전류는 감소하게 된다.
전술한 제3 및 제4 동작 모드에서도 듀티비에 따라서 제1 및 제2 출력부(21, 31)에 걸리는 전압의 증폭 정도를 조절할 수 있다.
종합하면, 본 발명에 제1 실시예에 따른 전원 장치(1000)는 제1 내지 제4 동작 모드 방식의 조합에 따라서 다양한 방식으로 동작하도록 할 수 있다. 예를 들어 제1 및 제2 동작 모드 방식을 주 동작 모드 방식으로 하는 경우에는 제1 및 제2 출력부(21, 31)에 증폭 전압을 분배 시켜 반도체 소자의 전압 스트레스를 감소 시킬 수 있고, 제1 및 제2 출력부(21, 31)에서 출력되는 전압을 하나의 용도 또는 서로 다른 용도로 사용할 수 있다. 그리고, 상기 제1 및 제2 출력부(21, 31)에 출력되는 전압을 간헐적으로 서로 달리하는 경우에는 상기 제1 및 제2 스위칭 소자(Qs, Qm)에 인가되는 PWM 신호의 듀티비를 서로 달리함으로써 그 목적을 달성 할 수 있다. 그리고 제1 및 제2 동작 모드 방식을 주 동작 모드 방식으로 사용하는 경우 제1 및 제2 출력부(21, 31)에 서로 동일한 값을 가지는 증폭 전압이 인가될 것이다. 그러나 회로 소자의 비 이상적 특성이나 외부적 요인에 의하여 상기 제1 및 제2 출력부(21, 31)에 서로 동일한 크기를 가지는 증폭 전압이 지속되지 못할 수 있다. 이러한 경우 제3 및 제4 동작모드 방식을 추가하면서 상기 제1 및 제2 출력부(21, 31)에 서로 동일한 크기를 가지는 증폭 전압이 유지되도록 할 수 있다.
이하에서는 본 발명의 제2 실시예에 따른 전원 장치(3000)를 설명한다.
다만 본 발명의 제2 실시예는 밸런스(Balance) 출력 전원 장치(3000)로 명명한다.
전술한 제1 실시예의 전원 장치(1000)에 따르면 입력 전압을 분압하여 두 출력부 측에 제공하고, 제1 내지 제4 동작 모드를 통해서 입력 전압을 균등히 분배하여 두 출력부 측에 걸리게 할 수 있다.
이와 달리 두 출력부 측에 증폭된 입력 전압이 서로 상이하게 분배되도록 동작하는 방식이 될 수 있다. 또한 일정 시간 동안은 증폭된 입력 전압이 두 출력부 측에 균등 분배되고, 또 일정 시간 동안은 증폭된 입력 전압이 두 출력부 측에 서로 상이한 값으로 분배되도록 할 수 있다.
제2 실시예에서는 입력 전압을 균등하게 분배하여 두 단의 출력 단에 제공하고, 상기 두 단의 출력단에 전압 불균형이 생긴 경우 이를 바로 잡는 밸런스 출력 전원 장치(1000)에 대해서 설명한다.
제1 실시 예에서 설명한 전원 장치(1000)가 제1 및 제2 동작 모드로 교번적으로 동작하는 경우에 제1 및 제2 출력부(21, 31)의 부하측에 흐르는 전류 량이 상이해질 수 있다. 이 경우 전류가 많이 흐르는 출력부의 커패시터에는 충전되는 에너지는 다른 출력부의 커패시터에 충전된 에너지와 비교해 상대적으로 적을 수 있다. 그리하여 상대적으로 적은 에너지를 충전한 커패시터를 포함하는 출력부의 출력 전압이 낮아질 수 있다. 이 경우 입력 전압의 균등 분배가 일어나지 않게 되고 밸런스 출력이 나타나지 않게 된다. 그리고 어느 한 쪽 반도체 소자에 상대적으로 높은 전압이 걸리면서 높은 전압이 걸린 회로 내의 반도체 소자의 전압 스트레스가 증가할 수 있다.
본 발명의 제2 실시예에 따르면 제1 및 제2 출력부(21, 31)에 흐르는 전류가 상이하여 출력 전압이 불균형 해지는 경우 이를 바로 잡을 수 있다.
이하 도면을 참조하여 본 발명의 제2 실시예에 따른 밸런스 출력 전원 장치(3000)의 동작 방식을 설명한다.
도 8은 본 발명의 제2 실시예에 따른 밸런스 출력 전원 장치를 도시한 것이고, 도9는 도8의 제어부의 상세 구성을 나타내는 회로도이다.
도 8 및 도 9를 참고하면, 밸런스 출력 전원 장치(1000)는 전원부(1000) 및 제어부(2000)를 포함할 수 있다.
상기 전원부(1000)는 도 2 내지 도 7에서 설명한 전원 장치(1000)일 수 있으며, 제어부(2000)는 상기 전원 장치(1000)의 스위칭 소자(Qs, Qm)를 온-오프하는 제어 신호를 생성한다.
도 8 및 9를 참조하면, 본 발명의 제2 실시예에 따른 밸런스 출력 전원 장치(3000)는 전압 제어기(100), 역률개선회로(200), 삼각파 발생회로(400), 제1 비교기(310), 제2 비교기(320), 제1 미세 변위 제어기(610) 및 제2 미세 변위 제어기(620)를 포함할 수 있다. 그리고 추가적으로 제1 내지 제3 덧셈기(510, 520, 530)를 포함할 수 있다.
