WO2006041062A1 - (4e)-5-クロロ-2-イソプロピル-4-ペンテン酸エステルおよびその光学活性体の製造方法 - Google Patents

(4e)-5-クロロ-2-イソプロピル-4-ペンテン酸エステルおよびその光学活性体の製造方法 Download PDF

Info

Publication number
WO2006041062A1
WO2006041062A1 PCT/JP2005/018704 JP2005018704W WO2006041062A1 WO 2006041062 A1 WO2006041062 A1 WO 2006041062A1 JP 2005018704 W JP2005018704 W JP 2005018704W WO 2006041062 A1 WO2006041062 A1 WO 2006041062A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound represented
formula
reaction
compound
following formula
Prior art date
Application number
PCT/JP2005/018704
Other languages
English (en)
French (fr)
Inventor
Toshitsugu Sakaeda
Nobuaki Mori
Hideto Kanoh
Original Assignee
Asahi Glass Company, Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Company, Limited filed Critical Asahi Glass Company, Limited
Priority to JP2006540937A priority Critical patent/JPWO2006041062A1/ja
Priority to EP05793121A priority patent/EP1801094A4/en
Priority to CA002582840A priority patent/CA2582840A1/en
Publication of WO2006041062A1 publication Critical patent/WO2006041062A1/ja
Priority to US11/691,873 priority patent/US20070191630A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P41/00Processes using enzymes or microorganisms to separate optical isomers from a racemic mixture
    • C12P41/003Processes using enzymes or microorganisms to separate optical isomers from a racemic mixture by ester formation, lactone formation or the inverse reactions
    • C12P41/005Processes using enzymes or microorganisms to separate optical isomers from a racemic mixture by ester formation, lactone formation or the inverse reactions by esterification of carboxylic acid groups in the enantiomers or the inverse reaction
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/30Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group
    • C07C67/317Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group by splitting-off hydrogen or functional groups; by hydrogenolysis of functional groups
    • C07C67/32Decarboxylation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/30Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group
    • C07C67/333Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group by isomerisation; by change of size of the carbon skeleton
    • C07C67/343Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group by isomerisation; by change of size of the carbon skeleton by increase in the number of carbon atoms
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/62Carboxylic acid esters

Definitions

  • the present invention relates to a method for producing (4E) -5 black 2-isopropyl-4-pentenoic acid ester and its optically active substance useful as an intermediate for agricultural chemicals or medicines.
  • Patent Document 1 International Publication No. 04Z52828 Pamphlet
  • reaction fluid power including a compound represented by formula (3) and a compound represented by formula (4)
  • adding water to the reaction solution was considered to be the cause of the solvent becoming miscible with water and making it impossible to recover and reuse the solvent.
  • the treatment operation for isolation can cause a decrease in yield, and in particular, the addition of water as a post-treatment causes the target compound to move into the aqueous layer together with the solvent, causing the decrease in yield. I thought.
  • An object of the present invention is to provide a method for producing (4E) -5 black mouth 2-isopropyl-4-pentenoic acid ester and its optically active substance more efficiently and in high yield. Means for solving the problem
  • the present inventors perform the above-described problem by performing the reaction for obtaining the compound represented by the formula (3) from the compound represented by the formula (2) and the dealkoxycarbonylation reaction in the same reaction vessel. I found out that could be solved.
  • the present invention provides the following inventions.
  • the reaction product containing a compound represented by the following formula (2) is obtained by reacting with an alkali metal alkoxide (I) represented by the following formula (2).
  • Step (b ′) the compound represented by the formula (2) obtained in step (a ′) is reacted with the alkali metal alkoxide (I) in the presence of the aprotic solvent (I), (1E) — 1,3 dichloro 1
  • a reaction product containing a compound represented by the following formula (3) is obtained, and then the reaction product force aprotic solvent (I) is added. The process of distilling off.
  • Step (c ′) The compound represented by the formula (3) obtained in the step (b ′) is converted to an alkali metal chloride represented by the formula M ⁇ l (wherein M 1 is the same as above).
  • R represents a lower alkyl group or an aralkyl group.
  • R represents a lower alkyl group or an aralkyl group.
  • (4E) -5 chloro-2-isopropyl-4-pentenoic acid ester useful as an intermediate for agricultural chemicals or medicines can be produced efficiently.
  • the solvent used for the quaternization reaction and dealkoxycarbonylation reaction can be recovered and reused, and waste water and liquid can be reduced. Further, the reaction rate and yield can be further improved as compared with the conventional method.
  • R represents a lower alkyl group or an aralkyl group (hereinafter the same).
  • the above manufacturing process also includes the following (a) to (d) process capabilities.
  • Step (c) Step of obtaining Compound (4) by substituting one of the —COOR moieties in Compound (3) with a hydrogen atom (dealkoxycarbonylation) in the same reaction vessel as in Step (b).
  • Compound (4) is a step of obtaining an optically active form of (4), and performing optical resolution to obtain Compound (5) and Z or Compound (6).
  • R represents a lower alkyl group or an aralkyl group.
  • the lower alkyl group refers to an alkyl group having 1 to 4 carbon atoms, which includes a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an nbutyl group, a sec butyl group, an isobutyl group, And a tert-butyl group.
  • the aralkyl group refers to a lower alkyl group substituted with an aryl group, and a lower alkyl group substituted with one or two aryl groups is preferred.
  • the aryl group includes Examples thereof include an phenyl group, a 1 naphthyl group, and a 2-naphthyl group. Further, the aryl group may have one or more substituents on the ring. As the substituent, a lower alkyl group is preferred. Examples of the aralkyl group include benzyl group and diphenylmethyl group.
  • R is particularly preferably a methyl group, preferably a lower alkyl group.
  • metal hydrides metal alkoxides, lithium diisopropylamide (LDA), lithium hexamethyldisilazide, pyridine, triethylamine, inorganic bases, etc. are used, respectively. be able to.
  • LDA lithium diisopropylamide
  • pyridine lithium hexamethyldisilazide
  • triethylamine inorganic bases, etc.
  • the base (I) has the formula MiOR 1 (wherein M 1 represents Na or K, and R 1 represents a lower alkyl group because of its good reactivity and operability and excellent economic efficiency.
  • the base ( ⁇ ) that is preferably used is a metal alkoxide represented by formula MR 2 (wherein M 2 represents Na or K, and R 2 represents a lower alkyl group). It is preferred to use the metal alkoxides represented.
  • the base (I) and the base ( ⁇ ) are preferably the same.
  • the metal alkoxide represented by the formula M OR 1 and the metal alkoxide represented by the formula M 2 OR 2 are sodium methoxide (CH ONa) and sodium ethoxide (CHO
  • metal alkoxides are preferably used in the form of powder or as a solution.
  • the metal alkoxide of the formula M ⁇ R 1 is a metal alkoxide to a solution of the alcohol of the formula I ⁇ OH are represented by the preferred tool formula MR 2 is It is preferable to use a solution of an alcohol represented by the formula R 2 OH (however, M ⁇ M 2 , R 1 and R 2 have the same meaning as described above.) O
  • the concentration of metal alkoxide in the solution I is preferably 5 to 35% by mass, particularly preferably 15 to 35% by mass.
  • a solution prepared by alkali metal and lower alcohol strength may be used.
  • the aprotic solvent (I) and the aprotic solvent ( ⁇ ) are toluene, Aromatic hydrocarbon solvents such as len and benzene; aliphatic hydrocarbon solvents such as hexane and heptane; dimethylformamide (DMF), dimethylacetamide (DMA), N-methylpyrrolidinone (NMP), 1, Amide solvents such as 3-dimethyl-2-imidazolidinone (DMI); Sulfoxide solvents such as dimethyl sulfoxide (DMSO); Sulfone solvents such as sulfolane; Diethylene glycol dimethyl ether (DME), diglyme, tetrahydrofuran (THF), t -Ether solvents such as butyl methyl ether (TBME). These solvents may be used alone, or may be used as a mixed solvent in which two or more kinds are mixed.
  • Aromatic hydrocarbon solvents such as len and benzene
  • aliphatic hydrocarbon solvents such
  • aprotic solvent (I) and aprotic solvent ( ⁇ ) toluene, xylene, benzene, heptane, DMF, DMA, NMP, DMI, DMSO, DME, THF, TBME, and sulfolane force are also selected. It is preferable to have more than one kind of solvent power.
  • the aprotic solvent (I) and the aprotic solvent ( ⁇ ) are preferably the same solvent.
  • the aprotic solvent (I) and the aprotic solvent ( ⁇ ) are further aromatic in terms of suppressing the generation of impurities, good operability, and recovering and reusing the solvent.
  • Particularly preferred is a mixed solvent of toluene and sulfolane, in which a mixed solvent of a hydrocarbon solvent and an amide solvent or sulfolane is particularly preferred.
  • the ratio of the aromatic hydrocarbon solvent to the amide solvent or sulfolane in the mixed solvent is the aromatic hydrocarbon solvent Z (amide solvent or sulfolane) (volume ratio), preferably 1Z2 to 50Z1. In particular, 1 ⁇ 2 ⁇ 5 ⁇ 1 is preferable.
  • step (a) compound (1) is reacted with base (I) in the presence of aprotic solvent (I), followed by reaction with isopropyl halide to give compound (2). It is a process.
  • the compound (1) (malonic acid diester), dimethyl malonate, jetyl malonate, diisopropyl malonate and the like can be used, and dimethyl malonate is preferred!
  • the isopropyl halide isopropyl bromide, isopropyl chloride, isopium pill, etc. can be used, and isopropyl bromide is preferred from the viewpoint of reactivity and economy.
  • Propene is a known compound, and is a compound that can be obtained industrially at low cost. Moreover, it is preferable to use commercially available products for these compounds. Commercial products can be purified as necessary, but in normal cases they can be used without purification.
  • the amount of the aprotic solvent (I) is preferably 0.5 to 2 Oml with respect to lg of the compound (1).
  • the amount of the base (I) is preferably 0.9 to 5 times by mole, particularly preferably 1.0 to 3.0 times by mole, relative to the compound (1).
  • the amount of isopropyl halide is preferably 1 mol or more relative to compound (1) from the viewpoint of the conversion rate and yield of the reaction, and 1.0 to 50.0 mol is more preferable. From the viewpoint of volumetric efficiency and economy, 1.0 to 3.0 moles are particularly preferred.
  • a metal iodide such as sodium iodide (Nal) or potassium iodide (KI), or sodium bromide (NaBr), bromide is used.
  • Metal bromides such as potassium (KBr) can be added.
  • the amount is preferably 1 to 100 mol%, particularly preferably 1 to 10 mol%, based on isopropyl halide! /.
  • the reaction temperature in step (a) is preferably +30 to + 180 ° C, particularly preferably +70 to + 140 ° C.
  • the reaction time is preferably 1 to 30 hours.
  • the reaction pressure is particularly preferably atmospheric pressure or atmospheric pressure for which pressurization is preferred.
  • step (a) compound (1), base (I), and chlorogenated isopropyl are added in this order to aprotic solvent (I) (a-1),
  • the reaction is preferably carried out by the method (a-2) in which the base (1), the compound (1) and the isopropyl halide are added in this order to the aprotic solvent (I).
  • the base (I) in the step (a) it is preferable to use a base represented by the above formula M ⁇ R 1 (M 1 and R 1 have the same meaning as described above). . Even when the base represented by the formula M ⁇ R 1 is used, the compound (1) is added in the presence of the aprotic solvent (I) according to the method (a-1) or the method (a-2). It is preferred to react with the base and then with isopropyl halide.
  • the alcohol represented by the formula I ⁇ OH Le is a by-product.
  • the alcohol represented by the formula I ⁇ OH Le is a by-product.
  • NaOCH is used as a base
  • methanol is produced as a by-product
  • the alcohol is preferably removed by distilling off the reaction product, which is preferably removed by distilling, by heating and Z or reducing the pressure. Usually, it is preferable to distill off by heating and distilling before adding isopropyl halide.
  • the reaction proceeds, but it is preferably removed from the viewpoint of the conversion rate, reaction time, and the like.
  • the isopropyl halide in the step (a) is used in an amount of 1 mol or more with respect to the compound (1), the isopropyl halide may be removed from the reaction system after completion of the reaction. preferable.
  • isopropyl halide quaternizes compound (2) and a base represented by formula MR 2 such as isopropyl halide and NaOCH ( However, M 2 and R 2 have the same meaning as above.
  • a method for removing isopropyl and rogenated isopropyl a method by distillation removal is preferred.
  • removing halogenated isopropyl it is preferred to remove it until the amount of isopropyl halide relative to compound (2) is 5 mol% or less, and it is particularly preferable to make it 1 mol% or less.
  • the removed isopropyl halide can be reused for the reaction in step (a).
  • the reaction product containing the compound (2) produced in the step (a) is removed by distillation to remove the solvent.
  • a post-treatment step a post-treatment step other than distillative removal may be performed, but in order to sufficiently achieve the effects of the present invention. It is preferred that no post-treatment be performed other than distillate removal.
  • Examples of the post-treatment method include the following treatment methods 1 to 3 and the like.
  • Reatment method 1 Add water or saline to the reaction crude liquid, then water-insoluble organic solvent such as dichloromethane, toluene, ethyl acetate, butyl acetate, t-butyl methyl ether, diisopropyl ether, or jetyl ether Is added to separate the layers, and the organic layer is concentrated and further distilled.
  • water-insoluble organic solvent such as dichloromethane, toluene, ethyl acetate, butyl acetate, t-butyl methyl ether, diisopropyl ether, or jetyl ether
  • Treatment method 2 A method of concentrating and distilling the organic layer after washing the organic layer in treatment method 1 with water and Z or brine.
  • Process 3 A method of isolating the compound (2) by cooling the reaction crude liquid and then distilling under reduced pressure. Further, there may be mentioned a method of performing a treatment in which an adsorbent such as filtration or activated carbon is added before and after each step of these treatment methods 1 to 3.
  • an adsorbent such as filtration or activated carbon
  • the step (b) is performed after distilling off the aprotic solvent (I) for the product force including the compound (2) produced in the step (a).
  • the step (b) is preferably performed continuously in the same reaction vessel as the reaction vessel in which the reaction in the step (a) was performed. That is, after obtaining the compound (2) by the step (a), it is preferable to carry out the reaction of the step (b) to obtain the compound (3) in the same reaction vessel.
  • step (a) and step (b) are carried out continuously in the same reaction vessel, the reaction time can be shortened and the operation is easy, which is advantageous in industrial production. Even in this case, when the halogenoisopropyl in the step (a) is used in an amount of 1 mol or more with respect to the compound (1), in the same manner as described above, after the completion of the step (a) It is preferable to remove isopropyl chloride from the reaction system.
  • step (b) the compound (2) is reacted with a base ( ⁇ ) in the presence of an aprotic solvent ( ⁇ ), and then (IE) —1, 3 dichloro-1-propene and This is a quaternary alkylation step in which a compound (3) is obtained by reaction.
  • the aprotic solvent ( ⁇ ) is preferably used in an amount of 0.5 to 20 ml with respect to lg of the compound (2).
  • the amount of base ( ⁇ ) is preferably 0.9 to 5 times mol of compound (2), and 0.9 to 3.0 times mol is particularly preferred 0.9 to 1.5 times mol. Is particularly preferred.
  • the use of the base ( ⁇ ) in excess of 1-fold mole relative to compound (2) has the advantage of increasing the reaction rate, Since there is a high probability that the unreacted base ( ⁇ ) remaining in the reaction system will react with (1E) — 1,3 dichloro 1 propene, it is necessary to consider both reactivity and side reaction. It is preferred to determine the amount of base (II).
