WO2006046417A1 - 3,3,3-トリフルオロプロピオン酸の製造方法 - Google Patents

3,3,3-トリフルオロプロピオン酸の製造方法 Download PDF

Info

Publication number
WO2006046417A1
WO2006046417A1 PCT/JP2005/018941 JP2005018941W WO2006046417A1 WO 2006046417 A1 WO2006046417 A1 WO 2006046417A1 JP 2005018941 W JP2005018941 W JP 2005018941W WO 2006046417 A1 WO2006046417 A1 WO 2006046417A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
acid
formula
carbon atoms
trifluoropropene
Prior art date
Application number
PCT/JP2005/018941
Other languages
English (en)
French (fr)
Inventor
Takeo Komata
Masaki Fujiwara
Shinya Akiba
Kenji Hosoi
Satoru Narizuka
Original Assignee
Central Glass Company, Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Company, Limited filed Critical Central Glass Company, Limited
Publication of WO2006046417A1 publication Critical patent/WO2006046417A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides

Definitions

  • the present invention relates to a method for producing 3, 3, 3 _trifluoropropionic acid useful as an intermediate for pharmaceuticals' agricultural chemicals and as a raw material or synthetic intermediate for the production of functional materials such as fluoropolymers. .
  • Trifluoropropionic acid is an extremely important compound as an intermediate for pharmaceuticals' agricultural chemicals and as a raw material for producing functional materials such as fluorine-containing polymers or as a synthetic intermediate. Many manufacturing methods have been reported so far.
  • Non-Patent Document 1 the carboxylic acid moiety of malonic acid monoethyl ester is substituted with sulfur tetrafluoride.
  • Non-Patent Document 2 discloses a method for producing 3,3,3_trifluoropropionic acid by obtaining CF CH COOSO OH through a multi-step complex reaction and then hydrolyzing it.
  • Non-Patent Document 3 discloses a method for producing 3,3,3_trifluoropropionic acid in four stages using cyclohexanecarboxylic acid and 1,1-difluoroethylene as starting materials. .
  • Non-Patent Document 4 discloses a method of using trifluoroacetate as a starting material, and converting it to 3, 3, 3_trifluoropropionic acid using mercury oxide in sulfuric acid.
  • 3_bromo_1_propene is trifluoromethylated with trifluoromethylcadmium bromide, then oxidized with potassium permanganate and crown ether, and 3, 3, 3_triflur A method for producing olopropionic acid is disclosed.
  • Non-Patent Document 6 reported that 3, 3, 3-trifluoropropionic acid was present in the mixture obtained by working perfluoro-2- (trifluoromethyl) propene and trifluoromethylthiocopper. ing.
  • Non-Patent Document 7 t-butyldimethylsilyl enol ether of t-butyl acetate is used.
  • a method for producing 3, 3, 3-trifluorophenolic acid by radical addition of trifluoromethyl iodide is disclosed.
  • 3, 3, 3-trifluoropropionic acid is produced from dimethyl trifluoromethyl malonate using hydrobromic acid or hydrochloric acid, or 1, 1, 3, 3, 3_pentafluoro —
  • An example of producing 3, 3, 3_trifluoropropionic acid from 2_trifluoromethylpropylmethyl ether is disclosed.
  • Non-Patent Document 8 3, 3, 3-trifluoropropene is converted to 3, 3, 3-trifluoro-1- 1-propanol using mercury nitrate (II) and glacial acetic acid.
  • a method of oxidizing to 3,3,3-trifluoropropionaldehyde with sodium chromate is disclosed.
  • Patent Document 3 discloses a method for producing 3, 3, 3-trifluoropropionaldehyde by reacting 3, 3, 3-trifluoropropene with water in the presence of a palladium salt. .
  • Non-Patent Document 9 discloses a method for producing 3,3,3-trifluoropropionaldehyde by attaching trifluoromethyl iodide to ethyl vinyl ether and hydrolyzing it.
  • Patent Document 4 1-black mouth-3,3,3-trifluoropropene is converted into 3,3,3-trifluoropropenyl acetate using palladium salt, sodium acetate, and glacial acetic acid, A method for producing 3, 3, 3_trifluoropropionaldehyde by hydrolyzing this is disclosed.
  • Patent Document 5 3,3,3_trifluoropropionaldehyde is produced by hydrolyzing alkyl 3,3,3_trifluoropropenyl ether with a hydrofluoric acid aqueous solution. A method is disclosed.
  • Patent Document 5 Converted to OR or CF CH (OR), and subsequently hydrolyzed as in the method of Patent Document 5.
  • a method for producing 3,3,3-trifluoropropionaldehyde by decomposition is disclosed.
  • Patent Document 2 1-chloro- 3, 3, 3-trifluoropropyl acetate is produced by addition of trifluoromethanesulfonyl chloride to vinyl acetate, and this is hydrolyzed with sulfuric acid to 3, 3,
  • a method for producing 3_trifluoropropionaldehyde is disclosed.
  • Non-Patent Document 10 dimethyl- [1— (2-trifluoromethyl_3,3,3_trifluoropropenyl)] amine, which is a trifluoromethyl group-containing enamine, is present in magnesium sulfate hydrate.
  • a method for producing 3,3,3_trifluoropropionaldehyde by reacting for the following 28 days is disclosed.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2004-115377
  • Patent Document 2 Special Table 2003—522743
  • Patent Document 3 JP-A 63-63633
  • Patent Document 4 U.S. Patent 5,777,184
  • Patent Document 5 U.S. Patent 2,715,144
  • Patent Document 6 US Patent 6, 111, 139 Specification
  • Non-special reference 1 Journal oi Chemical and Engineering Data, Vol. 16, No. pp. 376-377, 1971 (USA)
  • Non-Patent Document 2 Khimiya Geterotsiklicheskikh Soedinenii, No. 10, pp. 1321-1324, 1973 ( Russian)
  • Non-Patent Literature 3 Journal of Fluorine Chemistry, Vol. 21, pp. 99-106, 198 2 (Netherlands)
  • Non-Patent Document 4 Acta Chemica Scandinavica, 43, 69-73, 1989 (Sweden)
  • Non-Patent Document 5 Journal oi Chemical Society, Perkin Transaction 1, 21 47-2149, 1991 (UK)
  • Non-Patent Document 6 Journal of Fluorine Chemistry, 63rd pp. 253-264, 1993 (Netherlands)
  • Non-Patent Document 7 Tetrahedron Letters, No. 37, No. 11, pp. 1829-1832, 19 96 (UK)
  • Non-Patent Document 8 Journal of Fluorine Chemistry, the 30th Certificates, 153 pages to 158 pages, 19 8 5 years (Netherlands)
  • Non-Patent Document 9 Zhurnal Organicheskoi Khimii, No. 25, No. 7, pp. 1376-1380 1989 (Soviet Union)
  • Non-Patent Document 10 Izvestiya Aka emii Nauk ;, Seriya Khimicheskaya, brother 5 ⁇ , pp. 1069-1071 1997 ( Russian)
  • Non-Patent Document 1 has a high reactivity of SF as a fluorinating agent and is difficult to handle.
  • Non-Patent Document 2 Non-Patent Document 3
  • Non-Patent Document 4 uses mercury oxide
  • Non-Patent Document 5 uses trifluoromethylcadmium bromide, which limits the industrial use.
  • the method of Non-Patent Document 6 uses trifluoromethylthiocopper which is difficult to obtain and has a problem that 3,3,3_trifluoropropionic acid is not the main product.
  • the method of Non-Patent Document 7 requires the use of expensive trifluoromethyl iodide.
  • Patent Document 1 The method of Patent Document 1 is industrially advantageous because the raw materials 1,1,3,3,3_pentafluoroguchi 2_trifluoromethylpropyl methyl ether and dimethyl trifluoromethylmalonate are expensive. It's not a good way.
  • Patent Document 2 is an oxidant that is used as an example of a power that is an example of obtaining 3, 3, 3_trifluoropropionic acid by oxidizing 3,3,3_trifluoropropionic aldehyde.
  • Oxone registered trademark 2KHSO ⁇ SO 'KHS ⁇
  • 2KHSO ⁇ SO 'KHS ⁇ is expensive and difficult to handle industrially because it is highly reactive and difficult to handle.
  • Non-Patent Document 8 uses harmful chemicals such as mercury and chromic acid, and the methods of Patent Document 3 and Patent Document 4 require a large amount of expensive palladium salt.
  • the method of Patent Document 5 also uses high-valent trifluoromethyl iodide, and the method of Patent Document 5 uses hydroiodic acid that is highly corrosive and difficult to handle.
  • the method of Patent Document 6 also uses an inexpensive starting material, expensive long-chain alkanoic acid (hexanoic acid) is used for hydrolysis, and the method of Patent Document 2 is expensive. Requires trifluoromethanesulfonyl chloride.
  • Non-Patent Document 10 is a rare example of converting trifluoromethyl group-containing enamines to 3, 3, 3_trifluoropropionaldehyde. There is a problem that 3_trifluoropropionaldehyde is not the main product.
  • the 1-halogeno-1,3,3_trifluoropropene is a cyclic secondary amine represented by the formula [2].
  • X represents a halogen (fluorine, chlorine, bromine or iodine), a perfluoroalkane sulfonate group having 14 carbon atoms, an alkyl sulfonate group having 14 carbon atoms, or an aryl sulfonate group.
  • A is an oxygen atom, a sulfur atom, a selenium atom, a tellurium atom, CR 1 ⁇ group (wherein R 1 and R 2 are each independently a hydrogen atom, the number of carbon atoms: the 1-6 Represents a linear, branched or cyclic alkyl group), SiR 3 R 4 group (where R 3 and R 4 are each independently a hydrogen atom, a straight chain, branched chain or cyclic group having 6 to 6 carbon atoms).
  • NR 5 group here, represents a hydrogen atom, a straight chain, branched chain or cyclic alkyl group having 16 carbon atoms
  • PR 6 group where R 6 represents 16 carbon atoms
  • BR 7 group where R 7 represents a hydrogen atom, a straight, branched or cyclic alkyl group having from 6 to 6 carbon atoms.
  • M and n each independently represents an integer of:! To 3;
  • halogens of burhalides that do not have fluorine such as 1logenopropene
  • 1logenopropene are inactive and do not readily substitute for nitrogen atoms.
  • 1-halogeno 3, 3, 3-trifluoropropenes having an electron-withdrawing trifluoromethyl group surprisingly show high reactivity with cyclic secondary amines. It was found that the group-containing enamine was produced in high yield.
  • halogen substitution reaction in this 1-halogeno 3, 3, 3 trifluoropropene is carried out by using normal linear or branched primary to tertiary amines such as methylamine, jetylamine and triethylamine, and It does not proceed with cyclic tertiary amines such as pyridine.
  • the inventors further obtained the trifluoromethyl group-containing enamine represented by the formula [3] thus obtained by hydrolysis under an acidic condition. It was found that it was converted to 3-trifluoropropionaldehyde (second step).
  • Patent Document 6 As shown in Patent Document 6, the obtained 3, 3, 3_ trifluoropropionaldehyde is oxidized with an oxidizing agent to produce the desired 3, 3, 3_ trifluoropropionic acid. (Third step) and can achieve the object of the present invention.
  • Patent Document 2 As a method for oxidizing 3, 3, 3_trifluoropropionaldehyde, the method described in Patent Document 2 is industrially used in that it uses a persulfuric acid-based oxidizing agent that is difficult to handle. It was not always satisfactory, but it was a powerful force. However, the inventors have found that nitric acid which is inexpensive and has a small handling load can be suitably used for this oxidation reaction. As a result, it is also much easier to convert 3,3,3—trifnolic ropropiprone nanodehydride to 3,3,3—trifluoropropionic acid. became.
  • 1-halogeno-1,3,3_trifluoropropene which can be obtained at low cost, it can be easily produced in a small number of steps, with good yield and good yield.
  • 3, 3_trifluoropropionic acid which is useful as a raw material for producing functional materials such as fluoropolymers or as a synthetic intermediate, can be produced on an industrial scale.
  • a method for producing 3, 3, 3-trifluoropropionic acid including the following three steps (first step to third step).
  • Second step A step of hydrolyzing the trifluoromethyl group-containing enamine obtained in the first step to obtain 3, 3, 3-trifluoropropionaldehyde.
  • Third step A step in which 3, 3, 3 _trifluoropropionaldehyde obtained in the second step is oxidized with an oxidizing agent to obtain the desired 3, 3, 3_ trifluoropropionic acid.
  • the various 1-halogeno_3, 3, 3_trifluoropropenes described above may be used singly or various mixtures may be used. In particular, there is no problem even if the trans form and the cis form are mixed. When a specific cyclic secondary amine is used, either trans or cis is used. However, a trans-trifluoromethyl group-containing enamine is almost selectively produced.
