WO2006046616A1 - 光電子増倍管及びそれを含む放射線検出装置 - Google Patents

光電子増倍管及びそれを含む放射線検出装置 Download PDF

Info

Publication number
WO2006046616A1
WO2006046616A1 PCT/JP2005/019716 JP2005019716W WO2006046616A1 WO 2006046616 A1 WO2006046616 A1 WO 2006046616A1 JP 2005019716 W JP2005019716 W JP 2005019716W WO 2006046616 A1 WO2006046616 A1 WO 2006046616A1
Authority
WO
WIPO (PCT)
Prior art keywords
stem
anode
base member
photomultiplier tube
pin
Prior art date
Application number
PCT/JP2005/019716
Other languages
English (en)
French (fr)
Inventor
Hideki Shimoi
Hiroyuki Kyushima
Original Assignee
Hamamatsu Photonics K.K.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics K.K. filed Critical Hamamatsu Photonics K.K.
Publication of WO2006046616A1 publication Critical patent/WO2006046616A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J43/00Secondary-emission tubes; Electron-multiplier tubes
    • H01J43/04Electron multipliers
    • H01J43/28Vessels, e.g. wall of the tube; Windows; Screens; Suppressing undesired discharges or currents

Definitions

  • the present invention relates to a photomultiplier tube using a photoelectric effect and a radiation detection apparatus including the photomultiplier tube.
  • a photomultiplier tube As a photomultiplier tube, a cylindrical body, a light receiving face plate provided at one end of the cylindrical body, a stem provided at the other end of the cylindrical body, A wide variety of head-on photomultiplier tubes having a vacuum-sealed container constituted by the above-mentioned are known.
  • a photocathode is provided inside the light-receiving face plate (in the vacuum sealed container), and an electron multiplier having a plurality of dynodes from the photoforce sword toward the stem. And the anode and the anode are laminated.
  • a plurality of stem pins respectively connected to the dynodes and the anodes of each stage are supported by the stem so as to be led out from the vacuum sealed container.
  • Incident light that has passed through the light-receiving face plate is converted into electrons (photoelectrons) at the photocathode, and the photoelectrons emitted from the photoforce sword have an electron multiplier having each dynode to which a predetermined voltage is applied via each stem pin. It is sequentially multiplied by part.
  • the electrons that have been multiplied by the electron multiplier and have reached the anode are taken out through an anode pin that is one of the stem pins as an electrical signal.
  • Patent Document 1 in order to reduce the number of parts, a taper-like normetic glass is employed instead of a metal stem, and the cylindrical moon-shaped body portion is made of glass.
  • a photomultiplier tube in which a metal cylindrical body is adopted is disclosed.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 5-290793
  • the present invention has been made to solve the above-described problems, and a photomultiplier tube having a structure capable of sufficiently preventing noise from being mixed into an electric signal taken out from an anode pin, and the same It aims at providing the radiation detection apparatus containing this.
  • a photomultiplier tube includes a sealed container whose inside is depressurized to a predetermined degree of vacuum, a photocathode, and an electron multiplier composed of a plurality of dynodes. A double part, an anode, and a plurality of stem pins are provided.
  • the sealed container includes a hollow moon body portion, a light receiving face plate provided at one end portion of the hollow body portion, and a stem provided at the other end portion of the hollow body portion.
  • the photocathode is disposed in a sealed container and converts incident light that has passed through the light receiving face plate into electrons.
  • the electron multiplier is disposed in the sealed container so as to be positioned between the photopower sword and the stem, and functions to multiply the electrons emitted from the photocathode.
  • the anode is housed in a sealed container and is arranged at a position where electrons emitted from the electron multiplier force reach and functions to take out the reached electrons as an output signal.
  • the plurality of stem pins are supported by the stem while penetrating the stem, and are electrically connected to a plurality of stages of dynodes and anodes, respectively.
  • the middle moon part that forms a part of the sealed container has a shape that partially surrounds the side surface of the tem, and a conductive material. There will be power.
  • at least an inner part that constitutes a part of the stem and is located on the anode side is made of an insulating material.
  • a step portion is provided in a predetermined region including a portion located at the shortest distance of the anode pin force electrically connected to the anode among the plurality of stem pins at the anode side edge portion in the inner portion of the stem.
  • At least the anode side of the stem side surface surrounded by the conductive hollow body portion is an inner portion made of an insulating material.
  • a stepped portion is provided in a predetermined region in the vicinity of the anode pin in the anode side edge portion in the inner portion, thereby increasing the creepage distance on the surface of the insulating material.
  • This Surface distance is triple junction (the point where the conductive anode pin, the insulating material that directly supports the anode pin, and the vacuum space meet) force The shortest distance along the surface of the insulating material to the conductive hollow body Means.
  • the creeping distance is sufficiently longer than the shape in which the step portion is not provided in the anode side edge portion of the stem.
  • the stem may adopt any of a single structure made of only an insulating material, a double structure, and a triple structure or more.
  • a stem that employs a single structure may include a base member that directly supports and supports a plurality of stem pins and is made of an insulating material.
  • a part of the base member corresponds to the inner portion of the stem, and the step portion of the inner portion is reduced in a predetermined region including the portion located at the shortest distance from the anode pin in the anode side edge portion of this portion.
  • a structure constituting at least a part is provided.
  • the stem adopting the double structure includes a base member that directly supports a plurality of stem pins in a state of penetrating a plurality of stem pins and has an insulating material force, and a first presser member joined to the base member. Composed. Specifically, the first presser member is joined to either the inner surface facing the anode of the base member or the outer surface facing the inner surface, and a plurality of through holes for allowing a plurality of stem pins to pass therethrough. Is provided.
  • the first presser member When the first presser member is closer to the anode with respect to the base member, the first presser member is made of an insulating material, and is a portion of the anode side edge portion of the first presser member that is positioned at the shortest distance of the anode pin force.
  • a structure that constitutes at least a part of the stepped portion of the inner portion is provided in the predetermined region including
  • the stepped portion of the inner portion is located in a predetermined region including the portion located at the shortest distance of the anode pin force among the anode side edges of the bi-base member.
  • the stem adopting the triple or more structure is directly supported in a state where a plurality of stem pins are penetrated, and a first member joined to one surface of the base member and an insulating material force.
  • the presser member and a second presser member joined to the other surface of the base member.
  • the first presser member is the inner side facing the anode of the base member.
  • a plurality of through holes are provided to be joined to the surface and allow a plurality of stem pins to pass therethrough.
  • the second pressing member is joined to the outer surface facing the inner surface of the base member, and has a plurality of through holes for allowing a plurality of stem pins to pass therethrough.
  • the first pressing member closest to the anode among these members is made of an insulating material, and includes a predetermined region including a portion located at the shortest distance of the anode pin force among the anode side edges of the first pressing member.
  • a structure constituting at least a part of the stepped portion of the inner portion is provided.
  • the photomultiplier tube according to the present invention may include a structure for increasing the creepage distance to the hollow body portion of the contact point force between the anode pin and the stem in addition to the stepped portion.
  • the stem has an inner surface facing the anode and an outer surface facing the inner surface, and at least the contact point between the anode pin and the stem among the plurality of stem pins is provided on at least the inner surface.
  • a concave portion surrounding the anode pin may be provided so as to be positioned on the outer surface side than the inner surface. Note that either one of the concave portion and the stepped portion may be provided on the inner side surface of the stem.
  • the photomultiplier tube (the photomultiplier tube according to the present invention) having the above-described structure can be applied to various inspection apparatuses.
  • the radiation detection apparatus according to the present invention includes the photomultiplier tube, and a scintillator that is disposed outside the sealed container so as to sandwich the light receiving face plate together with the stem, and converts the arrived radiation into light.
  • FIG. 1 is a plan view of the first embodiment of the photomultiplier tube according to the present invention as viewed upward.
  • FIG. 2 is a plan view showing a bottom configuration of the photomultiplier tube according to the first embodiment shown in FIG.
  • FIG. 3 is a cross-sectional view taken along line ⁇ - ⁇ of the photomultiplier tube according to the first embodiment shown in FIG.
  • FIG. 4 is a plan view showing a base member constituting a part of the stem in the photomultiplier according to the first embodiment.
  • FIG. 5 is a plan view showing an upper presser member (first presser member) constituting a part of the stem in the photomultiplier tube according to the first embodiment.
  • FIG. 6 is a plan view showing a lower presser member (second presser member) constituting a part of the stem in the photomultiplier tube according to the first embodiment.
  • FIG. 7] is a view (before sintering) for explaining an example of manufacturing a stem in the photomultiplier according to the first embodiment.
  • FIG. 8] is a diagram (after sintering) for explaining an example of manufacturing a stem in the photomultiplier according to the first embodiment.
  • FIG. 9 is an enlarged view of a main part in the vicinity of an anode pin for explaining a triple junction and creepage distance in the photomultiplier according to the first embodiment shown in FIG.
  • [10] is an enlarged view of the main part in the vicinity of the anode pin for explaining the triple junction and creepage distance in the photomultiplier tube according to the comparative example.
  • FIG. 11 is a view showing a first modification of the notch.
  • FIG. 12 is a view showing a second modified example of the notch.
  • FIG. 13 is a view showing a third modification of the notch.
  • FIG. 14 is a view showing a fourth modification of the notch.
  • FIG. 15 is a view showing a fifth modification of the notch.
  • FIG. 16 is a view showing a sixth modification of the notch.
  • FIG. 17 is a view showing a seventh modification of the notch portion.
  • FIG. 18 is a view showing an eighth modification of the notch.
  • FIG. 19 is a view showing a ninth modification of the notch.
  • FIG. 20 is a view showing a tenth modification of the notch.
  • FIG. 21 is a view showing an eleventh modification of the notch.
  • FIG. 22 is a view showing a twelfth modification of the notch portion.
  • FIG. 23 is a view showing a thirteenth modification of the notch.
  • ⁇ 24] is a cross-sectional view showing the configuration of the first modification of the photomultiplier tube according to the first embodiment.
  • ⁇ 25] is the configuration of the second modification of the photomultiplier tube according to the first embodiment. It is sectional drawing which shows
  • FIG. 26 is a side view showing an example of a radiation detection apparatus according to the present invention.
  • FIG. 27 is a cross-sectional view of main parts of the radiation detection apparatus shown in FIG.
  • FIG. 28 is a side view showing another example of the radiation detection apparatus according to the present invention.
  • FIG. 29 is a cross-sectional view of main parts of the radiation detection apparatus shown in FIG.
  • FIG. 30 is a cross-sectional view showing the configuration of the second embodiment of the photomultiplier according to the present invention.
  • FIG. 31 is a plan view showing an upper surface of a base member that constitutes a part of a stem in the photomultiplier according to the second embodiment.
  • FIG. 32 is a plan view showing a bottom surface of a base member that constitutes a part of a stem in the photomultiplier according to the second embodiment.
  • FIG. 33 is a view (before sintering) for explaining an example of manufacturing a stem in the photomultiplier according to the second embodiment.
  • FIG. 34 is a view (after sintering) for explaining an example of manufacturing a stem in the photomultiplier according to the second embodiment.
  • FIG. 35 is a cross-sectional view showing a configuration of a first modification of the photomultiplier tube according to the second embodiment.
  • FIG. 36 is a plan view showing an upper surface of a base member constituting a part of a stem in a photomultiplier tube according to a first modification of the second embodiment.
  • FIG. 37 shows a part of the stem in the photomultiplier tube according to the first modification of the second embodiment. It is a top view which shows the base member bottom which comprises.
  • FIG. 38 is a view (before sintering) for explaining an example of manufacturing a stem in the photomultiplier according to the first modification of the second embodiment.
  • FIG. 39 is a view (after sintering) for explaining an example of manufacturing a stem in the photomultiplier according to the first modification of the second embodiment.
  • FIG. 40 is a cross-sectional view showing the configuration of the third embodiment of the photomultiplier according to the present invention.
  • FIG. 41 is a plan view showing an upper surface of a base member constituting the entire stem in the photomultiplier according to the third embodiment.
  • FIG. 42 is a plan view showing a bottom surface of a base member constituting the entire stem in the photomultiplier according to the third embodiment.
  • FIG. 43 is a view (before sintering) for explaining an example of manufacturing a stem in the photomultiplier according to the third embodiment.
  • FIG. 44 is a view (after sintering) for explaining an example of manufacturing a stem in the photomultiplier according to the third embodiment.
  • FIGS. 1 and 2 are plan views showing a top surface structure and a bottom surface structure, respectively, in the first embodiment of the photomultiplier tube according to the present invention.
  • FIG. 3 is a plan view taken along the line ⁇ - ⁇ in FIG. It is sectional drawing which shows the structure of the photomultiplier tube which concerns on one Example. 1 to 3, a photomultiplier tube 1 emits electrons by incident light of an external force, multiplies the emitted electrons, and outputs the multiplied electrons as a signal. It is.
  • the photomultiplier tube 1 has an upper body portion 2 made of metal that is processed into a substantially cylindrical shape.
  • a glass-made light receiving face plate 3 is hermetically fixed to the upper end (one end) of the upper body 2 and light is received on the inner surface of the light receiving face plate 3 inside the container.
  • a photocathode 4 for converting incident light that has passed through the face plate 3 into electrons is formed.
  • a disc-shaped stem 5 is disposed at the open end of the upper body portion 2 on the lower side (the other end portion).
  • a plurality (15) of conductive stem pins 6 arranged in a substantially circular shape in a state of being separated from each other in a circumferential direction are hermetically inserted into the stem 5.
  • the lower body portion 7 made of metal is hermetically fixed so as to surround the side surface of the stem 5.
  • the flange portion 2a formed at the lower end portion of the upper body portion 2 and the flange portion 7a of the same diameter formed at the upper end portion of the lower body portion 7 are welded to form a sealed container.
  • a hollow body part constituting part of 8 is formed.
  • the upper body part 2 and the lower body part 7 are hermetically fixed, so that a sealed container 8 whose inside is reduced to a predetermined vacuum degree is obtained.
  • an electron multiplier section 9 for multiplying photoelectrons emitted from the photocathode 4 is accommodated.
  • this electron multiplier section 9 a plurality of thin plate dynodes 10 (10 stages in this embodiment) each having a large number of electron multiplier holes are laminated and installed on the upper surface of the stem 5.
  • dynode connection pieces 10c projecting outward are formed at predetermined edges of the dynodes 10 respectively, and stems 5 are formed on the lower surface side of the dynode connection pieces 10c.
  • the tip of the corresponding stem pin 6 is fixed by welding. As a result, the dynode 10 and the stem pin 6 are electrically connected to each other.
  • the photoelectrons emitted from the photocathode 4 are guided between the electron multiplier 9 and the photocathode 4 to the electron multiplier 9.
  • a flat plate anode (anode) 12 for taking out electrons as an output signal is laminated.
  • projecting pieces 1 la projecting outward are formed at the four corners of the converging electrode 11, and predetermined stem pins 6 are welded and fixed to the projecting pieces 11a. 11 is electrically connected.
  • An anode connecting piece 12a that protrudes outward is also formed at the edge of the anode 12, and an anode pin 13 that is one of the stem pins 6 is welded and fixed to the anode connecting piece 12a. 12 are electrically connected.
  • the photocathode 4 and the focusing electrode 11 are set to the same potential, and the dynode 10 is laminated.
  • the voltage is set to become higher as the level goes from the top to the bottom.
  • the anode 12 is set to a higher potential than the final dynode 10b.
  • the final dynode 10b is supported by a support member installed on the upper surface of the stem 5, for example, a force in which the final dynode 10b is directly mounted on the upper surface of the stem 5.
  • a support member installed on the upper surface of the stem 5
  • a configuration in which a space is interposed between the final stage dynode 10b and the upper surface of the stem 5 may be employed.
  • the photoelectron (e_) responds to this light incidence. Is released into the sealed container 8.
  • the emitted photoelectrons are converged to the first dynode 10a of the electron multiplier 9 by the focusing electrode 11.
  • the reached photoelectrons are cascade-multiplied in the electron multiplier section 9, and the secondary electron group is inverted and emitted from the final stage dynode 10b.
  • the secondary electron group is guided to the anode 12 and output to the outside through the anode pin 13 connected to the anode 12.
  • the side that becomes the vacuum space when the sealed container 8 of the photomultiplier tube 1 is formed is defined as the inner side (upper side).
  • the stem 5 includes a base member 14, an upper pressing member (first pressing member) 15 joined to the upper side (inner side) of the base member 14, and a lower side of the base member 14.
  • Side (outside) The lower presser member (second presser member) 16 has a three-layer structure, and the lower body portion 7 described above is fixed to the side surface thereof.
  • the stem 5 is fixed to the lower body part 7 by joining the side surface of the base member 14 constituting the stem 5 and the inner wall surface of the lower body part 7.
  • the lower (outer) surface of the lower presser member 16 protrudes below the lower end of the lower body part 7, but the fixing position of the stem 5 with respect to the lower body part 7 is as described above. It is not limited to.
  • the base member 14 is a disk-like member having, for example, Kovar as a main component and also having an insulating glass force having a melting point of about 780 degrees. Further, the base member 14 is black so that light having a lower surface side force is not transmitted into the sealed container 8. Further, as shown in FIG. 4, the base member 14 is formed with openings 14 a having substantially the same diameter as the outer diameters of the plurality (15) of the stem pins 6 along the outer peripheral portion of the base member 14.
  • the upper pressing member 15 is a circle made of insulating glass (for example, having a melting point of about 1100 degrees higher than the base member 14) obtained by adding alumina powder to Kovar, for example. It is a plate-like member. Further, the upper pressing member 15 is black so as to effectively absorb the light emission in the sealed container 8. Furthermore, as shown in FIG. 5, the upper pressing member 15 is formed with a plurality (15) of openings 15 a arranged in the same manner as the base member 14. The opening 15 a has an opening diameter larger than the opening 14 a formed in the base member 14, and at least two of the openings 15 a of the opening 15 5 a are positioning jigs (described later) 18 for the base member 14.
  • the upper pressing member 15 has a larger opening diameter than the other openings 15a that are allowed to enter.
  • three large-diameter openings 15 b are arranged every 90 degrees with respect to the center of the upper pressing member 15 except for the opening 15 a through which the anode pin 13 passes.
  • the upper pressing member 15 is provided with a notch 15c at the edge near the opening 15a through which the anode pin 13 is inserted. This notch constitutes a part of the step portion of the stem 5.
  • the lower presser member 16 is an insulating glass obtained by adding, for example, alumina powder to Kovar (the melting point is about 1100 degrees, which is higher than the base member 14). ). Further, the lower pressing member 16 exhibits a white color due to the difference in composition of the alumina powder to be added, and has higher physical strength than the base member 14 and the upper pressing member 15. Furthermore, as shown in Fig. 6, the lower presser An opening 16a similar to the upper pressing member 15 is formed in the material 16, and at least two or more of the openings 16a have a large opening diameter in order to allow the positioning jig 18 to enter.
  • the large-diameter openings 16 b are arranged at four positions every 90 degrees with respect to the center of the lower presser member 16.
  • One of the four locations is an opening 16a through which the anode pin 13 passes.
  • the three large-diameter openings 16b other than the large-diameter opening 16b through which the anode pin 13 passes are arranged coaxially with the large-diameter opening 15b of the upper pressing member 15.
  • a circular base member leaching opening 16c is formed in the center portion of the lower pressing member 16.
  • the base member 14, the upper pressing member 15, and the lower pressing member 16 are aligned in the axial positions of the openings 14a, 15a, 16a and the large-diameter openings 15b, 16b.
  • the base member 14 is fused and joined with the stem pins 6 being passed through the openings 14a, 15a, 16a, 15b, and 16b, respectively.
  • the upper pressing member 15 and the lower pressing member 16 are bonded to both surfaces of the base member 14 in close contact with each other, and the stem pin 6 is connected to each of the openings 15a of the upper pressing member 15 and the lower pressing member 16. Go through 16a, 15b, 16b.
  • a concave portion 5a having a base member 14 as a bottom surface is formed around the entire perimeter of each stem pin 6 on both the upper (inner) surface and the lower (outer) surface of the stem 5.
  • the stem pin 6 is in close contact with the base member 14 at the bottom surface of the recess 5a.
  • FIG. 7 a sectional view showing the state of the stem before sintering is shown in region (a), and an enlarged view of the main part is shown in region (b).
  • FIG. 8 a sectional view showing the state of the stem after sintering is shown in region (a), and an enlarged view of the main part is shown in region (b).
  • the base member 14 In the manufacture of the stem 5, as shown in the regions (a) and (b) in FIG. 7, the base member 14, the upper pressing member 15, the lower pressing member 16, and the stem pin 6 are positioned. In this state, it is sandwiched between positioning jigs 18.
  • the positioning jig 18 is a block-like member that also has a high heat-resistant carbonizer having a melting point of, for example, 1100 degrees or more.
  • the insertion holes 18a that support the inserted state of the stem 6 are formed so as to correspond to the arrangement of the stem pins 6, respectively. Further, in the insertion hole 18a, the opening edge of the insertion hole 18a corresponding to the large diameter opening 15b of the upper pressing member 15 and the large diameter opening 16b of the lower pressing member 16 enters the large diameter openings 15b and 16b.
  • the upper presser member 15 and the lower presser member 16 are positioned with respect to the base member 14, and the substantially cylindrical projection for securing the coaxiality between the stem pin 6 passing through the base member 14 and the openings 15a and 16a.
  • a portion 18b is formed.
  • the stem 5 is set on the positioning jig 18, first, one of the positioning jigs 18 (the lower side in the figure) is placed on the work surface with the protrusion 18b facing the upper surface. . Then, the stem pins 6 are respectively fixed in the insertion holes 18 a of the positioning jig 18. Next, while the stem pin 6 fixed to the positioning jig 18 is passed through the opening 16a, the protrusion 18b of the positioning jig 18 is inserted into the large-diameter opening 16b so that the stem pin 6 is lowered onto the positioning jig 18. The side pressing member 16 is placed.
  • the stem pins 6 are passed through the openings 14a, 15a and the large diameter opening 15b while roughly aligning the axial center positions of the openings 14a, 15a and the large diameter opening 15b with respect to the opening 16a and the large diameter opening 16b of the lower pressing member 16.
  • the base member 14 and the upper presser member 15 are sequentially stacked on the lower presser member 16.
  • the lower body part 7 is fitted into the base member 14.
  • the stem pin 6 protruding from the upper presser member 15 is inserted into the insertion hole 18a, and the protrusion 18b is inserted into the large-diameter opening 15b of the upper presser member 15, so that it can be placed on the upper presser member 15.
  • One (upper side in the figure) positioning jig 18 is placed. This completes the setting of stem 5. Note that the lower body portion 7 and the stem pin 6 to be set are subjected to surface oxidation treatment in advance in order to improve the weldability with the base member 14.
  • the set stem 5 is put into the electric furnace together with the positioning jig 18, and about 850 ° to 900 ° (the upper presser member 15 and the lower presser member 16 being higher than the melting point of the base member 14). Sintered at a temperature lower than the melting point).
  • the stem 5 is pressurized so as to be sandwiched between the positioning jigs 18. As shown in the regions (a) and (b) in FIG. 8, only the base member 14 having a melting point of about 780 degrees is melted by this sintering process, and the base member 14 and each pressing member 15, 16.
  • the base member 14 and the stem pin 6, and the base member 14 and the lower body part 7 are fused.
  • the base member 14 increases the adhesion with each of the other members. Therefore, as shown in the area (b) in FIG. 8, the base member in the large-diameter openings 15b to 16b is formed by the end face of the protrusion 18b of the positioning jig 18, as shown in the region (b) in FIG. Positioning in the height direction of 14 is performed. Further, the excess portion of the melted base member 14 is released into the base member leaching opening 16c of the lower pressing member 16. After the sintering process is completed, the stem 5 is also taken out of the electric furnace force, and the upper and lower positioning jigs 18 are removed to complete the manufacture of the stem 5.
  • the protrusion 18b of the positioning jig 18 is caused to enter the large-diameter opening 15b of the upper pressing member 15 and the large-diameter opening 16b of the lower pressing member 16. Since the upper pressing member 15 and the lower pressing member 16 are easily positioned with respect to the base member 14, the manufacturing process is simplified and the manufacturing cost is reduced. Further, the positioning jig 18 ensures the coaxiality between each stem pin 6 and each opening 15a, 16a.
  • the dynode 10, the convergence electrode 11, and the anode 12 stacked on the inner (upper) surface of the stem 5 obtained in this way are connected to the dynode connection piece 10 a, the anode connection piece 12 a, and the convergence electrode 11.
  • Each of the provided protruding pieces 11a is welded to the stem pins 6 corresponding thereto.
  • the upper body part 2 to which the light receiving face plate 3 is fixed is welded and fixed to the lower body part 7 in a vacuum state (assembly of a sealed container), so that the so-called head-on type shown in FIGS.
  • the photomultiplier tube 1 is obtained.
  • the upper pressing member 15 which is an upper (inner) member than the base member 14 in the stem 5 has an insulating property, and the anode pin 13 A notch 15c (see FIG. 5) is provided at the adjacent edge, and a step portion of the stem 5 is formed.
  • the operation of this configuration will be described in detail with reference to FIG. 9 and FIG.
  • FIG. 9 is an enlarged cross-sectional view of the main part showing the vicinity of the anode pin 13 that can be placed in the photomultiplier according to the first embodiment
  • FIG. 10 shows the vicinity of the anode pin 13 in the photomultiplier according to the comparative example. It is a principal part expanded sectional view shown.
  • a recess is not formed around the penetrating portion of the stem pin 6 including the anode pin 13 in the stem 5, and the upper pressing member 17 that does not constitute a stepped portion of the stem is applied in the vicinity of the anode pin 13. Yes.
  • each member is indicated by a broken line.
  • the triple pin is in the vicinity of the anode pin 13.
  • Yankeeyon XI conductive anode pin 13, insulating base member 14 joined with stem pin 6 including anode pin 13, point where vacuum space meets
  • FIG. 10 a structure in which the upper pressing member 17 that does not constitute the stepped portion of the stem is applied in the vicinity of the anode pin 13
  • the distance along the notch 15c of the upper pressing member 15 Only lengthened.
  • the creepage distance Y1 is lengthened, so that dielectric breakdown and leakage current caused by creeping discharge in the vicinity of the anode pin 13 are sufficiently prevented, and noise for the electric signal taken out from the anode pin 13 is prevented. Mixing prevention is achieved.
  • the recess 5a having the base member 14 as the bottom surface is formed on the entire periphery of the penetrating portion of the stem pin 6 including the anode pin 13 on the upper (inside) surface of the stem 5. ing. Therefore, the creepage distance Y1 to the lower fuselage part 7 near the anode pin 13 is compared with the creepage distance Y2 along the insulator surface from the triple junction X2 to the upper fuselage part 2 in the comparative example shown in FIG. The length is further increased by the height of the recess 5a.
  • the occurrence of creeping discharge in the vicinity of the anode pin 13 is further suppressed, and noise can be more effectively prevented from being mixed into the electrical signal extracted from the anode pin 13.
  • the creepage distance is increased by the height of the recess 5a, so that the occurrence of creeping discharge is suppressed and the voltage resistance of the photomultiplier tube 1 is reduced. Sexuality is enhanced.
  • the formation of these recesses 5a also increases the creepage distance along the insulator surface between the stem pins at the same time. Therefore, the voltage tolerance of the photomultiplier tube 1 is further increased.
  • the recess 5a is formed corresponding to each of the stem pins 6, so that the triple junction XI is formed at the joint edge between the bottom surface of the recess 5a and the stem pin 6 including the anode pin 13. Will be located.
  • the triple junction XI is concealed in the recess 5a.
  • the triple junction XI is concealed in the recess 5a so that it is exposed on the upper surface of the upper holding member 17 like the triple junction X2 in the comparative example shown in FIG.
  • the occurrence of creeping discharge is further suppressed, and the voltage tolerance of the photomultiplier tube 1 is further enhanced.
  • the positioning jig 18 secures the coaxiality between the stem pin 6 and each opening 15a of the upper pressing member 15 and the opening 16a of the lower pressing member 16, the stem pin 6 is positioned within the openings 15a and 16a. Proximity to the wall is prevented. Therefore, since the triple junction XI is reliably concealed in the recess 5a, the voltage resistance of the photomultiplier tube 1 is further ensured.
  • the stem 5 is joined to the base member 14, the upper pressing member 15 joined to the upper side (inner side) of the base member 14, and the lower side (outer side) of the base member 14. Further, it has a three-layer structure composed of the lower pressing member 16. Such a three-layer structure increases the positional accuracy, flatness, and levelness of both sides of the stem 5. Power! In the photomultiplier tube 1, the positional accuracy between the electron multiplier 9 and the photocathode 4 installed on the upper surface (inner surface) of the stem 5 and the seating property of the electron multiplier 9 are also improved. Enhanced. This improved seating property provides good device characteristics such as photoelectric conversion efficiency, and also improves the dimensional accuracy of the entire length of the photomultiplier tube 1 and the mountability when the photomultiplier tube 1 is surface-mounted. .
  • the base member leaching opening 16c (see FIG. 6) is formed in the lower pressing member 16, the excess portion of the melted base member 14 is favorably released into the base member leaching opening 16c. Therefore, when the base member 14 is melted, the base member 14 hardly protrudes from the surface of the stem 5 through the opening 15a of the upper pressing member 15 and the opening 16a of the lower pressing member 16. Flatness and levelness are ensured.
  • the concave portion 5a having the base member 14 as the bottom surface is formed around the entire penetrating portion of the stem pin 6 on both surfaces of the stem 5.
  • the joining edge portion of the base member 14 to the stem pin 6 becomes the bottom surface of the recess 5a formed in the stem 5, and the base member 14 joins the stem pin 6 at a moderate angle (almost right angle).
  • the stem pin 6 comes into contact with the peripheral edge portion on the open side of the recess 5a, and further bending of the stem pin 6 is prevented. In this case, the occurrence of cracks on both sides of the joint portion between the base member 14 and the stem pin 6 is prevented, and the hermeticity and good appearance of the sealed container 8 are ensured.
  • the present invention is not limited to the above-described embodiments.
  • the notch formed in the upper presser member 15 includes the edge of the upper presser member 15 including the vicinity of the anode pin 13. It may be formed over the entire circumference.
  • the upper pressing member 15 may be applied with various modifications such as a stepped disk shape having a step portion over the entire circumference of the edge portion on the upper surface side. That is, a notch portion (a portion of the upper presser member 15 that is partially cut away) that is perpendicular to the end surface (upper and lower surfaces) of the upper presser member 15 is formed as in the notch portion 15c shown in FIG. In this case, as shown in FIG.
  • a substantially V-shaped cutout portion 15d in plan view may be provided (first modified example), and a straight cutout portion as shown in FIG.
  • the vicinity of the anode pin 13 may further be a semicircular cutout portion 15e partly cut in the vertical direction (second modification).
  • the vicinity of the anode pin 13 may be a semi-circular cutout portion 15f that is partially cut off in the vertical direction (third modified example).
  • the vicinity of the anode pin 13 in addition to the linear cutout portion, the vicinity of the anode pin 13 may be a cutout portion 15g in which a part of the anode pin 13 is further cut out in a rectangular shape (fourth modification).
  • fourth modification for example, as shown in FIG.
  • only the vicinity of the anode pin 13 may be a cutout portion 15h in which a part of the anode pin 13 is cut out in a vertical direction (fifth modification).
  • it in addition to the V-shaped notch, it may be a notch 15i in which the vicinity of the anode pin 13 is linearly cut in the vertical direction (sixth modified example).
  • the notch portion does not necessarily have to be a right-angled surface with respect to the end surface of the upper pressing member 15, but as shown in FIG. It may be (seventh modified example), and as shown in FIG. 18, it may be a cutout portion 15 k in which only the upper part is inclined (eighth modified example).
  • the lower side may be a large step-like cutout 151 (the ninth modified example).
  • the lower portion may be a notched portion 15m that is inclined (tenth modification), and as shown in FIG. 21, only the middle portion is inclined at a notched portion 15 ⁇ . There may be (Eleventh Modification). Furthermore, as a modification of these notches 15m and 15 ⁇ , as shown in FIGS.
  • the lower surface side of the upper pressing member 15 may be a notch 15 ⁇ and a notch 15 ⁇ in contact with the lower body 7.
  • the entire stem 5 is divided into four layers. It may be configured as described above (the electron multiplying unit 9 is installed on the upper surface of this other layer). If this other layer is provided with an opening through which the stem pin 6 joined to the base member 14 is inserted, this another layer also has an insulating material force, and at least the anode layer 13 in the vicinity of this other layer has the above-mentioned notch. A portion (which constitutes a part of the stepped portion of the stem 5) is provided. Further, when the opening for allowing the stem pin 6 to pass through is provided in another layer as described above, at least two of the openings allow the positioning jig 18 to enter the base member 14. It is preferable to have an opening diameter larger than that of other openings.
  • the force in which the base member leaching opening 16c is provided only in the lower pressing member 16 may be provided in at least one of the pressing members. Specifically, the base member leaching opening may be provided only in the upper pressing member 15 or may be provided in both the upper pressing member 15 and the lower pressing member 16.
  • a metal exhaust is provided at the central portion of the stem 5.
  • a photomultiplier tube 20 provided with a tube 19 may be employed.
  • the exhaust pipe 19 can be used for exhausting the inside of the sealed container 8 with a vacuum pump or the like after the photomultiplier 20 is assembled.
  • FIG. 25 corresponding to a cross-sectional view along the line ⁇ - ⁇ in FIG. 1
  • the lower body portion 7 having a flange portion at the lower end thereof is connected to the upper body portion.
  • the body part 27 (upper body part) that is longer than the part 2 may be fitted.
  • the photomultiplier tube 26 is obtained by welding and fixing the flange portions of the body portion 27 and the lower body portion 7.
  • each embodiment of the radiation detection apparatus including the photomultiplier tube 1 according to the first embodiment shown in FIGS. 1 to 3 will be described.
  • a scintillator 22 for converting radiation into light is installed outside the light receiving face plate 3 of the photomultiplier tube 1, and the photomultiplier tube 1 is connected to the processing circuit. It is mounted on a circuit board 24 with 23 on the bottom side.
  • the processing circuit 23 is installed on the circuit board 24, and the photomultiplier so that the processing circuit 23 is surrounded by the stem pin 6.
  • Tube 1 is mounted on circuit board 24.
  • FIG. 26 relates to the present invention.
  • FIG. 27 is a side view showing an example of a radiation detection apparatus
  • FIG. 27 is a cross-sectional view of a main part of the radiation detection apparatus shown in FIG.
  • FIG. 28 is a side view showing another example of the radiation detection apparatus according to the present invention
  • FIG. 29 is a cross-sectional view of the main part of the radiation detection apparatus shown in FIG.
  • the photomultiplier tube 28 according to the second embodiment has a stem 29 with a circle of the same quality as the base member 14.
  • the stem 5 has a base member 14, an upper presser member 15 and a lower member in that it has a two-layer structure composed of a plate-like base member 30 and an upper presser member 15 joined to the upper side (inner side) of the base member 30.
  • the photomultiplier tube 1 is different from the photomultiplier tube 1 according to the first embodiment having a three-layer structure constituted by the side pressing members 16.
  • a plurality of (15) openings 30a having an opening diameter that is larger than the outer diameter of the stem pin 6 are formed on the outer periphery of the base member 30. It is formed to follow. Further, among the openings 30a of the base member 30, the four openings including the opening 30a through which the anode pin 13 passes have an outer diameter of the lower half of the other openings 30a so that the positioning jig 18 can enter. The larger opening 30b is larger than the outer diameter of the lower half. Furthermore, a circular base member leaching recess 30c (see FIG. 33) is formed in the lower central portion of the base member 30 as a base member leaching portion from which the base member 30 is leached by melting.
  • the base member 30 and the upper presser member 15 are overlapped with the axial positions of the openings 30a, 15a and the large diameter openings 30b, 15b being aligned.
  • these members are joined by melting the base member 30 with the stem pins 6 inserted through the openings 30a and 15a and the large-diameter openings 30b and 15b, respectively.
  • the upper pressing member 15 is joined to the upper surface of the base member 30.
  • the stem pin 6 passes through the lower half of the opening 30a of the base member 30 and the opening 15a of the upper holding member 15, respectively.
  • the upper (inner) surface and lower (outer) surface of the stem 29 A recess 29a with the base member 30 as the bottom surface is formed around the entire perimeter of the stem pin 6 on both sides of the surface. It is.
  • the stem pin 6 is attached to the bottom of these recesses 29a and is joined to the base member 30!
  • FIG. 33 and FIG. 34 are diagrams for explaining an example of manufacturing the stem 29.
  • a sectional view showing the state of the stem before sintering is shown in region (a), and an enlarged view of the main part is shown in region (b).
  • a sectional view showing the state of the stem after sintering is shown in region (a), and an enlarged view of the main part is shown in region (b).
  • one of the positioning jigs 18 (shown in the figure) with the projection 18b facing the upper surface is shown.
  • the lower side is placed on the work surface.
  • Stem pins 6 are inserted into the insertion holes 18a of the positioning jig 18, respectively.
  • the protrusion 18b of the positioning jig 18 is inserted into the large-diameter opening 30b, and the base member is placed on the positioning jig 18. 30 is placed.
  • the stem pin 6 is passed through the stem pin 6 to the opening 15a and the large diameter opening 15b.
  • the upper presser member 15 is overlaid.
  • the lower body part 7 is fitted into the base member 30.
  • the stem pin 6 protruding from the upper presser member 15 is inserted into the insertion hole 18a, and the projection 18b is inserted into the large-diameter opening 15b of the upper presser member 15 so that the other ( The positioning jig 18 on the upper side is placed.
  • the lower body portion 7 and the stem pin 6 to be set are subjected to surface oxidation treatment in advance in order to improve the weldability with the base member 30.
  • the set stem 29 is put into an electric furnace, and a sintering process is performed under the same conditions as in the first embodiment.
  • a sintering process is performed under the same conditions as in the first embodiment.
  • the base member 30 is positioned in the height direction in the large-diameter openings 30b and 15b, and the excess portion of the molten base member 14 is released into the base member leaching recess 30c.
  • the stem 29 is removed from the electric furnace, and the upper and lower positioning jigs 18 are removed to complete the manufacture of the stem 29.
  • the upper pressing member 15 is easily positioned with respect to the base member 30 by the positioning jig 18 as in the first embodiment. This simplifies the manufacturing process and reduces manufacturing costs. Further, the coaxiality between the stem pin 6 and the opening 15a is secured by the positioning jig 18.