  • (1E)-1, 3 Dichloro 1 Propene is 0.9 to 50.0 times the amount of Compound (2) in terms of operability, volumetric efficiency, and economic efficiency. A 0-fold mole is particularly preferred.
  • (1E)-1,3 Dichloro-1-1-propene may be recovered and reused in step (b) when it is used in excess.
  • step (b) compound (2), base ( ⁇ ), and (1E) -1,3 dichloro-1 propene are added in this order to aprotic solvent ( ⁇ ) (b-1 ), Or base (II), compound (2), and (IE) -1,3 dichloro-1 propene in this order in the aprotic solvent ( ⁇ ) (b-2). preferable.
  • the reaction temperature in step (b) is preferably +30 to + 180 ° C, particularly preferably +70 to + 140 ° C.
  • the reaction time is preferably 1 to 30 hours, particularly preferably 1 to 5 hours.
  • the reaction pressure is particularly preferably atmospheric pressure or atmospheric pressure where pressurization is preferred.
  • step (b) metal iodides such as Nal and KI, or metal bromides such as NaBr and KBr may be added to the reaction system in order to further increase the reactivity.
  • metal iodides such as Nal and KI, or metal bromides such as NaBr and KBr
  • the distillation removal step is performed after the step (a)
  • the amount, (1E) - 1 particularly preferably 1 to 100 mole 0/0 preferably fixture 10 molar% relative to 3-dichloro one propene .
  • step (b) compound (2) is reacted with a base ( ⁇ ⁇ ) composed of a metal alkoxide represented by the formula M3 ⁇ 4R 2 in the presence of an aprotic solvent ( ⁇ ), and then by-product. It is preferable to react with (1E)-1, 3 dichloro 1 propene after removing the alcohol of formula RH! / ,.
  • distillation removal is preferred. Usually, it is preferred to distill off the alcohol by heating before adding (IE) -1,3-dichloro-1 propene.
  • the protic solvent such as alcohol, which is a by-product, allows the reaction to proceed even if it remains. From the viewpoint of power conversion rate, reaction time, etc., before adding (1E)-1,3 dichloro-1 propene It is preferable to distill off.
  • the step (b) it is preferable to control the amount of the unreacted compound (2) contained in the reaction product from the viewpoint of suppressing the generation of odorous substances, which will be described later.
  • the ratio of the compound (2) to the total amount of the compound (2) and the compound (3) is preferably less than 5%, particularly preferably less than 0.1%. It is preferable to be less than%.
  • the post-treatment of the reaction product after step (b) is preferably by distillation removal.
  • distillative removal it is preferable to distill off the aprotic solvent) and the unreacted compound represented by the formula (2).
  • post-treatment steps other than distillative removal the same methods as in treatment methods 1 to 3 in step (a) can be mentioned, but it is preferable not to carry out the post-treatment step in order to increase the yield of the final product. .
  • Step (c) is a dealkoxycarbonylation step in which compound (4) is obtained by replacing (dealkoxycarbonylating) one of the COOR moieties in compound (3) with a hydrogen atom.
  • dealkoxycarbolation is a reaction in which one of the two COOR moieties in the compound (3) is removed and replaced with a hydrogen atom! Uh.
  • Dealkoxycarbo-Louis can be performed by a known method.
  • the step is carried out in the same reaction vessel following the step (b).
  • “Reaction is performed in the same reaction vessel” means that the reaction of the next step is performed in the same reaction vessel using the product of the previous step as it is.
  • the reaction product strength in step (b) is also non-protocol. It is preferable to carry out the reaction in the step (c) only by distilling off the organic solvent ( ⁇ ). According to this method, since water is not added for post-treatment, the salt produced as a by-product in step (b) can be used in step (c).
  • the reaction in step (c) is preferably performed by a method of heating in a polar solvent in the presence of water and an inorganic salt.
  • Examples of the polar solvent include amide solvents such as DMF, DMA, NMP, and DMI, sulfoxide solvents such as DMSO, sulfone solvents such as sulfolane, and ether solvents such as DME and THF.
  • the polar solvent may be used alone or as a mixed solvent in which two or more kinds are mixed.
  • the polar solvent is preferably NMP, DMI, or sulfolane, which has good reactivity and can suppress decomposition during the reaction of the polar solvent itself, but in consideration of the efficiency of the reaction.
  • Particularly preferred is sulfolane, which preferably selects the aprotic solvent (I) and the polar solvent used as Z or (v).
  • these polar solvents may contain nonpolar solvents as long as they do not interfere with the progress of the reaction.
  • the amount of the polar solvent is preferably 2 to 30 times the mass of the compound (3), more preferably 5 to 15 times the mass.
  • a polar solvent is used because the progress of the dealkoxycarbon-loud reaction described later can be realized at a sufficient reaction temperature and the solubility of water and inorganic salt can be increased.
  • the aprotic solvent ( ⁇ ) used in step (b) is preferably replaced with a polar solvent suitable for step (c).
  • a mixed solvent of toluene and sulfolane is used as the aprotic solvent ( ⁇ )
  • the inorganic salt is preferably an alkali metal halide, such as sodium chloride (NaCl), lithium chloride (LiCl), sodium bromide (NaBr), and potassium chloride (KC1). NaBr, or LiCl is preferred.
  • the amount of the inorganic salt is preferably 0.5 to 50 times mol of the compound (3), particularly preferably 0.5 to 10 times mol.
  • an alkali salt salt product by-produced in the step (b) is added without adding a new inorganic salt (C). It is preferably used as an inorganic salt in the process.
  • step (c) when the steps (a), (b), and (c) are continuously performed in the same reaction vessel, the alkali metal chloride formed as a by-product in the step (b) is changed to the step (a).
  • Alkali metal halides by-produced in step (c) can also act as inorganic salts in step (c). Therefore, when the step (c) is carried out in the presence of an inorganic salt, it is preferable to use the inorganic salt contained in the reaction system of the step (b) as it is for the reaction of the step (c). In that case, it is not necessary to add an inorganic salt in the step (c). Since the inorganic salt can accelerate the reaction rate in the step (c), the dealkoxycarbonyl reaction can be carried out in a shorter time than the conventional method, and can be carried out even at a low temperature.
  • the amount of water used in step (c) is preferably from 0.1 to 50 times mol, particularly preferably from 0.1 to 3 times mol, of compound (3).
  • the reaction temperature for dealkoxycarbolation is preferably +140 to + 250 ° C, particularly preferably +160 to + 200 ° C.
  • the reaction time is preferably 3 to 15 hours, particularly preferably 3 to 5 hours.
  • the reaction pressure is particularly preferably atmospheric pressure or atmospheric pressure where pressurization is preferred.
  • step (c) When the dealkoxycarbonylation in the step (c) is performed, an odorous substance may be generated from the compound (2). Therefore, it is preferable to remove the compound (2) from the reaction system after completion of the step (b). This removal can prevent the generation of odorous substances.
  • the reaction product of step (b) contains an inorganic salt useful in step (c). Therefore, it is preferable to employ a post-treatment method in which the compound (2) is removed and the inorganic salt is not removed.
  • the post-treatment method is preferably a distillation removal method. Distillation removal can be performed, for example, by reducing the pressure in the reaction system to about 0.4 kPa and then heating the internal temperature to about 100 to 130 ° C.
  • step (c) when distillate removal is performed after step (a), a new inorganic salt is added to use (in step (c)) the inorganic salt produced in steps (a) and (b) as a reaction accelerator.
  • the reaction rate of the dealkoxycarbo-Louis reaction in step (c) can be improved and the reaction time can be shortened.
  • the amount of compound (2) can be confirmed by gas chromatography (GC).
  • the amount of the compound (2) after completion of the step is preferably 1% or less, particularly preferably 0.1% or less, based on the reaction product.
  • the compound (4) produced in the step (c) is subjected to normal post-treatment or purification treatment according to the purpose.
  • Examples of the post-treatment and Z or purification treatment include the following treatment methods 4 to 6 and the like, and treatment method 6 is preferred.
  • Treatment method 4 After filtering the reaction, the solution is diluted with water or brine, and then separated by adding a water-insoluble organic solvent such as dichloromethane, toluene, ethyl acetate, or ether, and the organic layer is separated. A method of concentration and isolation by distillation.
  • a water-insoluble organic solvent such as dichloromethane, toluene, ethyl acetate, or ether
  • (Treatment method 5) A method in which the reaction is cooled to around 50 to 80 ° C, filtered, and the filtrate is isolated by distillation under reduced pressure.
  • (Treatment method 6) A method in which the reaction is cooled to around 50-80 ° C and then isolated by distillation under reduced pressure.
  • impurities such as tar-like substances contained in the reaction system can be removed by adding an adsorbent such as activated carbon.
  • the compound (4) which also has process capability is preferably a production method comprising the following (a ′) to (c ′).
  • Step (a ') Compound (1) in the presence of aprotic solvent (I) is represented by formula M ⁇ R 1 (wherein M 1 represents Na or K, and R 1 represents a lower alkyl group)
  • the reaction product containing compound (2) is obtained by reacting with an alkali metal alkoxide (I) represented by the following formula (1)), followed by reaction with isopropyl halide, and then the reaction product force aprotic solvent A step of obtaining compound (2) by distilling off (I).
  • Step (c ') Compound (3) obtained in step (a') is represented by the formula M ⁇ l (where M 1 is the same as above) .
  • Pentenoic acid ester is a known compound useful as an intermediate for agricultural chemicals or medicines.
  • Compound (4) is particularly useful as an intermediate for insecticides and antihypertensive agents (WO01Z9079).
  • step (d) is a step of obtaining the following compound (5) and Z or compound (6) by optical resolution of compound (4).
  • R has the same meaning as described above.
  • a known method can be employed as the method of optical division. It does not require special equipment, is easy to operate, is suitable for industrial mass production, has high yield and high optical excess (ee), and has the target compound (5) and Z or compound (6 It is preferable to use a method in which lipase or esterase is allowed to act on the compound (4) to selectively hydrolyze one of the optical isomers.
  • the method using lipase or esterase can be performed according to the method described in the pamphlet of International Publication No. 04Z52828 by the applicant.
  • step (d) Compound (6) obtained in step (d) is converted to compound (4) by esterification and racemization, and can be used again as a raw material in step (d).
  • one of the optical isomers of compound (4) is optically resolved to obtain compound (5b) and Z or compound (6b), and the compound (5b) and the formula ROH (however, , R represents a lower alkyl group or an aralkyl group), and a method of obtaining a compound (5a) by reacting with a compound represented by
  • Preferred embodiments of the production method of the present invention include a method for producing the following compound (5aa). That is, compound (laa) is isopropylated to obtain compound (2aa), and then (1E) -1,3-dichloro-1-propene is reacted in the same reaction vessel to obtain compound (3aa). Further, in one reaction vessel, one of the methoxy carbo yl groups (one CO—OC H) of the compound (3aa) is dealkoxycarboroylated in a high yield and to an isomer.
  • the compound (4aa) is obtained without conversion.
  • the compound (4aa) is optically resolved using lipase to obtain the compound (5aa) with high yield and high ee.
  • gas chromatography is referred to as GC, and the amount of enzyme used is indicated by “Units”.
  • the structure of the obtained compound was determined by comparing with known data. Optical purity and optical excess were measured by GC using Lipodex E 50m X O. 25 mm (Macherey—Nagel) as a column.
  • Heating was stopped when the amount of methanol in the distillate was 0.01% or less by GC analysis.
  • the system was cooled to 95 to 105 ° C, and a toluene solution of (1E) -1,3 dichloro 1-propene (192.3 g) was added (the amount of toluene here is the amount of toluene in step (a)).
  • the amount of the mixture of sulfolane and toluene which is the solvent in step (b), was determined to be lZl (volume ratio);).
  • a phosphate buffer solution (PH 7.0, 5 mmol ZL, 230 mL) is supplemented with 614 Units of porcine liver-derived esterase (Technical Grade manufactured by Roche Diagnostics), and the temperature is adjusted to 35-40 ° C.
  • porcine liver-derived esterase Technical Grade manufactured by Roche Diagnostics
  • step (a) was added dropwise, and methanol and toluene were distilled off in the same manner as in step (a).
  • Heating was stopped when the amount of methanol in the distillate was 0.01% or less by GC analysis.
  • the system was cooled to 95 to 105 ° C, and a toluene solution of (1E) -1,3 dichloro 1-propene (32. lg) was added (the amount of toluene here is the amount of toluene in step ( a )).
  • the amount of the mixture of sulfolane and toluene as the solvent in step (b) was determined to be lZl (volume ratio);).
  • the production method of the present invention is an efficient and high yield method for producing (4E) -5-chloro-2-isopropyl 4-pentenoate useful as an intermediate for pharmaceuticals or agricultural chemicals. provide.
  • the production method of the present invention can recover and reuse the reaction solvent, can reduce waste water and waste solvent, and has a very high yield and is excellent in economic efficiency.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Analytical Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

 (4E)-5-クロロ-2-イソプロピル-4-ペンテン酸エステルを効率的かつ高収率で製造する方法の提供。  化合物(2)を、非プロトン性溶媒の存在下で、塩基と反応させ、つぎに同一反応容器内(1E)-1,3-ジクロロ-1-プロペンと反応させることによって化合物(3)を得て、つぎに同一反応容器内で、化合物(3)中の-COOR部分の一方を水素原子で置換して化合物(4)を得る。ただし、Rは低級アルキル基またはアルアルキル基を示す。

Description

(4E)— 5—クロ口一 2—イソプロピル一 4—ペンテン酸エステルおよびそ の光学活性体の製造方法
技術分野
[0001] 本発明は、農薬または医薬の中間体として有用な (4E)—5 クロ口一 2—イソプロ ピル— 4—ペンテン酸エステルおよびその光学活性体の製造方法に関する。
背景技術
[0002] 農薬または医薬の中間体として有用である(4E)—5 クロ口一 2—イソプロピル一 4 ペンテン酸エステルおよびその類縁体の効率的な合成方法として、本出願人は、 以下の方法を報告している。
マロン酸ジアルキルエステルを、非プロトン性溶媒の存在下、塩基と反応させ、つぎ にハロゲン化イソプロピルと反応させて下式(2)で表される化合物を得る。つぎに該 式 (2)で表される化合物を、非プロトン性溶媒の存在下で、塩基と反応させ、つぎに( 1E)— 1 , 3 ジクロロ 1 プロペンと反応させることにより下式(3)で表される化合 物を得る。つぎに該式(3)で表される化合物の脱アルコキシカルボ-ルイ匕によって下 式 (4)で表される化合物を得る方法 (特許文献 1参照。 )。
[0003] [化 1]
Figure imgf000003_0001
特許文献 1:国際公開第 04Z52828号パンフレット
発明の開示
発明が解決しょうとする課題
本発明者らは、前記の製造方法をより効率的な製造方法とするために検討を行つ た。たとえば、式(3)で表される化合物や式 (4)で表される化合物を含む反応液力 これらの化合物を単離するために、該反応液に水を添加することが、溶媒が水と混和 して溶媒を回収,再利用できなくさせる原因であると考えた。また、単離のための処理 操作が収率低下の原因となりうること、特に、後処理として水を添加することが、目的 化合物が溶媒とともに水層へ移行することを引き起こし収率低下の原因となると考え た。
[0005] 本発明は、(4E)— 5 クロ口一 2—イソプロピル一 4 ペンテン酸エステルおよびそ の光学活性体を、より効率的にかつ高収率で製造する方法の提供を課題とする。 課題を解決するための手段
[0006] 本発明者らは、式 (2)で表される化合物から式 (3)で表される化合物を得る反応と 脱アルコキシカルボニル化反応とを、同一反応容器内で行うことによって前記課題が 解決できることをみ ヽだした。
すなわち、本発明はつぎの発明を提供する。
< 1 >下式 (2)で表される化合物を、非プロトン性溶媒 (Π)の存在下で、塩基 (Π)と 反応させ、つぎに同一反応容器内で(IE)— 1, 3 ジクロロー 1 プロペンと反応さ せることによって下式(3)で表される化合物を得て、つぎに同一反応容器内で、該下 式(3)で表される化合物の COOR部分の一方を水素原子で置換する反応を行うこ とを特徴とする、下式 (4)で表される化合物の製造方法。ただし、 Rは低級アルキル 基またはアルアルキル基を示す。
< 2 >式(3)で表される化合物から式 (4)で表される化合物への反応を、 (1E) - 1 , 3 ジクロロ 1 プロペンと反応させた反応生成物力 非プロトン性溶媒 (Π)を留 去した後に行う上記 1に記載の製造方法。
< 3 >式(3)で表される化合物から式 (4)で表される化合物への反応を、前段の反 応で生成した塩の存在下で行う上記 2に記載の製造方法。
く 4>式 (2)で表される化合物が、下式(1)で表される化合物を、非プロトン性溶媒 (I)の存在下で、塩基 (I)と反応させ、つぎにハロゲン化イソプロピルと反応させること によって得たィ匕合物である上記 1、 2または 3に記載の製造方法。ただし、 Rは低級ァ ルキル基またはアルアルキル基を示す。
< 5 >式(2)で表される化合物と塩基 (Π)との反応を、ハロゲン化イソプロピルと反 応させて得た反応生成物力 非プロトン性溶媒 (I)を留去した後に行う上記 4に記載 の製造方法。
< 6 >式(2)で表される化合物を得る反応を行った後、同一反応容器内で、式(3) で表される化合物を得る反応を行う 4.または 5.に記載の製造方法。
< 7>塩基(1)と塩基(11)が、同一の塩基である上記 4、 5または 6に記載の製造方 法。
< 8 >非プロトン性溶媒 (I)と非プロトン性溶媒 (Π)が同一の溶媒である上記 4、 5、 6または 7に記載の製造方法。
< 9 >下記の工程 (a' )、工程 (b' )、および工程 (c' )を行う下式 (4)で表される化 合物の製造方法。
工程 (a' );下式( 1)で表される化合物を非プロトン性溶媒 (I)の存在下で式 M OR1 (ただし、 M1は Naまたは Kを示し、 R1は低級アルキル基を示す。)で表されるアルカリ 金属アルコキシド (I)と反応させ、つぎにハロゲンィ匕イソプロピルと反応させて下式(2 )で表される化合物を含む反応生成物を得て、次ぎに該反応生成物から非プロトン 性溶媒 (I)を留去する工程。
工程 (b' );工程 (a' )で得た該式 (2)で表される化合物を、非プロトン性溶媒 (I)の 存在下で前記アルカリ金属アルコキシド (I)と反応させ、つぎに(1E)— 1, 3 ジクロ ロー 1 プロペンと反応させることによって下式(3)で表される化合物を含む反応生 成物を得て、つぎに該反応生成物力 非プロトン性溶媒 (I)を留去する工程。
工程 (c' );工程 (b' )で得た式(3)で表される化合物を、式 M^l (ただし、 M1は前 記と同一である。)で表されるアルカリ金属クロライドの存在下に該下式(3)で表され る化合物中の COOR (ただし、 Rは低級アルキル基またはアルアルキル基を示す。 )部分の一方を水素原子で置換する反応を行う工程。
[化 2]
Figure imgf000005_0001
[化 3]
Figure imgf000006_0001
(2) (3) (4) く 10>工程 (c' )力 工程 (b' )で得た式(3)で表される化合物を、工程 (b' )で生 成した式 M^l (ただし、 M1は前記と同一である。)で表されるアルカリ金属クロライド の存在下に、かつ、該アルカリ金属クロライドを添加することなしに行い、かつ、水の 存在下に加熱することによって行う工程である 9.に記載の製造方法。
く 11 >上記 1〜: LOのいずれかに記載の製造方法によって得た下式 (4)で表され る化合物を光学分割する、下式(5a)で表される化合物および Zまたは下式 (6a)で 表される化合物の製造方法。ただし、 Rは前記と同じ意味を示す。
く 12>上記 1〜: LOのいずれかに記載の製造方法によって得た下式 (4)で表され る化合物の光学異性体の一方を光学分割して下式(5b)で表される化合物および Z または下式 (6b)で表される化合物の製造方法。ただし、 Rは低級アルキル基または アルアルキル基を示す。
く 13 >上記 12に記載の製造方法で得た式( 5b)で表される化合物に式 ROHで表 される化合物を反応させる、下式 (5a)で表される化合物の製造方法。ただし、 Rは低 級アルキル基またはアルアルキル基を示す。
< 14>光学分割を、下式 (4)で表される化合物に酵素を作用させることにより行う 上記 11、 12または 13に記載の製造方法。
[化 4]
Figure imgf000006_0002
Figure imgf000007_0001
発明の効果
[0007] 本発明の製造方法によれば、農薬または医薬の中間体として有用な (4E)— 5 ク ロロ 2—イソプロピル— 4 ペンテン酸エステルを、効率よく製造できる。すなわち、 4級化反応および脱アルコキシカルボニル化反応に使用する溶媒の回収 ·再利用が 可能になり、廃水や廃液を削減できる。また、従来の方法よりさらに反応速度や収率 を向上させることができる。
また、前記の方法で得た(4E)—5 クロ口 2—イソプロピル— 4 ペンテン酸エス テルを光学分割することによって、農薬または医薬の中間体としてより有用な (S)— ( 4E)— 5 クロロー 2 イソプロピル 4 ペンテン酸エステルを高収率および高光 学過剰率で得ることができる。
発明を実施するための最良の形態
[0008] 本明細書においては、「式(1)で表される化合物」を「ィ匕合物(1)」とも記す。他の式 で表される化合物についても同様である。また、特に記載しない限り、圧力は絶対圧 で表す。
本明細書にぉ 、て説明する製造方法の概要は下式で示すことができる。ただし、 本発明は下式に限定されない。式中、 Rは低級アルキル基またはアルアルキル基を 示す (以下、同様)。
[0009] [化 6]
Figure imgf000008_0001
Figure imgf000008_0002
[0010] 上記製造工程は、下記 (a)〜(d)工程力もなる。
(a)工程;ィ匕合物(2)を、化合物(1)を、非プロトン性溶媒 (I)の存在下、塩基 (I)と 反応させ、つぎにハロゲン化イソプロピルと反応させる工程。
(b)工程;ィ匕合物(2)を、非プロトン性溶媒 (Π)の存在下で塩基 (Π)と反応させ、つ ぎに同一反応容器内で( 1E)— 1 , 3 ジクロロー 1 プロペンと反応させることによつ て、化合物(3)を得る工程。
(c)工程;(b)工程と同一反応容器内で、化合物(3)中の— COOR部分の一方を 水素原子で置換 (脱アルコキシカルボニル化)すること〖こより、化合物 (4)を得る工程
(d)工程;ィ匕合物 (4)の光学活性体を得る工程であり、光学分割を行い、化合物(5 )および Zまたは化合物(6)を得る工程。
なお、式中の *は炭素原子が不斉炭素原子であることを示し、化合物(5)における 該不斉炭素原子の絶対配置と化合物(5)における該不斉炭素原子の絶対配置とは 互いに異なり、一方カ¾であり他方が Sである(以下同じ。 ) o
[0011] 本発明にお!/、て、 Rは低級アルキル基、またはアルアルキル基を示す。
低級アルキル基とは、炭素数 1〜4のアルキル基を示し、該基としてはメチル基、ェ チル基、 n—プロピル基、 iso プロピル基、 n ブチル基、 sec ブチル基、 iso ブ チル基、および tert ブチル基等が挙げられる。
アルアルキル基とは、ァリール基によって置換された低級アルキル基を示し、 1また は 2個のァリール基で置換された低級アルキル基が好ましい。ァリール基としては、フ ェニル基、 1 ナフチル基、または 2—ナフチル基等が挙げられる。さらに、該ァリー ル基は、その環上に 1個または 2個以上の置換基を有していてもよい。置換基として は、低級アルキル基が好ましい。アルアルキル基としては、ベンジル基、ジフエ-ルメ チル基等が挙げられる。
Rとしては、低級アルキル基が好ましぐメチル基が特に好ましい。
[0012] 塩基 (I)および塩基 (Π)としては、それぞれ金属水素化物、金属アルコキシド、リチ ゥムジイソプロピルアミド(LDA)、リチウムへキサメチルジシラジド、ピリジン、トリェチ ルァミン、無機塩基等を用いることができる。
反応性および操作性が良好であること、経済性に優れていることから、塩基 (I)とし ては、式 MiOR1 (ただし、 M1は Naまたは Kを示し、 R1は低級アルキル基を示す。)で 表される金属アルコキシドを用いるのが好ましぐ塩基 (Π)としては、式 M R2 (ただ し、 M2は Naまたは Kを示し、 R2は低級アルキル基を示す。)で表される金属アルコキ シドを用いるのが好ましい。塩基 (I)および塩基 (Π)は同一であるのが好ましい。
[0013] 式 M OR1で表される金属アルコキシドおよび式 M2OR2で表される金属アルコキシ ドとしては、それぞれ、ナトリウムメトキシド (CH ONa)、ナトリウムエトキシド (C H O
3 2 5
Na)、ナトリウム tert ブトキシド(t— C H ONa)、およびカリウム tert ブトキシ
4 9
ド(t— C H OK)等が挙げられ、安価に市販されている CH ONa、 C H ONaが好ま
4 9 3 2 5 しい。
これらの金属アルコキシドは、粉体状のものを、または溶液として、用いることが好ま しい。
金属アルコキシドを溶液として用いる場合、式 M^R1で表される金属アルコキシド は、式 I^OHで表されるアルコールの溶液とするのが好ましぐ式 M R2で表される 金属アルコキシドは、式 R2OHで表されるアルコールの溶液とするのが好ましい(ただ し、 M\ M2、 R1および R2は前記と同じ意味を示す。 ) oまた、溶液中の金属アルコキ シドの濃度は、 5〜35質量%が好ましぐ 15〜35質量%が特に好ましい。
金属アルコキシドを溶液として用いる場合は、アルカリ金属と低級アルコール力ゝら調 製したものを用いてもよい。
[0014] 非プロトン性溶媒 (I)および非プロトン性溶媒 (Π)としては、それぞれトルエン、キシ レン、ベンゼン等の芳香族炭化水素系溶媒;へキサン、ヘプタン等の脂肪族炭化水 素系溶媒;ジメチルホルムアミド(DMF)、ジメチルァセトアミド(DMA)、 N—メチルビ ロリジノン(NMP)、 1 , 3—ジメチルー 2—イミダゾリジノン(DMI)などのアミド系溶媒; ジメチルスルホキシド(DMSO)などのスルホキシド系溶媒;スルホランなどのスルホン 系溶媒;ジエチレングリコールジメチルエーテル(DME)、ジグライム、テトラヒドロフラ ン(THF)、 t—ブチルメチルエーテル (TBME)などのエーテル系溶媒等が挙げられ る。これらの溶媒は単独で使用してもよぐ 2種類以上を混合した混合溶媒として使用 してちよい。
非プロトン性溶媒 (I)および非プロトン性溶媒 (Π)としては、トルエン、キシレン、ベン ゼン、ヘプタン、 DMF、 DMA, NMP、 DMI、 DMSO, DME、 THF、 TBMEおよ びスルホラン力も選ばれる 1種類以上の溶媒力もなることが好ま 、。非プロトン性溶 媒 (I)と非プロトン性溶媒 (Π)とは同一の溶媒であるのが好ましい。
[0015] 非プロトン性溶媒 (I)および非プロトン性溶媒 (Π)としては、さらに、不純物の生成が 抑制できる点、操作性が良好である点、溶媒を回収再利用できる点から、芳香族炭 化水素系溶媒と、アミド系溶媒またはスルホランとの混合溶媒が特に好ましぐトルェ ンとスルホランとの混合溶媒がとりわけ好ましい。該混合溶媒中の、芳香族炭化水素 系溶媒と、アミド系溶媒またはスルホランとの比率は、芳香族炭化水素系溶媒 Z (アミ ド系溶媒またはスルホラン)(体積比)で、 1Z2〜50Z1が好ましぐ特に 1Ζ2〜5Ζ 1が好ましい。
[0016] 以下、(a)工程〜 (d)工程を順に説明する。
(a)工程は、化合物(1)を、非プロトン性溶媒 (I)の存在下、塩基 (I)と反応させ、つ ぎにハロゲン化イソプロピルを反応させて化合物(2)を得る 3級化工程である。
化合物(1) (マロン酸ジエステル)としては、マロン酸ジメチル、マロン酸ジェチル、 およびマロン酸ジイソプロピル等を用いることができ、マロン酸ジメチルが好まし!/、。 ハロゲン化イソプロピルとしては、臭化イソプロピル、塩化イソプロピル、ヨウ化イソプ 口ピル等を用いることができ、反応性と経済性との観点から、臭化イソプロピルが好ま しい。
マロン酸ジエステル、ハロゲン化イソプロピル、および(IE)— 1 , 3—ジクロロ— 1— プロペンは公知の化合物であり、工業的に安価に入手可能な化合物である。また、こ れらの化合物は、通常は市販品を用いるのが好ましい。市販品は必要に応じて精製 してもょ 、が、通常の場合には精製せずに用いることができる。
[0017] (a)工程において、非プロトン性溶媒 (I)の量は、化合物(1)の lgに対して 0. 5〜2 Omlが好ましい。
塩基 (I)の量は、化合物(1)に対して 0. 9〜5倍モルが好ましぐ特に 1. 0〜3. 0倍 モルが好ましい。
ハロゲン化イソプロピルの量は、反応の転化率および収率の観点から、化合物(1) に対して 1倍モル以上が好ましぐ 1. 0〜50. 0倍モルがより好ましぐ操作性、容積 効率、経済性の面から 1. 0〜3. 0倍モルが特に好ましい。
[0018] (a)工程にぉ 、ては、さらに反応性を高めるために、ヨウ化ナトリウム (Nal)、ヨウィ匕 カリウム (KI)等の金属ヨウ化物、または臭化ナトリウム (NaBr)、臭化カリウム (KBr) 等の金属臭化物を添加してもよ 、。
金属ヨウ化物または金属臭化物を添加する場合、その量は、ハロゲン化イソプロピ ルに対して 1〜 100モル%が好ましく、 1〜 10モル%が特に好まし!/、。
[0019] (a)工程の反応温度は、 + 30〜 + 180°Cが好ましぐ + 70〜+ 140°Cが特に好ま しい。反応時間は、 1〜30時間が好ましい。また、反応圧力は、大気圧または加圧が 好ましぐ大気圧が特に好ましい。
[0020] (a)工程にぉ 、ては、化合物(1)、塩基 (I)、およびノヽロゲン化イソプロピルをこの順 に非プロトン性溶媒 (I)中に添加する方法 (a— 1)、または塩基 (1)、化合物(1)、およ びハロゲン化イソプロピルをこの順に非プロトン性溶媒 (I)中に添加する方法 (a— 2) によって反応を行うのが好ましい。
[0021] (a)工程における塩基 (I)としては、前記の式 M^R1 (M1および R1は、前記の意味 と同じ意味を示す。)で表される塩基を用いるのが好ましい。該式 M^R1で表される 塩基を使用する場合にも、方法 (a— 1)または方法 (a— 2)にしたがって、化合物(1) を非プロトン性溶媒 (I)の存在下に該塩基と反応させ、つぎにハロゲン化イソプロピル と反応させるのが好ましい。
式 M OR1で表される塩基を用いた反応においては、式 I^OHで表されるアルコー ルが副生する。たとえば、塩基として NaOCHを用いたときにはメタノールが副生し、
3
NaOC Hを用いたときにはエタノールが副生する。該アルコールが副生したときに
2 5
は、ハロゲン化イソプロピルと反応させる前に、このアルコールを反応系から除くのが 好ましい。すなわち、(a)工程においては、化合物(1)を、非プロトン性溶媒 (I)の存 在下で、式 MiOR1で表される金属アルコキシド力 なる塩基 (I)と反応させ、つぎに 副生した式 I^OHで表されるアルコールを除去した後に、ハロゲン化イソプロピルと 反応させることが好ましい。
アルコールは、留出除去するのが好ましぐ反応生成物を加熱および Zまたは減圧 することにより留出除去する方法が好ましい。通常はハロゲン化イソプロピルの添カロ 前に加熱して蒸留することによって留去するのが好ましい。
この副生するアルコールのようなプロトン性溶媒は、反応系中に残留して 、ても反 応は進行するが、転化率、反応時間などの観点から、除去することが好ましい。
[0022] また、(a)工程におけるハロゲン化イソプロピルをィ匕合物(1)に対して 1倍モル以上 を用いた場合には、反応終了後に、ハロゲン化イソプロピルを反応系から除去するの が好ましい。ハロゲン化イソプロピルは大量に残存すると、次の(b)工程において、ハ ロゲン化イソプロピルが化合物(2)を 4級化する反応、およびハロゲン化イソプロピル と NaOCH等の式 M R2で表される塩基 (ただし、 M2および R2は前記と同じ意味を
3
示す。)との反応等の副反応が起こりうる。そのため、ハロゲン化イソプロピルを反応 系から除去することにより、該副反応が防止され、(b)工程の目的物である化合物(3 )の収率をさらに高めることができる。
ノ、ロゲン化イソプロピルの除去方法としては、留出除去による方法が好ましい。ハロ ゲン化イソプロピルを除去する場合には、化合物(2)に対するハロゲン化イソプロピ ル量が 5モル%以下になるまで除去することが好ましぐ 1モル%以下にすることが特 に好ましい。また、除去したハロゲン化イソプロピルは、再び (a)工程の反応に再利用 できる。
[0023] 本発明の製造方法にお!、ては、(a)工程で生成する化合物(2)を含む反応生成物 力 溶媒を除去するための留出除去を行う。本発明においては後処理工程として、 留出除去以外の後処理工程を行ってもよいが、本発明の効果を充分に達成するに は留出除去以外の後処理を行わな 、のが好まし 、。
後処理の方法としては、下記処理方法 1〜3等が挙げられる。
(処理方法 1)反応粗液に水または食塩水等を添加し、つぎにジクロロメタン、トルェ ン、酢酸ェチル、酢酸ブチル、 t ブチルメチルエーテル、ジイソプロピルエーテル、 またはジェチルエーテル等の非水溶性有機溶媒を加えて分液し、有機層を濃縮し、 さらに蒸留する方法。
(処理方法 2)処理方法 1における有機層を水および Zまたは食塩水で洗浄した後に 、該有機層を濃縮し、蒸留する方法。
(処理方法 3)反応粗液を冷却した後、減圧蒸留して化合物 (2)を単離する方法。 さらにこれらの処理方法 1〜3の各工程の前後に、ろ過や活性炭等の吸着剤を添 加する処理を行う方法も挙げられる。
[0024] (b)工程は、(a)工程で生成する化合物(2)を含む生成物力も非プロトン性溶媒 (I) を留出除去した後に行う。(b)工程は、(a)工程の反応を行った反応容器と同一の反 応容器内で連続して行うことが好ましい。すなわち、(a)工程によって化合物(2)を得 た後、同一反応容器内で、化合物 (3)を得る (b)工程の反応を行うことが好ましい。
(a)工程と (b)工程とを、連続して同一反応容器内で行った場合には、反応時間を 短縮でき、操作も容易であるため、工業的生産において有利である。この場合にお いても、 (a)工程におけるハロゲンィ匕イソプロピルをィ匕合物(1)に対して 1倍モル以上 を用いた場合は、前記と同様にして、(a)工程の終了後にハロゲン化イソプロピルを 反応系から除去することが好ま 、。
[0025] (b)工程は、化合物(2)を、非プロトン性溶媒 (Π)の存在下で、塩基 (Π)と反応させ 、つぎに(IE)— 1, 3 ジクロロ一 1—プロペンと反応させィ匕合物(3)を得る、 4級ァ ルキル化工程である。
(b)工程において、非プロトン性溶媒 (Π)は、化合物(2)の lgに対して 0. 5〜20ml を使用するのが好ましい。
塩基 (Π)の量は、化合物(2)に対して 0. 9〜5倍モルが好ましぐ 0. 9〜3. 0倍モ ルが特に好ましぐ 0. 9〜1. 5倍モルがとりわけ好ましい。塩基 (Π)を化合物(2)に 対して 1倍モルより過剰に使用することにより、反応速度が大きくなる利点もあるが、 反応系中に残存する未反応の塩基 (Π)が( 1E)— 1 , 3 ジクロロ 1 プロペンと反 応する副反応が起きる確率も高くなるため、反応性と副反応との両方を考慮して塩基 (II)の量を決定することが好ま 、。
(1E) - 1, 3 ジクロロー 1 プロペンの量は、化合物(2)に対して 0. 9〜50. 0倍 モルが好ましぐ操作性、容積効率、経済性の面から 1. 0〜3. 0倍モルが特に好ま しい。 (1E) - 1, 3 ジクロロ一 1—プロペンを過剰に使用したときには、回収して (b) 工程に再使用してもよい。
[0026] (b)工程においては、化合物(2)、塩基 (Π)、および(1E)— 1, 3 ジクロロー 1 プロペンをこの順に非プロトン性溶媒 (Π)中に添加する方法 (b— 1)、または塩基 (II )、化合物(2)、および(IE)—1, 3 ジクロロー 1 プロペンをこの順に非プロトン性 溶媒 (Π)中に添加する方法 (b— 2)により反応を行うのが好ましい。
[0027] (b)工程の反応温度は、 + 30〜 + 180°Cが好ましぐ + 70〜+ 140°Cが特に好ま しい。反応時間は、 1〜30時間が好ましぐ 1〜5時間が特に好ましい。また、反応圧 力は、大気圧または加圧が好ましぐ大気圧が特に好ましい。
[0028] (b)工程においては、さらに反応性を高めるために Nal、 KIなどの金属ヨウ化物、ま たは NaBr、 KBr等の金属臭化物を反応系に添加してもよい。しかし (a)工程後に留 出除去工程を行った場合には、これらを反応系に添加することなく(b)工程の反応を 実施するのが好ましい。金属ヨウ化物または金属臭化物を添加する場合、その量は、 (1E) - 1, 3 ジクロロ一 1—プロペンに対して 1〜100モル0 /0が好ましぐ 1〜10モ ル%が特に好ましい。
[0029] (b)工程における塩基 (Π)としては、式 M R2 (ただし、 M2および R2は前記と同じ 意味を示す。)で表される塩基を用いるのが好ましぐ塩基 (I)と同一の塩基を用いる のが好ましい。式 M¾R2で表される塩基を使用する場合にも、方法 (b— 1)または方 法 (b— 2)にしたがって、化合物(2)を非プロトン性溶媒 (Π)の存在下に該塩基と反 応させ、つぎに(IE)— 1, 3 ジクロロー 1 プロペンと反応させるのが好ましい。 式 M¾R2で表される塩基を用いた反応にお!、ては、式 R¾Hで表されるアルコー ルが副生する。たとえば、塩基として NaOCHを用いたときにはメタノールが副生し、
3
NaOC Hを用いたときにはエタノールが副生する。該アルコールが副生したときに は、(IE)— 1, 3 ジクロロ一 1—プロペンと反応させる前に、このアルコールを反応 系から除くのが好ましい。すなわち、(b)工程においては、化合物(2)を、非プロトン 性溶媒 (Π)の存在下で、式 M¾R2で表される金属アルコキシドからなる塩基 (Π)と 反応させ、つぎに副生した式 R Hで表されるアルコールを除去した後に、 (1E) - 1 , 3 ジクロロ 1 プロペンと反応させることが好まし!/、。
アルコールの除去方法としては、留出除去によるの好ましい。通常は(IE)—1, 3 ージクロロー 1 プロペンの添カ卩前に加熱してアルコールを留去するのが好ましい。 この副生するアルコールのようなプロトン性溶媒は、残留していても反応は進行する 力 転ィ匕率、反応時間などの観点より、 (1E) - 1, 3 ジクロロー 1 プロペンを添カロ する前に留去することが好まし 、。
(b)工程においては、後述する臭気物質の生成を抑制する点から、反応生成物中 に含まれる未反応の化合物(2)の量を管理することが好ましぐガスクロマトグラフィ 一で分析する際の、化合物(2)と化合物(3)との総量に対する化合物(2)の割合を 5 %未満とすることが好ましぐ特に 0. 1%未満とすることが好ましぐとりわけ、 0. 01% 未満とすることが好ましい。
(b)工程後の反応生成物の後処理は留出除去によるのが好ましい。該留出除去で は、非プロトン性溶媒 )および未反応の式 (2)で表される化合物を留去するのが好 ましい。留出除去以外のあと処理工程を行う場合、(a)工程における処理方法 1〜3 と同様の方法が挙げられるが、該後処理工程が行わないのが最終生成物の収率を 上げるため好ましい。
(c)工程は、化合物(3)中の COOR部分の一方を水素原子で置換 (脱アルコキ シカルボニル化)することにより化合物(4)を得る、脱アルコキシカルボニル化工程で ある。本明細書における「脱アルコキシカルボ-ル化」とは、化合物(3)中の 2つの COOR部分の一方を取り去って、水素原子に置き換える反応を!、う。
脱アルコキシカルボ-ルイ匕は、公知の方法により行うことができる。本発明において は、(b)工程に続き、同一反応容器内において行う。反応を「同一反応容器内におい て行う」とは、前工程の生成物をそのまま用いて、同じ反応容器内で次工程の反応を 行うことをいう。本発明の製造方法においては、(b)工程の反応生成物力も非プロト ン性溶媒 (Π)を留出除去するだけで、(c)工程の反応を実施するのが好ましい。該方 法によれば、後処理のために水の添加を行うことがないため、(b)工程で副生する塩 を (c)工程で用いることができる。
(c)工程の反応は、極性溶媒中、水および無機塩の存在下に加熱する方法により 行うことが好ましい。
[0031] 極性溶媒としては、 DMF、 DMA, NMP、 DMIなどのアミド系溶媒、 DMSOなど のスルホキシド系溶媒、スルホランなどのスルホン系溶媒、 DMEおよび THFなどの エーテル系溶媒等が挙げられる。極性溶媒は単独で使用しても 2種類以上を混合し た混合溶媒として使用してもよい。該極性溶媒としては、反応性が良好である点、お よび極性溶媒自身の反応中の分解を抑制できる点力 NMP、 DMI、またはスルホラ ンが好ましいが、反応の効率性を考慮した場合には、前記非プロトン性溶媒 (I)およ び Zまたは (Π)として使用した極性溶媒を選択するのが好ましぐスルホランが特に 好ましい。ただし、これらの極性溶媒には、反応の進行を妨げない量を限度として、 非極性溶媒が含まれて 、てもよ 、。
極性溶媒の量は、化合物(3)に対し 2〜30倍質量が好ましぐ 5〜15倍質量がさら に好ましい。
(c)工程に用いる溶媒には、後述する脱アルコキシカルボ-ルイ匕反応の進行を充 分な反応温度で実現できること、水と無機塩の溶解性を高くできることから、極性溶 媒を用いるのが好ましぐ (b)工程で用いた非プロトン性溶媒 (Π)を (c)工程に適した 極性溶媒に置換することが好ましい。たとえば、非プロトン性溶媒 (Π)としてトルエンと スルホランとの混合溶媒を用いた場合は、トルエンを留去したのちにスルホランをカロ えて (c)工程の反応を行うことが好ましい。この場合、トルエンが完全にスルホラン〖こ 置換される必要はなぐ脱アルコキシカルボ二ルイ匕反応が円滑に進行する割合とな つていればよい。
[0032] 無機塩としては、アルカリ金属のハロゲンィ匕物が好ましく、塩化ナトリウム(NaCl)、 塩化リチウム (LiCl)、臭化ナトリウム (NaBr)、塩ィ匕カリウム (KC1)等が挙げられ、 Na Cl、 NaBr,または LiClが好ましい。無機塩の量は、化合物(3)に対し 0. 5〜50倍モ ルが好ましぐ 0. 5〜 10倍モルが特に好ましい。 本発明においては、(b)工程と (C)工程とを連続して行うため、新たに無機塩を添 加することなぐ (b)工程において副生するアルカリ金属塩ィ匕物を (C)工程における 無機塩として使用することが好ましい。さらに、(a)工程、(b)工程、および (c)工程を 同一反応容器内で連続して行う場合は、 (b)工程で副生するアルカリ金属塩化物に カロえて、(a)工程で副生するアルカリ金属ハロゲンィ匕物も(c)工程における無機塩と して作用し得る。よって、(c)工程を無機塩の存在下に実施する場合においては、 (b )工程の反応系中に含まれる無機塩をそのまま (c)工程の反応に用いるのが好まし い。その場合、(c)工程において無機塩を添加する必要はない。無機塩は、(c)工程 における反応速度を加速させうるため、脱アルコキシカルボ-ル反応は、従来法より も短時間の反応で実施でき、低温でも実施できる。
[0033] (c)工程にお!、て用いられる水の量は、化合物(3)に対し 0. 1〜50倍モルが好ま しく、 0. 1〜3倍モルが特に好ましい。
[0034] 脱アルコキシカルボ-ル化の反応温度としては、 + 140〜 + 250°Cが好ましぐ + 1 60〜 + 200°Cが特に好ましい。反応時間は、 3〜15時間が好ましぐ 3〜5時間が特 に好ましい。また、反応圧力は、大気圧または加圧が好ましぐ大気圧が特に好まし い。
[0035] 本発明にお 、ては、(b)工程終了後に、化合物(2)が反応系内に残存して 、ると、
(c)工程の脱アルコキシカルボ二ル化を行う際に、化合物(2)から臭気物質が発生 する場合がある。そのため、(b)工程終了後の反応系内から化合物(2)を除去するの が好ましい。該除去によって臭気物質の生成を防ぐことができる。一方、(b)工程の 反応生成物中には、(c)工程において有用な無機塩が含まれる。よって、化合物(2) は除去し、無機塩を除去しない後処理法を採用するのが好ましい。該後処理法とし ては、留出除去による方法が好ましい。留出除去は、たとえば反応系内の圧力を 0. 4kPa程度に減圧した後、内温を 100〜130°C程度に加熱することにより行うことがで きる。さらに (a)工程後に留出除去を行った場合には、(c)工程において (a)工程お よび (b)工程で生じた無機塩を反応促進剤として利用するため新たに無機塩の添カロ が不要であるうえ、(c)工程の脱アルコキシカルボ-ルイ匕反応の反応速度が向上し、 反応時間を短縮できる。 化合物(2)の量は、ガスクロマトグラフィー(GC)により確認できる。
(b)工程終了後の化合物(2)の量は、反応生成物に対して 1%以下が好ましぐ 0. 1 %以下が特に好ましい。
本発明の製造方法にお!、ては、(c)工程で生成する化合物 (4)につ 、て、通常の 後処理や、目的に応じた精製処理を行うのが好ましい。
後処理および Zまたは精製処理としては、たとえば、下記処理方法 4〜6等が挙げ られ、処理方法 6が好ましい。
(処理方法 4):反応をろ過した後、水または食塩水などでタエンチし、つぎにジクロロ メタン、トルエン、酢酸ェチル、エーテル等の非水溶性有機溶媒を加えて分液し、該 有機層を濃縮し、蒸留して単離する方法。
(処理方法 5):反応を 50〜80°C付近まで冷却した後、ろ過し、ろ液を減圧蒸留する ことで単離する方法。
(処理方法 6):反応を 50〜80°C付近まで冷却した後、減圧蒸留することで単離する 方法。
また、これらの処理方法において、活性炭などの吸着剤を添加することにより、反応 系中に含まれる、タール状物質などの不純物を除去することができる。
(a)〜 (c)工程力もなる化合物 (4)の製造方法としては、下記 (a ' )〜 (c ' )からなる 製造方法であるのが好まし 、。
工程 (a' );ィ匕合物(1)を非プロトン性溶媒 (I)の存在下で式 M^R1 (ただし、 M1は Naまたは Kを示し、 R1は低級アルキル基を示す。)で表されるアルカリ金属アルコキ シド (I)と反応させ、つぎにハロゲン化イソプロピルと反応させて化合物(2)を含む反 応生成物を得て、次ぎに該反応生成物力 非プロトン性溶媒 (I)を留去することによ り化合物(2)を得る工程。
工程 (b' );工程 (a' )で得た該化合物 (2)を、非プロトン性溶媒 (I)の存在下で前記ァ ルカリ金属アルコキシド(I)と反応させ、つぎに(IE)— 1, 3 ジクロロー 1 プロペン と反応させることによって化合物(3)を含む反応生成物を得て、つぎに該反応生成物 力も非プロトン性溶媒 (I)を留去して化合物(3)を得る工程。
工程 (c' );工程 (a' )で得たィ匕合物(3)を、式 M^l (ただし、 M1は前記と同一である 。)で表されるアルカリ金属クロライドの存在下に化合物(3)中の— COOR (ただし、 R は低級アルキル基またはアルアルキル基を示す。 )部分の一方を水素原子で置換す る反応を行う工程。
[0037] 前記方法により得られる化合物(4)、すなわち(4E)— 5 クロロー 2 イソプロピル
4 ペンテン酸エステルは、農薬または医薬の中間体として有用な公知の化合物 である。化合物 (4)は、特に殺虫剤や高血圧症治療剤の中間体として有用な化合物 である(WO01Z9079号公報)。
[0038] 前記方法により得られる化合物 (4)は、通常はラセミ体である。化合物 (4)につ 、て は、必要に応じて光学分割 ( (d)工程)を行うことができる。(d)工程は、化合物 (4)を 光学分割することによって、下記化合物(5)および Zまたは化合物(6)を得る工程で ある。ただし、 Rは前記と同じ意味を示す。
[0039] [化 7]
Figure imgf000019_0001
(4) (5) (6)
[0040] 光学分割の方法としては、公知の方法を採用することができる。特別な装置を必要 とせず、操作が簡便であり、工業的大量生産に適していること、高収率かつ高光学過 剰率 (ee)で目的とする化合物(5)および Zまたは化合物(6)を得られることから、化 合物 (4)にリパーゼまたはエステラーゼを作用させて、光学異性体の片方を選択的 に加水分解する方法によることが好まし 、。リパーゼまたはエステラーゼを用いる方 法は、本出願人による国際公開第 04Z52828号パンフレット等に記載の方法に従 つて実施でさる。
なお、(d)工程で得られる化合物(6)はエステルイ匕およびラセミ化を行うことにより化 合物 (4)に変換され、再度 (d)工程の原料として用いることができる。
[0041] 本発明においては、化合物 (4)の R体に作用するリパーゼまたはエステラーゼを用 V、て光学分割を行 、、下記化合物(5a)および Zまたは化合物(6a)を得ることが好 ましい。化合物(5a)は医薬または農薬の中間体としてより有用な化合物である。ただ し、 Rは前記と同じ意味を示す。
[0042] [化 8]
Figure imgf000020_0001
また他の光学分割の方法としては、化合物 (4)の光学異性体の一方を光学分割し て化合物(5b)および Zまたは化合物(6b)を得て、該化合物(5b)と式 ROH (ただし 、 Rは低級アルキル基またはアルアルキル基を示す。)で表される化合物を反応させ て化合物(5a)を得る方法も採用できる。
[化 9]
Figure imgf000020_0002
[0043] 本発明の製造方法の好ま 、態様としては、下記化合物(5aa)を製造する方法が 挙げられる。すなわち、化合物(laa)をイソプロピルィ匕して化合物(2aa)を得て、次に 同一反応容器内で(1E)— 1, 3—ジクロロ— 1—プロペンを反応させて化合物(3aa) を得て、さらに同一反応容器内でィ匕合物(3aa)のメトキシカルボ-ル基(一CO— OC H )の一方を脱アルコキシカルボ-ルイ匕することによって、高収率に、かつ異性体へ
3
変換することなぐ化合物 (4aa)を得る。得られた化合物 (4aa)についてリパーゼを 用いて光学分割を行うことによって、高収率かつ高 eeでィ匕合物(5aa)を得る方法で ある。
[0044] [化 10]
Figure imgf000021_0001
(4aa) (5aa) また、本発明の製造方法の各工程後の後処理方法を溶媒の留出除去により実施 すると、従来は大量に副生した廃水が全く生成せずに後処理が可能になる。また、従 来はスルホランなど極性の反応溶媒が廃水中に溶解し、回収することが困難であつ たが、スルホラン、トルエンなどの反応溶媒は蒸留により回収することができる。これら の方法は、後処理の廃液の問題がなぐ反応溶媒を回収して再利用もできるため、 環境に対する影響が小さぐ経済的にも優れた方法である。
実施例
[0045] 以下に実施例を挙げて本発明を具体的に説明するが、本発明はこれらの例によつ て限定されない。なお、以下において、ガスクロマトグラフィーは GCと記し、使用した 酵素の量は「Units」で示す。 lUnitとは、 pH8. 0、 + 25°Cにおいて、 1 molの酪 酸ェチルから 1 μ molの酪酸を 1分間に生成する酵素活性と定義する。また、得られ た化合物の構造は、公知のデータと比較することにより決定した。光学純度と光学過 剰率は、カラムとして Lipodex E 50m X O. 25mm (Macherey— Nagel社製)を 用い、 GCにより測定した。
[0046] [例 1] (4E) 5 クロロー 2 イソプロピルー4 ペンテン酸メチルエステルの合成 例 (その 1)
(a)工程
撹拌器、内温計、コンデンサ、蒸留装置を備えた反応器に、 CH ONaの 28%
3 メタノ ール溶液(312· 8g)、トルエン(336g)、およびスルホラン(630g)をカ卩えた。そこに マロン酸ジメチル(210g)のトルエン(609g)の溶液を滴下した。徐々に加熱し、副生 したメタノールおよび CH ONaのメタノール溶液中に含まれて!/、たメタノールを留去
3
した。 GC分析により、留出液中のメタノールが 0. 1%以下となったところで加熱を停 止した。系内を 95〜105°Cまで冷却し、イソプロピルブロミド(254. 2g)のトルエン(2 73g)溶液を加え、内温を 95〜105°Cに保ったまま 15時間加熱撹拌した。 GC分析 により、マロン酸ジメチルの大部分が消失していることと、 2—イソプロピルマロン酸ジ メチルの生成を確認した。つぎにトルエン(363. 3g)をカ卩えて徐々に加熱し、残存し て!、るイソプロピルブロミドをトルエンとともに留去した。
(b)工程
(a)工程終了後の系内を 95〜105°Cまで冷却し、 CH ONaの 28%メタノール溶液
3
(312. 8g)を滴下した後、(a)工程と同様にしてメタノールを留去した。
GC分析により留出液中のメタノール量が 0. 01%以下となったところで加熱を停止し た。系内を 95〜105°Cまで冷却し、 (1E) - 1, 3 ジクロロ 1—プロペン(192. 3g )のトルエン溶液を加えた(ここでのトルエンの量は、 (a)工程でのトルエンの留去量を 考慮し、 (b)工程の溶媒であるスルホランとトルエンとの混合比が lZl (体積比)とな る量とした。;)。そのまま 2時間加熱撹拌し、 GC分析により、 2- [ (2E)—3—クロ口一 2—プロべ-ル ] 2—イソプロピルマロン酸ジメチルエステルの生成を確認した。系 内を 50°Cまで冷却した後、圧力を 6. 67kPaとし、トルエンを留去し、スルホラン(840 g)を加えた。さらに系内の圧力を 0. 4kPaとした後に加熱し、未反応の 2—イソプロピ ルマロン酸ジメチルカ SGCで 0. 01%以下になるまで留去した後、反応系を大気圧に 民しに。
(。工程
(b)工程終了後の系内にスルホラン (420g)および水( 57. 2g)加えて 190°Cに加 熱し、 5時間反応を行った。 GCで反応の完結を確認したのち、減圧蒸留を行い、(4 E)—5 クロ口 2—イソプロピル— 4 ペンテン酸メチルエステル(215. 9g、収率 7 1%)を得た。
[例 2] (4E) 5 クロロー 2 イソプロピルー4 ペンテン酸メチルエステルの合成 例 (その 2) 例 1と同様に (a)工程を行い、同一反応容器内で引き続いて (b)工程を行う。 GC分 析により 2— [ (2E)—3 クロ口 2—プロべ-ル]— 2—イソプロピルマロン酸ジメチ ルエステルの生成を確認し、スルホラン(1260g)および水(57. 2g)加える。例 1の( c)工程と同様に反応および後処理を行い、 (4E) 5 クロロー 2 イソプロピルー4 —ペンテン酸メチルエステルを得る。収率は 78%以上である。
[例 3]酵素を用いた(4E)—5 クロロー 2 イソプロピルー4 ペンテン酸メチルエス テルの光学分割の例
リン酸緩衝液 (PH7. 0、 5mmolZL、 230mL)に、ブタ肝臓由来エステラーゼ (Ro che Diagnostics社製 Technical Grade) 614Unitsを添カ卩し、温度を 35〜40 °Cに調整する。この液に、例 1と同様の方法で得た (4E)—5—クロロー 2 イソプロピ ルー 4 ペンテン酸メチルエステルのラセミ体(20g)を、チュービングポンプを用いて 0. 065gZ分で添加する。
このとき、反応系内を原料が充分に分散する程度に撹拌翼を用いて撹拌する。原 料添カ卩は、 5時間 10分かけて連続的に行って終了し、その後、 21時間同様の条件 で反応を継続する。原料の総添加濃度は 8質量%とする。また、(4E)— 5—クロロー 2—イソプロピル— 4 ペンテン酸メチルエステルのラセミ体(20g)を添加する際、 0. 5molZLの NaOH水溶液を反応液中に添カ卩し、反応液の pHを 8. 0に調整する。 p Hの調整は pHコントローラを用いて行い、反応終了まで反応液の pHを 8. 0に保つ。 反応生成物を t ブチルメチルエーテルで抽出後、さらに有機溶媒層を 5 %炭酸ナ トリウム水溶液で洗浄し、 (R) - (4E)—5 クロ口一 2—イソプロピル一 4 ペンテン 酸を水層に移す。有機溶媒層に回収される(S)— (4E) 5 クロロー 2 イソプロピ ル— 4 ペンテン酸メチルエステルの GC分析の結果、光学純度は 98%ee以上であ り、収率は 90%以上である。
[比較例] (4E)—5—クロ口— 2—イソプロピル— 4—ペンテン酸メチルエステルの合 成例
(a)工程
撹拌器、内温計、コンデンサ、蒸留装置を備えた反応器に、 CH ONaの 28%メタノ
3
ール溶液(52· lg)、トルエン(152g)、およびスルホラン(62· 3g)をカ卩えた。そこに マロン酸ジメチル(35. Og)のトルエン (46g)の溶液を滴下した。徐々に加熱し、副生 したメタノールおよび CH ONaのメタノール溶液中に含まれて!/、たメタノールとトルェ
3
ンを留去した。 GC分析により、留出液中のメタノールが 0. 1%以下となったところで 加熱を停止した。系内を 95〜105°Cまで冷却し、イソプロピルブロミド(42. 4g)のト ルェン (46g)溶液を加え、内温を 95〜105°Cに保ったまま 17時間加熱撹拌した。 G C分析により、マロン酸ジメチルの大部分が消失していることと、 2—イソプロピルマロ ン酸ジメチルの生成を確認した。つぎにトルエン(61g)をカ卩えて徐々に加熱し、残存 して 、るイソプロピルブロミドをトルエンとともに留去した。
(b)工程
(a)工程終了後の系内を 65〜95°Cまで冷却し、 CH ONaの 28%メタノール溶液(
3
50. lg)を滴下した後、(a)工程と同様にしてメタノールとトルエンを留去した。
GC分析により留出液中のメタノール量が 0. 01%以下となったところで加熱を停止し た。系内を 95〜105°Cまで冷却し、 (1E) - 1, 3 ジクロロ 1—プロペン(32. lg) のトルエン溶液を加えた(ここでのトルエンの量は、 (a)工程でのトルエンの留去量を 考慮し、 (b)工程の溶媒であるスルホランとトルエンとの混合比が lZl (体積比)とな る量とした。;)。そのまま 2時間加熱撹拌し、 GC分析により、 2- [ (2E)—3 クロ口一 2—プロべ-ル ] 2—イソプロピルマロン酸ジメチルエステルの生成を確認した。系 内を室温まで放冷した後、水(210g)に 40°C以下で加えた。分液し、廃水(285. 6g )を抜き出した。有機層を 7%食塩水(117. 6g)で洗浄し、廃水(128. 2g)を抜き出 した。減圧下、 70°C以下で濃縮し、(b)工程の目的物 130gを得た。
(。工程
(b)工程の目的物(130g)にスルホラン (490g)、水 (4. 77g)、および塩ィ匕ナトリウ ム(5. 42g)をカ卩えて 210— 220°Cに加熱し、 13時間反応を行った。 GCで反応の完 結を確認したのち、減圧蒸留を行い、 (4E)—5 クロ口 2—イソプロピル— 4 ぺ ンテン酸メチルエステル(33. 3g、収率 66%)を得た。
産業上の利用可能性
本発明の製造方法は、医薬または農薬の中間体として有用な (4E)— 5—クロロー 2 イソプロピル 4 ペンテン酸エステルを効率的かつ高収率で製造する方法を 提供する。また、前記の方法で得た (4E)—5—クロ口— 2—イソプロピル— 4—ペン テン酸エステルを光学分割することによって、農薬または医薬の中間体としてより有 用な(S) - (4E)—5—クロ口— 2—イソプロピル— 4—ペンテン酸エステルを高収率 および高 eeで得る方法を提供する。本発明の製造方法は、反応溶媒の回収'再利用 が可能であり、廃水、廃溶媒を削減でき、収率も非常に高ぐ経済性に優れた方法で ある。また、臭気の発生も抑制できることから、工業的な製造方法として有用な方法で ある。 なお、 2004年 10月 15曰に出願された曰本特許出願 2004— 301870号の明細書、 特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の明細書の開 示として、取り入れるものである。

Claims

請求の範囲
下式 (2)で表される化合物を、非プロトン性溶媒 (Π)の存在下で、塩基 (Π)と反応さ せ、つぎに同一反応容器内で(IE)— 1, 3 ジクロロー 1 プロペンと反応させること によって下式(3)で表される化合物を得て、つぎに同一反応容器内で、該下式(3) で表される化合物の COOR部分の一方を水素原子で置換する反応を行うことを特 徴とする、下式 (4)で表される化合物の製造方法。ただし、 Rは低級アルキル基また はアルアルキル基を示す。
[化 1]
Figure imgf000026_0001
(2) 0) (4)
[2] 式(3)で表される化合物から式 (4)で表される化合物への反応を、 (1E) - 1, 3— ジクロロー 1 プロペンと反応させた反応生成物から非プロトン性溶媒 (Π)を留去した 後に行う、請求項 1に記載の製造方法。
[3] 式(3)で表される化合物から式 (4)で表される化合物への反応を、前段の反応で生 成した塩の存在下で行う請求項 2に記載の製造方法。
[4] 式 (2)で表される化合物が、下式(1)で表される化合物を、非プロトン性溶媒 (I)の 存在下で、塩基 (I)と反応させ、つぎにハロゲン化イソプロピルと反応させることによつ て得たィ匕合物である請求項 1、 2、または 3に記載の製造方法。ただし、 Rは低級アル キル基またはアルアルキル基を示す。
[化 2]
Figure imgf000026_0002
[5] 式 (2)で表される化合物と塩基 (Π)との反応を、ハロゲン化イソプロピルと反応させ て得た反応生成物力 非プロトン性溶媒 (I)を留去した後に行う、請求項 4に記載の 製造方法。
[6] 式 (2)で表される化合物を得る反応を行った後、同一反応容器内で、式 (3)で表さ れる化合物を得る反応を行う請求項 4または 5に記載の製造方法。
[7] 塩基 (I)と塩基 (Π) 1S 同一の塩基である請求項 4、 5、または 6に記載の製造方法
[8] 非プロトン性溶媒 (I)と非プロトン性溶媒 (Π)が同一の溶媒である請求項 4、 5、 6、 または 7に記載の製造方法。
[9] 下記の工程 (a' )、工程 (b' )、および工程 (c' )を行う下式 (4)で表される化合物の 製造方法。
工程 (a' );下式( 1)で表される化合物を非プロトン性溶媒 (I)の存在下で式 M OR1 (ただし、 M1は Naまたは Kを示し、 R1は低級アルキル基を示す。)で表されるアルカリ 金属アルコキシド (I)と反応させ、つぎにハロゲンィ匕イソプロピルと反応させて下式(2 )で表される化合物を含む反応生成物を得て、次ぎに該反応生成物から非プロトン 性溶媒 (I)を留去する工程。
工程 (b' );工程 (a' )で得た該式 (2)で表される化合物を、非プロトン性溶媒 (I)の存 在下で前記アルカリ金属アルコキシド (I)と反応させ、つぎに(1E)— 1, 3 ジクロ口 1 プロペンと反応させることによって下式(3)で表される化合物を含む反応生成 物を得て、つぎに該反応生成物力 非プロトン性溶媒 (I)を留去する工程。
工程 (c' );工程 (b' )で得た式(3)で表される化合物を、式 M^l (ただし、 M1は前記 と同一である。)で表されるアルカリ金属クロライドの存在下に該下式(3)で表される 化合物中の— COOR (ただし、 Rは低級アルキル基またはアルアルキル基を示す。 ) 部分の一方を水素原子で置換する反応を行う工程。
[化 3]
Figure imgf000027_0001
[化 4]
Figure imgf000028_0001
(2) (3) (4)
[10] 工程 (c' )力 工程 (b' )で得た式(3)で表される化合物を、工程 (b' )で生成した式 M^l (ただし、 M1は前記と同一である。)で表されるアルカリ金属クロライドの存在下 に、かつ、該アルカリ金属クロライドを添加することなしに行い、かつ、水の存在下に 加熱することによって行う工程である請求項 9に記載の製造方法。
[11] 請求項 1〜10のいずれかに記載の製造方法によって得た下式 (4)で表される化合 物を光学分割する、下式(5a)で表される化合物および Zまたは下式 (6a)で表され る化合物の製造方法。ただし、 Rは前記と同じ意味を示す。
[化 5]
Figure imgf000028_0002
(4) (5a) (6a) 請求項 1〜10のいずれかに記載の製造方法によって得た下式 (4)で表される化合 物の光学異性体の一方を光学分割して下式(5b)で表される化合物および Zまたは 下式 (6b)で表される化合物の製造方法。ただし、 Rは低級アルキル基またはアルア ルキル基を示す。
[化 6]
Figure imgf000028_0003
[13] 請求項 12に記載の製造方法で得た式(5b)で表される化合物に式 ROHで表され る化合物を反応させる、下式 (5a)で表される化合物の製造方法。ただし、 Rは低級 アルキル基またはアルアルキル基を示す。
[化 7]
Figure imgf000029_0001
(5a)
[14] 光学分割を、下式 (4)で表される化合物に酵素を作用させることにより行う請求項 1、 12、または 13に記載の製造方法。
[化 8]
Figure imgf000029_0002
(4)
PCT/JP2005/018704 2004-10-15 2005-10-11 (4e)-5-クロロ-2-イソプロピル-4-ペンテン酸エステルおよびその光学活性体の製造方法 WO2006041062A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2006540937A JPWO2006041062A1 (ja) 2004-10-15 2005-10-11 (4e)−5−クロロ−2−イソプロピル−4−ペンテン酸エステルおよびその光学活性体の製造方法
EP05793121A EP1801094A4 (en) 2004-10-15 2005-10-11 PROCESS FOR THE PREPARATION OF (4E) -5-CHLORO-2-ISOPROPYL-4-PENENOAT AND A OPTICALLY ACTIVE SUBSTANCE THEREOF
CA002582840A CA2582840A1 (en) 2004-10-15 2005-10-11 Processes for producing (4e)-5-chloro-2-isopropyl-4-pentenoate and optically active form thereof
US11/691,873 US20070191630A1 (en) 2004-10-15 2007-03-27 Processes for producing (4e)-5-chloro-2-isopropyl-4-pentenoate and optically active form thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004301870 2004-10-15
JP2004-301870 2004-10-15

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/691,873 Continuation US20070191630A1 (en) 2004-10-15 2007-03-27 Processes for producing (4e)-5-chloro-2-isopropyl-4-pentenoate and optically active form thereof

Publications (1)

Publication Number Publication Date
WO2006041062A1 true WO2006041062A1 (ja) 2006-04-20

Family

ID=36148353

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/018704 WO2006041062A1 (ja) 2004-10-15 2005-10-11 (4e)-5-クロロ-2-イソプロピル-4-ペンテン酸エステルおよびその光学活性体の製造方法

Country Status (6)

Country Link
US (1) US20070191630A1 (ja)
EP (1) EP1801094A4 (ja)
JP (1) JPWO2006041062A1 (ja)
CN (1) CN101035753A (ja)
CA (1) CA2582840A1 (ja)
WO (1) WO2006041062A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007017018A1 (en) * 2005-07-25 2007-02-15 Dsm Fine Chemicals Austria Nfg Gmbh & Co Kg Process for preparing racemic alkyl-5-halopent-4-enecarboxylic acids or -carboxylic esters
JP2017165679A (ja) * 2016-03-16 2017-09-21 信越化学工業株式会社 4−メチルオクタン酸エチルの製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105566111A (zh) * 2014-10-09 2016-05-11 安徽扬子化工有限公司 一种3-四氢呋喃甲醇中间体的合成方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004052828A1 (ja) * 2002-12-09 2004-06-24 Asahi Glass Company, Limited (4e)−5−クロロ−2−イソプロピル−4−ペンテン酸エステルおよびその光学活性体の製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE122007000077I2 (de) * 2000-07-25 2008-08-21 Speedel Pharma Ag Hirchgaessle Verfahren zur herstellung von substituierten octanoyl-amiden

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004052828A1 (ja) * 2002-12-09 2004-06-24 Asahi Glass Company, Limited (4e)−5−クロロ−2−イソプロピル−4−ペンテン酸エステルおよびその光学活性体の製造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007017018A1 (en) * 2005-07-25 2007-02-15 Dsm Fine Chemicals Austria Nfg Gmbh & Co Kg Process for preparing racemic alkyl-5-halopent-4-enecarboxylic acids or -carboxylic esters
US7550626B2 (en) 2005-07-25 2009-06-23 Dsm Fine Chemicals Austria Nfg Gmbh & Co Kg Process for preparing racemic alkyl-5-halopent-4-enecarboxylic acids or carboxylic esters
EA014690B1 (ru) * 2005-07-25 2010-12-30 Дсм Файн Кемикалс Аустриа Нфг Гмбх Унд Ко Кг Способ получения рацемических алкил-5-галогенопент-4-енкарбоновых кислот или алкил-5-галогенопент-4-енкарбоновых эфиров
JP2017165679A (ja) * 2016-03-16 2017-09-21 信越化学工業株式会社 4−メチルオクタン酸エチルの製造方法

Also Published As

Publication number Publication date
EP1801094A4 (en) 2009-10-28
CA2582840A1 (en) 2006-04-20
JPWO2006041062A1 (ja) 2008-05-15
US20070191630A1 (en) 2007-08-16
CN101035753A (zh) 2007-09-12
EP1801094A1 (en) 2007-06-27

Similar Documents

Publication Publication Date Title
US7232925B2 (en) Process for producing (4E)-5-chloro-2-isopropyl-4-pentenoate and optically active form thereof
WO2004031113A1 (ja) ヒドロキシ安息香酸類の製造方法
WO2006041062A1 (ja) (4e)-5-クロロ-2-イソプロピル-4-ペンテン酸エステルおよびその光学活性体の製造方法
JP2009107949A (ja) アリルアルコール化合物の製造方法
JP2008031166A (ja) ボロン酸およびその誘導体の調製方法
JP4967613B2 (ja) テトラフルオロテレフタル酸ジフルオライドの製造方法
JP2006282587A (ja) 3−アミノフェニルアセチレンの製造方法
JP5920622B2 (ja) アゾジカルボン酸ジエステル化合物の製造方法
US8017798B2 (en) Method for producing tetrafluoroterephthalic acid difluoride
JP4173678B2 (ja) 光学活性3−アジドカルボン酸エステルの製造方法
JP4370187B2 (ja) 含フッ素不飽和エステルの製造方法
JP2009035508A (ja) 光学活性カルボン酸の製造方法
JP2007051104A (ja) エポキシ基含有リン化合物の製造方法
JP4374987B2 (ja) 2−ブロモシクロペンタノンの製造法
JP2001011015A (ja) 酒石酸低級アルキルジエステルの製造法
JP6245097B2 (ja) 炭酸ジフェニルの製造方法およびポリカーボネートの製造方法
JPS5933573B2 (ja) カルボン酸クルオリドの新規製造法
JP2005035904A (ja) 2−ヒドロキシカルボン酸の製造法
JP2009155327A (ja) 新規な2−ヒドロキシエチルオキシアミン化合物の製造方法
JP2007211001A (ja) ハロゲン置換ベンゼンジメタノールの製造法
JP2006328020A (ja) 含ヨウ素フルオロポリエーテルおよびその製造法
JPH0469371A (ja) ジメチルホルムアミドの精製法
JP2002003446A (ja) 2−置換プロピオン酸の製造方法
JPH0717904A (ja) 2,3,4,5−テトラフルオロ安息香酸の製造方法
JP2006143606A (ja) 1−ハロ−3−アリール−2−プロパノン類の製造法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006540937

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2005793121

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2582840

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 11691873

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200580034410.7

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 2005793121

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11691873

Country of ref document: US