WO2006041040A1 - 転がり軸受 - Google Patents

転がり軸受 Download PDF

Info

Publication number
WO2006041040A1
WO2006041040A1 PCT/JP2005/018655 JP2005018655W WO2006041040A1 WO 2006041040 A1 WO2006041040 A1 WO 2006041040A1 JP 2005018655 W JP2005018655 W JP 2005018655W WO 2006041040 A1 WO2006041040 A1 WO 2006041040A1
Authority
WO
WIPO (PCT)
Prior art keywords
bearing
ring
raceway
rolling
grease reservoir
Prior art date
Application number
PCT/JP2005/018655
Other languages
English (en)
French (fr)
Inventor
Yoshinobu Akamatsu
Masatsugu Mori
Takuji Kobayashi
Sun-Woo Lee
Original Assignee
Ntn Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn Corporation filed Critical Ntn Corporation
Priority to KR1020107021989A priority Critical patent/KR101199444B1/ko
Priority to DE112005002505T priority patent/DE112005002505T5/de
Priority to US11/664,778 priority patent/US7918606B2/en
Publication of WO2006041040A1 publication Critical patent/WO2006041040A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/66Special parts or details in view of lubrication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/66Special parts or details in view of lubrication
    • F16C33/6603Special parts or details in view of lubrication with grease as lubricant
    • F16C33/6607Retaining the grease in or near the bearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/16Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with a single row of balls
    • F16C19/163Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with a single row of balls with angular contact
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2322/00Apparatus used in shaping articles
    • F16C2322/39General buildup of machine tools, e.g. spindles, slides, actuators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/66Special parts or details in view of lubrication
    • F16C33/6603Special parts or details in view of lubrication with grease as lubricant
    • F16C33/6622Details of supply and/or removal of the grease, e.g. purging grease
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/66Special parts or details in view of lubrication
    • F16C33/6637Special parts or details in view of lubrication with liquid lubricant
    • F16C33/6659Details of supply of the liquid to the bearing, e.g. passages or nozzles
    • F16C33/6674Details of supply of the liquid to the bearing, e.g. passages or nozzles related to the amount supplied, e.g. gaps to restrict flow of the liquid

Definitions

  • the present invention relates to a rolling bearing having a lubrication function for grease lubrication of a machine tool spindle or the like.
  • this air oil lubrication method has problems from the viewpoint of cost, noise, energy saving, and resource saving because it requires an air oil supply device as ancillary equipment and requires a large amount of air. There is also a problem that the environment is adversely affected by the scattering of oil. In order to avoid these problems, high-speed grease due to grease lubrication has recently begun to attract attention and demand has increased.
  • the base oil does not move unless there is oil consumption near the tip of the gap, that is, the raceway surface.
  • the lubrication oil supply may not be in time and stable operation may not be expected.
  • an object of the present invention is to provide a rolling bearing capable of increasing the speed, extending the service life, eliminating the need for maintenance, and supplying a stable lubricating oil by using only the grease sealed in the bearing. .
  • the rolling bearing of the first configuration of the present invention is a rolling bearing having an inner ring, an outer ring, and a plurality of rolling elements interposed between the raceways of the inner and outer rings, and is an inner ring and an outer ring that are race rings.
  • the fixed side raceway that does not rotate is provided with a step surface that follows the raceway surface in a direction away from the rolling elements, and the flow path is formed between the front end of the step surface and the fixed side raceway through a peripheral wall with a gap.
  • the base oil can be supplied to the raceway surface by the volume expansion of the base oil and the air flow near the raceway surface.
  • the rolling bearing of the first configuration is used by filling a grease in the flow path formed between the grease reservoir and the stepped surface of the stationary side race and the peripheral wall of the gap forming piece. Fill the bearing with grease as the initial lubricant.
  • the grease base oil moves from the flow path to the gap due to the thickener in the dull and the capillary phenomenon of the gap, and the capillary phenomenon and the surface tension of the oil combine to create a gap.
  • the base oil is retained in oil.
  • the base oil stored in the clearance is discharged from the clearance due to the volume expansion caused by the temperature rise of the fixed-side raceway during operation and the air flow generated by the revolution of the rolling element. Move while adhering to the raceway of the side raceway and connect to the rolling element contact part Continuously replenished.
  • the amount of base oil flowing from the gap to the rolling element contact portion can be adjusted by changing the gap amount within the range in which the capillary phenomenon acts.
  • the gap is formed between the step surface following the raceway surface and the gap forming piece, and is located immediately below the rolling element at a location close to the raceway surface, and the grease base oil is always present. Because the oil is stored and retained, that is, the lubricating oil is always held in the immediate vicinity of the raceway surface, the lubricating oil can be supplied quickly and reliably even during rapid acceleration operation from the stop. As a result, operation failures due to poor lubrication are reduced, and stable operation can be expected. Further, by changing the gap amount of the gap, the supply amount of the lubricating oil can be adjusted, and the maintenance-free bearing can be operated at a high speed and the service life can be extended.
  • the rolling bearing of the second configuration of the present invention is a rolling bearing having an inner ring, an outer ring, and a plurality of rolling elements interposed between the raceway surfaces of the inner and outer rings, and includes an inner ring and an outer ring that are race rings.
  • the fixed side raceway that does not rotate is provided with a step surface that follows the raceway surface in a direction away from the rolling elements, and the flow path is formed between the front end of the step surface and the fixed side raceway through a peripheral wall with a gap.
  • a gap forming piece to be formed is provided, a grease reservoir communicating with the flow path is provided, and a base oil moving medium is provided to promote supply of grease base oil from the grease reservoir to the flow path of the gap forming piece.
  • the base oil transfer medium may be paper or woven fabric.
  • the gap is formed between the stepped surface that follows the raceway surface and the gap forming piece, and is located immediately below the rolling element in the vicinity of the raceway surface. Since the base oil of grease is always maintained, the supply of lubricating oil can be performed quickly and reliably even during rapid acceleration operation from the time of stoppage. In the case of the second configuration, the movement of the base oil is further promoted by the capillary action of the base oil moving medium, so that the movement of the grease base oil is good and reliable, and the amount of movement can be further increased. . In addition, by selecting the material and circumference of the base oil moving medium, it is possible to adjust the supply amount of grease base oil, making it easier to make adjustments that match the operating conditions of the bearing.
  • the fixed-side raceway ring may be an outer ring.
  • the stationary raceway is an outer ring
  • the stepped surface is provided on the outer ring, but when the bearing is rotated in a grease-filled state, the sealed grease scatters to the inner diameter of the outer ring by centrifugal force.
  • Raceway The base oil connection between the two is more reliable. As a result, the base oil consumed as the lubricating oil at the rolling element contact portion is replenished to the raceway surface from the grease reservoir through the gap, and the lubricating oil is more stably replenished.
  • the grease reservoir is provided on one side in the axial direction with respect to the raceway surface, and on the other side, the mist collection and regeneration for collecting mist in the bearing and returning it to the vicinity of the raceway surface as an aggregated state.
  • Means may be provided.
  • a grease reservoir may be provided on one side, and a non-contact seal may be provided on the other side in place of the mist collecting / reproducing means.
  • the rolling bearing may be an angular ball bearing
  • the stepped surface may be provided following an edge on the side opposite to the direction in which the contact angle occurs on the rail surface.
  • the stepped surface is provided on the side opposite to the direction in which the contact angle is generated, so that the stepped surface is more easily disposed directly below the rolling element.
  • the step surface can be brought close to the center of the rolling element, and lubricating oil can be replenished from the step surface to the raceway more efficiently.
  • the grease reservoir is formed by a grease reservoir forming component, and the grease reservoir forming component is a spacer provided adjacent to the fixed-side race.
  • the grease reservoir forming component main body provided on the bearing space side of the inner circumferential side and the outer circumferential side of the spacer, and a sealing material may be interposed between the mating surfaces of the spacer and the stationary-side bearing ring. good.
  • the grease base oil of the grease pool is formed on the mating surface between the spacer and the stationary side race ring. There is a risk of leakage from capillary action. This leakage of base oil is prevented by the sealing material. As described above, since the leakage of the base oil to the outside of the bearing is reduced, the amount of oil that contributes to lubrication is increased, so that the lubrication life can be improved.
  • the grease reservoir is formed by a grease reservoir forming component, and the grease reservoir forming component is provided adjacent to the fixed-side race.
  • the spacer is composed of a spacer and a grease reservoir forming component main body provided on the bearing space side of the inner periphery and the outer periphery of the spacer, the bearing of the fixed-side bearing ring is provided on the spacer.
  • a flange that fits around the space-side circumferential surface may be provided, and a sealing material may be interposed between the flange and the fixed-side raceway.
  • the spacer and the stationary bearing ring have a separate structure, which may cause inconvenience in assembling.
  • a non-separation structure is obtained, and assemblability is improved.
  • the sealing material interposed in the fitting portion between the flange portion and the fixed-side race ring can prevent the flange portion from being detached and prevent the grease base oil from leaking out of the bearing. Therefore, non-separation between the spacer and the stationary raceway is more reliable, and dull base oil can be reliably supplied to the outer raceway surface, so that higher bearing speed and longer lubrication life can be expected.
  • the fixed-side bearing ring is provided with a bearing ring extension portion extending in the width direction for forming a grease reservoir, and the grease reservoir is provided with the bearing ring extension portion and the bearing ring extension portion. It may be formed with an integral grease reservoir forming part provided on the bearing space side.
  • the bearing ring extension for forming the grease reservoir is provided and the portion corresponding to the spacer is integrated with the stationary-side bearing ring, the occurrence of oil leakage is the same as when a separate spacer is provided. The mating surface to be twisted disappears. Therefore, the problem of leakage of the grease base oil having the matching surface strength does not occur.
  • the space corresponding to the spacer is integrated with the fixed-side raceway to form a grease reservoir, the assembly of the bearing is improved, and the number of parts can be reduced, so that the assembly accuracy can be improved.
  • the bearing space side peripheral surface following the end surface of the tip of the gap forming piece is a tapered surface close to the rolling element, and the distance between the tapered surface and the rolling element is 0.2 mm. The following may be used.
  • the bearing space side peripheral surface following the end surface of the tip of the gap forming piece is a curved surface having a circular arc section with the center of the rolling element as the arc center, and the distance between the curved surface and the rolling element is It may be less than 0.2mm.
  • the tip force of the gap forming piece The discharged grease base oil is not used as bearing lubricating oil. In addition, it may flow out while adhering to the outer surface of the part forming the Dalis reservoir.
  • the gap between the rolling element side peripheral surface of the tip of the gap forming piece and the rolling element is a minimum gap of 0.2 mm or less that does not contact the rolling element.
  • the oil that flows out while adhering to the outer surface of the component that forms the grease reservoir can adhere to the surface of the rolling element at the location of the minimal gap and can be used effectively as a lubricating oil.
  • the amount of oil that contributes to bearing lubrication increases, improving lubrication reliability and extending the lubrication life.
  • peripheral surface on the bearing space side of the tip of the gap forming piece is a tapered surface as described above, the effect of adhering to the surface of the rolling element can be obtained.
  • the circumferential surface of the tip of the gap forming piece is a curved surface having an arcuate cross section as described above, the oil is transferred to the rolling elements over the entire arcuate curved surface. It is more effective than the case.
  • the fixed-side raceway is an outer ring
  • the grease pool is formed by a grease pool forming component provided on an inner periphery of a spacer adjacent to the outer ring or the outer ring.
  • a tapered surface portion having a large diameter on the bearing center side may be provided on the inner peripheral surface of the grease reservoir forming component and the outer peripheral surface of the inner ring with a small gap therebetween.
  • the edge on the large diameter side of the tapered surface portion of the inner ring may be positioned on the inner diameter side within the width of the cage that holds the rolling element, or The edge on the large diameter side may be positioned within the bearing axial width of the rolling element.
  • the grease pool forming component is directed toward the center side of the bearing width and is outside.
  • Diameter side end force It is good also as what has a side wall part which the said clearance gap formation piece continues, and has an inclined surface which inclines in the direction where the small diameter side leaves
  • the position in the width direction of the step surface of the fixed-side raceway is a position close to the contact ellipse within a range that does not interfere with the contact ellipse with respect to the rolling element of the fixed-side raceway. Also good.
  • FIG. 1 is a partial cross-sectional view of a rolling bearing that is applied to a first embodiment of the present invention.
  • FIG. 2 is an enlarged sectional view of a part of the rolling bearing.
  • FIG. 3 is a sectional view of a machine tool spindle device using the rolling bearing.
  • FIG. 4 An explanatory view showing the relationship between the step surface of the outer ring and the contact ellipse in the modification of the first embodiment.
  • FIG. 5 is a partially enlarged cross-sectional view of a rolling bearing according to another modification of the first embodiment.
  • FIG. 6 is a partial cross-sectional view of a rolling bearing according to still another modification of the first embodiment.
  • FIG. 7 is a partial cross-sectional view of a rolling bearing according to still another modified example of the first embodiment.
  • FIG. 8 is a partial cross-sectional view of a rolling bearing according to still another modification of the first embodiment.
  • FIG. 9 is an enlarged cross-sectional view of a portion IX in FIG.
  • FIG. 10 is a partially enlarged cross-sectional view of a rolling bearing according to still another modification of the first embodiment.
  • FIG. 11 is a partially enlarged sectional view of a rolling bearing according to still another modification of the first embodiment.
  • FIG. 12 is a partial cross-sectional view of a rolling bearing forcing a second embodiment of the present invention.
  • FIG. 13 is a partial cross-sectional view of a rolling bearing that is applied to a third embodiment of the present invention.
  • this rolling bearing has a plurality of rolling elements 3 interposed between the raceways la, 2a of the inner ring 1, the outer ring 2, and the inner and outer rings 1, 2, and a grease reservoir forming component 6 and a gap And a forming piece 7.
  • the plurality of rolling elements 3 are held by a cage 4, and one end of a bearing space between the inner and outer rings 1 and 2 is sealed with a seal 5.
  • Seal 5 prevents the grease sealed inside the bearing from leaking outside.
  • This rolling bearing is an anguilla ball bearing, the seal 5 is provided at the end on the back side of the bearing, and the grease reservoir forming component 6 and the gap forming piece 7 are provided on the front side of the bearing.
  • the grease reservoir forming part 6 also serves as a seal on the front side of the bearing, preventing grease leakage from the front side of the bearing.
  • the crossed hatched portions indicate the portions filled with the dull.
  • a step surface 2b following the raceway surface 2a follows the edge away from the rolling element 3, that is, the edge opposite to the direction in which the contact angle occurs on the raceway surface 2a. It is provided.
  • the step surface 2b is a surface that extends from the raceway surface 2a to the outer diameter side and faces the front surface side of the outer ring, and continues to the inner diameter surface portion 2c on the front side of the outer ring 2.
  • the position of the stepped surface 2b in the bearing width direction may be a position close to the contact ellipse 2e as long as it does not interfere with the contact ellipse 2e with respect to the rolling element 3, as shown in the modification of FIG.
  • the position of the stepped surface 2b in the bearing width direction may be a position that does not interfere with the contact ellipse 2e even if it is positioned substantially at the center of the rolling element 3 or on the rear side of the outer ring from this center.
  • This contact ellipse 2e is an ellipse indicating the stress range at the maximum load acting on the bearing.
  • the contact ellipse 2e is illustrated as an ellipse having a major axis length b.
  • a grease reservoir forming component 6 is a ring-shaped component having a grease reservoir 9 formed therein, and is provided in contact with the front side width surface of the outer ring 2.
  • the grease reservoir forming component 6 includes an outer ring positioning spacer 10 provided in contact with the front width surface of the outer ring 2 and an outward groove type grease that fits to the inner diameter surface of the outer ring positioning spacer 10. It becomes the power with the pool forming component body 11.
  • the internal space sandwiched between the outer ring positioning spacer 10 and the grease reservoir forming component body 11 is defined as the grease reservoir 9.
  • the outer ring positioning spacer 10 has a side wall portion 10a with which the side wall portion 11a of the grease reservoir forming component body 11 abuts at the end opposite to the outer ring 2 on the inner diameter surface.
  • the grease reservoir forming component main body 11 seals against the outer ring positioning spacer 10 by bringing grease into the grease reservoir 9 and bringing the side wall 1 la into contact with the inside of the side wall 10a of the outer ring positioning spacer 10. Positioned in the axial direction.
  • a sealing material (not shown) is interposed between the outer diameter surface of the side wall 1la in the grease reservoir forming component main body 11 and the inner diameter surface of the outer ring positioning spacer 10 opposite thereto.
  • the grease reservoir forming component main body 11 and the outer ring positioning spacer 10 are bonded with an adhesive.
  • a sealing material 51 is interposed on the mating surface of the outer ring positioning spacer 10 and the outer ring 2 as shown in FIG.
  • the sealing material 51 also has an O-ring force, and is fitted in a circumferential groove 52 formed on the mating surface of the outer ring positioning spacer 10. These prevent grease leakage.
  • the gap forming piece 7 is arranged along the inner diameter surface portion 2c of the outer ring 2 and has a ring-like shape that forms a flow path 14 and a gap 15 between the outer ring 2 and the tip thereof facing the step surface 2b. It is a member.
  • the gap forming piece 7 is formed integrally with the grease reservoir forming component main body 11. That is, the outer diameter end portion of the grease reservoir forming component main body 11 on the side wall adjacent to the bearing l ib extends integrally.
  • the flow path 14 is formed by the peripheral wall of the tip 7a of the gap forming piece and the inner surface 2c of the outer ring 2 facing this.
  • the gap forming piece 7 has a tip 7a
  • the gap 15 that extends to a position close to the step surface 2b of the outer ring 2 is formed by the end surface of the tip 7a of the gap forming piece and the outer ring step surface 2b facing the gap forming a minute gap ⁇ in the axial direction.
  • the gap 15 communicates with the flow path 14 and opens at the edge of the raceway surface 2a.
  • the distance dl between the taper surface 7aa and the rolling element 3 is preferably set to a minimum gap of 0.2 mm or less so that the oil adhering to the tapered surface 7aa can be transferred to the surface of the rolling element 3.
  • the gap amount ⁇ of the gap 15 is set to about 50 m that can cause capillary action.
  • the inner diameter surface following the end surface of the gap forming piece tip 7a is a tapered surface 7aa close to the rolling element 3 so that the lubricating oil can easily accumulate between the tapered surface 7aa and the rolling element 3.
  • the base 7b of the gap forming piece 7 has a smaller diameter than the tip 7a.
  • a portion surrounded by the outer diameter surface of the base portion 7b and the inner diameter surface portion 2c of the outer ring 2 is a part of the grease reservoir 9, and the flow path 14 communicates with the grease reservoir 9.
  • the inflow amount of the base oil from the gap 15 to the rolling element contact portion can be adjusted by changing the gap amount ⁇ of the gap 15 within a range in which the capillary phenomenon acts. That is, if the cap amount ⁇ of the gap 15 is increased, the amount of base oil flowing into the bearing also increases, and an adjustment suitable for the operating conditions of the bearing can be made.
  • the base oil of grease is always stored and retained in the gap 15 opened in the closest position of the outer ring raceway surface 2a, and the base oil is supplied to the rolling element contact portion at the start of operation.
  • the lubrication oil is reliably supplied, and malfunctions due to poor lubrication are reduced.
  • the gap amount ⁇ of the gap 15 the supply amount of the lubricating oil can be adjusted, and the bearing can be operated at high speed and the service life can be extended without maintenance.
  • the inner diameter surface following the end face of the gap forming piece tip 7a is the taper surface 7aa close to the rolling element 3 as described above, and the distance dl between the tapered surface 7aa and the rolling element 3 is 0.2 mm. Because of the following, the following advantages are obtained. That is, when the distance dl is large, the grease base oil discharged from the tip of the gap forming piece 7 flows out while adhering to the outer surface of the grease reservoir forming component 11 without being used as bearing lubricating oil. Sometimes.
  • the distance dl between the taper surface 7aa and the rolling element 3 is 0.2 mm or less, which is a minimal gap that does not contact the rolling element 3, it adheres to the outer surface of the above-mentioned Dalis pool forming component 11.
  • the oil that flows out can be attached to the surface of the rolling element 3 at the location of the minimal gap, and can be effectively used as a lubricating oil.
  • the circumferential surface on the bearing space side at the tip of the gap forming piece 11 is a cross-sectional circle having the center of the rolling element 3 as the arc center as shown in the modification of FIG. It may be an arcuate curved surface 7aa ⁇ . Also in this case, it is preferable that the distance dl ′ between the curved surface 7aa ⁇ and the rolling element 3 is 0.2 mm or less. In this way, when the curved surface 7a having an arcuate cross section is used, oil transfer to the rolling element 3 is performed over the entire curved surface 7aa ', so that it is more effective than the tapered surface 7aa as shown in FIG. is there.
  • the oil flowing out can be attached to the rolling element 3 as described above, so that the grease discharged from the grease reservoir 9 through the tip of the gap forming piece 7
  • the base oil can be used as a lubricant without waste, and the amount of oil that contributes to bearing lubrication increases, improving the reliability of lubrication and extending the lubrication life.
  • the axial position of the stepped surface 2b of the outer ring 2 may be as close as possible to the contact ellipse 2e as long as it does not interfere with the contact ellipse 2e as described above with reference to FIG. Unless interfering with the contact ellipse 2e, even if the stepped surface 2b is brought close to the portion of the raceway surface 2a of the outer ring 2 where the rolling elements 3 roll, there is no problem as a function of the bearing. In this way, by bringing the position of the stepped surface 2b as close as possible to the rolling part of the raceway surface 2a of the outer ring 2, the lubricating oil supplied from the grease reservoir 9 through the gap forming piece 7 is efficiently put into the bearing. Can be introduced. As a result, the grease base oil can be supplied more reliably to the rolling element rolling surface of the outer ring 2 and the reliability of bearing lubrication can be improved.
  • Sealing material 51 is interposed on the mating surface of outer ring positioning spacer 10 and outer ring 2 as shown in FIG. As a result, grease leakage is prevented. That is, if the mating surfaces of the outer ring positioning spacer 10 and the outer ring 2 are simply brought into close contact with each other, the grease base oil in the grease reservoir 9 may leak due to capillary action. This leakage of base oil is prevented by the sealing material 51.
  • the contact surface between the grease reservoir forming component main body 11 and the outer ring positioning spacer 10 can be bonded with an adhesive as described above, or another sealing agent (not shown) can be interposed. Base oil leakage is prevented.
  • FIG. 3 shows an example of a machine tool spindle device using the rolling bearing of the first embodiment.
  • two of the rolling bearings are used as a rear combination.
  • the two rolling bearings 23 and 24 rotatably support both ends of the main shaft 21 within the housing 22.
  • the inner ring 1 of each rolling bearing 23, 24 is positioned by an inner ring positioning spacer 26 and an inner ring spacer 27, and is fastened and fixed to the main shaft 21 by an inner ring fixing nut 29.
  • the outer ring 2 is positioned and fixed in the housing 22 by an outer ring positioning spacer 10, an outer ring spacer 30 and outer ring presser covers 3 1, 32.
  • the housing 22 is formed by fitting a housing inner cylinder 22A and a housing outer cylinder 22B, and an oil passage groove 33 for cooling is provided in the fitting portion.
  • the spindle 21 is provided with a chuck (not shown) for detachably attaching a tool or a work (not shown) to the front end 21a, and the rear end 21b is a drive for a motor or the like.
  • the sources are connected via a rotation transmission mechanism (not shown).
  • the motor may be built in the nozzle 22.
  • This spindle device can be applied to various machine tools such as a machining center, a lathe, a milling machine, and a grinding machine.
  • the rolling oil 23, 24 of the first embodiment effectively exerts the effects of stable supply of lubricating oil, higher speed, longer life, and maintenance-free operation.
  • FIG. 6 shows still another modified example of the rolling bearing of the first embodiment.
  • the outer ring positioning spacer 10 is provided with a flange portion 10c that fits the inner diameter surface that is the peripheral surface on the bearing space side of the outer ring 2, and this flange portion 10c Sealed at the fitting part with the outer ring 2
  • the material 53 is interposed.
  • the sealing material 53 also has an O-ring force, and is fitted into an annular groove 54 provided on the inner surface of the outer ring 2.
  • Other configurations are the same as the example shown in FIGS.
  • the grease pool forming component 6 includes the outer ring positioning spacer 10 and the grease pool forming component body 11, the outer ring positioning spacer 10 and the outer ring 2 are separated from each other. Therefore, inconvenience may occur in assemblability and the like.
  • the flange portion 10c is provided in the outer ring positioning spacer 10 so as to be fitted to the outer ring 2, so that a non-separation structure is obtained and the assemblability is improved.
  • the sealing material 53 interposed between the fitting part of the flange part 10c and the outer ring 2 prevents the flange part 10c from coming off and prevents the grease base oil in the grease reservoir 9 from leaking out of the bearing.
  • the non-separation between the outer ring positioning spacer 10 and the outer ring 2 is more reliable, and the grease base oil can be reliably supplied to the raceway surface 2a of the outer ring 2, so that higher bearing speed and longer lubrication life can be expected.
  • FIG. 7 shows still another modification of the rolling bearing of the first embodiment.
  • the outer ring 2 instead of providing the outer ring positioning spacer 10 in the example shown in FIGS. 1 and 2, the outer ring 2 is provided with a bearing ring extension 2f extending in the width direction for forming the grease reservoir 9. It is.
  • the dull reservoir 9 is formed by the bearing ring extension 2f of the outer ring 2 and an integral grease reservoir forming part 6A provided on the bearing space side of the bearing ring extension 2f.
  • the entire grease reservoir forming component 6A is constituted by the grease reservoir forming component main body 11 shown in FIG.
  • the side wall 11a opposite to the inside of the bearing is in contact with the positioning step surface 2g provided on the inner diameter surface of the bearing ring extension 2f, and in the vicinity of the positioning step surface 2g.
  • the outer ring 2 is fixed in a normal axial position with respect to the outer ring 2 by a retaining ring 56 fitted in the provided retaining ring groove 55.
  • a tapered notch 58 is provided at the outer diameter edge of the grease reservoir forming component 6A side wall 11a on the bearing outward surface, and a sealing material 57 is interposed between the notch 58 and the retaining ring 56. I'm allowed. Sealing material 57 consists of an O-ring.
  • the inner ring 1 may have the same width as that of the outer ring 2 including the race ring extension 2f, or may have a width without the race ring extension 2f.
  • the outer ring positioning portion is provided by providing the bearing ring extension 2f for forming the grease reservoir.
  • the bearing ring extension 2f which corresponds to the spacer, is combined with the outer ring 2 to form the grease reservoir 9, so that the assembly of the bearing is improved and the assembly accuracy is improved by reducing the number of parts. I can expect.
  • FIG. 8 and FIG. 9 show still another modification of the rolling bearing of the first embodiment.
  • This modification is different from the example shown in FIGS. 1 and 2 in that the inner peripheral surface of the grease reservoir forming component body 11 of the grease reservoir forming component 6 and the outer peripheral surface of the inner ring 1 are opposed to each other via a minute gap d2.
  • Tapered surface portions 6h and lh having an inclination angle a with a large diameter on the bearing center side are provided.
  • the taper surface portion lh of the inner ring 1 also extends to the vicinity of the raceway surface la in the width surface force of the inner ring 1, and the large-diameter edge lha of the taper surface portion lh is located on the inner diameter side within the width of the cage 4. .
  • Other configurations are the same as those shown in FIGS.
  • Fig. 9 the arrows indicate the flow of the separated oil in the grease.
  • Part of the grease base oil that has flowed out from the grease reservoir 9 through the gap 15 between the step surface 2b of the outer ring 2 and the tip of the gap forming piece 7 directly flows into the raceway surface 2a of the outer ring 2 and is provided as lubricating oil.
  • some of the base oil does not flow into the bearing, and flows while adhering to the outer surface of the grease reservoir forming part 6 as indicated by the arrow due to the surrounding air flow, and moves to the outer diameter surface of the inner ring 1.
  • a tapered surface portion lh is formed on the outer diameter surface of the inner ring 1 as described above, and is opposed to the tapered surface portion 6h of the grease reservoir forming component 6 so as to overlap via a minute gap d2.
  • the oil that has flowed to the inner ring 1 side along the outer surface of the grease reservoir forming component 6 is caused by the pressure difference (larger diameter side and smaller diameter side) at both ends of the gap d2 as the inner ring 1 rotates. Outflow is prevented. Also, when the oil that has moved to the facing part adheres to the outer diameter surface of the inner ring 1, it moves to the larger diameter side of the tapered surface part lh by the surface tension of the oil and the centrifugal force acting on the oil, and is retained from the edge part lha Spatters onto the inner surface of vessel 4. When the scattered oil is received by the cage 4, it is used as bearing lubricating oil. As a result, the amount of oil that flows out of the bearing decreases and the amount of oil that contributes to the lubricating oil increases, thereby extending the lubrication life.
  • the inclination angle ⁇ of the tapered surface portion lh is determined by the maximum rotation speed of the bearing and the surface tension of the oil so that oil can be attached and moved on the tapered surface portion lh.
  • the clearance d2 is determined in consideration of the amount of expansion of the inner ring outer diameter surface during operation and the amount of oil transferred to the inner diameter surface of the grease reservoir forming component 6 that can be transferred to the inner ring 1 side. For example, if a bearing with an inner ring of ⁇ 100 mm is used at 1500 rpm, ⁇ is about 15 ° and d2 is about 0.2 mm.
  • the edge lha on the large diameter side of the tapered surface portion lh of the inner ring 1 is used as the bearing of the rolling element 3. It is located within the axial width. Since the rolling element 3 is a ball in this embodiment, the edge lha is positioned within the diameter of the rolling element 3.
  • the large-diameter edge lha force of the inner ring tapered surface portion lh also directly adheres to the scattered hydraulic rolling element 3, thereby further ensuring the lubrication of the bearing.
  • the modified example of FIG. 11 is more effective than the modified example of FIGS. 8 and 9 in that the oil that flows out along the outer surface of the grease reservoir forming component 6 is more effectively removed when the bearing posture is vertical.
  • a configuration for adhering to a taper surface portion lh having an outer diameter of 1 is shown.
  • the outer surface l lba of the side wall l ib inside the bearing that forms the grease reservoir forming component main body 11 in the dull reservoir forming component 6 is an inclined surface having an inclination angle ⁇ .
  • the direction of the inclination of the outer surface l lba which also has the inclined surface force is the direction away from the center of the small diameter side, that is, the inner ring 1 side force bearing width.
  • the inclination angle ⁇ is set to 5 to 10 ° considering the oil flow.
  • the dull pool forming component 6 is located below the rolling element 3, but the outer surface l lba is also applied when the grease reservoir forming component 6 is positioned above the rolling element 3.
  • FIG. 12 shows a second embodiment of the present invention.
  • the rolling bearing according to the second embodiment is the rolling bearing according to the first embodiment shown in FIG. 1 in which a base oil moving medium 8 is interposed in the flow path 14.
  • the base oil moving medium 8 promotes the supply of grease base oil to the clearance 15 ( ⁇ ) by capillary action in the flow path 14.
  • the base oil transfer medium 8 can be paper or woven fabric.
  • the moving force of the grease base oil from the gap 15 to the rolling element contact portion is further promoted by the capillary action of the base oil moving medium 8. For this reason, the movement of the grease base oil becomes good and reliable, and the movement amount can be further increased.
  • the material and circumferential length of the base oil moving medium 8 it is possible to adjust the supply amount of the grease base oil, making it easier to adjust in accordance with the bearing operating conditions.
  • FIG. 13 shows a third embodiment of the present invention.
  • the rolling bearing of the third embodiment is different from the rolling bearing of the first embodiment shown in FIG. 1 in the axial direction separately from the grease supply means 16 composed of a grease reservoir forming part 6, a gap forming piece 7, etc.
  • mist collecting / reproducing means 35 for collecting the mist in the bearing and returning it to the vicinity of the outer ring raceway surface 2a is provided.
  • the mist collecting / reproducing means 35 uses a collecting means 36 for collecting grease mist generated in the bearing during operation, and the mist collected by the collecting means 36 using an air flow generated by the rotation of the inner ring 1.
  • Aggregation feed means 37 is provided which is made oily by agglomeration and sent to the raceway surfaces la and 2a.
  • the collecting means 36 is a mist collecting space 39 that forms a mist collecting space 39 between the tapered surface lb formed on the outer diameter surface of the inner ring 1 and the tapered surface lb located on the outer periphery of the tapered surface lb.
  • the part 38 includes a communication path 40 provided in the mist collection part 38 and communicating with the mist collection space 39 from the mist floating space 41 in the bearing.
  • the tapered surface lb of the inner ring 1 is provided in the vicinity of the end in the width direction of the outer diameter surface of the inner ring 1 on the bearing back side, and is formed so that the raceway surface la side has a large diameter.
  • the mist collecting part 38 is a member having a generally U-shaped cross section comprising a cylindrical portion 38a concentric with the inner ring 1 and a flange-shaped mounting portion 38b extending from one end of the cylindrical portion 38a to the outer diameter side.
  • the hook-shaped mounting portion 38b is bonded and fixed to the inner diameter surface of the ring-shaped recovery component fixing member 42 provided in contact with the width surface of the outer ring 2 on the bearing rear side, so that the shaft is fixed to the outer ring 2. It is provided side by side in the direction. Fixing of the mist recovery part 38 to the recovery part fixing member 42 may be performed by a snap ring in addition to adhesion.
  • the mist collecting section 38 By disposing the mist collecting part 38 so as to face the outer periphery of the tapered surface lb of the inner ring 1, the mist collecting section 38 has an annular, tapered cross-sectional shape between the tapered surface lb and the inner diameter surface 38 c of the mist collecting part 38. A collection space 39 is formed.
  • the inner diameter surface 38c of the mist recovery component 38 has a small diameter at the end side where the bearing force is also separated. A portion close to the bearing from the small diameter portion 38ca is a large diameter portion 38cb that forms a step with respect to the small diameter portion 38ca.
  • the mist collection space 39 is surrounded by the tapered surface lb of the inner ring 1, the outer diameter surface 43a of the inner ring spacer 43 in contact with the width surface on the bearing rear side of the inner ring 1, and the inner diameter large diameter portion 38cb of the mist collection component 38. Space.
  • the roughness of the inner diameter surface large diameter portion 38cb of the mist collecting component 38 may be about Ra2-7.
  • the inclination angle of the taper surface lb with respect to the axial direction is an angle at which a mist flow is generated in the bearing inner direction (the rolling element direction).
  • the agglomerate feeding means 37 includes a step surface lc provided in the vicinity of the raceway surface la on the outer diameter surface of the inner ring 1, and an outer diameter surface continuing from the end on the small diameter side of the step surface lc to the tapered surface lb.
  • a portion Id and an agglomerated gap forming body 49 are formed.
  • the agglomeration gap forming body 49 has an inner diameter surface and a front end surface that are opposed to the outer periphery of the inner ring outer diameter surface portion Id and the stepped surface lc through a gap, respectively, and is provided in a fixed state together with the outer ring 2.
  • the recovery part 38 is constituted by a portion continuing to the tip side of the cylindrical portion 38a.
  • the step surface lc is a surface that continues on the raceway surface la on the back side of the bearing and has a large diameter on the raceway surface la side, and is provided in a portion within the width of the rolling element 3, that is, immediately below the rolling element 3.
  • the outer diameter surface of the tip portion facing the inner ring step surface lc in the aggregation gap forming body 49 is a tapered surface that holds the grease in an attached state so that the attached grease can contact the rolling element 3.
  • the tapered surface on the outer periphery of the cylindrical portion 38a plays a role of efficiently guiding the oily mist aggregated by the aggregation feeding means 37 to the mist collection space 39.
  • the outer diameter surface of the cylindrical portion 38a of the mist collecting part 38 on the side where the bearing force is separated from the tapered surface is a recessed portion 38d that is recessed toward the inner diameter side, and the inner diameter surface large diameter portion 38 is formed from the recessed portion 38d.
  • the communication path 40 is formed through the cb.
  • the communication path 40 also serves as a through hole that penetrates the inside and outside of the mist collecting component 38 formed at a plurality of locations in the circumferential direction.
  • a space surrounded by the recessed portion 38d of the mist recovery component 38, the bowl-shaped attachment portion 38b, and the recovery component fixing member 42 is a space continuous to the mist floating space 41 in the bearing, and is a space of the mist recovery space 39.
  • a pre-stage mist collection space 44 which is a pre-stage collection space, is configured.
  • the grease in the grease reservoir 9 by the grease supply means 16 The lease supply and the reuse of the misted grease by the mist recovery and regeneration means 35 are performed, and due to the synergistic effect of both means 16 and 35, only the grease enclosed in the bearing is used to increase the speed and extend the service life. And maintenance-free.
  • the specific operation of the mist collecting / reproducing means 35 will be described below.
  • mist in the mist collection space 39 is sucked in while being accelerated toward the inside of the bearing in the mist collection space 39 by the bombing action by the rotation of the inner ring tapered surface lb.
  • the mist floating in the mist floating space 41 can be efficiently recovered by the simple configuration of the recovery means 36.
  • the mist moves while striking the inner diameter surface large diameter portion 38cb of the mist recovery component 38 facing the inner ring outer diameter surface portion Id, and the mist is aggregated.
  • the agglomerated mist becomes oily and adheres to the large diameter portion 38cb.
  • the adhering oil moves toward the inside of the bearing due to the air flow in the gap between the mist collecting part cylindrical part 38a and the inner ring 1, and is discharged into the bearing as bearing lubricating oil through the gap at the tip of the mist collecting part cylindrical part 38a. It is done.
  • the outer diameter surface of the inner ring 1 forms a tapered surface lb from the small diameter end of the step surface lc to the width surface side, and a cylindrical surface-shaped outer diameter surface portion Id in the middle. May be omitted.
  • the inner ring step surface lc constituting the radial discharge gap is provided within the width of the rolling element 3 following the track surface la of the inner ring 1, oil discharge to the inner ring track surface la is more effective. To be done. In order to reliably discharge the oil into the bearing, it is preferable to apply grease to the entire circumference of the taper surface, which also has the outer surface force of the cohesive gap forming body 49, to reduce the actual oil discharge gap. To prevent grease from adhering to the outer diameter surface of the mist recovery part 38, operate it with the grease initially charged. It may be due to the deposition that occurs in
  • the base oil mist generated during operation in the dull lubrication is collected and reused, so that the lubrication life can be extended.
  • the sealed grease is circulated and lubricated with a small amount of lubricating oil, resulting in excessive supply of grease and an increase in temperature due to stirring resistance. This makes it possible to increase the rotation speed without causing any problems.
  • both the grease reservoir forming part 6 in the grease supply means 16 and the recovery means 36 in the mist recovery / regeneration means 35 are provided adjacent to the outer ring 2 in the axial direction. Therefore, compared with the case where it fits within the outer ring width, it is possible to secure a wider area for grease supply by the grease supply means 16 and a mist collection work area by the mist collection and regeneration means 35, and perform these actions effectively. Can be made.
  • each of the above embodiments has been described with respect to the case where the outer ring 2 is a fixed-side raceway, among the above embodiments, each example of the first embodiment shown in Figs.
  • the second embodiment shown in FIG. 12 can be applied in the same manner as described above even when the inner ring 1 is a fixed side wheel.
  • the base oil moving medium 8 is interposed as in the second embodiment of FIG. You may let them.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Rolling Contact Bearings (AREA)
  • Sealing Of Bearings (AREA)

Description

転がり軸受
技術分野
[0001] 本発明は、工作機械主軸等のグリース潤滑とされる潤滑機能付きの転がり軸受に 関する。
背景技術
[0002] 工作機械主軸軸受の潤滑方法として、メンテナンスフリーで使用可能なグリース潤 滑、搬送エアに潤滑オイルを混合してオイルをノズルより軸受内に噴射するエアオイ ル潤滑、軸受内に潤滑油を直接に噴射するジェット潤滑等の方法がある。最近のェ 作機械は、加工能率を上げるために、ますます高速化の傾向にあり、主軸軸受の潤 滑も比較的安価で簡単に高速ィ匕が可能なエアオイル潤滑が多く用いられてきている 。しかし、このエアオイル潤滑法は、付帯設備としてエアオイル供給装置が必要であ ることと、多量のエアを必要とすることから、コスト、騒音、省エネ、省資源の観点から 問題がある。また、オイルの飛散によって環境を悪ィ匕させる問題もある。これらの問題 点を回避するため、最近ではグリース潤滑による高速ィ匕が注目され始め、要望も多く なってきている。
[0003] グリース潤滑は、軸受組立時に封入されたグリースのみで潤滑するため、高速運転 すると、軸受発熱によるグリースの劣化や、軌道面、特に内輪での油膜切れのため、 早期焼き付きに至ってしまうことが考えられる。特に、 dn値が 100万 (軸受内径 mm X 回転数 rpm )を超えるような高速回転領域では、グリース寿命を保証するのは困難で ある。
[0004] グリース寿命を延長させる手段として、新しい提案も紹介されている。一つには、外 輪軌道面部にグリース溜まりを設けて高速長寿命を狙った提案 (特開平 11 - 10806 8号公報参照)がある。またスピンドル外部に設けたグリース補給装置により、適宜軸 受部に給脂して潤滑する提案 (特開 2003— 113998号公報参照)がある。
[0005] しかし、前記各提案例の技術は、エアオイル潤滑と同等の使用回転数(>dn値 15 0万)や、またメンテナンスフリーを考えると満足できるものではない。 そこで、特開平 11— 108068号公報の技術を発展させて、固定側軌道輪 (例えば 外輪)に接して設けられるグリース溜まりから固定側軌道輪の軌道面の付近まで連通 する隙間を、その軌道面の周面に沿って形成し、グリース溜まりの基油を増稠剤の毛 細管現象により前記隙間を経て軌道輪付近まで移動させるものを考えた。
しかし、このように増稠剤の毛細管現象を利用して基油を移動させる構造では、前 記隙間の先端部すなわち軌道面の付近での油消費がない限り基油の移動がなぐ 急加速運転等に際しては潤滑油供給が間に合わず、安定した運転が望めない場合 がある。
発明の開示
[0006] そこで、本発明の目的は、軸受内に封入したグリースだけを使用して高速化と長寿 命化、メンテナンスフリー化、および安定した潤滑油供給が可能な転がり軸受を提供 することである。
[0007] 本発明の第 1構成の転がり軸受は、内輪、外輪、およびこれら内外輪の軌道面間に 介在した複数の転動体を有する転がり軸受であって、軌道輪である内輪および外輪 のうち、回転しない固定側軌道輪に、軌道面に続く段差面を転動体から離れる方向 に設け、先端が前記段差面に隙間を介して対面し周壁で前記固定側軌道輪との間 に流路を形成する隙間形成片を設け、前記流路に連通するグリース溜まりを設け、 前記段差面と隙間形成片の先端との間の隙間を、グリースの基油を常時保油可能で 、かつ軸受の回転で生じる基油の体積膨張および軌道面付近の空気流により前記 基油を軌道面に供給可能な寸法としている。
第 1構成の転がり軸受は、グリース溜まり、および固定側軌道輪の段差面と隙間形 成片の周壁との間で形成された流路にダリースを充填して使用される。軸受内部に は初期潤滑油としてのグリースを封入しておく。これにより、軸受の停止時には、ダリ ース中の増稠剤および前記隙間の毛細管現象により、グリースの基油が流路から隙 間に移動し、この毛細管現象と油の表面張力とが相まって隙間に基油が油状で保持 される。軸受を運転すると、隙間に貯油されていた基油は、運転で生じる固定側軌道 輪の温度上昇による体積膨張と、転動体の公転'自転で生じる空気流とにより隙間か ら吐出されて、固定側軌道輪の軌道面に付着しながら移動して転動体接触部に連 続的に補給される。隙間から転動体接触部への基油の流入量は、隙間のギャップ量 を毛細管現象が作用する範囲内で変更することにより調整できる。
この場合に、前記隙間は、軌道面に続く段差面と隙間形成片間に形成されたもの であって、軌道面の至近箇所で転動体直下に位置しており、またグリースの基油が 常に貯油保持されるため、つまり潤滑油が常時油の状態で軌道面の直ぐそばに保持 されるため、停止時からの急加速運転においても、潤滑油の供給が迅速で確実に行 われる。そのため、潤滑不良に起因する運転不調が少なくなり、安定した運転が望め る。また、前記隙間のギャップ量を変えることで、潤滑油の供給量を調整でき、メンテ ナンスフリーでの軸受の高速運転、長寿命化が可能となる。
[0008] 本発明の第 2構成の転がり軸受は、内輪、外輪、およびこれら内外輪の軌道面間に 介在した複数の転動体を有する転がり軸受であって、軌道輪である内輪および外輪 のうち、回転しない固定側軌道輪に、軌道面に続く段差面を転動体から離れる方向 に設け、先端が前記段差面に隙間を介して対面し周壁で前記固定側軌道輪との間 に流路を形成する隙間形成片を設け、前記流路に連通するグリース溜まりを設け、 前記グリース溜りから前記隙間形成片の流路にグリースの基油が供給されることを促 進させる基油移動媒体を介在させて!/ヽる。前記基油移動媒体は紙または織布であつ ても良い。
第 2構成の場合も、前記隙間は、軌道面に続く段差面と隙間形成片間に形成され たものであって、軌道面の至近箇所で転動体直下に位置しており、またこの隙間にグ リースの基油が常に保持されるので、停止時からの急加速運転においても、潤滑油 の供給が迅速で確実に行われる。第 2構成の場合は、基油の移動が、基油移動媒体 の毛細管現象によってさらに促進されるので、グリース基油の移動が良好かつ確実と なり、その移動量をさらに増カロさせることができる。また基油移動媒体の材質や円周 長さ等を選定することで、グリース基油の供給量の調整が可能となり、軸受の運転条 件に見合った調整がさらに容易になる。
[0009] 本発明において、固定側の軌道輪が外輪であっても良い。固定側の軌道輪が外輪 である場合、外輪に前記段差面が設けられるが、グリース封入状態で軸受を回転さ せたとに、封入グリースが遠心力で外輪内径部に飛散するため、前記隙間と軌道面 との間の基油の繋がりがより確実となる。そのため、転動体接触部で潤滑油として消 費された分の基油が、グリース溜まりから前記隙間を経て軌道面に補給される作用が 高められ、より安定した潤滑油の補給が行われる。
[0010] また、本発明において、前記軌道面に対して軸方向の一方に前記グリース溜まりを 設け、他方に、軸受内のミストを回収し凝集状態として前記軌道面の付近へ戻すミス ト回収再生手段を設けても良い。
この構成の場合、グリース溜まりからのグリース供給と、ミスト回収再生手段によるミ ストイ匕されたグリースの再利用とが行われ、これらの相乗効果により、軸受内に封入し たグリースだけを使用して高速化と長寿命化、メンテナンスフリーが達成される。 なお、一方にグリース溜りを設け、他方には、前記ミスト回収再生手段に代えて、非 接触シールを設けても良 、。
[0011] また、本発明において、転がり軸受がアンギユラ玉軸受であり、前記段差面は、軌 道面における接触角が生じる方向と反対側の縁部に続 、て設けても良 、。アンギュ ラ玉軸受であると、段差面を接触角が生じる方向と反対側に設けることで、段差面を より転動体の直下に配置し易くなる。転動体の中心付近に段差面を近づけることがで き、段差面からの軌道面への潤滑油の補給がより効率良く行える。
[0012] また、本発明において、前記グリース溜まりがグリース溜まり形成部品により形成さ れたものであって、このグリース溜まり形成部品が、前記固定側軌道輪に隣接して設 けられた間座と、この間座の内周側および外周側のうちの軸受空間側に設けられた グリース溜まり形成部品本体とでなり、前記間座と前記固定側軌道輪との合わせ面に 密封材を介在させても良い。
グリース溜まり形成部品が、前記間座とグリース溜まり形成部品本体とでなる場合、 グリース溜まりの形成が容易である力 間座と固定側軌道輪との合わせ面において、 グリース溜まりのグリースの基油が毛細管現象より漏れる恐れがある。この基油の漏 れが、前記密封材によって防止される。このように、軸受外への基油の漏れが減少す るため、潤滑に寄与される油量が増加することで、潤滑寿命の向上が図れる。
[0013] また、本発明において、前記グリース溜まりがグリース溜まり形成部品により形成さ れたものであって、このグリース溜まり形成部品が、前記固定側軌道輪に隣接して設 けられた間座と、この間座の内周側および外周側のうちの軸受空間側に設けられた グリース溜まり形成部品本体とでなる場合に、前記間座に、前記固定側軌道輪の軸 受空間側の周面に嵌合する鍔部を設け、この鍔部と固定側軌道輪との嵌合部に密 封材を介在させても良い。
グリース溜まり形成部品が間座とグリース溜まり形成部品本体とで構成される場合、 間座と固定側軌道輪とが分離構造となるため、組立性等で不都合が生じることがある 。しかし、前記のように、前記間座に鍔部を設けて固定側軌道輪に嵌合させることで 、非分離構造となり、組立性が向上する。また、鍔部と固定側軌道輪との嵌合部に介 在させた密封材により、鍔部の抜け止めとグリース基油の軸受外への漏れの防止効 果が得られる。そのため、間座と固定側軌道輪との非分離がより確実となり、またダリ ース基油が確実に外輪軌道面に供給できることから、軸受の高速化,潤滑寿命の延 長が期待できる。
[0014] また、本発明において、前記固定側軌道輪に、グリース溜まり形成用の幅方向に延 びる軌道輪延長部を設け、前記グリース溜まりを、前記軌道輪延長部とこの軌道輪延 長部の軸受空間側に設けた一体のグリース溜まり形成部品とで形成しても良い。 このようにグリース溜まり形成用の軌道輪延長部を設けて前記間座に相当する部分 を固定側軌道輪と一体化させた場合、別体の間座を設けた場合のような油漏れの生 じる合わせ面が無くなる。そのため、前記合わせ面力ものグリース基油の漏れの問題 が生じない。また、間座相当部分を固定側軌道輪と一体ィ匕してグリース溜まりを形成 したため、軸受の組立性が良好になると共に、部品点数の削減により、組立精度の 向上が期待できる。
[0015] また、本発明において、前記隙間形成片の先端部の端面に続く軸受空間側の周 面を、転動体に近接したテーパ面とし、このテーパ面と転動体との距離を 0. 2mm以 下としても良い。
また、本発明において、前記隙間形成片の先端部の端面に続く軸受空間側の周 面を、転動体の中心を円弧中心とする断面円弧状の曲面とし、この曲面と転動体と の距離を 0. 2mm以下としても良い。
隙間形成片の先端部力 吐出したグリース基油は、軸受潤滑油として使用されず に、ダリース溜まりを形成する部品の外表面に付着しながら流出してしまうことがある 。このような問題に対して、隙間形成片の先端部の転動体側の周面と転動体との隙 間を、転動体に接触しない程度の極小隙間である 0. 2mm以下とすることで、前記の グリース溜まりを形成する部品の外表面に付着しながら流出してしまう油を、前記極 小隙間の箇所で転動体表面に付着させ、潤滑油として有効利用することができる。そ のため、軸受潤滑に寄与する油量が増加し、潤滑の信頼性の向上、潤滑寿命の長 期化が図れる。
前記隙間形成片の先端部の軸受空間側の周面は、前記のようにテーパ面とすれ ば、前記の転動体表面に付着させる作用が得られる。前記隙間形成片の先端部の 周面を前記のように断面円弧状の曲面とした場合は、この円弧状曲面の全体で転動 体への油の転移が行われるため、前記テーパ面とした場合よりも効果的である。
[0016] また、本発明において、前記固定側軌道輪が外輪であって、前記グリース溜まりが 、外輪または外輪に隣接する間座の内周に設けられたグリース溜まり形成部品により 形成されたものであり、このグリース溜まり形成部品の内周面と内輪の外周面とに、互 いに微小隙間を介して対向しかつ軸受中心側が大径となるテーパ面部を設けても良 い。
このようにグリース溜まり形成部品の内径面の一部と内輪外径面の一部とを、小さな 隙間を持ったテーパ面で対向させたものとすることで、グリース溜まり形成部品の外 表面に付着しながら流出しょうとするグリース基油は、前記対面部分で内輪外径面に 付着する。内輪外径面に付着した油は、油の表面張力と回転による遠心力の作用で テーパ面上を軸受内部方向に付着しながら移動する。そのため、軸受外への流出油 量が減少し、潤滑油に寄与する油量が増加することで、潤滑寿命の延長が図れる。
[0017] このテーパ面部を設けた構成の場合に、前記内輪の前記テーパ面部における大 径側のエッジを、前記転動体を保持する保持器の幅内の内径側に位置させても良く 、または、前記大径側のエッジを、転動体の軸受軸方向幅内に位置させても良い。 このように内輪テーパ面部におけるエッジを保持器の幅内または転動体の幅内に 位置させることにより、前記内輪テーパ面部に付着しながら移動した油が、前記エツ ジ力 遠心力で垂直に飛散しても、保持器または転動体に捕捉され、軸受潤滑油と して利用することができる。
[0018] また、前記テーパ面部を設けた構成の場合であって、軸心を縦向きとして使用され る転がり軸受とする場合に、前記グリース溜まり形成部品が、軸受幅の中心側に向き かつ外径側端力 前記隙間形成片が続く側壁部を有し、この側壁部の外面を、小径 側が軸受幅の中心力 離れる方向に傾斜する傾斜面を有するものとしても良い。 このようにグリース溜まり形成部品の側壁部を傾斜面とすることで、軸受姿勢が縦向 きである場合に、グリース溜まり形成部品の外径面を伝わって流出しょうとする油を、 より効果的に内輪のテーパ面部に付着させることができる。
[0019] また、本発明において、前記固定側軌道輪の前記段差面の幅方向位置を、前記固 定側軌道輪の転動体に対する接触楕円と干渉しない範囲でこの接触楕円に近接す る位置としても良い。
前記接触楕円と干渉しなければ、前記段差面を固定側軌道輪の軌道面における 転動体が転走する部分に近づけても、軸受の機能として支障が生じない。このように
、固定側軌道輪の段差面の位置をできるだけ固定側軌道輪の軌道面の転走部分に 近づけることで、グリース溜まりから隙間形成片を経て供給される潤滑油を効率良く 軸受内に導入することができる。これにより固定側軌道輪の軌道面へのグリース基油 の供給が確実となり、軸受潤滑の信頼性向上が期待できる。
図面の簡単な説明
[0020] 本発明は、添付の図面を参考にした以下の好適な実施形態の説明力もより明瞭に 理解されるであろう。しかしながら、実施形態および図面は単なる図示および説明の ためのものであり、本発明の範囲を定めるために利用されるべきでない。本発明の範 囲は添付のクレームによって定まる。添付図面において、複数の図面における同一 の部品番号は、同一部分を示す。
[図 1]本発明の第 1の実施形態に力かる転がり軸受の部分断面図である。
[図 2]同転がり軸受の一部の拡大断面図である。
[図 3]同転がり軸受を用いた工作機械用スピンドル装置の断面図である。
圆 4]第 1の実施形態の変形例における外輪の段差面と接触楕円の関係を示す説明 図である。 [図 5]第 1の実施形態の他の変形例に係る転がり軸受の部分拡大断面図である。
[図 6]第 1の実施形態のさらに他の変形例に係る転がり軸受の部分断面図である。
[図 7]第 1の実施形態のさらに他の変形例に係る転がり軸受の部分断面図である。
[図 8]第 1の実施形態のさらに他の変形例に係る転がり軸受の部分断面図である。
[図 9]図 8の IX部分の拡大断面図である。
[図 10]第 1の実施形態のさらに他の変形例に係る転がり軸受の部分拡大断面図であ る。
[図 11]第 1の実施形態のさらに他の変形例に係る転がり軸受の部分拡大断面図であ る。
[図 12]本発明の第 2の実施形態に力かる転がり軸受の部分断面図である。
[図 13]本発明の第 3の実施形態に力かる転がり軸受の部分断面図である。
発明を実施するための最良の形態
[0021] 本発明の第 1の実施形態を図 1および図 2と共に説明する。図 1において、この転が り軸受は、内輪 1、外輪 2、および内外輪 1, 2の軌道面 la, 2a間に介在した複数の 転動体 3を有し、グリース溜まり形成部品 6と、隙間形成片 7とを備える。複数の転動 体 3は、保持器 4に保持され、内外輪 1, 2間の軸受空間の一端は、シール 5によって 密封されている。シール 5によって、軸受内部に封入したグリースの外部への漏れを 防止する。この転がり軸受はアンギユラ玉軸受であり、シール 5は軸受背面側の端部 に設けられ、グリース溜まり形成部品 6および隙間形成片 7は軸受正面側に設けられ る。軸受正面側ではグリース溜まり形成部品 6がシールを兼ねており、軸受正面側か らのグリース漏れが防止される。図において交差したハッチングで示す部分は、ダリ ースの充填された部分を示す。
[0022] 固定側軌道輪となる外輪 2には、その軌道面 2aに続く段差面 2bが、転動体 3から 離れる方向、つまり軌道面 2aにおける接触角が生じる方向と反対側の縁部に続いて 設けられている。この段差面 2bは、軌道面 2aから外径側に延びて外輪正面側に対 面する面であり、外輪 2の正面側の内径面部分 2cに続 、て 、る。
[0023] 段差面 2bの軸受幅方向の位置は、図 4の変形例に示すように、転動体 3に対する 接触楕円 2eと干渉しない範囲で、この接触楕円 2eに近接する位置としても良い。例 えば、段差面 2bの軸受幅方向の位置は、転動体 3の略中心、あるいはこの中心より も外輪背面側に位置させても、接触楕円 2eと干渉しない位置であれば良い。この接 触楕円 2eは、軸受に作用する最大負荷時の応力範囲を示す楕円である。同図にお いて、接触楕円 2eは長軸長さが bの楕円として図示してある。
[0024] 図 1において、グリース溜まり形成部品 6は、内部にグリース溜まり 9を形成したリン グ状の部品であり、外輪 2の正面側の幅面に接して設けられる。この例では、グリース 溜まり形成部品 6は、外輪 2の正面側の幅面に接して設けられる外輪位置決め間座 1 0と、この外輪位置決め間座 10の内径面に嵌合する外向き溝形のグリース溜まり形 成部品本体 11と力 なる。外輪位置決め間座 10とグリース溜まり形成部品本体 11と で挟まれる内部空間がグリース溜まり 9とされる。外輪位置決め間座 10は、内径面に おける外輪 2と反対側端に、グリース溜まり形成部品本体 11の側壁部 11aが当接す る側壁部 10aを有している。グリース溜まり形成部品本体 11は、グリース溜まり 9にグ リースを封入した後に前記側壁部 1 laを外輪位置決め間座 10の側壁部 10aの内側 に当接させることにより、外輪位置決め間座 10に対して軸方向に位置決めされる。
[0025] グリース溜まり形成部品本体 11における前記側壁部 1 laの外径面とこれに対向す る外輪位置決め間座 10の内径面との間には、図示しない密封材が介在させられ、ま たはグリース溜まり形成部品本体 11と外輪位置決め間座 10とは、接着剤により接着 される。外輪位置決め間座 10と外輪 2との合わせ面には、図 2のように密封材 51が 介在させてある。密封材 51は Oリング力もなり、外輪位置決め間座 10の前記合わせ 面に形成された円周溝 52内に嵌め込んである。これらにより、グリース漏れ防止が図 られている。
[0026] 隙間形成片 7は、外輪 2の内径面部分 2cに沿って配置され、先端が前記段差面 2b に対向し、外輪 2との間に流路 14および隙間 15を形成するリング状の部材である。こ の隙間形成片 7は、グリース溜まり形成部品本体 11に一体に形成されている。すな わち、グリース溜まり形成部品本体 11の軸受隣接側の側壁部 l ibにおける外径端部 力 一体に延びている。
[0027] 図 2に拡大して示すように、隙間形成片先端部 7aの周壁と、これに対面する外輪 2 の内径面部分 2cとで前記流路 14が形成される。隙間形成片 7は、その先端部 7aが 外輪 2の段差面 2bに近接した位置まで延びており、隙間形成片先端部 7aの端面と、 これに対面する外輪段差面 2bとで軸方向に微小なギャップ δとなる前記隙間 15が 形成される。隙間 15は、前記流路 14に連通し、軌道面 2aの縁部に開口する。テー パ面 7aaと転動体 3との距離 dlは、テーパ面 7aaに付着した油が転動体 3の表面に 転移可能な大きさの極小隙間とすることが好ましぐ 0. 2mm以下としてある。隙間 15 のギャップ量 δは、毛細管現象を作用させることができる 50 m程度とされている。 隙間形成片先端部 7aの端面に続く内径面は、転動体 3に近接したテーパ面 7aaと され、このテーパ面 7aaと転動体 3との間に潤滑油が溜まり易くなるようにしている。隙 間形成片 7の基部 7bは、先端部 7aに比べて小径とされる。この基部 7bの外径面と外 輪 2の内径面部分 2cとで囲まれる部分はグリース溜まり 9の一部となっており、このグ リース溜まり 9に前記流路 14が連通している。
[0028] 前記構成の作用を説明する。軸受組立時に、グリース溜まり 9および流路 14にダリ ースを充填しておく。また、軸受内へは初期潤滑用としてのグリースを封入しておく。 軸受の停止時には、グリース中の増稠剤および前記隙間 15の毛細管現象により、グ リースの基油が流路 14から隙間 15に移動し、この毛細管現象と油の表面張力とが相 まって隙間 15に基油が油状で保持されている。軸受を運転すると、隙間 15に貯油さ れていた基油は、運転で生じる外輪 2の温度上昇による体積膨張と、転動体 3の公転 •自転で生じる空気流とにより隙間 15から吐出されて、外輪 2の軌道面 2aに付着しな がら移動して転動体接触部に連続的に補給される。隙間 15から転動体接触部への 基油の流入量は、隙間 15のギャップ量 δを毛細管現象が作用する範囲内で変更す ることにより調整できる。すなわち、隙間 15のキャップ量 δを大きくすれば、軸受内へ の基油の流入量も多くなり、軸受の運転条件に見合った調整ができる。
[0029] このように、この転がり軸受では、外輪軌道面 2aの至近位置に開口する隙間 15に グリースの基油が常に貯油保持され、その基油が運転開始と共に転動体接触部に 供給されるため、停止時からの急加速運転にお!、ても潤滑油の供給が確実に行わ れ、潤滑不良に起因する運転不調が少なくなる。また、前記隙間 15のギャップ量 δ を変えることで、潤滑油の供給量を調整でき、メンテナンスフリーでの軸受の高速運 転、長寿命化が可能となる。 [0030] 隙間形成片先端部 7aの端面に続く内径面は、前記のように転動体 3に近接したテ ーパ面 7aaとし、このテーパ面 7aaと転動体 3との距離 dlを 0. 2mm以下としたため、 次の利点が得られる。すなわち、前記の距離 dlが大きい場合、隙間形成片 7の先端 部から吐出したグリース基油は、軸受潤滑油として使用されずに、グリース溜まり形成 部品 11の外表面に付着しながら流出してしまうことがある。前記テーパ面 7aaと転動 体 3間の距離 dlを、転動体 3に接触しない程度の極小隙間である 0. 2mm以下とした 場合は、前記のダリース溜まり形成部品 11の外表面に付着しながら流出してしまう油 を、前記極小隙間の箇所で転動体 3の表面に付着させ、潤滑油として有効利用する ことができる。
隙間形成片 11の先端部の軸受空間側の周面は、前記のようにテーパ面 7aaとする 代わりに、図 5の変形例に示すように、転動体 3の中心を円弧中心とする断面円弧状 の曲面 7aa^ としても良い。その場合も、この曲面 7aa^ と転動体 3との距離 dl' を 0 . 2mm以下とすることが好ましい。このように断面円弧状の曲面 7a とした場合は、 この曲面 7aa' の全体で転動体 3への油の転移が行われるため、図 2のようなテーパ 面 7aaとした場合よりも効果的である。
テーパ面 7aaと円弧状曲面 7a のいずれとした場合も、前記のように流出する油 を転動体 3に付着させることができるため、グリース溜まり 9から隙間形成片 7の先端を 経て吐出されたグリース基油を潤滑油として無駄なく利用できて、軸受潤滑に寄与す る油量が増加し、潤滑の信頼性の向上、潤滑寿命の長期化が図れる。
[0031] 外輪 2の段差面 2bの軸方向位置は、図 4と共に前述したように接触楕円 2eと干渉し ない範囲で、できるだけ接触楕円 2eに近接した位置としても良い。接触楕円 2eと干 渉しなければ、段差面 2bを外輪 2の軌道面 2aにおける転動体 3が転走する部分に 近づけても、軸受の機能として支障が生じない。このように、段差面 2bの位置をでき るだけ外輪 2の軌道面 2aにおける転走部分に近づけることで、グリース溜まり 9から隙 間形成片 7を経て供給される潤滑油を効率良く軸受内に導入することができる。これ により外輪 2の転動体転走面へのグリース基油の供給がより確実となり、軸受潤滑の 信頼性向上が期待できる。
[0032] 外輪位置決め間座 10と外輪 2との合わせ面には、図 2のように密封材 51が介在さ せてあるため、グリース漏れが防止される。すなわち、これら外輪位置決め間座 10と 外輪 2との合わせ面は、単に密接させただけであると、グリース溜まり 9のグリースの基 油が毛細管現象より漏れる恐れがある。この基油の漏れが、前記密封材 51によって 防止される。グリース溜まり形成部品本体 11と外輪位置決め間座 10との接触面にお いては、前記のように接着剤による接着とするか、または別の密封剤(図示せず)を介 在させることで、基油の漏れが防止される。
このように、軸受外への基油の漏れが減少するため、潤滑に寄与される油量が増加 することで、潤滑寿命の向上が図れる。
[0033] 図 3は、前記第 1の実施形態の転がり軸受を用いた工作機械用スピンドル装置の例 を示す。この工作機械用スピンドル装置では、前記転がり軸受の 2個を、背面組み合 わせとして用いている。 2個の転がり軸受 23, 24は、ハウジング 22内で主軸 21の両 端を回転自在に支持する。各転がり軸受 23, 24の内輪 1は、内輪位置決め間座 26 および内輪間座 27により位置決めされ、内輪固定ナット 29により主軸 21に締め付け 固定されている。外輪 2は、外輪位置決め間座 10、外輪間座 30および外輪押え蓋 3 1, 32によりハウジング 22内に位置決め固定されている。ハウジング 22は、ハウジン グ内筒 22Aとハウジング外筒 22Bとを嵌合させたものであり、その嵌合部に、冷却の ための通油溝 33が設けられて!/、る。
[0034] 主軸 21は、その前側の端部 21aに工具またはワーク(図示せず)を着脱自在に取 付けるチャック(図示せず)が設けられ、後ろ側の端部 21bは、モータ等の駆動源が 回転伝達機構(図示せず)を介して連結される。モータは、ノ、ウジング 22に内蔵して も良い。このスピンドル装置は、例えばマシユングセンタ、旋盤、フライス盤、研削盤 等の各種の工作機械に適用できる。
[0035] この構成のスピンドル装置によると、第 1の実施形態の転がり軸受 23, 24における 潤滑油の安定供給、高速化、長寿命化、メンテナンスフリー化の作用が、効果的に 発揮される。
[0036] 図 6は、第 1の実施形態の転がり軸受のさらに他の変形例を示す。この変形例は、 図 1,図 2に示す例において、外輪位置決め間座 10に、外輪 2の軸受空間側の周面 である内径面に嵌合する鍔部 10cを設け、この鍔部 10cと外輪 2との嵌合部に密封 材 53を介在させたものである。密封材 53は Oリング力もなり、外輪 2の内径面に設け られた環状溝 54内に嵌め込んである。その他の構成は図 1,図 2に示す例と同じで ある。
[0037] 図 1の例のように、グリース溜まり形成部品 6が外輪位置決め間座 10とグリース溜ま り形成部品本体 11とで構成される場合、外輪位置決め間座 10と外輪 2とが分離構造 となるため、組立性等で不都合が生じることがある。しかし、前記のように、外輪位置 決め間座 10に鍔部 10cを設けて外輪 2に嵌合させることで、非分離構造となり、組立 性が向上する。また、鍔部 10cと外輪 2との嵌合部に介在させた密封材 53により、鍔 部 10cの抜け止めと、グリース溜まり 9内のグリース基油の軸受外への漏れ防止効果 と力 S得られる。そのため、外輪位置決め間座 10と外輪 2との非分離がより確実となり、 またグリース基油が確実に外輪 2の軌道面 2aに供給できることから、軸受の高速化, 潤滑寿命の延長が期待できる。
[0038] 図 7は、第 1の実施形態の転がり軸受のさらに他の変形例を示す。この変形例は、 図 1,図 2に示す例において、外輪位置決め間座 10を設ける代わりに、外輪 2に、グ リース溜まり 9の形成用の幅方向に延びる軌道輪延長部 2fを設けたものである。ダリ ース溜まり 9は、外輪 2の前記軌道輪延長部 2fとこの軌道輪延長部 2fの軸受空間側 に設けた一体のグリース溜まり形成部品 6Aとで形成される。この場合、グリース溜まり 形成部品 6Aの全体が、図 1の例のグリース溜まり形成部品本体 11で構成される。グ リース溜まり形成部品 6Aは、その軸受内と反対側の側壁部 11aが、軌道輪延長部 2f の内径面に設けられた位置決め用段差面 2gに当接し、かつ位置決め用段差面 2g の近傍に設けられた止め環溝 55に嵌合する止め環 56により、外輪 2に対して正規の 軸方向位置に位置決め状態に固定される。グリース溜まり形成部品 6Aの側壁部 11 aの軸受外向き面における外径縁には、テーパ状の切欠部 58が設けられ、この切欠 部 58と止め環 56との間に、密封材 57が介在させてある。密封材 57は Oリングからな る。
内輪 1の幅は、図示のように、外輪 2の軌道輪延長部 2fを含む幅と同じ幅としても良 ぐまた軌道輪延長部 2fを有しない幅としても良い。
[0039] このようにグリース溜まり形成用の軌道輪延長部 2fを設けて前記外輪位置決め間 座 10に相当する部分を外輪 2と一体化させた場合、別体の間座を設けた場合のよう な油漏れの生じる合わせ面が無くなる。そのため、前記合わせ面からのグリース基油 の漏れの問題が生じない。また、間座相当部分となる軌道輪延長部 2fを外輪 2と一 体ィ匕してグリース溜まり 9を形成したため、軸受の組立性が良好になると共に、部品 点数の削減により組立精度の向上が期待できる。
[0040] 図 8および図 9は、第 1の実施形態の転がり軸受のさらに他の変形例を示す。この 変形例は、図 1,図 2に示す例において、グリース溜まり形成部品 6のグリース溜まり 形成部品本体 11の内周面と内輪 1の外周面とに、互いに微小隙間 d2を介して対向 しかつ軸受中心側が大径となる傾斜角度 aのテーパ面部 6h, lhを設けたものであ る。内輪 1のテーパ面部 lhは、内輪 1の幅面力も軌道面 laの付近まで延び、このテ ーパ面部 lhにおける大径側のエッジ lhaは、保持器 4の幅内の内径側に位置してい る。その他の構成は図 1,図 2に示す例と同じである。
[0041] 図 9において、矢印はグリース中の分離油の流れを示している。グリース溜まり 9か ら外輪 2の段差面 2bと隙間形成片 7の先端間の隙間 15から流出したグリース基油は 、一部が直接に外輪 2の軌道面 2aに流入して潤滑油として供されるが、一部の基油 は軸受内に流入せず、周囲の空気流により、矢印のように、グリース溜まり形成部品 6 の外表面に付着しながら流れて内輪 1の外径面へ移動する。内輪 1の外径面には前 記のようにテーパ面部 lhが形成してあって、グリース溜まり形成部品 6のテーパ面部 6hと微小な隙間 d2を介して重なるように対向して 、る。
[0042] このため、グリース溜まり形成部品 6の外表面に沿って内輪 1側へ流れた油は、内 輪 1の回転に伴う隙間 d2の両端の圧力差 (大径側く小径側)により軸受外への流出 が防止される。また、対面部に移動した油が内輪 1の外径面に付着することで、油の 表面張力と油に作用する遠心力によりテーパ面部 lhの大径側へ移動し、そのエッジ 部 lhaより保持器 4の内径面へ飛散する。この飛散した油が保持器 4で受けられるこ とにより、軸受潤滑油として利用される。そのため、軸受外への流出油量が減少し、 潤滑油に寄与する油量が増加することで、潤滑寿命の延長が図れる。
[0043] この構成において、テーパ面部 lhの傾斜角度 αは、テーパ面部 lh上で油の付着 移動が可能となるように、軸受の使用最高回転数および油の表面張力で決定される 。また、隙間 d2は、運転中の内輪外径面の膨張量、およびグリース溜まり形成部品 6 の内径面に移動した油が内輪 1側へ転移可能な量を考慮して決定する。例えば、内 輪 φ 100mmの軸受を 1500rpmで使用するとした場合、 αは 15° 、 d2は 0. 2mm程 度となる。
[0044] 図 10の変形例は、軸受の潤滑をより確実にするため、図 8,図 9の変形例において 、内輪 1のテーパ面部 lhの大径側のエッジ lhaを、転動体 3の軸受軸方向幅内に位 置させたものである。転動体 3は、この実施形態ではボールであるため、転動体 3の 直径内に前記エッジ lhaを位置させてある。
この構成の場合、内輪テーパ面部 lhの大径側エッジ lha力も飛散した油力 転動 体 3に直接に付着し、軸受の潤滑がより一層確実となる。
[0045] 図 11の変形例は、図 8,図 9の変形例を、軸受姿勢を縦型とする場合に、グリース 溜まり形成部品 6の外表面を伝わって流出する油をより効果的に内輪 1の外径のテ ーパ面部 lhに付着させるための構成を示す。その構成として、この変形例では、ダリ ース溜まり形成部品 6におけるグリース溜まり形成部品本体 11を構成する軸受内側 の側壁部 l ibの外面 l lbaを、傾斜角度 Θの傾斜面としている。この傾斜面力もなる 外面 l lbaの傾斜の方向は、小径側つまり内輪 1側力 軸受幅の中心から離れる方 向である。傾斜角度 Θは、油の流れを考慮して 5〜 10° としている。この例では、ダリ ース溜まり形成部品 6が転動体 3よりも下側に位置する場合を示しているが、グリース 溜まり形成部品 6が転動体 3の上側に位置する場合も、外面 l lbaを前記と同様に傾 斜面とすることが好ましい。
このように、グリース溜まり形成部品 6の側壁部 l ibの外面 l lbaを傾斜面とすること で、グリース溜まり形成部品 6の外表面を伝わって流出する油をより効果的に内輪 1 の外径のテーパ面部 lhに付着する。
[0046] 図 12は、本発明の第 2の実施形態を示す。第 2の実施形態の転がり軸受は、図 1に 示した第 1の実施形態の転がり軸受において、前記流路 14に基油移動媒体 8を介在 させたものである。基油移動媒体 8は、流路 14内で毛細管現象によりグリースの基油 がすきま 15 ( δ )に供給されることを促進させるものである。基油移動媒体 8には紙ま たは織布などを用いることができる。 [0047] この構成の場合隙間 15から転動体接触部へのグリース基油の移動力 基油移動 媒体 8の毛細管現象によってさらに促進される。このため、グリース基油の移動が良 好かつ確実となり、その移動量をさらに増加させることができる。また、基油移動媒体 8の材質や円周長さ等を選定することで、グリース基油の供給量の調整が可能となり 、軸受の運転条件に見合った調整がさらに容易になる。
[0048] 図 13は、本発明の第 3の実施形態を示す。第 3の実施形態の転がり軸受は、図 1に 示した第 1の実施形態の転がり軸受において、グリース溜まり形成部品 6,隙間形成 片 7等で構成されるグリース供給手段 16とは別に、軸方向の他方に、軸受内のミスト を回収し凝集状態として外輪軌道面 2aの付近へ戻すミスト回収再生手段 35を設け たものである。
[0049] ミスト回収再生手段 35は、運転中に軸受内に発生するグリースのミストを回収する 回収手段 36と、この回収手段 36で回収されたミストを内輪 1の回転による空気流を 利用して凝集することで油状にし、軌道面 la, 2aに送る凝集送り手段 37とを備える。
[0050] 前記回収手段 36は、内輪 1の外径面に形成されたテーパ面 lbと、このテーパ面 lb の外周に位置してテーパ面 lbとの間にミスト回収空間 39を形成するミスト回収部品 3 8と、このミスト回収部品 38に設けられて軸受内のミスト浮遊空間 41から前記ミスト回 収空間 39に連通した連通路 40とで構成される。内輪 1の前記テーパ面 lbは、内輪 1 の軸受背面側の外径面における幅方向端部の付近に設けられ、軌道面 la側が大径 となるように形成されている。
[0051] ミスト回収部品 38は、内輪 1と同心状の円筒部 38aと、この円筒部 38aの一端部か ら外径側に延びる鍔状取付部 38bとからなる断面概形カ 字状の部材であって、外 輪 2の軸受背面側の幅面に接して設けられるリング状の回収部品固定部材 42の内 径面に鍔状取付部 38bが接着固定されることにより、外輪 2に対して軸方向に並べて 設けられる。回収部品固定部材 42へのミスト回収部品 38の固定は、接着以外に止 め輪などで行っても良い。このミスト回収部品 38が内輪 1の前記テーパ面 lbの外周 に対向して配置されることにより、テーパ面 lbとミスト回収部品 38の内径面 38cとの 間に、環状でテーパ状断面形状のミスト回収空間 39が形成される。
[0052] 具体的には、ミスト回収部品 38の内径面 38cは、軸受カも離反する端部側を小径 部 38caとし、この小径部 38caから軸受寄りの部分が小径部 38caに対して段差をな す大径部 38cbとされる。前記ミスト回収空間 39は、内輪 1のテーパ面 lbと、内輪 1の 軸受背面側の幅面に接する内輪間座 43の外径面 43aと、ミスト回収部品 38の内径 面大径部 38cbとで囲まれた空間である。ミスト回収部品 38の内径面大径部 38cbの 粗度は Ra2〜7程度で良い。これにより、ミスト回収部品 38として、旋削加工品や鋼 板によるプレス加工品、あるいは榭脂製の成形加工品を用いることができる。前記テ ーパ面 lbの軸方向に対する傾斜角度は、軸受内側方向(転動体方向)へミスト流れ が発生する角度とされる。
[0053] 前記凝集送り手段 37は、内輪 1の外径面における軌道面 laの近傍に設けられた 段差面 lcと、この段差面 lcの小径側端から前記テーパ面 lbへと続く外径面部分 Id と、凝集隙間形成体 49とでなる。凝集隙間形成体 49は、内輪外径面部分 Idの外周 および前記段差面 lcにそれぞれ隙間を介して対向する内径面および先端面を有し 、外輪 2と共に固定状態に設けられるものであり、ミスト回収部品 38の円筒部 38aの 先端側へ続く部分により構成される。前記段差面 lcは、軸受背面側で軌道面 la〖こ 続き、軌道面 la側が大径となる面であって、転動体 3の幅内の部分、つまり転動体 3 の直下に設けられる。
[0054] 凝集隙間形成体 49における内輪段差面 lcに対向する先端部の外径面は、付着グ リースが転動体 3に接触可能なようにグリースを付着状態に保持するテーパ面とされ ている。円筒部 38aの外周のテーパ面は、凝集送り手段 37によって凝集された油状 のミストを効率良くミスト回収空間 39に導く役割を担う。
[0055] ミスト回収部品 38の円筒部 38aにおけるテーパ面に続き軸受カも離反する側の外 径面は、内径側に凹陥した凹陥部 38dとされ、この凹陥部 38dから内径面大径部 38 cbに貫通して前記連通路 40が形成されている。連通路 40は、ミスト回収部品 38の 円周方向の複数箇所に形成された内外に貫通する貫通孔カもなる。ミスト回収部品 38の前記凹陥部 38d、鍔状取付部 38b、および回収部品固定部材 42で囲まれる空 間は、軸受内のミスト浮遊空間 41に連続する空間であって、前記ミスト回収空間 39 の前段の回収空間である前段ミスト回収空間 44を構成する。
[0056] 前記構成の転がり軸受によると、グリース供給手段 16によるグリース溜まり 9内のグ リース供給と、ミスト回収再生手段 35によるミスト化されたグリースの再利用とが行わ れ、両手段 16, 35の相乗効果により、軸受内に封入したグリースだけを使用して高 速化と長寿命化、メンテナンスフリーが達成される。前記ミスト回収再生手段 35の具 体的な作用を以下に説明する。
[0057] グリース封入された軸受の内輪 1が回転すると、内外輪 1 , 2の軌道面 la, 2aでは、 転走する転動体 3との接触でグリース中の基油の一部がミストイ匕して軸受内のミスト浮 遊空間 41に浮遊する。このようにして発生したミストは、転動体 3の公転による気流に より、軸受内で回転しながら図 5中の矢印方向に移動し、回収部品固定部材 42とミス ト回収部品 38とで囲まれて構成される前段ミスト回収空間 44に流入する。前段ミスト 回収空間 44とミスト回収空間 39とは連通路 40で連通しているので、両空間 44, 39 の圧力差により前段ミスト回収空間 44のミストはさらにミスト回収空間 39に流入する。
[0058] ミスト回収空間 39内のミストは、内輪テーパ面 lbの回転によるボンビング作用で、ミ スト回収空間 39の軸受内部方向に加速されながら吸い込まれて行く。このように、ミ スト浮遊空間 41に浮遊するミストを、簡単な回収手段 36の構成により効率良く回収 することができる。その結果、内輪外径面部分 Idに対向するミスト回収部品 38の内 径面大径部 38cbにミストがぶつ力りながら移動して、ミストの凝集が生じる。
[0059] 凝集されたミストは油状となって内径面大径部 38cbに付着する。付着した油は、ミ スト回収部品円筒部 38aと内輪 1との間の隙間の空気流により軸受内部方向に移動 し、ミスト回収部品円筒部 38aの先端の隙間より軸受潤滑油として軸受内に吐出され る。
なお、このようなミストの動きを促す構成として、内輪 1の外径面は、段差面 lcの小 径端から幅面側にわたってテーパ面 lbを形成し、途中の円筒面状の外径面部分 Id を省略しても良い。
[0060] 径方向の吐出隙間を構成する内輪段差面 lcは、内輪 1の軌道面 laに続き転動体 3の幅内に設けられているので、内輪軌道面 laへの油吐出がより効果的に行われる 。軸受内への油吐出を確実に行うため、凝集隙間形成体 49の外径面力もなるテー パ面の全周にグリースを付着させ、油吐出の実隙間を小さくするのが好ましい。ミスト 回収部品 38の外径面へのグリース付着は、グリースの初期封入状態で運転すること で生じる堆積によるものとしても良い。
[0061] このように、この転がり軸受におけるミスト回収再生手段 35の潤滑作用では、ダリー ス潤滑において運転中に生じる基油ミストを回収再利用するので、潤滑寿命の延長 が可能となる。また、従来の内輪回転で外部からグリース補給を行うものと異なり、封 入されたグリースを循環使用し、僅かな潤滑油で潤滑を行うため、グリースが供給過 多となって攪拌抵抗による温度上昇の原因となることがなぐ回転の高速化が可能と なる。
[0062] また、第 3の実施形態では、グリース供給手段 16におけるグリース溜まり形成部品 6 、および前記ミスト回収再生手段 35における回収手段 36の両方が外輪 2に対して軸 方向に隣接して設けられているので、外輪幅内に収める場合に比べて、グリース供 給手段 16によるグリース供給作用領域や、ミスト回収再生手段 35によるミスト回収作 用領域を広く確保でき、それらの作用を効果的に行わせることができる。
[0063] なお、前記各実施形態は、外輪 2が固定側軌道輪である場合につき説明したが、 前記各実施形態のうち、図 1〜図 7に示す第 1の実施形態の各例、および図 12に示 す第 2の実施形態は、内輪 1が固定側輪の場合にも、前記と同様に適用することがで きる。
また、図 1〜図 11に示す第 1の実施形態の各例、および図 13に示す第 3の実施形 態において、図 12の第 2の実施形態のように、基油移動媒体 8を介在させても良い。
[0064] 以上のとおり、図面を参照しながら好適な実施形態を説明したが、当業者であれば 、本件明細書を見て、自明な範囲内で種々の変更および修正を容易に想定するで あろう。したがって、そのような変更および修正は、添付のクレーム力 定まる本発明 の範囲内のものと解釈される。

Claims

請求の範囲
[1] 内輪、外輪、およびこれら内外輪の軌道面間に介在した複数の転動体を有する転 力 Sり軸受であって、
軌道輪である内輪および外輪のうち、回転しない固定側軌道輪に、軌道面に続く 段差面を転動体から離れる方向に設け、先端が前記段差面に隙間を介して対面し 周壁で前記固定側軌道輪との間に流路を形成する隙間形成片を設け、前記流路に 連通するグリース溜まりを設け、
前記段差面と隙間形成片の先端との間の隙間を、グリースの基油を常時保油可能 で、かつ軸受の回転で生じる基油の体積膨張および軌道面付近の空気流により前 記基油を軌道面に供給可能な寸法とした転がり軸受。
[2] 内輪、外輪、およびこれら内外輪の軌道面間に介在した複数の転動体を有する転 力 Sり軸受であって、
軌道輪である内輪および外輪のうち、回転しない固定側軌道輪に、軌道面に続く 段差面を転動体から離れる方向に設け、先端が前記段差面に隙間を介して対面し 周壁で前記固定側軌道輪との間に流路を形成する隙間形成片を設け、前記流路に 連通するグリース溜まりを設け、
前記グリース溜りから前記隙間形成片の流路にグリースの基油が供給されることを 促進させる基油移動媒体を介在させた転がり軸受。
[3] 請求項 2にお 、て、前記基油移動媒体が、紙または織布である転がり軸受。
[4] 請求項 1において、固定側の軌道輪が外輪である転がり軸受。
[5] 請求項 2において、固定側の軌道輪が外輪である転がり軸受。
[6] 請求項 1において、前記軌道面に対して軸方向の一方に前記グリース溜まりを設け
、他方に、軸受内のミストを回収し凝集状態として前記軌道面の付近へ戻すミスト回 収再生手段を設けた転がり軸受。
[7] 請求項 2において、前記軌道面に対して軸方向の一方に前記グリース溜まりを設け
、他方に、軸受内のミストを回収し凝集状態として前記軌道面の付近へ戻すミスト回 収再生手段を設けた転がり軸受。
[8] 請求項 1において、アンギユラ玉軸受であり、前記段差面は、軌道面における接触 角が生じる方向と反対側の縁部に続いて設けた転がり軸受。
[9] 請求項 2において、アンギユラ玉軸受であり、前記段差面は、軌道面における接触 角が生じる方向と反対側の縁部に続いて設けた転がり軸受。
[10] 請求項 1において、前記グリース溜まりがグリース溜まり形成部品により形成された ものであり、このグリース溜まり形成部品が、前記固定側軌道輪に隣接して設けられ た間座と、この間座の内周側および外周側のうちの軸受空間側に設けられたグリース 溜まり形成部品本体とでなり、前記間座と前記固定側軌道輪との合わせ面に密封材 を介在させた転がり軸受。
[11] 請求項 2において、前記グリース溜まりがグリース溜まり形成部品により形成された ものであり、このグリース溜まり形成部品が、前記固定側軌道輪に隣接して設けられ た間座と、この間座の内周側および外周側のうちの軸受空間側に設けられたグリース 溜まり形成部品本体とでなり、前記間座と前記固定側軌道輪との合わせ面に密封材 を介在させた転がり軸受。
[12] 請求項 1において、前記グリース溜まりがグリース溜まり形成部品により形成された ものであり、このグリース溜まり形成部品が、前記固定側軌道輪に隣接して設けられ た間座と、この間座の内周側および外周側のうちの軸受空間側に設けられたグリース 溜まり形成部品本体とでなり、前記間座に、前記固定側軌道輪の軸受空間側の周面 に嵌合する鍔部を設け、この鍔部と固定側軌道輪との嵌合部に密封材を介在させた 転がり軸受。
[13] 請求項 2において、前記グリース溜まりがグリース溜まり形成部品により形成された ものであり、このグリース溜まり形成部品が、前記固定側軌道輪に隣接して設けられ た間座と、この間座の内周側および外周側のうちの軸受空間側に設けられたグリース 溜まり形成部品本体とでなり、前記間座に、前記固定側軌道輪の軸受空間側の周面 に嵌合する鍔部を設け、この鍔部と固定側軌道輪との嵌合部に密封材を介在させた 転がり軸受。
[14] 請求項 1において、前記固定側軌道輪に、グリース溜まり形成用の幅方向に延びる 軌道輪延長部を設け、前記グリース溜まりを、前記軌道輪延長部とこの軌道輪延長 部の軸受空間側に設けた一体のグリース溜まり形成部品とで形成した転がり軸受。
[15] 請求項 2において、前記固定側軌道輪に、グリース溜まり形成用の幅方向に延びる 軌道輪延長部を設け、前記グリース溜まりを、前記軌道輪延長部とこの軌道輪延長 部の軸受空間側に設けた一体のグリース溜まり形成部品とで形成した転がり軸受。
[16] 請求項 1において、前記隙間形成片の先端部の端面に続く軸受空間側の周面を、 転動体に近接したテーパ面とし、このテーパ面と転動体との距離を 0. 2mm以下とし た転がり軸受。
[17] 請求項 2において、前記隙間形成片の先端部の端面に続く軸受空間側の周面を、 転動体に近接したテーパ面とし、このテーパ面と転動体との距離を 0. 2mm以下とし た転がり軸受。
[18] 請求項 1において、前記隙間形成片の先端部の端面に続く軸受空間側の周面を、 転動体の中心を円弧中心とする断面円弧状の曲面とし、この曲面と転動体との距離 を 0. 2mm以下とした転がり軸受。
[19] 請求項 2において、前記隙間形成片の先端部の端面に続く軸受空間側の周面を、 転動体の中心を円弧中心とする断面円弧状の曲面とし、この曲面と転動体との距離 を 0. 2mm以下とした転がり軸受。
[20] 請求項 1において、前記固定側軌道輪が外輪であって、前記グリース溜まりが、外 輪または外輪に隣接する間座の内周に設けられたグリース溜まり形成部品により形 成されたものであり、このグリース溜まり形成部品の内周面と内輪の外周面とに、互い に微小隙間を介して対向しかつ軸受中心側が大径となるテーパ面部を設けた転がり 軸受。
[21] 請求項 2において、前記固定側軌道輪が外輪であって、前記グリース溜まりが、外 輪または外輪に隣接する間座の内周に設けられたグリース溜まり形成部品により形 成されたものであり、このグリース溜まり形成部品の内周面と内輪の外周面とに、互い に微小隙間を介して対向しかつ軸受中心側が大径となるテーパ面部を設けた転がり 軸受。
[22] 請求項 20において、前記内輪の前記テーパ面部における大径側のエッジを、前記 転動体を保持する保持器の幅内の内径側に位置させた転がり軸受。
[23] 請求項 21において、前記内輪の前記テーパ面部における大径側のエッジを、前記 転動体を保持する保持器の幅内の内径側に位置させた転がり軸受。
[24] 請求項 20において、前記内輪の前記テーパ面部における大径側のエッジを、転動 体の軸受軸方向幅内に位置させた転がり軸受。
[25] 請求項 21において、前記内輪の前記テーパ面部における大径側のエッジを、転動 体の軸受軸方向幅内に位置させた転がり軸受。
[26] 請求項 20において、軸心を縦向きとして使用される転がり軸受であり、前記グリース 溜まり形成部品が、軸受幅の中心側に向きかつ外径側端から前記隙間形成片が続 く側壁部を有し、この側壁部の外面を、小径側が軸受幅の中心力 離れる方向に傾 斜する傾斜面とした転がり軸受。
[27] 請求項 21において、軸心を縦向きとして使用される転がり軸受であり、前記グリース 溜まり形成部品が、軸受幅の中心側に向きかつ外径側端から前記隙間形成片が続 く側壁部を有し、この側壁部の外面を、小径側が軸受幅の中心力 離れる方向に傾 斜する傾斜面とした転がり軸受。
[28] 請求項 1において、前記固定側軌道輪の前記段差面の幅方向位置を、前記固定 側軌道輪の転動体に対する接触楕円と干渉しない範囲でこの接触楕円に近接する 位置とした転がり軸受。
[29] 請求項 2において、前記固定側軌道輪の前記段差面の幅方向位置を、前記固定 側軌道輪の転動体に対する接触楕円と干渉しない範囲でこの接触楕円に近接する 位置とした転がり軸受。
PCT/JP2005/018655 2004-10-08 2005-10-07 転がり軸受 WO2006041040A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020107021989A KR101199444B1 (ko) 2004-10-08 2005-10-07 롤링 베어링
DE112005002505T DE112005002505T5 (de) 2004-10-08 2005-10-07 Wälzlager
US11/664,778 US7918606B2 (en) 2004-10-08 2005-10-07 Rolling bearing

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-295653 2004-10-08
JP2004295653 2004-10-08

Publications (1)

Publication Number Publication Date
WO2006041040A1 true WO2006041040A1 (ja) 2006-04-20

Family

ID=36148333

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/018655 WO2006041040A1 (ja) 2004-10-08 2005-10-07 転がり軸受

Country Status (6)

Country Link
US (1) US7918606B2 (ja)
JP (1) JP4727704B2 (ja)
KR (2) KR101199444B1 (ja)
CN (2) CN100510448C (ja)
DE (1) DE112005002505T5 (ja)
WO (1) WO2006041040A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008240845A (ja) * 2007-03-27 2008-10-09 Ntn Corp 転がり軸受
FR2923277A1 (fr) 2007-11-05 2009-05-08 Skf Ab Palier a roulement a lubrification interne
WO2011091853A1 (en) 2010-01-29 2011-08-04 Aktiebolaget Skf Rolling bearing and method for manufacturing the same
CN104298252A (zh) * 2014-09-26 2015-01-21 四川钟顺太阳能开发有限公司 一种采用工程塑料轴承的回转支承
CN112483553A (zh) * 2019-09-11 2021-03-12 斯凯孚公司 滚动轴承装置和滚动轴承

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7874733B2 (en) * 2006-01-05 2011-01-25 Ntn Corporation Rolling bearing
JP4605130B2 (ja) * 2006-09-25 2011-01-05 株式会社ジェイテクト 転がり軸受装置
JP5045410B2 (ja) * 2007-12-10 2012-10-10 株式会社ジェイテクト 砥石軸装置
US8464835B2 (en) * 2008-08-15 2013-06-18 Rolls-Royce Corporation Lubricant scoop
DE102009011336A1 (de) * 2009-03-05 2010-09-09 Bielomatik Leuze Gmbh + Co Kg Lanzeneinheit und Spindel mit einer solchen
JP5561069B2 (ja) * 2009-12-17 2014-07-30 株式会社ジェイテクト 軸受装置
WO2011102303A1 (ja) * 2010-02-17 2011-08-25 Ntn株式会社 転がり軸受の潤滑構造および転がり軸受
JP5752385B2 (ja) * 2010-03-30 2015-07-22 Ntn株式会社 転がり軸受装置
US9360046B2 (en) * 2011-02-25 2016-06-07 Nsk Ltd. Multiple row combination ball bearing
CN102705370A (zh) * 2012-01-19 2012-10-03 洛阳轴研科技股份有限公司 外圈具有双滚道的组配角接触球轴承设计安装方法
JP2014059030A (ja) * 2012-09-19 2014-04-03 Jtekt Corp 転がり軸受
JP6331062B2 (ja) * 2013-03-21 2018-05-30 株式会社ジェイテクト 転がり軸受装置
JP6215569B2 (ja) * 2013-05-10 2017-10-18 Ntn株式会社 転がり軸受装置
JP6414656B2 (ja) * 2013-08-08 2018-10-31 株式会社ジェイテクト 転がり軸受装置および転がり軸受装置の製造方法
US9933016B2 (en) * 2014-04-15 2018-04-03 Jtekt Corporation Rolling bearing device
CN105987267B (zh) * 2015-02-16 2019-10-01 舍弗勒技术股份两合公司 立轴润滑装置和立轴润滑系统
CN107701902A (zh) * 2017-09-29 2018-02-16 郑州奥特科技有限公司 轴承废油脂自动收集系统及轴承自动换脂系统
CN113015864B (zh) * 2018-11-22 2024-09-10 谐波传动系统有限公司 波动齿轮装置的波动发生器
CN113738767A (zh) * 2021-11-02 2021-12-03 杭州斯格尔液压机械有限公司 一种电动汽车专用滚动轴承压板

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0522850U (ja) * 1991-08-30 1993-03-26 エヌテイエヌ株式会社 転がり軸受
JPH0545246U (ja) * 1991-09-30 1993-06-18 エヌテイエヌ株式会社 転がり軸受装置
JPH08338426A (ja) * 1995-06-15 1996-12-24 Railway Technical Res Inst 車輪一体形回転電機の軸受装置
JPH10184705A (ja) * 1996-12-17 1998-07-14 Ntn Corp 軸受の給脂装置
JP2004225807A (ja) * 2003-01-23 2004-08-12 Ntn Corp 転がり軸受の潤滑装置
JP2005180629A (ja) * 2003-12-22 2005-07-07 Ntn Corp 転がり軸受
JP2005201346A (ja) * 2004-01-15 2005-07-28 Ntn Corp 転がり軸受の潤滑構造
JP2005221042A (ja) * 2004-02-09 2005-08-18 Ntn Corp 転がり軸受

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3951476A (en) * 1974-09-27 1976-04-20 The Bendix Corporation Centrifugally flow controlled lubricated bearing
US4576489A (en) * 1983-07-04 1986-03-18 Siemens Aktiengesellschaft System for the continuous lubrication of a rolling bearing
US4571097A (en) * 1985-01-24 1986-02-18 The Timken Company Tapered roller bearing with pressurized rib ring
JPS61218829A (ja) 1985-03-25 1986-09-29 Hitachi Ltd コロガリ軸受
JPS62106126A (ja) 1985-11-01 1987-05-16 Mitsubishi Heavy Ind Ltd スラスト軸受の潤滑方法
JPH0823377B2 (ja) 1987-01-23 1996-03-06 株式会社ユニシアジェックス 内燃機関のフアンカツプリング装置
JPH0280815A (ja) 1988-09-13 1990-03-20 Koyo Seiko Co Ltd 自動給脂装置
JP2883472B2 (ja) 1991-07-15 1999-04-19 株式会社東芝 しゃ断器不動作対策装置
JPH0545246A (ja) 1991-08-09 1993-02-23 Eagle Ind Co Ltd 軸封装置用漏れ検出装置
JPH0673450A (ja) 1992-05-22 1994-03-15 Nkk Corp 耐水素誘起割れ性に優れた高強度鋼板の製造方法
JPH0635657A (ja) 1992-07-17 1994-02-10 Fuji Xerox Co Ltd ハイパーテキストモデル表示方法および装置
JPH11108068A (ja) 1997-09-30 1999-04-20 Ntn Corp アンギュラ玉軸受
JP2000220648A (ja) * 1999-02-02 2000-08-08 Toshiyuki Yasunaga 潤滑剤給脂式軸受
JP2000288870A (ja) 1999-04-08 2000-10-17 Makino Milling Mach Co Ltd 回転軸装置
JP2002122149A (ja) * 2000-10-12 2002-04-26 Ntn Corp アンギュラ玉軸受およびこれを用いた工作機械
JP4131312B2 (ja) * 2000-10-27 2008-08-13 日本精工株式会社 軸受装置
JP2003113998A (ja) 2001-10-02 2003-04-18 Nsk Ltd グリース補給装置
JP4051563B2 (ja) 2003-04-17 2008-02-27 日本精工株式会社 スピンドル装置,工作機械主軸用スピンドルおよび高速モータ用スピンドル
WO2004011817A1 (ja) * 2002-07-29 2004-02-05 Nsk Ltd. 転がり軸受、グリース補給装置、主軸装置、グリース補給方法及びグリース補給プログラム
WO2004025130A1 (ja) * 2002-09-13 2004-03-25 Koyo Seiko Co., Ltd. 軸受装置
JP4151472B2 (ja) * 2003-04-25 2008-09-17 株式会社ジェイテクト ころ軸受装置およびころ軸受の潤滑方法
JP2005106245A (ja) 2003-10-01 2005-04-21 Ntn Corp 潤滑機構付き軸受およびそれを用いた工作機械用スピンドル装置
US7874733B2 (en) * 2006-01-05 2011-01-25 Ntn Corporation Rolling bearing

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0522850U (ja) * 1991-08-30 1993-03-26 エヌテイエヌ株式会社 転がり軸受
JPH0545246U (ja) * 1991-09-30 1993-06-18 エヌテイエヌ株式会社 転がり軸受装置
JPH08338426A (ja) * 1995-06-15 1996-12-24 Railway Technical Res Inst 車輪一体形回転電機の軸受装置
JPH10184705A (ja) * 1996-12-17 1998-07-14 Ntn Corp 軸受の給脂装置
JP2004225807A (ja) * 2003-01-23 2004-08-12 Ntn Corp 転がり軸受の潤滑装置
JP2005180629A (ja) * 2003-12-22 2005-07-07 Ntn Corp 転がり軸受
JP2005201346A (ja) * 2004-01-15 2005-07-28 Ntn Corp 転がり軸受の潤滑構造
JP2005221042A (ja) * 2004-02-09 2005-08-18 Ntn Corp 転がり軸受

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008240845A (ja) * 2007-03-27 2008-10-09 Ntn Corp 転がり軸受
FR2923277A1 (fr) 2007-11-05 2009-05-08 Skf Ab Palier a roulement a lubrification interne
EP2330309A1 (en) 2007-11-05 2011-06-08 Aktiebolaget SKF Rolling bearing having internal lubrication
US8672555B2 (en) 2007-11-05 2014-03-18 Aktiebolaget Skf Rolling bearing having internal lubrication
WO2011091853A1 (en) 2010-01-29 2011-08-04 Aktiebolaget Skf Rolling bearing and method for manufacturing the same
CN104298252A (zh) * 2014-09-26 2015-01-21 四川钟顺太阳能开发有限公司 一种采用工程塑料轴承的回转支承
CN104298252B (zh) * 2014-09-26 2016-08-31 四川钟顺太阳能开发有限公司 一种采用工程塑料轴承的回转支承
CN112483553A (zh) * 2019-09-11 2021-03-12 斯凯孚公司 滚动轴承装置和滚动轴承

Also Published As

Publication number Publication date
CN101040128A (zh) 2007-09-19
JP4727704B2 (ja) 2011-07-20
US20090034892A1 (en) 2009-02-05
DE112005002505T5 (de) 2007-09-06
CN100510448C (zh) 2009-07-08
CN101581340B (zh) 2011-06-08
CN101581340A (zh) 2009-11-18
KR20100110404A (ko) 2010-10-12
US7918606B2 (en) 2011-04-05
KR101199444B1 (ko) 2012-11-09
KR20070083655A (ko) 2007-08-24
JP2009002525A (ja) 2009-01-08

Similar Documents

Publication Publication Date Title
WO2006041040A1 (ja) 転がり軸受
JP4234127B2 (ja) 転がり軸受
JP5137719B2 (ja) 転がり軸受装置
WO2007077706A1 (ja) 転がり軸受
JP4256391B2 (ja) 転がり軸受
JP4983402B2 (ja) 転がり軸受装置
US20080063331A1 (en) Lubricating Structure Of Rolling Bearing
WO2013026711A1 (en) Lubricated seal with axial lip
JP2005180629A (ja) 転がり軸受
JP2005221042A (ja) 転がり軸受
JP2006226427A (ja) 転がり軸受
JP2006234072A (ja) 転がり軸受
JP2005201346A (ja) 転がり軸受の潤滑構造
JP2006105345A (ja) 転がり軸受
JP2004225807A (ja) 転がり軸受の潤滑装置
JP2008240828A (ja) 転がり軸受のグリース溜り部品およびグリース溜り付き転がり軸受
JP2006022952A (ja) 転がり軸受の潤滑構造
JP2011058520A (ja) 転がり軸受装置
JP2010144889A (ja) グリース溜まり付き転がり軸受
JP2005299757A (ja) 転がり軸受
JP2011069456A (ja) 転がり軸受
JP2009097553A (ja) 転がり軸受
JP2005337349A (ja) 軸受装置およびそれを用いた主軸スピンドル装置
JP4289875B2 (ja) 円筒ころ軸受のエアオイル潤滑構造
WO2009107340A1 (ja) 転がり軸受、およびそれを用いた主軸装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11664778

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200580034484.0

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1020077008214

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 1120050025055

Country of ref document: DE

RET De translation (de og part 6b)

Ref document number: 112005002505

Country of ref document: DE

Date of ref document: 20070906

Kind code of ref document: P

122 Ep: pct application non-entry in european phase

Ref document number: 05790257

Country of ref document: EP

Kind code of ref document: A1