WO2006046618A1 - 光電子増倍管及びそれを含む放射線検出装置 - Google Patents

光電子増倍管及びそれを含む放射線検出装置 Download PDF

Info

Publication number
WO2006046618A1
WO2006046618A1 PCT/JP2005/019724 JP2005019724W WO2006046618A1 WO 2006046618 A1 WO2006046618 A1 WO 2006046618A1 JP 2005019724 W JP2005019724 W JP 2005019724W WO 2006046618 A1 WO2006046618 A1 WO 2006046618A1
Authority
WO
WIPO (PCT)
Prior art keywords
stem
photomultiplier tube
base material
focusing electrode
pin
Prior art date
Application number
PCT/JP2005/019724
Other languages
English (en)
French (fr)
Inventor
Hideki Shimoi
Hiroyuki Kyushima
Original Assignee
Hamamatsu Photonics K.K.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics K.K. filed Critical Hamamatsu Photonics K.K.
Publication of WO2006046618A1 publication Critical patent/WO2006046618A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J43/00Secondary-emission tubes; Electron-multiplier tubes
    • H01J43/04Electron multipliers
    • H01J43/28Vessels, e.g. wall of the tube; Windows; Screens; Suppressing undesired discharges or currents

Definitions

  • the present invention relates to a photomultiplier tube using a photoelectric effect and a radiation detection apparatus including the same.
  • a so-called head-on type photomultiplier tube is provided with a cylindrical body part, a light receiving face plate provided at one end of the body part, and provided at the other end of the body part.
  • a sealed container vacuum sealed container
  • a photocathode an electron multiplying portion in which a plurality of stages of dynodes are stacked, and an anode, which are arranged in order from the light receiving face plate to the stem.
  • a plurality of stem pins are connected to the dynodes and anodes of each stage, and are inserted into the stems so as to be led out from the sealed container.
  • Incident light that has passed through the light-receiving face plate is converted into photoelectrons at the photocathode.
  • the photoelectrons emitted from the photocathode are cascade-multiplied by the electron multiplier (a predetermined voltage is applied to each of the dynodes in a plurality of stages via the stem pins), and emitted to the anode in a directed manner. Then, secondary electrons that have reached the anode among the multiplied secondary electrons are taken out via an anode pin that is one of the stem pins as an electrical signal.
  • a converging electrode for guiding the photoelectrons emitted from the photocathode to the electron multiplying portion by the force S is integrated with the electron multiplier tube in the vacuum sealed container. Assembled.
  • the focusing electrode is provided with a holding spring that comes into contact with a metal body part that constitutes a part of the vacuum sealed container so that the focusing electrode and the photocathode have the same potential (for example, Patent Documents). 1).
  • Patent Document 1 JP-A-6-310086
  • the present invention has been made to solve the above-described problems, and ensures stable conduction between the focusing electrode and the photopower sword and enables confirmation of the conduction state between the focusing electrode and the photocathode. It is an object of the present invention to provide a photomultiplier tube having a structure for performing the above and a radiation detection apparatus including the same.
  • a photomultiplier tube includes a sealed container whose inside is depressurized to a predetermined vacuum, a photocathode, a focusing electrode, an electron multiplier, an anode, And a plurality of stem pins.
  • the sealed container includes a metal hollow body part, a light receiving face plate provided at one end of the hollow body part, and a stem provided at the other end of the hollow body part.
  • the photocathode is provided in a sealed container and converts incident light that has passed through the light receiving face plate into electrons.
  • the electron multiplier section is provided in a sealed container so as to be positioned between the photocathode and the stem, and is composed of a plurality of dynodes that sequentially multiply the electrons emitted from the photocathode.
  • the focusing electrode is provided in the sealed container so as to be positioned between the photocathode and the electron multiplier, and functions to converge the electrons emitted from the photocathode and guide the electrons to the electron multiplier.
  • the anode is stored in a sealed container and taken out as an electron receiving electrical signal emitted by the electron multiplier force.
  • the plurality of stem pins are supported by the stem in a state of penetrating the stem, and are electrically connected to the focusing electrode, the plurality of dynodes, and the anode so as to set a predetermined potential.
  • the stem includes a base material made of an insulating material that directly supports the stem pin with the stem pin penetrating therethrough.
  • the metal hollow body part that constitutes a part of the sealed container is electrically connected to the photocathode and has a shape that partially surrounds the side surface of the tem.
  • the outer part of the stem located on the opposite side of the side facing the light receiving face plate (the inner side of the stem facing the light receiving face plate) (Including the outer surface facing the surface) is provided with a groove portion that surrounds the through-hole portion of the converging electrode pin connected to the focusing electrode among the plurality of stem pins and has a shape extending to the edge of the stem.
  • the groove portion is filled with a conductive material for electrically connecting the focusing electrode pin and the hollow body portion.
  • the photomultiplier tube according to the present invention is provided with the groove portion extending to the edge portion of the stem in the outer portion of the stem and surrounding the through-hole of the focusing electrode pin.
  • a structure in which a conductive material is filled in the portion is provided.
  • the focusing electrode pin and the hollow body part are electrically connected via a conductive material.
  • the focusing electrode pin is electrically connected to the converging electrode, while the hollow body is electrically connected to the photocathode.
  • the focusing electrode and the photocathode are electrically connected via the focusing electrode pin, the conductive material, and the metal hollow body. Therefore, stable conduction between the focusing electrode and the photocathode is ensured.
  • the conductive material is provided outside the sealed container, the electrical connection between the focusing electrode pin and the hollow body can be confirmed by the appearance force of the photomultiplier tube. It is easy to check the continuity. Furthermore, since the groove portion is filled with the conductive material, the conductive material is prevented from reaching the stem pins other than the adjacent focusing electrode pins.
  • the conductive material may include either a conductive paste or a conductive glass.
  • a conductive paste is applied as the conductive material
  • the conductive paste is applied in the groove so as to be dammed by the inner wall surface of the hollow body.
  • conductive glass is applied as the conductive material
  • the conductive glass is applied in the groove so as to be dammed by the inner wall surface of the hollow body.
  • the groove is configured by a first recess extending to the edge of the focusing electrode force stem and a second recess surrounding the penetration portion of the focusing electrode pin with the base material as the bottom surface.
  • the groove portion is composed of the first and second recesses that are in communication with each other, and in particular, the anchor effect is exhibited by allowing the conductive material to enter the second recess. As a result, the conductive material filled in the groove is prevented from coming out.
  • the photomultiplier having the structure as described above (the photomultiplier according to the present invention) Can be applied to various inspection apparatuses.
  • the radiation detection apparatus according to the present invention includes the photomultiplier tube, and a scintillator that is disposed outside the sealed container so as to sandwich the light receiving face plate together with the stem, and converts the arrived radiation into light.
  • the groove portion having a shape extending to the edge of the base material is formed in the outer region of the stem and surrounding the through portion of the focusing electrode pin connected to the focusing electrode.
  • a conductive material for electrically connecting the converging electrode pin and the metal hollow body is applied in the groove.
  • FIG. 1 is a plan view showing an upper structure of a first embodiment of a photomultiplier tube according to the present invention.
  • FIG. 2 is a plan view showing a bottom structure of the photomultiplier tube shown in FIG.
  • FIG. 3 is a view showing a cross-sectional structure along the ⁇ - ⁇ line of the photomultiplier shown in FIG.
  • FIG. 4 is a plan view showing a base material constituting a part of a stem in the photomultiplier shown in FIG.
  • FIG. 5 is an upper presser material constituting a part of the stem in the photomultiplier shown in FIG. FIG.
  • FIG. 6 is a plan view showing a lower presser member constituting a part of a stem in the photomultiplier tube shown in FIG.
  • FIG. 7 is a view for explaining an example of manufacturing a stem in the photomultiplier tube shown in FIG. 3 (a conductive paste is applied as a conductive material).
  • FIG. 8 is a diagram for explaining an example of manufacturing a stem in the photomultiplier tube shown in FIG. 3 (conductive glass is applied as a conductive material).
  • FIG. 9 is a cross-sectional view showing a configuration of a first modification of the photomultiplier tube shown in FIG.
  • FIG. 10 is a cross-sectional view showing a configuration of a second modification of the photomultiplier tube shown in FIG. 3.
  • FIG. 11 is a cross-sectional view showing a configuration of a third modification of the photomultiplier tube shown in FIG. 3.
  • FIG. 12 is a cross-sectional view showing a configuration of a radiation detection apparatus including the photomultiplier tube shown in FIG.
  • FIG. 13 is a plan view showing a bottom structure of a second embodiment of the photomultiplier according to the present invention.
  • FIG. 14 is a view showing a cross-sectional structure along the ⁇ - ⁇ line of the photomultiplier tube shown in FIG.
  • FIG. 15 is a plan view showing a base material constituting a part of the stem in the photomultiplier shown in FIG.
  • FIG. 16 is a plan view showing the bottom structure of the base material shown in FIG.
  • FIG. 17 is a diagram for explaining an example of manufacturing a stem in the photomultiplier tube shown in FIG.
  • FIG. 18 is a plan view showing a bottom structure of a third embodiment of the photomultiplier according to the present invention.
  • FIG. 19 is a view showing a cross-sectional structure of the photomultiplier tube shown in FIG. 18 taken along line XVIII-XVIII.
  • FIG. 20 is a plan view showing a base material constituting a part of a stem in the photomultiplier tube shown in FIG.
  • FIG. 21 is a plan view showing a bottom structure of the base member shown in FIG.
  • FIG. 22 is a diagram for explaining an example of manufacturing a stem in the photomultiplier tube shown in FIG.
  • FIG. 1 and FIG. 2 are plan views respectively showing an upper structure and a bottom structure of the first embodiment of the photomultiplier tube according to the present invention, and FIG. 3 is taken along line ⁇ - ⁇ in FIG. FIG. 1 to 3, the photomultiplier tube 1 is a device that emits photoelectrons in response to incident light from the outside, cascades the photoelectrons, and outputs the multiplied secondary electrons as a signal. is there.
  • the photomultiplier tube 1 includes a metal upper body portion 2 having a substantially cylindrical shape.
  • a glass light-receiving face plate 3 is airtightly fixed to the upper (one side) open end of the upper body 2.
  • a photocathode 4 for converting incident light that has passed through the light receiving surface plate 3 into photoelectrons is formed.
  • the photocathode 4 is electrically connected to the upper body 2.
  • a disc-shaped stem 5 is disposed at the opening end on the lower side (other side) of the upper body portion 2.
  • a plurality (15) of conductive stem pins 6 arranged in a state of being separated from each other along the edge of the stem 5 are airtightly inserted.
  • the lower body 7 made of metal is airtightly fixed to the stem 5 so as to surround the side force. Then, the flange portion 2a formed at the lower end portion of the upper body portion 2 and the flange portion 7a of the same diameter formed at the upper end portion of the lower body portion 7 are welded, and the upper body portion and the lower body portion 7 are hermetically sealed. As a result, the sealed container 8 whose inside is decompressed to a predetermined degree of vacuum is obtained.
  • These upper body part 2 and lower body part 7 constitute a hollow body part!
  • an electron multiplier section 9 for multiplying electrons emitted from the photocathode 4 is accommodated.
  • this electron multiplier section 9 a plurality of (10 stages in this embodiment) thin plate dynodes 10 each having a plurality of electron multiplier holes are stacked.
  • a dynode connection piece 10c that protrudes outward is formed at a predetermined edge of each dynode 10, and the tip of a predetermined stem pin 6 that is inserted into the stem 5 is weld-fixed to the lower surface of the dynode connection piece 10c.
  • each dynode 10 and the corresponding stem pin 6 are electrically connected.
  • Electrode 1 1 is installed.
  • a plate-like anode 12 is provided on the upper stage of the last stage dynode 10b for taking out as an output signal the electrons multiplied by the electron multiplier 9 and inverted and emitted from the last stage dynode 10b (inverted dynode). Are stacked.
  • Projecting pieces 11a projecting outward are formed at the four corners of the focusing electrode 11, and a focusing electrode pin 50, which is one of the stem pins 6, is welded and fixed to each protruding piece 11a. Are electrically connected.
  • An anode connecting piece 12a that protrudes outward is also provided at a predetermined edge of the anode 12, and an anode pin 13 that is one of the stem pins 6 is welded and fixed to the anode connecting piece 12a. Thereby, the anode pin 13 and the anode 12 are electrically connected. Then, a predetermined voltage is applied to the dynode 10 and the anode 12 of the electron multiplier section 9 through the stem pins 6 that are connected to the power supply circuit.
  • the photocathode 4 and the converging electrode 11 are set to the same potential, and the dynodes 10 of each stage are set so as to increase in potential from the upper stage to the lower stage in the stacking order.
  • the anode 12 is set at a higher potential than the final dynode 10b.
  • the final stage dynode 10b is supported by the support member disposed on the upper surface of the stem 5 in such a manner that the final stage dynode 10b is directly mounted on the upper surface of the stem 5.
  • a configuration in which a space is interposed between the final stage dynode 10b and the upper surface of the stem 5 may be employed.
  • photomultiplier tube 1 configured as described above, when incident light (h V) reaches the light receiving face plate 3 side force photocathode 4, incident light force is photoelectrically converted into the photocathode 4 sealed container 8.
  • Photoelectrons (e—) are emitted.
  • the emitted photoelectrons are converged to the first dynode 10a of the electron multiplier 9 by the focusing electrode 11.
  • the electrons are sequentially multiplied in the electron multiplying unit 9, and secondary electron groups are emitted from the final dynode 10b.
  • This secondary electron group is guided to the anode 12 and output to the outside through the anode pin 13 connected to the anode 12.
  • the stem 5 includes a base material 14, an upper presser material 15 joined to the upper side (inner side) of the base material 14, and a lower presser material 16 joined to the lower side (outer side) of the base material 14. It has a three-layer structure.
  • the lower body portion 7 is fixed to the side surface of the stem 5 so as to surround the stem.
  • the side surface of the base material 14 constituting a part of the stem 5 and the inner wall surface of the lower body part 7 are joined, so that the stem 5 is fixed to the lower body part 7.
  • the lower (outer) surface of the lower pressing member 16 protrudes below the lower end of the lower body part 7, but the fixing position of the stem 5 with respect to the lower body part 7 is limited to the above form. It ’s not something.
  • the base material 14 is a disk-shaped member having a force of insulating glass (for example, having a melting point of about 780 degrees) whose main component is Kovar, for example, and light of the lower surface side force is transmitted into the sealed container 8. There is no black color. Further, as shown in FIG. 4, a plurality (15 pieces) of openings 14 a having substantially the same diameter as the outer diameter of the stem pin 6 are formed in the base material 14 along the outer periphery (edge).
  • the upper presser 15 is an insulating glass obtained by adding, for example, alumina-based powder to Kovar (for example, approximately 1100 degrees and higher than the base material 14 and has a melting point). And is black to effectively absorb the light emitted from the sealed container 8. Further, as shown in FIG. 5, the upper pressing member 15 is formed with a plurality (15) of openings 15a through which the stem pins 6 are passed, similarly to the base member 14. Each of the openings 15a has a larger diameter than the opening 14a formed in the base material 14. Furthermore, at least two or more of these openings 15a are large-diameter openings 15b having a larger diameter than the other openings 15a in order to allow the positioning jig to enter the base material 14. Here, the large-diameter openings 15b are arranged at positions rotated by 90 degrees with respect to the center of the base material 14 in three places excluding the opening 15a through which the anode pin 13 and the focusing electrode pin 50 pass.
  • the lower presser material 16 is an insulating glass obtained by adding, for example, alumina powder to Kovar (for example, about 1100 degrees and a melting point higher than that of the base material 14). It is a disk-shaped member made of and exhibits a white color due to the difference in the composition of the alumina-based powder to be added. Further, the lower pressing member 16 has higher physical strength than the base material 14 and the upper pressing material 15. As shown in FIG. 6, a circular base material leaching opening 16c for leaching the base material 14 by melting is formed in the central portion of the lower presser material 16.
  • a plurality of (15) openings 16 a through which the stem pins 6 are threaded are formed in the lower presser material 16 as shown in FIG.
  • At least two or more of these openings 16a are large-diameter openings 16b having a large diameter so that the positioning jig can enter.
  • the large-diameter opening 16b is disposed at four positions including the opening 16a through which the anode pin 13 passes, at positions rotated by 90 degrees with respect to the center of the lower pressing member 16.
  • Each of the converging electrode pins 50 is passed through the opening 16a excluding the large-diameter opening 16b.
  • a region extending to the periphery of the lower presser material 16 is formed in an area including one of the four openings 16 a (opening 16 d) through which the focusing electrode pin 50 passes.
  • a notch 51 is formed (see FIG. 7).
  • the base material 14, the upper presser material 15 and the lower presser material 16 are aligned in the axial positions of the openings 14a, 15a, 16a and the large-diameter openings 15b, 16b. After being overlaid in the state, the base material 14 is melt-bonded and joined with the stem pins 6 being passed through the openings 14a, 15a and 16a.
  • the stem pin 6 passes through the opening 15a of the upper presser material 15 and the opening 16a of the lower presser material 16, and the upper and lower surfaces of the stem 5
  • a recess 5 a having a base material 14 as a bottom surface is formed around the entire periphery of the penetrating portion of the stem pin 6 in FIG.
  • the stem pin 6 is directly joined to the base material 14 on the bottom surface of the recess 5a.
  • one recess 5a formed by the notch 51 and the opening 16d of the lower pressing member 16 constitutes a stepped groove 52. That is, the groove 52 is formed by the notch 51 of the lower presser 16 and extends to the edge of the stem 5 and the inner side of the outer recess 52a (base material) by the opening 16d of the lower presser 16. 14) and is formed of an inner recess 52b with the base material 14 as the bottom surface.
  • the base material 14, the upper presser material 15, and the lower presser material 16 force are overlapped with the axial centers of the openings 14a, 15a, and 16a aligned. Is done.
  • the lower body part 7 is fitted into the base material 14, and the upper and lower positioning jigs each holding the both ends of the stem pin 6 with the stem pin 6 inserted into the openings 14a, 15a, 16a. Projecting into the large-diameter openings 15b and 16b, respectively. It is desirable that the lower body portion 7 and the stem pin 6 to be set are subjected to surface oxidation treatment in advance in order to improve the weldability with the base material 14.
  • the stem 5 set as described above is put into an electric furnace and is about 850 to 900 degrees (the melting points of the upper presser material 15 and the lower presser material 16 higher than the melting point of the base material 14). Sintered at low temperature. At this time, the stem 5 is pressurized while being sandwiched between positioning jigs. As shown in the region (b) in FIG. 7, only the base material 14 having a melting point of about 780 degrees is melted by this sintering process, and the presser materials 15, 16 are passed through the melted base material 14. The stem pin 6 and the lower body part 7 are in close contact with each other. At this time, the base material 14 is adjusted to have a larger volume in order to improve the adhesion to each part.
  • the base material 14 is positioned in the height direction within the large-diameter openings 15b and 16b by the end surfaces of the protrusions of the positioning jig, and the excess portion of the molten base material 14 is the base of the lower presser material 16. Escape into material leaching opening 16c To be powerful. For this reason, the base material 14 hardly protrudes from the surface of the stem 5 through the opening 15a of the upper pressing member 15 and the opening 16a of the lower pressing member 16. As a result, a plurality of recesses 5 a including the groove 52 are formed in the stem 5. Thereafter, the stem 5 is removed from the electric furnace, and the upper and lower positioning jigs are removed, whereby the manufacture of the stem 5 is completed.
  • the converging electrode pin 50 and the lower body part 7 are placed in the groove 52 formed in the region including the penetrating part of the one converging electrode pin 50 on the lower surface (outer surface) of the stem 5.
  • a conductive paste 53 is applied as a conductive material for electrically connecting the two.
  • the conductive paste 53 is applied so as to sufficiently enter the bottom surface of the inner recess 52b formed only by the outer recess 52a of the groove 52. Further, a part of the conductive paste 53 also enters a gap between the lower pressing member 16 and the lower body part 7. In this case, since the anchor effect is generated for the conductive paste 53, the conductive paste 53 does not easily escape from the groove 52.
  • the conductive paste 53 is applied in the groove portion 52 so as to be substantially flush with the lower end surface (outer end surface) of the lower body portion 7. That is, the conductive paste 53 is in a state of being dammed by the inner wall surface of the lower body part 7.
  • the appearance of the photomultiplier tube is improved by the structure in which the region where the conductive paste 53 is applied does not protrude from the outer wall surface of the lower body 7.
  • the focusing electrode pin 50 and the lower body part 7 are electrically connected via the conductive paste 53. Further, as described above, the photocathode 4 and the upper body part 2 are electrically connected, the upper body part 2 and the lower body part 7 are electrically connected, and the focusing electrode pin 50 and the focusing electrode 11 are Electrically connected. Therefore, the photocathode 4 and the focusing electrode 11 are electrically connected via the upper body part 2, the lower body part 7, the conductive paste 53 and the focusing electrode pin 50.
  • the stability of conduction between the photocathode 4 and the focusing electrode 11 is ensured. . That is, the photocathode 4 and the focusing electrode 11 can be stably set to the same potential. Further, since the conductive paste 53 is on the outer surface portion of the sealed container 8, the electrical connection state between the converging electrode pin 50 and the lower body portion 7 can be visually confirmed. That is, the conduction state between the photocathode 4 and the focusing electrode 11 can be easily confirmed. With the above configuration, the reliability of the photomultiplier tube 1 is improved.
  • the conductive paste 53 is applied in the groove 52, when the photomultiplier tube 1 is assembled, the conductive paste 53 flows and reaches the stem pins 6 other than the focusing electrode pin 50. There is no. Therefore, a short circuit or the like is effectively prevented. Furthermore, since the conductive paste 53 is formed outside the sealed container 8, the conductive paste 53 can be easily applied when the photomultiplier tube 1 is assembled, and can be repaired after the photomultiplier tube 1 is assembled. Become ⁇ .
  • conductive paste 53 is applied as a conductive material filled in groove 52 (configured by first recess 52b and second recess 52a).
  • the conductive material is not limited to the paste-like material as in the above-described embodiment, and a solid material having conductivity may be applied.
  • FIG. 8 is a diagram for explaining an example of manufacturing a stem to which conductive glass is applied as a conductive material filled in the groove 52.
  • the lower pressing member 16, the base member 14, and the upper pressing member 15 are placed in a sequentially stacked state in the same manner as the region (a) in FIG. Region (a) in Figure 8.
  • the base glass 530a is installed in the notch 51 of the lower pressing member 16 corresponding to the groove 52 provided in the outer portion of the stem 5.
  • This base glass 530a is obtained by compressing glass powder mixed with Kovar metal, and has a lower melting point than that of the lower pressing member 16, while having a thermal expansion coefficient of the lower pressing. The amount of Kovar metal mixed is adjusted so as to substantially match the member 16.
  • the stem 5 set as described above is put into an electric furnace and about 850 degrees to 900 degrees (the melting points of the upper presser material 15 and the lower presser material 16 which are higher than the melting point of the base material 14). Sintered at low temperature. At this time, the stem 5 is pressurized while being sandwiched between positioning jigs. By this sintering treatment, as shown in the region (b) in FIG. 8, only the base material 14 and the base glass 530a having a melting point of about 780 degrees are melted. The presser members 15, 16, the stem pin 6 and the lower body part 7 are brought into close contact with each other through the melted base material 14.
  • the conductive glass 530b obtained through the manufacturing steps of the regions (a) and (b) in FIG. 8 has the same effect as the conductive paste 53 described above.
  • FIG. 9 is a cross-sectional view showing a configuration of a first modification of the photomultiplier tube 1 according to the first embodiment described above.
  • FIG. 9 corresponds to a cross section taken along the line ⁇ - ⁇ in FIG. 2.
  • the conductive paste 53 is formed on the lower surface of the stem 5. It is applied in the groove portion 52 so as to rise with respect to the lower end surface of the lower body portion 7. Also in this case, the conductive paste 53 is dammed up by the inner wall surface of the lower body part 7.
  • Other configurations are the same as those of the photomultiplier tube 1 described above. Note that the shape of the conductive paste 53 in a coated state can be appropriately modified in addition to the above.
  • FIG. 10 shows a configuration of a second modification of the photomultiplier tube 1.
  • This FIG. 10 also corresponds to a cross section taken along the line ⁇ - ⁇ in FIG. 2, and the photomultiplier tube 20 that works in the second modified example has a metal exhaust pipe 19 at the center of the stem 5. Is provided.
  • the exhaust pipe 19 is used for exhausting the inside of the sealed container 8 by a vacuum pump or the like after the assembly of the photomultiplier tube 20 is completed.
  • Other configurations are the same as those of the photomultiplier tube 1.
  • FIG. 11 shows a cross-sectional structure of a third modification of the photomultiplier tube 1.
  • This FIG. 11 also corresponds to a cross section taken along the line ⁇ - ⁇ in FIG. 2, and the photomultiplier tube 26 according to the third modified example is connected to the lower body part 7 fixed to the stem 5 with the upper body part 2.
  • the flange part 7a formed at the lower end part of the lower body part 7 and the flange part 27a formed at the lower end part of the body part 27 are welded and fixed. ing.
  • Other configurations are the same as those of the photomultiplier tube 20 shown in FIG.
  • FIG. 12 is a diagram showing a configuration of a radiation detection apparatus including the photomultiplier tube 1 described above.
  • a radiation detector 21 is provided on the upper side (outer side) of the light receiving face plate 3 of the photomultiplier tube 1 and includes a scintillator 22 that converts radiation into light. Since the radiation detector 21 has the photomultiplier tube 1, the stability of the conduction between the photocathode 4 and the focusing electrode 11 is ensured and the conduction between the photocathode 4 and the focusing electrode 11 is ensured. You can check the status easily. [0048] (Second embodiment)
  • FIG. 13 is a plan view showing the bottom structure of the second embodiment of the photomultiplier tube according to the present invention
  • FIG. 14 shows the photomultiplier tube along the ⁇ - ⁇ line in FIG. FIG.
  • the photomultiplier tube 28 according to the second embodiment has a stem 29 instead of the stem 5 in the photomultiplier tube 1 according to the first embodiment.
  • the stem 29 has a two-layer structure including a disk-shaped base material 30 having the same quality as the above-described base material 14 and an upper presser material 15 joined to the upper side (inner side) of the base material 30. That is, the stem 29 in the photomultiplier tube 28 is not provided with the lower pressing member 16 in the first embodiment.
  • FIG. 15 is a plan view showing the configuration of the base member 30, and FIG. 16 is a plan view showing the bottom structure of the base member 30.
  • a circular base material leaching recess 30d (see FIG. 17) for leaching the base material 30 by melting is formed in the lower central portion of the base material 30.
  • the base material 30 has a plurality of (15) openings 30a having an upper diameter substantially the same as the outer diameter of the stem pin 6 and a lower diameter larger than the outer diameter of the stem pin 6. It is formed along the outer periphery of the material 30.
  • the predetermined four openings including the opening 30a through which the anode pin 13 passes have lower outer diameters that allow the positioning jig to enter the lower side of the other openings 30a.
  • Each of the converging electrode pins 50 is passed through the opening 30a except the large-diameter opening 30b.
  • a notch 61 extending to the periphery of the base material 30 is formed in a region including one of the four openings 30 a (referred to as an opening 30 c) through which the focusing electrode pin 50 passes. Is formed.
  • the base member 30 and the upper presser member 15 are superposed with the axial positions of the openings 30a and 15a and the large-diameter openings 30b and 15b aligned. Thereafter, the base member 30 and the upper presser member 15 are fusion-bonded by melting the base member 30 with the stem pins 6 being passed through the openings 30a and 15a, respectively. More specifically, on the stem 29 in which the upper presser material 15 is in close contact with the upper surface of the base material 30, the stem pin 6 covers the lower portion of the opening 30 a of the base material 30 and the opening 15 a of the upper presser material 15. In the passed state, a recess 29a having the base member 30 as the bottom surface is formed around the perimeter of each stem pin 6 on the upper and lower surfaces of the stem 29. At this time, the stem pin 6 is Bonded directly to the base 30.
  • one recess 29a formed by the notch 61 and the opening 30c of the base member 30 is a groove 62 having a step shape.
  • the groove 62 is formed by the notch 61 of the base material 30 and is formed inside the outer recess 62a by the outer recess 62a extending to the edge of the stem 29 and the opening 30c of the base material 30. Yes It is comprised by the inner side recessed part 62b.
  • the same method as that for the stem 5 in the photomultiplier tube 1 according to the first embodiment can be applied.
  • the base material 30 and the upper presser material 15 are overlapped with the axial centers of the openings 30a and 15a being aligned.
  • the lower body part 7 is fitted in the base material 30 and the stem pins 6 are passed through the openings 30a and 15a, and the protrusions of the upper and lower positioning jigs holding the both ends of the stem pin 6 respectively. Enters the large-diameter openings 30b and 15b, respectively.
  • a sintering process is performed under the same conditions as in the first embodiment.
  • the base material 30, the upper presser material 15, the stem pin 6, and the lower body portion 7 are fused by melting the base material 30.
  • the base material 30 is positioned in the height direction in the large-diameter openings 30b and 15b by the end surfaces of the protrusions of the positioning jig. Further, the surplus portion of the molten base material 30 is released into the base material leaching recess 30d.
  • the base material 30 hardly protrudes from the surface of the stem 29 through the lower portion of the opening 15a of the upper pressing member 15 and the opening 30a of the base member 30. As a result, a plurality of recesses 29 a including the groove 62 are formed in the stem 29.
  • the conductive paste 53 is applied in the groove 52 formed in the region including the penetrating portion of the single focusing electrode pin 50 on the lower surface of the stem 29.
  • the photocathode 4 and the focusing electrode 11 are electrically connected via the upper body part 2, the lower body part 7, the conductive paste 53, and the focusing electrode pin 50. It will be.
  • the stem 29 has a two-layer structure constituted by the base member 30 and the upper presser member 15.
  • the stem 29 may have a two-layer structure including a base material and a lower presser material.
  • a plurality of recesses including the groove 62 are formed on the lower surface (outer surface) of the lower pressing member, and the conductive paste 63 may be applied to the groove 62.
  • the configuration shown in FIGS. 9 to 12 may be applied.
  • FIG. 18 is a plan view showing the bottom structure of the third embodiment of the photomultiplier tube according to the present invention
  • FIG. 19 shows the photomultiplier tube 34 along the line XVIII-XVIII in FIG. It is a figure which shows a cross-sectional structure.
  • the photomultiplier tube 34 according to the third embodiment has a stem 35 instead of the stem 5 in the photomultiplier tube 1 according to the first embodiment.
  • the stem 35 has a single-layer structure of a disk-shaped base material 36 that is the same quality as the base material 14. That is, the upper presser 15 and the lower presser 16 are not provided on the stem 35 in the photomultiplier tube 34.
  • FIG. 20 is a plan view showing the configuration of the base material 36
  • FIG. 21 is a plan view showing the bottom structure of the base material 36.
  • a circular base material leaching recess 36d (see FIG. 22) for leaching the base material 36 by melting is formed in the lower central portion of the base material 36.
  • the base material 36 has a plurality of (15) openings 36a having an intermediate portion substantially the same diameter as the outer diameter of the stem pin 6 and upper and lower portions having a diameter larger than the outer diameter of the stem pin 6. It is formed along the outer periphery of the base material 36.
  • these openings 36a three predetermined openings excluding the opening 36a through which the anode pin 13 passes are large-diameter openings 36b.
  • the large-diameter opening 36b has an upper and lower outer diameters larger than the upper and lower outer diameters of the other openings 36a that allow the pressing jig to enter.
  • the outer diameter of the lower part of the opening 36a through which the anode pin 13 passes is also larger than the outer diameters of the upper part and the lower part of the other opening 36a that can slide into the holding jig.
  • the converging electrode pin 50 is passed through the opening 36a excluding the large-diameter opening 36b.
  • a notch 71 extending to the periphery of the base material 36 is included in a region including one of the four openings 36 a (opening 36 c) through which the focusing electrode pin 50 passes. Is formed.
  • the base material 36 was inserted through the stem pin 6 through the opening 36a. In this state, the base material 36 is melted and bonded to the stem pin 6. More specifically, with the stem pin 6 passing through the upper and lower portions of the opening 36a of the base material 36, the base material 36 is placed on the entire periphery of the penetrating portion of the stem pin 6 on the upper and lower surfaces of the stem 35. A concave portion 35a is formed. The stem pins 6 are directly joined to the base material 36 at the bottom surfaces of the recesses 35a.
  • one recess 35a formed by the notch 71 and the opening 36c of the base material 36 becomes a groove 72 having a step shape. That is, the groove 72 is formed by the notch 71 of the base material 36 and is formed inside the outer recess 72a by the outer recess 72a extending to the edge of the stem 35 (base material 36) and the opening 36c of the base material 36. And an inner recess 72b having the base material 36 as a bottom surface.
  • a sintering process is performed under the same conditions as described above.
  • the base material 36, the stem pin 6 and the lower body portion 7 are fused by melting the base material 36 as shown in the region (b) in FIG.
  • the base material 36 is positioned in the height direction within the large-diameter opening 36b by the end face of the protrusion of the holding jig.
  • the surplus portion of the molten base material 36 is released into the base material leaching recess 36d.
  • a plurality of recesses 35a including the groove 72 are formed in the stem 35.
  • the conductive paste 53 is applied in the groove 72 formed in the region including the penetrating portion of the focusing electrode pin 50 on the lower surface of the stem 35.
  • the photocathode 4 and the focusing electrode 11 are electrically connected via the upper body part 2, the lower body part 7, the conductive paste 53, and the focusing electrode pin 50.
  • the conduction stability between the photocathode 4 and the focusing electrode 11 is ensured, and the conduction state between the photocathode 4 and the focusing electrode 11 can be easily confirmed.
  • FIGS. 9 to 12 can also be adopted in the third embodiment.
  • the present invention is not limited to the above-described embodiment. Absent.
  • a configuration is shown in which a groove portion is formed in one of four through portions penetrating the four focusing electrode pins 50 in the stem.
  • the number of grooves is not particularly limited to one, and there may be a plurality of grooves.
  • the groove has a two-stage structure including an outer recess and an inner recess.
  • the groove is not necessarily a two-stage structure. Also good.
  • the photomultiplier tube according to the present invention can be applied to a detection device and a portable measuring instrument in various fields such as medical treatment and environment including a radiation detection device.

Landscapes

  • Measurement Of Radiation (AREA)

Description

明 細 書
光電子増倍管及びそれを含む放射線検出装置
技術分野
[0001] この発明は、光電効果を用いる光電子増倍管及びそれを含む放射線検出装置に 関するものである。
背景技術
[0002] 光電子増倍管として、いわゆるヘッドオン型の光電子増倍管は、筒状の胴体部と、 該胴体部の一端に設けられた受光面板と、該胴体部の他端に設けられたステムによ り構成され、内部が一定の真空度に減圧された密封容器 (真空密封容器)を備える。 この密封容器内には、受光面板からステムに向力つて順に配置された、ホトカソード、 ホトカソードに対向して複数段のダイノードが積層された電子増倍部及びアノードが 配置されて ヽる。これら各段のダイノード及びアノードにはそれぞれ複数のステムピン が接続されており、密封容器内から外部に導出されるように、ステムに挿着されてい る。受光面板を通過した入射光はホトカソードで光電子に変換される。このホトカソー ドから放出された光電子が、電子増倍部 (ステムピンを介して所定の電圧が複数段の ダイノードにそれぞれ印加されている)でカスケード増倍され、アノードへ向力つて放 出される。そして、増倍された二次電子のうちアノードに達した二次電子は、電気信 号としてステムピンの一つであるアノードピンを介して取り出される。
[0003] 上述のような光電子増倍管では、ホトカソードから放出された光電子を収束させな 力 Sら電子増倍部に導く収束電極が、真空密封容器内において該電子増倍管と一体 的に組み立てられる。また、収束電極には、これら収束電極とホトカソードとが同電位 になるよう該真空密封容器の一部を構成する金属製胴体部に接触する保持用スプリ ングが設けられている (例えば、特許文献 1参照)。
特許文献 1:特開平 6— 310086号公報
発明の開示
発明が解決しょうとする課題
[0004] 発明者らは、従来の光電子増倍管について検討した結果、以下のような課題を発 見した。すなわち、上述の光電子増倍管では、保持用スプリングのパネ力が小さすぎ ると、収束電極とホトカソードとの導通が不安定になる可能性がある。また、保持用ス プリングは真空密封容器内に設けられて ヽるので、収束電極とホトカソードとの導通 状態を確認することが困難である。
[0005] この発明は上述のような課題を解決するためになされたものであり、収束電極とホト 力ソードとの安定した導通を確保するとともに、収束電極とホトカソードとの導通状態 を確認可能にするための構造を備えた光電子増倍管及びそれを含む放射線検出装 置を提供することを目的として!、る。
課題を解決するための手段
[0006] 上述の課題を解決するため、この発明に係る光電子増倍管は、内部が所定の真空 度まで減圧された密封容器と、ホトカソードと、収束電極と、電子増倍部と、アノードと 、複数のステムピンとを備える。上記密封容器は、金属製の中空胴体部と、該中空胴 体部の一端に設けられた受光面板と、該中空胴体部の他端に設けられたステムとに より構成されている。上記ホトカソードは、密封容器内に設けられ、受光面板を通過し た入射光を電子に変換する。上記電子増倍部は、ホトカソードとステムとの間に位置 するよう密封容器内に設けられ、ホトカソードから放出された電子を順次増倍していく 複数段のダイノードにより構成されている。上記収束電極は、ホトカソードと電子増倍 部との間に位置するよう密封容器内に設けられ、ホトカソードから放出された電子を 収束させ、電子増倍部に導くよう機能する。上記アノードは、密封容器内に収納され るとともに電子増倍部力 放出された電子受け電気信号として取り出す。上記複数の ステムピンは、ステムを貫通した状態で該ステムに支持されており、収束電極、複数 段のダイノード及びアノードを所定電位に設定するようこれらに電気的に接続されて いる。
[0007] 特に、この発明に係る光電子増倍管において、上記ステムは、ステムピンを貫通さ せた状態で直接支持する、絶縁性材料カゝらなるベース材を含む。また、上記密封容 器の一部を構成する金属製の中空胴体部は、ホトカソードに電気的に接続されるとと もに、その一部力^テムの側面を取り囲んだ形状を有する。さらに、受光面板に面し た側とは反対側に位置する上記ステムの外側部分 (受光面板に面するステムの内側 面と対向する外側面を含む)には、複数のステムピンのうち収束電極に接続された収 束電極ピンの貫通部を取り囲むとともに該ステムの縁部まで伸びた形状を有する溝 部が設けられており、この溝部内には、収束電極ピンと中空胴体部とを電気的に接 続させるための導電性材料が充填されて 、る。
[0008] 以上のように、この発明に係る光電子増倍管は、ステムの外側部分であって収束電 極ピンの貫通部を取り囲む領域に、ステムの縁部まで延びる溝部が設けられ、この溝 部内に導電性材料が充填された構造を備える。この構造において、収束電極ピンと 中空胴体部とが導電性材料を介して電気的に接続される。また、収束電極ピンは収 束電極と電気的に接続される一方、中空胴体部はホトカソードと電気的に接続されて いる。このように、収束電極とホトカソードとは、収束電極ピン、導電性材料及び金属 製の中空胴体部を介して電気的に接続される。したがって、収束電極とホトカソードと の安定した導通が確保されるようになる。また、導電性材料は密封容器の外側に設 けられるので、収束電極ピンと中空胴体部との電気的な接続状態を当該光電子増倍 管の外観力も確認することができ、収束電極とホトカソードとの導通状態の確認が容 易に行える。さらに、溝部内には導電性材料が充填されているので、導電性材料が 隣の収束電極ピン以外のステムピンまで達することが防止される。
[0009] なお、上記導電性材料は、導電性ペースト及び導電性ガラスのいずれを含んでもよ い。この導電性材料として導電性ペーストが適用される場合、該導電性ペーストは、 中空胴体部の内壁面で堰き止められるように溝部内に塗布される。一方、導電性材 料として導電性ガラスが適用される場合、該導電性ガラスは、中空胴体部の内壁面 で堰き止められるように溝部内に塗布される。これにより、導電性ペーストの塗布領域 や導電性ガラスの充填領域が必要以上に広がらないので、外観的に良好になる。
[0010] また、溝部は、収束電極力 ステムの縁部まで延びた第 1凹部と、ベース材を底面 として収束電極ピンの貫通部を取り囲む第 2凹部により構成されている。このように溝 部が互いに連絡された第 1及び第 2凹部で構成され、特に第 2凹部に導電性材料を 入り込ませることにより、アンカー効果が発揮されるようになる。その結果、溝部に充 填された導電性材料が抜け出ることが防止される。
[0011] ここで、上述のような構造を有する光電子増倍管 (この発明に係る光電子増倍管) は、種々の検査装置への適用が可能である。例えば、この発明に係る放射線検出装 置は、当該光電子増倍管と、そして、ステムとともに受光面板を挟むよう密封容器の 外部に配置され、到達した放射線を光に変換するシンチレータを備える。
[0012] なお、この発明に係る各実施例は、以下の詳細な説明及び添付図面によりさらに 十分に理解可能となる。これら実施例は単に例示のために示されるものであって、こ の発明を限定するものと考えるべきではない。
[0013] また、この発明のさらなる応用範囲は、以下の詳細な説明から明らかになる。しかし ながら、詳細な説明及び特定の事例はこの発明の好適な実施例を示すものではある 力 例示のためにのみ示されているものであって、この発明の思想及び範囲における 様々な変形および改良はこの詳細な説明から当業者には自明であることは明らかで ある。
発明の効果
[0014] この発明に係る光電子増倍管よれば、ステムの外側領域であって収束電極に接続 される収束電極ピンの貫通部を取り囲む領域に、ベース材の縁部まで延びた形状の 溝部が設けられるとともに、この溝部内に、収束電極ピンと金属製の中空胴体部とを 電気的に接続させる導電性材料が塗布される。そのため、収束電極とホトカソードと の導通安定性が向上するとともに、収束電極とホトカソードとの導通状態の確認が可 能になる。さら〖こは、収束電極とホトカソードとが同電位に設定された状態で当該光 電子増倍管が使用される場合の信頼性が高くなる。
図面の簡単な説明
[0015] [図 1]は、この発明に係る光電子増倍管の第 1実施例の上部構造を示す平面図であ る。
[図 2]は、図 1に示された光電子増倍管の底部構造を示す平面図である。
[図 3]は、図 1に示された光電子増倍管の ΠΙ-ΠΙ線に沿った断面構造を示す図である
[図 4]は、図 3に示された光電子増倍管におけるステムの一部を構成するベース材を 示す平面図である。
[図 5]は、図 3に示された光電子増倍管におけるステムの一部を構成する上側押え材 を示す平面図である。
[図 6]は、図 3に示された光電子増倍管におけるステムの一部を構成する下側押え材 を示す平面図である。
[図 7]は、図 3に示された光電子増倍管におけるステムの製造例 (導電性材料として 導電性ペーストが適用)を説明するための図である。
[図 8]は、図 3に示された光電子増倍管におけるステムの製造例 (導電性材料として 導電性ガラスが適用)を説明するための図である。
圆 9]は、図 3に示された光電子増倍管の第 1変形例の構成を示す断面図である。
[図 10]は、図 3に示された光電子増倍管の第 2変形例の構成を示す断面図である。
[図 11]は、図 3に示された光電子増倍管の第 3変形例の構成を示す断面図である。
[図 12]は、図 3に示された光電子増倍管を備えた放射線検出装置の構成を示す断 面図である。
[図 13]は、この発明に係る光電子増倍管の第 2実施例の底部構造を示す平面図であ る。
[図 14]は、図 13に示された光電子増倍管の ΧΠΙ-ΧΠΙ線に沿った断面構造を示す図 である。
[図 15]は、図 14に示された光電子増倍管におけるステムの一部を構成するベース材 を示す平面図である。
[図 16]は、図 15に示されたベース材の底部構造を示す平面図である。
[図 17]は、図 14に示された光電子増倍管におけるステムの製造例を説明するための 図である。
[図 18]は、この発明に係る光電子増倍管の第 3実施例の底部構造を示す平面である
[図 19]は、図 18に示された光電子増倍管の XVIII-XVIII線に沿った断面構造を示す 図である。
[図 20]は、図 19に示された光電子増倍管におけるステムの一部を構成するベース材 示す平面図である。
[図 21]は、図 20に示されたベース材の底部構造を示す平面図である。 [図 22]は、図 19に示された光電子増倍管におけるステムの製造例を説明するための 図である。
符号の説明
[0016] 1、 20、 26、 28、 34、 60…光電子増倍管、 2、 27· ··上部胴体部、 3…受光面板、 4 …ホト力ソード、 5、 29、 35· ··ステム、 6· ··ステムピン、 7· ··下部月同体部、 8· ··密封容器 、 9· ··電子増倍部、 11· ··収束電極、 12· ··アノード(電極)、 14、 30、 36· ··ベース材、 15· ··上側押え材 (押え材)、 16…下側押え材 (押え材)、 21· ··放射線検出装置、 22 …シンチレータ、 50· ··収束電極ピン、 52、 62、 72· ··溝部、 52a, 62a, 72a…外側 凹部 (第 1凹部)、 52b、 62b、 72b…内側凹部 (第 2凹部)、 53· ··導電性ペースト、 53 Ob…導電性ガラス。
発明を実施するための最良の形態
[0017] 以下、この発明に係る光電子増倍管及び放射線検出装置の各実施例を、図 1〜図
23を用いて詳細に説明する。なお、以下の説明における「上」、「下」等の語は図面 に示す状態に基づく便宜的なものである。また、各図において同一又は相当の部分 には同一の符号を付し、重複する説明を省略する。
[0018] (第 1実施例)
[0019] 図 1及び図 2は、この発明に係る光電子増倍管の第 1実施例の上部構造及び底部 構造をそれぞれ示す平面図であり、図 3は、図 1中の ΠΙ-ΠΙ線に沿った断面構造を示 す図である。図 1〜図 3において、光電子増倍管 1は、外部からの入射光に応答して 光電子を放出し、その光電子をカスケード増倍し、増倍された二次電子を信号として 出力させる装置である。
[0020] 光電子増倍管 1は、略円筒形状を有する金属製の上部胴体部 2を備える。この上 部胴体部 2の上側(一側)の開口端にはガラス製の受光面板 3が気密に固定されて いる。この受光面板 3の内側表面には、受光面板 3を通過した入射光を光電子に変 換するためのホトカソード 4が形成されている。ホトカソード 4は、上部胴体部 2と電気 的に接続されている。また、上部胴体部 2の下側 (他側)の開口端には、円板状のス テム 5が配置されている。このステム 5には、その縁部に沿って互いに離間した状態 で配置された複数(15本)の導電性のステムピン 6が気密に挿着されている。ステム 5 には、当該ステム 5を側方力 包囲するように金属製の下部胴体部 7が気密に固定さ れている。そして、上部胴体部 2の下端部に形成されたフランジ部 2aと下部胴体部 7 の上端部に形成された同径のフランジ部 7aとが溶接され、上部胴体部と下部胴体部 7とが気密に固定されることで、内部が所定の真空度にまで減圧された密封容器 8が 得られる。これら上部胴体部 2及び下部胴体部 7により中空胴体部が構成されて!、る
[0021] 以上のように形成された密封容器 8内には、ホトカソード 4から放出された電子を増 倍するための電子増倍部 9が収容されている。この電子増倍部 9は、それぞれが多 数の電子増倍孔を有する複数段 (この実施例では 10段)の薄板状ダイノード 10が積 層されている。各ダイノード 10の所定の縁部には、外側に突出するダイノード接続片 10cが形成され、ダイノード接続片 10cの下面側にはステム 5に挿着された所定のス テムピン 6の先端部分が溶接固定されている。この構成により、各段のダイノード 10と 対応するステムピン 6とが電気的に接続されている。
[0022] さらに、密封容器 8内において、電子増倍部 9とホトカソード 4との間には、ホトカソ ード 4から放出された電子を収束させ、電子増倍部 9に導くための平板状収束電極 1 1が設置されている。また、最終段のダイノード 10bの一段上の段には、電子増倍部 9により増倍され最終段のダイノード 10b (反転ダイノード)より反転放出された電子を 出力信号として取り出すための平板状アノード 12が積層されている。収束電極 11の 四隅には、外側に突出する突出片 11aが形成され、各突出片 11aにはステムピン 6 の一つである収束電極ピン 50が溶接固定され、収束電極ピン 50と収束電極 11とが 電気的に接続される。また、アノード 12の所定の縁部にも、外側に突出するアノード 接続片 12aが設けられており、このアノード接続片 12aにステムピン 6の一つであるァ ノードピン 13が溶接固定される。これにより、アノードピン 13とアノード 12とが電気的 に接続される。そして、それぞれが電源回路に接続されたステムピン 6を介して電子 増倍部 9のダイノード 10及びアノード 12に所定の電圧が印加される。このとき、ホトカ ソード 4と収束電極 11は同電位に設定され、各段のダイノード 10は積層順に上段か ら下段に行くに従って高電位となるように設定される。また、アノード 12は最終段のダ ィノード 10bよりも高電位に設定される。 [0023] なお、この実施例では、ステム 5の上面に最終段ダイノード 10bが直接載置されて いる力 ステム 5の上面に配置された支持部材によって最終段ダイノード 10bが支持 されることで、該最終段ダイノード 10bとステム 5の上面との間に空間が介在した構成 であってもよい。
[0024] 以上のように構成された光電子増倍管 1では、受光面板 3側力 ホトカソード 4に入 射光 (h V )が到達すると、このホトカソード 4密封容器 8内に入射光力 光電変換され た光電子 (e—)が放出される。放出された光電子は、収束電極 11によって電子増倍 部 9の一段目のダイノード 10aに収束される。そして、電子は電子増倍部 9内で順次 増倍されていき、最終段のダイノード 10bから 2次電子群が放出される。この 2次電子 群はアノード 12に導かれ、アノード 12と接続されたアノードピン 13を介して外部に出 力される。
[0025] 続いて、上述のステム 5の構成についてさらに詳細に説明する。ここで、ステム 5に 関し、光電子増倍管 1の密封容器 8の形成時に真空空間となる容器内部側を内側( 上側)とする。ステム 5は、ベース材 14と、ベース材 14の上側(内側)に接合された上 側押え材 15と、ベース材 14の下側 (外側)に接合された下側押え材 16とにより構成 された 3層構造を有する。そして、ステム 5の側面には、下部胴体部 7が該ステムを取 り囲むように固定されている。この第 1実施例において、ステム 5の一部を構成するべ ース材 14の側面と下部胴体部 7の内壁面とが接合されることにより、下部胴体部 7に 対してステム 5が固定される。ここで、下側押え材 16の下側(外側)の面は、下部胴体 部 7の下端よりも下側に突出しているが、下部胴体部 7に対するステム 5の固定位置 は上記形態に限られるものではな 、。
[0026] ベース材 14は、例えばコバールを主成分とする絶縁性ガラス(例えば約 780度の 融点を有する)力 なる円板状部材であり、下面側力 の光が密封容器 8内に透過し ない程度の黒色である。また、ベース材 14には、図 4に示されたように、ステムピン 6 の外径とほぼ同径の複数(15個)の開口 14aが外周(縁部)に沿うように形成されてい る。
[0027] 上側押え材 15は、コバールに例えばアルミナ系粉末を添加することにより得られる 絶縁性ガラス (例えば約 1100度とベース材 14より高 、融点を有する)力 なる円板 状部材であり、密封容器 8内の発光を効果的に吸収すべく黒色である。また、上側押 ぇ材 15には、図 5に示されたように、ベース材 14と同様にステムピン 6を揷通させる 複数(15個)の開口 15aが形成されている。開口 15aそれぞれは、ベース材 14に形 成された開口 14aよりも大きい径を有する。さらに、これら開口 15aのうちの少なくとも 二箇所以上の開口は、ベース材 14に対する位置決め用治具の進入を可能にすべく 、他の開口 15aよりもさらに大きい径を有する大径開口 15bである。ここで、大径開口 15bは、アノードピン 13及び収束電極ピン 50が貫通する開口 15aを除く 3箇所に、ベ ース材 14の中心を基準として 90度ごと回転した位置に配置されている。
[0028] 下側押え材 16は、上側押え材 15と同様に、コバールに例えばアルミナ系粉末を添 加することにより得られる絶縁性ガラス (例えば約 1100度とベース材 14より高い融点 を有する)からなる円板状部材であり、添加するアルミナ系粉末の組成の違いにより 白色を呈する。また、この下側押え部材 16は、ベース材 14及び上側押え材 15よりも 高い物理的強度を有する。下側押え材 16の中央部分には、図 6に示されたように、 ベース材 14が溶融により浸出するための円形状のベース材浸出開口 16cが形成さ れている。
[0029] また、下側押え材 16には、図 6に示されたように、上側押え材 15と同様にステムピ ン 6を揷通させる複数(15個)の開口 16aが形成されている。これら開口 16aのうちの 少なくとも二箇所以上の開口は、位置決め用治具の進入を可能にすべく大きい径を 有する大径開口 16bである。ここで、大径開口 16bは、アノードピン 13が通る開口 16 aを含む 4箇所に、下側押え部材 16の中心を基準として 90度ごと回転した位置に配 置されている。収束電極ピン 50それぞれは、大径開口 16bを除く開口 16aに揷通さ れる。そして、下側押え材 16の下面側部分において、収束電極ピン 50が通る 4つの 開口 16aのうちの一つ(開口 16dとする)を含む領域には、下側押え材 16の周縁まで 延びる切欠き部 51が形成されて!ヽる(図 7参照)。
[0030] 上記のベース材 14、上側押え材 15及び下側押え材 16は、図 3に示されたように、 開口 14a、 15a、 16a及び大径開口 15b、 16bの軸心位置が合わされた状態で重ね 合わされた後、開口 14a、 15a、 16aにそれぞれステムピン 6が揷通された状態で、ベ ース材 14の溶融によって融着接合される。より具体的に、ベース材 14の両面に上側 押え材 15及び下側押え材 16が密着しているステム 5では、ステムピン 6が上側押え 材 15の開口 15a及び下側押え材 16の開口 16aを揷通した状態で、ステム 5の上面 及び下面におけるステムピン 6の貫通部の全周囲にベース材 14を底面とする凹部 5 aが形成されて!、る。これら凹部 5aの底面にお!、てステムピン 6がベース材 14に直接 接合されている。
[0031] これら凹部 5aのうち、下側押え材 16の切欠き部 51及び開口 16dによって形成され る一つの凹部 5aが、段状をもった溝部 52を構成している。すなわち、溝部 52は、下 側押え材 16の切欠き部 51によって形成され、ステム 5の縁部まで延びる外側凹部 5 2aと、下側押え材 16の開口 16dによって外側凹部 52aの内側(ベース材 14側)に形 成され、ベース材 14を底面とする内側凹部 52bとから構成されている。
[0032] 続いて、上述のように構成されたステム 5の製造例について、図 7を参照しながら説 明する。
[0033] まず図 7中の領域 (a)に示されたように、ベース材 14、上側押え材 15及び下側押え 材 16力 開口 14a、 15a、 16aの軸心位置を合わせた状態で重ね合わされる。このと き、ベース材 14に下部胴体部 7が嵌め込まれるとともに、開口 14a、 15a, 16aにステ ムピン 6を挿通させた状態で、ステムピン 6の両端部をそれぞれ保持した上下 2つの 位置決め用治具の突起部が大径開口 15b、 16bにそれぞれ進入する。なお、セット される下部胴体部 7とステムピン 6には、ベース材 14との溶着性を高めるべく予め表 面酸化処理が施されるのが望まし ヽ。
[0034] 以上のようにセットされたステム 5は、電気炉に投入され、約 850度〜 900度(ベー ス材 14の融点より高ぐ上側押え材 15及び下側押え材 16の融点よりも低い温度)で 焼結される。このとき、ステム 5は位置決め用治具により挟まれた状態で加圧されてい る。この焼結処理により、図 7中の領域 (b)に示されたように、融点が約 780度である ベース材 14のみが溶融し、この溶融したベース材 14を介して押え材 15、 16、ステム ピン 6及び下部胴体部 7が密着する。このとき、ベース材 14は各部品との密着性を高 めるため、ボリュームが多めに調整されている。なお、位置決め用治具の突起部の端 面によって大径開口 15b、 16b内でのベース材 14の高さ方向の位置決めがなされ、 溶融したベース材 14の余剰部分は下側押え材 16のベース材浸出開口 16c内に逃 力 れる。このため、上側押え材 15の開口 15a及び下側押え材 16の開口 16aを通じ てベース材 14がステム 5の表面にはみ出すことは殆ど無い。その結果、溝部 52を含 む複数の凹部 5aがステム 5に形成されることになる。その後、ステム 5が電気炉から取 り出され、さらに上下の位置決め用治具が取り外されることで、ステム 5の製造が完了 する。
[0035] 図 3に戻り、ステム 5の下面(外側の面)における 1本の収束電極ピン 50の貫通部を 含む領域に形成された溝部 52内には、収束電極ピン 50と下部胴体部 7とを電気的 に接続させるための導電性材料として導電性ペースト 53が塗布されて 、る。この導 電性ペースト 53は、溝部 52の外側凹部 52aだけでなぐ内側凹部 52bの底面まで十 分に入り込むように塗布されている。また、導電性ペースト 53の一部は、下側押え材 16と下部胴体部 7との間の隙間にも入り込んでいる。この場合、導電性ペースト 53に 対してアンカー効果が生じるため、導電性ペースト 53が溝部 52から容易に抜け出る ことは無い。
[0036] 導電性ペースト 53は、下部胴体部 7の下端面 (外側の端面)とほぼ面一となるように 溝部 52内に塗布されている。つまり、導電性ペースト 53は、下部胴体部 7の内壁面 で堰き止められる状態となっている。このように導電性ペースト 53の塗布領域が下部 胴体部 7の外壁面力 はみ出ないような構造により光電子増倍管の外観が良くなる。
[0037] 以上のような構造を有する光電子増倍管 1において、収束電極ピン 50と下部胴体 部 7とは、導電性ペースト 53を介して電気的に接続されている。また、上述したように 、ホトカソード 4と上部胴体部 2とは電気的に接続され、上部胴体部 2と下部胴体部 7 とは電気的に接続され、さらに収束電極ピン 50と収束電極 11とは電気的に接続され ている。そのため、ホトカソード 4と収束電極 11とは、上部胴体部 2、下部胴体部 7、 導電性ペースト 53及び収束電極ピン 50を介して電気的に接続されることになる。
[0038] したがって、例えば密封容器 8の内部でホトカソード 4と収束電極 11とを機械的に 接触させる構造と比較して、ホトカソード 4と収束電極 11との導通の安定性が確保さ れるようになる。すなわち、ホトカソード 4と収束電極 11とを同電位に安定して設定す ることができる。また、導電性ペースト 53は密封容器 8の外面部にあるため、収束電 極ピン 50と下部胴体部 7との電気的な接続状態を目視により確認することができる。 すなわち、ホトカソード 4と収束電極 11との導通状態が簡単に確認され得る。以上の 構成により、光電子増倍管 1の信頼性が向上する。
[0039] また、溝部 52内に導電性ペースト 53が塗布されるので、光電子増倍管 1の組み立 て時に、導電性ペースト 53が流れて収束電極ピン 50以外の他のステムピン 6まで達 することは無い。そのため、ショート等が効果的に防止される。さらに、導電性ペースト 53は密封容器 8の外側に形成されるので、光電子増倍管 1の組み立て時に導電性 ペースト 53の塗布が容易に行えるとともに、光電子増倍管 1の組み立て後の修復も 可會 になる。
[0040] なお、上述の製造例では、溝部 52 (第 1凹部 52b及び第 2凹部 52aにより構成され ている)に充填される導電性材料として導電性ペースト 53が適用されている。しかし ながら、この導電性材料は上述の実施例のようなペースト状材料に限定されるもので はなぐ導電性を有する固形材料が適用されてもよい。例えば、図 8は、溝部 52内に 充填される導電性材料として導電性ガラスが適用された、ステムの製造例を説明する ための図である。
[0041] まず、上述の下側押え部材 16、ベース材 14及び上側押え部材 15が、図 7中の領 域 (a)と同様に、順次積層された状態で位置決め用治具設置される(図 8中の領域( a) )。このとき、ステム 5の外側部分に設けられる溝部 52に相当する下側押え部材 16 の切欠き部 51に母材ガラス 530aが設置される。
[0042] この母材ガラス 530aは、コバール金属が混ぜ込まれたガラス粉末を圧縮することに より得られ、下側押え部材 16よりも低い融点を有する一方、熱膨張係数が該下側押 ぇ部材 16に略一致するようコバール金属の混入量が調節されている。
[0043] 以上のようにセットされたステム 5は、電気炉に投入され、約 850度〜 900度(ベー ス材 14の融点より高ぐ上側押え材 15及び下側押え材 16の融点よりも低い温度)で 焼結される。このとき、ステム 5は位置決め用治具により挟まれた状態で加圧されてい る。この焼結処理により、図 8中の領域 (b)に示されたように、融点が約 780度である ベース材 14と母材ガラス 530aのみが溶融する。溶融したベース材 14を介して押え 材 15、 16、ステムピン 6及び下部胴体部 7が密着する。一方、母材ガラス 530aが溶 融することにより、溝部 52内に導電性ガラス 530bが充填された状態になる。その後、 ステム 5が電気炉から取り出され、さらに上下の位置決め用治具が取り外されることで 、ステム 5の製造が完了する。以上、図 8中の領域 (a)及び (b)の製造工程を経て得 られた導電性ガラス 530bによっても上述の導電性ペースト 53と同様の効果を奏する
[0044] 図 9は、上述の第 1実施例に係る光電子増倍管 1の第 1変形例の構成を示す断面 図である。この図 9は、図 2中の ΠΙ-ΠΙ線に沿った断面に相当しており、第 1変形例に 係る光電子増倍管 60は、導電性ペースト 53が、ステム 5の下面に形成された溝部 52 内に、下部胴体部 7の下端面に対して盛り上がるように塗布されている。この場合も、 導電性ペースト 53は、下部胴体部 7の内壁面で堰き止められた状態となる。その他 の構成は、上述の光電子増倍管 1と同様である。なお、導電性ペースト 53の塗布状 態の形状につ!、ては、上記以外にも適宜変形可能である。
[0045] さらに、光電子増倍管 1の第 2変形例の構成が図 10に示されている。この図 10図も 図 2中の ΠΙ-ΠΙ線に沿った断面に相当しており、第 2変形例に力かる光電子増倍管 20 は、ステム 5の中央部分に金属製の排気管 19が設けられている。この排気管 19は、 光電子増倍管 20の組み立て終了後に密封容器 8の内部を真空ポンプ等によって排 気するために利用される。その他の構成は、光電子増倍管 1と同様である。
[0046] 図 11には、光電子増倍管 1の第 3変形例の断面構造が示されている。この図 11も 図 2の ΠΙ-ΠΙ線に沿った断面に相当しており、第 3変形例に係る光電子増倍管 26は、 ステム 5に固定された下部胴体部 7に、上部胴体部 2よりも長尺の胴体部 27を嵌め合 わせた状態で、下部胴体部 7の下端部に形成されたフランジ部 7aと胴体部 27の下 端部に形成されたフランジ部 27aとが溶接固定されている。その他の構成は、図 10 に示された光電子増倍管 20と同様である。
[0047] 図 12は、上述の光電子増倍管 1を備えた放射線検出装置の構成を示す図である。
この図 12において、放射線検出装置 21は、光電子増倍管 1の受光面板 3の上側 (外 側)に設置され、放射線を光に変換するシンチレータ 22を備えている。このような放 射線検出装置 21は光電子増倍管 1を有して 、るので、ホトカソード 4と収束電極 11と の導通の安定性が確保されるととともに、ホトカソード 4と収束電極 11との導通状態を 簡単に確認することができる。 [0048] (第 2実施例)
[0049] 図 13は、この発明に係る光電子増倍管の第 2実施例の底部構造を示す平面図で あり、図 14は、図 13中の ΧΠΙ-ΧΠΙ線に沿った光電子増倍管 28の断面構造を示す図 である。この第 2実施例に係る光電子増倍管 28は、第 1実施例に係る光電子増倍管 1おけるステム 5に代えて、ステム 29を有する。ステム 29は、上述のベース材 14と同 質の円板状ベース材 30と、ベース材 30の上側(内側)に接合された上側押え材 15と により構成された 2層構造を有する。つまり、光電子増倍管 28におけるステム 29には 、第 1実施例における下側押え材 16が設けられていない。
[0050] 図 15は、ベース材 30の構成を示す平面図であり、図 16は、ベース材 30の底部構 造を示す平面図である。ベース材 30の下部中央部分には、ベース材 30が溶融によ り浸出するための円形状のベース材浸出凹部 30d (図 17参照)が形成されている。
[0051] また、ベース材 30には、上側がステムピン 6の外径とほぼ同径であり、下側がステム ピン 6の外径よりも大き 、径を有する複数( 15個)の開口 30aがベース材 30の外周に 沿うように形成されている。ベース材 30の開口 30aのうち、アノードピン 13が通る開口 30aを含む所定の 4箇所の開口は、位置決め用治具の進入を可能にすべぐ下側の 外径が他の開口 30aの下側の外径よりも大きい径である大径開口 30bである。収束 電極ピン 50それぞれは、大径開口 30bを除く開口 30aに揷通される。そして、ベース 材 30の下面側部分において、収束電極ピン 50が通る 4つの開口 30aのうちの一つ( 開口 30cとする)を含む領域には、ベース材 30の周縁まで延びる切欠き部 61が形成 されている。
[0052] これらベース材 30及び上側押え材 15は、図 14に示されたように、開口 30a、 15a 及び大径開口 30b、 15bの軸心位置を合わせた状態で重ね合わされる。その後、ベ ース材 30及び上側押え材 15は、開口 30a、 15aにそれぞれステムピン 6を揷通させ た状態で、ベース材 30の溶融によって融着接合される。より具体的には、ベース材 3 0の上面に上側押え材 15が密着しているステム 29には、ステムピン 6がベース材 30 の開口 30aの下側部分及び上側押え材 15の開口 15aを揷通した状態で、ステム 29 の上面及び下面における各ステムピン 6の貫通部の全周囲にベース材 30を底面と する凹部 29aが形成される。このとき、これら凹部 29aの底面においてステムピン 6は ベース材 30に直接接合して 、る。
[0053] これら複数の凹部 29aのうち、ベース材 30の切欠き部 61及び開口 30cによって形 成される一つの凹部 29aは、段状をもった溝部 62となる。溝部 62は、ベース材 30の 切欠き部 61によって形成され、ステム 29の縁部まで延びる外側凹部 62aと、ベース 材 30の開口 30cによって外側凹部 62aの内側に形成され、ベース材 30を底面とする 内側凹部 62bとにより構成されている。
[0054] このようなステム 29の製造においても、第 1実施例に係る光電子増倍管 1における ステム 5と同様の方法が適用可能である。
[0055] 具体的には、まず図 17中の領域 (a)に示されたように、ベース材 30及び上側押え 材 15が、開口 30a、 15aの軸心位置を合わせた状態で重ね合わされる。その後、ベ ース材 30に下部胴体部 7が嵌め込まれるとともに開口 30a、 15aにステムピン 6が揷 通された状態で、ステムピン 6の両端部をそれぞれ保持した上下 2つの位置決め用 治具の突起部が大径開口 30b、 15bにそれぞれ進入する。
[0056] 以上のようにセットされたステム 29が電気炉に投入された後、第 1実施例と同様の 条件下で焼結処理が行われる。この焼結処理により、図 17中の領域 (b)に示された ように、ベース材 30と上側押え材 15、ステムピン 6及び下部胴体部 7とがベース材 30 の溶融によって融着される。このとき、位置決め用治具の突起部の端面によって大径 開口 30b、 15b内でのベース材 30の高さ方向の位置決めがなさる。また、溶融した ベース材 30の余剰部分はベース材浸出凹部 30d内に逃がされる。このため、上側押 ぇ材 15の開口 15a及びベース材 30の開口 30aの下側部分を通じてベース材 30がス テム 29の表面にはみ出すことは殆ど無い。その結果、溝部 62を含む複数の凹部 29 aがステム 29に形成されることになる。
[0057] 図 14に戻り、ステム 29の下面における 1本の収束電極ピン 50の貫通部を含む領域 に形成された溝部 52内には、導電性ペースト 53が塗布される。この構成により、光電 子増倍管 28においても、ホトカソード 4と収束電極 11とは、上部胴体部 2、下部胴体 部 7、導電性ペースト 53及び収束電極ピン 50を介して電気的に接続されることにな る。その結果、第 1実施例と同様に、ホトカソード 4と収束電極 11との導通安定性が確 保されるとともに、ホトカソード 4と収束電極 11との導通状態の確認が容易に行える。 [0058] なお、この第 2実施例において、ステム 29はベース材 30と上側押え材 15とにより構 成された 2層構造を有する。し力しながら、ステム 29はベース材と下側押え材とにより 構成された 2層構造であってもよい。この場合、下側押え材の下面 (外側の面)には 溝部 62を含む複数の凹部が形成され、溝部 62内に導電性ペースト 63が塗布されれ ばよい。また、この第 2実施例において、図 9〜図 12に示された構成が適用されても よい。
[0059] (第 3実施例)
[0060] 図 18は、この発明に係る光電子増倍管の第 3実施例の底部構造を示す平面で あり、図 19は、図 18中の XVIII-XVIII線に沿った光電子増倍管 34の断面構造を示す 図である。この第 3実施例に係る光電子増倍管 34は、第 1実施例に係る光電子増倍 管 1におけるステム 5に代えて、ステム 35を有する。ステム 35は、ベース材 14と同質 の円板状ベース材 36による単層構造を有する。つまり、光電子増倍管 34におけるス テム 35には、上側押え材 15及び下側押え材 16が設けられていない。
[0061] 図 20は、ベース材 36の構成を示す平面図であり、図 21は、ベース材 36の底部構 造を示す平面図である。ベース材 36の下部中央部分には、ベース材 36が溶融によ り浸出するための円形状のベース材浸出凹部 36d (図 22参照)が形成されている。
[0062] また、ベース材 36には、中間部分がステムピン 6の外径とほぼ同径であり、上部及 び下部がステムピン 6の外径よりも大きい径を有する複数(15個)の開口 36aがべ一 ス材 36の外周に沿うように形成されている。これら開口 36aのうちアノードピン 13が通 る開口 36aを除く所定の 3箇所の開口は大径開口 36bである。この大径開口 36bは、 その上部及び下部の外径が、押え用治具の進入を可能にすべぐ他の開口 36aの 上部及び下部の外径よりも大きくなつている。また、アノードピン 13が通る開口 36aの 下部の外径も、押え用治具の進入を可能にすべぐ他の開口 36aの上部及び下部の 外径よりも大きくなつている。収束電極ピン 50は、大径開口 36bを除く開口 36aに揷 通される。そして、ベース材 36の下面側部分において、収束電極ピン 50が通る 4つ の開口 36aのうちの一つ(開口 36cとする)を含む領域には、ベース材 36の周縁まで 延びる切欠き部 71が形成されている。
[0063] ベース材 36は、図 19〖こ示されたよう〖こ、開口 36aにそれぞれステムピン 6を通した 状態で、ベース材 36の溶融によってステムピン 6と融着接合されている。より具体的 には、ステムピン 6がベース材 36の開口 36aの上部及び下部を揷通した状態で、ス テム 35の上面及び下面におけるステムピン 6の貫通部の全周囲にベース材 36を底 面とする凹部 35aが形成されている。これら凹部 35aの底面においてステムピン 6が ベース材 36に直接接合されている。
[0064] これら複数の凹部 35aのうち、ベース材 36の切欠き部 71及び開口 36cによって形 成される一つの凹部 35aが、段状をもった溝部 72となる。すなわち、溝部 72は、ベー ス材 36の切欠き部 71によって形成され、ステム 35 (ベース材 36)の縁部まで延びる 外側凹部 72aと、ベース材 36の開口 36cによって外側凹部 72aの内側に形成され、 ベース材 36を底面とする内側凹部 72bとにより構成される。
[0065] このようなステム 35を製造する場合にも、第 1実施例に係る光電子増倍管 1におけ るステム 5と同様の方法が適用可能である。具体的には、まず図 22中の領域 (a)に示 されたように、ベース材 36に下部胴体部 7が嵌め込まれるとともに、ベース材 36の開 口 36aにステムピン 6が揷通された状態で、ステムピン 6の両端部をそれぞれ保持し た上下 2つの押え用治具の突起部が大径開口 36bにそれぞれ進入する。
[0066] 続いて、セットされたステム 35が電気炉に投入された後、前述と同様の条件下で焼 結処理が行われる。この焼結処理により、図 22中の領域 (b)に示されたように、ベー ス材 36とステムピン 6及び下部胴体部 7とがベース材 36の溶融によって融着される。 このとき、押え治具の突起部の端面によって大径開口 36b内でのベース材 36の高さ 方向の位置決めがなされる。なお、溶融したベース材 36の余剰部分はベース材浸 出凹部 36d内に逃がされる。その結果、溝部 72を含む複数の凹部 35aがステム 35 に形成されること〖こなる。
[0067] 図 19に戻り、ステム 35の下面における収束電極ピン 50の貫通部を含む領域に形 成された溝部 72内には、導電性ペースト 53が塗布されている。これにより、光電子増 倍管 34においても、ホトカソード 4と収束電極 11は、上部胴体部 2、下部胴体部 7、 導電性ペースト 53及び収束電極ピン 50を介して電気的に接続されることになる。そ の結果、第 1実施例と同様に、ホトカソード 4と収束電極 11との導通安定性が確保さ れるとともに、ホトカソード 4と収束電極 11との導通状態の確認が容易に行える。 [0068] なお、この第 3実施例においても、図 9〜図 12に示された構成が採用可能であるこ とは言うまでもない。
[0069] 以上、この発明に係る光電子増倍管及びそれを含む放射線検出装置の好適な実 施例について幾つ力説明してきたが、この発明は、上述の実施例には限定されるも のではない。例えば上述の実施例では、ステムにおいて 4本の収束電極ピン 50を貫 通する 4つの貫通部のうちの 1つに対して溝部が形成された構成が示されている。し 力しながら、溝部の数としては特に 1つに限られず、複数あっても良い。
[0070] また、上述の実施例において、溝部は外側凹部と内側凹部とにより構成された 2段 構造を有する。しカゝしながら、例えば溝部内に塗布された導電性ペースト 53ゃ該溝 部に充填された導電性ガラス 530bが簡単には抜け出ないのであれば、溝部は必ず しも 2段構造でなくてもよい。
[0071] 以上の本発明の説明から、本発明を様々に変形しうることは明らかである。そのよう な変形は、本発明の思想および範囲力 逸脱するものとは認めることはできず、すべ ての当業者にとって自明である改良は、以下の請求の範囲に含まれるものである。 産業上の利用可能性
[0072] 以上のようにこの発明に係る光電子増倍管は、放射線検出装置を初め、医療、環 境等の種々の分野における検出装置や携帯型計測器へ適用され得る。

Claims

請求の範囲
[1] 中空胴体部と、該中空胴体部の一端に設けられた受光面板と、該中空胴体部の他 端に設けられたステムとにより構成され、内部が所定の真空度まで減圧された密封容 器と、
前記密封容器内に設けられ、前記受光面板を通過した入射光を電子に変換するホ トカソードと、
前記ホトカソードと前記ステムとの間に位置するよう前記密封容器内に設けられ、前 記ホトカソードから放出された電子を順次増倍していく複数段のダイノードにより構成 された電子増倍部と、
前記ホトカソードと前記電子増倍部との間に位置するよう前記密封容器内に設けら れ、前記ホトカソードから放出された電子を収束させて前記電子増倍部に導くための 収束電極と、
前記密封容器内に収納されるとともに前記電子増倍部から放出された電子を受け 出力信号として取り出すためのアノードと、そして、
前記ステムを貫通した状態で該ステムに支持され、それぞれ前記収束電極、前記 複数段のダイノード及び前記アノードに電気的に接続された複数のステムピンとを備 えた光電子増倍管であって、
前記ステムは、前記ステムピンを貫通させた状態で直接支持する、絶縁性材料から なるベース材を含み、
前記密封容器の一部を構成する中空胴体部は導電性材料カゝらなり、前記ホトカソ ードに電気的に接続されるとともにその一部が前記ステムの側面を包囲した形状を 有し、
前記受光面板に面した側とは反対側に位置する前記ステムの外側部分には、前記 複数のステムピンのうち前記収束電極に接続された収束電極ピンの貫通部を取り囲 むとともに前記ステムの縁部まで伸びた形状を有する溝部が設けられ、そして、 前記溝部内には、前記収束電極ピンと前記中空胴体部とを電気的に接続させるた めの導電性材料が充填されて 、る光電子増倍管。
[2] 請求項 1記載の光電子増倍管において、 前記導電性材料は導電性ペーストを含み、該導電性ペーストは前記中空胴体部の 内壁面で堰き止められるように前記溝部内に塗布されて 、る。
[3] 請求項 1記載の光電子増倍管において、
前記導電性材料は導電性ガラスを含み、該導電性ガラスは前記中空胴体部の内 壁面で堰き止められるように前記溝部内に充填されて!、る。
[4] 請求項 1〜3の!、ずれか一項記載の光電子増倍管にお!、て、
前記溝部は、前記収束電極ピンから前記ステムの縁部まで延びた第 1凹部と、前記 ベース材を底面として前記収束電極ピンを取り囲む第 2凹部により構成されている。
[5] 請求項 1〜4のいずれか一項に記載の光電子増倍管と、そして、
前記ステムとともに前記受光面板を挟むよう前記密封容器の外部に配置され、到達 した放射線を光に変換するシンチレータを備えた放射線検出装置。
PCT/JP2005/019724 2004-10-29 2005-10-26 光電子増倍管及びそれを含む放射線検出装置 WO2006046618A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-316300 2004-10-29
JP2004316300A JP2008027580A (ja) 2004-10-29 2004-10-29 光電子増倍管及び放射線検出装置

Publications (1)

Publication Number Publication Date
WO2006046618A1 true WO2006046618A1 (ja) 2006-05-04

Family

ID=36227860

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/019724 WO2006046618A1 (ja) 2004-10-29 2005-10-26 光電子増倍管及びそれを含む放射線検出装置

Country Status (2)

Country Link
JP (1) JP2008027580A (ja)
WO (1) WO2006046618A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5854539A (ja) * 1981-09-08 1983-03-31 ア−ルシ−エ− コ−ポレ−ション 電子放出管
JPH0554849A (ja) * 1991-01-17 1993-03-05 Burle Technol Inc 光電子増倍管
JPH06310086A (ja) * 1993-04-28 1994-11-04 Hamamatsu Photonics Kk 光電子増倍管

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5854539A (ja) * 1981-09-08 1983-03-31 ア−ルシ−エ− コ−ポレ−ション 電子放出管
JPH0554849A (ja) * 1991-01-17 1993-03-05 Burle Technol Inc 光電子増倍管
JPH06310086A (ja) * 1993-04-28 1994-11-04 Hamamatsu Photonics Kk 光電子増倍管

Also Published As

Publication number Publication date
JP2008027580A (ja) 2008-02-07

Similar Documents

Publication Publication Date Title
US7135670B2 (en) Photomultiplier and radiation detector
JP5439079B2 (ja) 電子管
WO2007099958A1 (ja) 光電子増倍管、放射線検出装置および光電子増倍管の製造方法
JP4804173B2 (ja) 光電子増倍管および放射線検出装置
JP4711420B2 (ja) 光電子増倍管および放射線検出装置
US7238928B2 (en) Photomultiplier with particular stem/pin structure
WO2006046617A1 (ja) 光電子増倍管及びそれを含む放射線検出装置
JP2002042636A (ja) 光電陰極および電子管
WO2006046618A1 (ja) 光電子増倍管及びそれを含む放射線検出装置
WO2006046619A1 (ja) 光検出器
WO2006046616A1 (ja) 光電子増倍管及びそれを含む放射線検出装置
JP3872419B2 (ja) 光電陰極、電子管及び光電陰極の組立方法
US7189956B2 (en) Photomultiplier and radiation detector
JP4754805B2 (ja) 光電子増倍管及び放射線検出装置
WO2007111103A1 (ja) 光電子増倍管および放射線検出装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV LY MD MG MK MN MW MX MZ NA NG NO NZ OM PG PH PL PT RO RU SC SD SG SK SL SM SY TJ TM TN TR TT TZ UG US UZ VC VN YU ZA ZM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SZ TZ UG ZM ZW AM AZ BY KG MD RU TJ TM AT BE BG CH CY DE DK EE ES FI FR GB GR HU IE IS IT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05805220

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP