WO2006038708A1 - 伸びと穴拡げ性に優れた高強度薄鋼板およびその製造方法 - Google Patents

伸びと穴拡げ性に優れた高強度薄鋼板およびその製造方法 Download PDF

Info

Publication number
WO2006038708A1
WO2006038708A1 PCT/JP2005/018724 JP2005018724W WO2006038708A1 WO 2006038708 A1 WO2006038708 A1 WO 2006038708A1 JP 2005018724 W JP2005018724 W JP 2005018724W WO 2006038708 A1 WO2006038708 A1 WO 2006038708A1
Authority
WO
WIPO (PCT)
Prior art keywords
elongation
steel sheet
strength
less
thin steel
Prior art date
Application number
PCT/JP2005/018724
Other languages
English (en)
French (fr)
Inventor
Toshiki Nonaka
Hirokazu Taniguchi
Koichi Goto
Original Assignee
Nippon Steel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corporation filed Critical Nippon Steel Corporation
Priority to CA2582409A priority Critical patent/CA2582409C/en
Priority to EP13189987.4A priority patent/EP2690191B1/en
Priority to EP05793806.0A priority patent/EP1808505B1/en
Priority to ES05793806T priority patent/ES2712142T3/es
Priority to US11/663,581 priority patent/US20080000555A1/en
Priority to PL05793806T priority patent/PL1808505T3/pl
Priority to CN2005800342050A priority patent/CN101035921B/zh
Priority to PL13189987T priority patent/PL2690191T3/pl
Publication of WO2006038708A1 publication Critical patent/WO2006038708A1/ja
Priority to US12/583,846 priority patent/US8137487B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • B21B3/02Rolling special iron alloys, e.g. stainless steel
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/25Hardening, combined with annealing between 300 degrees Celsius and 600 degrees Celsius, i.e. heat refining ("Vergüten")
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/041Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing involving a particular fabrication or treatment of ingot or slab
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0426Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0436Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0447Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
    • C21D8/0473Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Definitions

  • the present invention relates to a high-strength thin steel sheet excellent in elongation and hole expansibility and a method for producing the same.
  • the processing method is often performed by simple stamping or bending from the conventional drawing using a sheet presser, especially when the bending ridgeline is a curved line such as an arc.
  • the end face of the steel plate is elongated, and the flange is stretched.
  • An object of the present invention is to solve the above-described prior art and realize a high-strength thin steel sheet excellent in elongation and hole expansibility and a manufacturing method thereof on an industrial scale.
  • the present inventors are to realize a high-strength thin steel sheet that exhibits the above performance at a tensile strength of 500 MPa or more and a manufacturing method thereof on an industrial scale.
  • the tensile strength and Si and A1 have a specific relationship to avoid deterioration of chemical conversion treatment and adhesiveness while ensuring an appropriate ferrite area ratio, and Mg, REM
  • the steel sheet and its manufacturing method have been found to improve unprecedented press formability by controlling inclusions such as precipitates contained inside by adding Ca to improve local formability. .
  • V 0.005 to 1% Ti: 0.002 to 1%, Nb: 0.002 to 1%, Cr: 0.005 to 2%, Mo: 0.005 to 1%, B: 0.0002 to 0.1% , Mg: 0.0005 to 0.01%, REM: 0.0005 to 0.01%, Ca: 0.0005 to 0.01%, or one or more types, characterized by being excellent in elongation and hole expansibility described in (1) Strength thin steel sheet.
  • TS target value is the strength design value of steel plate, the unit is MPa, [A1] is the mass of A1
  • ferrite is an area ratio 1 Tempered martensite of 0 to 85%, residual austenite of 1 to 10% by volume, and area ratio of 10% to 60% and the balance should have a metal structure of Painai.
  • the greatest feature of the structure of the high-strength thin steel sheet according to the present invention is that a metal assembly including ferrite, residual austenite, tempered martensite, and bainite in a well-balanced manner by performing the necessary heat treatment after the annealing and quenching process.
  • a weave By obtaining a weave, a material with extremely stable ductility and hole expandability can be obtained.
  • C is an important element for strengthening steel and improving hardenability It is indispensable to obtain a composite organization consisting of ferrite, martensite, and bainai. TS ⁇ 500MPa and 0.03% or more is required to obtain a tempered martensite that is advantageous for local formability. On the other hand, when the content increases, iron-based carbides such as cementite are likely to be coarsened and local formability is deteriorated, and the hardness increase after welding is markedly limited to 0.25%. To do.
  • Si is a preferable element for increasing the strength without decreasing the workability of the steel.
  • it if it is less than 0.4%, it becomes easy to form a pearlite structure that is harmful to the hole expandability, and the solid solution strengthening ability of the ferrite decreases, resulting in a large hardness difference between the formed structures.
  • the lower limit is set to 0.4% because it causes deterioration of expansibility. If it exceeds 2.0%, the ferritic solid solution strengthening ability will increase, resulting in a decrease in cold rollability and a decrease in chemical conversion treatment due to the Si oxide formed on the steel sheet surface.
  • the upper limit is 2.0% because plating adhesion and weldability are also reduced.
  • Mn is an element that delays the formation of carbides and is an effective element for the formation of ferritic soot, in addition to the need to be added to ensure strength. If it is less than 0.8%, the strength is not satisfactory, and the ferrite is not sufficiently formed and the ductility deteriorates. If it exceeds 3.1%, the martensite will be excessive, resulting in an increase in strength and deterioration of ductility and workability, so 3.1% is the upper limit.
  • S is a harmful element because it remains as sulfide inclusions such as MnS.
  • the higher the strength of the base metal the more conspicuous the effect is. It should be suppressed to 0.02% or less when the tensile strength is 500 MPa or more.
  • T i is added, precipitation occurs as a soot sulfide, so it is somewhat relaxed.
  • Al is an element necessary for deoxidation of steel, but if it exceeds 2.0%, inclusions such as alumina increase and workability is impaired, so 2.0% is made the upper limit. In order to improve ductility, addition of 0.2% or more is preferable.
  • N exceeds 0.01%, the aging and workability of the base metal deteriorate, so 0.01% is made the upper limit.
  • TS target value is the strength design value of steel plate, unit is MPa, [Al] is Al mass%, [Si] is Si mass%
  • addition amount of A1 and Si is (0.0012X [TS target value]-0.29) / 3 or less, it is not sufficient to improve the ductility, and if it is 1.0 or more, the chemical conversion processability and the adhesiveness of the adhesive deteriorate.
  • V can be added in the range of 0.005 to 1% for the purpose of improving the strength.
  • Ti is an element effective in reducing harmful MnS by forming ⁇ -based sulfides with the purpose of improving strength and having relatively little effect on local formability. It also has the effect of suppressing the coarsening of the weld metal structure and making it difficult to become brittle. To achieve these effects, less than 0.002% is insufficient, so 0.002% is set as the lower limit. However, when added in excess, coarse and square TiN increases and local formability deteriorates, as well as stable carbide is formed, and the C concentration in the austenite cocoon decreases during the production of the base material. The desired hardened structure cannot be obtained, and it is difficult to secure the tensile strength, so 1.0% is made the upper limit.
  • Nb is an element effective for improving the strength and forming fine carbides that suppress the softening of the heat affected zone. If it is less than 0.002%, the effect of suppressing the softening of the weld heat affected zone is sufficient. Since it cannot be obtained, the lower limit is 0.002%. On the other hand, if added in excess, the machinability of the base material decreases due to an increase in carbides, so 1.0% is made the upper limit.
  • Cr can also be added as a strengthening element, but if it is less than 0.005%, no effect is obtained, and if it exceeds 2%, ductility and chemical conversion properties deteriorate, so the range is 0.005% to 2%.
  • Mo is an element that is effective in securing strength and hardenability, and makes it easy to obtain a bainitic structure.
  • it has the effect of suppressing the softening of the weld heat affected zone, and it is thought that the effect is enhanced by coexistence with Nb, etc., and the effect is insufficient at less than 0.005%, and the lower limit is 0.005%.
  • the upper limit is 1%.
  • B is an element that improves the hardenability of steel and has the effect of suppressing the softening by suppressing the C diffusion in the weld heat affected zone through the interaction with C. Addition of more than 0002% is required. On the other hand, if added in excess, not only the workability of the base metal is lowered, but also the steel becomes brittle and the hot workability is lowered, so the upper limit is 0.1%.
  • Mg is combined with oxygen to form an oxide by this addition, but this is a composite of MgO or MgO containing A 1 2 0 3 , S i 0 2 , MnO, T i 2 0 3, etc. The compound is considered to precipitate very finely.
  • REM is considered to be an element that has the same effect as Mg. Although it has not been fully confirmed, it is considered an element that can be expected to improve hole expansion and stretch flangeability due to the effect of suppressing cracks due to the formation of fine oxides. Since this is sufficient, the lower limit is set to 0.0005%. On the other hand, addition over 0.01% not only saturates the amount of improvement for the added amount, but also deteriorates the cleanliness of the steel and deteriorates the hole expandability and stretch flangeability. The upper limit is%.
  • Ca has the effect of improving the local formability of the base metal by controlling the morphology (spheroidization) of sulfide inclusions. However, if less than 0.0005%, the effect is insufficient. % Is the lower limit. Addition of excessive amount not only saturates the effect, but also causes an adverse effect (local formability deterioration) due to an increase in inclusions, so the upper limit is set to 0.0 1%.
  • the reason why the steel sheet structure is a composite structure of ferrite, residual austenite, tempered martensite, and bainite is In addition, this is to obtain a steel sheet having excellent elongation and hole expandability.
  • Ferrite refers to polygonal feral ⁇ and pay feral ⁇ .
  • the greatest feature in the metal structure of the high-strength thin steel sheet is that the steel has a tempered martensite in an area ratio of 10% to 60%. This tempered martensite is obtained by heat treatment in which the martensite cocoon produced during the cooling process of annealing is kept at 150 to 400 ° C for 1 to 20 minutes after cooling below the martensite transformation temperature, and further from the above holding temperature.
  • tempered into a tempered martensite structure by holding for 1 to 100 seconds at a high temperature of 50 to 300 ° C and below 500 ° C.
  • the area ratio of the tempered martensite is less than 10%, the hardness difference between the structures becomes too large and the hole expansion rate is not improved, whereas when it exceeds 60%, the steel sheet strength is too low.
  • the ratio of elongation and hole expansion is remarkably improved by the presence of a well-balanced steel plate with 10 to 85% ferritite and 1 to 10% residual austenite in volume ratio. it is conceivable that. If the ferrite area ratio is less than 10%, sufficient elongation cannot be secured.
  • the strength is insufficient, which is not preferable.
  • residual austenite of 1% or more remains, and when the residual austenite volume ratio exceeds 10%, the residual austenite is transformed into martensite by processing. At times, at the interface between the martensite phase and the surrounding phase, a poise and many dislocations are generated, hydrogen accumulates in such a place, and the delayed fracture characteristics are inferior.
  • Hot finish rolling in the temperature range of 800-950 ° C, and roll up to 700 ° C or less to make a hot rolled steel sheet. If the hot rolling finish temperature is less than 800 ° C, the grains become mixed and the workability of the base metal is lowered. Above 950 ° C, austenite grains become coarse and the desired micro structure cannot be obtained.
  • a lower coiling temperature can suppress the formation of partite structure, but considering the cooling load, it is preferably in the range of 400 to 600 ° C.
  • the cold rolling ratio is preferably 30 to 80% in terms of rolling load and material.
  • the annealing temperature is important for ensuring the predetermined strength and heat resistance of the high-strength steel sheet, and is preferably 600 ° C to Ac 3 + 50 ° C. If the temperature is less than 600 ° C, sufficient recrystallization is not performed, and it is difficult to stably obtain the workability of the base material itself. On the other hand, if it exceeds Ac 3 +50 ° C, the austenite grain size becomes coarse, ferrite formation is suppressed, and it becomes difficult to obtain a desired microstructure. In order to obtain a microstructure defined in the present invention, a method by continuous annealing is preferable.
  • the average cooling rate is set to 30 ° C / s or less, and 10 ° C / s or less is more preferable. .
  • a temperature of 100 to 400 ° C or a martensite transformation point temperature of 400 ° C is preferable.
  • the temperature is held at 150 to 400 ° C for 1 to 20 minutes and cooled.
  • the martensite is not tempered, the hardness difference between the structures is large, and the bainitic transformation is insufficient, and the prescribed ductility and hole expandability cannot be obtained. If it exceeds 400 ° C, it will be tempered too much and the strength will decrease.
  • the upper limit is not more than the martensite transformation point.
  • the lower limit it is preferable to set the lower limit to exceed the martensite transformation point.
  • tempering or transformation hardly progresses or is incomplete, and the ductility and hole expansion rate do not improve. Over 20 minutes, tempering and transformation are almost complete, so there is no effect even if extended.
  • the heating and holding process may be continuous with the continuous annealing line or a separate line, but it may be performed continuously with the continuous annealing equipment or in the overaging furnace of the continuous annealing line. It is preferable in terms of productivity.
  • the heating and holding step is the first heating and holding step. After heating and holding at 0 to 400 ° C or less and holding for 1 to 20 minutes, as the second heating and holding process, the temperature is 30 to 300 ° C higher than the holding temperature of the first heating and holding process, and 5 It is desirable to cool it after holding it at 00 ° C or below for 1 to 100 seconds.
  • the martensite is not tempered and the hardness difference between the structures increases, and the prescribed ductility and hole expandability are obtained. Absent. If the temperature of the second heating and holding step is higher than the holding temperature of the first heating and holding step + 300 ° C., it is tempered and the strength is lowered, which is not preferable.
  • tempering hardly progresses or is incomplete, and the ductility and hole expansion rate do not improve. If it exceeds 100 seconds, tempering is almost complete, so extending it will have no effect.
  • the heating and holding step is the first heating and holding step. Hold at 1400 ° C or lower, hold for 1-20 minutes, then cool to below the martensite transformation point, hold for 1 to 100 seconds at 500 ° C or lower, above the end temperature of cooling It is desirable to cool after performing the heating and holding. Tempering martensite can be ensured by ensuring that the temperature in the second heating and holding process is the cooling end temperature when cooling below the martensite transformation point + 50 to 300 ° C and 500 ° C or less. Is preferable.
  • the temperature of the second heating and holding step is lower than the cooling end temperature, the martensite is not tempered and the hardness difference between the structures becomes large, and the predetermined ductility and hole expandability cannot be obtained.
  • the lower limit of the temperature of the second heating and holding step is more preferably the cooling end temperature + 50 ° C. and the martensite transformation point or higher, and more preferably the cooling end temperature + 300 ° C. If the temperature of the second heating and holding process exceeds 500 ° C, it is tempered too much and the strength decreases, which is preferable. It ’s not.
  • tempering hardly progresses or is incomplete, and ductility and hole expansion rate do not improve. If it exceeds 100 seconds, tempering is almost complete, so extending it will have no effect.
  • the steel plate may be either a cold rolled steel plate or a plated steel plate.
  • the normal plating may be either zinc or aluminum plating.
  • Plating may be either melt or electric plating, and may be alloyed after plating or may be multi-layer plating. Further, a steel sheet obtained by subjecting a steel sheet not subjected to plating to film lamination on a laid steel sheet does not depart from the present invention.
  • test methods used in the present invention are as follows.
  • Tensile properties Evaluated by conducting a tensile test perpendicular to the rolling direction of JIS No. 5 tensile test piece
  • Ferai wrinkle area ratio Ferrite is observed with nital etching. Ferai wrinkle area ratio is quantified with nital etching.
  • the sample is polished (alumina finish), immersed in a corrosive liquid (mixed solution of pure water, sodium pyrosulfite, ethyl alcohol, and picric acid) for 10 seconds, polished again, washed with water, and the sample is washed. Dry with cold air. After drying, the tissue of the sample was multiplied by 1000, and the area of 100 H m X 100 I m was measured with a Luzex device to determine the area percentage of the ferrite. In each table, this area ratio of ferrite was expressed as ferrite area%.
  • the tempered martensite area ratio is quantified by repeller etching.
  • the sample is polished (alumina finish) and then immersed in a corrosive solution (pure water, sodium bisulphite, ethyl alcohol, and picric acid) for 10 seconds. After soaking, grind again, rinse with water and dry the sample with cold air. After drying, the area of 100 II m x 100 m area was measured with a Luzex apparatus at 1000 times the texture of the sample and the area% of tempered martensite was determined. In each table, this tempered martensite area ratio is expressed as tempered martensite area%.
  • Residual austenite volume ratio On the surface that has been chemically polished to a thickness of 1/4 from the surface layer of the specimen plate, (2 0 0), (2 1 0) Residual austenite was quantified from the (2 0 0), (2 2 0), and (3 1 1) area strengths of the stenite and used as the residual austenite volume fraction. A residual austenite volume fraction of 1-10% or more was considered good. In each table, this residual austenite volume fraction is expressed as the residual volume.
  • Table 3 shows the test results of the comparative example of experiment number [8] shown in Table 2 of Example 1. Further, the test Wa results of the experiment number [2] of the present invention are shown in Table 4, and the experiment number
  • Table 6 shows [6] and Table 6 shows the experiment number [9].
  • the test results of Example 2 are shown in Table 7.
  • Example 1 As a comparative example, when the experiment number [8] similar to the conventional operating conditions is compared with the experiment number [2] [6] [9] of the present invention example, the hole expansion rate is higher in the present invention example. When the elongation shows a good value, the force is high.
  • Example 2 Furthermore, when the tempering conditions were changed and compared, in Experiment Nos. [4] and [7] with a high tempering temperature, the strength was greatly reduced, and the elongation was rather lowered. The decrease in growth is thought to be due to the occurrence of a pair light. Experiment No. [1] [2] [5] [6] ⁇ 9] The present invention showed good results.
  • the present invention it is possible to provide a high-strength thin steel sheet excellent in elongation and hole expansibility used for automobile parts and the like, and a manufacturing method thereof, and its industrial value is extremely large.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

本発明は、500MPa以上の引張り強さを有する伸びと穴拡げ性に優れた高強度薄鋼板およびこれを工業的規模で製造することができる伸びと穴拡げ性に優れた高強度薄鋼板の製造方法提供するもので、質量%で、C:0.03~0.25%、Si:0.4~2.0 %、Mn:0.8~3.1 %、P≦0.02%、S≦0.02%、Al≦2.0%、N≦0.01%を含有し、残部がFeおよび不可避的不純物からなり、ミクロ組織が、フェライトが面積率で10~85%、残留オーステナイトが体積率で1~10%、面積率で10%以上60%以下の焼戻マルテンサイトおよび残部がベイナイトであることを特徴とする伸びと穴拡げ性に優れた高強度薄鋼板である。

Description

伸びと穴拡げ性に優れた高強度薄鋼板およびその製造方法
技術分野
本発明は、 伸びと穴拡げ性に優れた高強度薄鋼板およびその製造 方法に関するものである。
明 背景技術
近年、 自動車の軽量化、 衝突安全性書の向上の必要性から、 車体骨 格部材ゃ補強部材、 座席骨格部品等に成形性に優れた高強度鋼板が 強く要望されている。 これらの部品形状は、 意匠性や車体設計上の 要件から、 複雑な形状を要求されることもあり、 優れた加工性能を 有した高強度鋼板が必要である。
一方、 加工方法は鋼板の高強度化により、 従来のシヮ押さえを用 いた絞り加工から、 単純なスタンピングゃ曲げ加工によって行われ る場合が多く、 特に、 曲げ稜線が円弧状等の曲線の場合、 鋼板端面 が延ばされる、 伸びフランジ加工になる場合もある。 また部品によ つては加工穴部 (下穴) を拡張してフランジを形成させるバーリ ン グ加工が行われる部品も少なくなく、 その拡張量も、 大きいもので 下穴の直径の 1. 6 倍以上まで拡張する場合がある。
一方、 スプリングバック等の部品加工後の弾性回復現象は、 高強 度鋼板化になるほど発生し易く、 部品精度確保を阻害するものであ る。
このようにこれらの加工は鋼板に伸びフランジ性ゃ穴拡げ性、 曲 げ性等の局部成形性が必要であるが、 従来の高強度鋼板ではこれら の性能が十分ではなく、 亀裂等の不良が発生し、 安定な製品加工が できない問題があった。
そこで、 これまで伸びフランジ成形性を改善した高強度鋼板は特 開平 9 一 6 7 6 4 5号公報が提案されているが、 加工性、 特に穴拡 げ性向上のニーズの拡大は著しく、 加えて伸びの向上も同時に満た すという、 更なる改善が望まれた。 発明の開示
本発明は、 前述のような従来技術を解決し、 伸びと穴拡げ性に優 れた高強度薄鋼板およびその製造方法を工業的規模で実現すること にある。 具体的には引張強さ 500MPa以上で前記の性能を発揮する高 強度薄鋼板およびその製造方法を工業的規模で実現することにある 本発明者らは、 伸びと穴拡げ性に優れた高強度薄鋼板の製造方法 を検討した結果、 鋼板の更なる延性、 穴拡げ性を向上させるには、 鋼板の引張強度が 500MPa以上の高強度冷延鋼板の場合、 鋼板の金属 組織の形態とバランスおよび焼戻マルテンサイ ト活用が重要である ことを見出した。 さ らに、 引張強さと S i、 A1を特定の関係とするこ とで、 適正なフェライ ト面積率の確保しつつ化成処理性やめつき密 着性の劣化を回避し、 また、 Mg、 REM 、 Caの添加により内部に含ま れる析出物等の介在物を制御して局部成形性を向上させることによ り、 従来にないプレス成形能を向上させる鋼板およびその製造方法 を見出したものである。
( 1 ) 質量%で、 C : 0. 03〜0. 25 %、 S i : 0. 4 〜2. 0 %、 Mn : 0. 8 〜3. 1 %、 P≤0. 02 % , S≤0. 02 % A l≤2. 0 %、 N≤0. 01 %を 含有し、 残部が Feおよび不可避的不純物からなり、 ミクロ組織が、 フェライ トが面積率で 1 0 〜 8 5 %、 残留オーステナイ トが体積率 で 1 〜 1 0 %、 面積率で 1 0 %以上 6 0 %以下の焼戻マルテンサイ トおよび残部がペイナイ トであることを特徴とする伸びと穴拡げ性 に優れた高強度薄鋼板。
( 2 ) 化学成分としてさらに、 V ·· 0.005 〜 1 %、 Ti: 0.002 〜 1 %、 Nb: 0.002 〜 1 %、 Cr: 0.005 〜 2 %、 Mo: 0.005 〜 1 %、 B : 0.0002〜0.1 %、 Mg: 0.0005〜0.01%、 REM:0.0005〜0.01%、 Ca: 0.0005〜0.01%の 1種または 2種以上を含むことを特徴とする ( 1 ) に記載の伸びと穴拡げ性に優れた高強度薄鋼板。
( 3 ) さらに下記(A) の式を満足することを特徴とする ( 1 ) ま たは ( 2 ) に記載の伸びと穴拡げ性に優れた高強度薄鋼板。
(0.0012 X [TS 狙い値] -0.29)/3 < [A1] +0.7 [Si] < 1.0
(A)
TS狙い値は鋼板の強度設計値で単位は MPa 、 [A1]は A1の質量
%、 [Si]は Siの質量%
( 4 ) 質量%で、 C : 0.03〜0.25%、 Si: 0.4 〜2.0 %、 Mn: 0. 8 〜3.1 %、 P≤0.02% , S≤0.02% , Al≤2.0 %、 N≤0.01%を 含有し、 さらに、 必要に応じ V : 0.005 〜 1 %、 Ti: 0.002 〜 1 % 、 Nb: 0.00卜 1 %、 Cr: 0.005 〜 2 %、 Mo: 0.005 〜 1 %、 B : 0.0002〜0.1 %、 Mg: 0.0005〜0.01%、 REM: 0.0005〜 0.01 %、 Ca: 0.0005〜0.01%の 1種または 2種以上を含有し、 残部が Feおよび不 可避的不純物からなるスラブを製造し、 1150〜1250°Cの範囲で加熱 し、 その後 800 〜950 °Cの温度範囲で熱間圧延を行い、 700 °C以下 で巻取り、 次いで、 通常の酸洗の後、 圧下率を 3 0〜 8 0 %として 冷間圧延後、 連続焼鈍工程で 600°C以上 Ac3 点 + 5 0 °C以下に均熱 して再結晶焼鈍を施し、 600 °C以上 Ar3 点以下まで平均冷却速度 3 0 °CZ s以下で冷却し、 続いて 400 で以下まで平均冷却速度 1 0〜 150 °C/s で冷却し、 次いで、 150 〜400 でで 1〜 2 0分保持した 後に冷却することにより、 ミクロ組織が、 フェライ トが面積率で 1 0〜 8 5 %、 残留オーステナイ トが体積率で 1〜 1 0 %、 面積率で 1 0 %以上 6 0 %以下の焼戻マルテンサイ トおよび残部がペイナイ 卜の金属組織を有するものとしたことを特徴とする伸びと穴拡げ性 に優れた高強度薄鋼板の製造方法。
( 5 ) 連続焼鈍工程で、 600 °C以上 Ac3 点 + 5 0 °C以下に均熱し て再結晶焼鈍を施し、 平均冷却速度 1 O〜 150 °CZs で 400 °C以下 まで冷却し、 次いで 150 〜400 °Cで 1 〜 2 0分の第 1 の加熱保持を した後に、 引続き前記第 1の加熱保持温度より 30〜300 °C高い温度 かつ 500 °C以下で 1 〜 100 秒の第 2の加熱保持をした後、 冷却する ことを特徴とする ( 4 ) に記載の伸びと穴拡げ性に優れた高強度薄 鋼板の製造方法。
( 6 ) 連続焼鈍工程で、 600°C以上 Ac3 点 + 5 0 °C以下に均熱し て再結晶焼鈍を施し、 平均冷却速度 10〜150 °C/s で 400 °C以下ま で冷却し、 次いで 150 〜400 °Cで 1 〜20分の第 1 の加熱保持をした 後に、 マルテンサイ ト変態点以下まで冷却し、 その冷却終了温度以 上、 500 °C以下で 1 〜100 秒の第 2の加熱保持をした後、 冷却する ことを特徴とする ( 4 ) に記載の伸びと穴拡げ性に優れた高強度薄 鋼板の製造方法にある。 発明を実施するための最良の形態
本発明による高強度薄鋼板の組織の最大の特徴は、 焼鈍急冷工程 後に、 必要な加熱処理を施すことで、 フェライ ト、 残留オーステナ イ ト、 焼戻マルテンサイ ト、 ベイナイ トをバランスよく含む金属組 織を得て、 延性や穴拡げ性に極めて安定した材質が得られることで ある。
次に、 本発明の化学成分の限定について説明する。
Cは、 鋼の強化および焼入れ性を向上させるためには重要な元素 であり、 フェライ トとマルテンサイ トおよびべィナイ 卜等からなる 複合組織を得るのに不可欠である。 T S≥ 500MP aかつ局部成形性に 有利なペイナイ トゃ焼戻マルテンサイ トを得るために 0. 03 %以上必 要とする。 一方、 含有量が多くなるとセメン夕イ トなどの鉄系炭化 物の粗大化も起こり易くなって局部成形性が劣化するばかりか、 溶 接後の硬さ上昇が著しく 0. 25 %を上限とする。
S iは、 鋼の加工性を低下させることなく強度上昇に好ましい元素 である。 しかし、 0. 4 %未満では、 穴拡げ性に有害なパーライ ト組 織を形成し易くなる上、 フェライ トの固溶強化能の低下で、 形成さ れる組織間の硬度差が大きくなり、 穴拡げ性劣化を招く ことから、 0. 4 %を下限とした。 2. 0 %を超えると、 フェライ トの固溶強化能 の上昇で、 冷間圧延性が低下することや、 鋼板表面に生成する S i酸 化物のため化成処理性の低下を生じる。 また、 めっき密着性、 溶接 性も低下するため 2. 0 %を上限とする。
Mnは強度確保の観点で添加が必要であることに加え、 炭化物の生 成を遅らせる元素でありフェライ 卜の生成に有効な元素である。 0. 8 %未満では強度が満足せず、 またフェライ トの形成が不十分とな り延性が劣化する。 3. 1 %超ではマルテンサイ ト過多となり強度上 昇を招き延性および加工性が劣化するため、 3. 1 %を上限とする。
Pは 0. 02 %を超えると铸造時の凝固偏祈が著しく内部割れゃ穴拡 げ性の劣化を招く とともに溶接部の脆化を引き起こすため上限を 0. 02 %とする。
Sは MnS などの硫化物系介在物として残留するため有害な元素で ある。 特に、 母材強度が高くなるほど、 その影響が顕著であり、 引 張り強さが 500Mp a以上では 0. 02 %以下に抑制すべきである。 但し T i が添加されている場合、 Π系硫化物として析出が起こるため多少緩 和される。 Alは鋼の脱酸に必要な元素であるが、 2.0 %を超えるとアルミナ 等の介在物が増加し加工性を損なうため、 2.0 %を上限とする。 延 性を向上させるためには 0.2 %以上の添加が好ましいものである。
Nは 0.01%を超えると母材の時効性および加工性が劣化するため 0.01%を上限とする。
高強度鋼板とするためには一般に多量の元素添加が必要となり、 フェライ ト生成が抑制される。 このため、 組織のフェライ ト分率が 低減し、 第 2相の分率が増加するため、 特に 500MPa以上では伸びが 低下してく る。 この改善のために、 通常 Si添加、 Mn低減が多く用い られるが、 前者は化成処理性やめつき密着性が劣化すること、 後者 は強度確保が困難となることから、 本発明の目的とする鋼板におい ては利用できない。 そこで発明者らは鋭意検討した結果、 A1と Siの 効果を見出し、 式(A) の関係を満たす Al、 Si、 TSバランスを有する とき、 十分なフェライ ト分率を確保することができ、 優れた伸びも 確保することを見出した。
(0.0012 X [TS 狙い値] -0.29)/3 < [A1] +0.7 [Si] < 1.0
(A)
TS狙い値は鋼板の強度設計値で単位は MPa 、 [Al]は Alの質量% 、 [Si]は Siの質量%
A1と Siの添加量が (0.0012X [TS 狙い値]- 0.29) / 3以下となると 、 延性を向上させるために十分でなく、 1.0 以上となると、 化成処 理性やめつき密着性が悪化する。
次に、 本発明の選択元素について述べる。
Vは強度向上の目的で、 0.005 〜 1 %の範囲で添加することがで きる。
Tiは強度向上の目的と、 局部成形性への影響が比較的少ない π系 硫化物を形成して、 有害な MnS を低減するのに有効な元素である。 また、 溶接金属組織の粗大化を抑制し脆化し難くする効果もあり、 これらの効果を発揮するには 0. 002 %未満では、 不十分であること から、 0. 002 %を下限とする。 しかし、 過剰に添加すると粗大かつ 角状の T i N が増加して局部成形性を低下するばかりか、 安定な炭化 物が形成され、 母材製造時にオーステナイ 卜中の C濃度が低下して 、 所望の焼入れ組織が得られず、 引張強さも確保でき難くなること から、 1. 0 %を上限とする。
Nbは強度向上の目的と、 溶接熱影響部の軟化を抑制する微細な炭 化物を形成するのに有効な元素であり、 0. 002 %未満では、 溶接熱 影響部の軟化抑制効果が十分に得られないため、 0. 002 %を下限と する。 一方、 過剰に添加すると炭化物の増加により母材の加工性が 低下するため、 1. 0 %を上限とする。
C rも強化元素として添加できるが 0. 005 %未満では効果がでず、 2 %超では延性および化成処理性が劣化するため、 0. 005 %〜 2 % の範囲とする。
Moは強度確保と焼入れ性に効果があり、 さらにべィナイ ト組織を 得られ易くする元素である。 また、 溶接熱影響部の軟化を抑制する 効果もあり、 Nbなどとの共存によりその効果が高くなると考えられ 、 0. 005 %未満ではその効果は不十分であり、 0. 005 %を下限とす る。 しかし、 過剰に添加しても効果が飽和してしまい経済的に不利 であるため 1 %を上限とする。
Bは、 鋼の焼入れ性を向上させるとともに、 Cとの相互作用によ つて溶接熱影響部の C拡散を抑制して軟化を抑える効果のある元素 であり、 その効果を発揮させるには、 0. 0002 %以上の添加が必要に なる。 一方、 過剰に添加すると、 母材の加工性を低下するばかりか 、 鋼の脆化や熱間加工性の低下が起こるため、 0. 1 %を上限とする Mgはこの添加により、 酸素と結合して酸化物を形成するが、 この とき生成される MgO または MgO を含む A 12 03 、 S i 02、 MnO 、 T i 2 03 等との複合化合物は非常に微細に析出するものと考えられる。 鋼中 に微細かつ均一に分散したこれらの酸化物は、 明確ではないが、 亀 裂の起点となる打抜き面やせん断面において、 打ち抜き加工あるい はせん断加工時に微細ボイ トを形成し、 その後のバーリング加工や 伸びフランジ加工の際、 応力集中を抑制することで粗大クラックへ の亀裂進展を防ぐ効果があると考えられる。 これにより、 穴拡げ性 や伸びフランジ成形性を向上させることが可能となるが 0. 0005 %未 満ではその効果が不十分であるため、 0. 0005 %を下限とする。 一方 、 0. 0 1 %を超える添加は添加量に対する改善代が飽和するばかりで なく、 逆に鋼の清浄度を劣化させ、 穴拡げ性、 伸びフランジ成形性 を劣化させるため 0. 0 1 %を上限とする。
REM は Mgと同様の効果がある元素と考えられる。 十分に確かめら れていないが、 微細な酸化物形成により亀裂抑制の効果により穴拡 げ性ゃ伸びフランジ成形性の向上が期待できる元素と考えられるが 、 0. 0005 %未満ではその効果が不十分であるため、 0. 0005 %を下限 とする。 一方、 0. 0 1 %を超える添加では添加量に対する改善代が飽 和するばかりでなく、 逆に鋼の清浄度を劣化させ、 穴拡げ性、 伸び フランジ成形性を劣化させるため 0. 0 1 %を上限とする。
C aは、 硫化物系介在物の形態制御 (球状化) により、 母材の局部 成形性を向上させる効果があるが、 0. 0005 %未満ではその効果が不 十分であるため、 0. 0005 %を下限とする。 また、 過剰に添加すると 効果が飽和するばかりか、 介在物の増加による逆効果 (局部成形性 劣化) が起こるため上限を 0. 0 1 %とする。
本発明において、 鋼板の組織をフェライ ト、 残留オーステナイ ト 、 焼戻マルテンサイ ト、 ベイナイ トの複合組織とする理由は強度に 加え、 伸びと穴拡げ性に優れた鋼板を得るためである。 フェライ ト とはポリゴナルフェライ 卜、 ペイ二ティ ックフェライ 卜を指す。 更に、 本発明においては、 高強度薄鋼板の金属組織において最大 の特徴は、 鋼中に面積率で 1 0 %以上 6 0 %以下の焼戻しマルテン サイ トを有することである。 この焼戻しマルテンサイ トは、 焼鈍の 冷却過程で生成したマルテンサイ 卜がマルテンサイ 卜変態点以下の 冷却後、 150 〜400 °Cで 1 〜 2 0分保持する加熱処理や、 さ らに前 記保持温度より 5 0〜300 °C高い温度かつ 500 °C以下で 1〜 100 秒 保持を加えることにより焼戻され焼戻しマルテンサイ ト組織となる 。 ここで、 焼戻しマルテンサイ トの面積率が 1 0 %未満では組織間 の硬度差が大きくなり過ぎて穴拡げ率の向上が見られず、 一方、 6 0 %超では鋼板強度が低下し過ぎる。 更に、 フェライ トを面積率で 1 0〜 8 5 %、 残留オーステナイ トを体積率で 1〜 1 0 %として鋼 板中にバランスよく存在することにより伸びと穴拡げ率が著しく改 善されるものと考えられる。 フェライ ト面積率が 1 0 %未満では、 伸びが充分に確保できなく、 フェライ ト面積率が 8 5 %超では、 強 度不足になり好ましくないものである。 又、 本発明のプロセスにお いては、 1 %以上の残留オーステナイ トは残るものであり、 1 0 % 超の残留オーステナイ ト体積率では残留オーステナイ トは加工によ りマルテンサイ トに変態し、 この時、 マルテンサイ ト相とその周り の相との界面にはポイ ドや多くの転位が発生し、 このような場所に 水素が集積し、 遅れ破壊特性が劣り、 好ましくないものである。
なお、 残部組織のベイナイ トについて、 焼き戻しされていないマ ルテンサイ 卜が全組織に対する面積率で 1 0 %以下含まれていても 材質に大きな影響なく、 構わない。
次に製造方法について説明する。
まず、 前記成分組成からなるスラブを製造する。 このスラブを高 温のまま、 あるいは室温まで冷却した後、 加熱炉 挿入し、 1150〜
1250°Cの温度範囲で加熱し、 その後、 800 〜950 °Cの温度範囲で熱 間仕上圧延を行い、 700 °C以下で巻取り熱延鋼板とする。 熱延仕上 温度が 800 °C未満では、 結晶粒が混粒状態となり母材の加工性を低 下させる。 950 °C超ではオーステナイ ト粒が粗大化して、 所望のミ クロ組織が得られない。 巻取温度は低温の方がパ一ライ ト組織の発 生を抑制できるが、 冷却負荷も考慮すると好ましく は 400 〜600 °C の範囲とする。
次いで、 酸洗の後、 冷間圧延、 焼鈍を行い薄鋼板とする。 冷間圧 延率は 3 0〜 8 0 %の範囲が圧延負荷、 材質上好ましい。
焼鈍温度は、 高強度鋼板の所定の強度および加ェ性確保に重要で あり、 600 °C〜Ac3 + 5 0 °Cが好ましい。 600 °C未満では、 十分な 再結晶が行われず、 母材そのものの加工性が安定的に得られ難い。 また、 Ac3 + 5 0 °C超では、 オーステナイ ト粒径が粗大化し、 フエ ライ ト生成が抑制され、 所望のミクロ組織が得られ難くなる。 また 、 本発明で規定されるミクロ組織を得るには連続焼鈍による方法が 好ましい。
次いで、 600 °C以上 Ar3 以下まで平均冷却速度 3 0 °C/s以下で冷 却し、 フェライ トを生成させる。 600 °C未満ではパーライ 卜が析出 し材質が劣化し好ましくなく、 Ar3 超では所定のフェライ ト面積率 が得られない。 また平均冷却速度が 3 0 °C/s超でも所定のフェライ ト体積率が得られないため、 平均冷却速度を 3 0 °C/s以下とし、 10 °C/s以下がより好ましいものである。
次に、 より穴拡げ性、 伸びフランジ性の向上に効果のある面積率 で 1 0 %以上 6 0 %以下の焼戻マルテンサイ トの確保について説明 する。
前記焼鈍とそれに引き続く冷却に続いて、 平均冷却速度 10〜 150 °C/sで 400 °C以下まで冷却する。 10°C/ s 未満では未変態オーステ ナイ 卜の大部分がペイナイ ト変態することで、 その後のマルテンサ イ ト生成が充分でなく、 強度不足となる。 150 °CZ s超では鋼板の 形状を著しく悪化させるため好ましくない。 また、 400 °C超ではマ ルテンサイ ト量が充分確保できず強度不足となる。 板形状や、 連続 焼鈍ライ ンに連設して本発明を実施する製造ライ ンで効率よく生産 するには 100 〜400 °Cもしく はマルテンサイ ト変態点温度〜 400 °C が好ましい。 なお、 マルテンサイ ト変態点 M s は M s (°C) =561 -471 X C ( ) - 33Mn (%) - 17XNi ( ) - 17XCr (%) - 21 XMo ( % ) で求められる。
次いで、 加熱保持工程で 150 〜400 °Cの温度域で 1〜 2 0分保持 し冷却する。 150 °C未満ではマルテンサイ 卜が焼き戻されず組織間 の硬度差が大きくなり、 またべイナイ ト変態も不十分であり所定の 延性、 穴拡げ性が得られない。 400 °C超では焼き戻されすぎて強度 が低下し、 好ましくないものである。
また、 本加熱保持工程で焼戻マルテンサイ 卜を確保するためには 、 上限をマルテンサイ 卜変態点以下とすることが好ましい。
また、 本加熱保持工程でペイナイ トを確保するためには下限をマ ルテンサイ ト変態点超とすることが好ましい。
保持時間が 1分未満では焼戻や変態が殆ど進展しないか不完全で あり、 延性、 穴拡げ率が向上しない。 20分超では焼戻や変態がほぼ 終了しているため延長しても効果はない。
なお、 前記の加熱保持工程は連続焼鈍ライ ンに連設されたもので も、 別ライ ンでも構わないが、 連続焼鈍設備に連設されたものや連 続焼鈍ライ ンの過時効炉で実施することが生産性上好ましい。
また、 ペイナイ トを確実に確保した上で焼戻マルテンサイ トを確 保するには、 前記の加熱保持工程を第 1 の加熱保持工程として、 15 0 〜400 °C以下で加熱保持し、 1 〜 2 0分保持した後、 第 2 の加熱 保持工程として、 第 1 の加熱保持工程の保持温度より 3 0〜3 00 °C高 い温度かつ 5 00 °C以下で 1 〜 1 00 秒保持した後冷却することが望ま しい。
第 2の加熱保持工程の温度が第 1 の加熱保持工程の保持温度 + 3 0 °C未満ではマルテンサイ トが焼き戻されず組織間の硬度差が大きく なり、 所定の延性、 穴拡げ性が得られない。 第 2 の加熱保持工程の 温度が第 1 の加熱保持工程の保持温度 + 300 °C超では焼き戻されす ぎて強度が低下し、 好ましくないものである。
保持時間が I s未満では焼戻が殆ど進展しないか不完全であり、 延 性、 穴拡げ率が向上しない。 100 秒超では焼戻はほぼ終了している ため延長しても効果はない。
また、 ベイナイ トを確実に確保した上で、 未変態のオーステナイ 卜をマルテンサイ ト化した上で焼戻マルテンサイ 卜を確保するには 、 前記の加熱保持工程を第 1 の加熱保持工程として、 1 50 〜400 °C 以下で加熱保持し、 1 〜20分保持した後、 マルテンサイ ト変態点以 下まで冷却し、 その冷却終了温度以上、 5 00 °C以下で 1 〜 1 00 秒保 持する第 2 の加熱保持を実施した後冷却することが望ましい。 第 2 の加熱保持工程の温度を、 前記マルテンサイ ト変態点以下に冷却し た時の冷却終了温度 + 5 0〜300 °Cかつ 5 00 °C以下とすると、 焼戻 マルテンサイ トが確実に確保でき、 好ましい。
第 2 の加熱保持工程の温度がその冷却終了温度未満では、 マルテ ンサイ トが焼き戻されず組織間の硬度差が大きくなり、 所定の延性 、 穴拡げ性が得られない。 第 2の加熱保持工程の温度の下限は、 冷 却終了温度 + 5 0 °Cかつマルテンサイ ト変態点以上がより好ましく 、 冷却終了温度 + 3 0 0 °Cであれば一層好ましい。 第 2の加熱保持 工程の温度が 5 00 °C超では焼き戻されすぎて強度が低下し、 好まし くないものである。
保持時間が 1 s 未満では焼戻が殆ど進展しないか不完全であり、 延性、 穴拡げ率が向上しない。 100 秒超では焼戻はほぼ終了してい るため延長しても効果はない。
尚、 本鋼板は冷延鋼板、 めっき鋼板のいずれでも構わない。 さら にめつきは通常の亜鉛めつき、 アルミめつき等のいずれでも構わな い。 めっきは溶融めつきおよび電気めつきのいずれでもよく、 さら にめつき後に合金化処理を施しても構わないし、 複層めっきでも構 わない。 また、 めっきを施さない鋼板上やめつき鋼板上にフィルム ラミネート処理をした鋼板も本発明を逸脱するものではない。 実施例
表 1 に示した成分組成を有する鋼を真空溶解炉にて製造し、 冷却 凝固後 1200〜 1240°Cまで再加熱し、 880〜920 °Cにて仕上圧延を行 い (板厚 2. 3mn 、 冷却後 600 °Cで 1時間保持することで熱延の巻取 熱処理を再現。 得られた熱延板を研削によりスケール除去し、 冷間 圧延(1. 2mm) を施し、 その後連続焼鈍シミュレーターを用い、 750 〜880 °C X75s の焼鈍を行った。
その後、 表 2の条件の [8] (比較例) 、 [2] 、 [6] (本発明例) で冷却、 加熱保持を実施した。
さらに、 表 1 に記載されている鋼種 Gを用い、 表 2の条件の [1] 、 [5] (本発明例) 、 [3] 、 [4] 、 [7] (比較例) で焼戻の加熱保 持条件を変更、 比較した。 I
Figure imgf000015_0001
t^Z,8T0/S00 df/X3d 80Z,8fO/900Z OAV 2
Figure imgf000016_0001
なお、 本発明に用いる各種の試験方法は以下の如くである。
引張特性 : JIS5号引張試験片の圧延方向と直角方向の引張試験 を実施し評価
穴拡げ率 : 日本鉄鋼連盟規格 JFST10(H-1996穴拡げ試験方法を 採用
Φ 10皿の打ち抜き穴 (ダイ内径 10.3匪、 ク リアランス 12 .5%) に頂角 60° の円錐ポンチを打ち抜き穴のバリが外 側になる方向に 2 0龍/ minで押し広げ成形する。 穴拡げ率 λ (%) = { (D— D o ) /D o } x 100 D : 亀裂が板厚を貫通した時の穴径
D o : 初期穴径(10mm)
金属組織 :
フェライ 卜面積率 : フェライ トはナイタールエッチングで観察 フェライ 卜面積率の定量化はナイタールエッチングで、 試料を研磨 (アルミナ仕上) し、 腐食液 (純水、 ピロ亜 硫酸ナト リウム、 エチルアルコール、 ピク リ ン酸の混合 液) に 10秒間浸した後、 再度研磨を実施し、 水洗い後試 料を冷風にて乾燥させる。 乾燥後試料の組織を 1000倍に て 100 H m X 100 I m のエリアをル一ゼックス装置によ り面積測定してフェライ トの面積%を決定した。 各表で は、 このフェライ 卜面積率をフェライ ト面積%と表記し た。
焼戻マルテンサイ ト
面積率 : 光学顕微鏡での観察及びマルテンサイ トはレペラーェ
ツチングで観察。
焼戻マルテンサイ ト面積率の定量化はレペラ一エツチン グで、 試料を研磨 (アルミナ仕上) し腐食液 (純水、 ピ 口亜硫酸ナトリ ウム、 エチルアルコール、 ピク リ ン酸の 混合液) に 10秒間浸した後、 再度研磨を実施し、 水洗い 後試料を冷風にて乾燥させる。 乾燥後試料の組織を 1000 倍にて 100 II m X 100 m のエリアをル一ゼックス装置 により面積測定して焼戻マルテンサイ 卜の面積%を決定 した。 各表では、 この焼き戻しマルテンサイ ト面積率を 焼戻マルテンサイ ト面積%と表記した。
残留オーステナイ ト体積率 : 供試材板の表層より 1/4 厚まで化 学研磨した面で Μ ο Κ θί線によるフェライ トの ( 2 0 0 ) 、 ( 2 1 0 ) 面積分強度とォ一ステナイ トの ( 2 0 0 ) 、 ( 2 2 0 ) 、 および ( 3 1 1 ) 面積分強度から残留 オーステナイ トを定量化し、 残留オーステナイ ト体積率 とした。 残留オーステナイ ト体積率が 1〜 10%以上を良 好とした。 各表では、 この残留オーステナイ ト体積率を残留ァ体積
%と率をふ pLした。
実施例 1 の表 2 に示す実験番号 [8] の比較例の試験結果を表 3 に 示す。 更に、 本発明の実験番号 [ 2] の試験 Wa果を表 4に、 実験番号
[6] を表 5 に、 実験番号 [9] を表 6 に各 示す 。 又 、 実施例 2 の試 験結果を表 7 に示すものである。
(実施例 1 ) 比較例として従来の操業条件と同様の実験番号 [8] と本発明例の実験番号 [ 2] [6] [9] を比較すると、 本発明例の 方がより穴拡げ率、 伸びが良好な値を示している と力 sゎカゝる。
また、 同レベルの引張強さで成分も概ね 等だが (A) 式を満足す るものとしないものの比較として、 鋼種 B と C Eと F Kと Lで は、 (A) 式を満足する C F Lの方がフェラィ 卜面積率が大きく
、 伸びも良好な成績を示している。
(実施例 2 ) さ らに焼戻条件を変更、 比較すると 、 焼戻温度の高 い実験番号 [4] [7] では強度低下が大きく、 伸びもむしろ低下し ている。 伸びの低下はパ一ライ トの発生によるものと考えられる。 本発明例の実験番号 [ 1 ] [2] [ 5] [ 6] 〖9] はいすれも良好 な結果を示した。
表 3
灘例 1)
(比翻) き≠^ は不合
Figure imgf000019_0001
表 4
号 2] ( ) 下 き:^ mま不合格
Figure imgf000020_0001
表 5
Figure imgf000021_0001
表 6
号 9 ( 明) き^ mま 合格
Figure imgf000022_0001
表 Ί
讓例 2)
鋼種 Gで麟条件の を見る
Figure imgf000023_0001
産業上の利用可能性
本発明によれば、 自動車部品などに使用される、 伸びと穴拡げ性 に優れた高強度薄鋼板およびその製造方法を提供することが可能と なり、 その工業的価値は極めて大きいものである。

Claims

1. 質量%で、 C : 0.03〜0.25%、 Si: 0.4 〜 2.0 %、 Mn: 0.8 〜3.1 %、 P≤0.02% , S≤0.02% , Al≤2.0 %、 N≤0.01%を含 有し、 残部が Feおよび不可避的不純物からなり、 ミクロ組織が、 フ エライ トが面積率で 1 0〜 8 5 %、 残留オーステナイ トが体積率で
一-口一
1〜 1 0 %、 面積率で 1 0 %以上 6 0 %以下の焼戻マルテンサイ ト および残部がペイナイ トであることを特徴とする伸びと穴拡げ性に 優れた高強度薄鋼板。 の
2. 化学成分と して、 さ らに、 V : 0.005 〜 1 %、 Ti: 0.002 〜 1 %、 Nb: 0.002 〜 1 %、 Cr: 0.005 〜 2囲 %、 Mo: 0.005 〜 1 %、 B : 0.0002〜0.1 %、 Mg: 0.0005〜0.01%、 REM:0.0005〜0, 01%、 Ca: 0.0005〜0.01%の 1種または 2種以上を含むことを特徵とする 請求項 1に記載の伸びと穴拡げ性に優れた高強度薄鋼板。
3. さ らに、 下記(A) の式を満足することを特徴とする請求項 1 または 2に記載の伸びと穴拡げ性に優れた高強度薄鋼板。
(0.0012 X [TS 狙い値]- 0.29)/3 < [A1] +0.7 [Si]く 1.0
(A)
TS狙い値は鋼板の強度設計値で単位は MPa 、 [M]は A1の質量
%、 [Si]は Siの質量%
4. 質量%で、 C : 0.03〜0.25%、 Si: 0.4 〜2.0 %、 Mn: 0.8 〜3.1 %、 P≤0.02% , S≤0.02% , Al≤ 2.0 %、 N≤0.01%を含 有し、 残部が Feおよび不可避的不純物からなるスラブを製造し、 11 50〜 1250°Cの範囲で加熱し、 その後 800 〜950 °Cの温度範囲で熱間 圧延を行い、 700 以下で卷取り、 次いで、 通常の酸洗の後、 圧下 率を 3 0〜 8 0 %として冷間圧延後、 連続焼鈍工程で 600°C以上 Ac 3 点 + 5 0°C以下に均熱して再結晶焼鈍を施し、 600 °C以上 Ar3 点 以下まで平均冷却速度 3 0 °C/ s以下で冷却し、 続いて 400 °C以下 まで平均冷却速度 1 O〜150 °CZs で冷却し、 次いで、 150 〜400 °Cで 1〜 2 0分保持した後に冷却することにより、 ミクロ組織が、 フェライ トが面積率で 1 0〜 8 5 %、 残留オーステナイ トが体積率 で 1 〜 1 0 %、 面積率で 1 0 %以上 6 0 %以下の焼戻マルテンサイ トおよび残部がベイナイ トの金属組織を有するものとしたことを特 徴とする伸びと穴拡げ性に優れた高強度薄鋼板の製造方法。
5. 連続焼鈍工程で 600 °C以上 Ac3 点 + 5 0 °C以下に均熱して再 結晶焼鈍を施し、 平均冷却速度 1 O〜 150 °C/s で 400 °C以下まで 冷却し、 次いで 150 〜400 °Cで 1 〜 2 0分の第 1 の加熱保持をした 後に、 引続き前記第 1の加熱保持温度より 30〜300 °C高い温度かつ 500 °C以下で 1〜 100 秒の第 2の加熱保持をした後、 冷却すること を特徴とする請求項 4に記載の伸びと穴拡げ性に優れた高強度薄鋼 板の製造方法。
6. 連続焼鈍工程で 600°C以上 Ac3 点 + 5 0 °C以下に均熱して再 結晶焼鈍を施し、 平均冷却速度 10〜150 °C/s で 400 °C以下まで冷 却し、 次いで 150 〜 400 °Cで 1〜 20分の第 1 の加熱保持をした後に 、 マルテンサイ ト変態点以下まで冷却し、 その冷却終了温度以上、 500 °C以下で 1〜 100 秒の第 2の加熱保持をした後、 冷却すること を特徴とする、 請求項 4に記載の伸びと穴拡げ性に優れた高強度薄 鋼板の製造方法。
PCT/JP2005/018724 2004-10-06 2005-10-05 伸びと穴拡げ性に優れた高強度薄鋼板およびその製造方法 WO2006038708A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
CA2582409A CA2582409C (en) 2004-10-06 2005-10-05 High strength thin-gauge steel sheet excellent in elongation and hole expandability and method of production of same
EP13189987.4A EP2690191B1 (en) 2004-10-06 2005-10-05 A method of production of high strength thin-gauge steel sheet excellent in elongation and hole expandability
EP05793806.0A EP1808505B1 (en) 2004-10-06 2005-10-05 Cold rolled high strength thin-gauge steel sheet excellent in elongation and hole expandibility
ES05793806T ES2712142T3 (es) 2004-10-06 2005-10-05 Lámina de acero de calibre fino de alta resistencia laminada en frío excelente en elongación y capacidad de expansión de agujeros
US11/663,581 US20080000555A1 (en) 2004-10-06 2005-10-05 High Strength Thin-Gauge Steel Sheet Excellent in Elongation and Hole Expandability and Method of Production of Same
PL05793806T PL1808505T3 (pl) 2004-10-06 2005-10-05 Blacha stalowa cienka walcowana na zimno o dużej wytrzymałości oraz doskonałym wydłużeniu i podatności na powiększenie otworu
CN2005800342050A CN101035921B (zh) 2004-10-06 2005-10-05 延伸率和扩孔性优良的高强度薄钢板及其制造方法
PL13189987T PL2690191T3 (pl) 2004-10-06 2005-10-05 Sposób wytwarzania blachy stalowej cienkiej o dużej wytrzymałości oraz doskonałym wydłużeniu i podatności na powiększanie otworu
US12/583,846 US8137487B2 (en) 2004-10-06 2009-08-27 Method of production of high strength thin-gauge steel sheet excellent in elongation and hole expandability

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-293990 2004-10-06
JP2004293990A JP4445365B2 (ja) 2004-10-06 2004-10-06 伸びと穴拡げ性に優れた高強度薄鋼板の製造方法

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US11/663,581 A-371-Of-International US20080000555A1 (en) 2004-10-06 2005-10-05 High Strength Thin-Gauge Steel Sheet Excellent in Elongation and Hole Expandability and Method of Production of Same
US12/583,846 Division US8137487B2 (en) 2004-10-06 2009-08-27 Method of production of high strength thin-gauge steel sheet excellent in elongation and hole expandability

Publications (1)

Publication Number Publication Date
WO2006038708A1 true WO2006038708A1 (ja) 2006-04-13

Family

ID=36142775

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/018724 WO2006038708A1 (ja) 2004-10-06 2005-10-05 伸びと穴拡げ性に優れた高強度薄鋼板およびその製造方法

Country Status (10)

Country Link
US (2) US20080000555A1 (ja)
EP (2) EP2690191B1 (ja)
JP (1) JP4445365B2 (ja)
KR (1) KR20070061859A (ja)
CN (2) CN101851730A (ja)
CA (1) CA2582409C (ja)
ES (2) ES2712142T3 (ja)
PL (2) PL2690191T3 (ja)
TW (1) TWI305232B (ja)
WO (1) WO2006038708A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120009434A1 (en) * 2008-07-11 2012-01-12 Kabushiki Kaisha Kobe Seiko Sho Cold-rolled steel sheet
CN103469058A (zh) * 2013-10-08 2013-12-25 武汉钢铁(集团)公司 抗拉强度450MPa级具有高扩孔性能的铁素体贝氏体钢及其生产方法
WO2021172297A1 (ja) * 2020-02-28 2021-09-02 Jfeスチール株式会社 鋼板、部材及びそれらの製造方法
WO2021172299A1 (ja) * 2020-02-28 2021-09-02 Jfeスチール株式会社 鋼板、部材及びそれらの製造方法
WO2021172298A1 (ja) * 2020-02-28 2021-09-02 Jfeスチール株式会社 鋼板、部材及びそれらの製造方法
US11371110B2 (en) * 2013-04-02 2022-06-28 Nippon Steel Corporation Cold-rolled steel sheet
CN115003841A (zh) * 2020-01-31 2022-09-02 杰富意钢铁株式会社 钢板、部件及它们的制造方法

Families Citing this family (109)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4235030B2 (ja) * 2003-05-21 2009-03-04 新日本製鐵株式会社 局部成形性に優れ溶接部の硬さ上昇を抑制した引張強さが780MPa以上の高強度冷延鋼板および高強度表面処理鋼板
JP4679195B2 (ja) * 2005-03-23 2011-04-27 日新製鋼株式会社 低降伏比高張力溶融亜鉛めっき鋼板の製造方法
EP2053140B1 (en) * 2006-07-14 2013-12-04 Kabushiki Kaisha Kobe Seiko Sho High-strength steel sheets and processes for production of the same
JP4743076B2 (ja) * 2006-10-18 2011-08-10 株式会社神戸製鋼所 伸び及び伸びフランジ性に優れた高強度鋼板
EP2031081B1 (de) * 2007-08-15 2011-07-13 ThyssenKrupp Steel Europe AG Dualphasenstahl, Flachprodukt aus einem solchen Dualphasenstahl und Verfahren zur Herstellung eines Flachprodukts
ES2387040T3 (es) * 2007-08-15 2012-09-12 Thyssenkrupp Steel Europe Ag Acero de doble fase, producto plano de un acero de doble fase de este tipo y procedimiento para la fabricación de un producto plano
WO2009054539A1 (ja) * 2007-10-25 2009-04-30 Jfe Steel Corporation 加工性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
JP5256689B2 (ja) * 2007-10-25 2013-08-07 Jfeスチール株式会社 加工性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
JP5256690B2 (ja) * 2007-10-25 2013-08-07 Jfeスチール株式会社 加工性および耐衝撃特性に優れる高強度溶融亜鉛めっき鋼板およびその製造方法
JP5194841B2 (ja) * 2008-01-31 2013-05-08 Jfeスチール株式会社 成形性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
JP5369663B2 (ja) * 2008-01-31 2013-12-18 Jfeスチール株式会社 加工性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
JP5167487B2 (ja) 2008-02-19 2013-03-21 Jfeスチール株式会社 延性に優れる高強度鋼板およびその製造方法
AU2009234667B2 (en) 2008-04-10 2012-03-08 Nippon Steel Corporation High-strength steel sheets which are extremely excellent in the balance between burring workability and ductility and excellent in fatigue endurance, zinc-coated steel sheets, and processes for production of both
KR101027285B1 (ko) * 2008-05-29 2011-04-06 주식회사 포스코 열처리성이 우수한 초고강도 열간성형 가공용 강판, 열처리경화형 부재 및 이들의 제조방법
JP5504643B2 (ja) * 2008-08-19 2014-05-28 Jfeスチール株式会社 加工性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
JP5418047B2 (ja) * 2008-09-10 2014-02-19 Jfeスチール株式会社 高強度鋼板およびその製造方法
KR101109953B1 (ko) * 2008-09-29 2012-02-24 현대제철 주식회사 연신율과 신장플랜지성이 우수한 고장력 열연강판 및 그 제조방법
JP5476735B2 (ja) * 2009-02-20 2014-04-23 Jfeスチール株式会社 加工性に優れた高強度熱延鋼板およびその製造方法
JP5463685B2 (ja) * 2009-02-25 2014-04-09 Jfeスチール株式会社 加工性および耐衝撃性に優れた高強度冷延鋼板およびその製造方法
JP4659142B2 (ja) * 2009-03-27 2011-03-30 新日本製鐵株式会社 浸炭焼入れ性の優れた炭素鋼板およびその製造方法
JP5493986B2 (ja) * 2009-04-27 2014-05-14 Jfeスチール株式会社 加工性に優れた高強度鋼板および高強度溶融亜鉛めっき鋼板並びにそれらの製造方法
JP5412182B2 (ja) 2009-05-29 2014-02-12 株式会社神戸製鋼所 耐水素脆化特性に優れた高強度鋼板
JP4737319B2 (ja) * 2009-06-17 2011-07-27 Jfeスチール株式会社 加工性および耐疲労特性に優れた高強度合金化溶融亜鉛めっき鋼板およびその製造方法
KR100958019B1 (ko) * 2009-08-31 2010-05-17 현대하이스코 주식회사 복합조직강판 및 이를 제조하는 방법
JP4949536B2 (ja) * 2009-11-30 2012-06-13 新日本製鐵株式会社 耐水素脆化特性に優れた引張最大強度900MPa以上の高強度鋼板及びその製造方法
CN102712171B (zh) 2009-12-21 2015-03-25 塔塔钢铁艾默伊登有限责任公司 高强度的热浸镀锌钢带材
JP5589893B2 (ja) * 2010-02-26 2014-09-17 新日鐵住金株式会社 伸びと穴拡げに優れた高強度薄鋼板およびその製造方法
JP5327106B2 (ja) * 2010-03-09 2013-10-30 Jfeスチール株式会社 プレス部材およびその製造方法
JP5739669B2 (ja) * 2010-04-20 2015-06-24 株式会社神戸製鋼所 延性に優れた高強度冷延鋼板の製造方法
JP5141811B2 (ja) * 2010-11-12 2013-02-13 Jfeスチール株式会社 均一伸びとめっき性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
US10280475B2 (en) * 2010-12-17 2019-05-07 Nippon Steel & Sumitomo Metal Corporation Hot-dip galvanized steel sheet and manufacturing method thereof
KR101243002B1 (ko) * 2010-12-22 2013-03-12 주식회사 포스코 연신율이 우수한 고강도 강판 및 그 제조방법
CN104762565B (zh) * 2011-03-31 2017-04-12 株式会社神户制钢所 加工性优异的高强度钢板及其制造方法
JP5862051B2 (ja) * 2011-05-12 2016-02-16 Jfeスチール株式会社 加工性に優れる高強度冷延鋼板ならびにその製造方法
EP2719786B1 (en) * 2011-06-10 2016-09-14 Kabushiki Kaisha Kobe Seiko Sho Process for producing a hot press-formed product.
US9745639B2 (en) 2011-06-13 2017-08-29 Kobe Steel, Ltd. High-strength steel sheet excellent in workability and cold brittleness resistance, and manufacturing method thereof
EP2728027B1 (en) 2011-06-30 2019-01-16 Hyundai Steel Company Heat-hardened steel with excellent crashworthiness and method for manufacturing heat-hardenable parts using same
JP5273324B1 (ja) 2011-07-29 2013-08-28 新日鐵住金株式会社 曲げ性に優れた高強度亜鉛めっき鋼板およびその製造方法
US20140205858A1 (en) * 2011-09-13 2014-07-24 Tata Steel Ijmuiden B.V. High strength hot dip galvanised steel strip
ES2670893T3 (es) 2011-09-30 2018-06-01 Nippon Steel & Sumitomo Metal Corporation Chapa de acero galvanizado por inmersión en caliente de alta resistencia y chapa de acero aleado galvanizado por inmersión en caliente de alta resistencia, teniendo cada una de ellas una resistencia a la tracción de 980 mpa o superior, excelente adhesión de chapado, excelente formabilidad y excelentes propiedades de expansión de orificios, y método para producir las mismas
MX2014003713A (es) 2011-09-30 2014-06-05 Nippon Steel & Sumitomo Metal Corp Placa de acero galvanizado, y metodo para fabricarla.
MX2014003714A (es) 2011-09-30 2014-07-09 Nippon Steel & Sumitomo Metal Corp Lamina de acero galvanizada por inmersion en caliente, de alta resistencia, y lamina de acero galvanizada por inmersion en caliente, aleada, de alta resistencia, que tiene excelente formabilidad y pequeña anisotropia del material, con resistencia a la traccion maxima de 980 mpa o mas metodo de fabricacion de las mismas.
EP2765212B1 (en) 2011-10-04 2017-05-17 JFE Steel Corporation High-strength steel sheet and method for manufacturing same
TWI467030B (zh) * 2011-10-06 2015-01-01 Nippon Steel & Sumitomo Metal Corp 鋼板及其製造方法
KR101598313B1 (ko) * 2011-12-15 2016-02-26 가부시키가이샤 고베 세이코쇼 강도 및 연성의 편차가 작은 고강도 냉연 강판 및 그 제조 방법
KR20140099544A (ko) * 2011-12-26 2014-08-12 제이에프이 스틸 가부시키가이샤 고강도 박강판 및 그의 제조 방법
TWI468534B (zh) * 2012-02-08 2015-01-11 Nippon Steel & Sumitomo Metal Corp 高強度冷軋鋼板及其製造方法
JP5348268B2 (ja) 2012-03-07 2013-11-20 Jfeスチール株式会社 成形性に優れる高強度冷延鋼板およびその製造方法
JP5890711B2 (ja) * 2012-03-15 2016-03-22 株式会社神戸製鋼所 熱間プレス成形品およびその製造方法
JP5890710B2 (ja) * 2012-03-15 2016-03-22 株式会社神戸製鋼所 熱間プレス成形品およびその製造方法
JP5609945B2 (ja) * 2012-10-18 2014-10-22 Jfeスチール株式会社 高強度冷延鋼板およびその製造方法
CN102912235B (zh) * 2012-10-29 2014-11-12 武汉钢铁(集团)公司 抗拉强度590MPa级热轧双相钢及其制造方法
JP5632947B2 (ja) * 2012-12-12 2014-11-26 株式会社神戸製鋼所 加工性と低温靭性に優れた高強度鋼板およびその製造方法
CN103060690A (zh) * 2013-01-22 2013-04-24 宝山钢铁股份有限公司 一种高强度钢板及其制造方法
KR20150132208A (ko) * 2013-03-11 2015-11-25 타타 스틸 이즈무이덴 베.뷔. 고강도 용융 침지 아연도금 복합상 강 스트립
KR101299896B1 (ko) * 2013-05-30 2013-08-23 주식회사 포스코 인장강도 1.5GPa급의 초고강도 강판의 제조방법
JP2015200012A (ja) * 2014-03-31 2015-11-12 株式会社神戸製鋼所 延性、伸びフランジ性、および溶接性に優れた高強度冷延鋼板、高強度溶融亜鉛めっき鋼板、および高強度合金化溶融亜鉛めっき鋼板
WO2016020714A1 (en) * 2014-08-07 2016-02-11 Arcelormittal Method for producing a coated steel sheet having improved strength, ductility and formability
WO2016135794A1 (ja) * 2015-02-27 2016-09-01 Jfeスチール株式会社 高強度冷延鋼板およびその製造方法
US10465260B2 (en) * 2015-04-10 2019-11-05 The Nanosteel Company, Inc. Edge formability in metallic alloys
CN105568147A (zh) * 2015-12-31 2016-05-11 南阳汉冶特钢有限公司 一种铝板带拉伸机钳口用q550特厚板及其生产方法
KR101726130B1 (ko) * 2016-03-08 2017-04-27 주식회사 포스코 성형성이 우수한 복합조직강판 및 그 제조방법
EP3436613B1 (en) * 2016-03-30 2020-05-27 Tata Steel Limited A hot rolled high strength steel (hrhss) product with tensile strength of 1000 -1200 mpa and total elongation of 16%-17%
US11560606B2 (en) 2016-05-10 2023-01-24 United States Steel Corporation Methods of producing continuously cast hot rolled high strength steel sheet products
US11993823B2 (en) 2016-05-10 2024-05-28 United States Steel Corporation High strength annealed steel products and annealing processes for making the same
AU2017263399B2 (en) 2016-05-10 2022-03-24 United States Steel Corporation High strength steel products and annealing processes for making the same
EP3498876B1 (en) * 2016-08-10 2020-11-25 JFE Steel Corporation Cold-rolled high-strength steel sheet, and production method therefor
WO2018043456A1 (ja) 2016-08-31 2018-03-08 Jfeスチール株式会社 高強度冷延薄鋼板及びその製造方法
WO2018115936A1 (en) * 2016-12-21 2018-06-28 Arcelormittal Tempered and coated steel sheet having excellent formability and a method of manufacturing the same
EP3575425A4 (en) * 2017-01-30 2020-05-13 Nippon Steel Corporation STEEL SHEET
KR20190130131A (ko) * 2017-02-21 2019-11-21 더 나노스틸 컴퍼니, 인코포레이티드 금속 합금의 개선된 에지 성형성
WO2018179386A1 (ja) 2017-03-31 2018-10-04 新日鐵住金株式会社 冷間圧延鋼板および溶融亜鉛めっき冷間圧延鋼板
JP6763479B2 (ja) 2017-04-21 2020-09-30 日本製鉄株式会社 高強度溶融亜鉛めっき鋼板およびその製造方法
CN107747042A (zh) * 2017-11-06 2018-03-02 攀钢集团攀枝花钢铁研究院有限公司 一种690MPa级经济型高表面质量高扩孔钢及其制备方法
RU2020116368A (ru) 2017-11-15 2021-12-15 Ниппон Стил Корпорейшн Высокопрочный холоднокатаный стальной лист
MX2020005485A (es) 2017-11-29 2020-08-27 Jfe Steel Corp Lamina de acero laminada en frio de alta resistencia y metodo para la fabricacion de la misma.
DE102017130237A1 (de) 2017-12-15 2019-06-19 Salzgitter Flachstahl Gmbh Hochfestes, warmgewalztes Stahlflachprodukt mit hohem Kantenrisswiderstand und gleichzeitig hohem Bake-Hardening Potential, ein Verfahren zur Herstellung eines solchen Stahlflachprodukts
CN111684091B (zh) 2018-01-31 2021-12-31 杰富意钢铁株式会社 高强度冷轧钢板、高强度镀敷钢板以及它们的制造方法
EP3749790B1 (en) * 2018-02-07 2024-06-26 Tata Steel Nederland Technology B.V. High strength hot rolled or cold rolled and annealed steel and method of producing it
KR102407357B1 (ko) 2018-03-19 2022-06-13 닛폰세이테츠 가부시키가이샤 고강도 냉연 강판 및 그의 제조 방법
CN108406238B (zh) * 2018-04-09 2020-07-07 西南交通大学 一种双相叠层组织钢板及其制备方法
CN110643894B (zh) 2018-06-27 2021-05-14 宝山钢铁股份有限公司 具有良好的疲劳及扩孔性能的超高强热轧钢板和钢带及其制造方法
KR102164086B1 (ko) * 2018-12-19 2020-10-13 주식회사 포스코 버링성이 우수한 고강도 냉연강판 및 합금화 용융아연도금강판과 이들의 제조방법
US11814708B2 (en) 2019-02-06 2023-11-14 Nippon Steel Corporation Hot dip galvanized steel sheet and method for producing same
MX2021009311A (es) 2019-02-06 2021-09-08 Nippon Steel Corp Lamina de acero galvanizada por inmersion en caliente y metodo para producir la misma.
KR102604112B1 (ko) 2019-02-06 2023-11-23 닛폰세이테츠 가부시키가이샤 용융 아연 도금 강판 및 그 제조 방법
MX2021009365A (es) 2019-02-06 2021-09-10 Nippon Steel Corp Lamina de acero galvanizada por inmersion en caliente y metodo para producir la misma.
CN110747391A (zh) * 2019-08-30 2020-02-04 武汉钢铁有限公司 一种具有优良延伸率的冷轧超高强钢及其制备方法
JP7216932B2 (ja) 2019-10-10 2023-02-02 日本製鉄株式会社 冷延鋼板およびその製造方法
KR102390816B1 (ko) * 2020-09-07 2022-04-26 주식회사 포스코 구멍확장성이 우수한 고강도 강판 및 그 제조방법
US20230304119A1 (en) 2020-10-15 2023-09-28 Nippon Steel Corporation Steel sheet and method for manufacturing same
MX2023005389A (es) 2020-11-11 2023-05-19 Nippon Steel Corp Lamina de acero y metodo para producir la misma.
KR102470747B1 (ko) * 2020-12-16 2022-11-25 주식회사 포스코 항복비 및 성형성이 우수한 고강도 냉연강판의 제조방법 및 이를 이용하여 제조된 고강도 냉연강판
CN114763595B (zh) * 2021-01-15 2023-07-07 宝山钢铁股份有限公司 一种冷轧钢板以及冷轧钢板的制造方法
KR20230125023A (ko) 2021-03-10 2023-08-28 닛폰세이테츠 가부시키가이샤 냉연 강판 및 그 제조 방법
CN116802334A (zh) 2021-03-10 2023-09-22 日本制铁株式会社 冷轧钢板及其制造方法
CN113106336B (zh) * 2021-03-17 2022-06-10 唐山钢铁集团有限责任公司 一种降低激光焊接头软化程度的超高强双相钢及生产方法
WO2022202023A1 (ja) 2021-03-25 2022-09-29 日本製鉄株式会社 鋼板
CN113403551B (zh) * 2021-05-21 2022-08-16 鞍钢股份有限公司 高屈强比抗氢脆冷轧dh980钢板及其制备方法
CN113549821A (zh) * 2021-06-29 2021-10-26 鞍钢股份有限公司 一种低屈强比高扩孔率800MPa级热轧酸洗复相钢及其生产方法
CN113941599A (zh) * 2021-09-14 2022-01-18 中国第一汽车股份有限公司 一种汽车用高强韧性热成形零件的制备方法
JPWO2023135962A1 (ja) 2022-01-13 2023-07-20
WO2023153096A1 (ja) 2022-02-09 2023-08-17 日本製鉄株式会社 冷延鋼板
CN118679271A (zh) 2022-02-09 2024-09-20 日本制铁株式会社 冷轧钢板及其制造方法
CN114959478B (zh) * 2022-05-30 2023-05-02 山东钢铁集团日照有限公司 一种一钢多用的800MPa级复相钢及其调控方法
CN114959482B (zh) * 2022-05-31 2023-05-30 山东钢铁集团日照有限公司 一种一钢多用的800MPa级双相钢及其调控方法
KR20230170171A (ko) * 2022-06-09 2023-12-19 주식회사 포스코 연신율 및 구멍확장성이 우수한 초고강도 강판 및 그 제조방법
CN115710673B (zh) * 2022-11-07 2023-07-14 鞍钢股份有限公司 一种高扩孔冷轧dh1180钢及其制备方法
CN117187682B (zh) * 2023-04-28 2024-05-14 鞍钢股份有限公司 新能源汽车用1200MPa电池包用钢及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0967645A (ja) 1995-08-29 1997-03-11 Kobe Steel Ltd 剪断加工後の伸びフランジ性に優れた薄鋼板及びその薄鋼板を用いた素板
JP2001003150A (ja) * 1999-04-21 2001-01-09 Kawasaki Steel Corp 延性に優れる高張力溶融亜鉛めっき鋼板およびその製造方法
JP2001207236A (ja) * 2000-01-26 2001-07-31 Kawasaki Steel Corp 高張力溶融亜鉛めっき鋼板およびその製造方法
JP2001207235A (ja) * 2000-01-25 2001-07-31 Kawasaki Steel Corp 高張力溶融亜鉛めっき鋼板およびその製造方法
JP2003171735A (ja) 2001-02-28 2003-06-20 Kobe Steel Ltd 加工性に優れた高強度鋼板およびその製造方法
JP2004068050A (ja) * 2002-08-02 2004-03-04 Sumitomo Metal Ind Ltd 高張力冷延鋼板及びその製造方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63241120A (ja) * 1987-02-06 1988-10-06 Kobe Steel Ltd 高延性高強度複合組織鋼板の製造法
JP2652539B2 (ja) * 1987-09-21 1997-09-10 株式会社神戸製鋼所 張出し成形性及び疲労特性にすぐれる複合組織高強度冷延鋼板の製造方法
JPH01272720A (ja) * 1988-04-22 1989-10-31 Kobe Steel Ltd 高延性高強度複合組織鋼板の製造法
JP3317303B2 (ja) * 1991-09-17 2002-08-26 住友金属工業株式会社 局部延性の優れた高張力薄鋼板とその製造法
JP3350944B2 (ja) * 1991-12-21 2002-11-25 住友金属工業株式会社 延性,耐食性の優れた高張力冷延薄鋼板と製造法
JP2962038B2 (ja) * 1992-03-25 1999-10-12 住友金属工業株式会社 高張力薄鋼板とその製造方法
JP2660644B2 (ja) * 1992-11-02 1997-10-08 新日本製鐵株式会社 プレス成形性の良好な高強度鋼板
US5470529A (en) * 1994-03-08 1995-11-28 Sumitomo Metal Industries, Ltd. High tensile strength steel sheet having improved formability
JPH11323489A (ja) * 1998-05-13 1999-11-26 Nippon Steel Corp 形状凍結性に優れた良加工性高強度冷延鋼板およびその製造方法
DE60025711T2 (de) * 1999-04-21 2006-09-14 Jfe Steel Corp. Hochfeste heisstauchzinkbeschichtete stahlplatte mit hervorragenden duktilitätseigenschaften und verfahren zu deren herstellung
KR100572179B1 (ko) * 1999-10-22 2006-04-18 제이에프이 스틸 가부시키가이샤 가공성 및 도금성이 우수한 고강도 용융아연도금 강판 및그 제조방법
US7090731B2 (en) * 2001-01-31 2006-08-15 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) High strength steel sheet having excellent formability and method for production thereof
JP3927384B2 (ja) * 2001-02-23 2007-06-06 新日本製鐵株式会社 切り欠き疲労強度に優れる自動車用薄鋼板およびその製造方法
JP3881559B2 (ja) 2002-02-08 2007-02-14 新日本製鐵株式会社 溶接後の成形性に優れ、溶接熱影響部の軟化しにくい引張強さが780MPa以上の高強度熱延鋼板、高強度冷延鋼板および高強度表面処理鋼板
CA2475950A1 (en) * 2002-03-18 2003-09-25 Jfe Steel Corporation Process for producing high tensile hot-dip zinc-coated steel sheet of excellent ductility and antifatigue properties
CA2469022C (en) 2002-06-25 2008-08-26 Jfe Steel Corporation High-strength cold rolled steel sheet and method for manufacturing the same
JP4062616B2 (ja) * 2002-08-12 2008-03-19 株式会社神戸製鋼所 伸びフランジ性に優れた高強度鋼板
JP4119758B2 (ja) * 2003-01-16 2008-07-16 株式会社神戸製鋼所 加工性および形状凍結性に優れた高強度鋼板、並びにその製法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0967645A (ja) 1995-08-29 1997-03-11 Kobe Steel Ltd 剪断加工後の伸びフランジ性に優れた薄鋼板及びその薄鋼板を用いた素板
JP2001003150A (ja) * 1999-04-21 2001-01-09 Kawasaki Steel Corp 延性に優れる高張力溶融亜鉛めっき鋼板およびその製造方法
JP2001207235A (ja) * 2000-01-25 2001-07-31 Kawasaki Steel Corp 高張力溶融亜鉛めっき鋼板およびその製造方法
JP2001207236A (ja) * 2000-01-26 2001-07-31 Kawasaki Steel Corp 高張力溶融亜鉛めっき鋼板およびその製造方法
JP2003171735A (ja) 2001-02-28 2003-06-20 Kobe Steel Ltd 加工性に優れた高強度鋼板およびその製造方法
JP2004068050A (ja) * 2002-08-02 2004-03-04 Sumitomo Metal Ind Ltd 高張力冷延鋼板及びその製造方法

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8876986B2 (en) * 2008-07-11 2014-11-04 Kobe Steel, Ltd. Cold-rolled steel sheet
US20120009434A1 (en) * 2008-07-11 2012-01-12 Kabushiki Kaisha Kobe Seiko Sho Cold-rolled steel sheet
US11371110B2 (en) * 2013-04-02 2022-06-28 Nippon Steel Corporation Cold-rolled steel sheet
CN103469058A (zh) * 2013-10-08 2013-12-25 武汉钢铁(集团)公司 抗拉强度450MPa级具有高扩孔性能的铁素体贝氏体钢及其生产方法
CN103469058B (zh) * 2013-10-08 2016-01-13 武汉钢铁(集团)公司 抗拉强度450MPa级具有高扩孔性能的铁素体贝氏体钢及其生产方法
CN115003841B (zh) * 2020-01-31 2023-11-21 杰富意钢铁株式会社 钢板、部件及它们的制造方法
CN115003841A (zh) * 2020-01-31 2022-09-02 杰富意钢铁株式会社 钢板、部件及它们的制造方法
WO2021172298A1 (ja) * 2020-02-28 2021-09-02 Jfeスチール株式会社 鋼板、部材及びそれらの製造方法
JP7006848B1 (ja) * 2020-02-28 2022-01-24 Jfeスチール株式会社 鋼板、部材及びそれらの製造方法
JP7006849B1 (ja) * 2020-02-28 2022-01-24 Jfeスチール株式会社 鋼板、部材及びそれらの製造方法
JP7020594B2 (ja) 2020-02-28 2022-02-16 Jfeスチール株式会社 鋼板、部材及びそれらの製造方法
JPWO2021172297A1 (ja) * 2020-02-28 2021-09-02
WO2021172299A1 (ja) * 2020-02-28 2021-09-02 Jfeスチール株式会社 鋼板、部材及びそれらの製造方法
WO2021172297A1 (ja) * 2020-02-28 2021-09-02 Jfeスチール株式会社 鋼板、部材及びそれらの製造方法

Also Published As

Publication number Publication date
US20080000555A1 (en) 2008-01-03
US8137487B2 (en) 2012-03-20
EP1808505B1 (en) 2018-11-28
EP1808505A1 (en) 2007-07-18
EP2690191A2 (en) 2014-01-29
US20090314395A1 (en) 2009-12-24
TW200615387A (en) 2006-05-16
ES2712177T3 (es) 2019-05-09
CA2582409C (en) 2012-02-07
CN101035921A (zh) 2007-09-12
CN101035921B (zh) 2012-07-04
TWI305232B (en) 2009-01-11
PL1808505T3 (pl) 2019-05-31
EP2690191A3 (en) 2017-03-01
JP2006104532A (ja) 2006-04-20
ES2712142T3 (es) 2019-05-09
KR20070061859A (ko) 2007-06-14
PL2690191T3 (pl) 2019-05-31
EP1808505A4 (en) 2012-04-25
CA2582409A1 (en) 2006-04-13
EP2690191B1 (en) 2018-11-28
JP4445365B2 (ja) 2010-04-07
CN101851730A (zh) 2010-10-06

Similar Documents

Publication Publication Date Title
WO2006038708A1 (ja) 伸びと穴拡げ性に優れた高強度薄鋼板およびその製造方法
JP6544494B1 (ja) 高強度亜鉛めっき鋼板およびその製造方法
KR102000854B1 (ko) 고강도 냉연 강판 및 그 제조방법
JP4700764B2 (ja) 成形性と溶接性に優れた高強度冷延鋼板、高強度亜鉛めっき鋼板、高強度合金化溶融亜鉛めっき鋼板、及びそれらの製造方法
KR101331755B1 (ko) 성형성이 우수한 고강도 용융 아연 도금 강판 및 그 제조 방법
CA2767206C (en) High strength steel sheet and method for manufacturing the same
TWI409344B (zh) 加工性優良的高強度熔融鍍鋅鋼板及其製造方法
KR101103203B1 (ko) 피로 특성과 신장 플랜지성이 우수한 열연 강판 및 그 제조 방법
CN108699660B (zh) 高强度钢板及其制造方法
JP4655782B2 (ja) 高延性で、化成処理性に優れる780MPa以上の引張強度を有する超高強度冷延鋼板の製造方法
US20110030854A1 (en) High-strength steel sheet and method for manufacturing the same
WO2009125874A1 (ja) 穴拡げ性と延性のバランスが極めて良好で、疲労耐久性にも優れた高強度鋼板及び亜鉛めっき鋼板、並びにそれらの鋼板の製造方法
KR20160047465A (ko) 고항복비 고강도 냉연 강판 및 그의 제조 방법
KR20160023930A (ko) 핫 스탬프 성형품, 핫 스탬프 성형품의 제조 방법, 에너지 흡수 부재 및 에너지 흡수 부재의 제조 방법
JP4288216B2 (ja) 耐水素脆化特性に優れたホットプレス用鋼板、自動車用部材及びその製造方法
MX2011002559A (es) Placa de acero de alta resistencia y metodo de fabricacion de la misma.
JP2009203549A (ja) 高強度鋼板とその製造方法
WO2013051238A1 (ja) 高強度鋼板およびその製造方法
JP2005097725A (ja) 耐水素脆化特性に優れたホットプレス用鋼板、自動車用部材及びその製造方法
KR20070107167A (ko) 확공 가공성이 우수한 고강도 열연 강판 및 그의 제조방법
JP2009242816A (ja) 高強度鋼板とその製造方法
KR20170084210A (ko) 탁월한 가공 특성을 갖는 초고강도의 공기 경화 다상 강 및 상기 강의 스트립을 제조하기 위한 방법
JP5338257B2 (ja) 延性に優れた高降伏比超高張力鋼板およびその製造方法
JP2011042879A (ja) 高延性で、化成処理性に優れる780MPa以上の引張強度を有する超高強度冷延鋼板
JP3539546B2 (ja) 加工性に優れた高張力溶融亜鉛めっき鋼板およびその製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2020/DELNP/2007

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 11663581

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2005793806

Country of ref document: EP

Ref document number: 2582409

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 1020077007768

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 200580034205.0

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 2005793806

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11663581

Country of ref document: US