  • the dynode 10, the convergence electrode 11, and the anode 12 laminated on the inner (upper) surface of the stem 29 thus obtained are the dynode connection piece 10 a, the anode connection piece 12 a, and the convergence electrode 11.
  • Each of the projecting pieces 11a provided in the above and the stem pins 6 corresponding thereto are welded to be fixed to the stem pins 6.
  • the upper body part 2 to which the light receiving face plate 3 is fixed is welded and fixed to the lower body part 7 in a vacuum state (assembly of a sealed container), so that the head-on type photomultiplier tube shown in FIG. Is obtained.
  • the upper presser that is a member above (inside) the base member 30 in the stem 29, as in the photomultiplier tube 1 according to the first embodiment.
  • the member 15 has an insulating property.
  • a notch 15c (see FIG. 5) that constitutes a part of the stepped portion of the stem 29 is provided at the edge near the anode pin 13. Therefore, the creeping distance in the vicinity of the anode bin 13 is lengthened to sufficiently prevent the dielectric breakdown and the leakage current caused by the creeping discharge, thereby preventing the noise from being mixed into the electric signal taken out from the anode pin 13.
  • the cutout portion 15c may have a stepped disk shape that may be formed over the entire periphery of the edge portion of the upper presser member 15 also in the second embodiment. Further, various modifications shown in FIGS. 11 to 23 can be applied.
  • the base member 30 is provided around the entire perimeter of the stem pin 6 including the anode pin 13 on the upper (inner) surface of the stem 29.
  • a recess 29a is formed as a bottom surface.
  • the creepage distance in the vicinity of the anode pin 13 is further lengthened, and it is possible to more effectively prevent noise from being mixed into the electrical signal extracted from the anode pin 13.
  • other stem pins 6 except the anode pin 13 since the creepage distance is lengthened, the voltage tolerance of the photomultiplier tube 28 is increased.
  • the formation of the recess 29a also increases the creeping distance along the insulator surface between the stem pins at the same time.
  • the voltage tolerance of the photomultiplier tube 28 is further enhanced.
  • the positioning jig 18 ensures the coaxiality between the stem pin 6 and the opening 15a of the upper pressing member 15. As a result, the triple junction can be reliably concealed in the recess 29a, and the voltage resistance of the photomultiplier tube 28 is further ensured.
  • the stem 29 has a two-layer structure including a base member 29 and an upper presser member 15 joined to the upper side (inner side) of the base member 29. Therefore, the positional accuracy, flatness, and levelness of the upper surface of the stem 29 are increased.
  • the positional accuracy between the electron multiplier 9 and the photocathode 4 installed on the upper surface (inner surface) of the stem 29 and the seating property of the electron multiplier 9 are improved. It is done. In this case, characteristics such as photoelectric conversion efficiency can be obtained satisfactorily.
  • the base member 30 is formed with a base member leaching recess 30c (see FIG. 33). Therefore, the surplus portion of the melted base member 30 can be released well into the base member leaching recess 30c. In this case, when the base member 30 is melted, the base member 30 hardly protrudes from the surface of the stem 29 through the opening 15a of the upper holding member 15 and the lower half of the opening 30a of the base member 30. Flatness and levelness are ensured.
  • the entire periphery of the penetrating portion of the stem pin 6 on the upper (inner side) surface and the lower (outer side) surface of the stem 29 is provided on the base.
  • a recess 29a having the member 30 as a bottom surface is formed. Therefore, cracks are prevented from occurring on both sides of the joint portion between the base member 30 and the stem pin 6, and the hermeticity and good appearance of the sealed container 8 are ensured.
  • a structure in which a metal exhaust pipe 19 is provided in the central portion of the stem 29 is employed, as in the photomultiplier tube 20 shown in FIG. May be.
  • a lower body part 7 having a flange portion at the lower end thereof is fixed to the stem 29, and the lower body part 7 is longer than the upper body part 2.
  • the body part 27 (upper body part) may be fitted together. In this case, the flange portions of the body portion 27 and the lower body portion 7 are fixed by welding.
  • a base member leaching recess 30c as a base member leaching portion is provided in the lower portion of the base member 30.
  • a base member leaching portion may be provided on at least one of the base member 30 and the upper pressing member 15.
  • a base member leaching opening similar to that of the first embodiment described above may be provided only in the upper pressing member 15, and a base member leaching opening may be provided in the upper pressing member 15 and the base member 30 may have a base.
  • a member leaching recess 30c may be provided.
  • the radiation detection apparatus including the photomultiplier tube 28 shown in FIG. 30 (corresponding to the cross-sectional view along the line ⁇ - ⁇ in FIG. 1) is shown in FIGS. 26 to 27 and FIGS. 28 to 29.
  • the above-described effects can be obtained, and a radiation detection device suitable for surface mounting can be obtained.
  • a two-layered stem in which a pressing member is joined to the lower surface (outer surface) of the base member may be applied.
  • the stem 32 has a disk-like base member 33 of the same quality as the base member 14 and the lower side of the base member 33 ( It has a two-layer structure consisting of lower presser members 16 joined to the outer side.
  • the stem 32 in the photomultiplier tube 31 is not provided with the upper pressing member 15, and the base member 33 has the lower half of the stem pin 6 as shown in FIG.
  • a plurality (15) of openings 33a whose upper half is larger than the outer diameter of the stem pin 6, are formed on the base member 33. It is formed along the outer periphery.
  • three of the openings 33a of the base member 33 excluding the opening 33a through which the anode pin 13 passes are arranged so that the outer diameter of the upper half is the upper half of the other opening 33a so that the positioning jig 18 can enter.
  • This is a large-diameter opening 33b having an opening diameter larger than the outer diameter.
  • a notch 33c is formed at the edge on the upper surface side in the vicinity of the opening 33a through which the anode pin 13 passes.
  • these base member 33 and lower presser member 16 have openings 33a, 16a and Large diameter opening 33b, 16b shaft They are superimposed with their minds aligned.
  • the base member 33 and the lower pressing member 16 are fusion-bonded by melting the base member 33 in a state where the stem pins 6 are passed through the openings 33a and 16a and the large-diameter openings 33b and 16b, respectively. More specifically, the lower pressing member 16 is bonded to the lower surface of the base member 33 in a state of being in close contact.
  • the stem pin 6 passes through the upper half of the opening 33a of the base member 33 and the opening 16a of the lower presser member 16 so that both the upper (inner) surface and lower (outer) surface of the stem 32 are provided.
  • a recess 32a having a base member 33 as a bottom surface is formed around the entire periphery of the penetrating portion of the stem pin 6 in FIG.
  • the stem pin 6 is joined in close contact with the base member 33 on the bottom surface of the recess 32a.
  • FIG. 38 and 39 are views for explaining a manufacturing example of the stem 32.
  • FIG. 38 a sectional view showing the state of the stem before sintering is shown in region (a), and an enlarged view of the main part is shown in region (b).
  • FIG. 39 a sectional view showing the state of the stem after sintering is shown in region (a), and an enlarged view of the main part is shown in region (b).
  • one of the positioning jigs 18 (the lower side in the drawing) is placed on the work surface with the protrusion 18b facing the upper surface.
  • the stem pins 6 are inserted into the insertion holes 18a of the positioning jig 18, respectively.
  • the projection 18b of the positioning jig 18 enters the large-diameter opening 16b while passing the stem pin 6 fixed to the positioning jig 18 through the opening 16a.
  • the side presser member 16 is placed.
  • the stem pin 6 is passed through the opening 33a and the large-diameter opening 33b while roughly aligning the axial center positions of the opening 33a and the large-diameter opening 33b with respect to the opening 16a and the large-diameter opening 16b of the lower pressing member 16. .
  • the lower body portion 7 is fitted into the base member 33.
  • the protrusion 18b enters the large-diameter opening 33b of the base member 33, so that the other side (illustrated)
  • the upper positioning jig 18 is placed. This completes the setting of stem 32.
  • the lower body portion 7 and the stem pin 6 to be set have a base. In order to improve the weldability with the one-piece member 33, surface oxidation treatment is performed in advance.
  • the set stem 29 is put into an electric furnace, and a sintering process is performed under the same conditions as in the first embodiment described above.
  • a sintering process is performed under the same conditions as in the first embodiment described above.
  • the body portion 7 is fused to each other by melting the base member 33.
  • the base member 33 is positioned in the height direction in the large-diameter openings 33b and 16b by the end face of the protrusion 18b of the positioning jig 18. Done.
  • the stem 32 is also taken out of the electric furnace power, and the upper and lower positioning jigs 18 are removed, whereby the manufacture of the stem 32 is completed.
  • the lower pressing member 16 is easily positioned with respect to the base member 33 by the positioning jig 18, as in the first embodiment. This simplifies the manufacturing process and reduces manufacturing costs.
  • the positioning jig 18 ensures the coaxiality between the stem pin 6 and the opening 16a.
  • the dynode 10, the convergence electrode 11, and the anode 12 stacked on the inner (upper) surface of the stem 32 thus obtained are connected to the dynode connection piece 10 a, the anode connection piece 12 a, and the convergence electrode 11.
  • Each of the projecting pieces 11a provided in the above and the stem pins 6 corresponding thereto are welded and fixed.
  • the upper body part 2 to which the light receiving face plate 3 is fixed is welded and fixed to the lower body part 7 in a vacuum state (assembly of a sealed container), so that the head-on type photoelectron amplification shown in FIG. Double pipe 31 is obtained.
  • the base member 33 itself constituting a part of the stem 32 has an insulating property, and the edge on the upper surface side in the vicinity of the anode pin 13 has a first portion.
  • a notch 33c (see FIG. 36) similar to the photomultiplier tube 1 according to the embodiment is formed.
  • the notch 33c may be formed over the entire periphery of the edge on the upper surface side of the base member 33, or various modifications shown in FIGS.
  • a recess 32a having a base member 33 as a bottom surface is formed around the entire periphery of the penetrating portion of the stem pin 6 including the anode pin 13 on the upper (inner) surface of the stem 32. For this reason, the creeping distance in the vicinity of the ananodine bin 13 is further lengthened, and it is possible to more effectively prevent noise from being mixed into the electric signal taken out from the anode pin 13.
  • the formation of the recess 32a also increases the creeping distance along the insulator surface between the stem pins, and the triple junction is concealed in the recess 32a, so that the voltage of the photomultiplier tube 28 is increased. Tolerance is increased.
  • the positioning jig 18 ensures the coaxiality between the stem pin 6 and the opening 16a of the lower pressing member 16 so that the triple junction is reliably concealed in the recess 32a.
  • the voltage resistance of the photomultiplier tube 31 is further ensured.
  • the stem 32 includes the base member 33 and the lower presser member 16 joined to the lower side (outside) of the base member 33.
  • the positional accuracy, flatness, and levelness of the lower surface of the stem 32 are increased.
  • the dimensional accuracy of the entire length of the photomultiplier tube 31 and the mountability when the photomultiplier tube 31 is mounted on the surface are improved.
  • the lower presser member 16 is formed with a base member leaching opening 16c (see FIG. 6).
  • the base member 33 when the base member 33 is melted, the base member 33 is brought into contact with the surface of the stem 32 through the opening 16a of the lower pressing member 16 and the upper half of the opening 33a of the base member 33. Stem hardly protrudes 32 The position accuracy, flatness, and levelness of both sides are secured.
  • the entire periphery of the penetrating portion of the stem pin 6 forms the base member 33 on the upper (inner) surface and the lower (outer) surface of the stem 32 as described above.
  • a recess 32a is formed as a bottom surface. Therefore, cracks are prevented from occurring on both sides of the joint portion between the base member 33 and the stem pin 6, and the hermeticity and good appearance of the sealed container 8 are ensured.
  • the photomultiplier tube 31 also has a structure in which a metal exhaust pipe 19 is provided in the central portion of the system 32 as in the photomultiplier tube 20 shown in FIG. Also good. Also, like the photomultiplier tube 26 shown in FIG. 25, a flange is provided at the lower end.
  • a structure in which the lower body part 7 is fixed to the stem 32 and a body part 27 (upper body part) longer than the upper body part 2 is fitted to the lower body part 7 may be employed. In this case, the flange portions of the body portion 27 and the lower body portion 7 are fixed by welding.
  • only the lower pressing member 16 is provided with a base member leaching opening 16c as a base member leaching portion.
  • a base member leaching portion may be provided on at least one of the base member 33 and the lower pressing member 16.
  • only the base member 33 may be provided with the aforementioned base member leaching recess, and the lower presser member 16 is provided with the base member leaching opening 16c, while the base member 33 is provided with the base member leaching recess. May be.
  • the radiation detection apparatus including the photomultiplier tube 31 can be manufactured in the same configuration as the radiation detection apparatuses 21 and 25 shown in FIGS. 26 to 27 and FIGS. 28 to 29. In this case, the above-described effects can be obtained, and a radiation detection apparatus suitable for surface mounting can be obtained.
  • the stem 35 is a disc of the same quality as the base member 14.
  • the stem 5 has a three-layer structure including a base member 14, an upper pressing member 15, and a lower pressing member 16 in that the stem 5 has a single-layer structure including a base member 36 having a shape. Different from photomultiplier tube 1.
  • the upper presser member 15 and the lower presser member 16 are not provided on the stem 35 of the photomultiplier tube 34, and the base member 36 is provided with the base member 36 as shown in FIGS.
  • a plurality (15) of openings 36a having an opening portion having an intermediate portion substantially the same diameter as the outer diameter of the stem pin 6 and upper and lower portions having an opening diameter larger than the outer diameter of the stem pin 6 are provided along the outer peripheral portion of the base member 36. Thus, a plurality (15) are formed.
  • a large-diameter opening 36b whose outer diameter at the upper and lower parts is larger than the outer diameter at the upper and lower parts of the other opening 36a is provided.
  • a circular base member leaching recess 36c is formed in the lower central portion of the base member 36 as a base member leaching portion from which the base member 36 is leached by melting. Is formed.
  • the edge on the upper surface side in the vicinity of the opening 36a through which the anode pin 13 passes is formed as a notch 36d.
  • the base member 36 is fusion bonded to the stem pin 6 by melting the base member 36 with the stem pin 6 being passed through the openings 36a. More specifically, the stem pin 6 passes through the upper part and the lower part of the opening 36a of the base member 36, and the stem pin 6 penetrates both the upper (inner) surface and the lower (outer) surface of the stem 35. A recess 35a having the base member 36 as a bottom surface is formed around the entire circumference of the passage portion. As a result, stem pin 6 is joined in close contact with base member 36 at the bottom surface of recess 35a.
  • FIG. 43 and 44 are diagrams for explaining an example of manufacturing the stem 35.
  • FIG. 43 a sectional view showing the state of the stem before sintering is shown in region (a), and an enlarged view of the main part is shown in region (b).
  • FIG. 44 a sectional view showing the state of the stem after sintering is shown in region (a), and an enlarged view of the main part is shown in region (b).
  • one of the presser jigs 18 having the same configuration as the positioning jig (with the projection 18b facing the upper surface) ) Is placed on the work surface.
  • the stem pins 6 are inserted into the insertion holes 18a of the holding jig 18, respectively.
  • the protrusion 18 b of the holding jig 18 enters the large-diameter opening 36 b on the lower surface side of the base member 36.
  • the stem pin 6 protruding from the base member 36 is inserted into the insertion hole 18a, and the protrusion 18b is inserted into the large-diameter opening 36b on the upper surface side of the base member 36, thereby The other holding jig 18 (the upper side in the figure) is placed on the other.
  • the lower body portion 7 and the stem pin 6 to be set are subjected to surface oxidation treatment in advance in order to improve the weldability with the base member 36.
  • the set stem 35 is put into an electric furnace and fired under the same conditions as in the first embodiment.
  • the tie process is performed.
  • the base member 36 and the stem pin 6, and the base member 36 and the lower body part 7 are respectively separated into the base member. Fused by melting 36.
  • the base member 36 is positioned in the height direction in the large-diameter opening 36b by the end face of the protrusion 18b of the pressing jig 18.
  • the surplus portion of the melted base member 36 is released into the base member leaching recess 36c.
  • the stem 35 is taken out from the electric furnace, and the upper and lower holding jigs 18 are removed, whereby the manufacture of the stem 35 is completed.
  • the manufacturing process is simplified and the manufacturing cost is reduced, as in the above-described embodiment.
  • the dynode 10, the convergence electrode 11, and the anode 12 stacked on the inner (upper) surface of the stem 35 obtained in this way are connected to the dynode connection piece 10 a, the anode connection piece 12 a, and the convergence electrode 11.
  • Each of the provided protruding pieces 11a is fixed by welding the stem pin 6 corresponding to each of the protruding pieces 11a.
  • the electron multiplier 9, the focusing electrode 11, and the anode 12 are welded and fixed to the lower body 7, the upper body 7 to which the light receiving face plate 3 is fixed is changed to the lower body 7 in a vacuum state.
  • the head-on type photomultiplier tube 34 shown in FIG. 40 is obtained.
  • the base member 36 itself constituting a part of the stem 35 has an insulating property.
  • a notch 36d (see FIG. 41) similar to that of the photomultiplier tube 1 according to the first embodiment is formed at the edge on the upper surface side in the vicinity of the anode pin 13. Therefore, the creepage distance in the vicinity of the anode pin 13 is lengthened to sufficiently prevent the dielectric breakdown and the leakage current caused by the creeping discharge, thereby preventing the noise from being mixed into the electric signal taken out from the anode pin 13.
  • the notch 36d may be formed over the entire periphery of the edge on the upper surface side of the base member 36.
  • a recess 35 a having a base member 36 as a bottom surface is formed on the entire periphery of the penetrating portion of the stem pin 6 including the anode pin 13 on the upper (inner) surface of the stem 35. For this reason, the creepage distance in the vicinity of the anodic dobin 13 is further lengthened and removed from the anode pin 13. It is possible to more effectively prevent noise from being mixed into the electrical signal.
  • the formation of the recess 35a also increases the creepage distance along the surface of the insulator between the stem pins, and the triple junction is concealed in the recess 35a. As a result, the voltage tolerance of the photomultiplier tube 28 is further enhanced.
  • the base member 36 is formed with a base member leaching recess 36c (see FIG. 43).
  • the surplus portion of the melted base member 36 can be favorably released into the base member leaching recess 36c. For this reason, when the base member 36 is melted, the excess portion hardly protrudes from the surface of the stem 35 through the upper and lower portions of the opening 36a. Is secured.
  • the base member 36 is provided around the entire perimeter of the stem pin 6 on the upper (inner) surface and the lower (outer) surface of the stem 35.
  • a recess 35a is formed with the bottom as the bottom. Therefore, cracks are prevented from occurring on both sides of the joint portion between the base member 36 and the stem pin 6, and the hermeticity and good appearance of the sealed container 8 are ensured.
  • the photomultiplier tube 34 also employs a structure in which a metal exhaust pipe 19 is provided in the central portion of the stem 35. Also good.
  • the lower body part 7 having a flange portion at the lower end thereof is fixed to the stem 35, and the lower body part 7 is fixed to the upper body part 2 more than the upper body part 2.
  • the long body part 27 (upper body part) may be fitted together. At that time, the flange portions of the body portion 27 and the lower body portion 7 are fixed by welding.
  • a base member leaching recess 36c as a base member leaching portion is provided in the lower portion of the base member 36.
  • a base member leaching portion may be provided on the upper portion of the base member 36.
  • the radiation detection apparatus including the photomultiplier tube 34 can be manufactured to have the same structure as the radiation detection apparatuses 21 and 25 shown in FIGS. 26 to 27 and FIGS. 28 to 29. With this configuration, there can be obtained a radiation detecting apparatus that exhibits the same operational effects as those of the first embodiment described above and that is particularly suitable for surface mounting.
  • the photomultiplier tube according to the present invention can be applied to a detection device and a portable measuring instrument in various fields such as medical treatment and environment including a radiation detection device.

Landscapes

  • Measurement Of Radiation (AREA)

Description

明 細 書
光電子増倍管及びそれを含む放射線検出装置
技術分野
[0001] この発明は、光電効果を利用した光電子増倍管及びそれを含む放射線検出装置 に関するものである。
背景技術
[0002] 光電子増倍管としては、筒状胴体部と、該筒状胴体部における一方の端部に設け られた受光面板と、該筒状胴体部の他方の端部に設けられたステムとにより構成され た真空密封容器を備えた ヽゎゆるヘッドオン型の光電子増倍管が知られて ヽる。こ のヘッドオン型の光電子増倍管では、受光面板の内側 (真空密封容器内)にホトカソ ードが設けられるとともに、該ホト力ソードからステムに向力つて複数段のダイノードを 有する電子増倍部及びアノードが積層されて 、る。これら各段のダイノード及びァノ ードにそれぞれ接続された複数のステムピンは、該真空密封容器内から外部に導出 されるようステムに支持されている。受光面板を通過した入射光は、ホトカソードで電 子 (光電子)に変換され、該ホト力ソードから放出された光電子が、各ステムピンを介 して所定電圧が印加された各ダイノードを有する電子増倍部で順次増倍される。また 、電子増倍部で増倍されアノードに達した電子は、電気信号としてステムピンの一つ であるアノードピンを介して取り出される。
[0003] 上述のような構造を有する光電子増倍管では、部品点数の低減やノイズ防止が重 要な課題である。そこで、以下の特許文献 1には、部品点数の低減を図るために金 属製のステムに代えてテーパー状ノヽーメチックガラスが採用されるとともに、筒状月同 体部がガラスで構成した時のノイズの発生を防止するために金属製の筒状胴体部が 採用された光電子増倍管が開示されている。
特許文献 1:特開平 5 - 290793号公報
発明の開示
発明が解決しょうとする課題
[0004] 発明者らは、従来の光電子増倍管について検討した結果、以下のような課題を発 見した。すなわち、上述のような構造を有する従来の光電子増倍管では、アノードピ ンから取り出される電気信号に対するノイズ混入の一層の低減が望まれて!/ヽる。
[0005] この発明は上述のような課題を解決するためになされたものであり、アノードピンか ら取り出される電気信号に対するノイズ混入が十分に防止可能な構造を備えた光電 子増倍管及びそれを含む放射線検出装置を提供することを目的としている。
課題を解決するための手段
[0006] 上述のような課題を解決するため、この発明に係る光電子増倍管は、内部が所定 の真空度まで減圧された密封容器と、ホトカソードと、複数段のダイノードで構成され た電子増倍部と、アノードと、複数のステムピンを備える。上記密封容器は、中空月同 体部と、該中空胴体部の一方の端部に設けられた受光面板と、該中空胴体部の他 方の端部に設けられたステムとにより構成される。上記ホトカソードは、密封容器内に 配置され、受光面板を通過した入射光を電子に変換する。上記電子増倍部は、ホト 力ソードとステムとの間に位置するよう密封容器内に配置され、ホトカソードから放出 された電子をそれぞれ増倍するよう機能する。上記アノードは、密封容器内に収納さ れるとともに電子増倍部力 放出された電子の到達する位置に配置され、到達した 該電子を出力信号として取り出すよう機能する。そして、上記複数のステムピンは、ス テムを貫通した状態で該ステムに支持され、それぞれ複数段のダイノード及びァノー ドに電気的に接続される。
[0007] 特に、この発明に係る光電子増倍管において、上記密封容器の一部を構成する中 空月同体部は、その一部力^テムの側面を包囲した形状を有するとともに、導電性材料 力もなる。また、上記ステムの一部を構成するとともにアノード側に位置する少なくとも 内側部分は、絶縁性材料からなる。さらに、ステムの内側部分におけるアノード側縁 部には、複数のステムピンのうちアノードに電気的に接続されたアノードピン力 最短 距離に位置する部分を含む所定領域に段差部が設けられている。
[0008] 上述のような構造を有する光電子増倍管によれば、導電性の中空胴体部に包囲さ れるステム側面のうち少なくともアノード側は絶縁性材料からなる内側部分である。こ のため、内側部分におけるアノード側縁部のうちアノードピン近傍の所定領域に段差 部が設けられることにより、絶縁性材料の表面における沿面距離が長くなる。この沿 面距離は、トリプルジャンクション (導電性アノードピンと、該アノードピンを直接支持 する絶縁性材料と、真空空間とが交わるポイント)力 導電性の中空胴体部までの絶 縁性材料表面に沿った最短距離を意味する。このように、ステムの内側部分に段差 部が設けられた当該光電子増倍管では、ステムのアノード側縁部に段差部が設けら れていない形状と比較して上記沿面距離は十分長くなる。その結果、アノードピンか ら取り出される電気信号に対するノイズ混入が十分に防止されるようになる。
[0009] なお、上記ステムは、絶縁性材料のみの単一構造、二重構造、及び三重以上の構 造のいずれも採用され得る。
[0010] 例えば、単一構造が採用されたステムは、複数のステムピンを貫通させた状態で直 接支持するとともに絶縁性材料カゝらなるベース部材を含んでもよい。この場合、ベー ス部材の一部が上記ステムの内側部分に相当し、この部分のアノード側縁部のうちァ ノードピンから最短距離に位置する部分を含む所定領域に、内側部分の段差部の少 なくとも一部を構成する構造が設けられる。
[0011] また、二重構造が採用されたステムは、複数のステムピンを貫通させた状態で直接 支持するとともに絶縁性材料力 なるベース部材と、該ベース部材に接合された第 1 押え部材とにより構成される。具体的に、第 1押え部材は、ベース部材のアノードに面 する内側面と該内側面と対向する外側面のいずれか一方に接合されるとともに、複 数のステムピンを通すための複数の貫通孔が設けられて 、る。ベース部材に対して 第 1押え部材がよりアノードに近い場合、該第 1押え部材は、絶縁材料で構成され、 該第 1押え部材のアノード側縁部のうちアノードピン力 最短距離に位置する部分を 含む所定領域に、内側部分の段差部の少なくとも一部を構成する構造が設けられる
。一方、第 1押え部材に対してベース部材がよりアノードに近い場合、バイベース部 材のアノード側縁部のうち、アノードピン力 最短距離に位置する部分を含む所定領 域に、内側部分の段差部の少なくとも一部を構成する構造が設けられる。
[0012] 三重以上の構造が採用されたステムは、複数のステムピンを貫通させた状態で直 接支持するとともに絶縁性材料力 なるベース部材と、該ベース部材の一方の面に 接合された第 1押え部材と、該ベース部材の他方の面に接合された第 2押え部材と により構成される。具体的に、第 1押え部材は、ベース部材のアノードに面する内側 面に接合されるとともに複数のステムピンを通すための複数の貫通孔が設けられてい る。一方、第 2押え部材は、ベース部材の該内側面と対向する外側面に接合されると ともに複数のステムピンを通すための複数の貫通孔が設けられている。そして、これら 部材のうちで最もアノードに近い第 1押え部材は、絶縁性材料で構成され、該第 1押 え部材のアノード側縁部のうちアノードピン力 最短距離に位置する部分を含む所定 領域に、内側部分の段差部の少なくとも一部を構成する構造が設けられる。
[0013] さらに、この発明に係る光電子増倍管は、上記段差部の他、アノードピンとステムと の接触点力 中空胴体部までの沿面距離長くするための構造を備えてもよい。すな わち、ステムは、アノードに面した内側面と該内側面に対向する外側面を有しており、 少なくとも内側面上に、複数のステムピンのうち少なくともアノードピンと該ステムとの 接触点が内側面よりも外側面側に位置するよう、該アノードピンを取り囲む凹部が設 けられてもよい。なお、この凹部と上記段差部は、何れか一方がステムの内側面上に 設けられた構造であってもよ 、。
[0014] ここで、上述のような構造を有する光電子増倍管 (この発明に係る光電子増倍管) は、種々の検査装置への適用が可能である。例えば、この発明に係る放射線検出装 置は、当該光電子増倍管と、そして、ステムとともに受光面板を挟むよう密封容器の 外部に配置され、到達した放射線を光に変換するシンチレータを備える。
[0015] なお、この発明に係る各実施例は、以下の詳細な説明及び添付図面によりさらに 十分に理解可能となる。これら実施例は単に例示のために示されるものであって、こ の発明を限定するものと考えるべきではない。
[0016] また、この発明のさらなる応用範囲は、以下の詳細な説明から明らかになる。しかし ながら、詳細な説明及び特定の事例はこの発明の好適な実施例を示すものではある 力 例示のためにのみ示されているものであって、この発明の思想及び範囲における 様々な変形および改良はこの詳細な説明から当業者には自明であることは明らかで ある。
発明の効果
[0017] この発明に係る光電子増倍管及びそれを含む放射線検出装置によれば、アノード ピンカゝら取り出される電気信号に対するノイズ混入を十分に防止され得る。 図面の簡単な説明
[図 1]は、この発明に係る光電子増倍管の第 1実施例を上方力 見たときの平面図で ある。
圆 2]は、図 1に示された第 1実施例に係る光電子増倍管の底面構成を示す平面図 である。
[図 3]は、図 1に示された第 1実施例に係る光電子増倍管の ΠΙ-ΠΙ線に沿った断面図 である。
圆 4]は、第 1実施例に係る光電子増倍管におけるステムの一部を構成するベース部 材を示す平面図である。
圆 5]は、第 1実施例に係る光電子増倍管におけるステムの一部を構成する上側押え 部材 (第 1押え部材)を示す平面図である。
圆 6]は、第 1実施例に係る光電子増倍管におけるステムの一部を構成する下側押え 部材 (第 2押え部材)を示す平面図である。
圆 7]は、第 1実施例に係る光電子増倍管におけるステムの製造例を説明するための 図(焼結前)である。
圆 8]は、第 1実施例に係る光電子増倍管におけるステムの製造例を説明するための 図(焼結後)である。
[図 9]は、図 3に示された第 1実施例に係る光電子増倍管におけるトリプルジャンクショ ン及び沿面距離を説明するための、アノードピン近傍の要部拡大図である。
圆 10]は、比較例に係る光電子増倍管におけるトリプルジャンクション及び沿面距離 を説明するための、アノードピン近傍の要部拡大図である。
[図 11]は、切欠部の第 1変形例を示す図である。
[図 12]は、切欠部の第 2変形例を示す図である。
[図 13]は、切欠部の第 3変形例を示す図である。
[図 14]は、切欠部の第 4変形例を示す図である。
[図 15]は、切欠部の第 5変形例を示す図である。
[図 16]は、切欠部の第 6変形例を示す図である。
[図 17]は、切欠部の第 7変形例を示す図である。 [図 18]は、切欠部の第 8変形例を示す図である。
[図 19]は、切欠部の第 9変形例を示す図である。
[図 20]は、切欠部の第 10変形例を示す図である。
[図 21]は、切欠部の第 11変形例を示す図である。
[図 22]は、切欠部の第 12変形例を示す図である。
[図 23]は、切欠部の第 13変形例を示す図である。
圆 24]は、第 1実施例に係る光電子増倍管の第 1変形例の構成を示す断面図である 圆 25]は、第 1実施例に係る光電子増倍管の第 2変形例の構成を示す断面図である
[図 26]は、この発明に係る放射線検出装置の一例を示す側面図である。
[図 27]は、図 26に示された放射線検出装置の要部断面図である。
[図 28]は、この発明に係る放射線検出装置の他の例を示す側面図である。
[図 29]は、図 28に示された放射線検出装置の要部断面図である。
[図 30]は、この発明に係る光電子増倍管の第 2実施例の構成を示す断面図である。
[図 31]は、第 2実施例に係る光電子増倍管におけるステムの一部を構成するベース 部材上面を示す平面図である。
[図 32]は、第 2実施例に係る光電子増倍管におけるステムの一部を構成するベース 部材底面を示す平面図である。
[図 33]は、第 2実施例に係る光電子増倍管におけるステムの製造例を説明するため の図(焼結前)である。
[図 34]は、第 2実施例に係る光電子増倍管におけるステムの製造例を説明するため の図(焼結後)である。
[図 35]は、第 2実施例にかかる光電子増倍管の第 1変形例の構成を示す断面図であ る。
[図 36]は、第 2実施例の第 1変形例に係る光電子増倍管におけるステムの一部を構 成するベース部材上面を示す平面図である。
[図 37]は、第 2実施例の第 1変形例に係る光電子増倍管におけるステムの一部を構 成するベース部材底面を示す平面図である。
[図 38]は、第 2実施例の第 1変形例に係る光電子増倍管におけるステムの製造例を 説明するための図(焼結前)である。
[図 39]は、第 2実施例の第 1変形例に係る光電子増倍管におけるステムの製造例を 説明するための図(焼結後)である。
[図 40]は、この発明に係る光電子増倍管の第 3実施例の構成を示す断面図である。
[図 41]は、第 3実施例に係る光電子増倍管におけるステム全体を構成するベース部 材上面を示す平面図である。
[図 42]は、第 3実施例に係る光電子増倍管におけるステム全体を構成するベース部 材底面を示す平面図である。
[図 43]は、第 3実施例に係る光電子増倍管におけるステムの製造例を説明するため の図(焼結前)である。
[図 44]は、第 3実施例に係る光電子増倍管におけるステムの製造例を説明するため の図(焼結後)である。
符号の説明
[0019] 1、 20、 26、 28、 31、 34…光電子増倍管、 2、 27···上部胴体部(中空胴体部の一 部)、 3···受光面板、 4···ホトカソード、 5、 29、 32、 35···ステム、 6···ステムピン、 7··· 下部胴体部(中空胴体部の一部)、 8…密封容器、 9…電子増倍部、 12···アノード( アノード)、 13···アノードピン (ステムピン)、 14、 30、 33、 36···ベース咅材、 15···上 側押え部材 (第 1押え部材)、 15c〜15p、 33c、 36d…切欠部、 16···下側押え部材( 第 2押え部材)、 18···位置決め用治具 (押え治具)、 21、 25···放射線検出装置、 22 …シンチレータ。
発明を実施するための最良の形態
[0020] 以下、この発明に係る光電子増倍管及びそれを含む放射線検出装置の書く実施 例を図 1〜図 44を用いて詳細に説明する。なお、以下の説明における「上」、「下」等 の語は図面に示す状態に基づく便宜的なものである。また、各図において同一又は 相当の部分には同一の符号を付し、重複する説明を省略する。
[0021] (第 1実施例) 図 1及び図 2は、この発明に係る光電子増倍管の第 1実施例における上面構造及 び底面構造をそれぞれ示す平面図であり、図 3は、図 1の ΠΙ-ΠΙ線に沿った第 1実施 例に係る光電子増倍管の構成を示す断面図である。図 1〜図 3において、光電子増 倍管 1は、外部力 の入射光によって電子を放出し、該放出された電子を増倍し、そ して、増倍された電子を信号として出力する装置である。
[0022] 図 1〜図 3に示されたように、光電子増倍管 1は、略円筒形に加工された金属製の 上部胴体部 2を有する。図 3に示されたように、この上部胴体部 2の上側(一方の端部 )の開口端にはガラス製の受光面板 3が気密固定され、受光面板 3の容器内側の表 面には受光面板 3を通過した入射光を電子に変換するためのホトカソード 4が形成さ れている。また、上部胴体部 2の下側 (他方の端部)の開口端には、図 2及び図 3に示 されたように、円板状のステム 5が配置されている。このステム 5には、略円状に周方 向に互いに離間した状態で配置された複数(15本)の導電性のステムピン 6が気密 に挿着されている。また、このステム 5は、その側面を包囲するように金属製の下部胴 体部 7が気密に固定されている。そして、図 3に示されたように、上部胴体部 2の下端 部に形成されたフランジ部 2aと下部胴体部 7の上端部に形成された同径のフランジ 部 7aとが溶接され、密封容器 8の一部を構成する中空胴体部が構成される。また、上 部胴体部 2と下部胴体部 7とが気密に固定されることで、内部が所定の真空度に減 圧された密封容器 8が得られる。
[0023] 以上のように構成された密封容器 8内には、ホトカソード 4から放出された光電子を 増倍するための電子増倍部 9が収容されている。この電子増倍部 9は、それぞれが 多数の電子増倍孔を有する複数段の薄板状ダイノード 10 (この実施例では 10段)が 積層され、ステム 5の上面に設置されている。各ダイノード 10の所定の縁部には、図 1及び図 3に示されたように、外側に突出するダイノード接続片 10cがそれぞれ形成 され、各ダイノード接続片 10cの下面側にはステム 5に揷着されたステムピン 6のうち 対応するピンの先端部分が溶接固定されている。これにより、ダイノード 10とステムピ ン 6がそれぞれ電気的に接続される。
[0024] さらに、図 3に示されたように、密封容器 8内において、電子増倍部 9とホトカソード 4 との間には、ホトカソード 4から放出された光電子を電子増倍部 9に導くための平板状 の収束電極 11が設置され、最終段のダイノード 10b (反転ダイノード)の一段上には 、電子増倍部 9により増倍された二次電子と最終段のダイノード 10bから反転放出さ れた二次電子を出力信号として取り出すための平板状アノード (アノード) 12が積層 されている。図 1に示されたように、収束電極 11の四隅には外側に突出する突出片 1 laがそれぞれ形成され、突出片 11aに所定のステムピン 6が溶接固定されることでス テムピン 6と収束電極 11とが電気的に接続されている。また、アノード 12の縁部にも 外側に突出するアノード接続片 12aが形成され、このアノード接続片 12aにステムピ ン 6の一つであるアノードピン 13が溶接固定されることでアノードピン 13とアノード 12 とが電気的に接続される。そして、所定の電源回路に接続されたステムピン 6によつ て電子増倍部 9及びアノード 12に電圧が印加されると、ホトカソード 4と収束電極 11と は同電位に設定され、ダイノード 10は積層順に上段から下段に行くに従って高電位 となるように設定される。また、アノード 12は最終段のダイノード 10bよりも高電位に設 定される。この実施例は、ステム 5の上面に対して、最終段のダイノード 10bが直接載 置された構成である力 例えばステム 5の上面に設置された支持部材によって最終 段のダイノード 10bが支持され、該最終段のダイノード 10bとステム 5の上面との間に 空間が介在する構成であってもよい。
[0025] 上述のように構成された光電子増倍管 1にお 、て、受光面板 3を介してホトカソード 4に入射光 (h V )が到達すると、この光入射に応答して光電子 (e_)が密封容器 8内 に放出される。放出された光電子は、収束電極 11によって電子増倍部 9の一段目の ダイノード 10aに収束される。そして、到達した光電子は電子増倍部 9内でカスケード 増倍されていき、最終段のダイノード 10bから 2次電子群が反転放出される。この 2次 電子群はアノード 12に導かれ、このアノード 12と接続されたアノードピン 13を介して 外部に出力される。
[0026] 続いて、上述のステム 5の構成について更に詳細に説明する。ここで、ステム 5にお いて、光電子増倍管 1の密封容器 8形成時に真空空間になる側を内側 (上側)と規定 する。
[0027] 図 3に示されたように、ステム 5は、ベース部材 14と、ベース部材 14の上側(内側) に接合された上側押え部材 (第 1押え部材) 15と、ベース部材 14の下側 (外側)に接 合された下側押え部材 (第 2押え部材) 16とで構成された 3層構造を有し、その側面 には上述の下部胴体部 7が固定されている。この第 1実施例では、ステム 5を構成す るベース部材 14の側面と下部胴体部 7の内壁面とが接合されることにより、下部胴体 部 7に対してステム 5が固定されている。ここで、下側押え部材 16の下側(外側)の面 は、下部胴体部 7の下端よりも下側に突出しているが、下部胴体部 7に対するステム 5 の固定位置は上述のような形態に限られるものではない。
[0028] ベース部材 14は、例えばコバールを主成分とし、融点が約 780度である絶縁性ガ ラス力もなる円板状部材である。また、このベース部材 14は、下面側力もの光が密封 容器 8内に透過しない程度の黒色である。さらに、図 4に示されたように、ベース部材 14には複数(15本)のステムピン 6の外径とほぼ同径の開口 14aがベース部材 14の 外周部に沿うように形成されている。
[0029] 上側押え部材 15は、コバールに例えばアルミナ系粉末が添加されることにより得ら れた、絶縁性ガラス (例えば融点が約 1100度とベース部材 14より高くなつている)か らなる円板状部材である。また、この上側押え部材 15は、密封容器 8内の発光を効 果的に吸収すべく黒色である。さらに、図 5に示されたように、上側押え部材 15には ベース部材 14と同様に配置された複数(15個)の開口 15aが形成されている。開口 1 5aはベース部材 14に形成された開口 14aよりも大きな開口径を有し、さらに、開口 1 5aのうちの少なくとも二以上の開口 15bはベース部材 14に対する位置決め用治具( 後述) 18の進入を可能にすべぐ他の開口 15aよりも更に大きい開口径を有する。上 側押え部材 15において、大径開口 15bは、アノードピン 13が揷通する開口 15aを除 き、上側押え部材 15の中心を基準にして 90度ごとに 3箇所配置されている。また、上 側押え部材 15は、アノードピン 13が挿通する開口 15a近傍の縁部に切欠部 15cが 設けられている。この切欠部が、ステム 5の段差部の一部を構成する。
[0030] 下側押え部材 16は、上側押え部材 15と同様に、コバールに例えばアルミナ系粉末 を添加することにより得られる絶縁性ガラス (融点が約 1100度とベース部材 14より高 くなつている)からなる円板状部材である。また、この下側押え部材 16は、添加するァ ルミナ系粉末の組成の違いにより白色を呈するとともに、ベース部材 14及び上側押 ぇ部材 15よりも高い物理的強度を有する。さらに、図 6に示されたように、下側押え部 材 16にも上側押え部材 15と同様の開口 16aが形成され、これら開口 16aのうちの少 なくとも二以上の開口 16bは位置決め用治具 18の進入を可能にするため大きな開 口径を有する。下側押え部材 16において、大径開口 16bは、下側押え部材 16の中 心を基準として 90度ごとに 4箇所配置されている。この 4箇所のうち 1つはアノードピ ン 13が揷通する開口 16aである。アノードピン 13が揷通する大径開口 16b以外の三 箇所の大径開口 16bは上側押え部材 15の大径開口 15bと同軸に配置されている。 さらに、下側押え部材 16の中央部分には円形状のベース部材浸出開口 16cが形成 されている。
[0031] 図 3に示されたように、これらベース部材 14、上側押え部材 15、及び下側押え部材 16は、開口 14a、 15a、 16a及び大径開口 15b, 16bの軸心位置を合わせた状態で 重ね合わされ、開口 14a、 15a、 16a、 15b、 16bにそれぞれステムピン 6を揷通させ た状態で、ベース部材 14に融着接合されている。より具体的には、ベース部材 14の 両面に上側押え部材 15及び下側押え部材 16が密着した状態で接合されるとともに 、ステムピン 6が上側押え部材 15及び下側押え部材 16の各開口 15a、 16a, 15b、 1 6bを揷通して 、る。このとき、ステム 5の上側(内側)の面及び下側(外側)の面の両 面における各ステムピン 6の貫通部の全周囲には、ベース部材 14を底面とする凹部 5aが形成され、各ステムピン 6はこの凹部 5aの底面においてベース部材 14に密着し ている。
[0032] 続いて、上述のように構成されたステム 5の製造例を、図 7及び図 8を用いて説明す る。なお、図 7において、領域 (a)には、焼結前のステムの状態を示す断面図が示さ れており、領域 (b)には、その要部拡大図が示されている。また、図 8において、領域 (a)には、焼結後のステムの状態を示す断面図が示されており、領域 (b)には、その 要部拡大図が示されている。
[0033] ステム 5の製造では、図 7中の領域 (a)及び (b)に示されたように、ベース部材 14、 上側押え部材 15、下側押え部材 16、及びステムピン 6が位置決めされた状態で、位 置決め用治具 18に挟み込まれる。
[0034] 位置決め用治具 18は、例えば 1100度以上の融点を有する耐熱性の高いカーボ ンカもなるブロック状部材である。この位置決め用治具 18の一面側には、ステムピン 6を挿入させた状態で支持する挿入孔 18aがステムピン 6の配置にそれぞれ対応す るよう形成されている。また、挿入孔 18aのうち上側押え部材 15の大径開口 15b及び 下側押え部材 16の大径開口 16bに対応する揷入孔 18aの開口縁部には、大径開口 15b、 16b内に進入し、ベース部材 14に対して上側押え部材 15及び下側押え部材 16を位置決めし、そして、ベース部材 14を通るステムピン 6と開口 15a、 16aとの同軸 度を確保するための略円筒状の突起部 18bが形成されている。
[0035] この位置決め用治具 18にステム 5がセットされる場合、まず、突起部 18bを上面に 向けた状態で位置決め用治具 18の一方(図示下側)が作業面に載置される。そして 、位置決め用治具 18の挿入孔 18aにそれぞれステムピン 6が差し込まれた状態で固 定される。次に、位置決め用治具 18に固定されたステムピン 6を開口 16aに通しつつ 、位置決め用治具 18の突起部 18bを大径開口 16bに進入させることで、位置決め用 治具 18の上に下側押え部材 16が載置される。さらに、下側押え部材 16の開口 16a 及び大径開口 16bに対して開口 14a、 15a及び大径開口 15bの軸心位置を大まか に合わせながら、開口 14a、 15a及び大径開口 15bにステムピン 6を通していくことで 、下側押え部材 16の上にベース部材 14及び上側押え部材 15が順に重ね合わされ る。その後、ベース部材 14に下部胴体部 7が嵌め込まれる。最後に、上側押え部材 1 5から突出しているステムピン 6を揷入孔 18aに差し込みながら、上側押え部材 15の 大径開口 15bに突起部 18bを進入させることで、上側押え部材 15の上にもう一方(図 示上側)の位置決め用治具 18が載置される。これによりステム 5のセットが完了する。 なお、セットされる下部胴体部 7とステムピン 6には、ベース部材 14との溶着性を高め るべく予め表面酸化処理が施されて ヽる。
[0036] 続いて、セットされたステム 5は位置決め用治具 18ごと電気炉に投入され、約 850 度〜 900度 (ベース部材 14の融点より高ぐ上側押え部材 15及び下側押え部材 16 の融点よりも低い温度)で焼結される。焼結中、ステム 5は位置決め用治具 18で挟む ように加圧されている。この焼結処理により、図 8中の領域 (a)及び (b)に示されたよう に、融点が約 780度であるベース部材 14のみが溶融し、ベース部材 14と各押え部 材 15、 16、ベース部材 14とステムピン 6、及び、ベース部材 14と下部胴体部 7とがそ れぞれ融着される。このとき、ベース部材 14は他の部材それぞれとの密着性を高め るため、ボリュームが多めに調整されている力 図 8中の領域 (b)に示されたように、 位置決め用治具 18の突起部 18bの端面によって大径開口 15b〜16b内でのベース 部材 14の高さ方向の位置決めが行われる。また、溶融したベース部材 14の余剰部 分は下側押え部材 16のベース部材浸出開口 16c内に逃がされる。焼結処理が終了 した後、ステム 5が電気炉力も取り出され、上下の位置決め用治具 18が取り外される ことによりステム 5の製造が完了する。
[0037] このようなステム 5の製造方法によれば、位置決め用治具 18の突起部 18bを上側 押え部材 15の大径開口 15b及び下側押え部材 16の大径開口 16bに進入させること で、ベース部材 14に対して上側押え部材 15及び下側押え部材 16が容易に位置決 めされるため、製造工程が簡素化されて製造コストの低減が図られる。また、位置決 め用治具 18により、各ステムピン 6と各開口 15a、 16aとの同軸度も確保される。そし て、このように得られたステム 5の内側(上側)の面に対して積層されたダイノード 10、 収束電極 11、及びアノード 12は、ダイノード接続片 10a、アノード接続片 12a、収束 電極 11に具備された突出片 11aのそれぞれと、これらに対応するステムピン 6とが溶 接される。さらに、受光面板 3が固定された上部胴体部 2を真空状態で下部胴体部 7 に対して溶接固定することで (密封容器の組み立て)、図 1〜図 3に示された所謂へッ ドオン型の光電子増倍管 1が得られる。
[0038] この第 1実施例に係る光電子増倍管 1によれば、ステム 5においてベース部材 14よ りも上側(内側)の部材である上側押え部材 15が絶縁性を有するとともに、アノードピ ン 13近傍の縁部に切欠部 15c (図 5参照)が設けられ、ステム 5の段差部が形成され る。係る構成の作用を、図 9及び図 10を用いて詳細に説明する。
[0039] 図 9はこの第 1実施例に係る光電子増倍管に置けるアノードピン 13近傍を示す要 部拡大断面図であり、図 10は比較例に係る光電子増倍管におけるアノードピン 13 近傍を示す要部拡大断面図である。比較例では、ステム 5におけるアノードピン 13を 含むステムピン 6の貫通部周りに凹部が形成されておらず、また、アノードピン 13近 傍にステムの段差部を構成しない上側押え部材 17が適用されている。説明の都合 上各部材は破線で示されて ヽる。
[0040] 図 9に示されたように、この第 1実施例では、アノードピン 13近傍に関し、トリプルジ ヤンクシヨン XI (導電性のアノードピン 13、アノードピン 13を含むステムピン 6を接合 した絶縁性のベース部材 14、真空空間が交わるポイント)から下部胴体部 7までの絶 縁体表面に沿った沿面距離 Y1が、図 10に示された比較例 (アノードピン 13近傍に ステムの段差部を構成しない上側押え部材 17が適用された構造)と比較して、上側 押え部材 15の切欠部 15cに沿う距離分だけ長尺化される。このように沿面距離 Y1が 長尺化されることで、アノードピン 13近傍での沿面放電を原因とする絶縁破壊や漏 電電流が十分に防止され、アノードピン 13から取り出される電気信号に対するノイズ の混入防止が図られる。
[0041] さらに、この第 1実施例では、ステム 5の上側(内側)の面におけるアノードピン 13を 含むステムピン 6の貫通部の全周囲に、ベース部材 14を底面とする凹部 5aが形成さ れている。そのため、アノードピン 13近傍の下部胴体部 7までの沿面距離 Y1は、図 1 0に示された比較例におけるトリプルジャンクション X2から上部胴体部 2までの絶縁 体表面に沿った沿面距離 Y2と比べて凹部 5aの高さ分だけさらに長尺化されている。 したがって、アノードピン 13近傍での沿面放電の発生が一層抑制され、アノードピン 13から取り出される電気信号に対するノイズの混入防止がより効果的に図られる。ま た、アノードピン 13を除く他のステムピン 6に関しても同様に凹部 5aの高さ分だけ沿 面距離が長尺化されるため、沿面放電の発生が抑制され、光電子増倍管 1の電圧耐 性が高められる。なお、これら凹部 5aの形成によりステムピン間での絶縁体表面に沿 つた沿面距離も同時に長尺化される。そのため、光電子増倍管 1の電圧耐性は一層 高くなる。
[0042] この第 1実施例において、ステムピン 6それぞれに対応して凹部 5aが形成されること により、トリプルジャンクション XIは、凹部 5aの底面とアノードピン 13を含むステムピ ン 6との接合縁部に位置することになる。この場合、トリプルジャンクション XIは、凹部 5a内に隠蔽された状態になる。このようにトリプルジャンクション XIが凹部 5a内に隠 蔽されることで、図 10に示された比較例におけるトリプルジャンクション X2のように上 側押え部材 17の上面に露出した状態になっている場合と比べて沿面放電の発生が 一層抑制され、光電子増倍管 1の電圧耐性がより高められる。
[0043] なお、上述の作用は以下に説明される当該第 1実施例以外の各実施例によっても 同様に得られる。
[0044] さらに、位置決め用治具 18によりステムピン 6と上側押え部材 15の各開口 15a及び 下側押え部材 16の開口 16aとの同軸度が確保されるため、ステムピン 6が開口 15a、 16aの内壁面に近接することが防止される。したがって、トリプルジャンクション XIが 凹部 5a内に確実に隠蔽されるので、光電子増倍管 1の電圧耐性が一層確保される。
[0045] 光電子増倍管 1において、ステム 5は、ベース部材 14と、ベース部材 14の上側(内 側)に接合された上側押え部材 15と、ベース部材 14の下側 (外側)に接合された下 側押え部材 16とで構成された 3層構造を有する。このような三層構造により、ステム 5 両面の位置精度、平坦度、水平度が高められる。力!]えて、光電子増倍管 1では、ステ ム 5の上面(内側の面)に対して設置される電子増倍部 9とホトカソード 4との間の位置 精度や電子増倍部 9の着座性も高められる。この着座性の向上により、光電変換効 率などのデバイス特性が良好に得られるとともに、光電子増倍管 1全長の寸法精度 や、光電子増倍管 1が表面実装される際の取付性が高められる。
[0046] 下側押え部材 16にはベース部材浸出開口 16c (図 6参照)が形成されているため、 溶融したベース部材 14の余剰部分はベース部材浸出開口 16c内に良好に逃がされ る。そのため、ベース部材 14の溶融の際、上側押え部材 15の開口 15a及び下側押 ぇ部材 16の開口 16aを通じてベース部材 14がステム 5の表面にはみ出すことは殆ど 無ぐステム 5両面の位置精度、平坦度、水平度が確保される。
[0047] 光電子増倍管 1では、上述のようにステム 5の両面におけるステムピン 6の貫通部の 全周囲にベース部材 14を底面とする凹部 5aが形成されている。この構成により、ス テムピン 6に対するベース部材 14の接合縁部は、ステム 5に形成された凹部 5aの底 面となり、ベース部材 14はステムピン 6を緩やかな角度(ほぼ直角)で接合する。また 、ステムピン 6が曲がった場合でも凹部 5aの開放側の周縁部にステムピン 6が当接し てそれ以上のステムピン 6の曲げが阻止される。この場合、ベース部材 14とステムピ ン 6との接合部分の両側におけるクラックの発生が防止され、密封容器 8の気密性及 び良好な外観が確保される。
[0048] なお、この発明は上述の実施例に限定されるものではない。例えば、上側押え部材 15に形成された切欠部は、アノードピン 13近傍を含め、上側押え部材 15の縁部の 全周にわたって形成されていてもよい。また、上側押え部材 15は、その上面側の縁 部の全周にわたって段差部を有する段付円板形状であってもよぐ種々の変形が適 用され得る。すなわち、図 5に示された切欠部 15cのように上側押え部材 15の端面( 上下面)に対して直角面となる切欠部(一部が切り取られた上側押え部材 15の部分) が形成された場合には、図 11に示されたように、平面視略 V字状の切欠部 15dであ つてもよく(第 1変形例)、図 12に示されたように、直線状の切欠部に加えてアノードピ ン 13近傍をさらに半円形状に上下方向に一部が切り取られた切欠部 15eであっても よい (第 2変形例)。図 13に示されたように、アノードピン 13近傍のみが半円形状に 上下方向に一部が切り取られた切欠部 15fであってもよい (第 3変形例)。また、図 14 に示されたように、直線状の切欠部に加えてアノードピン 13近傍をさらに矩形状に上 下方向に一部が切り取られた切欠部 15gであってもよく(第 4変形例)、図 15に示さ れたように、アノードピン 13近傍のみを矩形状に上下方向に一部が切り取られた切 欠部 15hであってもよい(第 5変形例)。図 16に示すように、 V字状の切欠部に加えて アノードピン 13近傍を直線状に上下方向に一部が切り取られた切欠部 15iであって もよい (第 6変形例)。
[0049] また、切欠部は必ずしも上側押え部材 15の端面に対して直角面である必要はなく 、図 17に示されたように、上側押え部材 15の端面に対して傾斜した切欠部 1¾であ つてもよく(第 7変形例)、図 18に示されたように、上部のみが傾斜している切欠部 15 kであってもよい (第 8変形例)。図 19に示されたように、下側が大きい階段状の切欠 部 151であってもよい(第 9変形例)。図 20に示されたように、下部のみが傾斜した切 欠部 15mであってもよく(第 10変形例)、図 21に示されたように、中間部分のみが傾 斜した切欠部 15ηであってもよい (第 11変形例)。さらに、これら切欠部 15m、 15ηの 変形例として、図 22及び図 23に示されたように、上側押え部材 15の下面側が下部 胴体部 7に接触した切欠部 15ο及び切欠部 15ρであつてもよい(第 12及び第 13変形 例)。図 11〜図 23に示されたいずれの変形例によっても、アノードピン 13近傍の沿 面距離を長尺化することができ、アノードピン 13から取り出される電気信号に対する ノイズの混入防止が図られる。
[0050] 例えば上側押え部材 15の上面に更に別の層を設けることによりステム 5全体を 4層 以上で構成されてもよい (この別の層の上面に電子増倍部 9が設置される)。この別 の層にベース部材 14に接合されたステムピン 6を挿通させる開口が設けられる場合、 この別の層は絶縁性材料力もなるとともに、少なくともこの別の層のアノードピン 13近 傍に上述の切欠部 (ステム 5の段差部の一部を構成する)が設けられる。また、このよ うに別の層にステムピン 6を揷通させる開口が設けられた場合、その開口のうちの少 なくとも二つの開口は、ベース部材 14に対する位置決め用治具 18の進入を可能と すべく他の開口より大きな開口径を有するのが好ましい。
[0051] また、上述の第 1実施例では、下側押え部材 16にのみベース部材浸出開口 16cが 設けられている力 ベース部材浸出開口は押え部材の少なくとも一方に設けられれ ばよい。具体的には、ベース部材浸出開口は、上側押え部材 15にのみ設けられても よいし、上側押え部材 15及び下側押え部材 16の双方に設けられてもよい。
[0052] この第 1実施例の変形例としては、例えば図 24 (図 1の ΠΙ-ΠΙ線に沿った断面図に 相当)に示されたように、ステム 5の中央部分に金属製の排気管 19が設けられた光電 子増倍管 20が採用されてもよい。この排気管 19は、光電子増倍管 20の組み立て終 了後に密封容器 8の内部を真空ポンプ等によって排気するために利用され得る。さら に別の変形例として、図 25 (図 1の ΠΙ-ΠΙ線に沿った断面図に相当)に示されたように 、その下端にフランジ部が設けられた下部胴体部 7に、上部胴体部 2よりも長尺の胴 体部 27 (上部胴体部)が嵌め合わされた構造であってもよい。この場合、胴体部 27と 下部胴体部 7それぞれのフランジ部が溶接固定された光電子増倍管 26となる。
[0053] 次に、図 1〜図 3に示された第 1実施例に係る光電子増倍管 1を含む放射線検出装 置 (この発明に係る放射線検出装置)の各実施例について説明する。図 26及び図 2 7に示された放射線検出装置 21では、光電子増倍管 1の受光面板 3の外側に放射 線を光に変換するシンチレータ 22が設置され、光電子増倍管 1が、処理回路 23を下 面側に備えた回路基板 24上に実装されている。また、図 28及び図 29に示された他 の例に係る放射線検出装置 25では、回路基板 24上に処理回路 23が設置され、こ の処理回路 23がステムピン 6で取り囲まれるように光電子増倍管 1が回路基板 24上 に実装されている。以上のような構成より、上述した作用効果を奏し、特に表面実装 する際に好適な放射線検出装置 21、 25が得られる。なお、図 26は、この発明に係る 放射線検出装置の一例を示す側面図であり、図 27は、図 26に示された放射線検出 装置の要部断面図である。また、図 28は、この発明に係る放射線検出装置の他の例 を示す側面図であり、図 29は、図 28に示された放射線検出装置の要部断面図であ る。
[0054] (第 2実施例)
第 2実施例に係る光電子増倍管 28は、図 30 (図 1の ΠΙ-ΠΙ線に沿った断面図に相 当)に示されたように、ステム 29が、ベース部材 14と同質の円板状のベース部材 30 と、ベース部材 30の上側(内側)に接合された上側押え部材 15とで構成された 2層 構造を有する点で、ステム 5がベース部材 14、上側押え部材 15及び下側押え部材 1 6によって構成された 3層構造を有する第 1実施例に係る光電子増倍管 1と異なる。
[0055] すなわち、光電子増倍管 28のステム 29には下側押え部材が設けられておらず、ベ 一ス部材 30には、図 31に示されたように、上半分がステムピン 6の外径とほぼ同径で あって、かつ、図 32に示されたように、下半分がステムピン 6の外径よりも大きな開口 径を有する複数( 15個)の開口 30aがベース部材 30の外周部に沿うように形成され ている。また、ベース部材 30の開口 30aのうち、アノードピン 13が通る開口 30aを含 む 4箇所の開口は、位置決め用治具 18の進入を可能とすべく下半分の外径が他の 開口 30aにおける下半分の外径よりも大きくなつて 、る大径開口 30bである。さらに、 ベース部材 30の下部中央部分には、ベース部材 30が溶融により浸出するベース部 材浸出部としての円形状のベース部材浸出凹部 30c (図 33参照)が形成されている
[0056] そして、図 30に示されたように、これらベース部材 30及び上側押え部材 15は、開 口 30a、 15a及び大径開口 30b、 15bの軸心位置が合わされた状態で重ね合わされ る。このとき、これら部材は、開口 30a、 15a及び大径開口 30b、 15bにそれぞれステ ムピン 6が挿通された状態で、ベース部材 30の溶融により接合される。より具体的に は、ベース部材 30の上面に上側押え部材 15が接合される。また、ステムピン 6はべ 一ス部材 30の開口 30aの下半分及び上側押え部材 15の開口 15aそれぞれを揷通 しており、この状態でステム 29の上側(内側)の面及び下側(外側)の面の両面にお けるステムピン 6の貫通部の全周囲にベース部材 30を底面とする凹部 29aが形成さ れる。ステムピン 6はこれら凹部 29aの底面にお!、てベース部材 30に接合されて!、る
[0057] このようなステム 29の製造においても、上述の第 1実施例におけるステム 5と同様の 方法が適用可能である。なお、図 33及び図 34は、ステム 29の製造例を説明するた めの図である。図 33において、領域 (a)には、焼結前のステムの状態を示す断面図 が示されており、領域 (b)には、その要部拡大図が示されている。また、図 34におい て、領域 (a)には、焼結後のステムの状態を示す断面図が示されており、領域 (b)に は、その要部拡大図が示されている。
[0058] 具体的には、まず、図 33中の領域 (a)及び領域 (b)に示されたように、突起部 18b が上面に向けられた状態で位置決め用治具 18の一方(図示下側)が作業面に載置 される。位置決め用治具 18の挿入孔 18aそれぞれには、ステムピン 6が差し込まれる 。次に、位置決め用治具 18に固定されたステムピン 6を開口 30aに通しつつ、位置 決め用治具 18の突起部 18bを大径開口 30bに進入させ、位置決め用治具 18の上 にベース部材 30が載置される。さらに、ベース部材 30の開口 30a及び大径開口 30b に対して開口 15a及び大径開口 15bの軸心位置を大まかに合わせながら、開口 15a 及び大径開口 15bにステムピン 6を通してベース部材 30の上に上側押え部材 15が 重ね合わされる。その後、ベース部材 30に下部胴体部 7が嵌め込まれる。最後に、 上側押え部材 15から突出しているステムピン 6を挿入孔 18aに差し込みながら、上側 押え部材 15の大径開口 15bに突起部 18bを進入させることにより、上側押え部材 15 の上にもう一方(図示上側)の位置決め用治具 18が載置される。これによりステム 29 のセットが完了する。なお、第 1実施例の場合と同様に、セットされる下部胴体部 7と ステムピン 6には、ベース部材 30との溶着性を高めるべく予め表面酸ィ匕処理が施さ れている。
[0059] 次に、セットされたステム 29が電気炉に投入され、第 1実施例の場合と同様の条件 下で焼結処理が行われる。この焼結処理により、図 34中の領域 (a)及び領域 (b)に 示されたように、ベース部材 30と上側押え部材 15、ベース部材 30とステムピン 6、及 びベース部材 30と下部胴体部 7が、ベース部材 30の溶融によって融着される。この とき、図 34中の領域 (b)に示されたように、位置決め用治具 18の突起部 18bの端面 によって大径開口 30b、 15b内でのベース部材 30の高さ方向の位置決めが行われ、 溶融したベース部材 14の余剰部分はベース部材浸出凹部 30c内に逃がされる。焼 結処理が終了した後ステム 29は電気炉力 取り出され、上下の位置決め用治具 18 が取り外されることによりステム 29の製造が完了する。
[0060] このようなステム 29の製造例によれば、第 1実施例と同様に、位置決め用治具 18に よりベース部材 30に対して上側押え部材 15が容易に位置決めされる。そのため、製 造工程が簡素化されて製造コストの低減が図られる。また、位置決め用治具 18により 、ステムピン 6と開口 15aとの同軸度も確保される。そして、このように得られたステム 2 9の内側(上側)の面に対して積層されたダイノード 10、収束電極 11、及びアノード 1 2は、ダイノード接続片 10a、アノード接続片 12a、収束電極 11に具備された突出片 11aのそれぞれとこれらに対応するステムピン 6とが溶接されることで、ステムピン 6に 固定される。さらに、受光面板 3が固定された上部胴体部 2が真空状態で下部胴体 部 7に溶接固定されることにより(密封容器の組み立て)、図 30に示されたヘッドオン 型の光電子増倍管 28が得られる。
[0061] このように構成された光電子増倍管 28においても、第 1実施例に係る光電子増倍 管 1と同様に、ステム 29においてベース部材 30よりも上側(内側)の部材である上側 押え部材 15が絶縁性を有する。また、アノードピン 13近傍の縁部には、ステム 29の 段差部の一部を構成する切欠部 15c (図 5参照)が設けられている。そのため、ァノー ドビン 13近傍での沿面距離が長尺化されて沿面放電を原因とする絶縁破壊や漏電 電流が十分に防止され、アノードピン 13から取り出される電気信号に対するノイズの 混入防止が図られる。なお、切欠部 15cは、この第 2実施例においても、上側押え部 材 15の縁部の全周にわたって形成されてもよぐ段付円板形状であってもよい。また 、図 11〜図 23に示された種々の変形も適用可能である。
[0062] この第 2実施例においても、上述の第 1実施例と同様に、ステム 29の上側(内側)の 面におけるアノードピン 13を含むステムピン 6の貫通部の全周囲に、ベース部材 30 を底面とする凹部 29aが形成されている。そのため、アノードピン 13近傍に関する沿 面距離がさらに長尺化され、アノードピン 13から取り出される電気信号に対するノィ ズの混入防止がより効果的に図られる。また、アノードピン 13を除く他のステムピン 6 に関しても同様に沿面距離が長尺化されるため、光電子増倍管 28の電圧耐性が高 められる。なお、凹部 29aの形成によりステムピン間での絶縁体表面に沿った沿面距 離も同時に長尺化される。加えて、トリプルジャンクションが凹部 29a内に隠蔽される ため、光電子増倍管 28の電圧耐性がより高められる。
[0063] なお、第 1実施例と同様に、位置決め用治具 18によりステムピン 6と上側押え部材 1 5の開口 15aとの同軸度が確保される。その結果、トリプルジャンクションが凹部 29a 内に確実に隠蔽でき、光電子増倍管 28の電圧耐性が一層確保される。
[0064] 光電子増倍管 28では、ステム 29が、ベース部材 29と、ベース部材 29の上側(内側 )に接合された上側押え部材 15とで構成された 2層構造を有する。そのため、ステム 29上面の位置精度、平坦度、水平度が高められる。また、光電子増倍管 28では、ス テム 29の上面(内側の面)に対して設置される電子増倍部 9とホトカソード 4との間の 位置精度や電子増倍部 9の着座性が高められる。この場合、光電変換効率などお特 性が良好に得られる。
[0065] さらに、ベース部材 30にはベース部材浸出凹部 30c (図 33参照)が形成されている 。そのため、溶融したベース部材 30の余剰部分をベース部材浸出凹部 30c内に良 好に逃がすことができる。この場合、ベース部材 30の溶融の際、上側押え部材 15の 開口 15a及びベース部材 30の開口 30aの下半分を通じてベース部材 30がステム 29 の表面にはみ出すことは殆ど無ぐステム 29両面の位置精度、平坦度、水平度が確 保される。
[0066] この第 2実施例に係る光電子増倍管 28においても、上述のステム 29の上側(内側) の面及び下側(外側)の面におけるステムピン 6の貫通部の全周囲には、ベース部材 30を底面とする凹部 29aが形成されている。そのため、ベース部材 30とステムピン 6 との接合部分の両側でクラック発生が防止され、密封容器 8の気密性及び良好な外 観が確保される。
[0067] なお、この第 2実施例の変形例として、図 24に示された光電子増倍管 20と同様に、 ステム 29の中央部分に金属製の排気管 19が設けられた構造が採用されてもよい。 また、図 25に示された光電子増倍管 26と同様に、その下端にフランジ部が設けられ た下部胴体部 7をステム 29に固定し、この下部胴体部 7に上部胴体部 2よりも長尺の 胴体部 27 (上部胴体部)を嵌め合わせてもよい。この場合、胴体部 27と下部胴体部 7のフランジ部それぞれが溶接固定される。
[0068] この第 2実施例では、ベース部材 30の下部にベース部材浸出部としてのベース部 材浸出凹部 30cを設けられている。し力しながら、このようなベース部材浸出部はべ 一ス部材 30及び上側押え部材 15の少なくとも一方に設けられればよい。例えば、上 側押え部材 15にのみに上述の第 1実施例と同様なベース部材浸出開口が設けられ てもよく、また、上側押え部材 15にベース部材浸出開口が設けられるとともにベース 部材 30にベース部材浸出凹部 30cが設けられてもよい。
[0069] 図 30 (図 1の ΠΙ-ΠΙ線に沿った断面図に相当)に示された光電子増倍管 28を含む 放射線検出装置は、図 26〜図 27及び図 28〜図 29に示された放射線検出装置 21 、 25と同様の構成で製造することで、上述の作用効果が得られ、特に表面実装する 際に好適な放射線検出装置が得られる。
[0070] この第 2実施例のさらに別の変形例として、押え部材がベース部材の下面 (外側の 面)に接合された 2層構造のステムが適用されてもよい。この別の変形例に係る光電 子増倍管 31では、図 35に示されたように、ステム 32が、ベース部材 14と同質の円板 状のベース部材 33と、ベース部材 33の下側(外側)に接合された下側押え部材 16 で構成された 2層構造を有する。
[0071] すなわち、光電子増倍管 31におけるのステム 32には、上側押え部材 15が設けら れておらず、ベース部材 33には、図 37に示されたように、下半分がステムピン 6の外 径とほぼ同径で、かつ、図 36に示されたように、上半分がステムピン 6の外径よりも大 きな開口径である複数(15個)の開口 33aが、ベース部材 33の外周部に沿うように形 成されている。また、ベース部材 33の開口 33aのうちアノードピン 13が通る開口 33a を除く 3箇所の開口は、位置決め用治具 18の進入を可能とすべく上半分の外径が他 の開口 33aにおける上半分の外径よりも大きな開口径を有する大径開口 33bである。 ベース部材 33では、アノードピン 13が通る開口 33a近傍の上面側の縁部に切欠部 3 3cが形成されている。
[0072] そして、図 35 (図 1の III- III線に沿った断面図に相当)に示されたように、これらのベ 一ス部材 33及び下側押え部材 16は、開口 33a、 16a及び大径開口 33b、 16bの軸 心位置を合わされた状態で重ね合わされる。その際、ベース部材 33及び下側押え 部材 16は、開口 33a、 16a及び大径開口 33b、 16bにそれぞれステムピン 6が揷通さ せた状態で、ベース部材 33の溶融によって融着接合されている。より具体的には、 ベース部材 33の下面に下側押え部材 16が密着した状態で接合される。また、ステム ピン 6がベース部材 33の開口 33aの上半分及び下側押え部材 16の開口 16aを揷通 した状態で、ステム 32の上側(内側)の面及び下側(外側)の面の両面におけるステ ムピン 6の貫通部の全周囲にはベース部材 33を底面とする凹部 32aが形成される。 ステムピン 6はこれら凹部 32aの底面においてベース部材 33に密着した状態で接合 される。
[0073] このようなステム 32の製造例においても、第 1実施例におけるステム 5と同様の方法 が適用可能である。なお、図 38及び図 39は、ステム 32の製造例を説明するための 図である。特に、図 38において、領域 (a)には、焼結前のステムの状態を示す断面 図が示されており、領域 (b)には、その要部拡大図が示されている。また、図 39にお いて、領域 (a)には、焼結後のステムの状態を示す断面図が示されており、領域 (b) には、その要部拡大図が示されている。
[0074] 具体的には、まず、図 38に示されたように、突起部 18bを上面に向けた状態で位 置決め用治具 18の一方 (図示下側)が作業面に載置される。その際、位置決め用治 具 18の挿入孔 18aには、それぞれステムピン 6が差し込まれる。次に、位置決め用治 具 18に固定されたステムピン 6を開口 16aに通しつつ、位置決め用治具 18の突起部 18bが大径開口 16bに進入することで、位置決め用治具 18の上に下側押え部材 16 が載置される。さらに、下側押え部材 16の開口 16a及び大径開口 16bに対して開口 33a及び大径開口 33bの軸心位置を大まかに合わせながら、開口 33a及び大径開 口 33bにステムピン 6が通される。そして、下側押え部材 16の上にベース部材 33が 重ね合わされた後、ベース部材 33に下部胴体部 7が嵌め込まれる。最後に、ベース 部材 33から突出しているステムピン 6を揷入孔 18aに差し込みながら、ベース部材 3 3の大径開口 33bに突起部 18bが進入させることで、ベース部材 33の上にもう一方( 図示上側)の位置決め用治具 18が載置する。これによりステム 32のセットが完了する 。なお、第 1実施例の場合と同様に、セットされる下部胴体部 7とステムピン 6には、ベ 一ス部材 33との溶着性を高めるべく予め表面酸ィ匕処理が施されている。
[0075] 次に、セットされたステム 29が電気炉に投入され、上述の第 1実施例と同様の条件 下で焼結処理が行われる。この焼結処理により、図 39中の領域 (a)及び領域 (b)に 示されたように、ベース部材 33と下側押え部材 16、ベース部材 33とステムピン 6、及 びベース部材 33と下部胴体部 7とが、それぞれベース部材 33の溶融によって融着さ れる。このとき、図 39中の領域 (b)に示されたように、位置決め用治具 18の突起部 1 8bの端面によって大径開口 33b、 16b内でのベース部材 33の高さ方向の位置決め が行われる。溶融したベース部材 33の余剰部分はベース部材浸出開口 16c内に逃 力 れる。焼結処理が終了した後にステム 32は電気炉力も取り出され、上下の位置 決め用治具 18が取り外されることによりステム 32の製造が完了する。
[0076] このようなステム 32の製造方法によれば、第 1実施例と同様に、位置決め用治具 18 によりベース部材 33に対して下側押え部材 16が容易に位置決めされる。そのため、 製造工程が簡素化されて製造コストの低減が図られる。また、位置決め用治具 18に より、ステムピン 6と開口 16aとの同軸度も確保される。そして、このように得られたステ ム 32の内側(上側)の面に対して積層されたダイノード 10、収束電極 11、及びァノー ド 12を、ダイノード接続片 10a、アノード接続片 12a、収束電極 11に具備された突出 片 11aのそれぞれと、これらに対応するステムピン 6とが溶接固定される。さらに、受 光面板 3が固定された上部胴体部 2が真空状態で下部胴体部 7に対して溶接固定さ れることで (密封容器の組み立て)、図 35に示されたヘッドオン型の光電子増倍管 31 が得られる。
[0077] このような構造を有する光電子増倍管 31においても、ステム 32の一部を構成する ベース部材 33自体は絶縁性を有するとともに、アノードピン 13近傍の上面側の縁部 には第 1実施例に係る光電子増倍管 1と同様の切欠部 33c (図 36参照)が形成され る。その結果、アノードピン 13近傍での沿面距離が長尺化されて沿面放電を原因と する絶縁破壊や漏電電流が十分に防止され、アノードピン 13から取り出される電気 信号に対するノイズの混入防止が図られる。なお、切欠部 33cは、ベース部材 33の 上面側における縁部の全周にわたって形成されてもよぐまた、図 11〜図 23に示さ れた種々の変形が適用されてもょ ヽ。 [0078] ステム 32の上側(内側)の面におけるアノードピン 13を含むステムピン 6の貫通部の 全周囲にはベース部材 33を底面とする凹部 32aが形成されている。そのため、ァノ 一ドビン 13近傍に関する沿面距離がさらに長尺化され、アノードピン 13から取り出さ れる電気信号に対するノイズの混入防止がより効果的に図られる。なお、凹部 32aの 形成によりステムピン間での絶縁体表面に沿った沿面距離も同時に長尺化され、さら には、トリプルジャンクションが凹部 32a内に隠蔽されるため、光電子増倍管 28の電 圧耐性がより高められている。
[0079] なお、第 1実施例と同様に、位置決め用治具 18によりステムピン 6と下側押え部材 1 6の開口 16aとの同軸度が確保されるため、トリプルジャンクションを凹部 32aに確実 に隠蔽でき、光電子増倍管 31の電圧耐性が一層確保される。
[0080] この第 2実施例に係る光電子増倍管 31では、ステム 32が、ベース部材 33と、ベー ス部材 33の下側 (外側)に接合された下側押え部材 16とで構成された 2層構造を有 する。その結果、ステム 32下面の位置精度、平坦度、水平度が高められる。また、光 電子増倍管 31では、光電子増倍管 31全長の寸法精度、光電子増倍管 31を表面実 装する際の取付性が高められる。
[0081] 下側押え部材 16にはベース部材浸出開口 16c (図 6参照)が形成されている。この 場合、第 1実施例の場合と同様に、ベース部材 33の溶融の際に、下側押え部材 16 の開口 16a及びベース部材 33の開口 33aの上半分を通じてベース部材 33がステム 32の表面にはみ出すことは殆ど無ぐステム 32両面の位置精度、平坦度、水平度が 確保されている。
[0082] 光電子増倍管 31にお 、ても、上述のようなステム 32の上側(内側)の面及び下側( 外側)の面において、ステムピン 6の貫通部の全周囲がベース部材 33を底面とする 凹部 32aが形成されている。したがって、ベース部材 33とステムピン 6との接合部分 の両側でクラック発生が防止され、密封容器 8の気密性及び良好な外観が確保され る。
[0083] なお、光電子増倍管 31についても、図 24に示された光電子増倍管 20と同様に、ス テム 32の中央部分に金属製の排気管 19が設けられた構造が採用されてもよい。ま た、図 25に示された光電子増倍管 26と同様に、その下端にフランジ部が設けられた 下部胴体部 7をステム 32に固定し、この下部胴体部 7に上部胴体部 2よりも長尺の胴 体部 27 (上部胴体部)が嵌め合わされる構造が採用されてもよい。この場合、胴体部 27と下部胴体部 7のフランジ部それぞれが溶接固定される。
[0084] この第 2実施例では、下側押え部材 16にのみベース部材浸出部としてのベース部 材浸出開口 16cが設けられている。しかしながら、このようなベース部材浸出部はべ 一ス部材 33及び下側押え部材 16の少なくとも一方に設けられればよい。例えば、ベ 一ス部材 33にのみ前述のベース部材浸出凹部が設けられてもよぐまた、下側押え 部材 16にベース部材浸出開口 16cが設けられる一方、ベース部材 33にベース部材 浸出凹部が設けられてもよい。
[0085] この光電子増倍管 31を含む放射線検出装置は、図 26〜図 27及び図 28〜図 29 に示された放射線検出装置 21、 25と同様の構成で製造され得る。この場合、上述の 作用効果が得られ、特に表面実装する際に好適な放射線検出装置が得られる。
[0086] (第 3実施例)
第 3実施例に係る光電子増倍管 34では、図 40 (図 1の ΠΙ-ΠΙ線に沿った断面図に 相当)に示されたように、ステム 35が、ベース部材 14と同質の円板状のベース部材 3 6により構成された単層構造を有する点で、ステム 5がベース部材 14、上側押え部材 15及び下側押え部材 16により構成された 3層構造を有する第 1実施例に係る光電 子増倍管 1と異なる。
[0087] すなわち、光電子増倍管 34のステム 35には上側押え部材 15及び下側押え部材 1 6が設けられておらず、ベース部材 36には、図 40〜図 42に示されたように、中間部 分がステムピン 6の外径とほぼ同径で、かつ上部及び下部がステムピン 6の外径より も大きな開口径を有する複数(15個)の開口 36aがベース部材 36の外周部に沿うよ うに複数(15個)形成されている。また、この開口 36aのうちアノードピン 13が通る開 口 36aを除く所定の 3箇所の上部及び下部と、アノードピン 13が通る開口 36aの下部 には、位置決め用治具と同様の構成の押え治具 18の進入を可能とすべく上部及び 下部の外径が他の開口 36aの上部及び下部の外径よりも大きな大径開口 36bが設 けられている。さらに、ベース部材 36の下部中央部分には、ベース部材 36が溶融に より浸出するベース部材浸出部としての円形状のベース部材浸出凹部 36c (図 43参 照)が形成されている。また、アノードピン 13が通る開口 36a近傍の上面側の縁部が 切欠部 36dとされている。
[0088] そして、図 40に示されたように、ベース部材 36は、開口 36aにそれぞれステムピン 6 を通した状態で、ベース部材 36の溶融によってステムピン 6と融着接合される。より具 体的には、ステムピン 6がベース部材 36の開口 36aの上部及び下部を揷通しており 、ステム 35の上側(内側)の面及び下側(外側)の面の両面におけるステムピン 6の貫 通部の全周囲にベース部材 36を底面とする凹部 35aが形成される。これにより、ステ ムピン 6はこの凹部 35aの底面においてベース部材 36に密着した状態で接合される
[0089] このようなステム 35の製造例においても、第 1実施例におけるステム 5と同様の方法 が適用可能である。なお、図 43及び図 44は、ステム 35の製造例を説明するための 図である。特に、図 43において、領域 (a)には、焼結前のステムの状態を示す断面 図が示されており、領域 (b)には、その要部拡大図が示されている。また、図 44にお いて、領域 (a)には、焼結後のステムの状態を示す断面図が示されており、領域 (b) には、その要部拡大図が示されている。
[0090] 具体的には、まず、図 43に示されたように、突起部 18bを上面に向けた状態で上 記位置決め用治具と同様の構成の押え治具 18の一方 (図示下側)が作業面に載置 される。その際、押え治具 18の挿入孔 18aには、それぞれステムピン 6が差し込まれ る。次に、押え治具 18に固定されたステムピン 6を開口 36aに通しつつ、押え治具 18 の突起部 18bがベース部材 36の下面側の大径開口 36bを進入する。押え治具 18の 上にベース部材 36が載置された後、ベース部材 36に下部胴体部 7が嵌め込まれる 。最後に、ベース部材 36から突出しているステムピン 6を揷入孔 18aに差し込みなが ら、ベース部材 36の上面側の大径開口 36bに突起部 18bを進入させることで、ベー ス部材 36の上にもう一方(図示上側)の押え治具 18が載置される。これによりステム 3 5のセットが完了する。なお、第 1実施例の場合と同様に、セットされる下部胴体部 7と ステムピン 6には、ベース部材 36との溶着性を高めるべく予め表面酸ィ匕処理が施さ れている。
[0091] 次に、セットされたステム 35が電気炉に投入され、第 1実施例と同様の条件下で焼 結処理が行われる。この焼結処理により、図 44中の領域 (a)及び領域 (b)に示され たように、ベース部材 36とステムピン 6、及びベース部材 36と下部胴体部 7とが、それ ぞれベース部材 36の溶融によって融着される。このとき、図 44中の領域 (b)に示され たように、押え治具 18の突起部 18bの端面によって大径開口 36b内でのベース部材 36の高さ方向の位置決めが行われる。そして、溶融したベース部材 36の余剰部分 はベース部材浸出凹部 36c内に逃がされる。焼結処理が終了した後ステム 35は電 気炉から取り出され、上下の押え治具 18が取り外されることにより、ステム 35の製造 が完了する。
[0092] このようなステム 35の製造方法によれば、前述の実施例と同様に、製造工程が簡 素化されて製造コストの低減が図られる。そして、このように得られたステム 35の内側 (上側)の面に対して積層されたダイノード 10、収束電極 11、及びアノード 12は、ダ ィノード接続片 10a、アノード接続片 12a、収束電極 11に具備された突出片 11aのそ れぞれとこれらに対応するステムピン 6とを溶接することで固定される。さらに、下部胴 体部 7に対して電子増倍部 9、収束電極 11、及びアノード 12が溶接固定された後、 受光面板 3が固定された上部胴体部 7を真空状態で下部胴体部 7に溶接固定するこ とで (密封容器の組み立て)、図 40に示されたヘッドオン型の光電子増倍管 34が得 られる。
[0093] このような構造を有する光電子増倍管 34においても、ステム 35の一部を構成する ベース部材 36自体が絶縁性を有している。また、アノードピン 13近傍の上面側の縁 部には、第 1実施例に係る光電子増倍管 1と同様の切欠部 36d (図 41参照)が形成 されている。そのため、アノードピン 13近傍での沿面距離が長尺化されて沿面放電 を原因とする絶縁破壊や漏電電流が十分に防止され、アノードピン 13から取り出さ れる電気信号に対するノイズの混入防止が図られる。なお、切欠部 36dは、ベース部 材 36の上面側における縁部の全周にわたって形成してもよい。また、図 11〜図 23 に示された種々の変形が適用可能である。
[0094] ステム 35の上側(内側)の面におけるアノードピン 13を含むステムピン 6の貫通部の 全周囲には、ベース部材 36を底面とする凹部 35aが形成されている。そのため、ァノ 一ドビン 13近傍に関する沿面距離がさらに長尺化され、アノードピン 13から取り出さ れる電気信号に対するノイズの混入防止がより効果的に図られる。なお、凹部 35aの 形成によりステムピン間での絶縁体表面に沿った沿面距離も同時に長尺化され、さら には、トリプルジャンクションが凹部 35a内に隠蔽される。その結果、光電子増倍管 2 8の電圧耐性がより高められる。
[0095] さらに、ベース部材 36にはベース部材浸出凹部 36c (図 43参照)が形成されている 。この場合、溶融したベース部材 36の余剰部分をベース部材浸出凹部 36c内に良 好に逃がすことができる。このため、ベース部材 36の溶融の際、余剰部分は、開口 3 6aの上部及び下部を通してベース部材 36がステム 35の表面にはみ出すことは殆ど 無ぐステム 35両面の位置精度、平坦度、水平度が確保されている。
[0096] この第 3実施例に係る光電子増倍管 34においても、ステム 35の上側(内側)の面及 び下側(外側)の面におけるステムピン 6の貫通部の全周囲に、ベース部材 36を底面 とする凹部 35aが形成されている。そのため、ベース部材 36とステムピン 6との接合 部分の両側でクラック発生が防止され、密封容器 8の気密性及び良好な外観が確保 される。
[0097] なお、光電子増倍管 34についても、図 24に示された光電子増倍管 20と同様に、ス テム 35の中央部分に金属製の排気管 19が設けられた構造が採用されてもよい。ま た、図 25に示された光電子増倍管 26と同様に、その下端にフランジ部が設けられた 下部胴体部 7をステム 35に固定し、この下部胴体部 7に上部胴体部 2よりも長尺の胴 体部 27 (上部胴体部)が嵌め合わされてもよい。その際、胴体部 27と下部胴体部 7の フランジ部それぞれが溶接固定される。
[0098] この第 3実施例では、ベース部材 36の下部にベース部材浸出部としてのベース部 材浸出凹部 36cが設けられている。しかしながら、このようなベース部材浸出部はべ 一ス部材 36の上部に設けられて 、てもよ 、。
[0099] また、この光電子増倍管 34を含む放射線検出装置は、図 26〜図 27及び図 28〜 図 29に示された放射線検出装置 21、 25と同様の構造を有するよう製造され得る。こ の構成により、上述の第 1実施例と同様の作用効果を奏し、特に表面実装する際に 好適な放射線検出装置が得られる。
[0100] 以上の本発明の説明から、本発明を様々に変形しうることは明らかである。そのよう な変形は、本発明の思想および範囲力 逸脱するものとは認めることはできず、すべ ての当業者にとって自明である改良は、以下の請求の範囲に含まれるものである。 産業上の利用可能性
以上のようにこの発明に係る光電子増倍管は、放射線検出装置を初め、医療、環 境等の種々の分野における検出装置や携帯型計測器へ適用され得る。

Claims

請求の範囲
[1] 中空胴体部と、該中空胴体部の一方の端部に設けられた受光面板と、該中空胴体 部の他方の端部に設けられたステムとにより構成され、内部が所定の真空度まで減 圧された密封容器と、
前記密封容器内に配置され、前記受光面板を通過した入射光を電子に変換する ホトカソードと、
前記ホトカソードと前記ステムとの間に位置するよう前記密封容器内に配置され、前 記ホトカソードから放出された電子をそれぞれ増倍する複数段のダイノードにより構 成された電子増倍部と、
前記密封容器内に収納されるとともに前記電子増倍部から放出された電子が到達 する位置に配置され、到達した該電子を出力信号として取り出すためのアノードと、 そして、
前記ステムを貫通した状態で該ステムに支持され、それぞれ前記複数段のダイノー ド及びアノードに電気的に接続された複数のステムピンとを備えた光電子増倍管で あって、
前記密封容器の一部を構成する中空胴体部は、その一部が前記ステムの側面を 包囲した形状を有するとともに、導電性材料からなり、
前記ステムの一部を構成するとともに前記アノード側に位置する少なくとも内側部 分が絶縁性材料力 なり、そして、
前記ステムの前記内側部分におけるアノード側縁部のうち、前記複数のステムピン のうち前記アノードに電気的に接続されたアノードピンから最短距離に位置する部分 を含む所定領域には段差部が設けられ、これにより、前記ステム側面のうち該段差部 に相当する領域と前記中空胴体部とが真空空間を介して所定距離だけ離間した構 造を有する光電子増倍管。
[2] 請求項 1記載の光電子増倍管において、
前記ステムは、前記複数のステムピンを貫通させた状態で直接支持するとともに、 絶縁性材料力 なるベース部材を含み、
前記ベース部材の一部であって前記内側部分に相当する部分におけるアノード側 縁部のうち前記アノードピン力 最短距離に位置する部分を含む所定領域に、前記 段差部が設けられている。
[3] 請求項 1記載の光電子増倍管において、
前記ステムは、前記複数のステムピンを貫通させた状態で直接支持するとともに絶 縁性材料からなるベース部材と、そして、
前記ベース部材の前記アノードに面する内側面に接合されるとともに前記複数のス テムピンを通すための複数の貫通孔が設けられた、絶縁性材料力 なる第 1押え部 材を備え、
前記第 1押え部材のアノード側縁部のうち前記アノードピン力 最短距離に位置す る部分を含む所定領域に、前記内側部分の段差部の少なくとも一部を構成する構造 が設けられている。
[4] 請求項 1記載の光電子増倍管において、
前記ステムは、前記複数のステムピンを貫通させた状態で直接支持するとともに絶 縁性材料からなるベース部材と、そして、
前記ベース部材の前記アノードに面する前記内側面と対向する外側面に接合され るとともに前記複数のステムピンを通すための複数の貫通孔が設けられた第 1押え部 材を備え、
前記ベース部材におけるアノード側縁部のうち前記アノードピン力 最短距離に位 置する部分を含む所定領域に、前記内側部分の段差部の少なくとも一部を構成する 構造が設けられている。
[5] 請求項 1記載の光電子増倍管において、
前記ステムは、前記複数のステムピンを貫通させた状態で直接支持するとともに絶 縁性材料力 なるベース部材と、
前記ベース部材の前記アノードに面する内側面に接合されるとともに前記複数のス テムピンを通すための複数の貫通孔が設けられた、絶縁材料力 なる第 1押え部材と 、そして、
前記ベース部材の該内側面と対向する外側面に接合されるとともに前記複数のス テムピンを通すための複数の貫通孔が設けられた第 2押え部材を備え、 前記第 1押え部材におけるアノード側縁部のうち前記アノードピンから最短距離に 位置する部分を含む所定領域に、前記内側部分の段差部の少なくとも一部を構成 する構造が設けられている。
[6] 請求項 1記載の光電子増倍管において、
前記ステムは、前記アノードに面した内側面と該内側面に対向する外側面を有する とともに、前記ステムの少なくとも内側面上には、前記複数のステムピンのうち少なくと も前記アノードに電気的に接続されたアノードピンと該ステムとの接触点が内側面より も外側面側に位置するよう、該アノードピンを取り囲む凹部が設けられている。
[7] 請求項 1〜5のいずれか一項記載の光電子増倍管と、そして、
前記ステムとともに前記受光面板を挟むよう前記密封容器の外部に配置され、到達 した放射線を光に変換するシンチレータを備えた放射線検出装置。
[8] 中空胴体部と、該中空胴体部の一方の端部に設けられた受光面板と、該中空胴体 部の他方の端部に設けられたステムとにより構成され、内部が所定の真空度まで減 圧された密封容器と、
前記密封容器内に配置され、前記受光面板を通過した入射光を電子に変換する ホトカソードと、
前記ホトカソードと前記ステムとの間に位置するよう前記密封容器内に配置され、前 記ホトカソードから放出された電子をそれぞれ増倍する複数段のダイノードにより構 成された電子増倍部と、
前記密封容器内に収納されるとともに前記電子増倍部から放出された電子が到達 する位置に配置され、到達した該電子を出力信号として取り出すためのアノードと、 そして、
前記ステムを貫通した状態で該ステムに支持され、それぞれ前記複数段のダイノー ド及びアノードに電気的に接続された複数のステムピンとを備えた光電子増倍管で あって、
前記密封容器の一部を構成する中空胴体部は、その一部が前記ステムの側面を 包囲した形状を有するとともに、導電性材料からなり、
前記ステムの一部を構成するとともに前記アノード側に位置する少なくとも内側部 分が絶縁性材料力 なり、そして、
少なくとも前記内側部分の前記アノードに面した内側面上には、前記複数のステム ピンのうち少なくとも前記アノードに電気的に接続されたアノードピンと該内側部分と の接触点が内側面よりも当該光電子増倍管の外部側に位置するよう、該アノードピン を取り囲む凹部が設けられて 、る。
[9] 請求項 8記載の光電子増倍管において、
前記ステムの前記内側部分におけるアノード側縁部のうち前記複数のステムピンの うち前記アノードに電気的に接続されたアノードピン力 最短距離に位置する部分を 含む所定領域には段差部が設けられ、これにより、前記ステム側面のうち該段差部 に相当する領域と前記中空胴体部とが真空空間を介して所定距離だけ離間した構 造を有する光電子増倍管。
[10] 請求項 8〜9の 、ずれか一項記載の光電子増倍管と、そして、
前記ステムとともに前記受光面板を挟むよう前記密封容器の外部に配置され、到達 した放射線を光に変換するシンチレータを備えた放射線検出装置。
PCT/JP2005/019716 2004-10-29 2005-10-26 光電子増倍管及びそれを含む放射線検出装置 WO2006046616A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004316479A JP4926392B2 (ja) 2004-10-29 2004-10-29 光電子増倍管及び放射線検出装置
JP2004-316479 2004-10-29

Publications (1)

Publication Number Publication Date
WO2006046616A1 true WO2006046616A1 (ja) 2006-05-04

Family

ID=36227858

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/019716 WO2006046616A1 (ja) 2004-10-29 2005-10-26 光電子増倍管及びそれを含む放射線検出装置

Country Status (2)

Country Link
JP (1) JP4926392B2 (ja)
WO (1) WO2006046616A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107706071A (zh) * 2017-08-25 2018-02-16 北方夜视技术股份有限公司 用于调节光电倍增管阴极制备过程真空度的方法、装置及光电倍增管与光电阴极的制作方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11328914B1 (en) * 2020-11-10 2022-05-10 Baker Hughes Oilfield Operations Llc Discharge reduction in sealed components

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6276241A (ja) * 1985-09-30 1987-04-08 Toshiba Corp マグネトロンのステム
JPS6298537A (ja) * 1985-10-25 1987-05-08 Toshiba Corp 電子レンジ用マグネトロン
JPH05290793A (ja) * 1992-04-09 1993-11-05 Hamamatsu Photonics Kk 光電子増倍管
JPH05325880A (ja) * 1992-05-22 1993-12-10 Hamamatsu Photonics Kk 電子管
JPH07335174A (ja) * 1994-06-06 1995-12-22 Hamamatsu Photonics Kk 電子増倍管
JPH10106482A (ja) * 1996-09-26 1998-04-24 Hamamatsu Photonics Kk 光電子増倍管
JPH10241622A (ja) * 1997-02-21 1998-09-11 Hamamatsu Photonics Kk 電子管
JP2000019255A (ja) * 1998-06-29 2000-01-21 Hamamatsu Photonics Kk 放射線検出器
JP2002203508A (ja) * 2000-12-27 2002-07-19 Kyocera Corp 光電子増倍管用パッケージ

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3312771B2 (ja) * 1993-04-30 2002-08-12 浜松ホトニクス株式会社 電子増倍管

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6276241A (ja) * 1985-09-30 1987-04-08 Toshiba Corp マグネトロンのステム
JPS6298537A (ja) * 1985-10-25 1987-05-08 Toshiba Corp 電子レンジ用マグネトロン
JPH05290793A (ja) * 1992-04-09 1993-11-05 Hamamatsu Photonics Kk 光電子増倍管
JPH05325880A (ja) * 1992-05-22 1993-12-10 Hamamatsu Photonics Kk 電子管
JPH07335174A (ja) * 1994-06-06 1995-12-22 Hamamatsu Photonics Kk 電子増倍管
JPH10106482A (ja) * 1996-09-26 1998-04-24 Hamamatsu Photonics Kk 光電子増倍管
JPH10241622A (ja) * 1997-02-21 1998-09-11 Hamamatsu Photonics Kk 電子管
JP2000019255A (ja) * 1998-06-29 2000-01-21 Hamamatsu Photonics Kk 放射線検出器
JP2002203508A (ja) * 2000-12-27 2002-07-19 Kyocera Corp 光電子増倍管用パッケージ

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107706071A (zh) * 2017-08-25 2018-02-16 北方夜视技术股份有限公司 用于调节光电倍增管阴极制备过程真空度的方法、装置及光电倍增管与光电阴极的制作方法
CN107706071B (zh) * 2017-08-25 2019-03-05 北方夜视技术股份有限公司 用于调节光电倍增管真空度的方法、装置以及制作方法

Also Published As

Publication number Publication date
JP2006127982A (ja) 2006-05-18
JP4926392B2 (ja) 2012-05-09

Similar Documents

Publication Publication Date Title
EP1810313B1 (en) Photomultiplier and radiation detector
JP4804172B2 (ja) 光電子増倍管、放射線検出装置および光電子増倍管の製造方法
JP4849521B2 (ja) 光電子増倍管および放射線検出装置
JP4711420B2 (ja) 光電子増倍管および放射線検出装置
JP4804173B2 (ja) 光電子増倍管および放射線検出装置
US7238928B2 (en) Photomultiplier with particular stem/pin structure
WO2006046616A1 (ja) 光電子増倍管及びそれを含む放射線検出装置
WO2006046617A1 (ja) 光電子増倍管及びそれを含む放射線検出装置
US7189956B2 (en) Photomultiplier and radiation detector
JP4754805B2 (ja) 光電子増倍管及び放射線検出装置
WO2006046619A1 (ja) 光検出器
WO2007111103A1 (ja) 光電子増倍管および放射線検出装置
WO2006046618A1 (ja) 光電子増倍管及びそれを含む放射線検出装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GM HR HU ID IL IN IS KE KG KM KP KZ LC LK LR LS LT LU LV LY MA MG MK MN MW MX MZ NA NG NI NZ OM PG PH PL PT RO RU SC SD SE SK SL SM SY TJ TM TN TR TT TZ UA US UZ VC VN YU ZA ZM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SZ TZ UG ZM ZW AM AZ BY KG MD RU TJ TM AT BE BG CH CY DE DK EE ES FI FR GB GR HU IE IS IT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05805294

Country of ref document: EP

Kind code of ref document: A1