제어부(2000)를 이루는 각 구성의 연결관계를 살펴보면, 제1 덧셈기(510)는 제1 및 제2 출력 출압이 인간되는 단자 및 전압 제어기(100)의 입력 단자 사이에 연결될 수 있고, 상기 전압 제어기(100)는 제1 기준 전압 단자, 제1 덧셈기(510)의 출력 단자 및 역률개선회로(200)의 입력 단자 사이에 연결될 수 있고, 상기 역률개선회로(200)는 상기 전압 제어기(100)의 출력 단자, 센싱된 입력 전압이 인가된 단자, 센싱된 출력 전류가 인가되는 단자 및 제2 및 제3 덧셈기(520, 530)의 입력 단자 사이에 연결될 수 있다. 그리고 상기 제2 덧셈기(520)는 제1 미세 변위 제어기(610)의 출력 단자와 제1 비교기(310)의 입력 단자 사이에 연결 될 수 있고, 상기 제3 덧셈기(530)는 제2 미세 변위 제어기(620)의 출력 단자와 제2 비교기(320)의 입력 단자 사이에 연결 될 수 있고, 상기 제1 미세 변위 제어기(610)는 제2 출력 전압이 인가되는 단자와 제2 기준 전압이 인가되는 단자 사이에 연결 될 수 있고, 제2 미세 변위 제어기(610)는 제1 출력 전압이 인가되는 단자와 제3 기준 전압이 인가되는 단자 사이에 연결되어 상기 제3 덧셈기(530)로 신호를 출력할 수 있다. 또한 상기 제1 비교기(310)는 삼각파 발생회로(400)의 출력 신호 단자와 제2 덧셈기(520)의 출력 신호 단자 및 제1 스위칭 소자(Qs)의 제어 단자 사이에 연결될 수 있고, 상기 제2 비교기(320)는 삼각파 발생회로(400)의 출력 신호 단자와 제3 덧셈기(530)의 출력 신호 단자 및 제2 스위칭 소자(Qm)의 제어 단자 사이에 연결될 수 있다.
이하 본 발명의 제2 실시예에 따른 밸런스 출력 전원 장치(3000)의 동작 방식을 설명한다. 이 경우 예로써 입력 교류 전압의 피크치가 400V이고 이를 두 배 증폭하여 제1 및 제2 출력부(21, 31)에서 각각 400V씩 출력되는 경우를 살펴본다. 제시된 수치는 발명의 설명의 편의를 위한 것일 뿐 이에 한정되는 것은 아니다.
전압 제어기(100)은 제1 및 제2 출력부(21, 31)의 출력 전압의 합 신호를 인가 받아 제1 기준 전압(Vref1)과 비교한다.
즉, 상기 전압 제어기(100)는 비반전 단자에 인가되는 제1 기준 전압(Vref1)과, 반전 단자에 인가되는 제1 및 제2 출력부(21,31)의 출력 전압의 차를 증폭하여 제1 제어 신호를 출력하는 연산 증폭기로 구성될 수 있다.
상기 제1 기준 전압(Vref1)은 입력 교류 전압의 피크치 400V를 두 배 증폭한 800V가 될 수 있다. 상기 제1 기준 전압(Vref1)과 제1 및 제2 출력부(21, 31)의 출력 전압의 합 신호와 비교하고 그 차이를 증폭한 제1 제어 신호를 역률개선회로(200) 측으로 출력할 수 있다.
한편 상기 제1 및 제2 출력부(21, 31)의 출력 전압은 제1 덧셈기(510)에 의하여 합 신호가 될 수 있다.
역률개선회로(200)는 전압 제어기(100)로부터 출력된 제1 제어신호와 센싱된 입력 전압(Vi)과 센싱된 출력 전류를 받아드려 제2 제어 신호를 출력할 수 있다.
즉, 역률개선회로(200)는 비반전 단자에 인가되는 센싱된 입력 전압 신호 및 상기 제1 제어 신호와 반전 단자에 인가되는 센싱 전류 신호의 차를 증폭하여 제2 제어 신호로 출력하는 연산 증폭기로 구성될 수 있다.
상기 센싱된 출력 전류는 인덕터(40)에 흐르는 전류로 정의될 수 있다. 또는 상기 센싱된 출력 전류를 인덕터(40)에 흐르는 평균 전류가 될 수 있고, 제1 스위칭 소자(Qs) 또는 제2 스위칭 소자(Qm)에 흐르는 전류가 될 수 있다.
제1 미세 변위 제어기(610)는 제1 출력부(21)의 출력 전압과 제2 기준 전압(Vref2)을 비교하여 제1 미세변위 신호를 출력하고, 제2 미세 변위 제어기(620)는 제2 출력부(31)의 출력 전압과 제3 기준 전압(Vref2)를 비교하여 제2 미세 변위 신호를 출력할 수 있다.
한편 제1 미세 변위 제어기(610)는 비반전 단자로 제2 출력부의 출력을 인가 받고, 반전 단자로 제2 기준 전압(Vref2)를 인가 받아 이들의 차이를 증폭하여 제1 미세 변위 신호를 출력하는 연산증폭기로 구성될 수 있다. 그리고 제2 미세 변위 제어기(620)는 비반전 단자로 제1 출력부의 출력을 인가 받고, 반전 단자로 제3 기준 전압(Vref2)를 인가 받아 이들의 차이를 증폭하여 제2 미세 변위 신호를 출력하는 연산증폭기로 구성될 수 있다.
상기 제2 및 제3 기준 전압(Vref2, Vref3)은 서로 동일한 값을 가질 수 있다.
한편 상기 제2 및 제3 기준 전압(Vref2, Vref3)은 입력 전압이 증폭되고 증폭된 전압이 균등하게 제1 및 제2 출력부(21,31)에 걸렸을 때 상기 제1 및 제2 출력부(21, 31)에 나타나는 전압이 되는 400V가 될 것이고 상기 400V 전압을 상기 제2 및 제3 기준 전압(Vref2, Vref3)으로 삼을 수 있다.
역률개선회로(200)로부터 출력된 제2 제어 신호와 상기 제1 미세 변위신호는 제2 덧셈기(520)에 의하여 합 신호인 제1 비교 신호로 전환되어 제1 비교기(310)로 공급될 수 있고, 상기 역률개선회로(200)로부터 출력된 제2 제어 신호와 상기 제2 미세 변위신호는 제3 덧셈기(530)에 의하여 합 신호인 제2 비교 신호로 전환되어 제2 비교기(320)로 공급될 수 있다.
상기 제1 및 제2 비교기(310, 320)는 아날로그 신호와 기준 신호를 비교하여 이진 신호로 출력하는 회로로서, 아날로그 신호를 디지털 신호로 변환하는 과정에서 사용된다. 그리고 상기 제1 및 제2 비교기(310, 320)는 높은 이득을 갖는 일반적인 연산 증폭기와 대부분 동일한 특성을 가진다.
제1 비교기(310)는 삼각파 발생 회로(400)로부터 출력된 삼각파 신호와 상기 제1 비교 신호를 비교하여 제1 PWM 신호를 제1 스위칭 소자(Qs)에 공급하여 상기 제1 스위칭 소자(Qs)의 턴/오프를 제어할 수 있고, 제2 비교기(320)는 삼각파 발생 회로(400)로부터 출력된 삼각파 신호와 상기 제2 비교 신호를 비교하여 제2 PWM 신호를 제2 스위칭 소자(Qm)에 공급하여 상기 제2 스위칭 소자(Qm)의 턴/오프를 제어할 수 있다.
구체적으로 제1 비교기(310)의 연산 증폭기의 비반전 단자에 제1 미세 변위 신호 및 제2 제어 신호를 인가 받고, 반전 단자에 삼각파 신호를 인가 받아 이 두 신호를 비교하여 제1 PWM 신호를 출력할 수 있고, 제2 비교기(320)의 연산 증폭기의 비반전 단자에 제2 미세 변위 신호 및 제2 제어 신호를 인가 받고, 반전 단자에 삼각파 신호를 인가 받아 이 두 신호를 비교하여 제2 PWM 신호를 출력할 수 있다.
상기 제1 및 제2 PWM 신호는 제1 및 제2 스위칭 소자의 온/오프의 시간을 조절하는 신호가 된다. 즉 제1 및 제2 PWM 신호의 듀티비, 즉 1%~100% 범위 내에서 조절함으로써 선형적으로 제어될 수 있다.
한편 상기 삼각파 발생 회로(400)에서 발생되는 삼각파는 제2 제어 신호와 제1 및 제2 미세 변위 신호에 따라 펄스폭 변조 듀티비를 조절하기 위해 적절한 주기와 크기로 설정될 수 있다.
한편 도면 9의 전압 제어부(100), 역률개선회로(200), 제1 미세 변위 제어기(610) 및 제2 미세 변위 제어기(620)에 포함된 제1 내지 제8 임피던스(Z1~Z8)는 순 저항 소자 및 용량성 소자가 될 수 있다. 특히 제1, 제3, 제5 및 제7 임피던스(Z1, Z3, Z5, Z7)는 저항이 될 수 있고, 특히 제2, 제4, 제6 및 제8 임피던스(Z2, Z4, Z6, Z8)는 연산 증폭기의 음의 피드백으로서 저항과 상기 저항에 직렬 연결된 커패시터로 구성될 수 있다.
도 4 내지 도7을 참조하여, 출력이 언밸런스(Unbalance)한 경우 이를 밸런스(Balance)하도록 조절하는 동작 방식을 설명한다.
예를 들어 증폭부(50)가 입력 전원부(11)로부터의 입력 전압을 n(n은 양의 실수) 배 증폭하는 경우를 살펴본다.
상기 증폭부(50)에 포함된 제1 증폭부(20)가 상기 입력 전압의 n1(n1은 양의 실수)배에 해당하는 제1 출력 전압을 출력하고, 상기 제2 증폭부(30)가 상기 입력 전압의 n2(n2는 양의 실수)배에 해당하는 제2 출력 전압을 출력한다.
이 때 상기 제2 증폭부(30)에 포함된 제2 출력부(31)의 출력 전압이 감소하여 n1의 값이 n2보다 큰 값, 즉 n1>n2라는 관계가 되는 경우, 제1 출력부(21)의 제1 스위칭 소자(Qs)의 온 시간을 증가, 즉 제1 스위칭 소자(Qs)의 턴-오프 시점을 제2 스위칭 소자(Qm)의 턴-오프 시점보다 뒤지도록 함으로서 제1 및 제2 출력부(21, 31)의 출력 전압이 균형을 이루도록 조절할 수 있다.
즉 도면 4 및 5와 같이 전원 장치(1000)가 제1 및 제2 동작 모드를 교번하는 경우에 회로 내부 소자의 비 이상적인 특성 및 외부 요인에 의하여 제2 출력부(31)의 출력 전압이 감소하는 현상이 발생하는 경우 일시적으로 도면 6과 같은 제3 동작 모드로 전환하는 방식을 통해 제1 및 제2 출력부(21, 31)의 출력 전압을 조절할 수 있다.
이하 제1 및 제2 출력부(21, 31)의 출력 전압이 불 균등한 경우 제어부의 동작 방식을 살펴본다.
예로써 제2 출력부(31)의 출력 전압이 감소하면, 제1 미세 변위 제어부(610)의 반전 단자에 인가되는 전압이 감소한다. 그리고 그에 따라 제1 미세 변위 제어부(610)의 출력 전압인 제1 미세 변위 신호의 전압이 증가(하이(High) 신호)되어 출력될 수 있다. 그리고 제2 출력부(31)의 출력 전압이 감소하면, 제1 출력부(21)의 출력 전압은 증가를 하고, 제2 미세 변위 제어부(620)의 반전 단자에 인가되는 전압이 증가한다. 따라서 제2 미세 변위 제어부(620)의 출력 전압인 제2 미세 변위 신호가 증가(로우(Low) 신호)할 수 있다.
이와 같이 전압이 증가한 제1 미세 변위 신호와 전압이 감소한 제2 미세 변위 신호 각각은 제2 제어 신호와의 합 신호인 제1 및 제2 비교 신호로 전환되어 이들 각각은 제1 및 제2 비교기(310, 320)에 인가될 수 있다.
상기 제1 및 제2 비교 신호를 인가 받은 제1 및 제2 비교기(310, 320)는 인가된 제1 및 제2 비교 신호 각각을 삼각파 신호와 비교하여 펄스 폭이 변화된 PWM 출력 신호를 생성하여 출력할 수 있다.
구체적으로 하이 신호인 제1 미세 변위 신호에 의하여 제1 비교기(310)의 반전 단자에 인가되는 신호의 크기가 커지고 그에 따라 제1 PWM 출력 신호의 듀티비가 증가할 수 있고, 로우 신호인 제2 미세 변위 신호에 의하여 제2 비교기(320)의 반전 단자에 인가되는 신호의 크기가 감소되고 그에 따라 제2 PWM 출력 신호의 듀티비가 감소할 수 있다.
이와 같이 듀티비가 증가된 제1 PWM 출력 신호에 의하여 제1 스위칭 소자(Qs)의 턴-온 시간은 길어지게 되고, 제2 스위칭 소자(Qm)의 턴-온 시간은 짧아지게 될 수 있다. 즉 제1 및 제2 스위칭 소자(Qs, Qm)의 턴-온 시점은 동일하게 하면서 턴-오프 시점은 상이하게 조절할 수 있고 그에 따라 제1 및 제2 출력부(21, 31)의 전압이 균형을 이루도록 제어할 수 있다.
한편 상기 제1 및 제2 비교기(310, 320)에 인가되는 신호를 반대로 하여 제1 및 제2 비교 신호가 반전 단자에 인가되고, 삼각파 신호가 비 반전 단자가 되는 경우 상기 제1 및 제2 비교기(310, 320)은 반대의 동작을 수행하면서 제1 비교기(310)는 듀티비가 감소하는 제1 PWM 출력 신호를 생성하고 제2 비교기(320)는 듀티비가 증가하는 제2 PWM 출력 신호를 생성할 수 있다.
또한 상기 전압 제어기(100), 역률 개선 회로(200), 제1 및 제2 미세 변위 제어기(610, 620)의 대역폭을 선정하면 상기 역률 개선 회로(200)의 대역폭이 가장 크고 다음으로 전압 제어기(100)의 대역폭을 크게 하는 것이 바람직하다.
본 발명의 제2 실시예에 따른 밸런스 출력 전원 장치(1000)의 제어부(2000)는 디지털 제어기로서 설명되었으나 이와 달리 아날로그 PFC IC(Power Factor Controller Intergrated circuit)를 이용하여 구현 할 수 있다.
도 10은 본 발명의 제2 실시예에 따른 밸런스 출력 전원 장치(3000)의 아날로그 제어부(2000)를 나타낸 도면이다.
도 10을 참고하면, 본 발명의 제2 실시예에 따른 밸런스 출력 전원 장치(3000)의 제어부(2000)는 제1 및 제2 PFC IC(1100, 1200), 제1 및 제2 덧셈기(1300, 1400)를 포함할 수 있다.
상기 제1 및 제2 PFC IC(1100, 1200)은 센싱된 교류 입력 전압과 센싱된 전류 및 삼각파를 인가 받고, 제1 및 제2 덧셈기(1300, 1400) 각각으로부터 피드백 신호를 인가 받아 제1 및 제2 스위칭 소자(Qs, Qm)를 제어하는 제1 및 제2 PWM 신호를 각각 출력할 수 있다.
상기 제1 덧셈기(1300)는 제2 출력부(31)의 출력 전압 및 제1 및 제2 출력부(21, 31)의 입력 전압을 더하여 상기 제1 PFC IC(1100)으로 출력 할 수 있다. 그리고 상기 제2 덧셈기(1400)는 제1 출력부(21)의 출력 전압 및 제1 및 제2 출력부(21, 31)의 입력 전압을 더하여 상기 제2 PFC IC(1200)으로 출력 할 수 있다.
상기 제1 및 제2 덧셈기(1300, 1400)를 대신하여 출력 전압을 피드백하는 역할을 할 수 있는 431계열의 소자를 이용하여 제1 및 제2 듀얼(Dual) 피드백부(1500, 1600)을 구현할 수 있다.
도 11은 제1 및 제2 듀얼 피드백부의 회로도를 나타낸 도면이다.
도 11을 참조하여 제1 및 제2 듀얼 피드백부(1500. 1600)의 구체적인 회로 구성을 살펴본다.
출력 전압 피드백 구조를 가진 제1 및 제2 듀얼 피드백부(1500, 1600) 중 어느 하나의 회로 구조는 나머지 하나와 동일할 수 있으므로 제1 듀얼 피드백부(1500)를 중심으로 설명한다.
제1 듀얼 피드백부(1500)는 제1 내지 제4 저항(R1~R4), 커패시터(C) 및 제너 다이오드(ZD)를 포함할 수 있다.
상기 제1 저항(R1)은 제8 노드(N8)와 제1 및 제2 출력부(21, 31)의 출력전압이 인가되는 단자 사이에 연결된다.
상기 제2 저항(R2)은 상기 제8 노드(N8)와 제2 출력부(31)의 출력 전압이 인가되는 단자 사이에 연결된다.
서로 직렬 연결된 제3 저항(R3) 및 커패시터(C)는 상기 제8 노드(N8)과 제9 노드(N9) 사이에 연결된다.
상기 제너 다이오드(ZD)는 상기 제8 노드(N8), 제9 노드(N9) 및 접지 사이에 연결된다. 제1 PFC IC(1100)로 피드백 출력은 상기 제9 노드(N9) 상에 인가된다.
상기 제1 저항(R1)의 크기는 제2 저항(R2)의 저항의 크기보다 작은 것으로 선택함으로써 가중치를 줄 수 있다.
도 12 및 13은 본 발명에 제2 실시예에 따른 밸런스 출력 전원 장치(3000)를 시뮬레이션 하기 위한 회로를 나타내었다.
도 12 및 13의 밸런스 출력 전원 장치(3000)에 따른 시뮬레이션 결과를 나타낸 도 14을 참조하여 본 발명의 제2 실시예에 따른 밸런스 출력 전원 장치(2000)의 동작 방식과 효과를 설명한다.
도 14를 참조하면, T1 시점에 제1 출력부(21)에 흐르는 전류가 증가하여 제1 및 제2 출력부(21, 31)에 흐르는 전류가 불균형 해질 때, 제2 출력부(31)의 전압(V02)이 증가하고, 제1 출력부(21)의 전압(V01)이 감소하는 것을 알 수 있다. 이 경우 제1 미세 변위 제어부(610)으로부터의 하이 신호인 제1 미세 변위 신호가 출력되고 그에 따라 제1 비교기(310)의 반전 단자에 인가되는 신호의 크기가 커지고 그에 따라 제1 PWM 출력 신호의 듀티비가 증가할 수 있고, 제2 미세 변위 제어부(620)으로부터의 로우 신호인 제2 미세 변위 신호에 의하여 제2 비교기(320)의 반전 단자에 인가되는 신호의 크기가 감소되고 그에 따라 제2 PWM 출력 신호의 듀티비가 감소되면서 제1 및 제2 출력부(21, 31)의 출력 전압(V01, V02)이 T2 시점 이후로 서로 균등해지는 것을 확인 할 수 있다.
반대로 T3 시점에 제2 출력부(31)에 흐르는 전류가 증가하여 제1 및 제2 출력부(21, 31)에 흐르는 전류가 불균형 해질 때, 제1 출력부(21)의 전압(V01)이 증가하고, 제2 출력부(31)의 전압(V02)이 감소하는 것을 알 수 있다. 이 경우 제1 미세 변위 제어부(610)으로부터의 로우 신호인 제1 미세 변위 신호가 출력되고 그에 따라 제1 비교기(310)의 반전 단자에 인가되는 신호의 크기가 작아지고 그에 따라 제1 PWM 출력 신호의 듀티비가 감소할 수 있고, 제2 미세 변위 제어부(620)으로부터의 하이 신호인 제2 미세 변위 신호에 의하여 제2 비교기(320)의 반전 단자에 인가되는 신호의 크기가 증가하게 되고 그에 따라 제2 PWM 출력 신호의 듀티비가 증가되면서 제1 및 제2 출력부(21, 31)의 출력 전압(V01, V02)이 T4 시점 이후로 서로 균등해지는 것을 그래프를 통해서 확인 할 수 있다.
이와 같이 본 발명에 따른 밸런스 출력 전원 장치(1000)는 제1 및 제2 출력부(21, 31)의 출력 전압이 불균등 해지는 경우 제1 및 제2 미세 변위부(610, 620)와 제1 및 제2 비교기(310, 320)의 동작에 따라서 제1 및 제2 PWM 신호의 듀티비가 조절되면서 상기 제1 및 제2 출력부(21, 31)의 출력 전압을 균등하게 조절하는 효과를 가진다.
이상에서 설명한 본 발명의 상세한 설명에서는 본 발명의 바람직한 실시 예를 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자 또는 해당 기술분야에 통상의 지식을 갖는 자라면 후술할 특허청구범위에 기재된 본 발명의 사상 및 기술 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다. 따라서, 본 발명의 기술적 범위는 명세서의 상세한 설명에 기재된 내용으로 한정되는 것이 아니라 특허청구범위에 의해 정하여져야만 할 것이다.
1. 종래의 전원 장치
2. 정류기
3. 인덕터
4. 스위칭 소자
5. 출력부
10. 정류부
11. 입력 전원부
20. 제1 증폭부
21. 제1 출력부
22. 제1 커패시터
23. 제1 저항
24. 제1 출력부 다이오드
30. 제2 증폭부
31. 제2 출력부
32. 제2 커패시터
33. 제2 저항
34. 제2 출력부 다이오드
40. 인덕터
50. 증폭부
100. 전압 제어부
200. 역률개선회로
310. 제1 비교기
320. 제2 비교기
400. 삼각파 발생기
510. 제1 덧셈기
520. 제2 덧셈기
530. 제3 덧셈기
610. 제1 미세 변위 제어기
620. 제2 미세 변위 제어기
1000. 전원 장치, 전원부
1100. 제1 PFC IC
1200. 제2 PFC IC
1300. 제1 덧셈기
1400. 제2 덧셈기
1500. 제1 듀얼 피드백부
1600. 제2 듀얼 피드백부
2000. 제어부
3000. 밸런스 출력 전원 장치.
2. 정류기
3. 인덕터
4. 스위칭 소자
5. 출력부
10. 정류부
11. 입력 전원부
20. 제1 증폭부
21. 제1 출력부
22. 제1 커패시터
23. 제1 저항
24. 제1 출력부 다이오드
30. 제2 증폭부
31. 제2 출력부
32. 제2 커패시터
33. 제2 저항
34. 제2 출력부 다이오드
40. 인덕터
50. 증폭부
100. 전압 제어부
200. 역률개선회로
310. 제1 비교기
320. 제2 비교기
400. 삼각파 발생기
510. 제1 덧셈기
520. 제2 덧셈기
530. 제3 덧셈기
610. 제1 미세 변위 제어기
620. 제2 미세 변위 제어기
1000. 전원 장치, 전원부
1100. 제1 PFC IC
1200. 제2 PFC IC
1300. 제1 덧셈기
1400. 제2 덧셈기
1500. 제1 듀얼 피드백부
1600. 제2 듀얼 피드백부
2000. 제어부
3000. 밸런스 출력 전원 장치.
Claims (22)
- 교류 전원을 정류하는 입력 전원부; 및
상기 입력 전압을 n(n은 1보다 큰 실수)배 증폭하는 증폭부를 포함하고,
상기 증폭부는 제1 및 제2 증폭부 및 인덕터를 포함하고,
상기 제1 증폭부는 제1 스위칭 소자의 동작에 따라 제1 출력부로 상기 입력 전압의 n1(n1은 양의 실수)배에 해당하는 제1 출력 전압을 출력하고.
상기 제2 증폭부는 제2 스위칭 소자의 동작에 따라 제2 출력부로 상기 입력 전압의 n2(n2는 양의 실수)배에 해당하는 제2 출력 전압을 출력하는 전원 장치. - 제1 항에 있어서,
상기 제1 증폭부, 제2 증폭부 및 인덕터는 서로 직렬 연결된 전원 장치. - 제2 항에 있어서,
상기 인덕터는 상기 제1 증폭부와 상기 제2 증폭부 사이에 연결된 전원 장치. - 제1 항에 있어서,
상기 제1 및 제2 증폭부는 서로 동일한 구성을 가지는 전원 장치. - 제1 항에 있어서,
상기 입력 전원부는 정류기를 포함하고,
상기 정류기는 브릿지 정류기인 전원 장치. - 제1 항에 있어서,
상기 제1 증폭부는 상기 제1 스위칭 소자와 병렬로 연결된 제1 출력부를 포함하고,
상기 제2 증폭부는 상기 제2 스위칭 소자와 병렬로 연결된 제2 출력부를 포함하는 전원 장치. - 제6 항에 있어서,
상기 제1 출력부는 서로 직렬 연결된 제1 다이오드와 제1 커패시터-저항부를 포함하고,
상기 제2 출력부는 서로 직렬 연결된 제2 다이오드와 제2 커패시터-저항부를 포함하는 전원 장치. - 제7 항에 있어서,
상기 제1 및 제2 커패시터-저항부에 포함된 커패시터와 저항은 서로 병렬 연결되는 전원 장치. - 제1 항에 있어서,
상기 n1과 상기 n2는 서로 동일한 값을 가지는 전원 장치. - 제1 항에 있어서,
상기 제1 및 제2 스위칭 소자는 동시에 턴-온(Turn-On)되고 동시에 턴-오프(Turn-Off)되는 전원 장치. - 제1 항에 있어서,
상기 제1 스위칭 소자는 제1 시점에 턴-오프되고,
상기 제2 스위칭 소자는 제2 시점에 턴-오프되며,
상기 n1이 n2보다 큰 값을 가지는 경우, 상기 제1 시점은 제2 시점 이후에 도래하는 전원 장치. - 제12 항에 있어서,
상기 제1 및 제2 스위칭 소자는 동시에 턴-온되는 전원 장치. - 교류 전원을 제1 전압으로 정류하는 정류부, 그리고
상기 정류부로부터 상기 제1 전압을 받아 승압하고, 상기 승압된 전압을 분배하여 제2 전압 및 제3 전압으로 출력하는 증폭부
를 포함하는 전원 장치. - 제14 항에 있어서,
상기 증폭부는
상기 제1 전압을 받아 증폭하여 상기 제2 전압을 출력하는 제1 증폭부,
상기 제1 증폭부와 직렬 연결되며, 상기 제1 전압을 받아 증폭하여 상기 제3 전압을 출력하는 제2 증폭부, 그리고
상기 제1 및 제2 증폭부와 직렬 연결되어 있는 인덕터
를 포함하는 전원 장치. - 제15 항에 있어서,
상기 인덕터는 제1 및 제2 증폭부 사이에 연결되는 전원 장치. - 제15 항에 있어서,
상기 제2 및 제3 전압은 동일한 전압인 전원 장치. - 제14 항에 있어서,
상기 제1 및 제2 증폭부는 각각 제1 및 제2 스위칭 소자를 포함하고,
상기 제1 및 제2 스위칭 소자의 동작 주파수에 따라 상기 제2 및 제3 전압이 제어되는 전원 장치. - 제18 항에 있어서,
상기 제1 및 제2 스위칭 소자는 동시에 턴-온 및 턴-오프 되는 전원 장치. - 제18 항에 있어서,
상기 제2 및 제3 전압이 동일한 경우,
상기 제1 및 제2 스위칭 소자는 동시에 턴-온 및 턴-오프 되는 전원 장치. - 제18 항에 있어서,
상기 제2 및 제3 전압이 동일한 제1 구간 동안,
상기 제1 및 제2 스위칭 소자는 동시에 턴-온 및 턴-오프되고,
상기 제2 및 제3 전압이 상이한 제2 구간 동안,
상기 제1 스위칭 소자는 제1 시점에 턴-오프 되고,
상기 제2 스위칭 소자는 제2 시점에 턴-오프되는 전원 장치. - 제21 항에 있어서,
상기 제2 구간 동안 제1 및 제2 스위칭 소자는 동시에 턴-온 되는 전원 장치.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020130093854A KR102091584B1 (ko) | 2013-08-07 | 2013-08-07 | 전원 장치 |
PCT/KR2014/007339 WO2015020463A1 (ko) | 2013-08-07 | 2014-08-07 | 전원 장치 |
CN201480044997.9A CN105453400B (zh) | 2013-08-07 | 2014-08-07 | 供电装置 |
US14/910,812 US9899935B2 (en) | 2013-08-07 | 2014-08-07 | Power factor correction device with first and second output parts |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020130093854A KR102091584B1 (ko) | 2013-08-07 | 2013-08-07 | 전원 장치 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20150017639A true KR20150017639A (ko) | 2015-02-17 |
KR102091584B1 KR102091584B1 (ko) | 2020-03-20 |
Family
ID=52461686
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020130093854A KR102091584B1 (ko) | 2013-08-07 | 2013-08-07 | 전원 장치 |
Country Status (4)
Country | Link |
---|---|
US (1) | US9899935B2 (ko) |
KR (1) | KR102091584B1 (ko) |
CN (1) | CN105453400B (ko) |
WO (1) | WO2015020463A1 (ko) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20160122921A (ko) * | 2015-04-14 | 2016-10-25 | 엘에스산전 주식회사 | 인버터의 구동을 위한 게이트 드라이버 |
CN106067738B (zh) * | 2015-04-23 | 2020-04-14 | 松下知识产权经营株式会社 | 电力变换装置 |
GB2566479B (en) * | 2017-09-14 | 2019-10-23 | Eltek As | DC-DC Converter |
CN107769538A (zh) * | 2017-12-07 | 2018-03-06 | 深圳市华星光电技术有限公司 | 功率因素校正电路及反激电路 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5982649A (en) * | 1997-02-14 | 1999-11-09 | Switched Reluctance Drives Limited | Power supply circuit for a control circuit |
US20070075689A1 (en) * | 2005-10-03 | 2007-04-05 | Texas Instruments Incorporated | Dual buck-boost converter with single inductor |
JP4745234B2 (ja) * | 2006-03-29 | 2011-08-10 | 三菱電機株式会社 | 電源装置 |
Family Cites Families (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5847949A (en) * | 1997-10-07 | 1998-12-08 | Lucent Technologies Inc. | Boost converter having multiple outputs and method of operation thereof |
US5894214A (en) | 1997-11-20 | 1999-04-13 | Lucent Technologies Inc. | Dual-output boost converter having enhanced input operating range |
US6239584B1 (en) * | 2000-06-20 | 2001-05-29 | Delta Electronics, Inc. | Two-inductor boost converter |
JP3888895B2 (ja) * | 2001-12-21 | 2007-03-07 | 富士通株式会社 | 正負電源発生装置および半導体装置 |
JP2004023982A (ja) | 2002-06-20 | 2004-01-22 | Nec Tokin Corp | 昇圧型充電装置 |
US6950319B2 (en) | 2003-05-13 | 2005-09-27 | Delta Electronics, Inc. | AC/DC flyback converter |
JP4343584B2 (ja) | 2003-05-26 | 2009-10-14 | 株式会社日立メディコ | 電圧分圧回路、及び傾斜磁場電源装置 |
JP2005073454A (ja) | 2003-08-27 | 2005-03-17 | Matsushita Electric Ind Co Ltd | 電源回路 |
US6998825B2 (en) * | 2003-11-14 | 2006-02-14 | Matsushita Electric Industrial Co., Ltd. | DC-DC converter |
JP4599959B2 (ja) | 2004-09-17 | 2010-12-15 | 富士電機ホールディングス株式会社 | マルチレベルコンバータ及びその制御方法 |
JP4824524B2 (ja) | 2006-10-25 | 2011-11-30 | 日立アプライアンス株式会社 | 単方向dc−dcコンバータおよびその制御方法 |
US8026697B2 (en) | 2007-04-27 | 2011-09-27 | Broadcom Corporation | Multi-mode power management unit with shared inductor |
US8823342B2 (en) * | 2008-07-07 | 2014-09-02 | Advanced Analogic Technologies Incorporated | Multiple-output dual-polarity DC/DC converters and voltage regulators |
TWI401871B (zh) * | 2008-12-26 | 2013-07-11 | Richtek Technology Corp | 多重輸出之切換式電源供應器及其控制方法 |
KR20130008103A (ko) | 2011-06-27 | 2013-01-22 | 삼성전기주식회사 | 공용 인덕터를 이용한 다중 구조의 부스트 회로 |
KR101241564B1 (ko) * | 2011-08-04 | 2013-03-11 | 전주대학교 산학협력단 | 커플 인덕터, 커플 변압기 및 이를 이용한 커플 인덕터-변압기 |
EP2566026A1 (de) * | 2011-09-02 | 2013-03-06 | voltwerk electronics GmbH | Gleichspannungssteller |
CN104008737B (zh) * | 2013-02-27 | 2016-04-13 | 奕力科技股份有限公司 | 单电感双输出转换器、控制方法及开关控制电路 |
DE102013005070B4 (de) * | 2013-03-22 | 2015-03-26 | Platinum Gmbh | Hoch-Tiefsetzsteller |
KR102199331B1 (ko) * | 2013-08-22 | 2021-01-06 | 엘지이노텍 주식회사 | 전원 장치 |
CA2983789C (en) * | 2014-05-02 | 2020-11-17 | The Governing Council Of The University Of Toronto | Multi-port converter structure for dc/dc power conversion |
-
2013
- 2013-08-07 KR KR1020130093854A patent/KR102091584B1/ko active IP Right Grant
-
2014
- 2014-08-07 WO PCT/KR2014/007339 patent/WO2015020463A1/ko active Application Filing
- 2014-08-07 US US14/910,812 patent/US9899935B2/en active Active
- 2014-08-07 CN CN201480044997.9A patent/CN105453400B/zh active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5982649A (en) * | 1997-02-14 | 1999-11-09 | Switched Reluctance Drives Limited | Power supply circuit for a control circuit |
US20070075689A1 (en) * | 2005-10-03 | 2007-04-05 | Texas Instruments Incorporated | Dual buck-boost converter with single inductor |
JP4745234B2 (ja) * | 2006-03-29 | 2011-08-10 | 三菱電機株式会社 | 電源装置 |
Also Published As
Publication number | Publication date |
---|---|
US20160190952A1 (en) | 2016-06-30 |
WO2015020463A1 (ko) | 2015-02-12 |
CN105453400A (zh) | 2016-03-30 |
CN105453400B (zh) | 2019-02-15 |
US9899935B2 (en) | 2018-02-20 |
KR102091584B1 (ko) | 2020-03-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9872355B2 (en) | Control circuit, control method and LED driving circuit thereof | |
CN112954544B (zh) | 驱动电路 | |
US7276886B2 (en) | Dual buck-boost converter with single inductor | |
US8253491B2 (en) | Method and apparatus for power converter for class D audio power amplifiers | |
TWI420276B (zh) | 等化可變相位穩壓器的小信號響應之系統與方法 | |
US7564229B2 (en) | Method and apparatus for power conversion and regulation in a power converter having a plurality of outputs | |
US10104732B2 (en) | LED drive method and LED drive device | |
EP3503369A1 (en) | Direct current voltage conversion circuit | |
US6534960B1 (en) | Multi-channel interleaved power converter with current sharing | |
TW200926565A (en) | Multi-phase DC-DC controller and controlling method thereof | |
JP2005110434A (ja) | 力率改善回路 | |
US9712059B2 (en) | Directly amplified ripple tracking control scheme for multiphase DC-DC converter | |
TWI479780B (zh) | 降壓轉換器 | |
KR20150133607A (ko) | 직류-직류 변환기 | |
CN104852568B (zh) | 基于Cuk的电流源 | |
US20120098514A1 (en) | Current mode switching regulator and control circuit and control method thereof | |
KR101086104B1 (ko) | 검출회로 및 전원 시스템 | |
KR102091584B1 (ko) | 전원 장치 | |
WO2006046731A1 (ja) | 電源装置、および携帯機器 | |
KR100983684B1 (ko) | 전압 발생 회로 | |
US9893608B2 (en) | Power supply device | |
KR101988089B1 (ko) | 출력 가변 회로 및 이를 이용한 컨버터 제어기 | |
KR102119666B1 (ko) | 전원 장치 | |
RU2675626C1 (ru) | Устройство управления преобразователем постоянного напряжения в постоянный ток | |
KR20140006574A (ko) | 전압 공급 장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant |