WO2006040997A1 - 双方向周波数変換器およびこれを用いた無線機 - Google Patents

双方向周波数変換器およびこれを用いた無線機 Download PDF

Info

Publication number
WO2006040997A1
WO2006040997A1 PCT/JP2005/018523 JP2005018523W WO2006040997A1 WO 2006040997 A1 WO2006040997 A1 WO 2006040997A1 JP 2005018523 W JP2005018523 W JP 2005018523W WO 2006040997 A1 WO2006040997 A1 WO 2006040997A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
terminal
bidirectional
frequency converter
bidirectional frequency
Prior art date
Application number
PCT/JP2005/018523
Other languages
English (en)
French (fr)
Inventor
Yoshifumi Hosokawa
Michiaki Matsuo
Noriaki Saito
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to US11/576,932 priority Critical patent/US7783266B2/en
Priority to DE602005015235T priority patent/DE602005015235D1/de
Priority to EP05790588A priority patent/EP1798850B1/en
Publication of WO2006040997A1 publication Critical patent/WO2006040997A1/ja
Priority to US12/836,063 priority patent/US8145143B2/en

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03DDEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
    • H03D7/00Transference of modulation from one carrier to another, e.g. frequency-changing
    • H03D7/12Transference of modulation from one carrier to another, e.g. frequency-changing by means of semiconductor devices having more than two electrodes
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03DDEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
    • H03D7/00Transference of modulation from one carrier to another, e.g. frequency-changing
    • H03D7/14Balanced arrangements
    • H03D7/1425Balanced arrangements with transistors
    • H03D7/1433Balanced arrangements with transistors using bipolar transistors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03DDEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
    • H03D7/00Transference of modulation from one carrier to another, e.g. frequency-changing
    • H03D7/14Balanced arrangements
    • H03D7/1425Balanced arrangements with transistors
    • H03D7/1441Balanced arrangements with transistors using field-effect transistors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03DDEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
    • H03D7/00Transference of modulation from one carrier to another, e.g. frequency-changing
    • H03D7/14Balanced arrangements
    • H03D7/1425Balanced arrangements with transistors
    • H03D7/1458Double balanced arrangements, i.e. where both input signals are differential
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03DDEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
    • H03D2200/00Indexing scheme relating to details of demodulation or transference of modulation from one carrier to another covered by H03D
    • H03D2200/0001Circuit elements of demodulators
    • H03D2200/0025Gain control circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03DDEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
    • H03D2200/00Indexing scheme relating to details of demodulation or transference of modulation from one carrier to another covered by H03D
    • H03D2200/0041Functional aspects of demodulators
    • H03D2200/0043Bias and operating point
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03DDEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
    • H03D2200/00Indexing scheme relating to details of demodulation or transference of modulation from one carrier to another covered by H03D
    • H03D2200/0041Functional aspects of demodulators
    • H03D2200/009Reduction of local oscillator or RF leakage

Definitions

  • the present invention relates to a bidirectional frequency converter for converting a signal frequency used in a radio circuit of a radio communication apparatus such as mobile communication, and a radio using the same.
  • a wireless unit In a conventional wireless communication apparatus having a transmission / reception function, a wireless unit is generally provided with a transmission system and a reception system as separate systems. On the other hand, attempts have been made to simplify, reduce the size, and reduce the cost of the radio unit by sharing part or all of the transmission system and the reception system.
  • IF signal intermediate frequency signal
  • RF signal radio frequency signal
  • FIG. 20 is a circuit diagram showing an example of a bidirectional frequency converter described in the document “Basics and Development of Microwave Semiconductor Circuits”.
  • the bidirectional frequency converter when the frequency conversion from the RF signal to the IF signal is performed, the bidirectional frequency converter inputs the RF signal input to the terminal 601 to the diode bridge 606 via the transformer 602, and the local frequency from the terminal 603.
  • An oscillation signal hereinafter referred to as LO signal
  • LO signal an oscillation signal
  • these signals are mixed by the nonlinearity of the diode to generate an IF signal, and this IF signal is output from the terminal 605.
  • the IF signal is input from terminal 605 and mixed with the LO signal input from terminal 603 by diode bridge 606 to generate an RF signal. . Then, the bidirectional frequency converter outputs this RF signal from the terminal 601 via the transformer 602.
  • a diode is used as the nonlinear element, and the diode bridge 606 has a symmetrical circuit configuration. As a result, RF signals and IF signals can be converted in both directions.
  • FIG. 21 is a configuration diagram showing an example of a communication device including a bidirectional frequency converter described in Japanese Patent No. 3258791.
  • FIG. 21 is a diagram showing an operation state when the communication device 700 is receiving.
  • antenna 701 is shared for transmission and reception and is connected to switch 702.
  • the switch 702 connects the antenna 701 to the reception signal amplifier 703, and inputs the reception RF signal received by the antenna 701 to the reception signal amplifier 703.
  • the output terminal of the reception signal amplifier 703 is connected to the switch 704!
  • the switch 704 connects the reception signal amplifier 703 to the frequency converter 705 and inputs the reception RF signal amplified by the reception signal amplifier 703 to the frequency converter 705.
  • the LO signal oscillator 708 generates an LO signal, which is input to the frequency variable 5 via the amplifier 706.
  • Frequency change 705 mixes the two input signals, the received RF signal and the LO signal, to generate a received IF signal.
  • the switch 707 connects the frequency converter 705 to the reception signal output terminal 709, and outputs the reception IF signal generated by the frequency converter 705 to the reception signal output terminal 709.
  • the switch 704 connects the transmission signal input terminal 710 and the frequency conversion 705, and the switch 707 connects the frequency conversion 705 and the transmission signal amplifier 711. Then, the switch 702 is switched to connect the transmission signal amplifier 711 and the antenna 701. In this way, in the configuration of FIG. 21, the communication device 700 can share one frequency converter 705 for transmission and reception by switching the signal path by transmission and reception using a switch.
  • FIG. 22 is a configuration diagram showing an example of a bidirectional frequency converter described in Japanese Patent No. 3369396.
  • a terminal 801 to which a reception RF signal is input and a terminal 802 to which a transmission IF signal is input are connected to an adder 803, and the adder 803 is an addition signal of the reception RF signal and the transmission IF signal. Is output.
  • This sum signal is input to frequency converter 804 and input from terminal 805.
  • the received IF signal and the transmitted RF signal are generated by mixing with the input LO signal.
  • the output terminal of the frequency converter 804 is connected to the buffer amplifiers 806 and 807.
  • the buffer amplifier 806 amplifies the generated reception IF signal and outputs it to the terminal 808, and the notch amplifier 807 generates the generated transmission RF signal. Is output to terminal 809.
  • An object of the present invention is to obtain a conversion gain for one frequency conversion in a bidirectional frequency converter that enables conversion to an IF signal power RF signal and a conversion to an RF signal power IF signal. At the same time, it is to provide bidirectional frequency conversion with a simple configuration that eliminates the need for external circuits such as switches and adders.
  • the bidirectional frequency change according to the first aspect of the present invention includes a bipolar transistor, a load impedance connected to the collector terminal of the neuropolar transistor, a noise unit for supplying a bias to the base terminal, and a bias unit thereof
  • a first switch that turns on and off the power supply to the transmitter and an emitter impedance that is connected to the emitter terminal.
  • the first switch When the first switch is turned on and bias is supplied, the first switch connected to the base terminal is connected.
  • the second frequency output signal which is a mixture of the first frequency input signal input from the child and the local oscillation signal input from the third signal terminal connected to the emitter terminal, is connected to the collector terminal.
  • the signal terminal force is output and the first switch is disconnected, the second frequency input signal input from the second signal terminal and the local oscillation signal input by the third signal terminal force are mixed.
  • the output signal of the first frequency is output from the first signal terminal.
  • the bidirectional frequency converter of the present invention can realize the frequency conversion of signals of two kinds of frequencies to both by one frequency converter using only the power switch, and the signal path. Do not use a switch. Therefore, it is possible to share the frequency converters of the transmission system and the reception system, and it is possible to simplify, downsize, and reduce the cost of the radio unit.
  • the conversion current can be provided by using the base current as input and the collector current as output, and the burden on other gain stages can be reduced. As a result, the restriction on the installation position of the amplifier is reduced, the flexibility of the system design of the entire radio unit can be increased, and the configuration design can be facilitated.
  • the bidirectional frequency converter according to the second aspect of the present invention further includes a second switch for turning on and off the supply of power to the load impedance, and the second switch is the first switch. It is turned on and off in synchronization with.
  • the bidirectional frequency converter according to the third aspect of the present invention is such that when the first frequency is a radio frequency, the second frequency is an intermediate frequency and the first frequency is an intermediate frequency.
  • the second frequency is a radio frequency.
  • the bidirectional frequency converter of the present invention can be further utilized as one that performs bidirectional frequency conversion of the wireless communication device.
  • the bidirectional frequency converter according to the fourth aspect of the present invention includes a pair of bidirectional frequency converters according to the third aspect, and the first signal terminal of the pair of bidirectional frequency converters They are connected to each other as a new first signal terminal, and a differential local oscillation signal is input to the third signal terminal of the pair of bidirectional frequency converters to achieve a single balance configuration.
  • the bidirectional frequency converter according to the fifth aspect of the present invention includes four bidirectional frequency converters according to the third aspect, and the first of the four bidirectional frequency converters.
  • the first signal terminals of the second bidirectional frequency converter and the second bidirectional frequency converter are connected to each other, and the first signal terminal of the third bidirectional frequency converter and the fourth bidirectional frequency converter are connected to each other.
  • the second bidirectional signal converter and the second signal terminal of the third bidirectional frequency converter are connected to each other to form a pair of new second signal terminal pairs.
  • the bidirectional frequency change provides a bipolar transistor, a load impedance connected to the collector terminal of the bipolar transistor, and supplies power to the collector terminal via the load impedance.
  • a first variable voltage source that connects to the base terminal and supplies noise
  • a second variable voltage source that supplies power to the bias section
  • an emitter connected to the emitter terminal
  • the local oscillation signal is input to the third signal terminal connected to the emitter terminal and the first variable
  • the voltage source supplies the first voltage to the collector terminal and the second variable voltage source supplies the second voltage to the base terminal
  • the input of the first frequency input to the first signal terminal force
  • the output signal of the second frequency obtained by mixing the signal with the local oscillation signal is output from the second signal terminal connected to the collector terminal, and the local oscillation signal is input to the third signal terminal.
  • the sub-voltage source supplies the third voltage to the collector terminal and the second variable voltage source supplies the fourth voltage to the base terminal
  • the input signal of the second frequency input from the second signal terminal The output signal of the first frequency obtained by mixing the signal with the local oscillation signal is output from the first signal terminal.
  • the bidirectional frequency converter according to the seventh aspect of the present invention is the first variable voltage source of the first variable voltage source.
  • the voltage 3 and the fourth voltage of the second variable voltage source are set so that the bipolar transistor does not turn on.
  • the neuropolar transistor reliably operates as a diode, the input signal from the second signal terminal can be frequency-converted to the first signal terminal with low conversion loss.
  • the second frequency is an intermediate frequency and the first frequency is an intermediate frequency.
  • the second frequency is a radio frequency.
  • the bidirectional frequency converter of the present invention can be used as one that performs bidirectional frequency conversion of a wireless communication device.
  • the bidirectional frequency converter according to the ninth aspect of the present invention includes a pair of bidirectional frequency converters according to the eighth aspect, and the first variable voltage of the pair of bidirectional frequency converters Share the same source as a new first variable voltage source, share the second variable voltage source with each other as a new second variable voltage source, and connect the first signal terminal of the pair of bidirectional frequency converters.
  • a new first signal terminal is connected, and a differential local oscillation signal is input to the third signal terminal of the pair of bidirectional frequency converters to form a single balance configuration.
  • the output signals from the pair of second signal terminals are baluns having a phase difference of 180 degrees. Therefore, a higher conversion gain can be obtained by differential synthesis.
  • a signal having a phase difference of 180 degrees is input from the pair of third signal terminals, the signal output from the first signal terminal has the same phase, and the conversion loss can be further suppressed.
  • the bidirectional frequency conversion according to the tenth aspect of the present invention includes four bidirectional frequency converters according to the eighth aspect, and the four bidirectional frequency converters each have a first frequency converter.
  • the two variable voltage sources are shared as a new first variable voltage source, and each of the second variable voltage sources is shared as a new second variable voltage source.
  • the first of the four bidirectional frequency converters Connect the first signal terminals of the bidirectional frequency converter and the second bidirectional frequency converter together, and connect the first signal terminals of the third bidirectional frequency converter and the fourth bidirectional frequency converter to each other.
  • first signal terminals To form a new pair of first signal terminals, connect the second signal terminals of the first bidirectional frequency converter and the fourth bidirectional frequency converter to each other, The second signal terminal of the bidirectional frequency converter and the third bidirectional frequency converter are connected to each other to form a pair of new second signal terminal pairs.
  • the third signal terminals of the first bidirectional frequency converter and the third bidirectional frequency converter are connected to each other, and the third bidirectional terminals of the second bidirectional frequency converter and the fourth bidirectional frequency converter are connected.
  • the signal terminals are connected to each other to form a pair of new third signal terminal pairs, and a differential local oscillation signal is input to the third signal terminal pair to form a double balance structure.
  • the bidirectional frequency converter according to the eleventh aspect of the present invention is the bidirectional frequency converter according to any one of the first to tenth aspects, wherein the load impedance is a load resistance or a load. It is an inductor.
  • the bidirectional frequency converter according to the twelfth aspect of the present invention is the bidirectional frequency converter according to any one of the first to eleventh aspects, wherein the load impedance is a variable load impedance. Change the impedance value of variable load impedance Thus, the phase of the output signal obtained by the first signal terminal force is controlled, and the gain of the output signal obtained by the second signal terminal force is controlled.
  • the bidirectional frequency change of the present invention can further easily control the gain of the output signal.
  • a bidirectional frequency converter according to a thirteenth aspect of the present invention is the bidirectional frequency converter according to any one of the first to twelfth aspects, wherein the emitter impedance is an emitter resistance or This is an emitter inductor.
  • the bidirectional frequency converter according to the fourteenth aspect of the present invention is the bidirectional frequency converter according to any one of the first to thirteenth aspects, wherein the emitter impedance is variable variable emitter impedance.
  • the output signal power is controlled by the value of the variable emitter impedance.
  • the bidirectional frequency change of the present invention can further easily control the gain of the output signal.
  • the bidirectional frequency conversion according to the fifteenth aspect of the present invention is the same as that of the pair of or four bidirectional frequency converters in the bidirectional frequency converter according to the fourth aspect or the ninth aspect.
  • the mitter impedance is a variable emitter impedance
  • the load impedance is a variable load impedance
  • a power distributor that distributes the power of the signal that is input to and output from the new first signal terminal, and the power distributor
  • a control unit that outputs a control signal corresponding to the received signal, and controls the phase of the output signal by changing the impedance values of the variable emitter impedance and the variable load impedance according to the control signal.
  • the power divider detects the input signal level or the output signal level and changes the impedance value of the load impedance, so that the conversion gain is automatically adjusted to keep the output at a predetermined level. Is even more possible.
  • the emitter impedance of the four bidirectional frequency converters according to the fifth aspect or the tenth aspect is a variable emitter.
  • a power distributor that distributes the power of the signal that is input to and output from the new first signal terminal.
  • a control unit that outputs a control signal corresponding to the signal distributed by the power distributor, and controls the phase of the output signal by changing the impedance values of the variable emitter impedance and the variable load impedance according to the control signal. Is.
  • the power distributor detects the input signal level or the output signal level and changes the impedance value of the load impedance, the conversion gain is automatically adjusted to keep the output at a predetermined level. Is even more possible.
  • the bidirectional frequency conversion according to the seventeenth aspect of the present invention is the same as the bidirectional frequency modification according to any one of the first to sixteenth aspects, except that FET ( Field Effect Transistor), the base terminal is the FET gate terminal, the emitter terminal is the FET source terminal, and the collector terminal is the FET drain terminal.
  • FET Field Effect Transistor
  • a radio includes an antenna, a bidirectional amplifier connected to the antenna, and the first to seventeenth aspects of the present invention connected to the antenna via the bidirectional amplifier.
  • the bidirectional frequency converter according to any one of the above aspects, and a local oscillator connected to the bidirectional frequency converter so as to input a local oscillation signal.
  • the radio of the present invention can bidirectionally convert signals of two types of frequencies with one frequency converter. Specifically, since the conversion from IF signal to RF signal and the conversion from RF signal to IF signal can be realized using only the power switch, the radio unit can be simplified and miniaturized. As a result, the radio can be simplified, downsized, and reduced in cost.
  • a radio according to the nineteenth aspect of the present invention is a first aspect in which an input terminal is connected to the bidirectional amplifier force S3 terminal switch in the eighteenth aspect and one connection terminal of the three terminal switch. And a second amplifier whose output terminal is connected to the other connection terminal of the three-terminal switch, an antenna is connected to the common terminal of the three-terminal switch, and the output terminal of the first amplifier The input terminal of the amplifier 2 is connected to the frequency variation according to the present invention.
  • the wireless device of the present invention can be realized even by using a normal preamplifier and a switch.
  • the radio device according to the twentieth aspect of the present invention further includes a power amplifier and a two-terminal switch between the antenna and the bidirectional amplifier, One terminal of the terminal switch is connected to the antenna, and the input terminal of the power amplifier and the other terminal of the two-terminal switch are connected to the bidirectional amplifier according to the present invention.
  • the signal path performs the conversion from the IF signal to the RF signal and the conversion from the RF signal to the IF signal by one frequency converter.
  • This can be realized without using an external circuit such as a switching switch.
  • This also allows the radio unit of the apparatus applied to a time division duplex (TDD) radio system that performs transmission and reception in a time division manner to share the transmission and reception frequency converters. Simplification, downsizing, and low cost of parts can be achieved.
  • TDD time division duplex
  • FIG. 1A is a circuit diagram at the time of forward conversion of the bidirectional frequency converter according to the first exemplary embodiment of the present invention.
  • FIG. 1B is an equivalent circuit diagram at the time of backward conversion of the bidirectional frequency converter according to Embodiment 1 of the present invention.
  • FIG. 2A is a circuit diagram at the time of forward conversion of the bidirectional frequency converter in the second embodiment of the present invention.
  • FIG. 2B is an equivalent circuit diagram at the time of reverse conversion of the bidirectional frequency converter in the second exemplary embodiment of the present invention.
  • FIG. 3A is a characteristic diagram showing an analysis result of conversion gain with respect to the LO signal level of the bidirectional frequency converter according to Embodiment 1 of the present invention.
  • FIG. 3B is a characteristic diagram showing an analysis result of conversion gain with respect to the LO signal level of the bidirectional frequency converter according to Embodiment 2 of the present invention.
  • FIG. 4A is a circuit diagram of a bidirectional frequency converter according to Embodiment 4 of the present invention.
  • FIG. 4B is a circuit diagram of the bidirectional frequency converter according to Embodiment 4 of the present invention.
  • FIG. 4C is a circuit diagram of bidirectional frequency conversion in the fourth embodiment of the present invention.
  • FIG. 5A is a circuit diagram of the bidirectional frequency converter according to the fifth exemplary embodiment of the present invention.
  • FIG. 5B is a circuit diagram of bidirectional frequency conversion in the fifth embodiment of the present invention.
  • FIG. 5C is a circuit diagram of bidirectional frequency conversion in the fifth embodiment of the present invention.
  • FIG. 6 is a circuit diagram of a single-balance bidirectional frequency converter according to Embodiment 6 of the present invention.
  • FIG. 7 is a circuit diagram of a single balance bidirectional frequency converter according to a seventh embodiment of the present invention.
  • FIG. 8 is a circuit diagram of a double balance bidirectional frequency converter according to an eighth embodiment of the present invention.
  • FIG. 9 is a circuit diagram of a double-balance bidirectional frequency converter according to Embodiment 9 of the present invention.
  • FIG. 10 is a block diagram of a radio device according to the tenth embodiment of the present invention.
  • FIG. 11 is a block diagram of a radio device according to Embodiment 11 of the present invention.
  • FIG. 12 is a block diagram of a radio apparatus according to Embodiment 12 of the present invention.
  • FIG. 13A is a circuit diagram of another example of the bidirectional frequency converter according to Embodiment 1 of the present invention.
  • FIG. 13B is a circuit diagram of a bidirectional frequency converter of another example in the second embodiment of the present invention.
  • FIG. 14 is a circuit diagram of another example of a single-balance bidirectional frequency converter according to Embodiment 6 of the present invention.
  • FIG. 15 is a circuit diagram of another example of double-balance bidirectional frequency change in Embodiment 8 of the present invention.
  • FIG. 16A is a circuit diagram at the time of forward conversion of the bidirectional frequency converter in the third embodiment of the present invention.
  • FIG. 16B is an equivalent circuit diagram at the time of reverse conversion of bidirectional frequency conversion in Embodiment 3 of the present invention.
  • FIG. 17 is a characteristic diagram showing an analysis result of conversion gain with respect to the LO signal level of the bidirectional frequency converter according to Embodiment 3 of the present invention.
  • FIG. 18 is a circuit diagram of another example of a single-balance bidirectional frequency converter according to Embodiment 6 of the present invention.
  • FIG. 19 is a circuit diagram of another example of double-balance bidirectional frequency variation in Embodiment 8 of the present invention.
  • FIG. 20 is a circuit diagram of a conventional bidirectional frequency converter.
  • FIG. 21 is a configuration diagram of a communication apparatus including a conventional bidirectional frequency converter.
  • FIG. 22 is a configuration diagram of a conventional bidirectional frequency converter.
  • FIG. 1A and FIG. IB are circuit diagrams of bidirectional frequency variation ⁇ 100 in Embodiment 1 of the present invention.
  • FIG. 1A is a circuit diagram of the bidirectional frequency converter 100 during forward conversion
  • FIG. 1B is a circuit diagram of the bidirectional frequency converter 100 during backward conversion.
  • the NPN bipolar transistor 1 has an emitter terminal 2, a collector terminal 3, and a base terminal 4.
  • the emitter terminal 2 is connected to an LO terminal 6 for inputting an LO signal via a capacitor 5 and grounded via an emitter-side resistor 7.
  • the collector terminal 3 is connected to an IF terminal 9 that inputs and outputs an IF signal through a capacitor 8 and is also connected to a voltage supply source 17 through a collector-side resistor 10. This collector-side resistance 10 corresponds to the load impedance.
  • the base terminal 4 is connected to an RF terminal 13 that inputs and outputs an RF signal via the capacitor 12 and is connected to a base bias resistor 14 and a base noise resistor 15.
  • the base bias resistor 14 is connected to the voltage supply source 16 through the power switch 11, and the base bias resistor 15 is grounded to apply the base bias to the base terminal 4.
  • a configuration in which the base bias resistors 14 and 15 apply a base bias to the base terminal 4 corresponds to a bias section according to the present invention.
  • the power switch 11 turns on and off the connection between the voltage supply source 16 and the base bias resistor 14. This power switch 11 corresponds to the first switch according to the present invention.
  • the frequency of the RF signal is 2.45.
  • the frequency of the GHz and LO signals is 1.88 GHz, and the frequency of the IF signal is 570 MHz.
  • the frequency of each signal is not limited to this.
  • the power switch 11 is on.
  • attention is paid to the RF signal when the RF signal is input to the base terminal 4 through the capacitor 12, it becomes a collector current flowing through the collector terminal 3 as an amplified RF signal.
  • attention is paid to the LO signal the LO signal is input to the emitter terminal 2 via the capacitor 5 and becomes a collector current flowing to the collector terminal 3 as an amplified LO signal.
  • a signal obtained by mixing the amplified RF signal and the amplified LO signal is output to the collector terminal 3 due to the nonlinearity of the bipolar transistor 1.
  • the bipolar transistor 1 outputs a mixed signal composed of a 570 MHz signal and a 4.33 GHz signal from the RF signal (2.45 GHz) and LO signal (1.88 GHz), but the bidirectional frequency conversion is not possible.
  • the IF signal of 570MHz is selected by adding a filter (not shown) that allows the low-frequency mixed signal to pass through IF terminal 9.
  • the RF signal corresponds to the input signal of the first frequency according to the present invention
  • the IF signal corresponds to the output signal of the second frequency.
  • FIG. 1B is an equivalent circuit diagram in which the bipolar transistor 1 is represented by a diode when the bidirectional frequency conversion is performed in the reverse direction conversion.
  • the power switch 11 is turned off at the time of reverse conversion. Therefore, since the base bias is not applied, the bipolar transistor 1 cannot operate as a transistor and operates as a diode.
  • the neutral transistor 1 can be expressed as two diodes that connect between the base terminal 4 and the emitter terminal 2 and between the base terminal 4 and the collector terminal 3.
  • the IF signal input from the IF terminal 9 and the LO signal input from the LO terminal 6 are mixed by the diode, and the mixed signal is output to the RF terminal 13.
  • the bipolar transistor 1 outputs a mixed signal having a 1.31 GHz signal and a 2.45 GHz signal power, such as an IF signal (570 MHz) and LO signal (1.88 GHz) power, but a bidirectional frequency change.
  • a filter not shown
  • the RF signal corresponds to the output signal of the first frequency according to the present invention
  • the IF signal corresponds to the input signal of the second frequency.
  • the voltage supply source 16 was set to 3 V, and the potential of each terminal of the neuropolar transistor 1 was applied in the same manner as in a normal emitter-grounded amplifier for analysis.
  • the RF signal frequency is 2.45 GHz
  • the LO signal frequency is 1.88 GHz
  • the IF signal frequency is 570 MHz.
  • FIG. 3A shows the analysis result of the conversion gain with respect to the LO signal input level in the first embodiment.
  • a forward conversion gain characteristic 3001 indicates that there is a conversion gain of +11.3 dB when the LO signal level is +8 dBm, and a reverse conversion gain characteristic 3002 has a conversion loss of 15 dB. It is shown that.
  • the signal path switching switch performs the conversion from the IF signal to the RF signal and the conversion from the RF signal to the IF signal with one frequency converter. This can be realized by using only the power switch without using the above. This enables simplification, miniaturization, and low cost of the radio unit. Also, with regard to forward frequency conversion, it is possible to provide a conversion gain, and the burden on other gain stages can be reduced. As a result, restrictions on the installation position of the amplifier are reduced, the system design flexibility of the entire radio unit is increased, and the configuration design can be facilitated.
  • a matching circuit may be added to each of the RF terminal 13, LO terminal 6, and IF terminal 9 of the bidirectional frequency converter of the present invention. In that case, neither a matching circuit matched during forward conversion nor a matching circuit matched during backward conversion can be used. Further, the matching circuit may be changed or switched in accordance with the respective states during forward conversion and reverse conversion.
  • the RF signal is converted into an IF signal by forward conversion, and the IF signal is converted by backward conversion.
  • the signal was converted to an RF signal.
  • the present invention is not limited to this.
  • the forward conversion converts the IF signal to the RF signal
  • the backward conversion converts the RF signal to the IF signal May be.
  • the first intermediate frequency signal (IF1 signal) is input to and output from the collector terminal, and the second intermediate frequency signal (IF2 signal is input to the base terminal). Input / output), it is possible to convert IF2 signal to IF1 signal by forward conversion and IF1 signal power IF2 signal by reverse conversion.
  • LO signals having the same frequency are used for forward conversion and reverse conversion, but LO signals having different frequencies may be used for forward conversion and reverse conversion. .
  • an NPN-type bipolar transistor has been described, but a PNp-type bipolar transistor may be used.
  • the base terminal is the gate terminal
  • the emitter terminal is the source terminal
  • the collector terminal is the drain terminal.
  • the power of the current feedback type using two base bias resistors as the base bias of the bipolar transistor is also possible with other configurations!
  • the power source switch may be switched on / off between the source and the drain by the gate voltage by using a force FET transistor or the like described for the switch for mechanically switching on and off.
  • the bidirectional frequency converter of the present embodiment may be used as a part of an integrated circuit or as a knocking component.
  • FIG. 2A and 2B are circuit diagrams of bidirectional frequency converter 200 in Embodiment 2 of the present invention.
  • FIG. 2A is a circuit diagram of the bidirectional frequency converter 200 during forward conversion
  • FIG. 2B is a circuit diagram of the bidirectional frequency converter 200 during backward conversion. Only the differences from Embodiment 1 will be described below.
  • This embodiment is a bidirectional frequency change in which the voltage supply source 17 in the first embodiment is omitted and the voltage supply source 16 is shared.
  • the power switches 23 and 24 are turned on during forward conversion to supply one voltage.
  • the source 16 force is also supplied with base bias by the base bias resistor 14 and the base bias resistor 15.
  • a voltage is supplied to the load resistor by the collector-side resistor 10. The operation at this time is the same as in the first embodiment.
  • the power switch 23 corresponds to the first switch according to the present invention, and the power switch 24 corresponds to the second switch.
  • the power source switches 23 and 24 are turned off, so that the collector terminal 3 is in a floating state.
  • the bipolar transistor 1 cannot operate as a transistor but operates as a diode.
  • FIG. 2B is an equivalent circuit diagram in which bipolar transistor 1 is expressed by a diode during reverse conversion of bidirectional frequency modulation 200.
  • the bipolar transistor 1 can be represented as two diodes that connect the base terminal 4 and the emitter terminal 2, and the base terminal 4 and the collector terminal 3.
  • a signal obtained by mixing the IF signal input from the IF terminal 9 and the LO signal input from the LO terminal 6 with a diode is output to the RF terminal 13.
  • the bipolar transistor 1 outputs a mixed signal that includes 1.31 GHz signal and 2.45 GHz signal power, such as IF signal (570 MHz) and LO signal (1.88 GHz) power.
  • a filter not shown
  • the voltage supply source 16 was set to 3 V, and the potential of each terminal of the bipolar transistor 1 was applied in the same manner as in a normal emitter-grounded amplifier for analysis.
  • the frequency of the RF signal is 2.45 GHz
  • the frequency of the LO signal is 1.88 GHz
  • the frequency of the IF signal is 570 MHz.
  • the conversion gain characteristic 3003 in the forward direction shows a conversion gain of +11.3 dB when the LO signal level is +8 dBm, and the conversion gain characteristic 3004 in the reverse direction has a conversion loss of 8. OdB is shown.
  • the minimum conversion loss in the reverse direction of the bidirectional frequency converter in the present embodiment is smaller than that in the first embodiment.
  • the effect of the first embodiment is achieved.
  • the conversion loss in the reverse frequency conversion that is, the frequency conversion of the transmission system can be further suppressed.
  • the bipolar transistor is used.
  • the base terminal is used as the gate terminal
  • the emitter terminal is used as the source terminal
  • the collector terminal is used as the FET. It may be replaced with a drain terminal.
  • FIG. 16A and 16B are circuit diagrams of bidirectional frequency converter 250 in Embodiment 3 of the present invention.
  • FIG. 16A is a circuit diagram at the time of forward conversion of the bidirectional frequency converter 250
  • FIG. 16B is an equivalent circuit diagram of the bidirectional frequency converter 250 at the time of backward conversion. Only differences from the first embodiment will be described below.
  • variable voltage supply source 40 is connected to the collector-side resistor 10 instead of the voltage supply source 17 in the first embodiment, and the voltage supply source 16 in the first embodiment is connected.
  • a variable voltage supply 41 is connected to the base bias resistor 14. Note that, as an example of the variable voltage supply sources 40 and 41, a circuit for switching a plurality of voltage supply sources is used, but the present invention is not limited to this.
  • the variable voltage supply source 40 corresponds to the first variable voltage source according to the present invention, and the variable voltage supply source 41 corresponds to the second variable voltage source.
  • variable voltage supply source 40 applies the forward collector side potential 40a to the collector side resistor 10
  • variable voltage supply source 41 applies the forward base side potential 41a to the base bias resistor.
  • the forward collector side potential 40a and the forward base side potential 41a correspond to the first voltage and the second voltage according to the present invention, respectively.
  • bipolar transistor 1 has R The F signal (2.45GHz) and LO signal (1.88GHz) force, and a mixed signal consisting of a 570MHz signal and a 4.33GHz signal are output.
  • the bidirectional frequency converter selects the IF signal of 570 MHz by adding a filter (not shown) that allows the low-frequency mixed signal to pass through IF terminal 9.
  • variable voltage supply source 40 provides the reverse collector side potential 40b to the collector side resistor 10
  • variable voltage supply source 41 provides the reverse base side potential 41b to the base noise resistor 14.
  • the reverse collector side potential 40b and the reverse base side potential 41b force respectively correspond to the third voltage and the fourth voltage according to the present invention.
  • the reverse base side potential 41b is a potential at which the base potential 4 does not turn on the bipolar transistor 1, that is, a reverse collector side potential so that the potential difference is normally 0.6 to 0.7 volts. It is set higher than 40b. Therefore, at the reverse collector side potential 40b and the reverse base side potential 41b, the bipolar transistor 1 cannot operate as a transistor but operates as a diode.
  • FIG. 16B is an equivalent circuit diagram in which bipolar transistor 1 is represented by a diode at the time of reverse conversion of bidirectional frequency change 250. The operation at this time is the same as that of the first embodiment.
  • forward collector side potential 40a and forward base side potential 41a were set to 3V
  • reverse collector side potential 40b was set to 0V
  • reverse base potential 41b was set to 0.8V.
  • the potential at each terminal of the bipolar transistor 1 during forward conversion was applied in the same manner as an ordinary emitter-grounded amplifier for analysis.
  • the frequency of the RF signal is 2.45 GHz
  • the frequency of the LO signal is 1.88 GHz
  • the frequency of the IF signal is 570 MHz.
  • FIG. 17 shows the analysis result of the conversion gain with respect to the LO signal input level.
  • the forward conversion gain characteristic 1701 is not significantly different from the first embodiment or the second embodiment, but the reverse conversion gain characteristic 1702 is the reverse in the LO signal level range of +7 to +13 dBm.
  • the conversion loss of direction conversion is about 10dB.
  • the effect of the first embodiment is achieved. It is possible to maintain a low conversion loss in a wide range of LO signal levels.
  • a bidirectional frequency converter will be described in which a function for adjusting the conversion gain and the phase of the output signal is added to the bidirectional frequency converter described in the second embodiment. In the following description, only differences from the second embodiment will be described.
  • FIG. 4A is a circuit diagram of bidirectional frequency converter 300 in the fourth embodiment of the present invention.
  • the difference from the second embodiment is that a variable emitter side resistor 18 is connected to the emitter terminal 2 of the bipolar transistor 1 instead of the emitter side resistor 7.
  • the conversion gain of the forward conversion can be controlled by changing the resistance value of the variable emitter-side resistor 18. That is, when the value of the variable emitter-side resistor 18 is decreased, the conversion gain of the forward conversion increases, and when the value of the variable emitter-side resistor 18 is increased, the conversion gain of the forward conversion decreases.
  • the conversion loss of the reverse conversion and the phase of the output RF signal can be controlled by changing the resistance value of the variable emitter-side resistor 18. In other words, if the value of the variable emitter side resistor 18 is decreased, the conversion loss of the reverse conversion increases, and the phase of the output RF signal is delayed. Also, if the value of the variable emitter side resistor 18 is increased, the conversion loss of the reverse direction conversion is reduced, and the phase of the output RF signal advances.
  • the gain of the output signal can be easily controlled.
  • the collector-side resistance and the base noise resistance are connected to a common voltage supply source, but the collector-side resistance and the base bias are the same as in the bidirectional frequency conversion of the first embodiment. Even if each resistor is connected to a different voltage source, it will not work.
  • the circuit diagram of the bidirectional frequency converter at this time is shown in Fig. 4B.
  • Figure 4C shows the circuit diagram of the bidirectional frequency change at this time.
  • variable voltage supply source 40 applies the forward collector side potential 40a to the collector side resistor 10, and the variable voltage supply source 41 applies the forward base side potential 41a to the base bias resistor 14 To give.
  • variable voltage supply The source 40 applies a reverse collector side potential 40b to the collector side resistor 10, and the variable voltage supply source 41 applies a reverse base side potential 41b to the base bias resistor 14.
  • the base bias can be connected to a variable voltage supply source using another base bias configuration.
  • variable emitter side resistor has been described.
  • a variable inductor may be used instead of the variable emitter side resistor, and an inductor may be used instead of the collector side resistor.
  • the bidirectional frequency converter described in Embodiment 2 is added with the function of adjusting the conversion gain at the time of forward conversion and adjusting the phase of the signal output at the time of backward conversion.
  • the converter will be described. In the following description, only differences from the second embodiment are described.
  • FIG. 5A is a circuit diagram of bidirectional frequency converter 301 in the fifth embodiment of the present invention.
  • a difference from the second embodiment is that a variable collector side resistor 19 is connected to the collector terminal 2 of the bipolar transistor 1 instead of the collector side resistor 10.
  • the conversion gain of the IF signal output to the forward conversion can be controlled. That is, if the value of the variable collector side resistor 19 is decreased, the conversion gain is reduced, and if the value of the variable collector side resistor 19 is increased, the conversion gain is increased.
  • the phase of the RF signal output to the reverse conversion can be controlled by changing the resistance value of the variable collector side resistor 19. In other words, if the value of the variable collector-side resistance 19 is decreased, the phase of the RF signal output for reverse conversion advances. In addition, if the value of the variable collector side resistor 19 is increased, the phase of the RF signal output for reverse conversion is delayed.
  • the gain of the output signal can be easily controlled.
  • the collector-side resistor and the base noise resistor are connected to the common voltage supply source, but the collector-side resistor and the base bias resistor are similar to the bidirectional frequency conversion in the first embodiment. Even if you connect to different voltage sources, you can't. This time A circuit diagram of the directional frequency converter is shown in Fig. 5B.
  • the variable voltage supply source 40 applies the forward collector side potential 40a to the collector side resistor 10, and the variable voltage supply source 41 supplies the forward base side potential 41a to the base noise resistor.
  • the variable voltage supply source 40 applies the reverse collector side potential 40b to the collector side resistor 10, and the variable voltage supply source 41 supplies the reverse base side potential 41b to the base bias resistor 14.
  • the base bias can be applied even if it is applied from a variable voltage supply source by other base bias configurations.
  • FIG. 6 is a circuit diagram of single-balance bidirectional frequency converter 400 according to Embodiment 6 of the present invention.
  • bidirectional frequency modulations 401 and 402 are the same as those in the second embodiment, and share power supply switches 23 and 24 and voltage supply source 16. Therefore, in the bidirectional frequency change 401 and 402, each collector-side resistor 10 is connected to the power switch 24, and the base bias resistor 14 is also connected to the power switch 23. Both RF terminals are connected and the same RF signal is input or output. Each IF terminal 9a, 9b and LO terminal 6a, 6b should have a pair!
  • the forward conversion operation will be described.
  • the power switches 23 and 24 are turned on.
  • the RF signal is input from the RF terminal 13 to the bidirectional frequency converters ⁇ 401, 402.
  • the LO signal is input to the LO terminal 6a, and the LOB signal having a phase difference of 180 degrees from the LO signal is input to the LO terminal 6b.
  • the signal output to IF terminal 9a hereinafter referred to as the IF signal
  • the signal output to IF terminal 9b hereinafter referred to as the IFB signal
  • the balanced output has a phase difference of. Therefore, a higher conversion gain can be obtained by differential synthesis of these IF signals and IFB signals.
  • the power switches 23 and 24 are off.
  • An IF signal is input to IF terminal 9a, and an IFB signal having a phase difference of 180 degrees from the IF signal is input to IF terminal 9b.
  • the LO signal is input to the LO terminal 6a, and the LOB signal having a phase difference of 180 degrees from the LO signal is input to the LO terminal 6b.
  • the signal output from the bi-directional frequency converter 401 and the signal output from the bi-directional frequency converter 402 have the same phase.
  • RF signal is output.
  • the output signals from the pair of IF signal terminals in the frequency conversion in the forward direction compared to the second embodiment, Since the balanced output has a phase difference of 180 degrees, a higher conversion gain can be obtained by differential synthesis. Also, in reverse frequency conversion, signals with a phase difference of 180 degrees are input from a pair of IF signal terminals, so that the signal output from the RF signal terminal force also has the same phase, reducing conversion loss. You can do more.
  • a matching circuit may be added to each of RF terminal 13, LO terminal 6 and IF terminal 9. In that case, neither a matching circuit matched during forward conversion nor a matching circuit matched during backward conversion will work. In addition, the matching circuit may be changed or switched in accordance with the respective states during forward conversion and reverse conversion.
  • the IF signal and IFB signal are input / output to / from the collector terminal pair, and the RF signal is input / output to the base terminal, so that the RF signal power is also converted to the IF signal in the reverse direction by forward conversion.
  • the IF signal is converted to the RF signal by conversion.
  • the RF signal and the RFB signal with a phase difference of 180 degrees are input to and output from the collector terminal pair, and the IF signal is input to and output from the base terminal. You can convert from IF signal to RF signal by reverse conversion, and from RF signal to IF signal by reverse conversion.
  • IF1 signal first intermediate frequency signal
  • IF2 signal second intermediate frequency signal
  • forward conversion converts IF2 signal to IF1.
  • the signal may be converted to IF1 signal power IF2 signal by reverse conversion.
  • LO signals having the same frequency are used for forward conversion and reverse conversion.
  • LO signals with different frequencies may be used for forward conversion and reverse conversion.
  • the collector-side resistor and the base noise resistor are connected to the common voltage supply source.
  • the collector-side resistor and the base bias resistor are respectively connected. Different power switches and voltage sources may be prepared and connected.
  • a circuit diagram of the bidirectional frequency change at this time is shown in FIG.
  • the collector-side resistance and the base bias resistance may be connected to different variable voltage supply sources.
  • Figure 18 shows the circuit diagram of the bidirectional frequency converter at this time. Note that the base bias does not matter even if a variable voltage supply source force is applied by another base bias configuration.
  • the forward input is a single input 'balanced output
  • the reverse conversion is a balanced input' single output force '
  • the forward input is a balanced input' single output
  • the reverse conversion is a single input ' It may be a balanced output.
  • FIG. 7 is a circuit diagram of single balance bidirectional frequency converter 410 according to the seventh embodiment of the present invention.
  • the emitter terminals 2 of the bidirectional frequency converters 411 and 412 are connected to the LO terminals 6a and 6b for inputting the LO signal via the capacitor 5 and grounded via the variable emitter-side resistor 18.
  • the collector terminal 3 is connected to IF terminals 9a and 9b for inputting / outputting IF signals via the capacitor 8 and also connected to the power switch 24 via the variable collector-side resistor 19.
  • the base terminal 4 is connected to the power distributor 20 via the capacitor 12 and is also connected to the base bias resistor 14 and the base noise resistor 15.
  • the base bias resistor 14 is connected to the power switch 23, the base bias resistor 15 is grounded, and the base bias is applied to the base terminal 4.
  • the bidirectional frequency change ⁇ 411 and the bidirectional frequency change ⁇ 412 share the power switches 23 and 24 and the voltage supply source 16.
  • the control unit 21 is connected to the power distributor 20, the variable emitter-side resistor 18, and the variable collector-side resistor 19, and sends a control signal corresponding to the signal distributed from the power distributor 20 to the variable emitter-side resistor 18, Output to variable collector side resistor 19 and change the resistance value.
  • the forward conversion operation will be described.
  • the power switches 23 and 24 are turned on.
  • the RF signal is input from the RF terminal 13 to the bi-directional frequency modulation ⁇ 411, 412.
  • the LO signal is input to the LO terminal 6a, and the LOB signal having a phase difference of 180 degrees from the LO signal is input to the LO terminal 6b.
  • the signal output to IF terminal 9a and the signal output to IF terminal 9b are balanced outputs having a phase difference of 180 degrees.
  • IF signal is input to IF terminal 9a
  • IFB signal is input to IF terminal 9b
  • the LO signal is input to LO terminal 6a
  • the LOB signal is input to LO terminal 6b.
  • the signal output from bidirectional frequency change 411 and the signal output from bidirectional frequency change 412 have the same phase, and RF terminal 13 has an RF signal with reduced conversion loss compared to the synthesized signal. A signal is output. At this time, a part of the power of the RF signal output from the bidirectional frequency converter 411 and the bidirectional frequency converter 412 is distributed by the power distributor 20 and input to the control unit 21.
  • the control unit 21 outputs a control signal for increasing the value of the variable emitter-side resistor 18 when the input from the power divider 20 is low, and outputs a variable emitter when the input from the power divider 20 is high. Outputs a control signal to decrease the value of the data-side resistor 18. As a result, the change during reverse conversion Conversion loss can be controlled automatically.
  • the control unit 21 outputs a control signal to reduce the LO signal and IF signal leak to the variable emitter-side resistor 18 and variable collector-side resistor 19 for adjustment. To do.
  • the power divider detects the input signal level or the output signal level as compared with the sixth embodiment, thereby reducing the load signal. Since the impedance value of the impedance is changed, it is further possible to automatically adjust the conversion gain to keep the output at a predetermined level.
  • FIG. 8 is a circuit diagram of double-balance bidirectional frequency converter 420 according to Embodiment 8 of the present invention.
  • a double balance bidirectional frequency converter 420 includes a bidirectional frequency converter 401, a bidirectional frequency converter 402, a bidirectional frequency converter 403, and a bidirectional frequency converter 404.
  • Bidirectional frequency changes 401, 402, 403, and 404 are the same as those of the second embodiment, and share power supply switches 23 and 24 and voltage supply source 16. Therefore, in the bidirectional frequency transformations 401, 402, 403, and 404, each collector-side resistor 10 is connected to the power switch 24, and the base noise resistor 14 is connected to the power switch 23. Further, the bidirectional frequency converter 401 and the bidirectional frequency converter 402 share the RF terminal 13a, and the bidirectional frequency converter 403 and the bidirectional frequency converter 404 share the RF terminal 13b.
  • the bidirectional frequency converter 401 and the bidirectional frequency converter 403 share the LO terminal 6a, and the bidirectional frequency converter 402 and the bidirectional frequency converter 404 share the LO terminal 6b.
  • Bidirectional frequency converter 401 and bidirectional frequency converter 404 share IF terminal 9a, and bidirectional frequency change ⁇ 402 and bidirectional frequency change ⁇ 403 share IF terminal 9b.
  • the power switches 23 and 24 are on.
  • the RF signal is input from the RF terminal 13a, and the RFB signal having a phase difference of 180 degrees from the RF signal is input from the RF terminal 13b.
  • the LO signal is input to the LO terminal 6a, and the LOB signal having a phase difference of 180 degrees from the LO signal is input to the LO terminal 6b. This Therefore, the signal output to IF terminal 9a and the signal output to IF terminal 9b are balanced outputs with a phase difference of 180 degrees. Therefore, a higher conversion gain can be obtained by differentially combining these IF signals and IFB signals.
  • the IF terminal 9a Cancel ! Suppresses leakage of LO signal and LOB signal to IF pin 9a.
  • leakage of the LO signal and LOB signal at IF terminal 9b can be suppressed.
  • IF signal is input to IF pin 9a
  • IFB signal is input to IF pin 9b
  • LO signal is input to LO terminal 6a
  • LOB signal is input to LO terminal 6b.
  • the RF signal is output to the RF terminal 13a
  • the RF B signal having a phase difference of 180 degrees from the RF signal is output to the RF terminal 13b, so that the conversion loss is further suppressed.
  • the leakage of the LO signal and the LOB signal at the RF terminal 13a and the RF terminal 13b can be suppressed.
  • the bidirectional frequency converter according to the present embodiment has a double-balance configuration, and therefore, in forward frequency conversion, a differential signal is input to the RF signal terminal pair. Then, the signal output from the IF signal terminal is a balanced output having a phase difference of 180 degrees, and a higher conversion gain can be obtained by differential synthesis compared to the sixth embodiment. In reverse frequency conversion, signals with a phase difference of 180 degrees are input from the IF signal terminal pair, so the signals output from the RF signal terminal pair are differentially combined to further reduce conversion loss. You can do more.
  • a matching circuit may be added to each of the RF terminal 13, the LO terminal 6, and the IF terminal 9. In that case, neither a matching circuit matched during forward conversion nor a matching circuit matched during backward conversion will work. In addition, the matching circuit may be changed or switched in accordance with the respective states during forward conversion and reverse conversion.
  • IF signals and IFB signals are input to and output from the collector terminal pair, and RF signals and RFB signals are input to and output from the base terminal pair.
  • the IF signal was converted from the IF signal to the RF signal by reverse conversion, but the RF signal and the RFB signal with a phase difference of 180 degrees were input / output to the collector terminal pair, the IF signal to the base terminal pair, and
  • the IF signal may be converted into an RF signal by forward conversion
  • the RF signal power may be converted into an IF signal by backward conversion.
  • the IF2 signal is changed to the IF1 signal by forward conversion.
  • IF1 signal power may be converted to IF2 signal by reverse conversion.
  • LO signals having the same frequency are used for forward conversion and reverse conversion.
  • LO signals having different frequencies are used for forward conversion and reverse conversion. .
  • the collector-side resistor and the base noise resistor are connected to the common voltage supply source.
  • the collector-side resistor and the base bias resistor are respectively connected. Different power switches and voltage sources may be prepared and connected.
  • a circuit diagram of the bidirectional frequency change at this time is shown in FIG.
  • the collector-side resistance and the base bias resistance may be connected to different variable voltage supply sources.
  • Figure 19 shows a circuit diagram of the bidirectional frequency converter at this time. Note that the base bias does not matter even if a variable voltage supply source force is applied by another base bias configuration.
  • the double-balance bidirectional frequency converter has been described.
  • two double-balance bidirectional frequency modulators may be used as quadrature modulators / demodulators.
  • double-balance bidirectional frequency conversion is described in which the double-balance bidirectional frequency converter described in Embodiment 8 is added with a function of adjusting the phase output during backward conversion.
  • the eighth embodiment only points different from the eighth embodiment are described.
  • FIG. 9 is a circuit diagram of double-balance bidirectional frequency converter 430 according to Embodiment 9 of the present invention.
  • the bidirectional frequency converter of the present embodiment includes a power distributor 20 and a control unit.
  • the point power having 22 is different from that of the eighth embodiment.
  • the power distributor 20 is connected to the RF terminals 13 and 13a, and distributes a part of the power of the RF signal input to or output from the RF terminals 13 and 13a.
  • the control unit 22 is connected to the power distributor 20, the variable emitter-side resistor 18, and the variable collector-side resistor 19, and sends a control signal corresponding to the signal distributed from the power distributor 20 to the variable emitter-side resistor 18 , Output to the variable collector side resistor 19, and change the resistance value.
  • the forward conversion operation will be described.
  • the power switches 23 and 24 are turned on.
  • the RF signal is input from the RF terminal 13a, and the RFB signal having a phase difference of 180 degrees from the RF signal is input from the RF terminal 13b.
  • the LO signal is input to the LO terminal 6a, and the LOB signal having a phase difference of 180 degrees from the LO signal is input to the LO terminal 6b.
  • the signal output to IF terminal 9a and the signal output to IF terminal 9b are balanced outputs having a phase difference of 180 degrees. Therefore, a higher conversion gain can be obtained by differentially combining these IF and IFB signals.
  • the IF terminal 9a Cancel !! Suppresses leakage of LO signal and LOB signal to IF pin 9a. Similarly, leakage of the LO signal and LOB signal at IF terminal 9b can be suppressed.
  • a part of the power of the RF signal and the RFB signal input to the RF terminal 13 a and the RF terminal 13 b is distributed by the power distributor 20 and input to the control unit 22.
  • the control unit 22 outputs a control signal for decreasing the value of the variable emitter side resistor 18 when the input of the power divider 20 is low, and outputs the variable emitter side resistor 18 when the input from the power divider 20 is high.
  • a control signal that increases the value of is output. Thereby, the conversion gain at the time of forward conversion can be automatically controlled.
  • the reverse conversion operation will be described.
  • the power switch 11 is off.
  • IF signal is input to IF terminal 9a
  • IFB signal is input to IF terminal 9b.
  • the LO signal is input to LO terminal 6a, and the LOB signal is input to LO terminal 6b.
  • the RF signal is output to the RF terminal 13a, and the RFB signal having a phase difference of 180 degrees with respect to the RF signal is output to the RF terminal 13b.
  • the control unit 22 outputs a control signal for increasing the value of the variable emitter-side resistor 18 when the input from the power distributor 20 is low, and controls the variable emitter when the input from the power distributor 20 is high. Outputs a control signal to decrease the value of the data-side resistor 18. This makes it possible to automatically control the conversion loss during reverse conversion.
  • control unit 22 outputs a control signal that reduces leakage of LO signal and IF signal to variable emitter-side resistor 18 and variable collector-side resistor 19. To do.
  • the power divider detects the input signal level or the output signal level as compared with the eighth embodiment, thereby reducing the load signal. Since the impedance value of the impedance is changed, it is further possible to automatically adjust the conversion gain to keep the output at a predetermined level.
  • the collector-side resistor and the base noise resistor are connected to the common voltage supply source.
  • the collector-side resistor and the base bias resistor are respectively connected to the collector-side resistor and the base-bias resistor.
  • Different power switches and voltage sources may be prepared and connected.
  • the base bias may be applied from a variable voltage supply source by another base bias configuration.
  • the double balance bidirectional frequency converter has been described.
  • two double balance bidirectional frequency modulators may be used as quadrature modulators / demodulators.
  • Embodiment 10 In this embodiment, a radio using the bidirectional frequency converter described in Embodiments 1 to 9 will be described.
  • FIG. 10 is a block diagram of radio apparatus 500 according to Embodiment 10 of the present invention.
  • the antenna 30 and the bidirectional amplifier 31 are connected, and the bidirectional amplifier 31 is connected to either of the bidirectional frequency conversions 440 described in the first to ninth embodiments.
  • Bidirectional frequency converter 440, LO signal oscillator 32 and IF terminal 33 are connected.
  • the antenna 30, the bidirectional amplifier 31, and the bidirectional frequency conversion 440 are shared for transmission and reception.
  • the radio device At the time of reception, the radio device according to the present embodiment amplifies the received RF signal received by antenna 30 by bidirectional amplifier 31 and outputs the amplified signal to bidirectional frequency converter 440.
  • Bidirectional frequency converter 440 mixes the LO signal output from LO signal oscillator 32 and the received RF signal, and outputs the received IF signal to IF terminal 33.
  • bidirectional frequency conversion 440 mixes the transmission IF signal input from IF terminal 33 and the LO signal, and outputs the transmission RF signal to bidirectional amplifier 31.
  • the bidirectional amplifier 31 amplifies the transmission RF signal, outputs it to the antenna 30, and radiates it into the air.
  • the signal path switching switch performs the conversion from the IF signal to the RF signal and the conversion from the RF signal cover to the IF signal with one frequency converter. Therefore, the wireless unit can be simplified, downsized, and reduced in cost. In addition, since it is possible to provide a conversion gain for frequency conversion in the receiving system, the burden on other gain stages can be reduced. As a result, restrictions on the installation position of the amplifier are reduced, the system design flexibility of the entire radio unit is increased, and the configuration design can be facilitated.
  • the frequency conversion of the bidirectional frequency converter is conversion from the RF signal to the IF signal and from the IF signal to the RF signal. However, from the RF signal to the baseband signal, Signal strength Can be converted to RF signal! /.
  • two bidirectional amplifiers constituting the radio of the tenth embodiment are added. It shows an example that consists of a width device and one 3-terminal switch.
  • FIG. 11 is a block diagram of radio apparatus 510 according to Embodiment 11 of the present invention.
  • the antenna 30 and the common terminal of the switch 34 are connected.
  • One of the connection terminals of the switch 34 is connected to the input terminal of the amplifier 35, and the other is connected to the output terminal of the amplifier 36.
  • the output terminal of the amplifier 35 and the input terminal of the amplifier 36 are connected to the bidirectional frequency conversion 440.
  • Other configurations are the same as those in the tenth embodiment.
  • the amplifiers 35 and 36 correspond to the first amplifier and the second amplifier according to the present invention, respectively.
  • switch 34 brings antenna 30 and amplifier 35 into a conductive state, and the received RF signal received by antenna 30 is amplified by amplifier 35. Then, it outputs to the bidirectional frequency converter 440.
  • Bidirectional frequency converter 440 mixes the LO signal output from LO signal oscillator 32 and the received RF signal, and outputs the received IF signal to IF terminal 33.
  • switch 34 brings antenna 30 and amplifier 36 into a conductive state during transmission. The amplifier 36 amplifies the RF signal output from the bidirectional frequency converter 440, outputs it to the antenna 30, and radiates it into the air.
  • the wireless device of the present embodiment can be configured with general-purpose electronic components and one frequency change according to the present invention, which further facilitates the design of the wireless device. Is possible.
  • the bidirectional frequency converter is used as the first-stage frequency converter, but it is used as the second-stage frequency converter, and the first IF signal strength is the second IF signal.
  • the IF signal power of 2 may be converted into the first IF signal.
  • the transmission / reception path is switched using switch 34, but a duplexer may be used.
  • This embodiment shows a configuration for further amplifying the RF signal of the radio device of Embodiment 11 and outputting it.
  • FIG. 12 is a block diagram of radio apparatus 520 according to Embodiment 12 of the present invention.
  • the connection terminal of the antenna 30 and the two-terminal switch 37 and the output terminal of the power amplifier 38 are connected.
  • the other connection terminal of the two-terminal switch 37, the input terminal of the power amplifier 38, and the bidirectional amplifier 31 are connected.
  • Other configurations are the same as those in the tenth embodiment.
  • the two-terminal switch 37 is turned on to bring the antenna 30 and the bidirectional amplifier 31 into conduction, and the received RF signal received by the antenna 30 is bidirectionally amplified. Amplified at 31 and output to bidirectional frequency converter 440.
  • the two-terminal switch 37 is turned off, and the antenna 30 and the power amplifier 38 are made conductive. Then, the power amplifier 38 further amplifies the transmission RF signal amplified by the bidirectional amplifier 31, outputs it to the antenna 30, and radiates it into the air.
  • the bidirectional frequency converter is used as the first-stage frequency converter, but it is used as the second-stage frequency converter, and the first IF signal strength is the second IF signal.
  • the second IF signal power may be converted into the first IF signal.
  • a force duplexer in which a transmission / reception path is switched using a switch may be used.
  • Bidirectional frequency conversion according to the present invention is useful for a radio unit circuit of a radio communication device, and is suitable for converting the frequency of a signal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transceivers (AREA)
  • Superheterodyne Receivers (AREA)
  • Transmitters (AREA)
  • Input Circuits Of Receivers And Coupling Of Receivers And Audio Equipment (AREA)

Abstract

 RF端子(13)とIF端子(9)とLO端子(6)に接続されたバイポーラトランジスタ(1)のベースが電源スイッチ(11)を介して電源(16)と接続している。電源スイッチ(11)をオンにして、バイポーラトランジスタ(1)にRF信号とLO信号を入力すると、両者の混合信号がIF信号として出力する。電源スイッチ(11)をオフにすると、バイポーラトランジスタ(1)は、ベース端子(4)とエミッタ端子(2)間およびベース端子(4)とコレクタ端子(3)間を接続する2個のダイオードとして動作し、IF信号とLO信号を入力すると、ダイオードでミキシングされてRF信号が出力する。これにより、一方向の周波数変換はプラスの変換利得を有し、また、1つの周波数変換器で双方向に周波数変換を行う際に、信号経路切り換えスイッチ等の外部回路が不要になる。

Description

明 細 書
双方向周波数変換器およびこれを用いた無線機
技術分野
[0001] 本発明は、移動体通信などの無線通信装置の無線部回路に用いられる、信号の 周波数を変換する双方向周波数変 、およびこれを用いた無線機に関する。 背景技術
[0002] 送受信機能を有する従来の無線通信装置では、無線部に送信系と受信系を別系 統として各々備えるのが一般的である。これに対して、送信系と受信系の一部分乃至 全部分を共用化することで、無線部の簡素化、小型化、低コストィヒを図る試みもなさ れている。
[0003] ここで、無線通信装置における信号の周波数変換を行う周波数変 を送信系と 受信系で共用するには、中間周波数信号 (以下 IF信号と記す。)と無線周波数信号 ( 以下 RF信号と記す。)の周波数変換を双方向に行えることが必要となる。
[0004] 従来の双方向変換が可能な周波数変換器としては、文献「マイクロ波半導体回路 基礎と展開」(本城和彦著、小西良弘監修、日刊工業新聞社、 p. 196— 197)に記 載されているものがあった。図 20は、文献「マイクロ波半導体回路 基礎と展開」に記 載された双方向周波数変換器の一例を示す回路図である。
[0005] 図 20において、双方向周波数変換器は、 RF信号から IF信号への周波数変換する 場合、端子 601に入力した RF信号がトランス 602を介してダイオードブリッジ 606に 入力し、端子 603から局部発振信号 (以下 LO信号と記す。)がトランス 604を介して ダイオードブリッジ 606に入力する。そして、双方向周波数変翻は、これらの信号 をダイオードの非線形性によって混合して IF信号を生成し、この IF信号を端子 605よ り出力する。また、双方向周波数変 は、 IF信号力も RF信号への周波数変換す る場合、 IF信号を端子 605から入力し、ダイオードブリッジ 606で端子 603から入力 した LO信号と混合して RF信号を生成する。そして、双方向周波数変換器は、この R F信号をトランス 602を介して端子 601より出力する。このように、図 20の構成では、 非線形素子としてダイオードを用い、ダイオードブリッジ 606が対称な回路構成にな つていることにより、 RF信号と IF信号を双方向に周波数変換することが可能となって いた。
[0006] また、他の双方向周波数変換器の従来例としては、特許第 3258791号公報に記 載されているものがある。図 21は、特許第 3258791号公報に記載された双方向周 波数変換器を含む通信装置の一例を示す構成図である。
[0007] 図 21は、通信装置 700の受信時の動作状態を示す図である。図 21において、アン テナ 701は送受信共用でありスィッチ 702に接続されている。スィッチ 702はアンテ ナ 701を受信信号増幅器 703に接続し、アンテナ 701で受信した受信 RF信号を受 信信号増幅器 703に入力する。受信信号増幅器 703の出力端はスィッチ 704に接 続されて!、る。スィッチ 704は受信信号増幅器 703を周波数変換器 705に接続し、 受信信号増幅器 703で増幅した受信 RF信号を周波数変換器 705に入力する。
[0008] LO信号発振器 708は LO信号を生成し、この LO信号は増幅器 706を介して周波 数変 5に入力されて ヽる。周波数変 705は受信 RF信号と LO信号の 2つ の入力信号を混合し、受信 IF信号を生成する。スィッチ 707は周波数変換器 705を 受信信号出力端子 709に接続し、周波数変換器 705で生成した受信 IF信号を受信 信号出力端子 709に出力する。
[0009] 以上は通信装置 700が受信時の動作である力 送信時には、スィッチ 704が送信 信号入力端子 710と周波数変翻 705を接続し、スィッチ 707が周波数変翻 705 と送信信号増幅器 711を接続し、スィッチ 702が送信信号増幅器 711とアンテナ 70 1を接続するように切り替わる。このように図 21の構成では、スィッチを用いて送受信 で信号の経路を切り換えることにより、通信装置 700は、送受信で 1つの周波数変換 器 705を共用することが可能となっていた。
[0010] また、他の双方向周波数変換器の従来例としては、特許第 3369396号公報に記 載されているものがある。図 22は、特許第 3369396号公報に記載された双方向周 波数変換器の一例を示す構成図である。
[0011] 図 22において、受信 RF信号が入力される端子 801と送信 IF信号を入力する端子 802は加算器 803に接続されており、加算器 803は受信 RF信号と送信 IF信号の加 算信号を出力する。この加算信号は周波数変 804に入力され、端子 805から入 力された LO信号と混合されて受信 IF信号と送信 RF信号が生成される。周波数変換 器 804の出力端はバッファアンプ 806、 807に接続されており、バッファアンプ 806は 生成された受信 IF信号を増幅して端子 808に出力し、ノ ッファアンプ 807は生成さ れた送信 RF信号を増幅して端子 809に出力する。
[0012] このように図 22の構成では、周波数変換器の入力側に加算器 803、出力側にバッ ファアンプ 806、 807を用いることにより、送受信で 1つの周波数変換器 804を共用 することが可能となって 、た。
[0013] し力 ながら、文献「マイクロ波半導体回路 基礎と展開」の従来構成では、非線形 素子としてダイオードを使用することから周波数変換の際に電力損失があり、変換損 失を伴うと!、う課題を有して 、た。
[0014] また、特許第 3258791号公報および特許第 3369396号公報の従来構成では、 周波数変換器において、受信 RF信号と送信 IF信号を周波数変換器の同一の入力 端子に入力し、受信 IF信号と送信 RF信号を同一の出力端子より出力する構成であ るため、入力端子および出力端子を各々 IF信号と RF信号の両方の周波数帯に整 合させる必要があり、整合回路が複雑となっていた。さらにまた、送受信するためには 信号経路を切り換えるためのスィッチが必要となったり、もしくは加算器やバッファァ ンプが必要となるなど、周波数変 以外の構成部品が必要となるという課題を有し ていた。
発明の開示
[0015] 本発明の目的は、 IF信号力 RF信号への変換と RF信号力 IF信号への変換を 可能とした双方向周波数変換器において、一方の周波数変換に対しては変換利得 を得られるとともに、スィッチや加算器といった外部回路を不要とした簡易な構成の 双方向周波数変翻を提供することである。
[0016] 本発明の第 1の態様に係る双方向周波数変 は、バイポーラトランジスタと、その ノイポーラトランジスタのコレクタ端子に接続する負荷インピーダンスと、ベース端子 にバイアスを供給するノィァス部と、そのバイアス部への電源の供給を入り切りする 第 1のスィッチと、ェミッタ端子に接続するェミッタインピーダンスとを具備し、第 1のス イッチが導通しバイアスが供給された場合には、ベース端子に接続した第 1の信号端 子から入力した第 1周波数の入力信号と、ェミッタ端子に接続した第 3の信号端子か ら入力した局部発振信号とが混合した第 2周波数の出力信号が、コレクタ端子に接 続した第 2の信号端子力 出力され、第 1のスィッチが切断している場合には、第 2の 信号端子から入力した第 2周波数の入力信号と、第 3の信号端子力 入力した局部 発振信号とが混合した第 1周波数の出力信号が、第 1の信号端子力 出力されるも のである。
[0017] このように、本発明の双方向周波数変換器は、 1つの周波数変換器で 2種類の周 波数の信号を双方に周波数変換することを電源スィッチのみを用いて実現でき、信 号経路切り換えスィッチを用いない。このため、送信系と受信系の周波数変換部を共 用することができるとともに、無線部の簡素化、小型化、および低コストィ匕が可能とな る。また、受信系の周波数変換については、ベース電流を入力とし、コレクタ電流を 出力とすることにより、変換利得をもたせることが可能となり、他の利得段の負担が軽 減できる。それにより、増幅器の設置位置の制約が減少し、無線部全体のシステム設 計の柔軟性を高めることができ、構成設計を容易にすることができる。
[0018] また、本発明の第 2の態様に係る双方向周波数変換器は、負荷インピーダンスへ の電源の供給を入り切りする第 2のスィッチをさらに有し、第 2のスィッチは第 1のスィ ツチと同期して入り切りされるものである。
[0019] これにより、電源スィッチオフ時の周波数変換における変換損失を抑えることがさら にできる。
[0020] また、本発明の第 3の態様に係る双方向周波数変換器は、第 1周波数が無線周波 数である場合、第 2周波数が中間周波数であり、第 1周波数が中間周波数である場 合は、第 2周波数が無線周波数である。
[0021] これにより、本発明の双方向周波数変換器は、無線通信装置の双方向周波数変 換を行うものとして利用することがさらにできる。
[0022] また、本発明の第 4の態様に係る双方向周波数変換器は、第 3の態様に係る双方 向周波数変換器を一対具備し、一対の双方向周波数変換器の第 1の信号端子同士 を接続して新たな第 1の信号端子とし、一対の双方向周波数変換器の第 3の信号端 子に差動の局部発振信号を入力することによりシングルバランス構成としたものであ る。
[0023] これにより、一対の第 2の信号端子からの出力信号は 180度の位相差をもつバラン ス出力となるので、差動合成することにより、より高い変換利得を得ることができる。ま た、一対の第 3の信号端子から 180度の位相差をもつ信号を入力するので、第 1の 信号端子から出力される信号は同位相となり、変換損失を抑えることがさらにできる。
[0024] また、本発明の第 5の態様に係る双方向周波数変換器は、第 3の態様に係る双方 向周波数変換器を 4つ具備し、 4つの双方向周波数変換器の中の第 1の双方向周波 数変換器と第 2の双方向周波数変換器の第 1の信号端子同士を接続し、第 3の双方 向周波数変換器と第 4の双方向周波数変換器の第 1の信号端子同士を接続して一 対の新たな第 1の信号端子対を構成し、第 1の双方向周波数変換器と第 4の双方向 周波数変換器の第 2の信号端子同士を接続し、第 2の双方向周波数変換器と第 3の 双方向周波数変換器の第 2の信号端子同士を接続して一対の新たな第 2の信号端 子対を構成し、第 1の双方向周波数変換器と第 3の双方向周波数変換器の第 3の信 号端子同士を接続し、第 2の双方向周波数変換器と第 4の双方向周波数変換器の 第 3の信号端子同士を接続して一対の新たな第 3の信号端子対を構成し、第 3の信 号端子対に差動の局部発振信号を入力とすることによりダブルバランス構成としたも のである。
[0025] これにより、第 1の信号端子対に差動の信号を入力すると、第 2の信号端子対から 出力される信号は 180度の位相差をもつバランス出力となるので、差動合成により、 より高い変換利得を得ることができる。また、第 3の信号端子対から 180度の位相差を もつ信号を入力するので、第 1の信号端子対から出力される信号は差動合成され、よ り変換損失を抑えることがさらにできる。
[0026] また、本発明の第 6の態様に係る双方向周波数変 は、バイポーラトランジスタと 、そのバイポーラトランジスタのコレクタ端子と接続する負荷インピーダンスと、その負 荷インピーダンスを介してコレクタ端子へ電源を供給する第 1の可変電圧源と、ベー ス端子と接続してノ ィァスを供給するバイアス部と、そのバイアス部へ電源を供給す る第 2の可変電圧源と、ェミッタ端子に接続されたェミッタインピーダンスとを具備し、 ェミッタ端子に接続された第 3の信号端子に局部発振信号が入力され、第 1の可変 電圧源が第 1の電圧をコレクタ端子に供給し、第 2の可変電圧源が第 2の電圧をべ一 ス端子に供給した場合には、第 1の信号端子力 入力した第 1周波数の入力信号を 局部発振信号と混合して得た第 2周波数の出力信号を、コレクタ端子に接続した第 2 の信号端子より出力し、第 3の信号端子に局部発振信号が入力され、第 1の可変電 圧源が第 3の電圧をコレクタ端子に供給し、第 2の可変電圧源が第 4の電圧をベース 端子に供給した場合には、第 2の信号端子から入力した第 2周波数の入力信号を局 部発振信号と混合して得た第 1周波数の出力信号を第 1の信号端子より出力するも のである。
[0027] これにより、第 2の信号端子力も信号を入力したときの変換損失は、局部発振信号 レベルがより広 、範囲で低くすることができる。
[0028] また、本発明の第 7の態様に係る双方向周波数変換器は、第 1の可変電圧源の第
3の電圧と第 2の可変電圧源の第 4の電圧は、バイポーラトランジスタがターンオンし ない電圧に設定されている。
[0029] これにより、ノイポーラトランジスタは確実にダイオードとして動作するので、第 2の 信号端子からの入力信号を第 1の信号端子へ低い変換損失で周波数変換すること ができる。
[0030] また、本発明の第 8の態様に係る双方向周波数変換器は、第 1周波数が無線周波 数である場合は、第 2周波数が中間周波数であり、第 1周波数が中間周波数である 場合は、第 2周波数が無線周波数である。
[0031] これにより、本発明の双方向周波数変換器は、無線通信装置の双方向周波数変 換を行うものとして利用することができる。
[0032] また、本発明の第 9の態様に係る双方向周波数変換器は、第 8の態様に係る双方 向周波数変換器を一対具備し、一対の双方向周波数変換器の第 1の可変電圧源同 士を共用し新たな第 1の可変電圧源とし、第 2の可変電圧源同士を共用し新たな第 2 の可変電圧源とし、一対の双方向周波数変換器の第 1の信号端子を接続して新たな 第 1の信号端子とし、一対の双方向周波数変換器の第 3の信号端子に差動の局部 発信信号を入力することによりシングルバランス構成としたものである。
[0033] これにより、一対の第 2の信号端子からの出力信号は 180度の位相差をもつバラン ス出力となるので、差動合成することにより、より高い変換利得を得ることができる。ま た、一対の第 3の信号端子から 180度の位相差をもつ信号を入力するので、第 1の 信号端子から出力される信号は同位相となり、変換損失を抑えることがさらにできる。
[0034] また、本発明の第 10の態様に係る双方向周波数変翻は、第 8の態様に係る双方 向周波数変換器を 4つ具備し、 4つの双方向周波数変換器はそれぞれの第 1の可変 電圧源を共用し新たな第 1の可変電圧源とし、それぞれ第 2の可変電圧源同士を共 用し新たな第 2の可変電圧源とし、 4つの双方向周波数変換器の第 1の双方向周波 数変換器と第 2の双方向周波数変換器の第 1の信号端子同士を接続し、第 3の双方 向周波数変換器と第 4の双方向周波数変換器の第 1の信号端子同士を接続して一 対の新たな第 1の信号端子対を構成し、第 1の双方向周波数変換器と第 4の双方向 周波数変換器の第 2の信号端子同士を接続し、第 2の双方向周波数変換器と第 3の 双方向周波数変換器の第 2の信号端子同士を接続して一対の新たな第 2の信号端 子対を構成し、第 1の双方向周波数変換器と第 3の双方向周波数変換器の第 3の信 号端子同士を接続し、第 2の双方向周波数変換器と第 4の双方向周波数変換器の 第 3の信号端子同士を接続して一対の新たな第 3の信号端子対を構成し、第 3の信 号端子対に差動の局部発振信号を入力とすることによりダブルバランス構成としたも のである。
[0035] これにより、第 1の信号端子対に差動の信号を入力すると、第 2の信号端子対から 出力される信号は 180度の位相差をもつバランス出力となるので、差動合成により、 より高い変換利得を得ることができる。また、第 3の信号端子対から 180度の位相差を もつ信号を入力するので、第 1の信号端子対から出力される信号は差動合成され、よ り変換損失を抑えることができる。
[0036] また、本発明の第 11の態様に係る双方向周波数変換器は、第 1の態様乃至第 10 の態様のいずれかに係る双方向周波数変換器において、負荷インピーダンスが負 荷抵抗または負荷インダクタとしたものである。
[0037] また、本発明の第 12の態様に係る双方向周波数変換器は、第 1の態様乃至第 11 の態様のいずれかに係る双方向周波数変換器において、負荷インピーダンスが可 変負荷インピーダンスであって、可変負荷インピーダンスのインピーダンス値を変更 することにより第 1の信号端子力 得られる出力信号の位相を制御し、第 2の信号端 子力 得られる出力信号の利得を制御するとしたものである。
[0038] これにより、本発明の双方向周波数変 は、容易に出力信号の利得を制御する ことがさらにできる。
[0039] また、本発明の第 13の態様に係る双方向周波数変換器は、第 1の態様乃至第 12 の態様のいずれかに係る双方向周波数変換器において、ェミッタインピーダンスをェ ミッタ抵抗またはェミッタインダクタとしたものである。
[0040] また、本発明の第 14の態様に係る双方向周波数変換器は、第 1の態様乃至第 13 の態様のいずれかに係る双方向周波数変換器において、ェミッタインピーダンスを 可変ェミッタインピーダンスとし、可変ェミッタインピーダンスの値により出力信号の電 力を制御するものである。
[0041] これにより、本発明の双方向周波数変 は、容易に出力信号の利得を制御する ことがさらにできる。
[0042] また、本発明の第 15の態様に係る双方向周波数変翻は、第 4の態様または第 9 の態様に係る双方向周波数変換器において、一対または 4つの双方向周波数変換 器のェミッタインピーダンスが可変ェミッタインピーダンスであり、負荷インピーダンス が可変負荷インピーダンスであって、さらに、新たな第 1の信号端子に入出力される 信号の電力を分配する電力分配器と、電力分配器で分配された信号に応じた制御 信号を出力する制御部とを備え、制御信号により可変ェミッタインピーダンスと可変 負荷インピーダンスのインピーダンス値を変えて出力信号の位相を制御するものであ る。
[0043] これにより、電力分配器が入力信号レベル、あるいは出力信号レベルを検出して負 荷インピーダンスのインピーダンス値を変更するので、変換利得を自動的に調整して 出力を所定のレベルに保つことがさらに可能になる。
[0044] また、本発明の第 16の態様に係る双方向周波数変換器は、第 5の態様または第 1 0の態様に係る前記 4つの双方向周波数変換器のェミッタインピーダンスが可変エミ ッタインピーダンスであり、負荷インピーダンスが可変負荷インピーダンスであって、さ らに、新たな第 1の信号端子に入出力される信号の電力を分配する電力分配器と、 その電力分配器で分配された信号に応じた制御信号を出力する制御部とを備え、そ の制御信号により可変ェミッタインピーダンスと可変負荷インピーダンスのインピーダ ンス値を変えて出力信号の位相を制御するものである。
[0045] これにより、電力分配器が入力信号レベル、あるいは出力信号レベルを検出して負 荷インピーダンスのインピーダンス値を変更するので、変換利得を自動的に調整して 出力を所定のレベルに保つことがさらに可能になる。
[0046] また、本発明の第 17の態様に係る双方向周波数変翻は、第 1の態様乃至第 16 の態様のいずれかに係る双方向周波数変^^において、バイポーラトランジスタの 代わりに FET(Field Effect Transistor)を用い、ベース端子を FETのゲート端 子とし、ェミッタ端子を FETのソース端子とし、コレクタ端子を FETのドレイン端子とし たものである。これにより、より小型に集積ィ匕することができる。
[0047] 本発明の第 18の態様に係る無線機は、アンテナと、アンテナに接続された双方向 増幅器と、双方向増幅器を介してアンテナに接続された本発明の第 1の態様乃至第 17の態様のいずれかに記載の双方向周波数変換器と、双方向周波数変換器に局 部発振信号を入力するように接続された局部発振器を備えたものである。
[0048] これによつて、本発明の無線機は、 1つの周波数変換器で 2種類の周波数の信号 を双方向に周波数変換することができる。具体的には、 IF信号から RF信号への変換 と RF信号から IF信号への変換を電源スィッチのみを用いて実現できるので、無線部 が簡素になり小型化できる。これに伴い、無線機も簡素化、小型化、および低コスト 化が可能となる。
[0049] また、本発明の第 19の態様に係る無線機は、第 18の態様における双方向増幅器 力 S3端子スィッチと、その 3端子スィッチの一方の接続端子に入力端が接続された第 1の増幅器と、 3端子スィッチの他方の接続端子に出力端が接続された第 2の増幅器 とから構成され、 3端子スィッチの共通端子にアンテナが接続し、第 1の増幅器の出 力端と第 2の増幅器の入力端とが本発明に係る周波数変^^に接続するものである
[0050] このように、通常のプリアンプとスィッチを用いても本発明の無線機を実現すること ができる。 [0051] また、本発明の第 20の態様に係る無線機は、アンテナと双方向増幅器との間にさ らに、パワーアンプと 2端子スィッチとをさらに有し、パワーアンプの出力端と 2端子ス イッチの一方の端子がアンテナに接続され、パワーアンプの入力端と 2端子スィッチ の他方の端子とが本発明に係る双方向増幅器に接続するものである。
[0052] これにより、さらに、送信のみ高出力の無線機を実現することができる。
[0053] 以上のように、本発明の双方向周波数変換器および無線機によれば、 1つの周波 数変換器で IF信号から RF信号への変換と RF信号から IF信号への変換を信号経路 切り換えスィッチなどの外部回路を用いずに実現できる。また、これにより、送信と受 信を時分割で行う時分割複信 (TDD)方式の無線システムに適用する装置の無線部 において、送信系と受信系の周波数変換部を共用できるので、該無線部の簡素化、 小型化、および低コストィ匕が可能となる。
[0054] また、一方の周波数変換にっ 、ては変換利得をもたせることが可能であるので、他 の利得段の負担が軽減できる。これにより、無線部全体のシステム設計の柔軟性が 高まり、構成設計が容易になる。
図面の簡単な説明
[0055] [図 1A]図 1Aは、本発明の実施の形態 1における双方向周波数変換器の順方向変 換時の回路図である。
[図 1B]図 1Bは、本発明の実施の形態 1における双方向周波数変換器の逆方向変換 時の等価回路図である。
[図 2A]図 2Aは、本発明の実施の形態 2における双方向周波数変換器の順方向変 換時の回路図である。
[図 2B]図 2Bは、本発明の実施の形態 2における双方向周波数変換器の逆方向変換 時の等価回路図である。
[図 3A]図 3Aは、本発明の実施の形態 1における双方向周波数変換器の LO信号レ ベルに対する変換利得の解析結果を示す特性図である。
[図 3B]図 3Bは、本発明の実施の形態 2における双方向周波数変換器の LO信号レ ベルに対する変換利得の解析結果を示す特性図である。
[図 4A]図 4Aは、本発明の実施の形態 4における双方向周波数変換器の回路図であ る。
圆 4B]図 4Bは、本発明の実施の形態 4における双方向周波数変換器の回路図であ る。
圆 4C]図 4Cは、本発明の実施の形態 4における双方向周波数変翻の回路図であ る。
圆 5A]図 5Aは、本発明の実施の形態 5における双方向周波数変換器の回路図であ る。
圆 5B]図 5Bは、本発明の実施の形態 5における双方向周波数変翻の回路図であ る。
圆 5C]図 5Cは、本発明の実施の形態 5における双方向周波数変翻の回路図であ る。
[図 6]図 6は、本発明の実施の形態 6におけるシングルバランス双方向周波数変換器 の回路図である。
[図 7]図 7は、本発明の実施の形態 7におけるシングルバランス双方向周波数変換器 の回路図である。
[図 8]図 8は、本発明の実施の形態 8におけるダブルバランス双方向周波数変換器の 回路図である。
[図 9]図 9は、本発明の実施の形態 9におけるダブルバランス双方向周波数変換器の 回路図である。
[図 10]図 10は、本発明の実施の形態 10における無線機のブロック図である。
[図 11]図 11は、本発明の実施の形態 11における無線機のブロック図である。
[図 12]図 12は、本発明の実施の形態 12における無線機のブロック図である。
[図 13A]図 13Aは、本発明の実施の形態 1における他の例の双方向周波数変換器 の回路図である。
[図 13B]図 13Bは、本発明の実施の形態 2における他の例の双方向周波数変換器の 回路図である。
[図 14]図 14は、本発明の実施の形態 6における他の例のシングルバランス双方向周 波数変換器の回路図である。 [図 15]図 15は、本発明の実施の形態 8における他の例のダブルバランス双方向周波 数変 の回路図である。
圆 16A]図 16Aは、本発明の実施の形態 3における双方向周波数変換器の順方向 変換時の回路図である。
圆 16B]図 16Bは、本発明の実施の形態 3における双方向周波数変翻の逆方向 変換時の等価回路図である。
[図 17]図 17は、本発明の実施の形態 3における双方向周波数変換器の LO信号レ ベルに対する変換利得の解析結果を示す特性図である。
[図 18]図 18は、本発明の実施の形態 6における他の例のシングルバランス双方向周 波数変換器の回路図である。
[図 19]図 19は、本発明の実施の形態 8における他の例のダブルバランス双方向周波 数変 の回路図である。
[図 20]図 20は、従来の双方向周波数変換器の回路図である。
[図 21]図 21は、従来の双方向周波数変換器を含む通信装置の構成図である。
[図 22]図 22は、従来の双方向周波数変換器の構成図である。
符号の説明
1 バイポーラトランジスタ
2 ェミッタ端子
3 コレクタ端子
4 ベース端子
5, 8, 12 キャパシタ
6, 6a, 6b LO端子
7 ェミッタ側抵抗
9, 9a, 9b, 33 IF端子
10 コレクタ佃 j抵抗
11 電源スィッチ
13, 13a, 13b RF端子
14, 15 ベースバイアス抵抗 , 17 電圧供給源
可変エミッタ側抵抗
可変コレクタ側抵抗
電力分配器
, 22 制御部
, 701 アンテナ
双方向増幅器
LO信号発振器
3端子スィッチ
, 36 増幅器
2端子スィッチ
パワーアンプ
, 41 可変電圧供給源
0, 200, 250, 300, 301, 401, 402, 403, 404, 411, 412, 413, 414 双方向周波数変換器
0, 410 シングルバランス双方向周波数変換器
0, 430 ダブルバランス双方向周波数変翻
0, 510, 520 無線機
1, 603, 605, 801, 802, 805, 808, 809 端子
2, 604 卜ランス
6 ダイオードブリッジ
0 通信装置
2, 704, 707 スィッチ
3 受信信号増幅器
5, 804 周波数変換器
6 増幅器
LO信号発振器
9 受信信号出力端子 710 送信信号入力端子
711 送信信号増幅器
803 加算器
806, 807 ノ ッファアンプ
発明を実施するための最良の形態
[0057] 以下、本発明の実施の形態について、図面を参照しながら説明する。なお、以下の 説明においては、 RF信号から IF信号に周波数を下げる周波数変換を順方向変換と 呼び、 IF信号力 RF信号に周波数を上げる周波数変換を逆方向変換と呼ぶ。また 、図面において、同一のものについては同一符号を付して表示する。
[0058] (実施の形態 1)
図 1A、および図 IBは、本発明の実施の形態 1における双方向周波数変^ ^100 の回路図である。図 1Aは、双方向周波数変換器 100の順方向変換時の回路図であ り、図 1Bは、双方向周波数変^ ^100の逆方向変換時の回路図である。
[0059] 図 1A、および図 IBにおいて、 NPN型のバイポーラトランジスタ 1は、ェミッタ端子 2 、コレクタ端子 3およびベース端子 4を有している。ェミッタ端子 2は、キャパシタ 5を介 して LO信号を入力する LO端子 6と接続するとともにェミッタ側抵抗 7を介して接地さ れる。コレクタ端子 3は、キャパシタ 8を介して IF信号を入出力する IF端子 9に接続さ れるとともにコレクタ側抵抗 10を介して電圧供給源 17にも接続される。このコレクタ側 抵抗 10が負荷インピーダンスに相当する。
[0060] ベース端子 4は、キャパシタ 12を介して RF信号を入出力する RF端子 13に接続さ れるとともにベースバイアス抵抗 14、ベースノ ィァス抵抗 15と接続される。ベースバ ィァス抵抗 14は電源スィッチ 11を介して電圧供給源 16に接続し、ベースバイアス抵 抗 15は接地してベース端子 4にベースバイアスを与えている。これらベースバイアス 抵抗 14、 15がベース端子 4にベースバイアスを与えている構成が本発明に係るバイ ァス部に相当する。電源スィッチ 11は、電圧供給源 16とベースバイアス抵抗 14の接 続をオン Zオフする。この電源スィッチ 11は本発明に係る第 1のスィッチに相当する
[0061] また、本実施の形態では、具体的周波数の一例として、 RF信号の周波数を 2. 45 GHz, LO信号の周波数を 1. 88GHz、 IF信号の周波数を 570MHzとするが、それ ぞれ信号の周波数はこれに限ったものではない。
[0062] 次に、図 1Aを用いて、順方向変換の動作について説明する。
[0063] 順方向変換時に、電源スィッチ 11はオンしている。 RF信号について注目すると、 R F信号はキャパシタ 12を介してベース端子 4に入力されると、増幅された RF信号とし てコレクタ端子 3に流れるコレクタ電流になる。 LO信号について注目すると、 LO信号 はキャパシタ 5を介してェミッタ端子 2に入力され、増幅された LO信号としてコレクタ 端子 3に流れるコレクタ電流となる。このとき、バイポーラトランジスタ 1の非線形性によ りコレクタ端子 3には、増幅された RF信号と増幅された LO信号が混合された信号が 出力される。すなわち、バイポーラトランジスタ 1は、 RF信号(2. 45GHz)と LO信号( 1. 88GHz)力ら、 570MHzの信号と 4. 33GHzの信号からなる混合信号を出力す るが、双方向周波数変翻は、 IF端子 9に低周波側の混合信号を通過させるフィル タ(図示を省略)を付加することにより、 570MHzの IF信号を選択する。なお、上記の 例では、 RF信号が本発明に係る第 1周波数の入力信号に相当し、 IF信号が第 2周 波数の出力信号に相当する。
[0064] 次に、図 1Bを用いて、逆方向変換の動作について説明する。
[0065] 図 1Bは、双方向周波数変^ ^100の逆方向変換時においてバイポーラトランジス タ 1をダイオードで表現した等価回路図である。
[0066] 図 1Bにおいて、電源スィッチ 11は逆方向変換時にオフしている。したがって、ベー スバイアスがかかっていないので、バイポーラトランジスタ 1はトランジスタとしての動 作はできずダイオードとして動作する。
[0067] ノイポーラトランジスタ 1は、ベース端子 4とェミッタ端子 2間およびベース端子 4とコ レクタ端子 3間を接続する 2個のダイオードとしてあらわすことができる。これにより、 IF 端子 9から入力された IF信号と、 LO端子 6から入力された LO信号とがダイオードで 混合し、その混合した信号が RF端子 13に出力される。ここで、バイポーラトランジス タ 1は、 IF信号(570MHz)と LO信号(1. 88GHz)力ら、 1. 31GHzの信号と 2. 45 GHzの信号力もなる混合信号を出力するが、双方向周波数変 は、 RF端子 13 に高周波側の混合信号を通過させるフィルタ(図示を省略)を付加することにより、 2. 45GHzの RF信号を選択する。なお、上記の例では、 RF信号が本発明に係る第 1周 波数の出力信号に相当し、 IF信号が第 2周波数の入力信号に相当する。
[0068] 次に、本実施の形態 1における双方向周波数変^^の解析例について説明する。
このとき、電圧供給源 16を 3Vに設定し、ノイポーラトランジスタ 1の各端子の電位は 、通常ェミッタ接地型の増幅器と同様に与えて解析を行った。また、 RF信号の周波 数は 2. 45GHz, LO信号の周波数は 1. 88GHz、 IF信号の周波数は 570MHzで ある。
[0069] 図 3Aは、本実施の形態 1における LO信号入力レベルに対する変換利得の解析結 果である。図 3Aにおいて、順方向の変換利得特性 3001は、 LO信号レベルが + 8d Bmのとき + 11. 3dBの変換利得があることを示し、逆方向の変換利得特性 3002は 、 15dBの変換損失があることを示している。
[0070] 以上より、本実施の形態の双方向周波数変換器によれば、 1つの周波数変換器で I F信号から RF信号への変換と、 RF信号から IF信号への変換を信号経路切り換えス イッチなどを用いずに、電源スィッチのみを用いて実現できる。これにより、無線部の 簡素化、小型化、および低コストィ匕が可能となる。また、順方向の周波数変換につい ては、変換利得を持たせることが可能となり、他の利得段の負担を軽減できる。それ により、増幅器の設置位置の制約が減少し、無線部全体のシステム設計の柔軟性を 高め、構成設計を容易にすることができる。
[0071] なお、本発明の双方向周波数変換器の RF端子 13、 LO端子 6および IF端子 9にそ れぞれ整合回路を付加してもよい。そのときは、順方向変換時にあわせた整合回路 でも、逆方向変換時にあわせた整合回路でも力まわない。また、整合回路を順方向 変換時、逆変換方向時のそれぞれの状態に合わせて可変または切り換えてもよい。
[0072] また、本実施の形態では、コレクタ端子に IF信号を入出力し、ベース端子に RF信 号を入出力することにより、順方向変換で RF信号から IF信号に、逆方向変換で IF信 号から RF信号に変換した。しかしこれに限らず、コレクタ端子に RF信号を入出力し、 ベース端子に IF信号を入出力することにより、順方向変換で IF信号から RF信号に、 逆方向変換で RF信号から IF信号に変換してもよい。また、コレクタ端子に第 1の中 間周波数信号 (IF1信号)を入出力し、ベース端子に第 2の中間周波数信号 (IF2信 号)を入出力することで、順方向変換で IF2信号から IF1信号に、逆方向変換で IF1 信号力 IF2信号に変換してもよ 、。
[0073] また、本実施の形態では、順方向変換と逆方向変換で同一周波数の LO信号を用 いたが、順方向変換時と逆方向変換時に、それぞれ異なる周波数の LO信号を用い てもよい。
[0074] また、本実施の形態では、 NPN型のノ《イポーラトランジスタを用いて説明したが PN p型のバイポーラトランジスタを用いてもょ 、。
[0075] さらに、本実施の形態では、バイポーラトランジスタを用いて説明した力 図 13Aに 示すように、 FETを用いて、ベース端子をゲート端子に、ェミッタ端子をソース端子に 、コレクタ端子をドレイン端子に置き換えてもよい。これにより、より小型に集積化する ことができる。
[0076] また、本実施の形態では、バイポーラトランジスタのベースバイアスに、ベースバイ ァス抵抗を 2個用いた電流帰還型とした力 他の構成でも力まわな!/、。
[0077] また、本実施の形態では、ェミッタ側抵抗のかわりにインダクタを、ある 、はコレクタ 側抵抗のかわりにインダクタを用いても力まわな 、。
[0078] また、本実施の形態では、電源スィッチは機械的にオンとオフを切り換えるスィッチ について説明した力 FETトランジスタなどを用いてゲート電圧によりソース'ドレイン 間をオン/オフ切り換えてもよ 、。
[0079] また、本実施の形態の双方向周波数変換器は、集積回路の一部として用いてもよ いし、ノ ッケージ部品として用いても良い。
[0080] (実施の形態 2)
図 2A、および図 2Bは、本発明の実施の形態 2における双方向周波数変換器 200 の回路図である。図 2Aは、双方向周波数変換器 200の順方向変換時の回路図であ り、図 2Bは、双方向周波数変換器 200の逆方向変換時の回路図である。以下に実 施の形態 1と異なる点のみ説明する。
[0081] 本実施の形態は、実施の形態 1における電圧供給源 17を省略し、電圧供給源 16 を共用した双方向周波数変 である。
[0082] 図 2Aにおいて、電源スィッチ 23、 24は順方向変換時にオンして、 1つの電圧供給 源 16力もベースバイアス抵抗 14およびベースバイアス抵抗 15によりベースバイアス が供給される。また、コレクタ側抵抗 10により負荷抵抗へ電圧が供給される。このとき の動作は、実施の形態 1と同一である。なお、電源スィッチ 23は本発明に係る第 1の スィッチに相当し、電源スィッチ 24は第 2のスィッチに相当する。
[0083] 次に、図 2Bを用いて逆方向変換の動作について説明する。
[0084] 逆方向変換時に、電源スィッチ 23、 24はオフしているので、コレクタ端子 3はフロー ティング状態となる。また、ベースバイアスも力からないため、バイポーラトランジスタ 1 はトランジスタとしての動作はできずダイオードとして動作する。
[0085] 図 2Bは、双方向周波数変^ ^200の逆方向変換時においてバイポーラトランジス タ 1をダイオードで表現した等価回路図である。
[0086] 図 2Bにおいて、バイポーラトランジスタ 1は、ベース端子 4とェミッタ端子 2、および ベース端子 4とコレクタ端子 3を接続する 2個のダイオードとしてあらわすことができる 。これにより、 IF端子 9から入力された IF信号と、 LO端子 6から入力された LO信号と がダイオードで混合した信号が、 RF端子 13に出力される。ここで、バイポーラトラン ジスタ 1は、 IF信号(570MHz)と LO信号(1. 88GHz)力ら、 1. 31GHzの信号と 2. 45GHzの信号力もなる混合信号を出力するが、周波数変 は、 RF端子 13に高 周波側の混合信号を通過させるフィルタ(図示を省略)を付加することにより、 2. 45G Hzの RF信号を選択する。
[0087] 次に、本実施の形態 2における双方向周波数変換器の解析例について図 3Bを用 いて説明する。実施の形態 1と同様に、電圧供給源 16を 3Vに設定し、バイポーラトラ ンジスタ 1の各端子の電位は、通常ェミッタ接地型の増幅器と同様に与えて解析を行 つた。また、 RF信号の周波数は 2. 45GHz, LO信号の周波数は 1. 88GHz、 IF信 号の周波数は 570MHzである。
[0088] 図 3Bにおいて、順方向の変換利得特性 3003は、 LO信号レベルが + 8dBmのと き変換利得は + 11. 3dBを示しており、逆方向の変換利得特性 3004は、変換損失 8. OdBを示している。また、本実施の形態における双方向周波数変換器の逆方向 の最小変換損失は、実施の形態 1のものより小さくなることを示している。
[0089] 以上より、本実施の形態の双方向周波数変換器によれば、実施の形態 1の効果に カロえて、逆方向の周波数変換、すなわち送信系の周波数変換における変換損失を 抑えることがさらにできる。
[0090] また、本実施の形態では、バイポーラトランジスタを用いて説明したが、図 13Bに示 すように、 FETを用いて、ベース端子をゲート端子に、ェミッタ端子をソース端子に、 コレクタ端子をドレイン端子に置き換えてもよい。
[0091] (実施の形態 3)
図 16A、および図 16Bは、本発明の実施の形態 3における双方向周波数変換器 2 50の回路図である。図 16Aは、双方向周波数変^ ^250の順方向変換時の回路図 であり、図 16Bは、双方向周波数変換器 250の逆方向変換時の等価回路図である。 以下に実施の形態 1と異なる点のみ説明する。
[0092] 本実施の形態の双方向周波数変換器は、実施の形態 1における電圧供給源 17の 代わりに可変電圧供給源 40をコレクタ側抵抗 10と接続し、実施の形態 1の電圧供給 源 16と電源スィッチ 11の代わりに可変電圧供給源 41をベースバイアス抵抗 14と接 続している。なお、可変電圧供給源 40、 41の一例として、複数の電圧供給源を切り 換える回路を用いているが、これに限られるものではない。なお、可変電圧供給源 40 が本発明に係る第 1の可変電圧源に相当し、可変電圧供給源 41が第 2の可変電圧 源に相当する。
[0093] 図 16Aを用いて、順方向変換の動作について説明する。
[0094] 図 16Aにおいて、順方向変換時に、可変電圧供給源 40は、順方向コレクタ側電位 40aをコレクタ側抵抗 10に与え、可変電圧供給源 41は、順方向ベース側電位 41aを ベースバイアス抵抗 14に与える。これら順方向コレクタ側電位 40aと順方向ベース側 電位 41 aが、それぞれ本発明に係る第 1の電圧と第 2の電圧に相当する。
[0095] RF信号について注目すると、 RF信号はキャパシタ 12を介してベース端子 4に入力 されると、増幅された RF信号としてコレクタ端子 3に流れるコレクタ電流になる。 LO信 号について注目すると、 LO信号はキャパシタ 5を介してェミッタ端子 2に入力され、 増幅された LO信号としてコレクタ端子 3に流れるコレクタ電流となる。このとき、バイポ 一ラトランジスタ 1の非線形性によりコレクタ端子 3は、増幅された RF信号と増幅され た LO信号が混合された信号が出力される。すなわち、バイポーラトランジスタ 1は、 R F信号(2. 45GHz)と LO信号(1. 88GHz)力ら、 570MHzの信号と 4. 33GHzの 信号からなる混合信号を出力する。双方向周波数変換器は、 IF端子 9に低周波側の 混合信号を通過させるフィルタ (図示)省略を付加することにより、 570MHzの IF信号 を選択する。
[0096] 次に、図 16Bを用いて逆方向変換の動作について説明する。
[0097] 逆方向変換時に、可変電圧供給源 40は、逆方向コレクタ側電位 40bをコレクタ側 抵抗 10に与え、可変電圧供給源 41は、逆方向ベース側電位 41bをベースノィァス 抵抗 14に与える。これら逆方向コレクタ側電位 40bと逆方向ベース側電位 41b力 そ れぞれ本発明に係る第 3の電圧と第 4の電圧に相当する。また、この逆方向ベース側 電位 41bは、ベース電位 4がバイポーラトランジスタ 1をターンオンしない電位、すな わち、通常、電位差が 0. 6〜0. 7ボルトとなるように、逆方向コレクタ側電位 40bより 高く設定されている。このため、逆方向コレクタ側電位 40bと逆方向ベース側電位 41 bでは、バイポーラトランジスタ 1は、トランジスタとして動作できずダイオードとして動 作する。図 16Bは、双方向周波数変^ ^250の逆方向変換時において、バイポーラ トランジスタ 1をダイオードで表現した等価回路図である。このときの動作は、実施の 形態 1のものと同一である。
[0098] 次に、本実施の形態 3における双方向周波数変^^の解析例について説明する。
一例として、順方向コレクタ側電位 40aと順方向ベース側電位 41aを 3Vに設定し、逆 方向コレクタ側電位 40bを 0Vに設定し、逆方向ベース電位 41bを 0. 8Vに設定した 。順方向変換時のバイポーラトランジスタ 1の各端子の電位は、通常ェミッタ接地型の 増幅器と同様に与えて解析を行った。また、実施の形態 1と同様に、 RF信号の周波 数は 2. 45GHz, LO信号の周波数は 1. 88GHz、 IF信号の周波数は 570MHzで ある。
[0099] 図 17は、 LO信号入力レベルに対する変換利得の解析結果である。図 17において 、順方向の変換利得特性 1701は実施の形態 1や実施の形態 2と大差がないが、逆 方向の変換利得特性 1702は、 LO信号レベルが + 7〜 + 13dBmの範囲で、逆方向 変換の変換損失が 10dB程度となった。
[0100] 以上より、本実施の形態の双方向周波数変換器によれば、実施の形態 1の効果に カロえて、 LO信号レベルの広 、領域で変換損失の低 、状態を保つことができる。
[0101] (実施の形態 4)
本実施の形態では、実施の形態 2で説明した双方向周波数変換器に、変換利得 および出力した信号の位相を調整する機能を付加した双方向周波数変換器につい て説明する。なお、以下の説明では、実施の形態 2と異なる点のみ記載する。
[0102] 図 4Aは、本発明の実施の形態 4における双方向周波数変換器 300の回路図であ る。実施の形態 2と異なる点は、バイポーラトランジスタ 1のェミッタ端子 2にェミッタ側 抵抗 7の代わりに可変エミッタ側抵抗 18が接続されて ヽる点である。
[0103] これにより、可変ェミッタ側抵抗 18の抵抗値を変更することで、順方向変換の変換 利得を制御することができる。すなわち、可変ェミッタ側抵抗 18の値を小さくすると順 方向変換の変換利得は上昇し、可変ェミッタ側抵抗 18の値を大きくすると順方向変 換の変換利得は下降する。
[0104] また、逆方向変換時は、可変ェミッタ側抵抗 18の抵抗値を変更することで、逆方向 変換の変換損失および出力する RF信号の位相を制御することができる。すなわち、 可変ェミッタ側抵抗 18の値を小さくすると逆方向変換の変換損失は大きくなり、出力 する RF信号の位相が遅れる。また、可変ェミッタ側抵抗 18の値を大きくすると逆方 向変換の変換損失は少なくなり、出力する RF信号の位相が進む。
[0105] 以上より、本実施の形態の双方向周波数変換器によれば、容易に出力信号の利得 を制御することができる。
[0106] また、本実施の形態では、コレクタ側抵抗とベースノ ィァス抵抗は、共通の電圧供 給源と接続したが、実施の形態 1の双方向周波数変翻と同様に、コレクタ側抵抗と ベースバイアス抵抗がそれぞれ異なる電圧供給源と接続しても力まわな 、。このとき の双方向周波数変換器の回路図を、図 4Bに示す。あるいは、実施の形態 3の双方 向周波数変^^と同様に、コレクタ側抵抗とベースバイアス抵抗がそれぞれ異なる可 変電圧供給源と接続しても力まわない。このときの双方向周波数変 の回路図を 図 4Cに示す。具体的には、順方向変換時に、可変電圧供給源 40は、順方向コレク タ側電位 40aをコレクタ側抵抗 10に与え、可変電圧供給源 41は、順方向ベース側 電位 41aをベースバイアス抵抗 14に与える。また、逆方向変換時に、可変電圧供給 源 40は、逆方向コレクタ側電位 40bをコレクタ側抵抗 10に与え、可変電圧供給源 41 は、逆方向ベース側電位 41bをベースバイアス抵抗 14に与える。なお、ベースバイ ァスは、他のベースバイアス構成によって、可変電圧供給源と接続しても力まわない
[0107] また、本実施の形態では、可変ェミッタ側抵抗を用いて説明したが、可変ェミッタ側 抵抗のかわりに可変インダクタを、コレクタ側抵抗のかわりにインダクタを用いても力ま わない。
[0108] (実施の形態 5)
本実施の形態では、実施の形態 2で説明した双方向周波数変換器に、順方向変 換時に変換利得を調整し、逆方向変換時に出力した信号の位相を調整する機能を 付加した双方向周波数変換器について説明する。なお、以下の説明では、実施の 形態 2と異なる点のみ記載する。
[0109] 図 5Aは、本発明の実施の形態 5における双方向周波数変換器 301の回路図であ る。実施の形態 2と異なる点は、バイポーラトランジスタ 1のコレクタ端子 2にコレクタ側 抵抗 10の代わりに可変コレクタ側抵抗 19が接続されている点である。
[0110] これにより、可変コレクタ側抵抗 19の抵抗値を変更することで、順方向変換に出力 する IF信号の変換利得を制御することができる。すなわち、可変コレクタ側抵抗 19の 値を小さくすると変換利得は小さくなり、可変コレクタ側抵抗 19の値を大きくすると変 換利得は大きくなる。
[0111] また、逆方向変換時は、可変コレクタ側抵抗 19の抵抗値を変更することで、逆方向 変換に出力する RF信号の位相を制御することができる。すなわち、可変コレクタ側抵 抗 19の値を小さくすると逆方向変換に出力する RF信号の位相が進む。また、可変コ レクタ側抵抗 19の値を大きくすると逆方向変換に出力する RF信号の位相が遅れる。
[0112] 以上より、本実施の形態の双方向周波数変換器によれば、容易に出力信号の利得 を制御することができる。
[0113] また、本実施の形態では、コレクタ側抵抗とベースノ ィァス抵抗が共通電圧供給源 と接続したが、実施の形態 1の双方向周波数変翻と同様に、コレクタ側抵抗とベー スバイアス抵抗がそれぞれ異なる電圧供給源と接続しても力まわな 、。このときの双 方向周波数変換器の回路図を、図 5Bに示す。
[0114] あるいは、実施の形態 3の双方向周波数変^^と同様に、コレクタ側抵抗とベース ノ ィァス抵抗がそれぞれ異なる可変電圧供給源と接続しても力まわな 、。このときの 双方向周波数変換器の回路図を、図 5Cに示す。具体的には、順方向変換時に、可 変電圧供給源 40は、順方向コレクタ側電位 40aをコレクタ側抵抗 10に与え、可変電 圧供給源 41は、順方向ベース側電位 41aをベースノ ィァス抵抗 14に与える。また、 逆方向変換時に、可変電圧供給源 40は、逆方向コレクタ側電位 40bをコレクタ側抵 抗 10に与え、可変電圧供給源 41は、逆方向ベース側電位 41bをベースバイアス抵 抗 14に与える。なお、ベースバイアスは、他のベースバイアス構成によって、可変電 圧供給源から印加されても力まわな 、。
[0115] また、ェミッタ抵抗のかわりにインダクタを用い、可変コレクタ側抵抗のかわりに可変 インダクタを用いても力まわな 、。
[0116] (実施の形態 6)
本実施の形態では、シングルバランス双方向周波数変換器について説明する。
[0117] 図 6は、本発明の実施の形態 6におけるシングルバランス双方向周波数変換器 40 0の回路図である。
[0118] 図 6において、双方向周波数変^ ^401、 402は、実施の形態 2と同一のものであ り、電源スィッチ 23、 24と電圧供給源 16を共有している。そのために、双方向周波 数変 401、 402は、それぞれのコレクタ側抵抗 10が電源スィッチ 24に接続し、 ベースバイアス抵抗 14も電源スィッチ 23と接続している。また、両方の RF端子は接 続され、同一の RF信号が入力あるいは出力される。 IF端子 9a、 9bと LO端子 6a、 6b は一対それぞれ有して!/、る。
[0119] このように構成された双方向周波数変換器の動作について、以下に説明する。
[0120] 初めに、順方向変換の動作について説明する。順方向変換時に、電源スィッチ 23 、 24はオンしている。 RF信号は、 RF端子 13から双方向周波数変^ ^401、 402に 入力される。このとき、 LO端子 6aに LO信号が入力され、 LO端子 6bに LO信号と 18 0度の位相差をもつ LOB信号が入力される。これにより、 IF端子 9aに出力される信 号 (以下、 IF信号という。)と IF端子 9bに出力される信号 (以下、 IFB信号)は 180度 の位相差をもつバランス出力となる。このため、これら IF信号と IFB信号を差動合成 することにより、より高い変換利得を得られる。
[0121] 次に、逆方向変換の動作について説明する。
[0122] 逆方向変換時に、電源スィッチ 23、 24はオフしている。 IF端子 9aに IF信号が入力 し、 IF端子 9bに IF信号と 180度の位相差をもつ IFB信号が入力される。また、 LO端 子 6aに LO信号が入力され、 LO端子 6bに LO信号と 180度の位相差をもつ LOB信 号が入力される。これより、双方向周波数変 401から出力される信号と、双方向 周波数変翻402から出力される信号とは同じ位相を持ち、 RF端子 13には、合成さ れた、より変換損失が抑えられた RF信号が出力される。
[0123] 以上のように、本実施の形態の双方向周波数変換器によれば、実施の形態 2に比 較して、順方向の周波数変換においては、一対の IF信号端子からの出力信号は 18 0度の位相差をもつバランス出力となるので、差動合成することにより、より高い変換 利得を得ることができる。また、逆方向の周波数変換においては、一対の IF信号端 子から 180度の位相差をもつ信号を入力するので、 RF信号端子力も出力される信 号は同位相となり、変換損失を抑えることがさらにできる。
[0124] なお、 RF端子 13、 LO端子 6および IF端子 9にそれぞれ整合回路を付加してもよい 。そのときは、順方向変換時にあわせた整合回路でも、逆方向変換時にあわせた整 合回路でも力まわない。また、整合回路を順方向変換時、逆変換方向時のそれぞれ の状態に合わせて可変または切り換えてもよい。
[0125] また、本実施の形態では、コレクタ端子対に IF信号と IFB信号を入出力し、ベース 端子に RF信号を入出力することで、順方向変換で RF信号力も IF信号に、逆方向変 換で IF信号から RF信号に変換したが、コレクタ端子対に RF信号と、それと 180度の 位相差をもつ RFB信号を入出力し、ベース端子に IF信号を入出力することで、順方 向変換で IF信号から RF信号に、逆方向変換で RF信号から IF信号に変換してもよ 、 。また、コレクタ端子対に第 1の中間周波数信号 (IF1信号)を入出力し、ベース端子 に第 2の中間周波数信号 (IF2信号)を入出力することで、順方向変換で IF2信号か ら IF1信号に、逆方向変換で IF1信号力 IF2信号に変換してもよい。
[0126] また、本実施の形態では、順方向変換と逆方向変換で同一周波数の LO信号を用 いたが、順方向変換時と逆方向変換時に、それぞれ異なる周波数の LO信号を用い てもよい。
[0127] また、本実施の形態では、コレクタ側抵抗とベースノィァス抵抗が共通電圧供給源 と接続したが、実施の形態 1の双方向周波数変翻と同様に、コレクタ側抵抗とベー スバイアス抵抗にそれぞれ異なる電源スィッチおよび電圧供給源を用意し接続しても かまわない。このときの双方向周波数変^^の回路図を、図 14に示す。あるいは、 実施の形態 3の双方向周波数変^^と同様に、コレクタ側抵抗とベースバイアス抵 抗がそれぞれ異なる可変電圧供給源と接続してもカゝまわない。このときの双方向周 波数変換器の回路図を、図 18に示す。なお、ベースバイアスは、他のベースバイァ ス構成によって可変電圧供給源力も印加されても力まわない。
[0128] また、本実施の形態では、順方向変換でシングル入力'バランス出力、逆方向変換 でバランス入力 'シングル出力とした力 順方向変換でバランス入力 'シングル出力、 逆方向変換でシングル入力'バランス出力としてもよい。
[0129] (実施の形態 7)
本実施の形態では、実施の形態 6で説明したシングルバランス双方向周波数変換 器に、変換利得の調整機能、および逆方向変換時に出力した位相の調整機能を付 カロしたシングルバランス双方向周波数変翻について説明する。なお、以下の説明 は実施の形態 6と異なる点のみ記載する。
[0130] 図 7は、本発明の実施の形態 7におけるシングルバランス双方向周波数変換器 41 0の回路図である。
[0131] 図 7において、双方向周波数変換器 411、 412のェミッタ端子 2は、キャパシタ 5を 介して LO信号を入力する LO端子 6a、 6bと接続するとともに可変ェミッタ側抵抗 18 を介して接地される。コレクタ端子 3は、キャパシタ 8を介して IF信号を入出力する IF 端子 9a、 9bに接続されるとともに可変コレクタ側抵抗 19を介して電源スィッチ 24にも 接続している。ベース端子 4は、キャパシタ 12を介して電力分配器 20に接続されると ともにベースバイアス抵抗 14、 ベースノィァス抵抗 15と接続される。ベースバイアス 抵抗 14は電源スィッチ 23に接続し、ベースバイアス抵抗 15は接地し、ベース端子 4 にベースバイアスが与えられる。 [0132] このように、双方向周波数変^ ^411と双方向周波数変^ ^412は、電源スィッチ 23、 24と電圧供給源 16を共用している。また、制御部 21は、電力分配器 20、可変 ェミッタ側抵抗 18、および可変コレクタ側抵抗 19と接続し、電力分配器 20から分配 された信号に応じた制御信号を、可変ェミッタ側抵抗 18、可変コレクタ側抵抗 19に 出力し、それらの抵抗値を変更する。
[0133] このように構成された双方向周波数変換器の動作について、以下に説明する。
[0134] 初めに、順方向変換の動作について説明する。順方向変換時に、電源スィッチ 23 、 24はオンしている。 RF信号は、 RF端子 13から双方向周波数変^ ^411、 412に 入力される。このとき、 LO端子 6aに LO信号が入力され、 LO端子 6bに LO信号と 18 0度の位相差をもつ LOB信号が入力される。これにより、 IF端子 9aに出力される信 号と IF端子 9bに出力される信号は 180度の位相差をもつバランス出力となる。
[0135] このため、これら IF信号と IFB信号を差動合成することにより、より高い変換利得を 得られる。このとき、 RF端子 13に入力した RF信号の電力の一部を電力分配器 20に より分配し、制御部 21に入力する。制御部 21は、電力分配器 20からの入力が低いと きは、可変ェミッタ側抵抗 18の値を小さくする制御信号を出力し、電力分配器 20か らの入力が高いときは、可変ェミッタ側抵抗 18の値を大きくする制御信号を出力する 。これにより、順方向変換時の変換利得を自動的に制御することができる。
[0136] 次に、逆方向変換の動作について説明する。逆方向変換時に、電源スィッチ 11は オフしている。 IF端子 9aに IF信号が入力し、 IF端子 9bに IFB信号が入力される。ま た、 LO端子 6aに LO信号が入力し、 LO端子 6bに LOB信号が入力される。
[0137] これにより、双方向周波数変 411から出力される信号と、双方向周波数変 412から出力される信号は同じ位相を持ち、 RF端子 13には、合成されたより変換損 失を抑えた RF信号が出力される。このとき、双方向周波数変 411と双方向周波 数変換器 412から出力された RF信号の電力の一部を電力分配器 20により分配し、 制御部 21に入力する。
[0138] 制御部 21は、電力分配器 20からの入力が低いときは、可変エミッタ側抵抗 18の値 を大きくする制御信号を出力し、電力分配器 20からの入力が高いときは、可変エミッ タ側抵抗 18の値を小さくする制御信号を出力する。これにより、逆方向変換時の変 換損失を自動的に制御することができる。また、 LO信号および IF信号のもれが大き い時は、可変ェミッタ側抵抗 18と可変コレクタ側抵抗 19に、 LO信号および IF信号の もれを少なくする制御信号を制御部 21が出力し調整する。
[0139] 以上のように、本実施の形態の双方向周波数変換器によれば、実施の形態 6に比 較して、電力分配器が入力信号レベル、あるいは出力信号レベルを検出して負荷ィ ンピーダンスのインピーダンス値を変更するので、変換利得を自動的に調整して出 力を所定のレベルに保つことがさらに可能になる。
[0140] (実施の形態 8)
本実施の形態では、ダブルバランス双方向周波数変換器について説明する。
[0141] 図 8は、本発明の実施の形態 8におけるダブルバランス双方向周波数変換器 420 の回路図である。
[0142] 図 8において、ダブルバランス双方向周波数変換器 420は、双方向周波数変換器 401、双方向周波数変換器 402、双方向周波数変換器 403および双方向周波数変 404より構成される。双方向周波数変 401、 402、 403、 404は、実施の形 態 2と同一のものであり、電源スィッチ 23、 24と電圧供給源 16を共有している。その ために、双方向周波数変翻 401、 402、 403、 404は、それぞれのコレクタ側抵抗 10が電源スィッチ 24に接続し、ベースノィァス抵抗 14は電源スィッチ 23と接続して いる。また、双方向周波数変換器 401と双方向周波数変換器 402で RF端子 13aを 共用し、双方向周波数変換器 403と双方向周波数変換器 404で RF端子 13bを共用 している。双方向周波数変換器 401と双方向周波数変換器 403で LO端子 6aを共 用し、双方向周波数変換器 402と双方向周波数変換器 404で LO端子 6bを共用し ている。双方向周波数変換器 401と双方向周波数変換器 404で IF端子 9aを共用し 、双方向周波数変^ ^402と双方向周波数変^ ^403で IF端子 9bを共用している
[0143] 次に、順方向変換の動作について説明する。順方向変換時に、電源スィッチ 23、 2 4はオンしている。 RF信号は RF端子 13aから入力され、 RF信号と 180度位相差を 持った RFB信号が RF端子 13bから入力される。 LO端子 6aには、 LO信号が入力さ れ、 LO端子 6bには、 LO信号と 180度位相差を持った LOB信号が入力される。これ により、 IF端子 9aに出力される信号と IF端子 9bに出力される信号は 180度の位相差 をもつバランス出力となる。このため、これら IF信号と IFB信号を差動合成すること〖こ より、より高い変換利得を得られる。
[0144] また、出力を合成している双方向周波数変換器 401と双方向周波数変換器 404に それぞれ入力されている LO信号と LOB信号は 180度位相差を持っているため IF端 子 9aでは打ち消しあ!、、 LO信号および LOB信号の IF端子 9aへのもれを抑えること 力 Sできる。同様に、 IF端子 9bにおける LO信号および LOB信号のもれを抑えることが できる。
[0145] 次に、逆方向変換の動作について説明する。逆方向変換時に、電源スィッチ 23、 2 4はオフしている。 IF端子 9aに IF信号が入力し、 IF端子 9bに IFB信号が入力される 。 LO端子 6aに LO信号が入力し、 LO端子 6bに LOB信号が入力される。これより、 R F端子 13aに RF信号が出力され、 RF端子 13bに RF信号と 180度位相差を持つ RF B信号を出力され差動合成することにより、より変換損失を抑える。また、順方向変換 と同様に、 RF端子 13aと RF端子 13bにおける LO信号および LOB信号のもれを抑 えることができる。
[0146] 以上のように、本実施の形態の双方向周波数変換器によれば、ダブルバランス構 成となるので、順方向の周波数変換においては、 RF信号端子対に差動の信号を入 力すると、 IF信号端子対力 出力される信号は 180度の位相差をもつバランス出力 となり、かつ差動合成により、実施の形態 6に比較して、より高い変換利得を得ること ができる。また、逆方向の周波数変換においては、 IF信号端子対から 180度の位相 差をもつ信号を入力するので、 RF信号端子対から出力される信号は差動合成され、 より変換損失を抑えることがさらにできる。
[0147] なお、 RF端子 13、 LO端子 6および IF端子 9にそれぞれ整合回路を付加してもよい 。そのときは、順方向変換時にあわせた整合回路でも、逆方向変換時にあわせた整 合回路でも力まわない。また、整合回路を順方向変換時、逆変換方向時のそれぞれ の状態に合わせて可変または切り換えてもよい。
[0148] また、本実施の形態では、コレクタ端子対に IF信号と IFB信号を入出力し、ベース 端子対に RF信号と RFB信号を入出力することで、順方向変換で RF信号から IF信 号に、逆方向変換で IF信号から RF信号に変換したが、コレクタ端子対に RF信号と、 それと 180度の位相差をもつ RFB信号を入出力し、ベース端子対に IF信号と、それ と 180度の位相差をもつ IFB信号を入出力することで、順方向変換で IF信号から RF 信号に、逆方向変換で RF信号力も IF信号に変換してもよい。また、コレクタ端子に 第 1の中間周波数信号 (IF1信号)を入出力し、ベース端子に第 2の中間周波数信号 (IF2信号)を入出力することで、順方向変換で IF2信号から IF1信号に、逆方向変 換で IF1信号力 IF2信号に変換してもよい。
[0149] また、本実施の形態では、順方向変換と逆方向変換で同一周波数の LO信号を用 いたが、順方向変換時と逆方向変換時に、それぞれ別の周波数の LO信号を用いて ちょい。
[0150] また、本実施の形態では、コレクタ側抵抗とベースノィァス抵抗が共通電圧供給源 と接続したが、実施の形態 1の双方向周波数変翻と同様に、コレクタ側抵抗とベー スバイアス抵抗にそれぞれ異なる電源スィッチおよび電圧供給源を用意し接続しても かまわない。このときの双方向周波数変^^の回路図を、図 15に示す。あるいは、 実施の形態 3の双方向周波数変^^と同様に、コレクタ側抵抗とベースバイアス抵 抗がそれぞれ異なる可変電圧供給源と接続してもカゝまわない。このときの双方向周 波数変換器の回路図を、図 19に示す。なお、ベースバイアスは、他のベースバイァ ス構成によって可変電圧供給源力も印加されても力まわない。
[0151] また、本実施の形態では、ダブルバランス双方向周波数変換器として説明したが、 このダブルバランス双方向周波数変^ ^を 2つ用いて直交変復調器として使用して ちょい。
[0152] (実施の形態 9)
本実施の形態では、実施の形態 8で説明したダブルバランス双方向周波数変換器 に、逆方向変換時に出力した位相を調整する機能を付加したダブルバランス双方向 周波数変換ついて説明する。なお、以下の説明は実施の形態 8と異なる点のみ記載 する。
[0153] 図 9は、本発明の実施の形態 9におけるダブルバランス双方向周波数変換器 430 の回路図である。本実施の形態の双方向周波数変換器は、電力分配器 20と制御部 22を有している点力 実施の形態 8のものと異なる。
[0154] 電力分配器 20は、 RF端子 13、 13aと接続しており、 RF端子 13、 13aに入力ある いは出力した RF信号の電力の一部を分配する。
[0155] 制御部 22は、電力分配器 20、可変ェミッタ側抵抗 18、および可変コレクタ側抵抗 19と接続し、電力分配器 20から分配された信号に応じた制御信号を、可変ェミッタ 側抵抗 18、可変コレクタ側抵抗 19に出力し、それらの抵抗値を変更する。
[0156] このように構成された双方向周波数変換器の動作について、以下に説明する。
[0157] 初めに、順方向変換の動作について説明する。順方向変換時に、電源スィッチ 23 、 24はオンしている。 RF信号は RF端子 13aから入力され、 RF信号と 180度位相差 を持った RFB信号が RF端子 13bから入力される。 LO端子 6aには、 LO信号が入力 され、 LO端子 6bには、 LO信号と 180度位相差を持った LOB信号が入力される。
[0158] これにより、 IF端子 9aに出力される信号と IF端子 9bに出力される信号は 180度の 位相差をもつバランス出力となる。このため、これら IF信号と IFB信号を差動合成す ることにより、より高い変換利得を得られる。
[0159] また、出力を合成している双方向周波数変換器 411と双方向周波数変換器 413に それぞれ入力されている LO信号と LOB信号は 180度位相差を持っているため IF端 子 9aでは打ち消しあ!、、 LO信号および LOB信号の IF端子 9aへのもれを抑えること 力 Sできる。同様に、 IF端子 9bにおける LO信号および LOB信号のもれを抑えることが できる。
[0160] このとき、 RF端子 13aと RF端子 13bに入力した RF信号と RFB信号の電力の一部 を電力分配器 20により分配し、制御部 22に入力する。制御部 22は、電力分配器 20 力もの入力が低いときは、可変ェミッタ側抵抗 18の値を小さくする制御信号を出力し 、電力分配器 20からの入力が高いときは、可変ェミッタ側抵抗 18の値を大きくする制 御信号を出力する。これにより、順方向変換時の変換利得を自動的に制御すること ができる。
[0161] 次に、逆方向変換の動作について説明する。逆方向変換時に、電源スィッチ 11は オフしている。 IF端子 9aに IF信号が入力し、 IF端子 9bに IFB信号が入力される。ま た、 LO端子 6aに LO信号が入力し、 LO端子 6bに LOB信号が入力される。これによ り、 RF端子 13aに RF信号が出力され、 RF端子 13bに RF信号と 180度位相差を持 つ RFB信号を出力され差動合成することにより、より変換損失を抑える。
[0162] また、順方向変換と同様に、 RF端子 13aと RF端子 13bにおける LO信号および LO B信号のもれを抑えることができる。このとき、双方向周波数変^ ^411と双方向周 波数変 412から出力された RF信号と双方向周波数変 413と双方向周波数 変 414から出力された RFB信号の電力の一部を電力分配器 20により分配し、 制御部 22に入力する。
[0163] 制御部 22は、電力分配器 20からの入力が低いときは、可変エミッタ側抵抗 18の値 を大きくする制御信号を出力し、電力分配器 20からの入力が高いときは、可変エミッ タ側抵抗 18の値を小さくする制御信号を出力する。これにより、逆方向変換時の変 換損失を自動的に制御することができる。また、 LO信号および IF信号のもれが大き い時は、可変ェミッタ側抵抗 18と可変コレクタ側抵抗 19に、 LO信号および IF信号の もれを少なくする制御信号を制御部 22が出力し調整する。
[0164] 以上のように、本実施の形態の双方向周波数変換器によれば、実施の形態 8に比 較して、電力分配器が入力信号レベル、あるいは出力信号レベルを検出して負荷ィ ンピーダンスのインピーダンス値を変更するので、変換利得を自動的に調整して出 力を所定のレベルに保つことがさらに可能になる。
[0165] また、本実施の形態では、コレクタ側抵抗とベースノィァス抵抗が共通電圧供給源 と接続したが、実施の形態 1の双方向周波数変翻と同様に、コレクタ側抵抗とベー スバイアス抵抗にそれぞれ異なる電源スィッチおよび電圧供給源を用意し接続しても かまわない。あるいは、実施の形態 3の双方向周波数変翻と同様に、コレクタ側抵 抗とベースノィァス抵抗がそれぞれ異なる可変電圧供給源と接続しても力まわない。 なお、ベースバイアスは、他のベースバイアス構成によって可変電圧供給源から印加 されてもかまわない。
[0166] また、本実施の形態では、ダブルバランス双方向周波数変換器として説明したが、 このダブルバランス双方向周波数変^ ^を 2つ用いて直交変復調器として使用して ちょい。
[0167] (実施の形態 10) 本実施の形態では、実施の形態 1から 9で説明した双方向周波数変換器を用いた 無線機について説明する。
[0168] 図 10は、本発明の実施の形態 10における無線機 500のブロック図である。図 10に おいて、アンテナ 30と双方向増幅器 31が接続し、双方向増幅器 31と、実施の形態 1 乃至 9で説明した双方向周波数変翻のいずれかの双方向周波数変翻 440が接 続し、双方向周波数変翻 440と LO信号発振器 32および IF端子 33が接続してい る。アンテナ 30、双方向増幅器 31、双方向周波数変翻 440は、送受信で共用し ている。
[0169] このように構成された無線機について、その動作を以下に説明する。
[0170] 本実施の形態の無線機は、受信時に、アンテナ 30で受信した受信 RF信号を双方 向増幅器 31で増幅し、双方向周波数変換器 440に出力する。双方向周波数変換器 440は、 LO信号発振器 32から出力される LO信号と受信 RF信号を混合し、受信 IF 信号を IF端子 33に出力する。また、送信時に、双方向周波数変翻 440は、 IF端 子 33から入力された送信 IF信号と LO信号を混合し、送信 RF信号を双方向増幅器 31に出力する。そして、双方向増幅器 31は送信 RF信号を増幅し、アンテナ 30に出 力し空中へ放射する。
[0171] 以上のように、本実施の形態の無線機によれば、 1つの周波数変換器で IF信号か ら RF信号への変換と RF信号カゝら IF信号への変換を信号経路切り換えスィッチなど の外部回路を用いずに実現できるので、無線部の簡素化、小型化、および低コスト 化が可能となる。また、受信系の周波数変換については変換利得を持たせることが 可能であることから、他の利得段の負担を軽減できる。それにより、増幅器の設置位 置の制約が減少し、無線部全体のシステム設計の柔軟性を高め、構成設計を容易 にすることができる。
[0172] なお、本実施の形態では、双方向周波数変換器の周波数変換を RF信号から IF信 号へ、 IF信号から RF信号への変換としたが、 RF信号からベースバンド信号へ、ベー スバンド信号力 RF信号への変換でもよ!/、。
[0173] (実施の形態 11)
本実施の形態は、実施の形態 10の無線機を構成する双方向増幅器を、 2つの増 幅器と一つの 3端子スィッチとで構成した例を示している。
[0174] 図 11は、本発明の実施の形態 11における無線機 510のブロック図である。図 11に おいて、アンテナ 30とスィッチ 34の共通端子とが接続している。スィッチ 34の接続端 子の一方は増幅器 35の入力端に接続し、他方は増幅器 36の出力端に接続してい る。また、増幅器 35の出力端と増幅器 36の入力端が、双方向周波数変翻440と 接続している。それ以外の構成については、実施の形態 10と同一である。なお、増 幅器 35、 36がそれぞれ本発明に係る第 1の増幅器と第 2の増幅器に相当する。
[0175] このように構成された無線機について、その動作を以下に説明する。
[0176] 本実施の形態の無線機は、受信時に、スィッチ 34がアンテナ 30と増幅器 35とを導 通状態にし、アンテナ 30で受信した受信 RF信号を増幅器 35で増幅する。そして、 双方向周波数変換器 440に出力する。双方向周波数変換器 440では、 LO信号発 振器 32から出力される LO信号と受信 RF信号を混合し、受信 IF信号を IF端子 33に 出力する。また、本実施の形態の無線機は、送信時に、スィッチ 34がアンテナ 30と 増幅器 36とを導通状態にする。そして、増幅器 36は双方向周波数変翻440から 出力された RF信号を増幅し、アンテナ 30に出力して空中へ放射する。
[0177] 以上のように本実施の形態の無線機によれば、汎用的な電子部品と、本発明に係 る 1つの周波数変 とで構成できるので、無線機の設計をさらに容易にすることが できる。
[0178] また、本実施の形態では、双方向周波数変換器を 1段目の周波数変換器として用 いたが、 2段目の周波数変 として使用し、第 1の IF信号力 第 2の IF信号へ、第
2の IF信号力も第 1の IF信号へと変換してもよい。
[0179] また、本実施の形態では、スィッチ 34を用いて送受信の経路を切り換えたが、デュ プレクサを用いてもよい。
[0180] (実施の形態 12)
本実施の形態は、実施の形態 11の無線機の RF信号をさらに増幅して出力する構 成を示している。
[0181] 図 12は、本発明の実施の形態 12における無線機 520のブロック図である。図 12に おいて、アンテナ 30と 2端子スィッチ 37の接続端子とパワーアンプ 38の出力端とが 接続し、 2端子スィッチ 37の他方の接続端子とパワーアンプ 38の入力端と双方向増 幅器 31とが接続している。それ以外の構成については、実施の形態 10と同一である
[0182] このように構成された無線機について、その動作を以下に説明する。
[0183] 本実施の形態の無線機は、受信時に、 2端子スィッチ 37がオンしてアンテナ 30と 双方向増幅器 31とを導通状態にし、アンテナ 30で受信した受信 RF信号を双方向増 幅器 31で増幅し、双方向周波数変換器 440に出力する。また、送信時に、 2端子ス イッチ 37がオフし、アンテナ 30とパワーアンプ 38とを導通状態にする。そして、パヮ 一アンプ 38は、双方向増幅器 31で増幅された送信 RF信号をさらに増幅し、アンテ ナ 30に出力して空中へ放射する。
[0184] 以上のように本実施の形態の無線機によれば、さらに、送信のみ高出力の無線機 を実現することができる。
[0185] また、本実施の形態では、双方向周波数変換器を 1段目の周波数変換器として用 いたが、 2段目の周波数変 として使用し、第 1の IF信号力 第 2の IF信号へ、第 2の IF信号力も第 1の IF信号へと変換してもよい。
[0186] また、本実施の形態では、スィッチを用いて送受信の経路を切り換えた力 デュプ レクサを用いてもよい。
産業上の利用可能性
[0187] 本発明にかかる双方向周波数変翻は、無線通信装置の無線部回路に有用であ り、信号の周波数を変換するのに適している。

Claims

請求の範囲
[1] バイポーラトランジスタと、
前記バイポーラトランジスタのコレクタ端子に接続する負荷インピーダンスと、 前記バイポーラトランジスタのベース端子にバイアスを供給するバイアス部と、 前記バイアス部への電源の供給を入り切りする第 1のスィッチと、
前記バイポーラトランジスタのェミッタ端子に接続するェミッタインピーダンスと を具備し、
前記第 1のスィッチが導通しバイアスが供給された場合には、前記ベース端子に接 続した第 1の信号端子力 入力した第 1周波数の入力信号と、前記ェミッタ端子に接 続した第 3の信号端子力 入力した局部発振信号とが混合した第 2周波数の出力信 号が、前記コレクタ端子に接続した第 2の信号端子力 出力され、
前記第 1のスィッチが切断している場合には、前記第 2の信号端子から入力した第 2 周波数の入力信号と、前記第 3の信号端子から入力した局部発振信号とが混合した 第 1周波数の出力信号が、前記第 1の信号端子から出力される双方向周波数変換
[2] 前記負荷インピーダンスへの電源の供給を入り切りする第 2のスィッチをさらに有し、 前記第 2のスィッチは前記第 1のスィッチと同期して入り切りされる請求項 1に記載の 双方向周波数変換器。
[3] 前記第 1周波数が無線周波数である場合は、前記第 2周波数が中間周波数であり、 前記第 1周波数が中間周波数である場合は、前記第 2周波数が無線周波数である 請求項 1または 2に記載の双方向周波数変換器。
[4] 請求項 3に記載の双方向周波数変換器を一対具備し、
前記一対の双方向周波数変換器の第 1の信号端子同士を接続して新たな第 1の信 号端子とし、前記一対の双方向周波数変換器の第 3の信号端子に差動の局部発振 信号を入力することによりシングルバランス構成とする双方向周波数変^^。
[5] 請求項 3に記載の双方向周波数変換器を 4つ具備し、
前記 4つの双方向周波数変換器の中の第 1の双方向周波数変換器と第 2の双方向 周波数変換器の第 1の信号端子同士を接続し、第 3の双方向周波数変換器と第 4の 双方向周波数変換器の第 1の信号端子同士を接続して一対の新たな第 1の信号端 子対を構成し、
前記第 1の双方向周波数変換器と前記第 4の双方向周波数変換器の第 2の信号端 子同士を接続し、前記第 2の双方向周波数変換器と前記第 3の双方向周波数変換 器の第 2の信号端子同士を接続して一対の新たな第 2の信号端子対を構成し、 前記第 1の双方向周波数変換器と前記第 3の双方向周波数変換器の第 3の信号端 子同士を接続し、前記第 2の双方向周波数変換器と前記第 4の双方向周波数変換 器の第 3の信号端子同士を接続して一対の新たな第 3の信号端子対を構成し、 前記第 3の信号端子対に差動の局部発振信号を入力することによりダブルバランス 構成とする双方向周波数変換器。
バイポーラトランジスタと、
前記バイポーラトランジスタのコレクタ端子と接続する負荷インピーダンスと、 前記負荷インピーダンスを介して前記バイポーラトランジスタのコレクタ端子へ電源を 供給する第 1の可変電圧源と、
前記バイポーラトランジスタのベース端子と接続してバイアスを供給するバイアス部と 前記バイアス部へ電源を供給する第 2の可変電圧源と、
前記バイポーラトランジスタのェミッタ端子に接続されたェミッタインピーダンスと を具備し、
前記ェミッタ端子に接続された第 3の信号端子に局部発振信号が入力され、前記第 1の可変電圧源が第 1の電圧を前記コレクタ端子に供給し前記第 2の可変電圧源が 第 2の電圧を前記ベース端子に供給した場合には、前記ベース端子に接続した第 1 の信号端子力 入力した第 1周波数の入力信号と前記局部発振信号と混合して得た 第 2周波数の出力信号を、前記コレクタ端子に接続した第 2の信号端子より出力し、 前記第 3の信号端子に局部発振信号が入力され、前記第 1の可変電圧源が第 3の電 圧を前記コレクタ端子に供給し前記第 2の可変電圧源が第 4の電圧を前記ベース端 子に供給した場合には、前記第 2の信号端子から入力した第 2周波数の入力信号と 前記局部発振信号と混合して得た第 1周波数の出力信号を前記第 1の信号端子より 出力する双方向周波数変換器。
[7] 前記第 3の電圧と前記第 4の電圧は、前記バイポーラトランジスタがターンオンしない 電圧である請求項 6に記載の双方向周波数変換器。
[8] 前記第 1周波数が無線周波数である場合は、前記第 2周波数が中間周波数であり、 前記第 1周波数が中間周波数である場合は、前記第 2周波数が無線周波数である 請求項 7に記載の双方向周波数変換器。
[9] 請求項 8に記載の双方向周波数変換器を一対具備し、
前記一対の双方向周波数変換器の前記第 1の可変電圧源同士を共用し新たな第 1 の可変電圧源とし、前記第 2の可変電圧源同士を共用し新たな第 2の可変電圧源と し、前記一対の双方向周波数変換器の第 1の信号端子を接続して新たな第 1の信号 端子とし、前記一対の双方向周波数変換器の第 3の信号端子に差動の局部発信信 号を入力することによりシングルバランス構成とする双方向周波数変^^。
[10] 請求項 8に記載の双方向周波数変換器を 4つ具備し、
前記 4つの双方向周波数変換器はそれぞれの前記第 1の可変電圧源を共用し新た な第 1の可変電圧源とし、それぞれ前記第 2の可変電圧源同士を共用し新たな第 2 の可変電圧源とし、前記 4つの双方向周波数変換器の第 1の双方向周波数変換器と 第 2の双方向周波数変換器の第 1の信号端子同士を接続し、第 3の双方向周波数変 換器と第 4の双方向周波数変換器の第 1の信号端子同士を接続して一対の新たな 第 1の信号端子対を構成し、前記第 1の双方向周波数変換器と前記第 4の双方向周 波数変換器の第 2の信号端子同士を接続し、前記第 2の双方向周波数変換器と前 記第 3の双方向周波数変換器の第 2の信号端子同士を接続して一対の新たな第 2の 信号端子対を構成し、前記第 1の双方向周波数変換器と前記第 3の双方向周波数 変換器の第 3の信号端子同士を接続し、前記第 2の双方向周波数変換器と前記第 4 の双方向周波数変換器の第 3の信号端子同士を接続して一対の新たな第 3の信号 端子対を構成し、前記第 3の信号端子対に差動の局部発振信号を入力とすること〖こ よりダブルバランス構成とする双方向周波数変^^。
[11] 前記負荷インピーダンスが負荷抵抗または負荷インダクタである請求項 3に記載の双 方向周波数変換器。 [12] 前記負荷インピーダンスが可変負荷インピーダンスであって、
前記可変負荷インピーダンスのインピーダンス値を変更することにより前記第 1の信 号端子カゝら得られる出力信号の位相を制御し、前記第 2の信号端子から得られる出 力信号の利得を制御する請求項 3に記載の双方向周波数変換器。
[13] 前記ェミッタインピーダンスがェミッタ抵抗またはェミッタインダクタであることを特徴と する請求項 3に記載の双方向周波数変換器。
[14] 前記ェミッタインピーダンスが可変ェミッタインピーダンスであって、
前記可変ェミッタインピーダンスのインピーダンス値を変更することにより、前記第 1の 信号端子カゝら得られる出力信号の位相を制御し、前記第 2の信号端子から得られる 出力信号の利得を制御する請求項 3に記載の双方向周波数変換器。
[15] 前記一対の双方向周波数変換器のェミッタインピーダンスが可変ェミッタインピーダ ンスであり、負荷インピーダンスが可変負荷インピーダンスであって、
さらに、前記新たな第 1の信号端子に入出力される信号の電力を分配する電力分配 器と、
前記電力分配器で分配された信号に応じた制御信号を出力する制御部と を備え、
前記制御信号により前記可変ェミッタインピーダンスと可変負荷インピーダンスのイン ピーダンス値を変えて出力信号の位相を制御する請求項 4に記載の双方向周波数 変概
[16] 前記 4つの双方向周波数変換器のェミッタインピーダンスが可変ェミッタインピーダン スであり、負荷インピーダンスが可変負荷インピーダンスであって、
さらに、前記新たな第 1の信号端子に入出力される信号の電力を分配する電力分配 器と、
前記電力分配器で分配された信号に応じた制御信号を出力する制御部と を備え、
前記制御信号により前記可変ェミッタインピーダンスと可変負荷インピーダンスのイン ピーダンス値を変えて出力信号の位相を制御する請求項 5に記載の双方向周波数 変翻。 [17] 前記バイポーラトランジスタの代わりに FETを用い、前記ベース端子を前記 FETのゲ ート端子とし、前記ェミッタ端子を前記 FETのソース端子とし、前記コレクタ端子を前 記 FETのドレイン端子とした請求項 3に記載の双方向周波数変換器。
[18] アンテナと、
前記アンテナに接続された双方向増幅器と、
前記双方向増幅器を介して前記アンテナに接続された請求項 1から請求項 17のい ずれかに記載の双方向周波数変換器と、
前記双方向周波数変換器に局部発振信号を入力するように接続された局部発振器 と
を備えた無線機。
[19] 前記双方向増幅器は、 3端子スィッチと、
前記 3端子スィッチの一方の接続端子に入力端が接続された第 1の増幅器と、 前記 3端子スィッチの他方の接続端子に出力端が接続された第 2の増幅器と、 から構成され、
前記 3端子スィッチの共通端子に前記アンテナが接続し、前記第 1の増幅器の出力 端と前記第 2の増幅器の入力端とが前記周波数変^^に接続する請求項 18に記載 の無線機。
[20] 前記アンテナと前記双方向増幅器との間にさらに、パワーアンプと 2端子スィッチとを さらに有し、
前記パワーアンプの出力端と前記 2端子スィッチの一方の端子が前記アンテナに接 続され、
前記パワーアンプの入力端と前記 2端子スィッチの他方の端子とが前記双方向増幅 器に接続する請求項 18に記載の無線機。
[21] 前記一対の双方向周波数変換器のェミッタインピーダンスが可変ェミッタインピーダ ンスであり、負荷インピーダンスが可変負荷インピーダンスであって、
さらに、前記新たな第 1の信号端子に入出力される信号の電力を分配する電力分配 器と、
前記電力分配器で分配された信号に応じた制御信号を出力する制御部と を備え、
前記制御信号により前記可変ェミッタインピーダンスと可変負荷インピーダンスのイン ピーダンス値を変えて出力信号の位相を制御する請求項 9に記載の双方向周波数 変概
前記 4つの双方向周波数変換器のェミッタインピーダンスが可変ェミッタインピーダン スであり、負荷インピーダンスが可変負荷インピーダンスであって、
さらに、前記新たな第 1の信号端子に入出力される信号の電力を分配する電力分配 器と、
前記電力分配器で分配された信号に応じた制御信号を出力する制御部と を備え、
前記制御信号により前記可変ェミッタインピーダンスと可変負荷インピーダンスのイン ピーダンス値を変えて出力信号の位相を制御する請求項 10に記載の双方向周波数 変翻。
PCT/JP2005/018523 2004-10-08 2005-10-06 双方向周波数変換器およびこれを用いた無線機 WO2006040997A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US11/576,932 US7783266B2 (en) 2004-10-08 2005-10-06 Bidirectional frequency converter and radio equipment using same
DE602005015235T DE602005015235D1 (de) 2004-10-08 2005-10-06 Bidirektionale frequenzwandler und funkgerät damit
EP05790588A EP1798850B1 (en) 2004-10-08 2005-10-06 Bidirectional frequency converter and radio equipment using same
US12/836,063 US8145143B2 (en) 2004-10-08 2010-07-14 Bidirectional frequency converter and radio equipment using same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004295948 2004-10-08
JP2004-295948 2004-10-08
JP2005275733A JP4881596B2 (ja) 2004-10-08 2005-09-22 双方向周波数変換器およびこれを用いた無線機
JP2005-275733 2005-09-22

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US11/576,932 A-371-Of-International US7783266B2 (en) 2004-10-08 2005-10-06 Bidirectional frequency converter and radio equipment using same
US12/836,063 Division US8145143B2 (en) 2004-10-08 2010-07-14 Bidirectional frequency converter and radio equipment using same

Publications (1)

Publication Number Publication Date
WO2006040997A1 true WO2006040997A1 (ja) 2006-04-20

Family

ID=36148292

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/018523 WO2006040997A1 (ja) 2004-10-08 2005-10-06 双方向周波数変換器およびこれを用いた無線機

Country Status (6)

Country Link
US (2) US7783266B2 (ja)
EP (1) EP1798850B1 (ja)
JP (1) JP4881596B2 (ja)
CN (1) CN1977446A (ja)
DE (1) DE602005015235D1 (ja)
WO (1) WO2006040997A1 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080093746A (ko) * 2007-04-18 2008-10-22 삼성전자주식회사 저잡음 증폭기를 상하향 공용으로 구성하는 시분할 이중화방식의 원격 스테이션 및 이를 이용한 유선 중계 방법
US8456237B2 (en) * 2011-03-23 2013-06-04 Integrated Device Technology, Inc. Low noise variable gain amplifier utilizing variable feedback techniques with constant input/output impedance
CN102938636B (zh) * 2012-09-07 2015-07-22 清华大学 混频器
US9236892B2 (en) * 2013-03-15 2016-01-12 Dockon Ag Combination of steering antennas, CPL antenna(s), and one or more receive logarithmic detector amplifiers for SISO and MIMO applications
WO2017204347A1 (ja) * 2016-05-27 2017-11-30 株式会社村田製作所 高周波フィルタ装置、及び、通信装置
CN109462388B (zh) * 2018-10-22 2022-08-19 京信网络系统股份有限公司 GaN HEMT控制电路
JP2020198570A (ja) * 2019-06-04 2020-12-10 株式会社村田製作所 可変利得回路、高周波スイッチ、およびトランジスタ回路
WO2021113314A1 (en) 2019-12-04 2021-06-10 Massachusetts Institute Of Technology Methods and apparatus for analog canceler tuning using neural networks
US11611423B2 (en) 2020-05-04 2023-03-21 Massachusetts Institute Of Technology Methods and systems for signal interference cancellation
CN114499413B (zh) * 2021-12-30 2023-04-18 电子科技大学 一种带源漏互换技术的双向有源混频器
CN114499414B (zh) * 2021-12-30 2023-06-02 电子科技大学 一种基于互补型mos管的双向有源混频器

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55166309A (en) * 1979-06-14 1980-12-25 Nec Home Electronics Ltd Mixer circuit of vhf tuner
JPS5765904A (en) * 1980-10-13 1982-04-21 Matsushita Electric Ind Co Ltd Frequency converter
JPS58138107A (ja) * 1982-02-12 1983-08-16 Matsushita Electric Ind Co Ltd マイクロ波ミキサ回路
JPS61224506A (ja) * 1985-03-28 1986-10-06 Matsushita Electric Ind Co Ltd 電界効果トランジスタ回路
JPS63300610A (ja) * 1987-05-30 1988-12-07 Fujitsu Ltd 周波数変換器
JP2001358605A (ja) 2000-06-13 2001-12-26 Matsushita Electric Ind Co Ltd 無線通信装置及び無線通信方法
JP3258791B2 (ja) 1993-04-16 2002-02-18 三洋電機株式会社 通信装置
JP3369396B2 (ja) 1996-03-15 2003-01-20 株式会社東芝 無線送受信共用周波数変換器
JP2004254009A (ja) 2003-02-19 2004-09-09 Toshiba Corp 無線通信装置とその無線ユニット

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3867699A (en) * 1973-12-14 1975-02-18 Rockwell International Corp Transceiver switching circuit
JPH05136709A (ja) 1991-11-15 1993-06-01 Fujitsu Ltd 送受信機
FI90165C (fi) 1991-12-13 1993-12-27 Nokia Mobile Phones Ltd I/q-modulator och demodulator
JPH06125368A (ja) 1992-10-12 1994-05-06 Sanyo Electric Co Ltd デジタル無線通信装置
JPH07273557A (ja) 1994-03-29 1995-10-20 Nippon Telegr & Teleph Corp <Ntt> 周波数変換回路
JPH07235836A (ja) 1994-02-24 1995-09-05 Nippon Telegr & Teleph Corp <Ntt> 周波数変換回路
JP2883008B2 (ja) 1994-08-18 1999-04-19 東レ・ダウコーニング・シリコーン株式会社 紫外線硬化型シリコーン組成物の硬化方法
JPH09214253A (ja) 1996-02-06 1997-08-15 Advantest Corp ハーモニックミキサ
JP3411148B2 (ja) 1996-03-13 2003-05-26 シンクレイヤ株式会社 双方向周波数変換器
JPH10322241A (ja) 1997-05-15 1998-12-04 Yagi Antenna Co Ltd 無線送受信機
JP3698235B2 (ja) 1998-07-10 2005-09-21 富士電機ホールディングス株式会社 直接周波数変換回路
JP3746209B2 (ja) 2001-07-05 2006-02-15 株式会社東芝 無線送受信機
US7248850B2 (en) * 2002-12-10 2007-07-24 Nanoamp Solutions, Inc. Passive subharmonic mixer design

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55166309A (en) * 1979-06-14 1980-12-25 Nec Home Electronics Ltd Mixer circuit of vhf tuner
JPS5765904A (en) * 1980-10-13 1982-04-21 Matsushita Electric Ind Co Ltd Frequency converter
JPS58138107A (ja) * 1982-02-12 1983-08-16 Matsushita Electric Ind Co Ltd マイクロ波ミキサ回路
JPS61224506A (ja) * 1985-03-28 1986-10-06 Matsushita Electric Ind Co Ltd 電界効果トランジスタ回路
JPS63300610A (ja) * 1987-05-30 1988-12-07 Fujitsu Ltd 周波数変換器
JP3258791B2 (ja) 1993-04-16 2002-02-18 三洋電機株式会社 通信装置
JP3369396B2 (ja) 1996-03-15 2003-01-20 株式会社東芝 無線送受信共用周波数変換器
JP2001358605A (ja) 2000-06-13 2001-12-26 Matsushita Electric Ind Co Ltd 無線通信装置及び無線通信方法
JP2004254009A (ja) 2003-02-19 2004-09-09 Toshiba Corp 無線通信装置とその無線ユニット

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1798850A4

Also Published As

Publication number Publication date
JP4881596B2 (ja) 2012-02-22
US7783266B2 (en) 2010-08-24
US20100279631A1 (en) 2010-11-04
US8145143B2 (en) 2012-03-27
EP1798850B1 (en) 2009-07-01
US20090011720A1 (en) 2009-01-08
CN1977446A (zh) 2007-06-06
EP1798850A1 (en) 2007-06-20
JP2006135937A (ja) 2006-05-25
DE602005015235D1 (de) 2009-08-13
EP1798850A4 (en) 2008-08-06

Similar Documents

Publication Publication Date Title
WO2006040997A1 (ja) 双方向周波数変換器およびこれを用いた無線機
TWI360941B (en) Adaptive-biased mixer
KR101387262B1 (ko) 직교 믹서를 위한 lo 신호 생성 시스템 및 방법
US20070087702A1 (en) Radio transmission apparatus and radio transmission method
KR20070000257A (ko) 믹서를 이용한 도허티 증폭장치 및 송신기
US7218163B2 (en) Radio-frequency mixer arrangement
WO2008000908A1 (en) Multi-function passive frequency mixer
US8594598B2 (en) Method and system for using a multi-RF input receiver for diversity selection
US8493136B2 (en) Driver circuit and a mixer circuit receiving a signal from the driver circuit
US20130090075A1 (en) Peak Detector with Extended Range
KR100943854B1 (ko) 구성가능한 능동/수동 믹서 및 공유된 gm 스테이지를위한 방법 및 시스템
US7999615B2 (en) Current canceling variable gain amplifier and transmitter using same
US7979042B2 (en) Generating phase shift based on adding two vectors with variable gains
WO2006077552A1 (en) Low-noise mixer
US11374536B2 (en) Zero IF transmitter with decoupling between mixer and programmable gain stage
EP3493402B1 (en) Signal amplifier structure for radio transmitter
JP4162588B2 (ja) 受信装置および送信装置
US8260218B2 (en) Mixer circuit and RF transmitter using such mixer circuit
CN111181493B (zh) 一种毫米波双频带双模式混频器
JP4223347B2 (ja) 周波数変換器並びに受信機及び送信機

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 200580021316.8

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2005790588

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11576932

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 2005790588

Country of ref document: EP