  • a mixture of trans and cis forms may be produced.
  • the method according to the present invention has a feature that a raw material can be procured at a lower cost because a mixture of a trans isomer and a cis isomer can be used as it is.
  • cyclic secondary amine represented by the formula [2] a 6-membered cyclic secondary amine represented by the following formula [4] is particularly preferred and exhibits reactivity.
  • Equation [4] the definition of E is the same as A in Equation [2].
  • morpholine, azetidine, pyrrolidine, piperidine, 3-methylol pyrrolidine, 3-methylbiperidine, 4-methylbiperidine, piperazine, 1-methylbiperazine are preferred because of their availability.
  • the reaction in the first step requires a basic substance as an acid acceptor for neutralizing the hydrogen halide produced during the reaction.
  • a basic substance in the absence of a separate basic substance in the system, the above-mentioned “cyclic secondary amine” also functions as this acid acceptor.
  • Cyclic secondary amine when a basic substance coexists as an acid acceptor, “Cyclic secondary amine” is used only as a reaction substrate.
  • the amount of the cyclic secondary amine used is usually 1 ⁇ 8 monole to 20 monole per 1 mol of 1 halogeno 3, 3, 3 trifluoropropene represented by the formula [1], preferably The amount is 2.0 mol to 10 mol, more preferably 2.0 mol to 6.0 mol.
  • the generated 3, 3, 3_trifluoropropionaldehyde is separated by distillation or the like, and then a base such as an inorganic base is added to the residual liquid, Unreacted cyclic secondary amine can be recovered by separating into two layers from the aqueous phase. The cyclic secondary amine collected in this way can be reused in the next batch.
  • the acid acceptor is not particularly limited as long as it is a basic substance other than the above-mentioned “cyclic secondary amine”, but sodium hydroxide, sodium carbonate, sodium hydrogen carbonate, potassium hydroxide, potassium carbonate, potassium hydrogen carbonate,
  • inorganic bases such as sodium hydride, sodium methoxide, sodium ethoxide, sodium tert-butoxide, potassium tert-butoxide, triethylamine, jetylamine, 1,8-diazabicyclo [5, 4, 0] _ 7 _undecene, etc.
  • an inorganic base is used, and sodium hydroxide, sodium carbonate, and sodium bicarbonate are particularly preferred because they are inexpensive and have good reactivity.
  • the amount of the acid acceptor used is usually 0.8 mol to 1.2 monole with respect to 1-halogeno 3, 3, 3 _ trifluoropropene, It is preferably 0.9 monole to 1.1 mol.
  • the cyclic secondary amine acts only as a reaction substrate, it is not necessary to use it excessively, and its use amount is usually 0 with respect to 1 halogeno 3, 3, 3-trifluoropropene. 8 moles to 1.2 monoles, preferably 0.9 monoles to 1.1 monoles.
  • the use of more than this does not affect the reactivity, but is not preferable from the viewpoint of productivity.
  • the reaction in the first step is usually performed in an inert gas such as nitrogen or argon.
  • the pressure is not particularly limited, but may be sealed with an inert gas, or may be performed under pressure of the inert gas.
  • the reaction is preferably carried out under atmospheric pressure.
  • the reaction time is not particularly limited, but it is preferable to confirm the progress of the reaction by gas chromatography or the like and confirm that the reaction has approached the end point, and then terminate the reaction step.
  • a cyclic amine as a base and solvent, but there is no particular limitation as long as it is not involved in the reaction, for example, hydrocarbons such as hexane, benzene, toluene, xylene, etc.
  • Ethers such as jetyl ether, tetrahydrofuran, diisopropyl ether, dioxane, halogenated hydrocarbons such as dichloromethane and chloroform, alkyl ketones such as acetone, methanol, ethanol, ethylene glycol, jet Examples include alcohols such as lenglycol and glycerin, acetonitrile, aprotic polar solvents such as N, N-dimethylformamide, dimethyl sulfoxide, and hexamethylphosphoric triamide, and water.
  • Ethers such as jetyl ether, tetrahydrofuran, diisopropyl ether, dioxane, halogenated hydrocarbons such as dichloromethane and chloroform, alkyl ketones such as acetone, methanol, ethanol, ethylene glycol, jet Examples include alcohols such as lenglycol and glycerin, acetonitrile, aprotic polar
  • the reaction temperature is usually _50 ° C to 100 ° C, preferably _10 ° C to 100 ° C, more preferably _5 ° C to 60 ° C.
  • the second step of the present invention will be described.
  • the trifluoromethyl group-containing enamine represented by the formula [3] obtained in the first step is hydrolyzed in the presence of an acid to produce 3, 3, 3-trifluoro. This is a step of obtaining propionaldehyde.
  • the trifluoromethyl group-containing enamine used in the second step one obtained by subjecting the reaction solution to a purification operation after completion of the first step can be used. It can also be used in the second step without performing it. When used without isolation and purification, it is also possible to carry out the second step continuously using the same reactor as in the first step.
  • a solid such as a precipitated salt is filtered off, and the trifluoromethyl group-containing enamine is obtained by distilling off excess acid acceptor or solvent from the obtained filtrate.
  • the crude product can also be subjected to hydrolysis in the second step.
  • the acid used in the hydrolysis in the second step is not particularly limited as long as it is a Bronsted acid, but an inorganic acid such as hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, silicic acid, hydrobromic acid, boric acid, Examples thereof include organic acids such as formic acid, acetic acid, propionic acid, butyric acid, valeric acid, pivalic acid, oxalic acid, succinic acid, adipic acid, crotonic acid, methanesulfonic acid, and trifluoromethanesulfonic acid. Inorganic acids are preferably used, and hydrochloric acid, sulfuric acid and nitric acid are particularly preferably used.
  • the amount used varies depending on the valence of the acid used.
  • the trifluoromethyl group-containing enamines represented by the general formula [3] obtained in the first step 1 The amount of the acid used is 1 mol or more, preferably:!
  • the amount of acid used is 0.5 mol or more with respect to 1 mol of the trifluoromethyl group-containing enamine represented by the general formula [3] obtained in the first step. Yes, preferably from 0.5 to 2.5 monolayers.
  • the second step is performed as it is with the unreacted cyclic secondary amine remaining, the amount required to neutralize the cyclic secondary amine is added to the amount of the acid.
  • the amount of water used in this step is not particularly limited as long as it is 1 mol or more with respect to 1 mol of the trifluoromethyl group-containing enamine represented by the general formula [3] as a substrate. Is:! ⁇ 1000 monole, more preferably:! ⁇ 100 mol. Although it may be used more than that, it is not preferable because the yield per volume decreases. Moreover, when water is contained in the above-mentioned acid, the water may be used.
  • the acid concentration in this step is not particularly limited, but 10% to 90% is preferable.
  • This step is preferably performed without using a reaction solvent, but may be used in some cases.
  • the solvent used is not particularly limited as long as it does not participate in the reaction.
  • hydrocarbons such as hexane, benzene, toluene and xylene
  • ethers such as jetyl ether, tetrahydrofuran, diisopropyl ether and dioxane, dichloromethane, etc.
  • halogenated hydrocarbons such as black mouth form, alcohols such as methanol, ethanol, ethylene glycol, diethylene glycol and glycerin.
  • the reaction temperature is not particularly limited, but is usually 50 ° C to + 250 ° C, preferably 20 ° C to
  • It is + 200 ° C, more preferably in the range of 10 ° C to + 150 ° C.
  • the treatment after the reaction is not particularly limited.
  • the target solution in the second step can be obtained by a conventional method such as direct distillation of the reaction solution, extraction operation with an organic solvent, or distillation.
  • 3_Trifluoropropionaldehyde can be obtained.
  • the unreacted cyclic secondary amine which is the raw material of the first step
  • the reaction solution By adding an aqueous inorganic base solution to the residue obtained by distilling the product, the cyclic secondary amine can be separated from the aqueous phase into two layers and collected for reuse.
  • the third step is a step in which 3,3,3-trifluoropropionaldehyde obtained in the second step is oxidized with an oxidizing agent to obtain 3,3,3-trifluoropropionic acid.
  • this third step it is possible to use the reaction mixture obtained in the second step as a raw material as it is, or to isolate force 3, 3, 3_trifluoropropionaldehyde or excess It is preferable to separate the base and by-product salt before use in the raw material because good reactivity can be obtained.
  • oxidizing agent used in the third step potassium permanganate, potassium chromate, potassium dichromate, peracetic acid, trifluoroperacetic acid, sodium chlorate, sodium bromate, sodium iodate, Peracid-based oxidizing agents such as persulfuric acid-based oxidizing agents such as Oxone (registered trademark) (2KHSO ⁇ ⁇ SO 2 -KHSO 3) are preferred.
  • nitric acid can be used very suitably when performing the third step.
  • Nitric acid is a cheaper reagent than the above-mentioned peracids and is easy to handle in large quantities. Therefore, it is particularly preferred that the third step of the present invention uses nitric acid as an oxidizing agent.
  • nitric acid As nitric acid, nitric acid having a concentration of 30% or more is usually used, but it is preferably 50 to 90%, more preferably 60 to 70% in consideration of productivity and economy.
  • the amount of nitric acid used is usually 1 mol or more with respect to 1 mol of 3,3,3-trifluoropropionaldehyde obtained in the second step.
  • the amount is preferably 1 to 5 moles, and more preferably:! To 2 moles. Although it may be used more than that, it is not preferable in view of productivity and economy.
  • the reaction temperature is usually from -10 ° C to 100 ° C, preferably -5 ° C to 70 ° C, more preferably in the range of 0 ° C to 50 ° C.
  • nitric acid When nitric acid is used as an oxidizing agent, it is preferable to coexist nitrite in order to perform the oxidation reaction more smoothly.
  • the amount of nitrite for nitrate 1 mol is generally from 0.5 to 2 0 mole 0/0, preferably:! ⁇ 15 Monore 0/0, more preferably, 2 to: 10 mole 0/0 It is.
  • the nitrite used for example, sodium nitrite and potassium nitrite are preferable.
  • the reaction in the third step is usually carried out in the atmosphere at atmospheric pressure.
  • the reaction time After confirming the progress of the reaction by gas chromatography or the like and confirming that the end point has been approached, it is preferable to terminate the reaction step.
  • reaction form of the third step the reaction is controlled by mixing the raw material 3, 3, 3-trifluoropropionaldehyde and the oxidizing agent sequentially or continuously. Is easy and preferable.
  • the treatment after the reaction is not particularly limited, but the reaction solution is brought into contact with an organic solvent, the target product is extracted into an organic phase, and then subjected to usual means such as distillation, to 3, 3, 3 _ The ability to obtain trifluoropropionic acid.
  • % of the composition analysis value represents “area%” of the composition obtained by directly measuring the product gas by gas chromatography.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

 1-ハロゲノ-3,3,3-トリフルオロプロペンと環状2級アミンとを反応させて、トリフルオロメチル基含有エナミンを製造する。このトリフルオロメチル基含有エナミンを加水分解して、3,3,3-トリフルオロプロピオンアルデヒドを得る。さらに3,3,3-トリフルオロプロピオンアルデヒドを酸化剤によって酸化することにより、3,3,3-トリフルオロプロピオン酸を得ることができる。

Description

明 細 書
3, 3, 3—トリフルォロプロピオン酸の製造方法
技術分野
[0001] 本発明は、医薬'農薬の中間体として、また含フッ素重合体等の機能性材料の製造 原料または合成中間体として有用な 3, 3, 3 _トリフルォロプロピオン酸の製造方法 に関する。
発明の背景
[0002] 3, 3, 3 トリフルォロプロピオン酸は、医薬'農薬の中間体として、また含フッ素重 合体等の機能性材料の製造原料または合成中間体として極めて重要な化合物であ るため、これまで多くの製造方法が報告されてきた。
[0003] 非特許文献 1では、マロン酸モノェチルエステルのカルボン酸部位を四フッ化硫黄
(SF )を用いてトリフルォロメチル基へと変換し、エステル部位を加水分解することに よって 3, 3, 3—トリフルォロプロピオン酸を製造する方法が開示されている。非特許 文献 2では、多段階の複雑な反応を経て CF CH COOSO OHを得た後に、これを 加水分解して 3, 3, 3 _トリフルォロプロピオン酸を製造する方法が開示されている。 非特許文献 3では、シクロへキサンカルボン酸と 1, 1—ジフルォロエチレンを出発原 料に用い、 4段階で 3, 3, 3_トリフルォロプロピオン酸を製造する方法が開示されて いる。
[0004] 非特許文献 4では、トリフルォロ酢酸ェチルを出発原料に用レ、、硫酸中、酸化水銀 を用いて 3, 3, 3_トリフルォロプロピオン酸に変換する方法が開示されている。非特 許文献 5では、 3 _ブロモ _ 1 _プロペンを臭化トリフルォロメチルカドミニゥムでトリフ ルォロメチル化し、次いで過マンガン酸カリウムとクラウンエーテルを用いて酸化し、 3 , 3, 3 _トリフルォロプロピオン酸を製造する方法が開示されている。非特許文献 6で は、パーフルオロー 2—(トリフルォロメチル)プロペンとトリフルォロメチルチオ銅を作 用させて得た混合物の中に 3, 3, 3—トリフルォロプロピオン酸があったと報告してい る。
[0005] 非特許文献 7では、酢酸 t ブチルの tーブチルジメチルシリルエノールエーテルに 対して、ヨウ化トリフルォロメチルをラジカル付加させることによって、 3, 3, 3—トリフノレ ォロプロピオン酸を製造する方法が開示されている。特許文献 1では、トリフルォロメ チルマロン酸ジメチルから、臭化水素酸や塩酸を用いて 3, 3, 3—トリフルォロプロピ オン酸を製造する例や、 1, 1 , 3, 3, 3 _ペンタフルォ口— 2_トリフルォロメチルプロ ピルメチルエーテルから 3, 3, 3_トリフルォロプロピオン酸を製造する例が開示され ている。
[0006] 3, 3, 3 _トリフルォロプロピオンアルデヒドを酸化して 3, 3, 3 _トリフルォロプロピ オン酸を得る技術としては、 Oxone (登録商標)(2KHSO ·Κ SO 'KHS〇)を酸化 剤として用いる例が知られている(特許文献 2)。
[0007] 一方、本発明に関連する技術として、上記特許文献 2において 3, 3, 3 _トリフルォ 口プロピオン酸の原料として用いられている 3, 3, 3 _トリフルォロプロピオンアルデヒ ドの製法について、種々の報告が行われている。
[0008] 非特許文献 8には 3, 3, 3—トリフルォロプロペンを硝酸水銀 (II)と氷酢酸などを用 いて 3, 3, 3—トリフルォロ一 1—プロパノールへと誘導し、これをクロム酸ナトリウムに より 3, 3, 3—トリフルォロプロピオンアルデヒドに酸化する方法が開示されている。ま た特許文献 3において、 3, 3, 3—トリフルォロプロペンをパラジウム塩の存在下、水 と反応させることで 3, 3, 3—トリフルォロプロピオンアルデヒドを製造する方法が開示 されている。非特許文献 9にはヨウ化トリフルォロメチルをェチルビニルエーテルに付 カロさせ、加水分解することによって 3, 3, 3—トリフルォロプロピオンアルデヒドを製造 する方法が開示されている。特許文献 4においては、 1—クロ口— 3, 3, 3—トリフルォ 口プロペンを、パラジウム塩と酢酸ナトリウム、そして氷酢酸を用いて酢酸 3, 3, 3—ト リフルォロプロぺニルへと変換し、これを加水分解することによって 3, 3, 3_トリフル ォロプロピオンアルデヒドを製造する方法が開示されている。
[0009] 特許文献 5においては、アルキル 3, 3, 3 _トリフルォロプロぺニルエーテルを、ョ ゥ化水素酸水溶液を用いてカ卩水分解して 3, 3, 3_トリフルォロプロピオンアルデヒド を製造する方法が開示されている。特許文献 6では 1 _クロ口 _ 3, 3, 3_トリフルォ 口プロペンを、 Rが炭素数:!〜 4のアルコール(R〇H)中で反応させ、 CF CH = CH
ORもしくは CF CH (OR)へと変換し、引き続いて特許文献 5の方法と同様に、加水 分解して 3, 3, 3—トリフルォロプロピオンアルデヒドを製造する方法が開示されてい る。特許文献 2では、酢酸ビニルへの塩化トリフルォロメタンスルホニルの付加により 、 1—クロ口— 3, 3, 3—トリフルォロプロピルアセテートを製造し、これを硫酸で加水 分解して 3, 3, 3 _トリフルォロプロピオンアルデヒドを製造する方法が開示されてい る。
また、非特許文献 10では、トリフルォロメチル基含有ェナミンであるジメチル— [1— (2—トリフルォロメチル _ 3, 3, 3 _トリフルォロプロぺニル)]アミンを硫酸マグネシゥ ム水和物存在下 28日間反応させて 3, 3, 3 _トリフルォロプロピオンアルデヒドを製 造する方法が開示されている。
特許文献 1:特開 2004— 115377号公報
特許文献 2:特表 2003— 522743号公報
特許文献 3 :特開昭 63— 63633号公報
特許文献 4 :米国特許 5, 777, 184号明細書
特許文献 5 :米国特許 2, 715, 144号明細書
特許文献 6 :米国特許 6, 111, 139号明細書
非特午文献 1 :Journal oi Chemical and Engineering Data、第 16卷、第 ύ 号、 376頁〜 377頁、 1971年(米国)
非特許文献 2 : Khimiya Geterotsiklicheskikh Soedinenii 、第 10号、 1321頁 〜1324頁、 1973年(ロシア国)
非特許文献 3 Journal of Fluorine Chemistry、第 21卷、 99頁〜 106頁、 198 2年 (オランダ国)
非特許文献 4 : Acta Chemica Scandinavica、第 43卷、 69頁〜 73頁、 1989年( スウェーデン国)
非特許文献 5: Journal oi Chemical Society, Perkin Transaction 1、 21 47頁〜 2149頁、 1991年(英国)
非特許文献 6 :Journal of Fluorine Chemistry、第 63卷、 253頁〜 264頁、 19 93年(オランダ国)
非特許文献 7 : Tetrahedron Letters,第 37卷、第 11号、 1829頁〜 1832頁、 19 96年 (英国)
非特許文献 8 Journal of Fluorine Chemistry、第 30卷、 153頁〜 158頁、 19 85年 (オランダ国)
非特許文献 9: Zhurnal Organicheskoi Khimii、第 25卷、第 7号、 1376頁〜 13 80頁 1989年(ソ連)
非特許文献 10 : Izvestiya Aka emii Nauk;、 Seriya Khimicheskaya、弟 5亏、 1069頁〜 1071頁 1997年(ロシア国)
発明の概要
[0011] 3, 3, 3—トリフルォロプロピオン酸を製造する方法に関して、これまで知られている 方法は、小規模で行うには有利であるが、高価な原料を必要とし、取扱いの難しい試 薬を用いるなどの問題があった。
[0012] 非特許文献 1の方法はフッ素化剤である SFの反応性が高ぐ取扱いが困難であり
、非特許文献 2、非特許文献 3および非特許文献 4の方法は、工程が多段階にわた るという問題がある。さらに非特許文献 4の方法は、酸化水銀を使用し、非特許文献 5 では、臭化トリフルォロメチルカドミニゥムを使用しており、工業的な使用には制限が ある。非特許文献 6の方法は、入手が困難なトリフルォロメチルチオ銅を使用している 上、 3, 3, 3 _トリフルォロプロピオン酸が主生成物ではないという問題がある。非特 許文献 7の方法は、高価なヨウ化トリフルォロメチルを使用することが求められる。特 許文献 1の方法は、原料である 1 , 1 , 3, 3, 3 _ペンタフルォ口一 2_トリフルォロメチ ルプロピルメチルエーテルおよびトリフルォロメチルマロン酸ジメチルが高価であるこ とから、工業的に有利な方法とは言えない。
[0013] 特許文献 2の方法は、 3, 3, 3 _トリフルォロプロピオンアルデヒドを酸化して 3, 3, 3 _トリフルォロプロピオン酸を得る例である力、使用される酸化剤である Oxone (登 録商標)(2KHSO ·Κ SO 'KHS〇)は高価であり、しかも反応性が高く取扱いが 困難であるため、工業的に採用するのは困難である。
[0014] 一方、上記特許文献 2で用いられている 3, 3, 3—トリフルォロプロピオンアルデヒド を酸化して 3, 3, 3—トリフルォロプロピオン酸を製造する技術が確立すれば、 3, 3, 3—トリフルォロプロピオンアルデヒドは、当化合物製造の有用な中間原料になる。し 力 ながら、この 3, 3, 3—トリフルォロプロピオンアルデヒドを製造する方法について も多数の例が知られているものの、いずれも工業的な製造には問題がある。
[0015] 非特許文献 8の方法は水銀やクロム酸等有害な薬品を使用し、特許文献 3及び特 許文献 4の方法は高価なパラジウム塩を大量に必要とする。特許文献 5の方法も、高 価なヨウ化トリフルォロメチルを使用し、特許文献 5の方法は、腐食性が高く取扱いが 困難なヨウ化水素酸を使用している。特許文献 6の方法も、安価な出発原料を使用し ているものの、加水分解の際に高価な長鎖のアルカン酸 (へキサン酸)を使用してお り、特許文献 2の方法は高価な塩化トリフルォロメタンスルホニルを必要とする。非特 許文献 10の方法は、トリフルォロメチル基含有ェナミン類を 3, 3, 3_トリフルォロプ ロピオンアルデヒドに変換している数少ない例である力 反応に 28日間も力、かるうえ、 3, 3, 3 _トリフルォロプロピオンアルデヒドが主生成物ではないという問題がある。
[0016] このように、 3, 3, 3 _トリフルォロプロピオン酸の安価で工業的生産に適する製造 方法を確立することが課題であった。
[0017] 本発明者らは上記課題を解決するため、鋭意検討を重ねた。その結果、工業的に 容易に、し力も安価で入手できる、式 [1]で表される 1—ハロゲノ一 3, 3, 3—トリフル オロフ。口ペン
[化 1]
F3C、
C=CHX [ 1 ]
H を出発原料として、 3工程を経て、 目的とする 3, 3, 3—トリフルォロプロピオン酸を製 造するための優れた方法を見出した。すなわち、上記 1—ハロゲノ一3, 3, 3 _トリフ ルォロプロペンは、式 [2]で表される環状 2級ァミン
[化 2]
HN と容易に反応し、式 [3]で表わされる、トリフルォロメチル基含有ェナミン [化 3]
Figure imgf000007_0001
を高収率で生成することを見出した (第一工程)。
(式 [1]中、 Xはハロゲン(フッ素、塩素、臭素またはヨウ素)、炭素数 1 4のパーフル ォロアルカンスルホネート基、炭素数 1 4のアルキルスルホネート基、またはァリー ルスルホネート基を表す。
[0018] 式 [2]中、 Aは酸素原子、硫黄原子、セレン原子、テルル原子、 CR1^基(ここで R1 および R2は、それぞれ独立に水素原子、炭素数:!〜 6の直鎖、分岐鎖あるいは環状 のアルキル基を表す)、 SiR3R4基(ここで R3および R4は、それぞれ独立に水素原子、 炭素数:!〜 6の直鎖、分岐鎖あるいは環状のアルキル基を表す)、 NR5基(ここで は 、水素原子、炭素数 1 6の直鎖、分岐鎖あるいは環状のアルキル基を表す)、 PR6 基(ここで R6は、炭素数 1 6の直鎖、分岐鎖あるいは環状のアルキル基を表す)、ま たは BR7基(ここで R7は、水素原子、炭素数:!〜 6の直鎖、分岐鎖あるいは環状のァ ルキル基を表す)を表し、 mおよび nはそれぞれ独立に:!〜 3の整数を表す。
式 [3]中、 A mおよび nの定義は、式 [2]に同じ。)
[0019] 通常、 1 ロゲノプロペンのような、フッ素を有していないビュルハライド類のハロ ゲンは不活性であり、窒素原子と容易に置換しない。し力 ながら、電子吸引性のトリ フルォロメチル基を有する 1 ハロゲノー 3, 3, 3—トリフルォロプロペン類は意外に も、環状 2級ァミンとの間に高い反応性を示し、上記トリフルォロメチル基含有ェナミ ンを高収率で生成することが判明した。
[0020] この 1 ハロゲノー 3, 3, 3 トリフルォロプロペン類におけるハロゲンの置換反応 は、メチルァミンゃジェチルァミン、トリェチルァミンのような、通常の直鎖状あるいは 分岐鎖の 1級〜 3級ァミン、さらにはピリジンのような環状 3級ァミンでは進行せず、式
[2]で表される「環状 2級ァミン」を用いた場合に特異的に進行する反応であることが わかった。
[0021] 発明者らはさらに、このようにして得られた、式 [3]で表わされる、トリフルォロメチル 基含有ェナミンが、酸性条件下、容易に加水分解を受けて、 3, 3, 3—トリフルォロプ ロピオンアルデヒドに変換することを見出した(第二工程)。
[0022] 得られた 3, 3, 3 _トリフルォロプロピオンアルデヒドは、特許文献 6に示された通り 、酸化剤によって酸化することによって、 目的とする 3, 3, 3 _トリフルォロプロピオン 酸に変換し (第三工程)、本発明の目的を達すること力 Sできる。
[0023] なお、 3, 3, 3 _トリフルォロプロピオンアルデヒドを酸化する方法として、前記特許 文献 2に示された方法は、取扱いの難しい過硫酸系の酸化剤を用いる点で、工業的 には必ずしも満足のレ、くものでな力、つた。し力 ながら、発明者らは、この酸化反応の ために、安価で、取扱いの負荷も少ない硝酸を好適に使用できることを見出した。こ の結果として、 3, 3, 3—トリフノレ才ロプロピ才ンァノレデヒドを酸ィ匕して、 3, 3, 3—トリ フルォロプロピオン酸に変換することも、従来よりも格段に容易なものとなった。
[0024] 上記、第一工程〜第三工程の反応とも、分離の難しい副生物をほとんど生成せず 、有害な廃棄物も生じず、従来の方法に比較して、工業的規模で実施する上で、特 に好適な方法であることがわかった。この結果、工業的に安価で入手できる、式 [ 1] で表される 1 ハロゲノー 3, 3, 3—トリフルォロプロペンを出発原料として、 目的とす る 3, 3, 3—トリフルォロプロピオン酸カ S、従来よりも格段に有利に製造できることとな り、本発明の完成に到達した。
詳細な説明
[0025] 本発明によれば、安価で入手できる 1—ハロゲノ一3, 3, 3 _トリフルォロプロペン から、少ない工程数で簡便に、し力、も良好な収率で、医薬'農薬の中間体として、ま た含フッ素重合体等の機能性材料の製造原料または合成中間体として有用な、 3, 3 , 3 _トリフルォロプロピオン酸を工業的規模で製造できるという効果を奏する。
[0026] 上述したとおり、本発明に依れば、次の三つの工程(第一工程〜第三工程)を含む 3, 3, 3—トリフルォロプロピオン酸の製造方法が提供される。
第一工程:式 [1]で表される 1 ハロゲノー 3, 3, 3 トリフルォロプロペンと、式 [2] で表される環状 2級ァミンとを反応させて、式 [3]で表わされる、トリフルォロメチル基 含有ェナミンを得る工程。
第二工程:第一工程で得られたトリフルォロメチル基含有ェナミンを酸性条件下、 加水分解して、 3, 3, 3—トリフルォロプロピオンアルデヒドを得る工程。
第三工程:第二工程で得られた 3, 3, 3 _トリフルォロプロピオンアルデヒドを、酸化 剤によって酸化し、 目的とする 3, 3, 3 _トリフルォロプロピオン酸を得る工程。
[0027] これら第一工程〜第三工程を図示すると、次のスキームのようになる。
[化 4]
[スキーム ]
—— »- CF3CH2CHO —— CF3CH2C02H
Figure imgf000009_0001
第一工程 第二工程 第三工程
[0028] まず、第一工程について、詳細に説明する。第一工程は、式 [ 1]で表される 1—ハ ロゲノー 3, 3, 3 _トリフルォロプロペンを、式 [2]で表される環状 2級ァミンと反応さ せて、式 [3]で表されるトリフルォロメチル基含有ェナミンを得る工程である。上述の ように、このような方法でトリフルォロメチル基含有ェナミン類を製造する方法はこれま で知られていな力、つた。本工程は、工業的に容易に、し力、も安価で入手できる 1—ハ ログノー 3, 3, 3 _トリフルォロプロペンを出発原料とし、環状 2級ァミンを用いた場合 に特異的にトリフルォロメチル基含有ェナミンを製造できるという、本発明の根幹を成 す特徴的な工程である。
[0029] この第一工程で使用される、式 [1]で表される 1—ハロゲノ一 3, 3, 3 トリフルォロ プロペンとしては、具体的に(E)—1—クロ口一 3, 3, 3—トリフルォロプロペン、(Z) — 1—クロ口一 3, 3, 3—トリフノレオ口プロペン、 (E)— 1—ブロモ 3, 3, 3—トリフノレ ォロプロペン、 (Z)— 1—ブロモ— 3, 3, 3—トリフルォロプロペン、 (E)— 1—ョードー 3, 3, 3—卜リフノレ才ロプロペン、 (Z)— 1ーョードー 3, 3, 3—卜リフノレ才ロプロペン、 ( E)— 1—フルオロー 3, 3, 3—トリフルォロプロペン、 (Z)—1—フルオロー 3, 3, 3— トリフルォロプロペン、 (E)— 1 トリフルォロメタンスルホ二ルー 3, 3, 3—トリフルォロ プロペン、 (Z)— 1 トリフルォロメタンスルホ二ルー 3, 3, 3—トリフルォロプロペン、 ( E)—1—ペンタフルォロエタンスルホニル 3, 3, 3—トリフルォロプロペン、 (Z)— 1 —ペンタフルォロエタンスルホニル 3, 3, 3—トリフルォロプロペン、 (E)— 1— (1 —ノナフルォロブタンスルホ二ル)一 3, 3, 3—トリフルォロプロペン、 (Z)— 1— (1— ノナフルォロブタンスルホ二ル)一 3, 3, 3_トリフルォロプロペン、 (E)_l_メタンス ノレホニル一 3, 3, 3_トリフルォロプロペン、 (Z) _1_メタンスルホニル一3, 3, 3—ト リフルォロプロペン、 (E) _1_エタンスルホニル _3, 3, 3_トリフルォロプロペン、 ( Z) _1_エタンスルホニル一3, 3, 3 _トリフルォロプロペン、 (E)_l_(l_プロパ ンスルホニル)_3, 3, 3_トリフルォロプロペン、 (Z) _1_ (1—プロパンスルホニル )—3, 3, 3—トリフルォロプロペン、 (E)—1— (2—プロパンスルホ二ル)— 3, 3, 3 —トリフルォロプロペン、 (Z) _1_ (2—プロパンスルホ二ル)一 3, 3, 3 _トリフノレオ 口プロペン、 (E) _1_ (1—ブタンスルホ二ル)一 3, 3, 3_トリフルォロプロペン、 (Z ) _1_ (1—ブタンスルホ二ル)一 3, 3, 3_トリフルォロプロペン、 (E)_l_ベンゼ ンスルホニル 3, 3, 3—トリフルォロプロペン、 (Z)—1—ベンゼンスルホニル一 3, 3, 3—トリフルォロプロペン、 (E)—1— (p トルエンスルホニル)— 3, 3, 3—トリフ ノレォロプロペン、 (Z)— 1一(p トルエンスルホニル) 3, 3, 3—トリフルォロプロぺ ン、 (E)—1— (o トルエンスルホニル)— 3, 3, 3—トリフルォロプロペン、 (Z)— 1— (o トルエンスルホニル)— 3, 3, 3—トリフルォロプロペン、 (E)— 1— (m—トルエン スルホニル)—3, 3, 3—トリフルォロプロペン、 (Z)—1 (m—トルエンスルホニル) —3, 3, 3—トリフルォロプロペン等を挙げることができる。
[0030] この中で入手の容易さから、(E)— 1—クロ口一 3, 3, 3 トリフルォロプロペン、(Z) — 1—クロ口一 3, 3, 3—トリフノレオ口プロペン、 (E)— 1—ブロモ 3, 3, 3—トリフノレ ォロプロペン、 )_1_ブロモ_3, 3, 3 _トリフルォロプロペン、 (E)_l_フルォ 口一3, 3, 3_トリフルォロプロペン、 (Z) _1_フルオロー 3, 3, 3_トリフルォロプロ ペンが好ましく、 (E)_l_クロ口 _3, 3, 3_トリフルォロプロペンと(Z)_l_クロ口 —3, 3, 3 _トリフルォロプロペンが特に好ましい。
[0031] 尚、上述した種々の 1—ハロゲノ _3, 3, 3_トリフルォロプロペンは単独で用いて も良いし、各種の混合物を用いても良レ、。特に、トランス体とシス体は混合していても 問題は無い。特定の環状 2級ァミンを使用した場合、トランス体とシス体のいずれを用 レ、ても、ほとんど選択的にトランス体のトリフルォロメチル基含有ェナミンが生成する。
[0032] 従って、上述したように、(E)— 1—クロ口一 3, 3, 3—トリフルォロプロペンと(Z)—l —クロ口— 3, 3, 3—トリフルォロプロペンは、それぞれ工業的に入手が容易であり、 安価であるため、出発原料として特に好ましいが、これらトランス体とシス体はそれぞ れ単独で用いても良いし、混合物の状態で用いても良い。
[0033] この 1—クロ口一 3, 3, 3 トリフルォロプロペンの製造法によっては、トランス体とシ ス体の混合物が生じるため、これを蒸留等で精製 *分離してトランス体とシス体が供給 されているが、本発明による方法では、トランス体とシス体の混合物をそのまま使用で きるため、さらに安価に原料を調達できるという特徴を有する。
[0034] 一方、式 [2]で表される環状 2級ァミンとしては、特に次の式 [4]で表される 6員環 の環状 2級ァミンが好ましレ、反応性を示す。
[化 5]
Figure imgf000011_0001
式 [4]において、 Eの定義は式 [2]の Aと同じである。
[0035] 具体的に、モルホリン、チオモルホリン、セレノモルホリン、テル口モルホリン、ァゼチ ジン、ピロリジン、ピぺリジン、へキサメチレンィミン、ヘプタメチレンィミン、 3—メチノレ ァゼチジン、 3 _メチルピロリジン、 3—メチルビペリジン、 4—メチルピペリジン、 3—メ チルへキサメチレンィミン、 4 _メチルへキサメチレンィミン、 3 _メチルヘプタメチレン ィミン、 4 _メチルヘプタメチレンィミン、 3 _ェチルァゼチジン、 3 _ェチルピロリジン 、 3—ェチルビペリジン、 4—ェチルビペリジン、 3 _ェチルへキサメチレンィミン、 4_ ェチルへキサメチレンィミン、 3 _ェチルヘプタメチレンィミン、 4 _ェチルヘプタメチ レンィミン、イミダゾリジン、 1—メチルイミダゾリジン、 2—メチルイミダゾリジン、ピペラ ジン、 1—メチルビペラジン、 1—ェチルビペラジン、ホモピぺラジン、 1 _メチルホモ ピぺラジン、 1 ェチルホモピぺラジン等が例示できるがこれらに限られなレ、。これら の内で、入手の容易さからモルホリン、ァゼチジン、ピロリジン、ピぺリジン、 3—メチノレ ピロリジン、 3—メチルビペリジン、 4ーメチルビペリジン、ピぺラジン、 1ーメチルビペラ ジンが好ましぐモノレホリン、ピロリジン、ピぺリジン、ピぺラジン力 S、特に優れた反応性 を示すため、特に好ましレ、。これらの中でも安価なピぺリジン、モルホリンがさらに好 ましい。
[0036] 第一工程の反応には、反応時に生成するハロゲン化水素を中和するための受酸剤 として、塩基性物質が必要である。系内に別途の塩基性物質が存在しない場合、上 述の「環状 2級ァミン」がこの受酸剤としての機能も兼ねる。これに対し、受酸剤として 、別途塩基性物質が共存する場合には、「環状 2級ァミン」は反応基質としてのみ作 用する。
[0037] まず、他に塩基性物質を共存させず、「環状 2級ァミン」のみを用いる場合について 説明する。この場合、前記、式 [1]で表わされる 1—ハロゲノ一3, 3, 3 _トリフルォロ プロペン類 1モル当たり、 2モル以下の環状アミンを使用した場合には、理論的に半 分が反応基質として作用し、半分が受酸剤として作用する。 2モル以上使用した場合 には、理論的には 1モルが反応基質として作用し、もう 1モルが受酸剤として作用し、 残りは溶媒として作用する。
[0038] 環状 2級ァミンの使用量は、前記、式 [1]で表わされる 1 ハロゲノー 3, 3, 3 トリ フルォロプロペン類 1モルに対して、通常 1 · 8モノレ〜 20モノレであり、好ましくは 2. 0 モル〜 10モル、更に好ましくは 2· 0モル〜 6. 0モルである。
[0039] このように、系内に別途の塩基性物質が存在しない場合、 目的物の収率を高める ためには、比較的高価な「環状 2級ァミン」を過剰量、要求されることが多い。しかし、 第一工程において過剰量の環状 2級ァミンを使用したとしても、第一工程の反応が 終了した後、未反応の環状 2級ァミンは適当な方法 (蒸留等)によって、高純度、高 回収率で回収できる。また目的物が 3, 3, 3_トリフルォロプロピオンアルデヒドであ る場合は、第一工程が完了した後、敢えて単離精製を行わず、未反応の環状 2級ァ ミンが共存する状態で、下記の第二工程 (酸の存在下における加水分解)を実施す ることもできる。この場合、第二工程が終了した後、生成した 3, 3, 3 _トリフルォロプ ロピオンアルデヒドを蒸留等で分離し、その後、残渣液に無機塩基等の塩基を加え、 未反応の環状 2級アミンを水相から二層分離させて回収することができる。こうして回 収された環状 2級ァミンは、次バッチにおいて再利用することができる。
[0040] 次いで、受酸剤として別途、塩基性物質を添加する場合について説明する。受酸 剤としては、上述の「環状 2級ァミン」を除く塩基性物質であれば特に制限は無いが、 水酸化ナトリウム、炭酸ナトリウム、炭酸水素ナトリウム、水酸化カリウム、炭酸カリウム 、炭酸水素カリウム、水素化ナトリウム、ナトリウムメトキシド、ナトリウムエトキシド、ナトリ ゥム tert—ブトキシド、カリウム tert—ブトキシドなど無機塩基の他、トリェチルァミン、 ジェチルァミン、 1, 8—ジァザビシクロ [5, 4, 0] _ 7 _ゥンデセン等の有機塩基を例 示すること力 Sできる。好ましくは、無機塩基が用いられ、水酸化ナトリウム、炭酸ナトリ ゥム、炭酸水素ナトリウムは安価であり、反応性も良好なので特に好ましく用いられる
[0041] 受酸剤の使用量に特別な制限はなレ、が、通常、 1—ハロゲノ一3, 3, 3 _トリフルォ 口プロペン類に対して 0. 8モル〜 1. 2モノレであり、好ましくは 0. 9モノレ〜 1. 1モルで ある。上述したとおり、この場合、環状 2級ァミンは反応基質としてのみ作用するため 、過剰に使用する必要はなぐその使用量は、通常、 1 ハロゲノー 3, 3, 3—トリフ ノレォロプロペン類に対して 0. 8モル〜 1. 2モノレであり、好ましくは 0. 9モノレ〜 1. 1モ ノレである。勿論これ以上用いても反応性に影響することはないが、生産性の観点から 好ましくない。
[0042] 第一工程の反応は通常窒素、アルゴン等の不活性ガス中で行われる。圧力につい ては特に制限はないが、不活性ガスを封入して密閉しておいてもよいし、不活性ガス の加圧下で行ってもよい。好ましくは大気圧下で反応が行われる。反応時間につい ては、特に制限はないが、ガスクロマトグラフィー等で反応の進行状況を確認し、終 点に近づいたことを確認した後、反応工程を終了することが好ましい。
[0043] 溶媒に関しては、環状アミンを塩基兼溶媒として用いるのが好ましいが、反応に関 与しなレ、ものであれば特に制限はなぐ例えばへキサン、ベンゼン、トルエン、キシレ ン等の炭化水素類、ジェチルエーテル、テトラヒドロフラン、ジイソプロピルエーテル、 ジォキサン等のエーテル類、ジクロロメタン、クロ口ホルム等のハロゲン化炭化水素類 、アセトン等のアルキルケトン類、メタノーノレ、エタノール、エチレングリコール、ジェチ レングリコール、グリセリン等のアルコール類、ァセトニトリル、 N, N—ジメチルホルム アミド、ジメチルスルホキシド、へキサメチルリン酸トリアミド等の非プロトン性極性溶媒 等、もしくは水が例示できる。
[0044] 反応温度は、通常、 _ 50°C〜100°C、好ましくは _ 10°C〜: 100°Cで、さらに好まし くは、 _5°C〜60°Cの範囲である。
[0045] 反応終了後、反応溶液を直接蒸留する方法や、副生する固体をろ過して、得られ る溶液を蒸留する方法、あるいは、水または氷水をカ卩えた後、有機溶媒による抽出操 作及びそれに続く蒸留等の通常の手段により、 目的とする式 [3]で表わされる、トリフ ルォロメチル基含有ェナミンを単離することができる。ただし、第二工程を行う上では 、トリフルォロメチル基含有ェナミンを敢えて単離することなぐ第一工程で得られた 反応混合物をそのまま第二工程に使用することも可能である。
[0046] 次に、本発明の第二工程について説明する。本発明の第二工程は、第一工程で 得られた式 [3]で表わされるトリフルォロメチル基含有ェナミンを、酸の存在下、加水 分解して、 3, 3, 3—トリフルォロプロピオンアルデヒドを得る工程である。
[0047] この第二工程に用いるトリフルォロメチル基含有ェナミンとしては、第一工程終了後 、反応液を精製操作に付して単離したものを用いることができるが、単離精製操作を 行うことなく、続けて第二工程に使用することもできる。単離精製せずに用いる場合、 第一工程と同一の反応器を用いて連続的に第二工程を実施することも可能である。
[0048] また、第一工程の反応終了後に、析出した塩等の固体を濾別し、得られた濾液から 過剰な受酸剤または溶媒等を留去しただけのトリフルォロメチル基含有ェナミン類粗 体を第二工程の加水分解に供することもできる。
[0049] 第二工程の加水分解において用いられる酸は、ブレンステッド酸であれば特に限 定されないが、塩酸、硫酸、硝酸、燐酸、珪酸、臭化水素酸、ホウ酸等の無機酸や、 ギ酸、酢酸、プロピオン酸、酪酸、吉草酸、ピバル酸、シユウ酸、コハク酸、アジピン酸 、クロトン酸、メタンスルホン酸、トリフルォロメタンスルホン酸等の有機酸を例示するこ とができる。好ましくは、無機酸が用いられ、特に、塩酸、硫酸、硝酸が好ましく用いら れる。その使用量は、使用する酸の価数により変化するが、例えば 1価の酸の場合、 第一工程で得られた一般式 [3]で表わされる、トリフルォロメチル基含有ェナミン類 1 モルに対して、酸の使用量は、 1モル以上であり、好ましくは、:!〜 5モルである。また 、 2価の酸の場合、第一工程で得られた一般式 [3]で表わされる、トリフルォロメチル 基含有ェナミン 1モルに対して、酸の使用量は、 0. 5モル以上であり、好ましくは、 0. 5〜2. 5モノレである。
[0050] 未反応の環状 2級ァミンが残存した状態でそのまま第二工程を行う場合には、上記 酸の量に、環状 2級ァミンを中和するのに要する量を加算する。
[0051] 本工程に用いられる水の使用量は、基質である一般式 [3]で表わされる、トリフル ォロメチル基含有ェナミン 1モルに対して、 1モル以上であれば特に制限はないが、 好ましくは:!〜 1000モノレであり、更に好ましくは:!〜 100モルである。それ以上用い ても良いが、容積あたりの収量が減るので好ましくない。また、上述した酸の中に水が 含まれている場合はその水を使用しても良い。
[0052] また、本工程における酸の濃度に関して特に限定は無レ、が、 10%〜90%が好まし レ、。
[0053] 本工程は、反応溶媒を使用せずに行うことが好ましいが、場合によっては使用する こともできる。使用される溶媒としては反応に関与しないものであれば特に制限はなく 、例えばへキサン、ベンゼン、トルエン、キシレン等の炭化水素類、ジェチルエーテ ノレ、テトラヒドロフラン、ジイソプロピルエーテル、ジォキサン等のエーテル類、ジクロロ メタン、クロ口ホルム等のハロゲン化炭化水素類、メタノール、エタノール、エチレング リコーノレ、ジエチレングリコール、グリセリン等のアルコール類等が例示できる。
[0054] 反応温度は特に限定されなレ、が、通常、 50°C〜 + 250°C、好ましくは 20°C〜
+ 200°Cで、さらに好ましくは一 10°C〜 + 150°Cの範囲である。
[0055] 反応後の処理は特に限定されなレ、が、反応液を直接蒸留する方法や、有機溶媒 による抽出操作及び蒸留等の通常の手段により、第二工程で目的とする 3, 3, 3_ト リフルォロプロピオンアルデヒドを得ることができる。
[0056] なお、上述のように、第二工程終了時の反応液に、第一工程の原料である、未反 応の環状 2級ァミンが塩の状態で残存する場合は、例えば、反応液を蒸留した残渣 に無機塩基水溶液を加えることによって、環状 2級アミンを水相と二層分離させて回 収し、再利用することができる。 [0057] 次に本発明の第三工程について説明する。第三工程は、第二工程で得られた 3, 3 , 3—トリフルォロプロピオンアルデヒドを、酸化剤によって酸化し、 3, 3, 3—トリフル ォロプロピオン酸を得る工程である。
[0058] この第三工程は、第二工程で得られた反応混合物をそのまま原料として使用すること も可能である力 3, 3, 3 _トリフルォロプロピオンアルデヒドを単離するかまたは、過 剰の塩基及び副生する塩を分離してから原料に供する方が、良好な反応性が得られ るので、好ましい。
[0059] 第三工程に使用される酸化剤としては、過マンガン酸カリウム、クロム酸カリウム、重 クロム酸カリウム、過酢酸、トリフルォロ過酢酸、塩素酸ナトリウム、臭素酸ナトリウム、 ヨウ素酸ナトリウム、前述の Oxone (登録商標)(2KHSO ·Κ SO -KHSO )等の過 硫酸系酸化剤など、過酸系統の酸化剤が好ましい。
[0060] ここで、本発明者らは、第三工程を行うに際して、硝酸を非常に好適に用いることが できることができることを見出した。硝酸は上述の過酸類に比較して安価であり、かつ 大量での取扱いも容易な試薬である。したがって、本発明の第三工程は硝酸を酸化 剤として用いることが特に好ましい。
[0061] 硝酸としては、通常、 30%以上の濃度の硝酸が使用されるが、生産性及び経済性 を考慮すると好ましくは 50〜90%であり、更に好ましくは 60〜70%である。
[0062] 硝酸の使用量は上記、第二工程で得られた 3, 3, 3—トリフルォロプロピオンアル デヒド 1モルに対して、通常 1モル以上である。好ましくは 1〜5モルであり、更に好ま しくは:!〜 2モルである。それ以上用いても良いが、生産性及び経済性を考慮すると 好ましくない。
[0063] 反応温度は、通常、 _ 10°C〜: 100°C、好ましくは— 5°C〜70°Cで、さらに好ましく は 0°C〜50°Cの範囲である。
[0064] また、硝酸を酸化剤として用いる場合、酸化反応をより円滑に行うために亜硝酸塩 を共存させるのが好ましい。亜硝酸塩の使用量は硝酸 1モルに対して、通常 0. 5〜2 0モル0 /0であり、好ましくは:!〜 15モノレ0 /0、更に好ましくは、 2〜: 10モル0 /0である。使 用される亜硝酸塩としては、例えば亜硝酸ナトリウム、亜硝酸カリウムが好ましい。
[0065] 第三工程の反応は通常大気中、大気圧下で行われる。反応時間については、特 に制限はなぐガスクロマトグラフィー等で反応の進行状況を確認し、終点に近づい たことを確認した後、反応工程を終了することが好ましい。
[0066] 第三工程の反応形態に特別な制限はないが、原料である 3, 3, 3—トリフルォロプ ロピオンアルデヒドと酸化剤を逐次的に、もしくは連続的に混合するのが、反応の制 御が容易であり、好ましい。
[0067] 反応後の処理は特に限定されないが、反応液を有機溶媒と接触させ、 目的物を有 機相に抽出した後、蒸留等の通常の手段に付して、 3, 3, 3 _トリフルォロプロピオン 酸を得ること力 Sできる。
[0068] 以下、実施例により本発明を詳細に説明するが、これらの実施態様に限られない。こ こで、組成分析値の「%」とは、生成ガスを直接ガスクロマトグラフィーによって測定し て得られた組成の「面積%」を表す。
[0069] [実施例 1] (E) _ 1 _ (3, 3, 3 _トリフルォロプロぺニル)—ピペリジンの製造(1) ( 環状 2級アミン類を反応基質及び受酸剤として利用する場合)
3000mlメカニカルスターラー付きガラス反応器を窒素置換し、氷冷下、ピぺリジン 1305g (15. 3mol) (4. 0当量)、 (E)— 1—クロ口一 3, 3, 3—トリフノレオ口プロペン 500g (3. 83mol) (1. 0当量)を加え、反応温度 10°C〜20°Cで 3時間攪拌した。 白色固体を濾過し、得られた濾液を減圧蒸留(80— 8 l°C/2. 4kPa)し、純度 99% の(E)— 1— (3, 3, 3—トリフルォロプロぺニル)一ピぺリジン 439gを収率 63%で 得た。
( (E) - 1 - (3, 3, 3—トリフルォロプロぺニル)ーピペリジンの物性)
Η— NMRスぺクトノレ(400MHz, CDC1 ) δ (ppm) : 1. 5— 1. 6 (6H, m) , 2.
99 (4H, m), 4. 26 (1H, dq, J= 13. 7, 6. 4 Hz), 6. 60 (1H, dq , J= 13. 7, 1. 5 Hz) .
19F— NMRスぺクトノレ(400MHz, CDC1 ) :— 56. 6 ppm (3F, br d, J = 6. 0
Hz) (CFC1 =0 ppm)
[0070] [実施例 2] (E) _ 1 _ (3, 3, 3 _トリフルォロプロぺニル)—ピペリジンの製造(2) ( 環状 2級アミン類を反応基質及び受酸剤として利用する場合)
300mlメカニカルスターラー付きガラス反応器を窒素置換し、氷冷下、ピぺリジン 1 30. 5g (l . 53mol) (4. 0当量)、(Z)— 1—クロ口一 3, 3, 3—トリフノレオ口プロペン 50g (0. 38mol) (1. 0当量)をカ卩え、反応温度 10°C〜20°Cで 3時間攪拌した。 白 色固体を濾過した。得られた濾液から過剰ピぺリジンを留去し、 (E)— 1一(3, 3, 3 —トリフルォロプロぺニル)—ピペリジン 64. 5gを収率 95% (GC純度 95%)で得た
[0071] [実施例 3] (E) _ 1 _ (3, 3, 3 _トリフルォロプロぺニル)—ピペリジンの製造(3) ( 環状 2級アミン類を反応基質及び受酸剤として利用する場合)
300mlメカニカルスターラー付きガラス反応器を窒素置換し、氷冷下、ピぺリジン 1 30. 5g (l . 53mol) (4. 0当量)、 1—クロ口— 3, 3, 3—トリフノレオ口プロペン(トランス 体とシス体の混合物;混合モル比:トランス体:シス体 = 65 : 35) 50g (0. 38mol) ( 1. 0当量)を加え、反応温度 10°C〜20°Cで 3時間攪拌した。 白色固体を濾過した。 得られた濾液から過剰ピぺリジンを留去し、(E) _ l _ (3, 3, 3_トリフルォロプロぺ 二ル)—ピぺリジン 62· 0gを収率 91% (GC純度 94%)で得た。
[0072] [実施例 4] (E)—1ー(3, 3, 3—トリフルォロプロぺニル)ーピペリジンの製造(4) ( 環状 2級アミン類を反応基質として用い、別途受酸剤として塩基性物質を使用する場 合)
10mlメカニカルスターラー付きガラス反応器を窒素置換し、氷冷下、ピぺリジン 0. 65g (7. 6mmol) (1. 0当量)、(E)— 1—クロ口— 3, 3, 3—トリフノレオ口プロペン lg (7. 6 mmol) (1. 0当量)、水酸化ナトリウム 307mg (7. 6mmol) (1. 0当量)をカロ え、反応温度 30°Cで 5時間攪拌した。 白色固体を濾過し、ジイソプロピルエーテルで 洗浄後、得られた濾液を減圧蒸留(80— 81°C/2. 4kPa)し、 目的の(E)— 1一(3, 3, 3_トリフルォロプロぺニル)—ピペリジン(収量 960mg、収率 70%、純度 95%)を 淡黄色液体として得た。
[0073] [実施例 5] 3, 3, 3 _トリフルォロプロピオンアルデヒドの製造(1)
100mlメカニカルスターラー付きガラス反応器を窒素置換し、氷浴下、 [実施例 1] で得られた(E) _ l _ (3, 3, 3_トリフノレオ口プロぺニノレ)一ピペリジン 10. 0g (0. 05 6mol) (1. 0当量)、濃硫酸 5. 5g (0. 056 mol) (1. 0当量)、水 5. 5gをカロえ、 1 時間攪拌した。得られた反応液を常圧にて蒸留し (沸点 55°C)、 目的とする 3, 3, 3 —トリフルォロプロピオンアルデヒド(収量 5· 6g、収率 89%、純度 98%)を得た。
[0074] [実施例 6] 3, 3, 3—トリフルォロプロピオンアルデヒドの製造(2)
200mlメカニカルスターラー付きガラス反応器を窒素置換し、氷冷下、ピぺリジン 85 . lg (l . OOmol) (4. 0当量)、 (E) _ l _クロ口 _ 3, 3, 3_トリフノレオ口プロペン 33 . 0g (0. 25mol) (1. 0当量)をカ卩え、反応温度 10°C〜20°Cで 3時間攪拌した。 白 色固体を濾過し、得られた濾液を減圧蒸留(38_41°CZl lkPa)し、純度 99%のピ ペリジン 33. 6gと 40. Ogの蒸留釜残を回収した。蒸留釜残をガスクロマトグラフィー にて分析すると(E) _ l _ (3, 3, 3 _トリフルォロプロぺニル)—ピペリジンの含有率 は 99%であった。
[0075] 次いで氷浴下、上記で得られた(E) _ 1 _ (3, 3, 3 _トリフルォロプロぺニル)—ピ ペリジン 40. 0g (0. 22mol) (1. 0当量)、 50%硫酸 22g (0. 11 mol) (0. 5当 量)を窒素置換した 100mlメカニカルスターラー付きガラス反応器に加え、徐々に昇 温し、 25°Cで 1時間攪拌した。得られた反応液を常圧にて蒸留し (沸点 55°C)、 目的 とする 3, 3, 3—トリフルォロプロピオンアルデヒド(収量 19. 3g、収率 77. 5%。純度 99%)を得た。
[0076] [実施例 7] 3, 3, 3—トリフルォロプロピオンアルデヒドの製造(3)
500mlメカニカルスターラー付きガラス反応器を窒素置換し、氷浴下、ピぺリジン 8 1. 5g (0. 958mol) (2. 5当量)、(E)— 1—クロ口— 3, 3, 3—トリフルォロプロペン 50g (0. 383 mol) (1 · 0当量)を加え、反応温度 30°Cで 5時間攪拌した。続いて 、反応液を 0°Cに冷却し、 35%塩酸 60g (0. 575mol) (1. 5当量)を 1時間かけて滴 下した (pHく 1)。このフラスコに、蒸留塔、冷却管、受けフラスコを取り付け、常圧に て蒸留を行レ、(沸点 55°C)、 目的とする 3, 3, 3 _トリフルォロプロピオンアルデヒド( 収量 32g、収率 74%、純度 98%)を得た。
[0077] [実施例 8] 3, 3, 3 _トリフルォロプロピオン酸の製造
マグネチックスターラー、冷却管(開放系)を備えた 50mlガラスフラスコに、氷浴下、 60%硝酸 14. lg (0. 13mol) (1. 44当量)、亜硝酸ナトリウム 0. lg (8. 9mmol) (1 0モル%)を添カ卩し、攪拌下、実施例 6により得られた 3, 3, 3_トリフルォロプロピオ ンァノレデヒド 10g (0. 09mol) (1. 0当量)を 1時間かけて滴下した。氷冷下 1時間攪 拌後、室温で 2時間攪拌した。反応混合液に上水 20g加え、ジイソプロピルエーテル で有機物を分液ロートにて抽出した (40mlでの抽出を 2回)。有機層を硫酸マグネシ ゥムで乾燥し、溶媒留去 (40°C、 6. 66kPa)した後、常圧蒸留(沸点 (塔頂温度) 13 6。C)し、 目的の 3, 3, 3—トリフルォロプロピオン酸(収量 6. 9g、収率 61%、純度 94
%)を得た。

Claims

請求の範囲
次の三工程からなる、 3, 3, 3 _トリフルォロプロピオン酸の製造方法。
第一工程:式 [1]で表される 1—ハロゲノ _ 3, 3, 3_トリフルォロプロペン
[化 6]
Figure imgf000021_0001
と、式 [2]で表される環状 2級ァミン
[化 7]
ΗΝ ^η [2〗 を反応させて、式 [3]で表わされる、トリフルォロメチル基含有ェナミン
[化 8]
Figure imgf000021_0002
を得る工程。
第二工程:第一工程で得られたトリフルォロメチル基含有ェナミンを、酸の存在下、 加水分解して、 3, 3, 3—トリフルォロプロピオンアルデヒドを得る工程。
第三工程:第二工程で得られた 3, 3, 3 _トリフルォロプロピオンアルデヒドを酸化 剤によって酸化し、 3, 3, 3_トリフルォロプロピオン酸を得る工程。
(式 [1]中、 Xはハロゲン(フッ素、塩素、臭素またはヨウ素)、炭素数 1〜4のパーフル ォロアルカンスルホネート基、炭素数 1〜4のアルキルスルホネート基、またはァリー ルスルホネート基を表す。
式 [2]中、 Aは酸素原子、硫黄原子、セレン原子、テルル原子、 CI^R2基(ここで R1 および R2は、それぞれ独立に水素原子、炭素数:!〜 6の直鎖、分岐鎖あるいは環状 のアルキル基を表す)、 SiR3R4基(ここで R3および R4は、それぞれ独立に水素原子、 炭素数:!〜 6の直鎖、分岐鎖あるいは環状のアルキル基を表す)、 NR5基(ここで は 、水素原子、炭素数 1〜6の直鎖、分岐鎖あるいは環状のアルキル基を表す)、 PR6 基(ここで R6は、炭素数 1〜6の直鎖、分岐鎖あるいは環状のアルキル基を表す)、ま たは BR7基(ここで R7は、水素原子、炭素数:!〜 6の直鎖、分岐鎖あるいは環状のァ ルキル基を表す)を表し、 mおよび nはそれぞれ独立に:!〜 3の整数を表す。
式 [3]中、 A、 mおよび nの意味は、式 [2]に同じ。 )
[2] 第 1工程の 1—ハロゲノ一3, 3, 3 _トリフルォロプロペンが、 1 _クロ口一3, 3, 3—ト リフルォロプロペン(HCFC_ 1233zd) (トランス体もしくはシス体、あるいはトランス 体とシス体の混合物)である、請求項 1に記載の方法。
[3] 環状 2級ァミンが次の式 [4]で表される環状 2級ァミン
[化 9]
Figure imgf000022_0001
H
である、請求項 1または請求項 2に記載の 3, 3, 3_トリフルォロプロピオン酸の製造 方法。
(式 [4]中、 Eは酸素原子、硫黄原子、セレン原子、テルル原子、 CI^R2基 (ここで R1 および R2は、それぞれ独立に水素原子、炭素数 1〜6の直鎖、分岐鎖あるいは環状 のアルキル基を表す)、 SiR3R4基(ここで R3および R4は、それぞれ独立に水素原子、 炭素数:!〜 6の直鎖、分岐鎖あるいは環状のアルキル基を表す)、 NR5基(ここで R5は 、水素原子、炭素数 1〜6の直鎖、分岐鎖あるいは環状のアルキル基を表す)、 PR6 基(ここで R6は、炭素数:!〜 6の直鎖、分岐鎖あるいは環状のアルキル基を表す)、ま たは BR7基(ここで R7は、水素原子、炭素数:!〜 6の直鎖、分岐鎖あるいは環状のァ ルキル基を表す)を表す。)
[4] 第 1工程の環状 2級ァミンがピぺリジンである、請求項 1または請求項 2に記載の 3, 3
, 3 _トリフルォロプロピオン酸の製造方法。
[5] 環状 2級ァミンがモルホリンである、請求項 1または請求項 2に記載の 3, 3, 3 _トリフ ルォロプロピオン酸の製造方法。
[6] 第三工程において用いられる酸化剤が硝酸である、請求項 1乃至請求項 5の何れか に記載の 3, 3, 3 _トリフルォロプロピオン酸の製造方法。
[7] 3, 3, 3 _トリフルォロプロピオンアルデヒドを硝酸によって酸化すること力、ら成る 3, 3
, 3 _トリフルォロプロピオン酸の製造方法。
PCT/JP2005/018941 2004-10-26 2005-10-14 3,3,3-トリフルオロプロピオン酸の製造方法 WO2006046417A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-310880 2004-10-26
JP2004310880A JP2006124282A (ja) 2004-10-26 2004-10-26 3,3,3−トリフルオロプロピオン酸の製造方法

Publications (1)

Publication Number Publication Date
WO2006046417A1 true WO2006046417A1 (ja) 2006-05-04

Family

ID=36227660

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/018941 WO2006046417A1 (ja) 2004-10-26 2005-10-14 3,3,3-トリフルオロプロピオン酸の製造方法

Country Status (2)

Country Link
JP (1) JP2006124282A (ja)
WO (1) WO2006046417A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5198780B2 (ja) * 2007-03-22 2013-05-15 公益財団法人相模中央化学研究所 アミド化合物およびその製造方法
EP2411353B1 (en) * 2009-03-24 2018-09-12 Arkema Inc. Separation of r-1233 from hydrogen fluoride
US9061958B2 (en) 2009-03-24 2015-06-23 Arkema Inc. Separation of R-1233 from hydrogen fluoride
CN102795987A (zh) * 2012-08-09 2012-11-28 西安近代化学研究所 3,3,3-三氟丙酸的制备方法
MX2020003348A (es) * 2017-09-27 2020-10-07 Arkema Inc Compuestos y metodos organicos funcionalizados con heteroalquenil y heteroalquilo halogenados para preparar dichos compuestos.

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5692832A (en) * 1979-12-27 1981-07-27 Mitsubishi Gas Chem Co Inc Preparation of aromatic polycarboxylic acid
JP2003522743A (ja) * 2000-02-11 2003-07-29 ロディア・シミ 二重結合の官能化方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5692832A (en) * 1979-12-27 1981-07-27 Mitsubishi Gas Chem Co Inc Preparation of aromatic polycarboxylic acid
JP2003522743A (ja) * 2000-02-11 2003-07-29 ロディア・シミ 二重結合の官能化方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
ENGLAND D.C. ET AL: "Reactions of Amines with a Dimer Hexafluoropropene.......", JOURNAL OF FLUORINE CHEMISTRY, vol. 17, 1981, pages 265 - 288, XP002999830 *
HICKMOTT P.W.: "Enamines: Recent Advances in Synthetic, Spectroscpic, Mechanistic, and Stereochemical Aspects-I. (5. reactions of enamines, a. protonation and hydrolysis)", TETRAHEDRON, vol. 38, no. 14, 1982, pages 1975 - 2050, XP002999828 *
KUBOTA T. ET AL: "Synthesis and Reactions of 2-Alkoxy-1,1,3,3,3-Pentafluoropropenes....", JOURNAL OF THE CHEMICAL SOCIETY OF JAPAN, no. 9, 1989, pages 1576 - 1586, XP002999831 *
SIMCHEN G. ET AL: "4-Dimethylamino-1-trifluoracetyl-pyridinium-trifluoracetat: Ein effizientes Reagens zur Synthese von Trifluormethyl-1,3-dicarbonyl-Verbindungen", SYNTHESIS, January 1997 (1997-01-01), pages 117 - 120, XP002999829 *
SOUTH M.S. ET AL: "Synthesis and Reactions of Chloroazodienes. A New and General Synthesis of Pyridazines", TETRAHEDRON LETTERS, vol. 36, no. 32, 1995, pages 5703 - 5706, XP004027583 *
YAMANAKA H. ET AL: "Reactions of Quaternary Ammonium Salt Having a Polyfluoroalkenyl Group with Secondary Amines. A New Convenient and Stereoselective Synthesis of beta-Trifluoromethylated Enamines", TETRAHEDRON LETTERS, vol. 36, no. 40, 1995, pages 7267 - 7270, XP004027167 *

Also Published As

Publication number Publication date
JP2006124282A (ja) 2006-05-18

Similar Documents

Publication Publication Date Title
EP1950191B1 (en) Process for producing 3,3,3-trifluoropropionic acid
JP7166911B2 (ja) シクロブテンの製造方法
WO2006046417A1 (ja) 3,3,3-トリフルオロプロピオン酸の製造方法
Petrov et al. Remarkable effect of metal fluoride catalyst on reaction of hexafluoropropene, sulfur and vinyl ethers. Convenient synthesis of 2, 2-bis (trifluoromethyl)-4-R-thietanes, 3, 3-bis (trifluoromethyl)-5-R-1, 2-dithiolanes and 2, 2-bis (trifluoromethyl)-4-R-1, 3-dithiolanes
JP5114880B2 (ja) 新規α−フルオロメトキシカルボン酸エステル、該α−フルオロメトキシカルボン酸エステルの製造方法及びセボフルランの製造方法
JP2006298855A (ja) 3,3,3−トリフルオロプロピオン酸の製造方法
JP5181609B2 (ja) ピラゾリノン誘導体の製造方法
JP5001144B2 (ja) 2−イソプロペニル−5−メチル−4−ヘキセン−1−イル3−メチル−2−ブテノアートの製造方法
JP4396831B2 (ja) フルオロアルキルケトンの水和物の製造方法
JP2006298854A (ja) 3,3,3−トリフルオロプロピオン酸の製造方法
JP4386881B2 (ja) 3,3,3−トリフルオロプロピオン酸の製造方法
WO2010114144A1 (en) Trichloro-trifluoro-propylene oxide and method for producing trichloro-trifluoro-propylene oxide
JPWO2006075596A1 (ja) 2−アリルカルボン酸化合物の製造方法
JP6459709B2 (ja) 3,3−ジフルオロ−2−ヒドロキシプロピオン酸の実用的な製造方法
JP4651351B2 (ja) フルオロアルキルフルオロアルカンスルホネートの製造方法
JP5347591B2 (ja) 含フッ素エポキシエステルの製造方法
JP4651969B2 (ja) エポキシトリアゾール化合物の製造方法
EP1122234A2 (en) Production methods of alpha, alpha, alpha-trifluoromethylphenyl-substituted benzoic acid and intermediate therefor
WO2009116518A1 (ja) フルオロアルキルエーテルの製造方法
JP4393839B2 (ja) 1,3−ジ−ハロ置換されたベンゼン誘導体の製造
JP2006124283A (ja) トリフルオロメチル基含有エナミンおよびその誘導体の製造方法
JP4423494B2 (ja) 2−ヒドロキシカルボン酸の製造法
JP5003072B2 (ja) 3,3,3−トリフルオロプロピオンアルデヒドの製造方法
JP2009120506A (ja) 新規カルボン酸エステル、その用途及びその製造方法
JP2006036739A (ja) フェノール化合物の製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GM HR HU ID IL IN IS KE KG KM KP KZ LC LK LR LS LT LU LV LY MA MG MK MN MW MX MZ NA NG NI NZ OM PG PH PL PT RO RU SC SD SE SK SL SM SY TJ TM TN TR TT TZ UA US UZ VC VN YU ZA ZM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SZ TZ UG ZM ZW AM AZ BY KG MD RU TJ TM AT BE BG CH CY DE DK EE ES FI FR GB GR HU IE IS IT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05793228

Country of ref document: EP

Kind code of ref document: A1