WO2006035779A1 - Cmp研磨剤及び基板の研磨方法 - Google Patents

Cmp研磨剤及び基板の研磨方法 Download PDF

Info

Publication number
WO2006035779A1
WO2006035779A1 PCT/JP2005/017764 JP2005017764W WO2006035779A1 WO 2006035779 A1 WO2006035779 A1 WO 2006035779A1 JP 2005017764 W JP2005017764 W JP 2005017764W WO 2006035779 A1 WO2006035779 A1 WO 2006035779A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
polishing
mass
cmp
abrasive
Prior art date
Application number
PCT/JP2005/017764
Other languages
English (en)
French (fr)
Inventor
Masato Fukasawa
Naoyuki Koyama
Kouji Haga
Toshiaki Akutsu
Original Assignee
Hitachi Chemical Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co., Ltd. filed Critical Hitachi Chemical Co., Ltd.
Priority to US11/576,014 priority Critical patent/US20080254717A1/en
Priority to CN200580032714XA priority patent/CN101032001B/zh
Priority to JP2006523471A priority patent/JP4755984B2/ja
Publication of WO2006035779A1 publication Critical patent/WO2006035779A1/ja
Priority to US12/768,082 priority patent/US8900335B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1454Abrasive powders, suspensions and pastes for polishing
    • C09K3/1463Aqueous liquid suspensions
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/02Polishing compositions containing abrasives or grinding agents

Definitions

  • the present invention relates to a CMP abrasive and a substrate polishing method.
  • a planarization process of a substrate surface which is a semiconductor element manufacturing technique, in particular, a planarization process of an interlayer insulating film and a BPSG film (a silicon dioxide film doped with boron, phosphorus, etc.), shallow trench isolation It is used in the formation process.
  • CMP Chemical Mechanical Polishing
  • an inorganic insulating film layer such as a silicon oxide insulating film is formed by a method such as plasma CVD or low pressure CVD.
  • a fumed silica-based abrasive has been generally studied as a slurry-like chemical mechanical abrasive for flattening the inorganic insulating film layer. Fumed silica-based abrasives are produced, for example, by growing grains by a method of thermally decomposing silicon tetrachloride and adjusting pH.
  • a fumed silica-based abrasive has a technical problem that the polishing rate is low.
  • shallow trench isolation is used for element isolation in an integrated circuit.
  • CMP is used to remove the excess silicon oxide film deposited on the substrate, and a low-speed stubber film is placed under the silicon oxide film to stop polishing. It is formed.
  • Silicon nitride or the like is used for the staggered film, and it is desirable that the polishing rate ratio between the silicon oxide film and the stubbed film is large.
  • the colloidal silica-based polishing agent has a characteristic that can withstand practical use for shallow trench isolation, in which the polishing rate ratio between the silicon oxide film and the staggered film is as small as about 3.
  • cerium oxide-based abrasives are used as glass surface abrasives for photomasks, lenses and the like.
  • the cerium oxide particles are lower in hardness than silica particles and alumina particles, and therefore are less likely to scratch the polished surface, and are useful for finish mirror polishing. In addition, it has the advantage of faster polishing speed than silica abrasive.
  • CMP abrasives for semiconductors using high-purity cerium oxide particles have been used (for example, see Japanese Patent Application Laid-Open No. 10-106994).
  • a water-soluble polymer having a carboxyl group or a hydrophilic group having a salt power of a carboxyl group is added as an additive. It is known to be added to cerium oxide CMP abrasives (see, for example, Japanese Patent No. 3278532).
  • acrylic acid As the monomer of the additive, acrylic acid, itaconic acid, maleic acid, salts thereof and the like are used, and it is considered that acrylic acid is most suitable because it is very easy to polymerize.
  • acid-cerium CMP abrasives that contain water-soluble polymer additives using them as monomers can always satisfactorily reduce the residual film thickness difference due to the pattern density difference of the film to be polished. I helped.
  • methacrylic acid dissolves only 18% in water at room temperature, and it is difficult to obtain a high molecular weight polymer when polymerized with high hydrophobicity. Less is. Therefore, it has not been considered suitable as a monomer for the polymer used in the additive.
  • the present invention provides a CMP polishing agent and a polishing method capable of obtaining a film to be polished having a small residual film thickness difference due to a pattern density difference after polishing.
  • the present invention relates to the following (1) to (13).
  • the ratio of the polymer of methacrylic acid and salts thereof constituting the (D) is, the 10 to 100 mole 0/0 of the total amount of the whole monomer component (1) to ( The CMP abrasive
  • [5] A compound that completely dissolves when the polymerization initiator used at the time of polymerization of the polymer is added at 25 ° C. so as to be 0.5 parts by mass with respect to 99.5 parts by mass of water, or When added at 25 ° C to 0.5 part by mass with respect to 99.5 parts by mass of water, and at least one of an organic acid and an inorganic acid is added at a ratio of 2 mol to 1 mol of the polymerization initiator, all are dissolved.
  • a compound that completely dissolves when the polymerization initiator used in the polymerization of the polymer is added at 25 ° C so as to be 3.0 parts by mass with respect to 97.0 parts by mass of water, or It dissolves when it is added to 3.0 parts by weight with respect to 97.0 parts by weight of water at 25 ° C, and at least one of an organic acid and an inorganic acid is added at a ratio of 2 moles to 1 mole of the polymerization initiator.
  • the substrate and the polishing surface plate are relatively powered to polish the film to be polished. Substrate polishing method.
  • the difference in remaining film thickness due to the pattern density difference in the polished film after polishing is small.
  • the CMP abrasive slurry of the present invention can be obtained, for example, by preparing a cerium oxide slurry containing cerium oxide particles, a dispersant and water, and an additive liquid containing an additive and water, and mixing them. be able to.
  • the (A) acid cerium particles in the present invention can be obtained, for example, by oxidizing a cerium compound such as carbonate, nitrate, sulfate, or oxalate.
  • TEOS The cerium oxide abrasive used for polishing silicon oxide films formed by the CV D method, etc., is faster as the crystal diameter of the particles is larger and the crystal distortion is smaller, that is, the better the crystallinity is. Polishing is possible, but there is a tendency for polishing scratches to easily enter the film to be polished. Therefore, although the production method of the acid cerium particles in the present invention is not limited, the crystallite diameter of the acid cerium is preferably 1 to 400 nm. In addition, when used for polishing in the manufacture of semiconductor elements, for example, the content of alkali metals and halogens in the cerium oxide particles is preferably suppressed to 10 ppm or less by mass ratio.
  • the method for producing the cerium oxycerium particles is, for example, calcination or filtration.
  • An acid method using acid hydrogen or the like can be used.
  • the firing temperature is preferably 350-900 ° C.
  • the cerium oxide particles produced by the above method are aggregated, it is preferably mechanically pulverized.
  • the pulverization method for example, dry pulverization using a jet mill or the like, or wet pulverization using a planetary bead mill or the like is preferable.
  • the jet mill for example, those described in “Chemical Papers” No. 6-5 (1980) pp. 527-532 can be used.
  • a method for dispersing such oxycerium particles in water which is a main dispersion medium, for example, in addition to a dispersion process using a normal stirrer, a homogenizer, an ultrasonic disperser, a wet ball mill, etc. Can be used.
  • the cerium oxide dispersion is allowed to stand for a long time to precipitate large particles, and the supernatant is pumped out by a pump.
  • the sedimentation classification method can be used.
  • a high-pressure homogenizer that collides acid-cerium particles in a dispersion medium with each other at high pressure may be used.
  • the average particle diameter of the thus-prepared cerium oxide particles in the CMP abrasive is preferably 1 to 400 nm, more preferably 1 to 300 nm. L Particularly preferred is 200 nm. When the average particle size is less than 1 nm, the polishing rate tends to decrease, and when it exceeds 400 nm, the polishing film tends to be easily damaged.
  • the average particle diameter of the cerium oxycerium particles refers to the value of D50 (median diameter of volume distribution, cumulative median value) measured with a laser diffraction particle size distribution meter.
  • the concentration of the cerium oxycerium particles is 0.1 to 5 parts by mass per 100 parts by mass of the CMP abrasive, preferably S, and more preferably 0.2 to 2 parts by mass. It is particularly preferably 5 to 1.5 parts by mass. If this concentration is less than 0.1 parts by mass, the polishing rate tends to decrease, and if it exceeds 5 parts by mass, the cerium oxide particles tend to aggregate.
  • the CMP abrasive slurry of the present invention preferably contains (B) a dispersant.
  • the dispersant in the present invention include a water-soluble anionic dispersant, a water-soluble nonionic dispersant, a water-soluble cationic dispersant, a water-soluble amphoteric dispersant, and the like, which will be described later.
  • Type polymer dispersant is a copolymer component that is preferred as a structural unit of acrylic acid ammonium salt. A molecular dispersant is more preferable.
  • Examples of the polymer dispersing agent having an acrylic acid ammonium salt as a structural unit as the copolymer component include polyacrylic acid ammonium, acrylic acid amide, and acrylic acid ammonium. A copolymer etc. are mentioned.
  • the content of alkali metals such as sodium ions and potassium ions, halogen atoms, and ion atoms in the total dispersant is relative to the CMP polishing agent. It is preferable to keep the mass ratio to 10 ppm or less.
  • water-soluble anionic dispersant examples include lauryl sulfate triethanolamine, lauryl sulfate ammonium, polyoxyethylene alkyl ether sulfate triethanolamine, and polycarboxylic acid type polymer dispersant. Can be mentioned.
  • Examples of the polycarboxylic acid type polymer dispersant include a polymer of a carboxylic acid monomer having an unsaturated double bond such as acrylic acid, methacrylic acid, maleic acid, fumaric acid, and itaconic acid, Examples thereof include a copolymer of a carboxylic acid monomer having an unsaturated double bond and another monomer having an unsaturated double bond, and their ammonium salts and amine salts.
  • water-soluble nonionic dispersant examples include polyoxyethylene lauryl ether, polyoxyethylene cetyl ether, polyoxyethylene stearyl ether, polyoxyethylene oleyl ether, polyoxyethylene higher alcohol ether, Polyoxyethylene octyl phenyl ether, polyoxyethylene nonyl phenyl ether, polyoxyalkylene alkyl ether, polyoxyethylene derivative, polyoxyethylene sorbitan monolaurate, polyoxyethylene sorbitan monopalmitate, polyoxyethylene sorbitan Monostearate, polyoxyethylene sorbitan tristearate, polyoxyethylene sorbitan monooleate, polyoxyethylene sorbitan trioleate, tetra Maleic acid polyoxyethylene sorbit, polyethylene glycol monolaurate, polyethylene glycol Honoré monostearate, polyethylene glycidyl Kono Regis Tearate, polyethylene glycol monooleate, polyoxyethylene alkylamine
  • water-soluble cationic dispersant examples include polyvinylpyrrolidone, coconut amine acetate, stearylamine acetate and the like.
  • water-soluble amphoteric dispersant examples include lauryl betaine, stearyl betaine, lauryl dimethylamine oxide, 2 alkyl N carboxymethyl N hydroxy succinyl imidazole um betaine, and the like.
  • the dispersant is suitable for stably dispersing the cerium oxide particles in a dispersion medium such as (C) water.
  • the amount of the dispersant added is 0.01 to 100 mass parts of oxycerium particles. 0.5 to 8 parts by mass is more preferable, and 0.1 to 5 parts by mass is particularly preferable. If the added amount is less than 0.01 parts by mass, the dispersibility of the particles tends to be insufficient, and polishing scratches tend to be caused on the film to be polished. If the added amount exceeds 10 parts by mass, the particles aggregate. Sedimentation occurs and the polished film tends to be easily damaged by polishing.
  • the weight average molecular weight of the dispersant is preferably 100 to 50,000, more preferably 1,000 to 10,000. If the weight average molecular weight force S is less than 100, it tends to be difficult to obtain a sufficient polishing rate, and if it exceeds 50,000, the viscosity tends to increase and the storage stability of the abrasive tends to decrease.
  • This weight average molecular weight was measured using an HPLC pump (manufactured by Hitachi, Ltd., model number L7100) equipped with a differential refractometer (manufactured by Hitachi, Ltd., model number L-3300) and a GPC column (manufactured by Hitachi Chemical Co., Ltd., model number Gelpack).
  • the CMP polishing slurry of the present invention comprises (D) a polymer obtained by polymerizing at least one of methacrylic acid and a salt thereof, and at least one of Z or methacrylic acid and a salt thereof, and an unsaturated double bond. And a polymer obtained by polymerization of the monomer having.
  • this polymer (D) the flat properties can be improved.
  • the polishing rate of the silicon nitride film, which is a staggered film is suppressed compared to the silicon oxide film, which is the main film to be polished, the polishing process management becomes easier.
  • the ratio of methacrylic acid and its salt constituting the polymer (D) is preferably 10 to LOO mol% with respect to the total amount of all monomer components from the viewpoint of global flatness characteristics.
  • the ratio of methacrylic acid and its salt is less than 10 mol%, the difference in the remaining film thickness of the film to be polished due to the difference in pattern density tends to increase.
  • methacrylic acid ammonium salt, potassium salt, alkylamine salt and the like may be used alone or in combination with methacrylic acid. it can.
  • the polymer (D) is a polymer in which all of the monomers are at least one of methacrylic acid and a salt thereof, even if some of the monomers are at least one of methacrylic acid and a salt thereof. Even a combination of both polymers may be used.
  • the polymer may have a function as a dispersant.
  • Examples of the monomer having an unsaturated double bond include acrylic acid, crotonic acid, butylacetic acid, tiglic acid, 2-trifluoromethylacrylic acid, itaconic acid, fumaric acid, and maleic acid.
  • Examples thereof include carboxylic acids such as acid, citraconic acid, mesaconic acid and darconic acid; and sulfonic acids such as 2-acrylamide 2-methylpropanesulfonic acid.
  • salts such as ammonium salts, potassium salts, alkylamine salts and the like can also be used.
  • Terpolymers such as ter, acrylamide, N, N dimethyl acrylamide, N, N jetyl acrylamide, N-iso propyl acrylamide, acryloyl morpholine, butyl alcohol, talari-tolyl, butyl pyrrolidone, vinyl pyridine, etc.
  • the body can also be used as a monomer having an unsaturated double bond.
  • (E) a polymer obtained by polymerizing at least one of acrylic acid and its salt, and at least one of Z or acrylic acid and its salt and a monomer having an unsaturated double bond are overlapped.
  • the combined polymer may be used in combination with the polymer of (D)! /.
  • This polymer (E) is preferred because it can control the solubility in water.
  • a water-soluble compound is preferable.
  • the polymerization initiator when the polymerization initiator is added to water at 25 ° C. and stirred, the polymerization initiator has a water solubility of 0.5 part by weight with respect to 99.5 parts by weight of water. Water-soluble enough to dissolve in water, or 0.5 parts by weight with respect to 99.5 parts by weight of water, and 2 moles of organic acid and Z or inorganic acid to 1 mole of polymerization initiator It is preferable that it is water-soluble so that it can be completely dissolved when added in step (b).
  • the polymerization initiator is water-soluble enough to dissolve when added to 3.0 parts by weight with respect to 97.0 parts by weight of water, or with respect to 97.0 parts by weight of water. 3. It is more preferable that it is water-soluble so that when it is added to 0 parts by mass and organic acid and Z or inorganic acid are added at a ratio of 2 mol to 1 mol of the polymerization initiator, all are dissolved. .
  • To determine whether or not it completely dissolves for example, 0.9 g of a polymerization initiator and 29. lg of pure water are collected and sealed in a centrifuge polypropylene tube with a cap of 50 ml at 25 ° C, and then sealed with a test tube mixer. After stirring for 3 minutes at 2500rpm, the presence or absence of insoluble matter can be confirmed visually.
  • Examples of the polymerization initiator include the following. Peracids such as ammonium persulfate, potassium persulfate, sodium persulfate; ammonium sulfite, ammonium bisulfite, potassium sulfite, potassium hydrogen sulfite, sodium sulfite, sodium hydrogen sulfite Redox initiators in combination with sulfites such as oxygen, air or peroxides; 2, 2'-azobis [N- (2-carboxyethyl) 2-methylpropionamide] 1) [(1-Cyano-1-methylethyl) azo] formamide, 2,2 "-azobis ⁇ 2-methyl N- [1,1-bis (hydroxymethyl) 2-hydroxyethyl] propion Amido ⁇ , 2, 2'-azobis ⁇ 2-methyl-N- [2- (l-hydroxybutyl)] propionamide ⁇ , 2,2-azobis [2-methyl-N- (l-hydroxyethyl)] pro Pionamide, 2, 2'-azobis [
  • organic acid salts such as acetic acid, oxalic acid, malonic acid, succinic acid, malic acid, tartaric acid, citrate, phosphoric acid, hydrobromic acid
  • inorganic acid salts such as hydroiodic acid, hydrofluoric acid, nitric acid and sulfuric acid may be added and used. These organic acid and Z or inorganic acid are preferably added at a ratio of 2 mol per 1 mol of the polymerization initiator.
  • 2, 2'-azobis ⁇ 2-methyl-N- [1,1-bis (hydroxymethyl) -2-hydroxyethyl] propionamide ⁇ , 2,2-azobis [2-methyl N- (1-hydroxy ester) Chill)] monopropionamide and 2,2 "-azobis [2- (2-imidazoline-2-yl) propane] are preferably used with the addition of the organic acid and Z or inorganic acid.
  • a polymerization initiator other than the water-soluble compound for example, a key-on azo compound such as 4,4'-azobis (4-cyananovalerate) may be used. it can.
  • the solvent for the polymerization is not particularly limited, and for example, c-C alcohol such as methanol, isopronool V-propanol, butanol and butanol, and water are preferable. They are
  • the weight average molecular weight (polyethylene glycol equivalent value) of the polymer thus obtained is preferably 200-100,000 force ⁇ , 300-70,000 force, more preferably S ⁇ , 500-50,000 force. S is particularly preferred. If the weight average molecular weight is less than 200, sufficient global planarization characteristics tend to be obtained, and if the molecular weight exceeds 100,000, a sufficient polishing rate tends to be difficult to obtain. This weight average molecular weight is measured by a differential refractometer (manufactured by Hitachi, Ltd.
  • a GPC column (manufactured by Hitachi Chemical Co., Ltd., model number Gelpack GL-W550) was connected to an HPLC pump (manufactured by Hitachi, Ltd., model number L-7100) equipped with a model number L-3300), and 50 mM phosphoric acid
  • HPLC pump manufactured by Hitachi, Ltd., model number L-7100
  • a polyethylene sodium glycol aqueous solution Z-acetonitrile 90Z10 (VZV) as a mobile phase and converting to polyethylene glycol.
  • a mercapto compound-based molecular weight regulator such as mercaptoethanol may be used.
  • the blending amount of the polymer in the present invention (when the polymer (() is also used, the total blending amount of the polymer (D) and the polymer ( ⁇ )) is 100 parts by weight of the CMP abrasive. 0.01 to 5 parts by mass is preferable 0.05 to 3 parts by mass is more preferable, and 10 to 1 part by mass is particularly preferable. If the amount added is less than 0.01 parts by mass, high global flatness characteristics tend to be difficult to obtain, and if it exceeds 5 parts by mass, agglomeration of cerium oxide particles tends to occur.
  • water-soluble polymers such as polyacrylic acid that have been used as conventional additives are highly water-soluble, so it is thought that the protective film formed on the film to be polished will be thick and rough.
  • the remaining film thickness of the film to be polished was easily changed due to the pattern density difference.
  • the polymer (D) uses methacrylic acid, which is more hydrophobic than acrylic acid, which is a conventionally used polyacrylic acid monomer, as a monomer, it is thin and dense with respect to the film to be polished. It is thought that an adsorption layer is formed.
  • the polymer in the present invention is considered to function as a dispersant.
  • water-soluble polymer other than the above-described polymer may be used in combination.
  • Other water-soluble polymers are not particularly limited, for example, alginic acid, Polysaccharides such as cinnamate, carboxymethylcellulose, agar, curdlan, pullulan; polycarboxylics such as polyspartic acid, polyglutamic acid, polylysine, polymalic acid, polyamic acid, polyamic acid ammonium salt, polyamic acid sodium salt, polydarioxylic acid Examples thereof include acids and salts thereof; bur-based polymers such as polybulal alcohol, polybulurpyrrolidone, and polyacrolein.
  • the CMP abrasive slurry of the present invention may be stored, for example, as a two-component CMP abrasive in which the acid cerium slurry and the additive solution are separated, or the acid cerium slurry and additive solution may be mixed in advance. It can be stored as a one-part CMP abrasive. When storing as a two-component CMP abrasive that separates the cerium oxide slurry and additive solution, the composition of these two components can be changed arbitrarily, allowing the global flatness characteristics and polishing rate to be adjusted. It becomes.
  • the cerium oxide slurry and the additive solution are sent through separate pipes, and these pipes are merged and mixed immediately before the supply pipe outlet to polish the polishing platen.
  • a method of supplying to the top a method of mixing the cerium oxide slurry and the additive solution immediately before polishing, and the like are taken.
  • deionized water is mixed as necessary to adjust the polishing characteristics.
  • the CMP abrasive slurry of the present invention is preferably adjusted to a desired pH and used for polishing.
  • a pH adjuster when using for semiconductor polishing, ammonia water or an acid component is more preferable than alkali metals.
  • CMP polishing agent pHi up to 4.5-6.0 force, 4. 8-5.6 power better than ⁇ ! / ⁇ . When the pH force is less than 4.5, the polishing rate tends to decrease, and when the pH exceeds 6.0, the flatness of the film to be polished tends to decrease.
  • the pH of the CMP abrasive can be measured using, for example, a pH meter (for example, Model PH81 manufactured by Yokogawa Electric Corporation), and a standard buffer solution (phthalate P H buffer solution: pH 4.21 (25 ° C), neutral phosphate pH buffer solution: pH 6.86 (25 ° C)) Measure the value after 2 minutes or more have passed and stabilize.
  • the CMP abrasive of the present invention can further reduce the difference in the remaining film thickness of the film to be polished due to the difference in pattern density by containing a strong acid ion.
  • the strong acid is an acid having a pKa value (pK) of the first dissociable acidic group of 3.2 or less.
  • the strong acid the lower the pKa value of the first dissociable acidic group, the higher the effect is! /, From the viewpoint of the acid, the pKa value of the first dissociable acidic group is 2.0 or less. An acid having a pKa value of 1.5 or less is more preferable. When the pKa value of the first dissociable acidic group exceeds 3.2, sufficient effect is obtained. It tends to be difficult to obtain fruits.
  • the method for adding strong acid used in the present invention is not limited. For example, it may be added separately from the polymer or the water-soluble polymer, or may be contained in advance in the polymerization initiator. Further, the strong acid may be added to the abrasive in the form of a salt.
  • the added strong acid ion is preferentially dissociated over the polymer or other water-soluble polymer, thereby suppressing the dissociation of the carboxyl group of the polymer or other water-soluble polymer,
  • the polymer and other water-soluble polymers whose dissociation is suppressed are considered to be easily adsorbed on the surface of the film to be polished to form a protective film. As a result, it is considered that the difference in the remaining film thickness of the polished film on the wafer having the pattern density difference can be further reduced.
  • the content of the strong acid ion in the CMP abrasive is preferably 50 to: LO, OOOppm, more preferably 100 to 1, and more preferably 100 to 1, and more preferably 200 to 600 ppm ⁇ /. If this content is less than 50 ppm, it is difficult to obtain the effect of reducing the pattern density dependency, and if it exceeds 10, OOOppm, the dispersion stability of the cerium oxide particles tends to decrease. is there
  • (C) Water is the main dispersion medium, and deionized water with no particular limitation is preferred.
  • a substrate on which a film to be polished is formed is pressed against a polishing cloth on a polishing platen and pressurized, and the CMP abrasive of the present invention is supplied between the film to be polished and the polishing cloth.
  • the film to be polished is polished by relatively powering the base plate and the polishing surface plate.
  • Examples of the substrate include a substrate for manufacturing a semiconductor element such as a semiconductor substrate at a stage where a circuit element and a wiring pattern are formed, and a substrate having an inorganic insulating layer formed on the semiconductor substrate.
  • Examples of the film to be polished include inorganic insulating layers such as a silicon oxide film layer and a silicon nitride film layer. By polishing the silicon oxide film layer, the silicon nitride film layer, etc. formed on such a semiconductor substrate with the above-described CMP abrasive, unevenness on the substrate surface can be eliminated and a smooth surface can be obtained over the entire surface of the substrate. .
  • the polishing method of the present invention can also be used for shallow trench isolation.
  • the ratio of the silicon oxide film polishing rate to the silicon nitride film polishing rate, the silicon oxide film polishing rate, and the silicon nitride film polishing rate be 10 or more.
  • this ratio is 10 or more, the polishing rate after the silicon nitride film is exposed is greatly reduced, so that the polishing can be easily stopped. If this ratio is less than 10, polishing is stopped at a predetermined position. It tends to become ⁇ .
  • scratches occur less during polishing!
  • polishing method will be described by taking as an example the case of a semiconductor substrate on which an inorganic insulating layer such as an silicon oxide silicon film is formed.
  • an apparatus for polishing for example, a polishing surface plate to which a polishing cloth (pad) can be attached and a motor that can change the number of rotations, a semiconductor substrate, and the like are attached.
  • a general polishing apparatus having a holder capable of holding a substrate having a film to be polished can be used.
  • the polishing apparatus include a polishing apparatus manufactured by Ebara Corporation and a model number: EPO-111.
  • the polishing cloth is not particularly limited, and for example, a general nonwoven fabric, foamed polyurethane, porous fluorine resin or the like can be used. Further, it is preferable that the polishing cloth is provided with a groove force so as to collect a CMP abrasive.
  • the polishing conditions are not particularly limited, but from the viewpoint of preventing the semiconductor substrate from popping out, the pressure (working load) applied to the semiconductor substrate where the rotation speed of the surface plate is preferably low rotation of 200 rpm or less is From the standpoint that scratches do not occur after polishing, 100 kPa or less is preferable.
  • the pressure (working load) applied to the semiconductor substrate where the rotation speed of the surface plate is preferably low rotation of 200 rpm or less is From the standpoint that scratches do not occur after polishing, 100 kPa or less is preferable.
  • CMP abrasive to the polishing cloth with a pump or the like. Although there is no limit to this supply amount, it is preferable that the surface of the polishing cloth is always covered with CMP abrasive.
  • the semiconductor substrate is preferably thoroughly washed in running water, and then dried by removing water droplets adhering to the semiconductor substrate using a spin dryer or the like.
  • the inorganic insulating layer which is a polishing film
  • a polishing film with the above-described abrasive
  • surface irregularities can be eliminated and a smooth surface can be obtained over the entire surface of the semiconductor substrate.
  • an aluminum wiring is formed on the inorganic insulating film layer, and after forming an inorganic insulating film between the wirings and on the wiring by a method described later, Use a CMP abrasive to polish the surface in the same way. By repeating this step a predetermined number of times, a semiconductor substrate having a desired number of layers can be manufactured.
  • Examples of a method for producing an inorganic insulating film such as an oxide silicon film using the CMP abrasive of the present invention include a low pressure CVD method and a plasma CVD method.
  • Silicon oxide film formation by low-pressure CVD is performed by using monosilane (SiH) as the Si source and oxygen source as the Si source. Use oxygen (O 2). By carrying out this SiH—O-based acid reaction at 400 ° C or lower,
  • a silicon film can be obtained.
  • the silicon oxide film is heat-treated at a temperature of 1000 ° C. or lower after CVD.
  • doping phosphorus (P) in order to achieve surface flatness by high temperature reflow, it is preferable to use a SiH—O—PH-based reaction gas.
  • the reaction gas is SiH using SiH as the Si source and NO as the oxygen source.
  • TEOS tetraethoxysilane
  • the substrate temperature is preferably 250 ° C. to 400 ° C.
  • the reaction pressure is preferably 67 to 400 Pa.
  • the silicon oxide film used in the present invention may be doped with an element such as phosphorus or boron.
  • silicon nitride film formation by low-pressure CVD uses dichlorosilane (SiH C1) as the Si source and ammonia (NH) as the nitrogen source.
  • the reactive gas includes SiH-NH gas using SiH as the Si source and NH as the nitrogen source.
  • the substrate temperature is preferably 300 ° C to 400 ° C! /.
  • the CMP polishing slurry and polishing method of the present invention can also be applied to various semiconductor device manufacturing processes and the like that include only a silicon oxide film formed on a semiconductor substrate.
  • Optical glass such as photomask 'lens' prism; Inorganic conductive film such as ITO;
  • Optical single crystal; solid laser single crystal, blue laser LED sapphire substrate, semiconductor single crystal such as SiC, GaP, GaAs, etc .; glass substrate for magnetic disk; magnetic head, etc. can be polished.
  • the supernatant of the obtained cerium oxide dispersion was diluted with deionized water so that the solid content concentration was 5% by mass to obtain a cerium oxide slurry.
  • a laser diffraction particle size distribution meter manufactured by Malvern, trade name: Master Sizer Microplus
  • the value of D50 was 170 nm.
  • Impurity ions Na, K, Fe, Al, Zr, Cu, Si, Ti
  • the mass ratio was lppm or less.
  • the average particle size was 170 nm as a result of measurement after dilution to an appropriate concentration.
  • the abrasive was centrifuged to obtain a supernatant. From the supernatant, sulfate ion concentration, hydrochloric acid ion concentration and nitrate ion concentration were measured from the supernatant using a capillary electrophoresis measuring device (manufactured by Otsuka Electronics Co., Ltd., model number: CAPI-3300).
  • a calibration curve was created with three strong acid ion concentrations of 300, 600, and lOOOOppm in terms of mass ratio, and the concentration was calculated. As a result, 130 ppm of sulfate ion was detected by mass ratio.
  • Shallow trench isolation insulating film 864 wafer ( ⁇ 200mm, SiN film thickness 15 Onm, SiO film film convex part 610nm, concave part 610nm, trench depth 320nm) made by International Sematech (International SEMATECH) as a test wafer for CMP evaluation Was used. Polishing
  • the above test wafer is set in the holder (product name: EPO-111, manufactured by Ebara Seisakusho Co., Ltd.) on which the adsorption pad for holding the substrate to be held is attached, while the porous urethane plate is placed on a ⁇ 600 mm polishing platen.
  • a grease polishing pad (perforated groove, manufactured by Kuchi Dale, model number: IC-1000) was attached.
  • the holder with the insulating film face down was placed on the polishing pad, and the load on the workpiece and the backside pressure were set to 30 kPa and 15 kPa, respectively.
  • a convex pattern density of 10% means a pattern in which convex parts and concave parts are arranged alternately with a width of 10:90
  • a convex pattern density of 70% means that convex parts and concave parts are alternately arranged with a width of 70:30. It means a side-by-side pattern.
  • the nonvolatile content was measured and found to be 25% by mass.
  • the weight average molecular weight of the polyacrylic acid-70 mol% methacrylic acid copolymer obtained above was measured in the same manner as in Example 1, the weight average molecular weight was 22,000 (in terms of polyethylene glycol) )Met.
  • Example 4 The results shown in Table 1 were obtained by polishing the shallow trench element isolation insulating film CMP evaluation test wafer in the same manner as in Example 1 except that the abrasive prepared above was used. [0097] Example 4
  • the nonvolatile content was measured and found to be 25% by mass.
  • the weight average molecular weight of the polyacrylic acid—50 mol% methacrylic acid copolymer obtained above was measured in the same manner as in Example 1, the weight average molecular weight was 29,000 (in terms of polyethylene glycol) Value).
  • deionized water lOOOg and 200g 2-propanol Charge deionized water lOOOg and 200g 2-propanol to a 3L synthesis flask, put air in deionized water in the flask in about 3LZ minutes, and stir at 25 ° C, 18.4g methacrylic acid, acrylic A mixture of 352.3 g of acid and 69.3 g of deionized water, and 2, 2'-azobis [ 2- (2 imidazoline-2-yl) propane] disulfate dihydrate 69.4 g dissolved in deionized water 5 32.6 g were poured into the flask over 2 hours each. Next, the mixture was kept at 25 ° C.
  • deionized water lOOOg and 200 g of 2 propanol into a 3 L synthesis flask, and put air into the deionized water in the flask in about 3 LZ for 25 ° C with stirring, 62.2 g of methacrylic acid, acrylic acid 468.
  • the solution dissolved in each was poured into the flask over 2 hours. Next, the mixture was kept at 25 ° C.
  • the film thickness was 118 to 140 nm, and the concave SiO residual film thickness was 340 to 390 nm. And high density
  • Convex part of convex part (convex part 70%) and low density part (convex part 10%) SiN residual film thickness difference is 10 ⁇ 35mn
  • concave part SiO residual film thickness difference is 96 ⁇ 142nm, and it is affected by pattern density difference Less uniform
  • polishing was taking place. Further, when the surface of the insulating film after polishing was observed using an optical microscope, no clear polishing flaw was observed in any of the examples.
  • the convex part SiO film was obtained in 185 to 210 seconds. Abrasive and polished replacement paper (Rule 26). The speed was good.
  • the remaining SiN film thickness of the low density part (convex part 10%) is 127 to 140 nm and the concave SiO residual film thickness is 354 to 390 nm.
  • Convex part SiN residual film thickness difference is 10-23 nm
  • concave part SiO residual film thickness difference is 96-136 nm
  • the particles were measured at an appropriate concentration, and as a result, the average particle size was 170 nm.
  • the detected sulfate ion was 10 ppm or less in mass ratio.
  • the abrasive pH was 5.0.
  • the average particle size was 170 nm as a result of dilution and measurement to an appropriate concentration.
  • the detected sulfate ion was 1 Oppm or less in mass ratio.
  • the evaluation wafer was polished using the CMP abrasives prepared in Comparative Examples 1 to 3, and as shown in Table 2, the high density part (convex part 70%) convex part SiN It took 210-265 seconds for the film to be exposed.
  • the remaining SiN film thickness of the low density part (convex part 10%) is 82 to 91mn
  • the concave SiO residual film thickness is 305 to 342mn.
  • the high density part (convex part 70%) and the low density part The difference in the remaining film thickness of SiN is 57 to 64 nm, and the difference in the remaining SiO film thickness is 165 to 186 mn.
  • Examples 1 to 6 can achieve uniform polishing with little influence of the pattern density difference.
  • Examples 1 to 4 have a satisfactory polishing rate and can sufficiently achieve uniform polishing that is less affected by the difference in pattern density.
  • the film thickness difference due to the pattern density difference is reduced, and the process management is easy at high speed.
  • a polishing agent and polishing method capable of polishing an oxy-silicon film, etc. Replacement paper (Kaikai 2 ⁇ ) You can.

Abstract

 本発明のCMP研磨剤は、酸化セリウム粒子、水、並びに、メタクリル酸及びその塩の少なくとも一方が重合してなる重合体、及び/又は、メタクリル酸及びその塩の少なくとも一方と不飽和二重結合を有する単量体とが重合してなる重合体を含有し、さらに分散剤、もしくは、アクリル酸及びその塩の少なくとも一方を含む単量体が重合してなる重合体を含むのが好ましい。これらにより、研磨後の被研磨膜の、パターン密度差による残膜厚差が小さいCMP研磨剤及び研磨方法を提供できる。

Description

CMP研磨剤及び基板の研磨方法
技術分野
[0001] 本発明は、 CMP研磨剤及び基板の研磨方法に関する。好ましくは、半導体素子 製造技術である、基板表面の平坦化工程、特に、層間絶縁膜、 BPSG膜 (ボロン、リ ン等をドープした二酸ィ匕珪素膜)の平坦化工程、シヤロートレンチ分離の形成工程等 において使用される。
背景技術
[0002] 現在の ULSI半導体素子製造工程では、高密度.微細化のための加工技術が研 究開発されている。その一つである CMP (Chemical Mechanical Polishing :ィ匕 学機械研磨)技術は、半導体素子の製造工程において、層間絶縁膜の平坦化、シャ ロートレンチ素子分離形成、プラグ及び埋め込み金属配線形成等を行う際に必須の 技術となってきている。
[0003] 半導体素子の製造工程において、酸化珪素絶縁膜等の無機絶縁膜層が、プラズ マー CVD、低圧 CVD等の方法で形成される。従来、この無機絶縁膜層を平坦ィ匕 するためのスラリー状の化学機械研磨剤として、フュームドシリカ系の研磨剤が一般 的に検討されている。フュームドシリカ系の研磨剤は、例えば、四塩化珪素を熱分解 する方法で粒成長させ、 pH調整を行うことにより製造されている。しかしながら、この ようなフュームドシリカ系の研磨剤は、研磨速度が低いという技術課題がある。
[0004] また、デザインルール 0. 25 μ m以降の世代では、集積回路内の素子分離にシャロ 一トレンチ分離(Shallow Trench Isolation:狭素子分離)が用いられている。シ ヤロートレンチ分離では、基板上に成膜した余分の酸ィ匕珪素膜を除くために CMPが 使用され、研磨を停止させるために、酸ィ匕珪素膜の下に研磨速度の小さいストツバ膜 が形成される。ストツバ膜には窒化珪素等が使用され、酸ィ匕珪素膜とストツバ膜との 研磨速度比が大きいことが望ましい。しかしながら、コロイダルシリカ系の研磨剤は、 上記の酸ィ匕珪素膜とストツバ膜の研磨速度比が 3程度と小さぐシヤロートレンチ分離 用としては実用に耐える特性を有して 、な 、。 [0005] 一方、フォトマスク、レンズ等のガラス表面研磨剤として、酸化セリウム系研磨剤が 用いられて 、る。酸ィ匕セリウム粒子はシリカ粒子及びアルミナ粒子に比べ硬度が低く 、従って、研磨表面に傷が入りにくいことから、仕上げ鏡面研磨に有用である。また、 シリカ研磨剤に比べ、研磨速度が速い利点がある。近年、高純度酸化セリウム砲粒を 用いた半導体用 CMP研磨剤が使用されている(例えば、 日本国特開平 10— 1069 94号公報参照。)。
[0006] また、酸ィ匕セリウム CMP研磨剤の研磨速度を制御し、グローバルな平坦性を向上 させるために、カルボキシル基又はカルボキシル基の塩力 なる親水基を有する水 溶性高分子を、添加剤として酸ィ匕セリウム CMP研磨剤に加えることが知られている( 例えば、 日本国特許第 3278532号公報参照。)。
[0007] 上記添加剤の単量体としては、アクリル酸、ィタコン酸、マレイン酸、それらの塩等 が用いられており、非常に重合しやす 、アクリル酸が最も好適であるとみなされて ヽ る。しかし、それらを単量体として用いた水溶性高分子の添加剤を加えた酸ィ匕セリウ ム CMP研磨剤は、被研磨膜のパターン密度差による残膜厚差を必ずしも満足に低 減できていな力つた。
[0008] 一方、メタクリル酸は、水に室温で 18%しか溶解せず疎水性が高ぐ重合した際に 高分子量の重合体が得られ難 、ことから、メタクリル酸の重合体の研究例自体が少 ない。したがって、前記添加剤に使用される重合体の単量体として好適であるとはみ なされていなかった。
発明の開示
[0009] 本発明は、研磨後に、パターン密度差による残膜厚差が小さい被研磨膜を得られ る CMP研磨剤及び研磨方法を提供するものである。
[0010] 本発明は、次の(1)〜(13)に関する。
[0011] (1) (A)酸化セリウム粒子、(B)分散剤、(C)水、並びに、(D)メタクリル酸及びそ の塩の少なくとも一方が重合してなる重合体と、メタクリル酸及びその塩の少なくとも 一方と不飽和二重結合を有する単量体とが重合してなる重合体との少なくともいず れかを含有する CMP研磨剤。
[0012] (2) (A)酸ィ匕セリウム粒子、(C)水、並びに、(D)メタクリル酸及びその塩の少なくと も一方が重合してなる重合体と、メタクリル酸及びその塩の少なくとも一方と不飽和二 重結合を有する単量体とが重合してなる重合体との少なくともいずれかを含有する c
MP研磨剤。
[0013] (3) (A)酸ィ匕セリウム粒子、(C)水、(D)メタクリル酸及びその塩の少なくとも一方が 重合してなる重合体と、メタクリル酸及びその塩の少なくとも一方と不飽和二重結合を 有する単量体とが重合してなる重合体との少なくともいずれか、並びに、(E)アクリル 酸及びその塩の少なくとも一方が重合してなる重合体と、アクリル酸及びその塩の少 なくとも一方と不飽和二重結合を有する単量体とが重合してなる重合体との少なくと も!ヽずれかを含有する CMP研磨剤。
[0014] (4) 上記の重合体 (D)を構成するメタクリル酸及びその塩の比率が、全単量体成分 の総量に対して 10〜100モル0 /0である前記(1)〜(3)のいずれか一に記載の CMP 研磨剤。
[0015] (5) 重合体の重合時に使用する重合開始剤が、 25°Cで、水 99. 5質量部に対し 0 . 5質量部となるよう添加した場合にすべて溶解する化合物、又は、 25°Cで水 99. 5 質量部に対し 0. 5質量部となるよう添加しさらに有機酸及び無機酸の少なくとも一方 を重合開始剤 1モルに対し 2モルの割合で添加した場合にすべて溶解する化合物で ある前記(1)〜 (4)のいずれか一に記載の CMP研磨剤。
[0016] (6) 重合体の重合時に使用する重合開始剤が、 25°Cで、水 97. 0質量部に対し 3 . 0質量部となるよう添加した場合にすべて溶解する化合物、又は、 25°Cで水 97. 0 質量部に対し 3. 0質量部となるよう添加しさらに有機酸及び無機酸の少なくとも一方 を重合開始剤 1モルに対し 2モルの割合で添加した場合にすべて溶解する化合物で ある前記(1)〜(5)のいずれか一に記載の CMP研磨剤。
[0017] (7) 重合体の配合量が、 CMP研磨剤 100質量部に対して 0. 01〜5質量部であ前 記(1)〜(6)のいずれか一に記載の CMP研磨剤。
[0018] (8) 重合体の重量平均分子量が 200〜100, 000である前記(1)〜(7)のいずれ か一に記載の CMP研磨剤。
[0019] (9) 酸化セリウム粒子の平均粒径が l〜400nmである前記(1)〜(8)のいずれか 一に記載の CMP研磨剤。 [0020] (10) 酸化セリウム粒子の配合量力 CMP研磨剤 100質量部に対して 0. 1〜5質 量部である前記(1)〜(9)のいずれか一に記載の CMP研磨剤。
[0021] (11) pHが 4. 5〜6. 0である前記(1)〜(10)のいずれか一に記載の CMP研磨剤
[0022] (12) さらに強酸イオンを含有し、その強酸イオンの含有量が CMP研磨剤に対して 質量比で 50〜: LO, OOOppmである前記(1)〜(11)のいずれか一に記載の CMP研 磨剤。
[0023] (13) 被研磨膜を形成した基板を研磨定盤の研磨布に押しあて加圧し、前記(1)〜
( 12)の ヽずれか一に記載の CMP研磨剤を被研磨膜と研磨布との間に供給しなが ら、基板と研磨定盤とを相対的に動力ゝして被研磨膜を研磨する基板の研磨方法。
[0024] 本発明の CMP研磨剤及び研磨方法は、研磨後の被研磨膜の、パターン密度差に よる残膜厚差が小さい。
[0025] 本願の開示は、 2004年 9月 28日に出願された特願 2004— 281508号に記載の 主題と関連しており、それらの開示内容は引用によりここに援用される。
発明を実施するための最良の形態
[0026] 本発明の CMP研磨剤は、例えば、酸化セリウム粒子、分散剤及び水を含む酸化セ リウムスラリーと、添加剤及び水を含む添加液とを作製し、それらを混合すること〖こより 得ることができる。
[0027] 本発明における (A)酸ィ匕セリウム粒子は、例えば、炭酸塩、硝酸塩、硫酸塩、しゅう 酸塩等のセリウム化合物を酸ィ匕することなどによって得ることができる。 TEOS— CV D法等で形成される酸ィ匕珪素膜の研磨に使用する酸ィ匕セリウム研磨剤は、粒子の結 晶子径が大きぐかつ結晶ひずみが少ないほど、すなわち結晶性が良いほど高速研 磨が可能であるが、被研磨膜に研磨傷が入りやすい傾向がある。そこで、本発明に おける酸ィ匕セリウム粒子は、その製造方法を限定するものではないが、酸ィ匕セリウム の結晶子径が l〜400nmであることが好ましい。また、半導体素子の製造に係る研 磨に使用する場合には、例えば、酸ィ匕セリウム粒子中のアルカリ金属及びハロゲン類 の含有率を質量比で lOppm以下に抑えることが好ましい。
[0028] 本発明にお 、て、酸ィ匕セリウム粒子を作製する方法としては、例えば、焼成又は過 酸ィ匕水素等による酸ィ匕法などを使用することができる。前記焼成温度は、 350-900 °Cが好ましい。
[0029] 上記の方法により製造された酸ィ匕セリウム粒子が凝集している場合は、機械的に粉 砕することが好ましい。粉砕方法としては、例えば、ジェットミル等による乾式粉砕や 遊星ビーズミル等による湿式粉砕方法が好ましい。ジェットミルは、例えば、「化学ェ 学論文集」第 6卷第 5号(1980) 527〜532頁に説明されているものを使用すること ができる。
[0030] このような酸ィ匕セリウム粒子を、主な分散媒である水中に分散させる方法としては、 例えば、通常の攪拌機による分散処理の他に、ホモジナイザ、超音波分散機、湿式 ボールミル等を使用することができる。
[0031] 上記の方法により分散された酸ィ匕セリウムをさらに微粒子化する方法としては、例え ば、酸ィ匕セリウム分散液を長時間静置させて大粒子を沈降させ、上澄みをポンプで 汲み取ること〖こよる、沈降分級法を使用することができる。他に、分散媒中の酸ィ匕セリ ゥム粒子同士を高圧で衝突させる高圧ホモジナイザを用いてもよい。
[0032] このようにして作製された、酸ィ匕セリウム粒子の CMP研磨剤中の平均粒径は、 1〜 400nmであることが好ましぐ l〜300nmであることがより好ましぐ l〜200nmであ ることが特に好ましい。この平均粒径が lnm未満であると、研磨速度が低下する傾向 にあり、 400nmを超えると、被研磨膜に研磨傷がつきやすくなる傾向にある。
[0033] 本発明で、酸ィ匕セリウム粒子の平均粒径とは、レーザ回折式粒度分布計で測定し た D50の値 (体積分布のメジアン径、累積中央値)を 、う。
[0034] 酸ィ匕セリウム粒子の濃度は、 CMP研磨剤 100質量部当たり 0. 1〜5質量部である こと力 S好ましく、 0. 2〜2質量部であることがより好ましぐ 0. 5〜1. 5質量部であるこ とが特に好ましい。この濃度が 0. 1質量部未満であると、研磨速度が低下する傾向 にあり、 5質量部を超えると、酸ィ匕セリウム粒子が凝集する傾向にある。
[0035] 本発明の CMP研磨剤は (B)分散剤を含むことが好ま ヽ。本発明における分散剤 としては、例えば、水溶性陰イオン性分散剤、水溶性非イオン性分散剤、水溶性陽ィ オン性分散剤、水溶性両性分散剤等が挙げられ、後述するポリカルボン酸型高分子 分散剤が好ましぐ共重合成分としてアクリル酸アンモ-ゥム塩を構成単位とした高 分子分散剤がより好ましい。
[0036] 前記共重合成分としてアクリル酸アンモ-ゥム塩を構成単位とした高分子分散剤と しては、例えば、ポリアクリル酸アンモ-ゥム、アクリル酸アミドとアクリル酸アンモ-ゥ ムの共重合体等が挙げられる。また、共重合成分としてアクリル酸アンモ-ゥム塩を 構成単位とした高分子分散剤の少なくとも 1種類と、その他の分散剤の少なくとも 1種 類、例えば水溶性陰イオン性分散剤、水溶性非イオン性分散剤、水溶性陽イオン性 分散剤及び水溶性両性分散剤から選ばれた少なくとも 1種類とを含む 2種類以上の 分散剤として使用することもできる。
[0037] 半導体素子の製造に係る研磨に使用する場合には、例えば、全分散剤中のナトリ ゥムイオン、カリウムイオン等のアルカリ金属、ハロゲン原子及びィォゥ原子の含有率 は、 CMP研磨剤に対して質量比で lOppm以下に抑えることが好ましい。
[0038] 前記水溶性陰イオン性分散剤としては、例えば、ラウリル硫酸トリエタノールァミン、 ラウリル硫酸アンモ-ゥム、ポリオキシエチレンアルキルエーテル硫酸トリエタノール ァミン、ポリカルボン酸型高分子分散剤等が挙げられる。
[0039] 前記ポリカルボン酸型高分子分散剤としては、例えば、アクリル酸、メタクリル酸、マ レイン酸、フマル酸、ィタコン酸等の不飽和二重結合を有するカルボン酸単量体の重 合体、不飽和二重結合を有するカルボン酸単量体と他の不飽和二重結合を有する 単量体との共重合体、及びそれらのアンモニゥム塩ゃァミン塩などが挙げられる。
[0040] 前記水溶性非イオン性分散剤としては、例えば、ポリオキシエチレンラウリルエーテ ル、ポリオキシエチレンセチルエーテル、ポリオキシエチレンステアリルエーテル、ポリ ォキシエチレンォレイルエーテル、ポリオキシエチレン高級アルコールエーテル、ポリ ォキシエチレンォクチルフエニルエーテル、ポリオキシエチレンノニルフエニルエーテ ル、ポリオキシアルキレンアルキルエーテル、ポリオキシエチレン誘導体、ポリオキシ エチレンソルビタンモノラウレート、ポリオキシエチレンソルビタンモノパルミテート、ポ リオキシエチレンソルビタンモノステアレート、ポリオキシエチレンソルビタントリステア レート、ポリオキシエチレンソルビタンモノォレエート、ポリオキシエチレンソルビタント リオレエート、テトラオレイン酸ポリオキシエチレンソルビット、ポリエチレングリコール モノラウレート、ポリエチレングリコーノレモノステアレート、ポリエチレングリコーノレジス テアレート、ポリエチレングリコールモノォレエート、ポリオキシエチレンアルキルアミン
、ポリオキシエチレン硬化ヒマシ油、 2—ヒドロキシェチルメタタリレート、アルキルアル 力ノールアミド等が挙げられる。
[0041] 前記水溶性陽イオン性分散剤としては、例えば、ポリビニルピロリドン、ココナットアミ ンアセテート、ステアリルアミンアセテート等が挙げられる。
[0042] 前記水溶性両性分散剤としては、例えば、ラウリルべタイン、ステアリルべタイン、ラ ゥリルジメチルァミンオキサイド、 2 アルキル N カルボキシメチル N ヒドロキ シェチルイミダゾリ-ゥムベタイン等が挙げられる。
[0043] これらは、単独で又は 2種類以上を組み合わせて使用される。
[0044] 前記分散剤は、酸化セリウム粒子を、(C)水等の分散媒中に安定的に分散させる ために好適である。
[0045] 研磨剤中の粒子の分散性及び沈降防止、並びに研磨傷の低減の見地から、前記 分散剤の添加量は、酸ィ匕セリウム粒子 100質量部に対して 0. 01〜: LO質量部が好ま しぐ 0. 05〜8質量部がより好ましぐ 0. 1〜5質量部が特に好ましい。この添加量が 0. 01質量部未満であると、粒子の分散性が不十分になり、被研磨膜に研磨傷がつ きやすくなる傾向にあり、 10質量部を超えると、粒子が凝集して沈降が起こり、被研 磨膜に研磨傷がつきやすくなる傾向にある。
[0046] また、研磨速度及び保存安定性の見地から、前記分散剤の重量平均分子量は 10 0〜50, 000力好ましく、 1, 000〜10, 000力より好まし!/ヽ。この重量平均分子量力 S 100未満であると、十分な研磨速度を得られにくい傾向にあり、 50, 000を超えると、 粘度が高くなり、研磨剤の保存安定性が低下する傾向にある。この重量平均分子量 は、示差屈折計 (株式会社日立製作所製、型番 L— 3300)を備えた HPLCポンプ( 株式会社日立製作所製、型番 L 7100)に GPCカラム(日立化成工業株式会社製 、型番 Gelpack GL—W550)を接続し、 50mMリン酸水素ニナトリウム水溶液 Zァ セトニトリル = 90Z10 (VZV)混合液を移動相として用いて測定し、ポリエチレンダリ コール換算した値を用いたものである。
[0047] 本発明の CMP研磨剤は、(D)メタクリル酸及びその塩の少なくとも一方が重合して なる重合体及び Z又はメタクリル酸及びその塩の少なくとも一方と不飽和二重結合を 有する単量体とが重合してなる重合体を含む。この重合体 (D)を含むことにより、平 坦ィ匕特性を向上できる。また、主な被研磨膜である酸ィ匕珪素膜よりも、ストツバ膜であ る窒化珪素膜の研磨速度を抑制するため、研磨のプロセス管理が容易となる。
[0048] 前記重合体 (D)を構成するメタクリル酸及びその塩の比率は、グローバル平坦ィ匕特 性の見地から、全単量体成分の総量に対して 10〜: LOOモル%が好ましぐ 30-100 モル0 /0がより好ましぐ 50〜: LOOモル0 /0がさらに好ましぐ 60〜: LOOモル0 /0力特に好 ましぐ 70〜100モル0 /0が非常に好ましぐ 80〜100モル0 /0が極めて好ましぐ 90〜 100モル%が最も好まし!/、。このメタクリル酸及びその塩の比率が 10モル%未満であ ると、パターン密度差による被研磨膜の残膜厚差が大きくなる傾向にある。
[0049] また、重合体(D)には、単量体としてメタクリル酸のアンモ-ゥム塩、カリウム塩、ァ ルキルアミン塩等の塩も、単独でまたはメタクリル酸と併用して使用することができる。 重合体 (D)は、単量体の一部がメタクリル酸及びその塩の少なくとも一方である重合 体であっても、単量体の全部がメタクリル酸及びその塩の少なくとも一方である重合 体であっても、双方の重合体を併用したものであっても良 、。
[0050] なお、重合体は分散剤としての機能を持つ場合もある。
[0051] 前記不飽和二重結合を有する単量体としては、例えば、アクリル酸、クロトン酸、ビ -ル酢酸、チグリック酸、 2—トリフルォロメチルアクリル酸、ィタコン酸、フマル酸、マ レイン酸、シトラコン酸、メサコン酸、ダルコン酸等のカルボン酸類; 2—アクリルアミド 2—メチルプロパンスルホン酸等のスルホン酸類などが挙げられる。また、これらの アンモニゥム塩、カリウム塩、アルキルアミン塩等の塩も使用することができる。
[0052] また、他にも、例えば、 C〜C のアクリル酸エステル、 C〜C のメタクリル酸エス
1 18 1 18
テル、アクリルアミド、 N, N ジメチルアクリルアミド、 N, N ジェチルアクリルアミド、 N— iso プロピルアクリルアミド、ァクロィルモルホリン、ビュルアルコール、アタリ口- トリル、ビュルピロリドン、ビニルピリジン等のラジカル重合可能な単量体も不飽和二 重結合を有する単量体として使用することができる。
[0053] これらは、単独で又は 2種類以上を組み合わせて使用される。
[0054] さらに (E)アクリル酸及びその塩の少なくとも一方が重合してなる重合体、及び Z又 は、アクリル酸及びその塩の少なくとも一方と不飽和二重結合を有する単量体とが重 合してなる重合体を (D)の重合体と併用してもよ!/、。この重合体 (E)は水への溶解性 を制御できるため好ま 、。
[0055] これら単量体を重合させ、重合体を得るための重合開始剤としては、例えば、水溶 性を有する化合物が好ましい。この重合開始剤の水溶性は、例えば、 25°Cで水に重 合開始剤を添加して攪拌した場合において、水 99. 5質量部に対し 0. 5質量部とな るよう添加した場合にすべて溶解する程度の水溶性、又は、水 99. 5質量部に対し 0 . 5質量部となるよう添加しさらに有機酸及び Z又は無機酸を重合開始剤 1モルに対 し 2モルの割合で添加した場合にすべて溶解する程度の水溶性であることが好まし い。すべて溶解するかどうかは、例えば、 25°Cで、内容積 50mlのキャップ付ポリプロ ピレン製遠沈管に、重合開始剤 0. 15g、純水 29. 85gを採取して密栓し、次いで試 験管ミキサーを用いて 2500rpmで 3分間撹拌後、目視で不溶物の有無を確認する こと〖こより半 IJ断できる。
[0056] さらに、重合開始剤は、水 97. 0質量部に対し 3. 0質量部となるよう添加した場合 にすベて溶解する程度の水溶性、又は、水 97. 0質量部に対し 3. 0質量部となるよう 添加しさらに有機酸及び Z又は無機酸を重合開始剤 1モルに対し 2モルの割合で添 加した場合にすべて溶解する程度の水溶性であることがより好ま ヽ。すべて溶解す るかどうかは、例えば、 25°Cで、内容積 50mlのキャップ付ポリプロピレン製遠沈管に 、重合開始剤 0. 9g、純水 29. lgを採取して密栓し、次いで試験管ミキサーを用いて 2500rpmで 3分間撹拌後、目視で不溶物の有無を確認することにより判断できる。
[0057] 上記重合開始剤としては、例えば、以下のものが挙げられる。過硫酸アンモ-ゥム、 過硫酸カリウム、過硫酸ナトリウム等の過酸ィ匕物;亜硫酸アンモ-ゥム、亜硫酸水素ァ ンモ-ゥム、亜硫酸カリウム、亜硫酸水素カリウム、亜硫酸ナトリウム、亜硫酸水素ナト リウム等の亜硫酸塩と、酸素、空気又は過酸ィ匕物等とを組み合わせたレドックス開始 剤; 2, 2'—ァゾビス〔N—(2—カルボキシェチル) 2—メチルプロピオンアミド〕等 の両性ァゾ化合物; 1一〔(1—シァノ— 1—メチルェチル)ァゾ〕ホルムアミド、 2, 2" - ァゾビス {2—メチル N—〔1, 1—ビス(ヒドロキシメチル) 2—ヒドロキシェチル〕プ ロピオンアミド}、 2, 2'—ァゾビス {2—メチルー N—〔2—(l—ヒドロキシブチル)〕 プロピオンアミド}、 2, 2—ァゾビス〔2—メチルー N—(l—ヒドロキシェチル)〕 プロ ピオンアミド、 2, 2'—ァゾビス〔2—(5—メチルー 2 イミダゾリンー2 ィル)プロパン 〕塩酸塩、 2, 2'—ァゾビス〔2—(2—イミダゾリン 2—ィル)プロパン〕、 2, 2'—ァゾ ビス〔2—(2—イミダゾリン 2—ィル)プロパン〕塩酸塩、 2, 2'—ァゾビス〔2—(2— イミダゾリン 2 ィル)プロパン〕硫酸塩水和物、 2, 2'—ァゾビス〔2—(3, 4, 5, 6 ーテトラヒドロピリミジン— 2—ィル)プロパン〕塩酸塩、 2, 2'—ァゾビス {2—〔1ー(2 ーヒドロキシェチル) 2—イミダゾリン 2—ィル〕プロパン }塩酸塩、 2, 2'—ァゾビ ス(2—アミジノプロパン)塩酸塩、 2, 2—ァゾビス〔N—(2—カルボキシェチル) 2 メチルプロピオナミジン〕、 2, 2'—ァゾビス(2—メチルプロピオンアミドォキシム)等 のカチオン性ァゾィ匕合物など。また、上述した重合開始剤の水溶性を向上させるた めに、例えば、酢酸、シユウ酸、マロン酸、コハク酸、リンゴ酸、酒石酸、クェン酸等の 有機酸塩、りん酸、臭化水素酸、ヨウ化水素酸、ふつ化水素酸、硝酸、硫酸等の無機 酸塩などを加えて使用してもよい。これらの有機酸及び Z又は無機酸は、重合開始 剤 1モルに対し 2モルの割合で添加することが好ましい。 2, 2'—ァゾビス {2—メチル — N—〔1, 1—ビス(ヒドロキシメチル)—2—ヒドロキシェチル〕プロピオンアミド}、 2, 2—ァゾビス〔2—メチル N— (1—ヒドロキシェチル)〕一プロピオンアミド及び 2, 2" ーァゾビス〔2—(2—イミダゾリン 2—ィル)プロパン〕は、前記有機酸及び Z又は無 機酸を加えて使用することが好まし 、。
[0058] また、前記水溶性を有する化合物以外の重合開始剤として、例えば、 4, 4' ァゾ ビス (4—シァノ吉草酸)等のァ-オン性ァゾィ匕合物などを使用することもできる。
[0059] これらは、単独で又は 2種類以上を組み合わせて使用される。
[0060] 重合時の溶媒としては、特に制限は無いが、例えば、メタノール、イソプロノ V—ル 、プロパノール、ブタノール等の c力 Cのアルコール、水などが好ましい。これらは
1 4
、単独で又は 2種類以上を組み合わせて使用される。
[0061] こうして得られた前記重合体の重量平均分子量 (ポリエチレングリコール換算値)は、 200〜100, 000力好まし <、 300〜70, 000力 Sより好まし <、 500〜50, 000力 S特に 好ましい。この重量平均分子量が 200未満であると、十分なグローバル平坦化特性 が得られに《なる傾向にあり、分子量が 100, 000を超えると、十分な研磨速度を得 られにくくなる傾向にある。この重量平均分子量は、示差屈折計 (株式会社日立製作 所製、型番 L— 3300)を備えた HPLCポンプ (株式会社日立製作所製、型番 L— 71 00)に GPCカラム(日立化成工業株式会社製、型番 Gelpack GL—W550)を接続 し、 50mMリン酸水素ニナトリウム水溶液 Zァセトニトリル =90Z10(VZV)混合液 を移動相として用いて測定し、ポリエチレングリコール換算した値を用いたものである 。重合時の重量平均分子量の制御には、例えば、メルカプトエタノール等のメルカプ ト化合物系分子量調節剤を使用してもよい。
[0062] 本発明における前記重合体の配合量 (前記重合体 (Ε)も用いる場合は重合体 (D) と重合体 (Ε)との合計配合量)は、 CMP研磨剤 100質量部に対して、 0. 01〜5質量 部が好ましぐ 0. 05〜3質量部がより好ましぐ 0. 10〜1質量部が特に好ましい。こ の添加量が 0. 01質量部未満であると、高グローバル平坦ィ匕特性が得られにくくなる 傾向にあり、 5質量部を超えると、酸ィ匕セリウム粒子の凝集が起こる傾向がある。
[0063] 凹凸が存在する被研磨膜、例えば、酸ィ匕珪素膜等のグローバル平坦ィ匕を達成する には、凸部が選択的に研磨されることが必要である。前記重合体を含有する研磨剤 を用いると、酸ィ匕セリウム粒子及び被研磨膜の表面に、前記重合体による保護膜が 形成されると考えられる。そして、実効研磨荷重の小さい凹部被研磨膜はこの保護膜 により保護されるが、実効研磨荷重の大きい凸部被研磨膜上の保護膜は排除される ことにより、凸部が選択的に研磨されると考えられる。しかし、従来添加剤として使用 されてきたポリアクリル酸等の水溶性高分子は、水溶性が高いため、被研磨膜上に 形成される保護膜が厚く粗になってしまうと考えられ、そのため十分に選択的な研磨 がされず、パターン密度差による被研磨膜の残膜厚差が発生しやす!ヽと ヽぅ問題が あった。一方、前記重合体 (D)は、従来用いられるポリアクリル酸の単量体であるァク リル酸より疎水性が大きいメタクリル酸を単量体として用いるため、被研磨膜に対し薄 く緻密な吸着層を形成すると考えられる。その結果、被研磨膜の表面に強固な保護 膜を形成するため、パターン密度依存性の少ないグローバル平坦ィ匕が達成可能で あると考えられる。また、本発明における重合体は分散剤としても機能すると考えられ る。
[0064] また、本発明における添加液には、前述した重合体以外の他の水溶性高分子を併 用してもよい。他の水溶性高分子としては、特に制限はなぐ例えば、アルギン酸、ぺ クチン酸、カルボキシメチルセルロース、寒天、カードラン、プルラン等の多糖類;ポリ ァスパラギン酸、ポリグルタミン酸、ポリリシン、ポリリンゴ酸、ポリアミド酸、ポリアミド酸 アンモニゥム塩、ポリアミド酸ナトリウム塩、ポリダリオキシル酸等のポリカルボン酸並 びにその塩;ポリビュルアルコール、ポリビュルピロリドン、ポリアクロレイン等のビュル 系ポリマーなどが挙げられる。
[0065] 本発明の CMP研磨剤は、例えば、酸ィ匕セリウムスラリーと添加液とを分けた二液式 CMP研磨剤として保存しても、また予め酸ィ匕セリウムスラリーと添加液とを混合した一 液式 CMP研磨剤として保存してもよ ヽ。酸ィ匕セリウムスラリーと添加液とを分けた二 液式 CMP研磨剤として保存する場合、これら二液の配合を任意に変えられること〖こ より、グローバル平坦ィ匕特性及び研磨速度の調整が可能となる。二液式 CMP研磨 剤で研磨する場合、例えば、酸ィ匕セリウムスラリーと添加液とを別々の配管で送液し、 これらの配管を合流させて供給配管出口の直前で混合して研磨定盤上に供給する 方法や、研磨直前に酸ィ匕セリウムスラリーと添加液とを混合する方法等がとられる。更 に、二液の酸ィ匕セリウムスラリーと添加剤とを上記のように直前にまたは配管内で、混 合する場合に、必要に応じて脱イオン水を混合して研磨特性を調整することもできる
[0066] 本発明の CMP研磨剤は所望の pHに調整して研磨に供することが好ましい。 pH調 整剤に制限はないが、半導体研磨に使用する場合には、アルカリ金属類よりも、アン モ-ァ水又は酸成分が好ましい。また、前述した重合体や水溶性高分子を予めアン モユアで部分的に中和したアンモ-ゥム塩を pH調整剤として使用してもょ 、。 CMP 磨剤の pHiま 4. 5〜6. 0力好ましく、 4. 8〜5. 6力 ^より好まし!/ヽ。 pH力 ^4. 5未満で あると、研磨速度が低下する傾向にあり、 pHが 6. 0を超えると、被研磨膜の平坦性 が低下する傾向にある。
[0067] 本発明にお 、て CMP研磨剤の pHは、例えば、 pHメータ(例えば、横河電機株式 会社製の Model PH81)を用いて測定することができ、標準緩衝液 (フタル酸塩 PH 緩衝液: pH4. 21(25°C)、中性りん酸塩 pH緩衝液: pH6. 86 (25°C) )を用いて、 2 点校正した後、電極を CMP研磨剤に入れて、 2分間以上経過して安定した後の値を 測定する。 [0068] また、本発明の CMP研磨剤は、さらに強酸イオンを含有することで、パターン密度 差による被研磨膜の残膜厚差をより低減することができる。本発明において、強酸と は、第 1解離可能酸性基の pKa値 (pK )が 3. 2以下である酸とし、例えば、以下の酸
al
が例示される。なお括弧内は pKa値であり、文献:「ィ匕学便覧基礎編」改訂 4版 (社団 法人日本化学会著、平成 5年 9月 30日発行、丸善株式会社発行) II— 317〜322頁 から引用した。
[0069] 硫酸 (pK < 0、pK : 1. 96、以下 pK のみ示す。)、塩酸(一 3. 7)、硝酸(一 1. 8
al a2 al
)、リン酸(2. 15)、シユウ酸(1. 04)、マレイン酸(1. 75)、ピクリン酸(0. 33)、亜硫 酸(1. 86)、チォ硫酸 (0. 6)、アミド硫酸 (0. 99)、塩素酸、過塩素酸(< 0)、亜塩 素酸 (2. 31)、ヨウ化水素酸(一 10)、過ヨウ素酸、ヨウ素酸 (0. 77)、臭化水素酸( — 9)、過臭素酸、臭素酸、クロム酸(― 0. 2)、亜硝酸(3. 15)、 2リン酸 (0. 8)、トリ ポリリン酸(2. 0)、ピクリン酸(0. 33)、ピコリン酸(1. 03)、ホスフィン酸(1. 23)、ホ スホン酸(1. 5)、イソニコチン酸(1. 79)、ニコチン酸(2. 05)、トリクロ口酢酸(0. 66 )、ジクロ口酢酸(1. 30)、クロ口酢酸(2. 68)、シァノ酢酸(2. 47)、ォキサ口酢酸(2 . 27)、二ロト酢酸(1. 46)、ブロモ酢酸(2. 72)、フルォロ酢酸(2. 59)、フ ノキシ 酢酸(2. 99)、 o—ブロモ安息香酸(2. 85)、 o— -トロ安息香酸(2. 17)、 o—クロ口 安息香酸(2. 92)、 p—ァミノ安息香酸(2. 41)、アントラニル酸(2. 00)、フタル酸( 2. 75)、フマル酸(2. 85)、マロン酸(2. 65)、 d—酒石酸(2. 83)、クェン酸(2. 90 ) , 2, 6—ピリジンジカノレボン酸(2. 09)、ピノレビン酸(2. 26)、ポリスチレンスノレホン 酸(< 3. 0)、ポリスルホン酸(< 3. 0)、グルタミン酸(2. 18)、サリチル酸(2. 81)、 ァスパラギン酸(1. 93)、 2—アミノエチルホスホン酸(1. 1)、グリシン(2. 36)、アル ギニン(2. 05)、イソロイシン(2. 21)、サルコシン(2. 15)、オル-チン(1. 9)、グァ ノシン(1. 8)、シトルリン(2. 43)、チロシン(2. 17)、ノ リン(2. 26)、ヒポキサンチン (2. 04)、メチォニン(2. 15)、リシン(2. 04)、ロイシン(2. 35)等。これらは、単独で 又は 2種類以上を組み合わせて使用される。
[0070] 前記強酸としては、第 1解離可能酸性基の pKa値が低 、ものほど効果が高 、と!/、う 見地から、第 1解離可能酸性基の pKa値が 2. 0以下の酸が好ましぐ pKa値が 1. 5 以下の酸がより好ましい。第 1解離可能酸性基の pKa値が 3. 2を超えると、十分な効 果が得られにくい傾向にある。本発明で使用される強酸の添加方法に制限はなぐ 例えば、前記重合体や水溶性高分子とは別に添加してもよぐ予め重合開始剤中に 含有してもよい。また、強酸は塩の形態で研磨剤に添加されても良い。
[0071] 添加された強酸イオンは、前記重合体や他の水溶性高分子よりも優先的に解離す ることで、前記重合体や他の水溶性高分子のカルボキシル基の解離を抑制し、解離 が抑制された前記重合体や他の水溶性高分子は、被研磨膜表面へ吸着して保護膜 を形成しやすくなると考えられる。その結果、パターン密度差を有するウェハの被研 磨膜の残膜厚差をさらに低減することができるものと考えられる。
[0072] 前記強酸イオンの含有量は、 CMP研磨剤中、質量比で 50〜: LO, OOOppmが好ま しく、 100〜1, OOOppm力より好ましく、 200〜600ppm力 ^特に好まし!/、。この含有 量が 50ppm未満であると、パターン密度依存性の低減効果が得られにく!、傾向にあ り、 10, OOOppmを超えると、酸ィ匕セリウム粒子の分散安定性が低下する傾向にある
[0073] (C)水は主な分散媒であり、特に制限は無ぐ脱イオン水が好ましい。
[0074] 本発明の研磨方法は、被研磨膜を形成した基板を研磨定盤の研磨布に押し当て 加圧し、上記本発明の CMP研磨剤を被研磨膜と研磨布との間に供給しながら、基 板と研磨定盤とを相対的に動力ゝして被研磨膜を研磨することを特徴とする。
[0075] 前記基板としては、例えば、回路素子と配線パターンが形成された段階の半導体 基板、半導体基板上に無機絶縁層が形成された基板等の半導体素子製造に係る基 板などが挙げられる。被研磨膜としては、例えば、酸化珪素膜層、窒化珪素膜層等 の無機絶縁層などが挙げられる。このような半導体基板上に形成された酸化珪素膜 層、窒化珪素膜層等を上記 CMP研磨剤で研磨することによって、基板表面の凹凸 を解消し、基板全面にわたって平滑な面とすることができる。
[0076] また、本発明の研磨方法は、シヤロートレンチ分離にも使用することができる。シャロ 一トレンチ分離に使用するためには、酸ィ匕珪素膜研磨速度と窒化珪素膜研磨速度 の比、酸ィ匕珪素膜研磨速度 Z窒化珪素膜研磨速度が 10以上であることが好ましい 。この比が 10以上であると、窒化珪素膜露出後の研磨速度の減少が大きくなるため 、研磨の停止が容易になる。この比が 10未満であると、所定の位置で研磨を停止し に《なる傾向にある。また、シヤロートレンチ分離に使用するためには、研磨時に傷 の発生が少な!/、ことが好まし 、。
[0077] 以下、酸ィ匕珪素膜のような無機絶縁層が形成された半導体基板の場合を例に挙げ て研磨方法を説明する。
[0078] 本発明の研磨方法において、研磨する装置としては、例えば、研磨布 (パッド)を貼 り付け可能で、回転数が変更可能なモータ等を取り付けてある研磨定盤と、半導体 基板等の被研磨膜を有する基板を保持できるホルダーとを有する一般的な研磨装 置などを使用することができる。上記研磨装置としては、例えば、荏原製作所株式会 社製研磨装置、型番: EPO— 111等が挙げられる。研磨布としては、特に制限がなく 、例えば、一般的な不織布、発泡ポリウレタン、多孔質フッ素榭脂等を使用することが できる。また、前記研磨布には、 CMP研磨剤が溜まるような溝力卩ェが施されているこ とが好ましい。研磨条件としては、特に制限はないが、半導体基板が飛び出さないよ うにという見地から、定盤の回転速度は 200rpm以下の低回転が好ましぐ半導体基 板にかける圧力(加工荷重)は、研磨後に傷が発生しないようにという見地から、 100 kPa以下が好ましい。研磨している間、研磨布には、 CMP研磨剤をポンプ等で連続 的に供給することが好ましい。この供給量に制限はないが、研磨布の表面が常に C MP研磨剤で覆われて 、ることが好まし 、。
[0079] 研磨終了後の半導体基板は、流水中で良く洗浄後、スピンドライャ等を用いて半導 体基板上に付着した水滴を払い落として乾燥させることが好ましい。このように、被研 磨膜である無機絶縁層を上記研磨剤で研磨することによって、表面の凹凸を解消し 、半導体基板全面にわたって平滑な面を得ることができる。このようにして平坦ィ匕され たシヤロートレンチを形成したあと、無機絶縁膜層の上に、アルミニウム配線を形成し 、その配線間及び配線上に後述する方法により無機絶縁膜を形成後、上記 CMP研 磨剤を用いて同様に研磨して平滑な面とする。この工程を所定数繰り返すことにより 、所望の層数を有する半導体基板を製造することができる。
[0080] 本発明の CMP研磨剤を使用する酸ィ匕珪素膜のような無機絶縁膜の作製方法とし ては、例えば、低圧 CVD法、プラズマ CVD法等が挙げられる。
[0081] 低圧 CVD法による酸化珪素膜形成は、 Si源としてモノシラン(SiH )、酸素源として 酸素(O )を用いる。この SiH— O系酸ィ匕反応を 400°C以下で行うことにより、酸ィ匕
2 4 2
珪素膜を得ることができる。場合によっては、前記酸化珪素膜は、 CVD後 1000°C又 はそれ以下の温度で熱処理される。高温リフローによる表面平坦ィ匕を図るためにリン (P)をドープするときには、 SiH— O -PH系反応ガスを用いることが好ましい。ブラ
4 2 3
ズマ CVD法は、通常の熱平衡下では高温を必要とする化学反応を、低温で行うこと ができる利点を有する。プラズマ発生法には、例えば、容量結合型と誘導結合型の 2 つが挙げられる。反応ガスとしては、 Si源として SiH、酸素源として N Oを用いた SiH
4 2
— N O系ガスとテトラエトキシシラン (TEOS)を Si源に用いた TEOS— O系ガス(TE
4 2
OS—プラズマ CVD法)が挙げられる。基板温度は 250°C〜400°C、反応圧力は 67 〜400Paの範囲が好ましい。このように、本発明で用いられる酸ィ匕珪素膜には、リン 、ホウ素等の元素がドープされていてもよい。同様に、低圧 CVD法による窒化珪素 膜形成は、 Si源としてジクロルシラン(SiH C1 )、窒素源としてアンモニア (NH )を用
2 2 3 いる。この SiH CI -NH系酸化反応を、 900°Cの高温で行わせることにより、窒化
2 2 3
珪素膜を得ることができる。プラズマ CVD法による窒化珪素膜形成において、反応 ガスとしては、 Si源として SiH、窒素源として NHを用いた SiH -NH系ガスが挙げ
4 3 4 3
られる。基板温度は 300°C〜400°Cが好まし!/、。
[0082] 本発明の CMP研磨剤及び研磨方法は、半導体基板に形成された酸化珪素膜だ けでなぐ各種半導体装置の製造プロセス等にも適用することができる。例えば、所 定の配線を有する配線板に形成された酸化珪素膜、ガラス、窒化珪素等の無機絶 縁膜;ポリシリコン、 Al、 Cu、 Ti、 TiN、 W、 Ta、 TaN等を主として含有する膜;フォト マスク 'レンズ'プリズム等の光学ガラス; ITO等の無機導電膜;ガラス及び結晶質材 料で構成される光集積回路 ·光スイッチング素子 ·光導波路、光ファイバ一の端面、 シンチレータ等の光学用単結晶;固体レーザ単結晶、青色レーザ LED用サフアイャ 基板、 SiC、 GaP、 GaAs等の半導体単結晶;磁気ディスク用ガラス基板;磁気ヘッド などを研磨することができる。
実施例
[0083] 実施例 1
(添加液の作製) 脱イオン水 lOOOgと 2 プロパノール 200gとを 3Lの合成用フラスコに投入し、窒素 ガス雰囲気下で撹拌しながら 90°Cに昇温後、メタクリル酸 561gと脱イオン水 64gとの 混合物と、 2, 2'—ァゾビス〔2—(2—イミダゾリン 2—ィル)プロパン〕二硫酸塩二 水和物 64gを脱イオン水 536gに溶解させたものとを、それぞれ 2時間かけてフラスコ 中に注入した。次いで、 90°Cで 3時間保温後、冷却して取り出し、重合体 (D)を含む 添加液であるポリメタクリル酸溶液を得た。
[0084] その不揮発分を測定したところ、 25質量%であった。さらに、示差屈折計 (株式会 社日立製作所製、型番 L— 3300)を備えた HPLCポンプ (株式会社日立製作所製、 型番 L 7100)に GPCカラム(日立化成工業株式会社製、型番 Gelpack GL—W 550)を接続し、 50mMリン酸水素ニナトリウム水溶液 Zァセトニトリル =90Z10 (V /V)混合液を移動相として用い、上記で得られたポリメタクリル酸の重量平均分子量 測定を行ったところ、その重量平均分子量は 25, 000 (ポリエチレングリコール換算 値)であった。
[0085] (酸ィ匕セリウムスラリーの作製)
炭酸セリウム水和物 40kgをアルミナ製容器に入れ、 830°Cで 2時間、空気中で焼 成することにより、黄白色の粉末を 20kg得た。この粉末を X線回折法で相同定を行 つたところ、酸ィ匕セリウムであることを確認した。粒度分布計で測定した焼成粉末粒子 径は 30〜: L00 mであった。次いで、前記酸化セリウム粒子粉末 20kgを、ジェットミ ルを用いて乾式粉砕を行った。多結晶体の比表面積を BET法により測定した結果、 9m / gであつ 7こ 0
[0086] 上記で得た酸ィ匕セリウム粉末 20kgと脱イオン水 79. 750kgを混合し、分散剤として 市販のポリアクリル酸アンモ-ゥム水溶液(重量平均分子量 8000、重量 40%) 250g を添加し、攪拌しながら超音波分散を行って酸ィ匕セリウム分散液を得た。超音波周波 数は、 400kHzで、分散時間 20分で行った。その後、 10L容器に 5kgの酸ィ匕セリウム 分散液を入れて静置し、沈降分級を行った。分級時間 200時間後、容器底からの高 さ 110mm以上の上澄みをポンプでくみ上げた。次いで、得られた酸化セリウム分散 液の上澄みを、固形分濃度が 5質量%になるように脱イオン水で希釈して、酸化セリ ゥムスラリーを得た。 [0087] さらに、酸ィ匕セリウムスラリー中の平均粒径を測定するため適当な濃度に希釈し、レ 一ザ回折式粒度分布計(Malvern社製、商品名: Master Sizer Microplus)を用 い、屈折率 1. 93、吸収 0として測定したところ、 D50の値は 170nmであった。また、 原子吸光光度計 (株式会社島津製作所製、型番: AA— 670G)を用いて測定した酸 化セリウムスラリー中の不純物イオン(Na、 K、 Fe、 Al、 Zr、 Cu、 Si、 Ti)は、質量比 で lppm以下であった。
[0088] (CMP研磨剤の作製)
上記で得られた添加液であるポリメタクリル酸溶液(25質量%) 36gと脱イオン水 23 64gとを混合し、アンモニア水 (25質量0 /0)にて pH4. 7に調整した。さらに、上記の酸 化セリウムスラリー(固形分: 5質量0 /0) 600gを添加し、酸ィ匕セリウム系 CMP研磨剤 ( 固形分:1. 0質量%)を作製した。研磨剤 pHは 5. 0であった。
[0089] また、研磨剤中の粒子をレーザ回折式粒度分布計で測定するために、適当な濃度 に希釈して測定した結果、粒径の平均値が 170nmであった。次いで、前記研磨剤を 遠心分離して上澄み液を得た。キヤビラリ電気泳動測定装置 (大塚電子株式会社製 、型番: CAPI— 3300)を用いて、前記上澄み液から、研磨剤中の硫酸イオン濃度、 塩酸イオン濃度及び硝酸イオン濃度を測定した。泳動電圧— 30kV、バッファ、試料 注入は落差法 (落差 25mm)、注入時間 90秒で行った。各強酸イオン濃度が質量比 で 300、 600及び lOOOppmの 3点で検量線を作成し、濃度を算出した。その結果、 硫酸イオンが質量比で 130ppm検出された。
[0090] (絶縁膜層の研磨)
シヤロートレンチ素子分離絶縁膜 CMP評価用試験ウェハとして、インターナショナ ル'セマテック(International SEMATECH)製 864ウェハ( φ 200mm, SiN膜厚 15 Onm、 SiO膜厚凸部 610nm、凹部 610nm、トレンチ深さ 320nm)を用いた。研磨
2
装置 (荏原製作所製、商品名: EPO— 111)の、保持する基板取り付け用の吸着パッ ドを貼り付けたホルダーに上記試験ウェハをセットし、一方、 φ 600mmの研磨定盤 に多孔質ウレタン榭脂製の研磨パッド (パーフォレート溝、口デール社製、型番: IC— 1000)を貼り付けた。前記研磨パッド上に、絶縁膜面を下にした前記ホルダーを載 せ、さらにカ卩工荷重及びバックサイド圧をそれぞれ 30kPa、 15kPaに設定した。定盤 上に上記で調製した CMP研磨剤を 200mLZ分の速度で滴下しながら、定盤とゥェ ノ、とをそれぞれ 50rpm、 50rpmで作動させて、前記シヤロートレンチ素子分離絶縁 膜 CMP評価用試験ウェハを研磨した。研磨定盤トルク電流値をモニタすることで、 研磨の終点検出を行った。研磨後のウェハを純水で良く洗浄後、乾燥した。その後、 光干渉式膜厚装置 (ナノメトリタス社製、商品名: Nanospec AFT— 5100)を用い て、高密度部(凸部パターン密度 70%)及び低密度部(凸部パターン密度 10%)に おける、凸部 SiN膜の残膜厚及び凹部 SiO膜の残膜厚を測定した。表 1に得られた
2
各測定結果を示す。凸部パターン密度 10%とは、凸部と凹部が幅 10 : 90で交互に並 んだパターンを意味し、凸部パターン密度 70%とは、凸部と凹部が幅 70 : 30で交互に 並んだパターンを意味する。
[0091] 実施例 2
(添加液の作製)
脱イオン水 600gと 2—プロパノール 600gとを 3Lの合成用フラスコに投入し、窒素 ガス雰囲気下で撹拌しながら 85°Cに昇温後、メタクリル酸 536gとアクリル酸 45gとの 混合物と、脱イオン水 600gに過硫酸アンモ-ゥム 32gを溶解させたものとを、それぞ れ 2時間かけてフラスコ中に注入した。次いで、 85°Cで 3時間保温後、冷却して取り 出し、添加液であるポリアクリル酸一 90モル%メタクリル酸共重合体溶液 (メタクリル 酸:アクリル酸 = 9 : 1)を得た。その不揮発分を測定したところ、 25質量%であった。 さらに、実施例 1と同様の方法にて、上記で得られたポリアクリル酸一 90モル%メタク リル酸共重合体の重量平均分子量測定を行ったところ、その重量平均分子量は 23, 000 (ポリエチレングリコール換算値)であった。
[0092] (研磨剤の作製)
上記で得られた添加液であるポリアクリル酸—90モル%メタクリル酸共重合体溶液 (25質量0 /0) 36gと脱イオン水 2364gとを混合し、アンモニア水(25質量0 /0)にて pH 4. 6に調整した。さらに前記の酸ィ匕セリウムスラリー(固形分: 5質量%) 600gを添カロ し、酸ィ匕セリウム系 CMP研磨剤(固形分: 1. 0質量%)を作製した。研磨剤 pHは 5. 0であった。また、研磨剤中の粒子をレーザ回折式粒度分布計で測定するために、 適当な濃度に希釈して測定した結果、粒径の平均値が 170nmであった。次いで、実 施例 1と同様の方法で強酸イオン濃度を測定した結果、硫酸イオンが質量比で ΙΟΟρ pm検出された。
[0093] (絶縁膜層の研磨)
上記で作製した研磨剤を用いた以外は実施例 1と同様にシヤロートレンチ素子分 離絶縁膜 CMP評価用試験ウェハの研磨を行 ヽ、表 1に示す結果を得た。
[0094] 実施例 3
(添加液の作製)
脱イオン水 lOOOgと 2—プロパノール 200gとを 3Lの合成用フラスコに投入し、窒素 ガス雰囲気下で撹拌しながら 90°Cに昇温後、メタクリル酸 401gとアクリル酸 134gと の混合物と、 2, 2'—ァゾビス〔2— (2—イミダゾリン— 2—ィル)プロパン〕 59gを 5質 量%硫酸水 589gに溶解させたものとを、それぞれ 2時間かけてフラスコ中に注入し た。次いで 90°Cで 3時間保温後、冷却して取り出し、添加液であるポリアクリル酸— 7 0モル%メタクリル酸共重合体溶液を得た。その不揮発分を測定したところ、 25質量 %であった。実施例 1と同様の方法にて、上記で得られたポリアクリル酸— 70モル% メタクリル酸共重合体の重量平均分子量測定を行ったところ、その重量平均分子量 は 22, 000 (ポリエチレングリコール換算値)であった。
[0095] (研磨剤の作製)
上記で得られた添加液であるポリアクリル酸—70モル%メタクリル酸共重合体溶液 (25質量0 /0) 36gと脱イオン水 2364gとを混合し、アンモニア水(25質量0 /0)にて pH 4. 6に調整した。さらに前記の酸ィ匕セリウムスラリー(固形分: 5質量%) 600gを添カロ し、酸ィ匕セリウム系 CMP研磨剤(固形分: 1. 0質量%)を作製した。研磨剤 pHは 5. 0であった。また、研磨剤中の粒子をレーザ回折式粒度分布計で測定するために、 適当な濃度に希釈して測定した結果、粒径の平均値が 170nmであった。次いで、実 施例 1と同様の方法で強酸イオン濃度を測定した結果、硫酸イオンが質量比で 150p pm検出された。
[0096] (絶縁膜層の研磨)
上記で作製した研磨剤を用いた以外は実施例 1と同様にシヤロートレンチ素子分 離絶縁膜 CMP評価用試験ウェハの研磨を行 ヽ、表 1に示す結果を得た。 [0097] 実施例 4
(添加液の作製)
脱イオン水 lOOOgと 2—プロパノール 200gとを 3Lの合成用フラスコに投入し、空気 を約 3LZ分でフラスコ内の脱イオン水中に入れて撹拌しながら 25°Cで、メタクリル酸 279g、アクリル酸 232g及び脱イオン水 89gの混合物と、亜硫酸二アンモ-ゥム一水 和物 89gを脱イオン水 51 lgに溶解させたものとを、それぞれ 2時間かけてフラスコ中 に注入した。次いで、 25°Cで 3時間保温後、冷却して取り出し、添加液であるポリアク リル酸— 50モル%メタクリル酸共重合体溶液を得た。その不揮発分を測定したところ 、 25質量%であった。実施例 1と同様の方法にて、上記で得られたポリアクリル酸— 5 0モル%メタクリル酸共重合体の重量平均分子量測定を行ったところ、その重量平均 分子量は 29, 000 (ポリエチレングリコール換算値)であった。
[0098] (研磨剤の作製)
上記で得られた添加液であるポリアクリル酸—50モル%メタクリル酸共重合体溶液 (25質量0 /0) 36gと脱イオン水 2364gを混合し、アンモニア水(25質量0 /0)にて pH4 . 6に調整した。さらに、前記の酸ィ匕セリウムスラリー(固形分: 5質量%) 600gを添カロ し、酸ィ匕セリウム系 CMP研磨剤(固形分: 1. 0質量%)を作製した。研磨剤 pHは 5. 0であった。また、研磨剤中の粒子をレーザ回折式粒度分布計で測定するために、 適当な濃度に希釈して測定した結果、粒径の平均値が 170nmであった。次いで、実 施例 1と同様の方法で強酸イオン濃度を測定した結果、硫酸イオンが質量比で 230p pm検出された。
[0099] (絶縁膜層の研磨)
上記で作製した研磨剤を用いた以外は実施例 1と同様にシヤロートレンチ素子分 離絶縁膜 CMP評価用試験ウェハの研磨を行 ヽ、表 1に示す結果を得た。
[0100] 実施例 5
(添加液の作製)
脱イオン水 lOOOgと 2—プロパノール 200gとを 3Lの合成用フラスコに投入し、空気 を約 3LZ分でフラスコ内の脱イオン水中に入れて撹拌しながら 25°Cで、メタクリル酸 180. 4g、アクリル酸 352. 3g及び脱イオン水 69. 3gの混合物と、 2, 2'—ァゾビス〔 2- (2 イミダゾリンー2 ィル)プロパン〕二硫酸塩二水和物 69. 4gを脱イオン水 5 32. 6gに溶解させたものとを、それぞれ 2時間かけてフラスコ中に注入した。次いで、 25°Cで 3時間保温後、冷却して取り出し、添加液であるポリアクリル酸— 30モル%メ タクリル酸共重合体溶液を得た。その不揮発分を測定したところ、 25質量%であった 。実施例 1と同様の方法にて、上記で得られたポリアクリル酸— 30モル%メタクリル酸 共重合体の重量平均分子量測定を行ったところ、その重量平均分子量は 25, 000 ( ポリエチレングリコール換算値)であった。
[0101] (研磨剤の作製)
上記で得られた添加液であるポリアクリル酸—30モル%メタクリル酸共重合体溶液 (25質量0 /0) 36gと脱イオン水 2364gを混合し、アンモニア水(25質量0 /0)にて pH4 . 6に調整した。さらに、前記の酸ィ匕セリウムスラリー(固形分: 5質量%) 600gを添カロ し、酸ィ匕セリウム系 CMP研磨剤(固形分: 1. 0質量%)を作製した。研磨剤 pHは 5. 0であった。また、研磨剤中の粒子をレーザ回折式粒度分布計で測定するために、 適当な濃度に希釈して測定した結果、粒径の平均値が 170nmであった。次いで、実 施例 1と同様の方法で強酸イオン濃度を測定した結果、硫酸イオンが質量比で 272p pm検出された。
[0102] (絶縁膜層の研磨)
上記で作製した研磨剤を用いた以外は実施例 1と同様にシヤロートレンチ素子分 離絶縁膜 CMP評価用試験ウェハの研磨を行 ヽ、表 1に示す結果を得た。
[0103] 実施例 6
(添加液の作製)
脱イオン水 lOOOgと 2 プロパノール 200gとを 3Lの合成用フラスコに投入し、空気 を約 3LZ分でフラスコ内の脱イオン水中に入れて撹拌しながら 25°Cで、メタクリル酸 62. 2g、アクリル酸 468. 2g及び脱イオン水 69. 6gの混合物と、 2, 2'—ァゾビス〔2 一(2 イミダゾリン 2 ィル)プロパン〕二硫酸塩二水和物 69. 7gを脱イオン水 53 0. 3gに溶解させたものとを、それぞれ 2時間かけてフラスコ中に注入した。次いで、 2 5°Cで 3時間保温後、冷却して取り出し、添加液であるポリアクリル酸— 10モル%メタ クリル酸共重合体溶液を得た。その不揮発分を測定したところ、 25質量%であった。 実施例 1と同様の方法にて、上記で得られたポリアクリル酸— 10モル%メタクリル酸 共重合体の重量平均分子量測定を行ったところ、その重量平均分子量は 46, 000 ( ポリエチレングリコール換算値)であった。
[0104] (研磨剤の作製)
上記で得られた添加液であるポリアクリル酸—10モル%メタクリル酸共重合体溶液 (25質量0 /0) 36gと脱イオン水 2364gを混合し、アンモニア水(25質量0 /0)にて pH4 . 6に調整した。さらに、前記の酸ィ匕セリウムスラリー(固形分: 5質量%) 600gを添カロ し、酸ィ匕セリウム系 CMP研磨剤(固形分: 1. 0質量%)を作製した。研磨剤 pHは 5. 0であった。また、研磨剤中の粒子をレーザ回折式粒度分布計で測定するために、 適当な濃度に希釈して測定した結果、粒径の平均値が 170nmであった。次いで、実 施例 1と同様の方法で強酸イオン濃度を測定した結果、硫酸イオンが質量比で 275p pm検出された。
[0105] (絶縁膜層の研磨)
上記で作製した研磨剤を用いた以外は実施例 1と同様にシヤロートレンチ素子分 離絶縁膜 CMP評価用試験ウェハの研磨を行 ヽ、表 1に示す結果を得た。
[表 1]
実施例
項目
1 2 3 4 5 6 酸化セリウム
1. 0 1. 0 1. 0 1. 0 1. 0 1. 0 配合量 (質量%)
メタクリ 100: 0 90: 10 70: 30 50: 50 30: 70 10: 90 ル酸:ァ (モル%) (モル%) (モル%) (モル%) (モル%) (モル%) クリル酸 重合体 共重合体 共重合体 共重合体 共重合体 共重合体 亜硫酸二
過硫酸
重合体 (1) * アンモニ (2) * アンモニ
開始剤 ゥム一水 (1) * (1) *
ゥム
和物
重量平均 25, 000 23, 000 22, 000 29, 000 25, 000 46, 000 分子量
添加量 0. 3 0. 3 0. 3 0. 3 0. 3 0. 3 (質量%)
凸部 70%部分 SiN膜
185 210 200 210 240 260 露出研磨時間 (秒)
凸部 SiN 凸部 70% 150 150 145 150 148 153 残膜厚 凸部 10% 140 136 133 127 122 118 mm) 残膜厚差 10 14 12 23 26 35 凹部 Si02 凸部 70% 486 490 490 490 480 482 残膜厚 凸部 10% 390 354 361 360 347 340 mm) 残膜厚差 96 136 129 130 133 142
[0106] (1) *: 2, 2'—ァゾビス〔2— (2—イミダゾリン一 2—ィル)プロパン〕二硫酸塩二水和 物 .
(2) * : 2, 2'—ァゾビス〔2_ (2—イミダゾリン一 2—^ fル)プロパン〕
以上のように実施例 1〜6で調製した各 CMP研磨剤を用いて評価用ウェハを研磨 した結果、表 1に示すように、高密度部(凸部 70%)においては、 185〜260秒で凸 部 SiO膜を削りきり、 SiN膜が露出した Dまた、低密度部(凸部 10%)の凸部 SiN残
2
膜厚は 118〜140nm、凹部 SiO残膜厚は 340〜390nmであった。そして、高密度
2
部(凸部 70%)と低密度部(凸部 10%)の凸部 SiN残膜厚の差は 10〜35mn、凹部 SiO残膜厚の差は 96〜142nmであり、パターン密度差による影響の少ない均一な
2
研磨が行われていた。また、光学顕微鏡を用いて研磨後の絶縁膜表面を観察したと ころ、いずれの実施例においても明確な研磨傷は観察されな力 た。
[0107] 特に、実施例 1〜4で調製した各 CMP研磨剤を用いて評価用ウェハを研磨した結 果、高密度部(凸部 70%)においては、 185~210秒で凸部 SiO膜を削りきり、研磨 差替え用紙(規則 26). 速度が良好だった。また、低密度部(凸部 10%)の凸部 SiN残膜厚は 127〜140nm 、凹部 SiO残膜厚は 354〜390nmであり、高密度部(凸部 70%)と低密度部(凸部
2
10%)の凸部 SiN残膜厚の差は 10〜23nm、凹部 SiO残膜厚の差は 96〜136nm
2
であり、よりパターン密度差による影響の少ない均一な研磨が行われていた。
[0108] 比較例 1
(添加液の作製)
イソプロパノール 480g、脱イオン水 480gを 3Lの合成用フラスコに投入し、窒素ガ ス雰囲気下で撹拌しながら 75°Cに昇温後、アクリル酸 560g、 2, 2,—ァゾビスイソブ チ口-トリル 40gをイソプロパノール 500gに溶解させたものを 2時間かけてフラスコ中 に注入した。次いで、 75°Cで 3時間保温後、冷却して取り出し、添加液であるポリアク リル酸水溶液を得た。その不揮発分を測定したところ、 25質量%であった。実施例 1 と同様に、得られたポリアクリル酸の重量平均分子量測定を行ったところ、その重量 平均分子量は 10,000(ポリエチレングリコール換算値)であった。
[0109] (研磨剤の作製)
上記で作製した添加液であるポリアクリル酸水溶液(25質量%) 48gと脱イオン水 2 352gを混合し、アンモニア水(25質量%)にて pH6. 9に調整した。さらに前記の酸 化セリウムスラリー(固形分: 5質量%) 600gを添加し、酸化セリウム研磨剤(固形分: 1. 0質量%)を作製した。研磨剤 pHは 7. 0であった。また、研磨剤中の粒子をレー ザ回折式粒度分布計で測定するために、適当な濃度に希釈して測定した結果、粒 径の平均値が 170nmであった。次いで、実施例 1と同様の方法で強酸イオン濃度を 測定した結果、検出された硫酸イオンは質量比で lOppm以下であった。
[0110] (絶縁膜層の研磨)
上記で作製した研磨剤を用いた以外は実施例 1と同様にシヤロートレンチ素子分 離絶縁膜 CMP評価用試験ウェハの研磨を行 ヽ、表 2に示す結果を得た。
[0111] 比較例 2
(研磨剤の作製)
市販のポリイタコン酸粉末 12gと脱イオン水 2388gを混合し、アンモニア水(25質 量%)にて pH4. 3に調整した。実施例 1と同様の方法でポリイタコン酸の分子量を測 定した結果、重量平均分子量は 14,000 (ポリエチレングリコール換算値)であった。 さらに、前記の酸ィ匕セリウムスラリー(固形分: 5質量0 /0) 600gを添加し、酸化セリウム 研磨剤(固形分: 1. 0質量%)を作製した。研磨剤 pHは 5. 0であった。また、研磨剤 中の粒子をレーザ回折式粒度分布計で測定するために、適当な濃度に希釈して測 定した結果、粒径の平均値が 170nmであった。次いで、実施例 1と同様の方法で強 酸イオン濃度を測定した結果、検出された硫酸イオンは質量比で lOppm以下であつ た。
[0112] (絶縁膜層の研磨)
上記で作製した研磨剤を用いた以外は実施例 1と同様にシヤロートレンチ素子分 離絶縁膜 CMP評価用試験ウェハの研磨を行 ヽ、表 2に示す結果を得た。
[0113] 比較例 3
(研磨剤の作製)
アルドリッチ (Aldrich)社製ポリアクリル酸 50モル0 /0マレイン酸共重合体水溶液( 50質量0 /0) 24gと脱イオン水 2376gを混合し、アンモニア水 (25質量0 /0)にて pH4. 3 に調整した。実施例 1と同様の方法でポリアクリル酸— 50モル%マレイン酸共重合体 の重量平均分子量を測定した結果、重量平均分子量は 8,000 (ポリエチレングリコー ル換算値)であった。さらに、前記の酸ィ匕セリウムスラリー(固形分: 5質量%) 600gを 添加し、酸化セリウム研磨剤(固形分: 1. 0質量%)を作製した。研磨剤 pHは 5. 0で あった。また、研磨剤中の粒子をレーザ回折式粒度分布計で測定するために、適当 な濃度に希釈して測定した結果、粒径の平均値が 170nmであった。次いで、実施例 1と同様の方法で強酸イオン濃度を測定した結果、検出された硫酸イオンは質量比 で 1 Oppm以下であつた。
[0114] (絶縁膜層の研磨)
上記で作製した研磨剤を用いた以外は実施例 1と同様にシヤロートレンチ素子分 離絶縁膜 CMP評価用試験ウェハの研磨を行 ヽ、表 2に示す結果を得た。
[表 2] 比較例
項目
1 2 3
酸化セリウム
1. 0 1. 0 1. 0
配合量 (質量%)
ポリアクリル酸 -50モ
ポリアク ポリイタ
種類 ル%ポリマレイン酸
リル酸 コン酸
共重合体
2, 2' -ァゾ
重合 ビスィソ
なし なし
重合体 開始剤 プチロニ
トリル
重量平均 10, 000 14, 000 8, 000 分子量
添加量
0. 4 0. 4 0. 4
(質量%)
凸部 70%部分 SiN膜
240 210 265
露出研磨時間 (秒)
凸部 SiN 凸部 70% 145 143 155
残膜厚 凸部 10% 88 82 91
残膜厚差 57 61 64
凹部 Si02 凸部 70% 507 487 499
残膜厚 凸部 10% 342 305 313
(nm) 残膜厚差 165 182 " 186
[0115] 以上のように比較例 1〜3で調製した各 CMP研磨剤を用いて評価用ウェハを研磨 しだ結果、表 2に示すように、高密度部(凸部 70%)凸部 SiN膜が露出するのに 210 ~265秒を要した。また、低密度部(凸部 10%)の凸部 SiN残膜厚は 82〜91mn、 凹部 Si〇残膜厚は 305~342mnであり、高密度部(凸部 70%)と低密度部(凸部 1 0%)の凸部 SiN残膜厚の差は 57〜64nm、凹部 SiO残膜厚の差は 165〜186mn
2
であり、パターン密度差による影響が発生しており、研磨の進行が不均一だった。
[0116] 以上の実験結果から、実施例 1〜6は、パターン密度差による影響の少ない均一な 研磨を達成できている。特に、実施例 1〜4は、研磨速度が良好であり、かつ、パター ン密度差による影響のより少ない均一な研磨を十分に達成できている。
産業上の利用の可能性
[0117] 本発明により、層間絶縁膜、 BPSG膜、シヤロートレンチ分離用絶縁膜等を平坦化 する CMP技術において、パターン密度差による膜厚差を低減し、高速に、かつプロ セス管理も容易に、酸ィヒ珪素膜等を研磨できる研磨剤および研磨方法を提供するこ 差替え用紙(規貝 ΰ2β) とができる。

Claims

請求の範囲
[1] (A)酸ィ匕セリウム粒子、(B)分散剤、(C)水、並びに、(D)メタクリル酸及びその塩の 少なくとも一方が重合してなる重合体と、メタクリル酸及びその塩の少なくとも一方と 不飽和二重結合を有する単量体とが重合してなる重合体との少なくともいずれかを 含有する CMP研磨剤。
[2] (A)酸ィ匕セリウム粒子、(C)水、並びに、(D)メタクリル酸及びその塩の少なくとも一 方が重合してなる重合体と、メタクリル酸及びその塩の少なくとも一方と不飽和二重 結合を有する単量体とが重合してなる重合体との少なくともいずれかを含有する CM P研磨剤。
[3] (A)酸ィ匕セリウム粒子、(C)水、(D)メタクリル酸及びその塩の少なくとも一方が重合 してなる重合体と、メタクリル酸及びその塩の少なくとも一方と不飽和二重結合を有す る単量体とが重合してなる重合体との少なくともいずれか、並びに、(E)アクリル酸及 びその塩の少なくとも一方が重合してなる重合体と、アクリル酸及びその塩の少なくと も一方と不飽和二重結合を有する単量体とが重合してなる重合体との少なくともいず れかを含有する CMP研磨剤。
[4] 前記の重合体 (D)を構成するメタクリル酸及びその塩の比率が、全単量体成分の 総量に対して 10〜: L00モル%である請求の範囲第 1項〜第 3項のいずれ力 1項に記 載の CMP研磨剤。
[5] 重合体の重合時に使用する重合開始剤が、 25°Cで、水 99. 5質量部に対し 0. 5 質量部となるよう添加した場合にすべて溶解する化合物、又は、 25°Cで水 99. 5質 量部に対し 0. 5質量部となるよう添加しさらに有機酸及び無機酸の少なくとも一方を 重合開始剤 1モルに対し 2モルの割合で添加した場合にすべて溶解する化合物であ る請求の範囲第 1項〜第 4項のいずれか 1項に記載の CMP研磨剤。
[6] 重合体の重合時に使用する重合開始剤が、 25°Cで、水 97. 0質量部に対し 3. 0 質量部となるよう添加した場合にすべて溶解する化合物、又は、 25°Cで水 97. 0質 量部に対し 3. 0質量部となるよう添加しさらに有機酸及び無機酸の少なくとも一方を 重合開始剤 1モルに対し 2モルの割合で添加した場合にすべて溶解する化合物であ る請求の範囲第 1項〜第 5項のいずれか 1項に記載の CMP研磨剤。
[7] 重合体の配合量が、 CMP研磨剤 100質量部に対して 0. 01〜5質量部である請求 の範囲第 1項〜第 6項のいずれか 1項に記載の CMP研磨剤。
[8] 重合体の重量平均分子量が 200〜100, 000である請求の範囲第 1項〜第 7項の いずれか 1項に記載の CMP研磨剤。
[9] 酸化セリゥム粒子の平均粒径が 1〜400nmである請求の範囲第 1項〜第 8項の!/ヽ ずれか 1項に記載の CMP研磨剤。
[10] 酸ィ匕セリウム粒子の配合量力 CMP研磨剤 100質量部に対して 0. 1〜5質量部で ある請求の範囲第 1項〜第 9項のいずれか 1項に記載の CMP研磨剤。
[11] pHが 4. 5〜6. 0である請求の範囲第 1項〜第 10項のいずれ力 1項に記載の CM
P研磨剤。
[12] さらに強酸イオンを含有し、その強酸イオンの含有量が CMP研磨剤に対して質量 比で 50〜10, OOOppmである請求の範囲第 1項〜第 11項のいずれ力 1項に記載の CMP研磨剤。
[13] 被研磨膜を形成した基板を研磨定盤の研磨布に押しあて加圧し、請求の範囲第 1 項〜第 12項のいずれか 1項に記載の CMP研磨剤を被研磨膜と研磨布との間に供 給しながら、基板と研磨定盤とを相対的に動力ゝして被研磨膜を研磨する基板の研磨 方法。
PCT/JP2005/017764 2004-09-28 2005-09-27 Cmp研磨剤及び基板の研磨方法 WO2006035779A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US11/576,014 US20080254717A1 (en) 2004-09-28 2005-09-27 Cmp Polishing Slurry and Method of Polishing Substrate
CN200580032714XA CN101032001B (zh) 2004-09-28 2005-09-27 Cmp抛光剂以及衬底的抛光方法
JP2006523471A JP4755984B2 (ja) 2004-09-28 2005-09-27 Cmp研磨剤及び基板の研磨方法
US12/768,082 US8900335B2 (en) 2004-09-28 2010-04-27 CMP polishing slurry and method of polishing substrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-281508 2004-09-28
JP2004281508 2004-09-28

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US11/576,014 A-371-Of-International US20080254717A1 (en) 2004-09-28 2005-09-27 Cmp Polishing Slurry and Method of Polishing Substrate
US12/768,082 Division US8900335B2 (en) 2004-09-28 2010-04-27 CMP polishing slurry and method of polishing substrate

Publications (1)

Publication Number Publication Date
WO2006035779A1 true WO2006035779A1 (ja) 2006-04-06

Family

ID=36118925

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/017764 WO2006035779A1 (ja) 2004-09-28 2005-09-27 Cmp研磨剤及び基板の研磨方法

Country Status (6)

Country Link
US (2) US20080254717A1 (ja)
JP (2) JP4755984B2 (ja)
KR (2) KR100864996B1 (ja)
CN (2) CN101333418B (ja)
TW (2) TWI311583B (ja)
WO (1) WO2006035779A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007027663A (ja) * 2005-07-21 2007-02-01 Fujimi Inc 研磨用組成物
EP1796152A1 (en) * 2004-07-23 2007-06-13 Hitachi Chemical Company, Ltd. Cmp polishing agent and method for polishing substrate
WO2008032794A1 (fr) * 2006-09-15 2008-03-20 Hitachi Chemical Co., Ltd. Agent de polissage cmp, solution additive pour agent de polissage cmp, et procédé pour polir le substrat en utilisant l'agent de polissage et la solution additive
JP2011505682A (ja) * 2007-10-29 2011-02-24 イー.ケー.シー.テクノロジー.インコーポレーテッド 新規なニトリル及びアミドキシム化合物ならびに調製方法
JP2012146974A (ja) * 2010-12-24 2012-08-02 Hitachi Chem Co Ltd 研磨液及びこの研磨液を用いた基板の研磨方法
WO2013172111A1 (ja) * 2012-05-18 2013-11-21 株式会社 フジミインコーポレーテッド 研磨用組成物並びにそれを用いた研磨方法及び基板の製造方法
CN104889874A (zh) * 2015-06-25 2015-09-09 蓝思科技(长沙)有限公司 一种蓝宝石抛光用吸附垫及其制备方法
CN110998800A (zh) * 2017-08-14 2020-04-10 日立化成株式会社 研磨液、研磨液套剂及研磨方法

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008205464A (ja) * 2007-02-20 2008-09-04 Hitachi Chem Co Ltd 半導体基板の研磨方法
JP5327427B2 (ja) * 2007-06-19 2013-10-30 Jsr株式会社 化学機械研磨用水系分散体調製用セット、化学機械研磨用水系分散体の調製方法、化学機械研磨用水系分散体および化学機械研磨方法
EP2415849A4 (en) * 2009-03-30 2014-12-17 Toray Industries CONDUCTIVE FILM ELIMINATING AGENT AND METHOD FOR REMOVING CONDUCTIVE FILM
US20130171824A1 (en) * 2010-09-08 2013-07-04 Basf Se Process for chemically mechanically polishing substrates containing silicon oxide dielectric films and polysilicon and/or silicon nitride films
SG10201606566SA (en) * 2010-09-08 2016-09-29 Basf Se Aqueous polishing composition and process for chemically mechanically polishing substrates containing silicon oxide dielectric and polysilicon films
US8808573B2 (en) * 2011-04-15 2014-08-19 Cabot Microelectronics Corporation Compositions and methods for selective polishing of silicon nitride materials
US20130217306A1 (en) * 2012-02-16 2013-08-22 Taiwan Semiconductor Manufacturing Co., Ltd. CMP Groove Depth and Conditioning Disk Monitoring
CN102627915A (zh) * 2012-03-23 2012-08-08 江苏中晶科技有限公司 高效氧化铝蓝宝石抛光液及其制备方法
US9303187B2 (en) * 2013-07-22 2016-04-05 Cabot Microelectronics Corporation Compositions and methods for CMP of silicon oxide, silicon nitride, and polysilicon materials
US10227518B2 (en) * 2013-09-30 2019-03-12 Fujimi Incorporated Polishing composition and method for producing same
JP5857310B2 (ja) * 2013-09-30 2016-02-10 株式会社フジミインコーポレーテッド 研磨用組成物およびその製造方法
JP5920840B2 (ja) * 2013-09-30 2016-05-18 株式会社フジミインコーポレーテッド 研磨用組成物およびその製造方法
US9281210B2 (en) * 2013-10-10 2016-03-08 Cabot Microelectronics Corporation Wet-process ceria compositions for polishing substrates, and methods related thereto
KR101706975B1 (ko) * 2014-02-14 2017-02-16 주식회사 케이씨텍 슬러리 조성물의 제조 방법 및 이에 의해 제조된 슬러리 조성물
CN104724747B (zh) * 2015-02-12 2016-04-06 安徽江南晶盛新材料有限公司 一种超细氧化铈水基分散体系的物理化学稳定方法
CN106479376A (zh) * 2016-08-31 2017-03-08 常熟市光学仪器有限责任公司 耐辐射光学玻璃加工用抛光液
CN107353833B (zh) * 2017-07-24 2020-05-12 包头天骄清美稀土抛光粉有限公司 高选择性浅槽隔离化学机械抛光浆料的制备工艺
WO2021220672A1 (ja) * 2020-04-27 2021-11-04 昭和電工株式会社 セリウム系研磨材スラリー原液及びその製造方法、並びに研磨液

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000079577A1 (fr) * 1999-06-18 2000-12-28 Hitachi Chemical Co., Ltd. Compose abrasif pour polissage cmp, procede de polissage d'un substrat, procede de fabrication d'un dispositif a semiconducteur utilisant ledit compose, et additif pour compose abrasif cmp
JP2001358100A (ja) * 2000-06-14 2001-12-26 Hitachi Chem Co Ltd Cmp研磨剤及び基板の研磨方法
JP2003347248A (ja) * 2002-05-28 2003-12-05 Hitachi Chem Co Ltd 半導体絶縁膜用cmp研磨剤及び基板の研磨方法
JP2003347247A (ja) * 2002-05-28 2003-12-05 Hitachi Chem Co Ltd 半導体絶縁膜用cmp研磨剤及び基板の研磨方法

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3278532B2 (ja) 1994-07-08 2002-04-30 株式会社東芝 半導体装置の製造方法
US6420269B2 (en) * 1996-02-07 2002-07-16 Hitachi Chemical Company, Ltd. Cerium oxide abrasive for polishing insulating films formed on substrate and methods for using the same
CA2263241C (en) * 1996-09-30 2004-11-16 Masato Yoshida Cerium oxide abrasive and method of abrading substrates
JPH10106994A (ja) 1997-01-28 1998-04-24 Hitachi Chem Co Ltd 酸化セリウム研磨剤及び基板の研磨法
JP4092011B2 (ja) * 1998-04-10 2008-05-28 花王株式会社 研磨液組成物
US6783434B1 (en) * 1998-12-25 2004-08-31 Hitachi Chemical Company, Ltd. CMP abrasive, liquid additive for CMP abrasive and method for polishing substrate
KR100447551B1 (ko) * 1999-01-18 2004-09-08 가부시끼가이샤 도시바 복합 입자 및 그의 제조 방법, 수계 분산체, 화학 기계연마용 수계 분산체 조성물 및 반도체 장치의 제조 방법
JP4278773B2 (ja) * 1999-04-30 2009-06-17 花王株式会社 研磨液組成物
JP2001107089A (ja) * 1999-10-07 2001-04-17 Jsr Corp 半導体部品用洗浄剤、半導体部品の洗浄方法、研磨用組成物、および研磨方法
US6821897B2 (en) * 2001-12-05 2004-11-23 Cabot Microelectronics Corporation Method for copper CMP using polymeric complexing agents
KR100663781B1 (ko) * 2003-01-31 2007-01-02 히다치 가세고교 가부시끼가이샤 Cμρ연마제 및 연마방법
JP2004335689A (ja) * 2003-05-07 2004-11-25 Mitsui Chemicals Inc 銅研磨用スラリー
US20080219130A1 (en) * 2003-08-14 2008-09-11 Mempile Inc. C/O Phs Corporate Services, Inc. Methods and Apparatus for Formatting and Tracking Information for Three-Dimensional Storage Medium
JP2005091840A (ja) * 2003-09-18 2005-04-07 Konica Minolta Business Technologies Inc 画像形成装置及び画像形成方法
KR100555432B1 (ko) * 2003-09-23 2006-02-24 삼성코닝 주식회사 반도체 박막 연마용 산화세륨 수성 슬러리 및 이의 제조방법
US20050104048A1 (en) * 2003-11-13 2005-05-19 Thomas Terence M. Compositions and methods for polishing copper
JP2005167016A (ja) * 2003-12-03 2005-06-23 Mitsui Chemicals Inc 研磨用スラリー
US20050136671A1 (en) * 2003-12-22 2005-06-23 Goldberg Wendy B. Compositions and methods for low downforce pressure polishing of copper
US20050189322A1 (en) * 2004-02-27 2005-09-01 Lane Sarah J. Compositions and methods for chemical mechanical polishing silica and silicon nitride
TWI370843B (en) * 2004-03-16 2012-08-21 Samsung Corning Prec Mat Co Ceria slurry for polishing semiconductor thin layer
US20060021972A1 (en) * 2004-07-28 2006-02-02 Lane Sarah J Compositions and methods for chemical mechanical polishing silicon dioxide and silicon nitride
US7086935B2 (en) * 2004-11-24 2006-08-08 Rohm And Haas Electronic Materials Cmp Holdings, Inc. Cellulose-containing polishing compositions and methods relating thereto

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000079577A1 (fr) * 1999-06-18 2000-12-28 Hitachi Chemical Co., Ltd. Compose abrasif pour polissage cmp, procede de polissage d'un substrat, procede de fabrication d'un dispositif a semiconducteur utilisant ledit compose, et additif pour compose abrasif cmp
JP2001358100A (ja) * 2000-06-14 2001-12-26 Hitachi Chem Co Ltd Cmp研磨剤及び基板の研磨方法
JP2003347248A (ja) * 2002-05-28 2003-12-05 Hitachi Chem Co Ltd 半導体絶縁膜用cmp研磨剤及び基板の研磨方法
JP2003347247A (ja) * 2002-05-28 2003-12-05 Hitachi Chem Co Ltd 半導体絶縁膜用cmp研磨剤及び基板の研磨方法

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9293344B2 (en) 2004-07-23 2016-03-22 Hitachi Chemical Company, Ltd. Cmp polishing slurry and method of polishing substrate
EP1796152A1 (en) * 2004-07-23 2007-06-13 Hitachi Chemical Company, Ltd. Cmp polishing agent and method for polishing substrate
EP1796152A4 (en) * 2004-07-23 2008-12-03 Hitachi Chemical Co Ltd POLISHING AGENT FOR MECHANICAL CHEMICAL PLANARIZATION (CMP)
JP2007027663A (ja) * 2005-07-21 2007-02-01 Fujimi Inc 研磨用組成物
WO2008032794A1 (fr) * 2006-09-15 2008-03-20 Hitachi Chemical Co., Ltd. Agent de polissage cmp, solution additive pour agent de polissage cmp, et procédé pour polir le substrat en utilisant l'agent de polissage et la solution additive
JP5186707B2 (ja) * 2006-09-15 2013-04-24 日立化成株式会社 Cmp研磨剤、cmp研磨剤用添加液及びこれらを用いた基板の研磨方法
JP2011505682A (ja) * 2007-10-29 2011-02-24 イー.ケー.シー.テクノロジー.インコーポレーテッド 新規なニトリル及びアミドキシム化合物ならびに調製方法
US9564337B2 (en) 2010-12-24 2017-02-07 Hitachi Chemical Co., Ltd. Polishing liquid and method for polishing substrate using the polishing liquid
JP2012146974A (ja) * 2010-12-24 2012-08-02 Hitachi Chem Co Ltd 研磨液及びこの研磨液を用いた基板の研磨方法
JP2013243208A (ja) * 2012-05-18 2013-12-05 Fujimi Inc 研磨用組成物並びにそれを用いた研磨方法及び基板の製造方法
WO2013172111A1 (ja) * 2012-05-18 2013-11-21 株式会社 フジミインコーポレーテッド 研磨用組成物並びにそれを用いた研磨方法及び基板の製造方法
US9422454B2 (en) 2012-05-18 2016-08-23 Fujimi Incorporated Polishing composition, polishing method using same, and method for producing substrate
CN104889874A (zh) * 2015-06-25 2015-09-09 蓝思科技(长沙)有限公司 一种蓝宝石抛光用吸附垫及其制备方法
CN104889874B (zh) * 2015-06-25 2017-08-04 蓝思科技(长沙)有限公司 一种蓝宝石抛光用吸附垫及其制备方法
CN110998800A (zh) * 2017-08-14 2020-04-10 日立化成株式会社 研磨液、研磨液套剂及研磨方法
CN110998800B (zh) * 2017-08-14 2023-09-22 株式会社力森诺科 研磨液、研磨液套剂及研磨方法

Also Published As

Publication number Publication date
KR20070044049A (ko) 2007-04-26
CN101032001A (zh) 2007-09-05
TWI311583B (en) 2009-07-01
KR100864996B1 (ko) 2008-10-23
US20080254717A1 (en) 2008-10-16
TW200918655A (en) 2009-05-01
TWI311584B (en) 2009-07-01
CN101333418B (zh) 2011-05-25
JPWO2006035779A1 (ja) 2008-05-15
CN101333418A (zh) 2008-12-31
JP2010199595A (ja) 2010-09-09
US20100210109A1 (en) 2010-08-19
KR100985609B1 (ko) 2010-10-05
JP4755984B2 (ja) 2011-08-24
KR20080067715A (ko) 2008-07-21
JP5176154B2 (ja) 2013-04-03
US8900335B2 (en) 2014-12-02
TW200621959A (en) 2006-07-01
CN101032001B (zh) 2011-12-28

Similar Documents

Publication Publication Date Title
JP5176154B2 (ja) Cmp研磨剤及び基板の研磨方法
JP4853287B2 (ja) Cmp研磨剤及び基板の研磨方法
JP5655879B2 (ja) Cmp研磨剤及び基板の研磨方法
JP4983603B2 (ja) 酸化セリウムスラリー、酸化セリウム研磨液及びこれらを用いた基板の研磨方法
JP5110058B2 (ja) Cmp研磨剤及び研磨方法
WO2007055278A1 (ja) 酸化ケイ素用研磨剤、添加液および研磨方法
JP5186707B2 (ja) Cmp研磨剤、cmp研磨剤用添加液及びこれらを用いた基板の研磨方法
TW202142644A (zh) 研磨用組合物、研磨方法及半導體基板之製造方法
JP2010272733A (ja) 研磨剤及びこの研磨剤を用いた基板の研磨方法
JP2006041034A (ja) Cmp研磨剤及び基板の研磨方法
JP2006041033A (ja) Cmp研磨剤及び基板の研磨方法
JP2004247748A (ja) Cmp研磨剤用添加液
JP2006036963A (ja) Cmp研磨剤及び基板の研磨方法
JP2011233748A (ja) 基板の研磨方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2006523471

Country of ref document: JP

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020077005762

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 11576014

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200580032714.X

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase