WO2006033281A1 - 超音波プローブ - Google Patents

超音波プローブ Download PDF

Info

Publication number
WO2006033281A1
WO2006033281A1 PCT/JP2005/017051 JP2005017051W WO2006033281A1 WO 2006033281 A1 WO2006033281 A1 WO 2006033281A1 JP 2005017051 W JP2005017051 W JP 2005017051W WO 2006033281 A1 WO2006033281 A1 WO 2006033281A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase change
probe
transducer
ultrasonic probe
ultrasonic
Prior art date
Application number
PCT/JP2005/017051
Other languages
English (en)
French (fr)
Inventor
Shinichi Hashimoto
Original Assignee
Kabushiki Kaisha Toshiba
Toshiba Medical Systems Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kabushiki Kaisha Toshiba, Toshiba Medical Systems Corporation filed Critical Kabushiki Kaisha Toshiba
Priority to JP2006515488A priority Critical patent/JPWO2006033281A1/ja
Priority to EP05783511A priority patent/EP1707122B1/en
Priority to DE602005020738T priority patent/DE602005020738D1/de
Publication of WO2006033281A1 publication Critical patent/WO2006033281A1/ja
Priority to US11/415,156 priority patent/US7308828B2/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/54Control of the diagnostic device
    • A61B8/546Control of the diagnostic device involving monitoring or regulation of device temperature
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4444Constructional features of the ultrasonic, sonic or infrasonic diagnostic device related to the probe
    • A61B8/4455Features of the external shape of the probe, e.g. ergonomic aspects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52079Constructional features

Definitions

  • the present invention relates to an ultrasonic probe to be attached to an ultrasonic diagnostic apparatus.
  • the ultrasonic diagnostic apparatus that transmits an ultrasonic wave into a subject and receives a reflected wave from the subject as an echo signal to inspect the subject is widely used in the medical field.
  • the ultrasonic diagnostic apparatus includes an ultrasonic probe that transmits and receives ultrasonic waves, and the ultrasonic probe is used in contact with a subject.
  • the probe body 102 includes a probe housing 103.
  • the probe housing 103 accommodates the transducer unit 128, the flexible printed wiring board 108, and the electromagnetic shield member 112.
  • the transducer unit 128 includes a transducer 104, an acoustic matching layer 105, an acoustic lens 106, and a backing material 107.
  • the transducer 104 is composed of a plurality of transducer elements arranged one-dimensionally or two-dimensionally. Each transducer element typically includes a piezoelectric element as a vibrator, a common electrode formed on one surface of the piezoelectric element, and an individual electrode formed on an opposing surface.
  • the plurality of individual electrodes of the plurality of transducer elements are drawn out by a plurality of signal lines printed on the flexible printed circuit board 108.
  • the plurality of signal lines are connected to the plurality of cable wires 111.
  • the plurality of cable wires 111 bundled together constitute a cable 109 together with a coating such as plastic.
  • the cable 109 is pulled out from the probe housing 103 via the clamp 110.
  • the probe main body 102 is connected to an external ultrasonic diagnostic apparatus by a connector 101 provided at the end of the cable 109.
  • the transducer 104 generates heat when converting ultrasonic Z electricity. A part of the ultrasonic wave generated by the transducer 104 is absorbed in the transducer 104. This generates heat. Further, an electronic circuit such as a multiplexer is mounted on the flexible printed circuit board 108, and heat is generated in the electronic circuit. [0005]
  • the ultrasonic probe is applied to the surface of the subject. Therefore, an upper limit is set for the surface temperature of the acoustic lens 106 in contact with the subject.
  • the SZN of the image obtained by the ultrasonic diagnostic apparatus improves in proportion to the increase in the ultrasonic transmission power. Therefore, it is required to increase the transmission power of the ultrasonic wave in a range where the surface temperature of the acoustic lens 106 does not reach the upper limit value.
  • the number of driving method conditions for transmitting and receiving ultrasonic waves by the ultrasonic diagnostic apparatus is not limited to one, and diagnosis is performed by changing the driving method and conditions according to the contents of the diagnosis. Therefore, in practice, the amount of heat generated in the ultrasonic probe differs depending on the driving method.
  • the transmission acoustic power of the ultrasonic probe and the power consumption of the circuit board may be suppressed to maintain a safe temperature, and the quality of the obtained image may be sacrificed.
  • An object of the present invention is to effectively suppress a temperature rise exceeding a specific temperature in an ultrasonic probe.
  • the probe main body includes ultrasonic waves.
  • a transducer that converts electricity to each other, and a phase that has a property of causing a phase change from solid to liquid at a specific temperature reached during an operation period of the transducer and causing a phase change from liquid to solid at a temperature lower than the specific temperature.
  • An ultrasonic probe having a change member is provided.
  • the probe main body includes ultrasonic waves.
  • a transducer that converts electricity to each other, a thermal buffering agent that buffers a temperature rise exceeding a specific temperature of the transducer, and a probe housing that houses the transducer and the thermal buffering agent
  • an ultrasonic probe having a filler filling the inside of the probe housing.
  • the ultrasonic probe which has a probe main body, a connector, and the cable for electrically connecting the said probe main body and the said connector,
  • the said probe main body is an ultrasonic wave and electricity.
  • a transducer that converts to each other, a state force of the transducer that has reached a specific temperature, a thermal delay agent (thermal 'delaying' agent) that delays transition to a state that exceeds the specific temperature, the transducer and the thermal delay agent
  • thermo delay agent thermal 'delaying' agent
  • FIG. 1 is a cross-sectional view showing a schematic structure of the interior of an ultrasonic probe according to a first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view showing a schematic structure inside an ultrasonic probe according to a second embodiment of the present invention.
  • FIG. 3 is a cross-sectional view showing a schematic structure of the interior of an ultrasonic probe according to a third embodiment of the present invention.
  • FIG. 4 is a cross-sectional view showing a schematic structure inside an ultrasonic probe according to a third embodiment of the present invention.
  • FIG. 5 is a cross-sectional view showing a schematic structure inside an ultrasonic probe according to a fourth embodiment of the present invention.
  • FIG. 6 is a cross-sectional view showing a schematic structure of the inside of an ultrasonic probe according to a fifth embodiment of the present invention.
  • FIG. 7 is a cross-sectional view showing a schematic structure of the inside of an ultrasonic probe according to a fifth embodiment of the present invention.
  • FIG. 8A is a cross-sectional view showing a schematic structure of the inside of an ultrasonic probe according to a sixth embodiment of the present invention.
  • FIG. 8B is a sectional view showing a schematic structure of the inside of the ultrasonic probe of FIG. 8A with the phase change member removed.
  • FIG. 9 is a cross-sectional view showing a schematic structure of the inside of an ultrasonic probe according to a seventh embodiment of the present invention.
  • FIG. 10A is a diagram showing an appearance of an ultrasonic diagnostic apparatus according to the eighth embodiment of the present invention.
  • FIG. 10B is a diagram showing the probe holder of FIG. 10A.
  • FIG. 10C shows the fan switch of FIG. 10B.
  • FIG. 11 is a cross-sectional view showing a schematic structure inside an ultrasonic probe according to the prior art.
  • the probe body 2 has a probe housing 3. Probe Howe The jing 3 accommodates the transducer unit 28, the flexible printed wiring board 8, and the electromagnetic shield member 2. On the inner surface of the probe housing 3, an electromagnetic shielding member 12 of a metal film, a metal net, or a metal case for shielding the inside from disturbance electromagnetic waves is attached.
  • the transducer unit 28 includes a transducer 4, an acoustic matching layer 5, an acoustic lens 6, and a backing material 107.
  • the backing material 107 is attached to the back surface of the transducer 4.
  • the acoustic matching layer 5 is attached to the front surface of the transducer 4.
  • the acoustic matching layer 5 is provided to reduce ultrasonic propagation loss.
  • the acoustic lens 6 is attached to the front surface of the acoustic matching layer 5.
  • the acoustic lens 6 is provided for focusing the ultrasonic waves.
  • the acoustic lens 6 is fitted into an opening formed at the tip of the probe nosing 3. At the time of inspection, the surface of the acoustic lens 6 is brought into contact with the body surface of the subject.
  • the transducer 4 is composed of a plurality of transducer elements arranged in a one-dimensional or two-dimensional manner.
  • Each transducer element is typically composed of a piezoelectric element made of piezoelectric ceramic, a common electrode formed by baking, vapor deposition, or clinging on one surface of the piezoelectric element, and an individual electrode formed on the opposing surface.
  • the plurality of individual electrodes included in the plurality of transducer elements are drawn out by a plurality of signal lines printed on the flexible printed wiring board 8.
  • the plurality of signal lines are connected to the plurality of cable wires 11.
  • the plurality of cable wires 11 bundled together constitute a cable 9 together with a coating such as plastic.
  • the cable 9 is pulled out of the probe housing 3 via the clamp 10.
  • the probe body 2 is connected to an external ultrasonic diagnostic apparatus by a connector 1 provided at the end of the cable 9.
  • the flexible printed wiring board 8 may typically include a multiplexer as an electronic circuit.
  • the multiplexer is provided to switch the connection between the plurality of signal lines connected to the plurality of transducer elements and the plurality of cable wires 11 at high speed.
  • a high-frequency voltage signal is applied between the electrodes of each transducer element of the transducer 4 via the connector 1, the cable 9, and the signal line from a pulser of an external ultrasonic diagnostic apparatus.
  • the piezoelectric element of each transducer element of the transducer 4 is mechanically vibrated by a high-frequency voltage signal. Thereby, an ultrasonic wave is generated.
  • the reflected wave mechanically vibrates the piezoelectric element. As a result, a voltage is generated between the electrodes of each transducer element.
  • the generated voltage signal is supplied to an external ultrasonic diagnostic apparatus via the signal line, cable 9 and connector 1.
  • the ultrasonic diagnostic apparatus has at least one of a B-mode processing system, a Doppler mode processing system, and a color mode processing system.
  • the B mode processing system is configured to perform envelope detection processing, logarithmic compression processing, luminance modulation processing, and the like.
  • the Doppler mode processing system is configured to perform quadrature detection, extraction of Doppler deviation frequency components, filter processing, FFT processing, and the like.
  • the color mode processing system is configured to perform quadrature detection, filter processing, autocorrelation calculation processing, flow velocity 'dispersion calculation processing, and the like. Images generated by the B mode processing system, Doppler mode processing system or power mode processing system are displayed on the display via the digital scan converter circuit.
  • the probe housing 3 houses the phase change member 30 together with the transducer unit 28, the flexible printed wiring board 8, and the electromagnetic shield member 2. Also, the transducer unit 28, the phase change member 30, the flexible printed wiring board 8 and the cable wire 11 in the probe housing 3 are fixed, and the insulation of the signal line and the cable wire 11 of the flexible printed wiring board 8 is secured. In order to ensure, the inside of the probe housing 3 is filled with a filler 14 such as urethane resin having thermal conductivity.
  • the phase change member 30 has a phase change agent 13 that causes a phase change from solid to liquid at a specific temperature that the transducer 4 reaches during operation, and a phase change from liquid to solid at a temperature lower than the specific temperature. It consists of a membrane or container 31 that contains the agent 13. In the phase change agent 13, a plurality of bubbles 32 are mixed in order to allow a volume change due to the phase change.
  • the phase change agent 13 may be mixed with a gelling agent.
  • the specific temperature (phase change point) at which the phase change of the phase change agent 13 occurs is set to a temperature arbitrarily selected from the range of 30 ° C to 50 ° C.
  • the phase change agent 13 reaches when the temperature of the transducer unit 28, particularly the acoustic lens 6, rises with the operation of the transducer 4 and reaches the upper limit temperature, for example, 42 ° C or slightly lower, for example, 40 ° C.
  • the temperature is set as a specific temperature (change point).
  • the upper limit temperature does not reach during the operation period of the pulse wave mode with distance resolution used in the M mode, B mode, and color Doppler, and the transmission power per unit time.
  • phase change agent 13 When the phase change agent 13 reaches a specific temperature, the solid force also undergoes a phase change in the liquid. At that time, it absorbs very large energy and exerts the effect of suppressing the surrounding temperature rise. This effect continues while the phase change agent 13 is completely converted to a liquid.
  • the phase change member 30 functions as a thermal buffering agent (thermal “buffering” agent) that buffers the temperature rise of the transducer unit 28, particularly the acoustic lens 6, exceeding the upper limit temperature (for example, 42 ° C.).
  • the phase change member 30 is a thermal retarder (thermal) that delays the transition from a state where the transducer unit 28, particularly the acoustic lens 6, reaches a specific temperature (for example, 42 ° C) to a state where the temperature exceeds a specific temperature. Acts as a delaying 'agent).
  • a specific temperature for example, 42 ° C
  • the ultrasonic diagnostic period under the continuous wave Doppler mode can be extended.
  • the transmission power can be increased to improve the SN ratio of the echo signal.
  • phase change point of the phase change agent 13 is also set to a range force of 30 ° C to 50 ° C, the phase change from liquid to solid occurs in a temperature environment below the phase change point. Can be returned, that is, the cooling effect can be charged.
  • the phase change agent 13 can charge the cooling effect not only during storage but also during inspection, when it is not operating, and when it is operating with low transmission power.
  • phase change material C32 manufactured by Nippon Blower Co., Ltd. is used as the phase change material.
  • the physical properties of this phase change material C32 will be described below.
  • the specific heat of the probe housing 3 at this time is 0.4 [WhZkg'K], and the specific gravity is 1.08 [g / cm 3 ].
  • the specific heat of knocking material 7 is 0.7 [WhZkg'K] and the specific gravity is 3 [g / cm 3 ].
  • the sealing resin material 14 has a specific heat of 0.53 [WhZkg'K] and a specific gravity of 0.029 [g / cm 3 ]. [0027] If the volume of the grip portion (probe housing 3) of the probe body 2 is 50 cc, the volume of the sealing resin material 14 to be filled therein becomes 20 cc to 30 cc.
  • the heat of about 0.78W can be absorbed by latent heat for 1 hour.
  • probe body 2 There are many types of probe body 2. The amount of heat generated varies depending on the type of probe body 2. Temporarily, probe body 2 that emits 39W of heat. The temperature in 2 can be suppressed to 32 ° C or lower.
  • phase change material C48 manufactured by Nippon Blower Co., Ltd. is used.
  • the physical properties of this phase change material C48 are as follows.
  • phase change materials “C32” and “C48” manufactured by Nippon Blower Co., Ltd. were used, but the melting point and latent heat can be changed by changing the phase change material. Therefore, by using an appropriate material, the temperature in the probe body 2 can be suppressed to 30 ° C. or lower or 30 ° C. to 50 ° C. for a predetermined time. For example, by using a phase change material having a melting point of 40 ° C., the temperature in the probe body 2 can be suppressed to 40 ° C. or lower for a predetermined time. Further, in this embodiment, the example in which the latent heat is 54 [WhZkg] and 60 [WhZkg] has been described. However, since the phase change material having the latent heat therebetween absorbs the heat by the latent heat, the probe body 2 It is possible to suppress internal temperature rise
  • a phase change material having a melting point higher than 50 ° C may be used. Since heat conduction is caused by the shape of the probe body 2 and the internal structure, a phase change material corresponding to the operating temperature range of the probe body 2 is used in conjunction with the design of the probe body 2. Therefore, depending on the arrangement and shape of the internal components of the probe body 2, an increase in the surface temperature of the acoustic lens 6 may be suppressed even when a phase change material having a melting point higher than 50 ° C. is used.
  • foaming urethane resin is used as the sealing resin material 14 for fixing the internal structure of the probe nosing 3 and insulating the signal wires and cable wires 11 of the flexible printed circuit board 8.
  • the weight of the sealing resin 14 can be reduced, thereby reducing the weight of the probe body 2.
  • expanded polystyrene having a specific heat of 0.53 [WhZkg'K], a specific gravity of 0.029 [gZcm 3 ], and a thermal conductivity of 0.038 [WZ (mK)] is used. Since the specific gravity is 0.029 [gZcm 3 ], the weight of the probe body 2 can be made relatively light.
  • the temperature of the ultrasonic probe can be obtained by installing the phase change member inside the ultrasonic probe and using the latent heat at the time of melting. It is possible to suppress the rise of By adjusting the phase change point of the phase change member, the cooling effect can be effectively exhibited at a point in time when it is necessary to suppress the temperature rise. In addition, it is not necessary to install a material with a large specific heat (high specific gravity) as in the prior art V, so the weight of the ultrasonic probe can be reduced.
  • high specific gravity high specific gravity
  • the phase change agent 13 in the present embodiment is in a solid phase at room temperature, and also has a phase change material force that changes from a solid phase to a liquid phase when the temperature rises from room temperature.
  • a phase change material force that changes from a solid phase to a liquid phase when the temperature rises from room temperature.
  • the phase change agent 13 returns from the liquid phase to the solid layer.
  • This embodiment utilizes the fact that the phase change agent 13 which is a phase change material force absorbs the heat of the latent heat of fusion when the temperature rises from room temperature and melts from the solid phase to the liquid phase. is there.
  • the phase change agent 13 undergoes a phase change from a solid phase to a liquid phase. Can be absorbed.
  • the speed of the average temperature rise depends on the heat capacity of the entire ultrasonic probe, but the speed of the ultrasonic probe temperature rise (especially the surface temperature rise of the acoustic lens in contact with the subject) can be slowed down.
  • the temperature repeatedly rises and falls depending on the use state of the ultrasonic probe it is possible to reduce the change in the surface temperature of the acoustic lens 6 of the ultrasonic probe, and the maximum temperature of the surface of the acoustic lens 6 is also low. It becomes possible to suppress.
  • the phase change agent 13 is a film that also has the power of a resin, a metal, a graphite, or a composite material thereof.
  • the phase change agent 13 can be easily installed as a constituent member in the ultrasonic probe.
  • the container 31 is divided into a plurality of parts, even if the inside of the ultrasonic probe has a complicated shape, the phase change agent 13 can be installed corresponding to the shape.
  • a metal material such as copper (Cu) or aluminum (A1) having good thermal conductivity as the material of the container 31, heat absorption by the phase change material can be efficiently performed.
  • FIG. 2 is a sectional view showing a schematic structure of the inside of an ultrasonic probe according to the second embodiment of the present invention.
  • the phase change member 35 includes a phase change agent 13 in which bubbles 32 are mixed, and a resin, a metal, a graphite containing the phase change agent 13 or their Consists of a container 15 that also has composite power.
  • the phase change member 35 is detachably installed outside the probe housing 3 and in the vicinity of the cable 9 apart from the transducer unit 28.
  • the phase change material the same material as in the first embodiment is used.
  • the container 15 has a substantially cylindrical shape, and has a substantially C-shaped outer shape with a part cut away.
  • the phase change member 35 can accommodate the cable 9 through the notch of the container 15.
  • the phase change member 35 can be attached to the rear portion of the probe main body 2 by moving forward along the axial direction in a state where the cable 9 is accommodated.
  • phase change member 35 Since the phase change member 35 is configured to be detachable with respect to the probe main body 2, the phase change member 35 changed to the liquid phase can be replaced with the phase change member 35 of the solid liquid. Further, a phase change member 35 having a suitable phase change point can be selected from a plurality of phase change members 35 having different phase change points.
  • the surface temperature is highest near the acoustic lens 6.
  • the acoustic lens 6 near the living body contact surface rises to near body temperature after a certain amount of time even if the temperature of the living body does not generate heat from the transducer 4 or the like. Will rise.
  • the thermal resistance of the probe body 2 the temperature decreases at a portion away from the acoustic lens 6. Therefore, as in the present embodiment, a cryogen having a low melting point can be used by installing the phase change agent 13 at a position away from the transducer 4 at the same force.
  • thermal resistance is a coefficient representing the difficulty of heat flow when heat is applied to a certain object, and the unit is represented by KZW or ° CZW.
  • thermal resistance (° CZW) temperature difference when adding heat (° C) ⁇ heat amount of heat source (W).
  • This thermal resistance is expressed including all situations. Therefore, the thermal resistance changes as the structure of the probe body 2 changes. For example, if the material such as the probe housing 3, backing material 7, sealing resin material 14, etc. described in the first embodiment is changed, the specific heat and thermal conductivity change, so the thermal resistance of the probe body 2 changes. To do.
  • the thermal resistance to the heat transferred from the transducer 4 or the like to the phase change agent 13 through the probe housing 3 and the container 15 is adjusted.
  • the temperature of the part where the change agent 13 is installed should be 32 ° C.
  • the surface temperature of the acoustic lens 6 can be maintained at 40 ° C in a balance between the melting of the phase change agent 13 and the heat generation of the transducer 4 and the like. .
  • the surface temperature of the acoustic lens 6 can be maintained at about 40 ° C.
  • the surface temperature of the acoustic lens 6 is set to 40 ° C. to explain an example.
  • the phase change agent 13 having a melting point of 32 ° C. is used, and the thermal resistance is set.
  • the surface temperature can be set to a temperature other than 40 ° C, such as 35 ° C.
  • FIG. 3 and FIG. 3 and 4 are cross-sectional views showing a schematic structure of the inside of an ultrasonic probe according to the second embodiment of the present invention.
  • a heat pipe (heat conducting member) 16 having higher heat conductivity than the filler 14 is installed inside the probe main body 2 of the present embodiment.
  • the heat conducting member 16 has a substantially Y shape. One end of the heat conducting member 16 is in contact with or close to the backing material 7 bonded to the transducer 4 as a heat source.
  • the heat conducting member 16 of the transducer 4 The other end of the heat conducting member 16 is divided into a plurality (two in the figure) of the heat conducting member 16 and is in contact with or close to the side surface of the probe housing 3.
  • the heat conduction member 16 is required to be made of a material having a low thermal resistance (in other words, a material having a high heat conductivity).
  • a graphite or the like in addition to a metal having high thermal conductivity, such as aluminum (A1) and copper (Cu).
  • aluminum (A1) is suitable!
  • the heat conducting member 16 is for efficiently radiating the heat of the transducer 4 serving as the heat source of the probe body 2 with the surface force of the probe housing 3. In other words, the heat conduction member 16 transfers heat to a position away from the heat source force, thereby widening the area for heat dissipation.
  • a container 15 in which a phase change agent 13 having a phase change material force is enclosed is installed so as to be in contact with or close to the heat conducting member 16.
  • the container 15 is made of aluminum (A1), copper (Cu), or the like.
  • the heat generated by the transducer 4 is transmitted from one end of the heat conducting member 16 to the other end, and is further transmitted to the container 15 installed in contact with or close to the other end.
  • the phase change agent 13 causes a phase change from a solid to a liquid at a specific temperature due to the transferred heat, and suppresses a temperature rise in the probe body 2.
  • the efficiency of heat conduction increases, so that the phase change material absorbs heat efficiently with respect to the temperature rise of the probe body 2.
  • the phase change member 36 is installed on the other end side of the heat conducting member 16, but the same effect can be obtained even if it is in contact with or close to other parts regardless of the other end. can get.
  • the same effect can be obtained without separately providing the above-described heat conducting member 16.
  • one end or both ends of a container 15 in which the phase change agent 13 is stored is in contact with or close to the electromagnetic shield member 12.
  • the heat generated from the transducer 4 is also transmitted to the electromagnetic shield member 12 at the tip partial force of the electromagnetic shield member 12, and further to the container 15 in contact with or close to the electromagnetic shield member 12, and the phase change member housed in the container 15 Heat is conducted to 36.
  • the electromagnetic shielding member 12 can increase the heat radiation area, and can achieve the same effect as the heat conduction member 16 described above.
  • Electromagnetic sea By using a material with high thermal conductivity, such as copper (Cu), for the shield member 12, it is possible to increase the efficiency of heat transfer to the phase change member 36 by the transducer 4 isotropic force, which is a heat source. The heat absorption of the phase change material is performed efficiently.
  • a material with high thermal conductivity such as copper (Cu)
  • Cu copper
  • FIG. 5 is a sectional view showing a schematic structure of the inside of an ultrasonic probe according to the fourth embodiment of the present invention.
  • the phase change member 39 has a C-shaped cross section.
  • the phase change member 39 is installed so as to surround the backing material 7 of the transducer unit 28 in particular.
  • the phase change material is enclosed in a container 15, and the transducer 4 is surrounded by the container 15.
  • the container 15 can also be a resin, metal, graphite, or composite material thereof. In this way, since the container 15 containing the phase change agent 13 is in contact with or close to the transducer 4 etc., the heat generated by the transducer 4 isotropic force, which is a heat generation source, directly passes through the container 15. Conducted to agent 13.
  • the center of gravity of the probe body 2 can be brought closer to the acoustic lens 6 by bringing the phase change agent 13 closer to the transducer 4 or the like, the operability of the probe body 2 is improved.
  • FIG. 6 is a sectional view showing a schematic structure of the inside of an ultrasonic probe according to the fifth embodiment of the present invention.
  • the phase change member 41 has a C-shaped cross section.
  • the phase change member 41 is installed so as to surround the backing material 7 of the transducer unit 28 in particular.
  • the capsule 17 contains the phase change agent 13.
  • the plurality of capsules 17 are accommodated in the container 42.
  • the inside of the container 42 is sealed with a molding material 18 having high thermal conductivity. Molded material 18 ⁇ is made of epoxy resin, silicon resin or the like.
  • the thermal conductivity can be set to 0.300 [WZ (mK)] by mixing a conductive filler in an epoxy resin.
  • the thermal conductivity of the sealing resin material 14 is 0.038 [WZ (mK)]
  • High thermal conductivity It becomes possible to do.
  • the specific heat of the molding material 18 is 0.3 [WhZkg'K], and the specific gravity is 1.850 [g / cm 3 ]. Heat generated by the transducer 4 isotropic force is transmitted to the molding material 18 filled around the capsule 17 and further to the phase change agent 13 in the capsule 17 sealed with the molding material 18. Is done.
  • phase change agent 13 As described above, by arranging the phase change agent 13 around the transducer 4 or the like which is a heat generation source, the heat of the transducer 4 or the like is directly conducted to the phase change agent 13 through the molding material 18. As a result, an increase in the surface temperature of the acoustic lens 6 can be efficiently suppressed.
  • phase change member 41 can be easily formed into a shape corresponding to the inner empty shape of the probe body 2.
  • the container 42 used in the probe main body 2 described in the fourth embodiment has a cross-sectional C shape, and the backing material 7 is fitted in the recess.
  • the container 42 it is necessary to produce the container 42 in accordance with the shape of the probe housing 3 and the shape of the transducer 4, the backing material 7, and the like. That is, since it is necessary to produce a container 15 having a shape that surrounds and contacts the transducer 4 and the like, the same container cannot be used if the shapes of the transducer 4 and the probe knowing 3 are different.
  • the container 42 when a container 42 having a concave portion in contact with and surrounding the transducer 4 or the backing material 7 or the like according to the size of a transducer 4 or the backing material 7 or the like is produced, the container 42 is larger than the backing material 7 or the like. Even if the container 42 is used for the backing material, the concave portion cannot be fitted into the large backing material. Further, even if the container 42 is used for a smaller backing material, a gap is formed between the side surface of the recess and the backing material, so that heat cannot be efficiently conducted to the transducer 4 isotropic container 42. Thus, since it is necessary to prepare the container 42 for each probe main body 2 having a different shape, the cost of the container 42 increases, and thus the manufacturing cost of the probe main body 2 increases.
  • the phase change agent 13 is subdivided into capsules 17, and the periphery thereof is sealed with the molding material 18, so that the probe housing 3 and the transducer 4 are backed up. Regardless of the shape of 7 etc., the phase change agent 13 can be easily arranged. As a result, it is not necessary to prepare a container for each probe body 2 having a different shape, so that the cost can be reduced. Further, as shown in FIG. 7, a plurality of types of phase change materials may be used.
  • the capsule 17 encapsulating the first phase change agent 13a and the capsule 17 encapsulating the second phase change agent 13b having a phase change point different from that of the first phase change agent 13a are the containers 42 Is housed in.
  • phase change point (melting point) of phase change agent 13a is set around 40 ° C
  • the phase change point of phase change agent 13b is set around 48 ° C, which is higher than that of phase change agent 13a.
  • the phase change agent 13a having a phase change point of around 40 ° C is used to suppress an increase in the surface temperature of the acoustic lens 6 when the probe main body 2 is driven to make the phase change point on the body surface of the subject.
  • Phase change agent 13b with a phase change point of around 48 ° C is a situation where the probe body 2 is in contact with the body surface of the subject V, in which case most of the generated ultrasound has changed to heat. Below, it is provided to suppress an increase in the surface temperature of the acoustic lens 6.
  • phase change agents having different phase change points
  • the temperature rises depending on the situation such as a temperature rise in contact with the living body or a temperature rise in a state away from the living body. Even when the rate of increase in temperature and the safe surface temperature are different, it is possible to suppress the temperature increase in each situation.
  • using three or more types of phase change materials makes it possible to suppress the temperature rise according to various situations.
  • FIG. 8 is a cross-sectional view showing a schematic structure of the inside of an ultrasonic probe according to the sixth embodiment of the present invention.
  • a concave portion 19 for accommodating the phase change member 45 is formed on the side surface of the probe housing 3.
  • a phase change member 45 formed by enclosing the phase change agent 13 in a container 15 has a shape that can be accommodated in the recess 19.
  • the recess 19 is closed with a lid 20.
  • the phase change member 45 can be removed from the recess 19 of the probe housing 3, and the phase change member 45 can be replaced. .
  • the phase change agent 13 can be replaced with another phase change member 45 in the solid phase. Therefore, even if you do not wait for the phase change agent 13 to become a solid phase, The body 2 can be used, and the temperature rise can be suppressed.
  • FIG. 9 is a sectional view showing a schematic structure of the inside of an ultrasonic probe according to the seventh embodiment of the present invention.
  • a cooling unit 21 for forcibly decreasing the temperature is provided in the probe housing 3 instead of suppressing the temperature increase.
  • the cooling unit 21 typically employs a Peltier element.
  • a heat conducting member 16 is provided which contacts one end of the force backing member 7 and extends in the direction of the cable 9 and the other end is divided into two and contacts the electromagnetic shield member 12.
  • the heat absorption side 21 a of the Peltier element 21 is in contact with or close to the other end of the heat conducting member 16.
  • the Peltier element 21 corresponds to the “first cooling section” of the present invention.
  • the connector 1 detects the temperature of the probe body 2 with a temperature detection device such as a thermocouple, operates the Peltier element 21 from the connector 1 to cool the heat conducting member 16, and lowers the temperature of the probe body 2. At this time, even if the temperature of the heat conductive member 16 is temporarily lowered, the temperature of the Peltier element 21 rises due to the power consumption of the Peltier element 21 itself. The ability to cool the lens 6 (surface temperature) is lost.
  • the phase change material 13 of the phase change material is provided on the heat radiation side 21b of the Peltier element 21, and the Peltier element 21 is cooled.
  • This cooling makes it possible to extend the time during which the cooling capacity of the Peltier element 21 is exhibited.
  • the surface temperature of the probe body 2 the surface temperature of the acoustic lens 6
  • the phase change material slowly dissipates heat, and the cold insulation ability can be restored again. It becomes possible.
  • the surface temperature of the probe body 2 surface temperature of the acoustic lens 6 temporarily rises, it is possible to operate the cooling mechanism including the Peltier element 21 effectively.
  • thermoelectric element for example, a refrigerant circulation using water or alcohol as a refrigerant.
  • An annular cooling mechanism may be provided.
  • a probe holder 22 that holds the probe body 2 is provided on the side surface of the connector 1.
  • the probe holder 22 is provided to store the probe main body 2, and has a hold portion 23 that is partially cut and penetrates in the vertical direction, and the probe main body 2 is inserted into the hold portion 23. As a result, the periphery of the probe body 2 is held and held by the holding unit 23.
  • This probe holder 22 corresponds to the “housing member” of the present invention.
  • FIG. 10B shows a detailed structure of the holding portion 23 formed on the probe holder 22.
  • the hold portion 23 penetrates in the vertical direction, and a cut is formed in a part thereof.
  • an air cooling fan 24 is installed on the inner side surface (the opposite side of the notch) of the hold portion 23.
  • the probe housing 3 of the probe main body 2 is inserted into the holding portion 23, and the probe main body 2 is held by being pressed by the inner side surface.
  • the probe nosing 3 is inserted into the holding unit 23 and the probe body 2 is cooled by the air cooling fan 24.
  • the air cooling fan 24 corresponds to the “second cooling section”.
  • the probe holder 22 that holds the probe main body 2 is provided with an air cooling fan 24 as a probe cooling mechanism, thereby lowering the temperature of the probe main body 2.
  • the phase change agent 13 that also has the phase change material force installed inside the probe nosing 3 and return it to the solid phase.
  • the air cooling fan 24 may be automatically driven.
  • a protruding button (not shown) is installed on the inner side surface of the holding unit 23.
  • the button is pressed by the probe housing 3.
  • switch 25 is pushed in the direction of arrow A, and air-cooling fan 24 and drive power supply 26 that supplies power to air-cooling fan 24 are connected. With this connection, power is supplied from the drive power supply 26 to the air cooling fan 24, and the air cooling fan 24 operates.
  • the switch 25 moves in the direction of the arrow B and returns to the original position, whereby the power supply to the air cooling fan 24 is cut off and the operation stops.
  • the air cooling fan 24 is operated to efficiently probe.
  • the temperature of the main body 24 can be lowered and the phase change material is dissolved, it can be returned to the solid phase in a relatively short time.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Transducers For Ultrasonic Waves (AREA)

Abstract

 超音波プローブは、プローブ本体(2)と、コネクタ(1)と、プローブ本体(1)とコネクタ(1)とを電気的に接続するためのケーブル(9)とを有する。プローブ本体(2)は、超音波と電気とを相互に変換するトランスデューサ(4)と、トランスデューサ(4)の動作期間中に達する特定温度で固体から液体への相変化を起こし、特定温度未満で液体から固体への相変化を起こす性質を有する相変化部材(30)とを有する。

Description

明 細 書
超音波プローブ
技術分野
[0001] 本発明は、超音波診断装置に装着される超音波プローブに関する。
背景技術
[0002] 被検体内に超音波を送信し、被検体からの反射波をエコー信号として受信して被 検体内の検査を行う超音波診断装置は、医用分野において広く用いられている。超 音波診断装置には超音波の送受信を行う超音波プローブが備えられており、その超 音波プローブは被検体に当接して使用されるものである。
[0003] 従来技術に係る超音波プローブの構成について説明する。図 11に示すように、プ ローブ本体 102は、プローブハウジング 103を有する。プローブハウジング 103は、ト ランスデューサユニット 128、フレキシブルプリント配線基板 108、電磁シールド部材 112を収容する。トランスデューサユニット 128は、トランスデューサ 104、音響整合層 105、音響レンズ 106、バッキング材 107から構成される。トランスデューサ 104は、 一次元又は二次元状に配列された複数のトランスデューサ素子からなる。各トランス デューサ素子は、振動子として典型的には圧電素子と、圧電素子の一面に形成され た共通電極と、対向面に形成された個別電極とからなる。複数のトランスデューサ素 子が有する複数の個別電極は、フレキシブルプリント配線基板 108に印刷された複 数の信号線により引き出される。複数の信号線は複数のケーブル線材 111に接続さ れる。束ねられた複数のケーブル線材 111は、プラスチック等の被膜とともに、ケープ ル 109を構成する。ケーブル 109はクランプ 110を介してプローブハウジング 103か ら引き出される。プローブ本体 102は、ケーブル 109の端部に設けられたコネクタ 10 1により外部の超音波診断装置に接続される。
[0004] トランスデューサ 104は、超音波 Z電気の変換に際して発熱する。トランスデューサ 104で発生した超音波の一部は、トランスデューサ 104内で吸収される。それにより 熱が発生する。また、フレキシブルプリント配線基板 108にはマルチプレクサ等の電 子回路が搭載されており、その電子回路において熱が発生する。 [0005] 超音波プローブは被検体表面に当てられる。そのため被検体と接触する音響レン ズ 106の表面温度には上限値が設定されている。その一方で、超音波診断装置によ つて得られる画像の SZNは、超音波の送信パワーの増加に比例して向上する。従 つて音響レンズ 106の表面温度が上限値に達しな 、範囲で、超音波の送信パワーを 高くすることが、要求される。
[0006] 従来の熱対策には、トランスデューサカも発生する熱を、トランスデューサから離れ た位置に伝達する手段を設ける(特開平 9— 140706号公報)、トランスデューサから 発生する熱をケーブルに導く手段を設ける(特開平 10— 94540号公報)、 2種類の 封止榭脂を設ける (特開平 10— 85219号公報)があった。
[0007] しかしながら、超音波診断装置によって超音波を送受信する駆動方法'条件は 1つ に限らず、その時々の診断内容に応じて駆動方法 ·条件を変えて診断を行っている 。そのため、実際は、駆動方法 '条件によって超音波プローブ内で発生する熱量も異 なっている。
[0008] 一方、超音波プローブの使用条件は最も温度が上昇する駆動方法 ·条件や使用方 法を想定し、その条件下でも安全な温度を維持できるように設定する必要がある。そ のため、駆動方法 '条件によっては温度上昇が小さぐ安全基準に対して余裕がある 場合がある。また、他の駆動方法'条件によっては温度上昇が大きぐ安全基準に近 接した状況で超音波診断装置を使用する場合もある。このように、駆動方法'条件に よって安全性に大きな差がある。
[0009] また、駆動方法によっては、安全な温度を維持するために超音波プローブの送信 音響パワーや回路基板の消費電力を抑制し、得られる画像の質を犠牲にしている場 合がある。
[0010] 駆動方法'条件の違いによる超音波プローブの温度上昇の差を考慮に入れつつ温 度上昇を抑制する方法として、超音波プローブ内の平均的な比熱を大きくし、温度変 化し難い構造にすることが考えられている。一方、超音波プローブの操作性を高める ためには比重が軽いものが好ましい。し力しながら、比熱が大きな材料を使用するこ とは、一般的に比重を大きくし、超音波プローブ全体の重量増加につながるため、超 音波プローブを操作する操作者の負担が増してしまう。一般的には比熱が大きいほ ど比重は重くなる傾向にあるため、両方の性質をともに満足する材料は期待できない 発明の開示
[0011] 本発明の目的は、超音波プローブにおいて特定温度を超える温度上昇を効果的 に抑制することにある。
[0012] 本発明の第 1局面において、プローブ本体と、コネクタと、前記プローブ本体と前記 コネクタとを電気的に接続するためのケーブルとを有する超音波プローブにおいて、 前記プローブ本体は、超音波と電気とを相互に変換するトランスデューサと、前記トラ ンスデューサの動作期間中に達する特定温度で固体から液体への相変化を起こし、 前記特定温度未満で液体から固体への相変化を起こす性質を有する相変化部材と を有する超音波プローブが提供される。
[0013] 本発明の第 2局面において、プローブ本体と、コネクタと、前記プローブ本体と前記 コネクタとを電気的に接続するためのケーブルとを有する超音波プローブにおいて、 前記プローブ本体は、超音波と電気とを相互に変換するトランスデューサと、前記トラ ンスデューサの特定温度を超える温度上昇を緩衝する熱緩衝剤(サーマル ·ノ ッファ リング'エージェント)と、前記トランスデューサと前記熱緩衝剤とを収容するプローブ ハウジングと、前記プローブハウジングの内部を充填する充填剤とを有する超音波プ ローブが提供される。
本発明の第 3局面において、プローブ本体と、コネクタと、前記プローブ本体と前記 コネクタとを電気的に接続するためのケーブルとを有する超音波プローブにおいて、 前記プローブ本体は、超音波と電気とを相互に変換するトランスデューサと、前記トラ ンスデューサの特定温度に達した状態力 前記特定温度を超える状態への移行を 遅延させる熱遅延剤(サーマル'ディレイング 'エージェント)と、前記トランスデューサ と前記熱遅延剤とを収容するプローブノヽウジングと、前記プローブハウジングの内部 を充填する充填剤とを有する超音波プローブが提供される。
図面の簡単な説明
[0014] [図 1]図 1は本発明の第 1の実施形態に係る超音波プローブの内部の概略構造を示 す断面図である。 [図 2]図 2は本発明の第 2の実施形態に係る超音波プローブの内部の概略構造を示 す断面図である。
[図 3]図 3は本発明の第 3の実施形態に係る超音波プローブの内部の概略構造を示 す断面図である。
[図 4]図 4は本発明の第 3の実施形態に係る超音波プローブの内部の概略構造を示 す断面図である。
[図 5]図 5は本発明の第 4の実施形態に係る超音波プローブの内部の概略構造を示 す断面図である。
[図 6]図 6は本発明の第 5の実施形態に係る超音波プローブの内部の概略構造を示 す断面図である。
[図 7]図 7は本発明の第 5の実施形態に係る超音波プローブの内部の概略構造を示 す断面図である。
[図 8A]図 8Aは本発明の第 6の実施形態に係る超音波プローブの内部の概略構造を 示す断面図である。
[図 8B]図 8Bは相変化部材を取り外した状態の図 8Aの超音波プローブの内部の概 略構造を示す断面図である。
[図 9]図 9は本発明の第 7の実施形態に係る超音波プローブの内部の概略構造を示 す断面図である。
[図 10A]図 10Aは本発明の第 8の実施形態に係る超音波診断装置の外観を示す図 である。
[図 10B]図 10Bは図 10Aのプローブホルダを示す図である。
[図 10C]図 10Cは図 10Bのファンスイッチを示す図である。
[図 11]図 11は従来技術に係る超音波プローブの内部の概略構造を示す断面図であ る。
発明を実施するための最良の形態
[0015] 以下、本発明の実施形態を説明する。
[0016] [第 1の実施形態]
図 1に示すように、プローブ本体 2は、プローブハウジング 3を有する。プローブハウ ジング 3は、トランスデューサユニット 28、フレキシブルプリント配線基板 8、電磁シー ルド部材 2を収容する。プローブハウジング 3の内面には、内部を外乱電磁波から遮 蔽するための金属膜、金属網、又は金属製ケースの電磁シールド部材 12が貼り付け られている。トランスデューサユニット 28は、トランスデューサ 4、音響整合層 5、音響 レンズ 6、バッキング材 107から構成される。バッキング材 107は、トランスデューサ 4 の背面に装着される。音響整合層 5は、トランスデューサ 4の前面に装着される。音響 整合層 5は、超音波の伝播損失を低減させるために設けられている。音響レンズ 6は 、音響整合層 5の前面に装着される。音響レンズ 6は超音波を集束させるために設け られている。音響レンズ 6は、プローブノヽウジング 3の先端に形成された開口部に嵌 め込まれる。検査時には、音響レンズ 6の表面が被検体の体表面に接触される。
[0017] トランスデューサ 4は、一次元又は二次元状に配列された複数のトランスデューサ 素子からなる。各トランスデューサ素子は、典型的には圧電セラミックスの圧電素子と 、圧電素子の一面に焼き付け、蒸着、又はめつき処理により形成された共通電極と、 対向面に形成された個別電極とからなる。複数のトランスデューサ素子が有する複数 の個別電極は、フレキシブルプリント配線基板 8に印刷された複数の信号線により引 き出される。複数の信号線は複数のケーブル線材 11に接続される。束ねられた複数 のケーブル線材 11は、プラスチック等の被膜とともに、ケーブル 9を構成する。ケープ ル 9はクランプ 10を介してプローブハウジング 3から引き出される。プローブ本体 2は 、ケーブル 9の端部に設けられたコネクタ 1により外部の超音波診断装置に接続され る。
[0018] なお、フレキシブルプリント配線基板 8には、電子回路として典型的にはマルチプレ クサが搭載されてもよい。マルチプレクサは、複数のトランスデューサ素子に接続され る複数の信号線と、複数のケーブル線材 11との間の接続を高速に切り替えるために 設けられる。
[0019] トランスデューサ 4の各トランスデューサ素子の電極間には、外部の超音波診断装 置のパルサから、コネクタ 1、ケーブル 9および信号線を介して高周波の電圧信号が 印加される。トランスデューサ 4の各トランスデューサ素子の圧電素子は高周波の電 圧信号により機械的に振動する。それにより超音波が発生する。また、被検体からの 反射波は圧電素子を機械的に振動する。それにより各トランスデューサ素子の電極 間に電圧が発生する。発生した電圧信号は、信号線、ケーブル 9及びコネクタ 1を介 して外部の超音波診断装置に供給される。
[0020] 超音波診断装置は、 Bモード処理系、ドプラモード処理系、カラーモード処理系の 少なくとも一を有する。 Bモード処理系は、包絡線検波処理、対数圧縮処理、輝度変 調処理等を行うために構成されている。ドプラモード処理系は、直交検波、ドプラ偏 位周波数成分の取り出し、フィルタ処理、 FFT処理等を行うために構成されている。 カラーモード処理系が、直交検波、フィルタ処理、自己相関演算処理、流速'分散演 算処理等を行うために構成されている。 Bモード処理系、ドプラモード処理系又は力 ラーモード処理系で発生された画像は、デジタルスキャンコンバータ回路を介してデ イスプレイに表示される。
[0021] プローブハウジング 3には、トランスデューサユニット 28、フレキシブルプリント配線 基板 8及び電磁シールド部材 2とともに、相変化部材 30が収容される。また、プロ一 ブハウジング 3の内部のトランスデューサユニット 28、相変化部材 30、フレキシブル プリント配線基板 8及びケーブル線材 11等を固定し、またフレキシブルプリント配線 基板 8の信号線及びケーブル線材 11の絶縁性を確保するために、プローブハウジン グ 3の内部は、熱伝導性を有するウレタン榭脂等の充填剤 14で充填されている。
[0022] 相変化部材 30は、トランスデューサ 4が動作期間中に達する特定温度で固体から 液体に相変化を起こし、特定温度未満で液体から固体に相変化を起こす相変化剤 1 3と、相変化剤 13を収容する膜又は容器 31とからなる。相変化剤 13には、相変化に よる体積変化を許容するために複数の気泡 32が混入されている。なお、相変化剤 1 3には、ゲル化剤が混合されていても良い。相変化剤 13の相変化を起こす特定温度 (相変化点)は、 30°C〜50°Cの範囲から任意に選択された温度に設定される。実際 には、トランスデューサ 4の動作とともにトランスデューサユニット 28の特に音響レンズ 6の温度が上昇し、上限温度として例えば 42°C又はそれより若干低い例えば 40°Cに 達した時に、相変化剤 13が達する温度が特定温度湘変化点)として設定されてい る。上限温度は、多くの場合、 Mモード、 Bモード、カラードプラで用いられる距離分 解能を有するパルス波モードの動作期間中には達せず、単位時間あたりの送信パヮ 一の比較的高!ヽ連続波ドプラモードの動作期間中に達する。
[0023] 相変化剤 13が特定温度に達したとき、固体力も液体に相変化が起きる。その際、 非常に大きなエネルギーを吸収し、周囲の温度上昇を抑える効果を発揮する。この 効果は、相変化剤 13が完全に液体に変化する間で継続する。相変化部材 30は、ト ランスデューサユニット 28、特に音響レンズ 6が上限温度 (例えば 42°C)を超える温 度上昇を緩衝する熱緩衝剤(サーマル'バッファリング 'エージェント)として機能する 。換言すると、相変化部材 30は、トランスデューサユニット 28、特に音響レンズ 6が特 定温度 (例えば 42°C)に達した状態から特定温度を超える状態への移行を遅延させ る熱遅延剤(サーマル'ディレイング 'エージェント)として機能する。それにより例えば 連続波ドプラモード下での超音波診断期間を長期化することができる。または、パル ス波 Z連続波ドプラモードにおいて、送信パワーを高くして、エコー信号の SN比を 向上することができる。
[0024] 相変ィ匕剤 13の相変化点は、 30°C〜50°Cの範囲力も選択的に設定されているので 、相変化点未満の温度環境下で、液体から固体に相変化を戻す、つまり冷却効果を チャージすることができる。相変ィ匕剤 13は、保管時はもちろん、検査中であっても非 動作時、さらには低い送信パワーで動作している時にも、冷却効果をチャージするこ とがでさる。
[0025] 次に、相変化剤 13として用いられる相変化材料の具体例について説明する。相変 化材料として、例えば、日本ブロア株式会社製の「C32」を用いる。この相変化材料 C 32の物性を以下に説明する。
[0026] 融点: 32°C
比重: 1. 45
潜熱: 54WhZkg
比熱: lWhZkg'K
このときのプローブハウジング 3の比熱を 0. 4[WhZkg'K]とし、比重を 1. 08 [g/ cm3]とする。また、ノ ッキング材 7の比熱を 0. 7[WhZkg'K]とし、比重を 3[g/cm3 ]とする。封止榭脂材 14については、上述したように、比熱を 0. 53 [WhZkg'K]とし 、比重を 0. 029[g/cm3]としている。 [0027] プローブ本体 2のグリップ部(プローブハウジング 3)の体積を 50ccとすると、その内 部に充填させる封止榭脂材 14の体積は 20cc〜30ccとなる。 20cc〜30ccのうち、 1 Occを相変化材料 C32に置き換えると、潜熱により約 0. 78Wの熱量を 1時間、吸収 することができる。プローブ本体 2の種類は多ぐプローブ本体 2の種類によって発熱 量は異なる力 仮に 0. 39Wの熱を発するプローブ本体 2に対して lOccの相変化材 料 C32を用いると、 2時間以上、プローブ本体 2内の温度を 32°C以下に抑制すること が可能となる。
[0028] また、プローブ本体 2内の温度を 48°C以下に抑制するために、例えば、日本ブロア 株式会社製の「C48」を用いる。この相変化材料 C48の物性は以下のようになって 、 る。
[0029] 融点: 48°C
比重: 1. 36
潜熱: 60WhZkg
比熱: lWhZkg'K
本実施形態にぉ 、ては日本ブロア株式会社製の相変化材料「C32」及び「C48」を 用いたが、相変化材料を変えることによって融点及び潜熱を変えることが可能である 。よって、適切な材料を用いることで、プローブ本体 2内の温度を所定時間、 30°C以 下や、 30°C〜50°Cに抑制することが可能となる。例えば、融点が 40°Cの相変化材 料を用いることによって、プローブ本体 2内の温度を所定時間、 40°C以下に抑制する ことができる。また、本実施形態においては、潜熱が 54[WhZkg]と 60[WhZkg]の 例について説明したが、その間の潜熱を有する相変化材料についてもその潜熱の分 だけ熱を吸収するため、プローブ本体 2内部の温度上昇を抑制することが可能となる
[0030] なお、融点が 50°Cより高温の相変化材料を用いても構わな、。熱の伝導はプロ一 ブ本体 2の形状や内部の構成に起因するため、プローブ本体 2の設計に併せて、プ ローブ本体 2の使用温度範囲に対応した相変化材料を用いる。従って、プローブ本 体 2の内部部品の配置や形状によっては、融点が 50°Cより高温の相変化材料を用 いても、音響レンズ 6の表面温度の上昇を抑制することができる場合もある。 [0031] プローブノヽウジング 3の内部構造を固定し、フレキシブルプリント配線基板 8の信号 線やケーブル線材 11を絶縁するための封止榭脂材 14として、例えば、発泡性のウレ タン榭脂を用いることで封止榭脂 14の重さを軽くし、そのことによりプローブ本体 2の 重さを軽くすることができる。例えば、比熱が 0. 53[WhZkg'K]で、比重が 0. 029 [ gZcm3]で、熱伝導率が 0. 038 [WZ (mK) ]の発泡ポリスチレンを用いる。比重が 0. 029[gZcm3]であるため、プローブ本体 2の重さを比較的に軽くすることが可能と なる。
[0032] 以上のように、超音波プローブの内部に相変化部材を設置し、融解時における潜 熱を利用することにより、超音波プローブの温度、特に被検体と接触する音響レンズ 6の表面温度の上昇を抑制することが可能となる。相変化部材の相変化点の調整に より、温度上昇を抑制する必要のある時点で冷却効果を効果的に発揮することがで きる。また、従来技術のように比熱が大きい (比重が大きい)材料を設置する必要がな V、ため、超音波プローブの重量を軽減することが可能となる。
[0033] 本実施形態における相変化剤 13は、常温では固体相の状態であり、常温から温度 上昇した場合に固体相から液体相に相変化する相変化材料力もなる。「常温」、つま り超音波プローブを使用する環境 (病院の検査室等)の一般的な温度で、相変化剤 13は、液体相から固体層に戻る。液体相から固体層に戻すために、相変ィ匕剤 13を 冷蔵庫や冷凍庫に保管する必要がない。本実施形態は、相変化材料力 なる相変 ィ匕剤 13が常温カゝら温度上昇して、固体相から液体相に融解する際に融解潜熱分の 熱量を吸収することを利用したものである。超音波プローブを使用して 、るときに内 部の温度が上昇しても、相変化剤 13が固体相から液体相に相変化することで、相変 ィ匕剤 13が融解潜熱分の熱量を吸収することができる。平均温度上昇の速度は超音 波プローブ全体の熱容量に依存するが、超音波プローブの温度上昇 (特に、被検体 と接触する音響レンズの表面温度上昇)の速度を遅くすることができる。また、超音波 プローブの使用状態により温度が上昇や下降を繰り返す場合、超音波プローブの音 響レンズ 6の表面温度の変化を小さくすることが可能となり、音響レンズ 6の表面の最 高温度も低く抑えることが可能となる。
[0034] また、相変化剤 13を、榭脂、金属、グラフアイト、又はそれらの複合材料力もなる膜 又は容器 31に封入することで、相変化剤 13を超音波プローブ内に構成部材として 容易に設置することが可能となる。また、融解した後も相変化剤 13が移動してしまうこ とを防止することが可能となる。さらに、容器 31を複数個に小分けにすれば、超音波 プローブ内が複雑な形状であってもその形状に対応して相変化剤 13を設置すること ができる。また、容器 31の材料として熱伝導性が良い銅 (Cu)、アルミニウム (A1)等 の金属材料を用いることで、相変化材料による熱吸収を効率的に行うことが可能とな る。
[0035] [第 2の実施の形態]
本発明の第 2の実施形態に係る超音波プローブの構成について、図 2を参照しつ つ説明する。図 2は本発明の第 2の実施形態に係る超音波プローブの内部の概略構 造を示す断面図である。
[0036] 本実施形態においては、図 2に示すように、相変化部材 35は、気泡 32を混入する 相変化剤 13と、相変化剤 13を収容する榭脂、金属、グラフアイト又はそれらの複合 材料力もなる容器 15とからなる。相変化部材 35は、プローブハウジング 3の外部であ つて、トランスデューサユニット 28と離れたケーブル 9付近に着脱自在に設置される。 相変化材料には、第 1の実施形態と同様の材料が用いられる。
[0037] 容器 15は、略円筒形状であって、一部が切り欠かれた断面略 C字形の外形を有し ている。相変化部材 35は、容器 15の切り欠きを通してケーブル 9を内側に納めること ができる。相変化部材 35は、ケーブル 9を納めた状態で、軸方向に沿って前方に移 動することで、プローブ本体 2の後部に装着することができる。
[0038] プローブ本体 2に対して相変化部材 35を着脱自在に構成したことで、液体相に変 化した相変化部材 35を固体液の相変化部材 35に交換することができる。また、相変 化点の異なる複数の相変化部材 35から好適な相変化点を有する相変化部材 35を 選択して使用することができる。
[0039] 上述したように、プローブ本体 2の発熱源はトランスデューサ 4や音響レンズ 6ゃバッ キング材 7であるため、表面温度は音響レンズ 6付近が最も高くなる。また、被検体に 接触して使用する場合、生体接触面となる音響レンズ 6付近は、生体の温度によりト ランスデューサ 4等の発熱がなくても、ある程度の時間が経過すると体温付近まで上 昇することになる。一方、プローブ本体 2の熱抵抗により、音響レンズ 6から離れた部 分では温度は下がる。そこで、本実施形態のように、トランスデューサ 4等力 離れた 位置に相変化剤 13を設置することで、融点が低い保冷剤を用いることできる。
[0040] なお、「熱抵抗」とは、ある物体に熱が加わったときの熱の流れ難さを表す係数であ り、単位は KZWや °CZWで表される。
[0041] 式で表すと、熱抵抗 (°CZW) =熱量を加えたときの温度差 (°C) ÷熱源の熱量 (W )となる。この熱抵抗は、すべての状況を含んで表されるものである。従って、プロ一 ブ本体 2の構造が変わることによって熱抵抗も変化する。例えば、第 1の実施形態に おいて説明したプローブハウジング 3やバッキング材 7や封止榭脂材 14等の材料を 変えると、比熱や熱伝導率が変わるため、プローブ本体 2の熱抵抗が変化する。
[0042] 例えば、音響レンズ 6の表面温度が 40°Cのときに、トランスデューサ 4等からプロ一 ブハウジング 3及び容器 15を介して相変化剤 13に伝わる熱に対する熱抵抗を調整 して、相変化剤 13が設置されている部分の温度が 32°Cになるようにする。そして、融 点が 32°Cの相変化剤 13を用いることで、相変化剤 13の融解とトランスデューサ 4等 の発熱とのバランスで音響レンズ 6の表面温度を 40°Cに維持することができる。この ように、相変化剤 13をトランスデューサ 4等力も遠ざけることにより、 C32を用いても音 響レンズ 6の表面温度を 40°C程度に維持することが可能となる。この実施形態にお いて、音響レンズ 6の表面温度を 40°Cとしたのは、一例を説明するためのものであり 、例えば、融点が 32°Cの相変化剤 13を使用し、熱抵抗を調整することで、表面温度 を 40°C以外の温度、例えば、 35°C等にすることが可能となる。
[0043] [第 3の実施の形態]
本発明の第 3の実施形態に係る超音波プローブの構成について、図 3及び図 4を 参照しつつ説明する。図 3及び図 4は本発明の第 2の実施形態に係る超音波プロ一 ブの内部の概略構造を示す断面図である。
[0044] 図 3に示すように、本実施形態のプローブ本体 2の内部には、充填剤 14よりも熱伝 導性の高いヒートパイプ (熱伝導部材) 16が設置されている。熱伝導部材 16は略 Y 字形を有する。熱伝導部材 16の一端は、熱源であるトランスデューサ 4に接着されて いるバッキング材 7に接触又は近接している。熱伝導部材 16はトランスデューサ 4の 反対側、つまり、ケーブル 9側に延び、熱伝導部材 16の他端は、複数(図においては 2つ)の熱伝導部材 16に分かれてプローブノヽウジング 3の側面に接触又は近接して いる。この熱伝導部材 16には熱抵抗が小さい材料 (換言すれば、熱伝導率の高い 材料)が求められる。例えば、熱伝導率の高 、アルミニウム (A1)、銅 (Cu)等の金属 の他、グラフアイト等を用いることが望ましい。なお、プローブ本体 2の重量増加を抑 制するためには、アルミニウム (A1)が適して!/、る。
[0045] この熱伝導部材 16は、プローブ本体 2の熱源となるトランスデューサ 4の熱をプロ一 ブハウジング 3の表面力も効率的に放熱するためのものである。つまり、この熱伝導 部材 16によって熱を熱源力 離れた位置に伝達し、放熱する面積を広げている。
[0046] そして、この熱伝導部材 16に接触又は近接するように、相変化材料力もなる相変 ィ匕剤 13が封入された容器 15が設置されている。この容器 15は、アルミニウム (A1)や 銅 (Cu)等で構成されている。トランスデューサ 4等力も発生した熱は、熱伝導部材 1 6の一端から他端まで伝わり、さらに、他端に接触又は近接して設置されている容器 15に伝わる。伝達された熱により相変化剤 13が特定温度で固体から液体に相変化 を起こし、プローブ本体 2内の温度上昇を抑制する。一端力バッキング材 7に接触さ れ、他端が相変化剤 13を収納した容器 15に接触又は近接された、熱伝導率の高い 熱伝導部材 16を介してトランスデューサ 4から発生した熱を相変化剤 13に伝達する ことで、熱伝導の効率が高くなるため、プローブ本体 2の温度上昇に対する相変化材 料の熱吸収が効率的に行われる。なお、本実施形態においては、熱伝導部材 16の 他端側に相変化部材 36が設置されているが、他端にかかわらず、他の部分に接触 又は近接して 、ても同様の効果が得られる。
[0047] また、上述した熱伝導部材 16を別途設けなくても同様の効果が得られる。例えば、 図 4に示すように、相変化剤 13が収納されている容器 15の一端又は両端を電磁シ 一ルド部材 12に接触又は近接させている。トランスデューサ 4から発生した熱は電磁 シールド部材 12の先端部分力も電磁シールド部材 12に伝わり、更に電磁シールド 部材 12に接触又は近接されている容器 15に伝わり、容器 15に収納されている相変 化部材 36に熱が伝導する。この電磁シールド部材 12により、放熱する面積を広げる ことができ、上述した熱伝導部材 16と同じ効果を奏することが可能となる。電磁シー ルド部材 12に銅 (Cu)等の熱伝導率が高い材料を用いることにより、発熱源であるト ランスデューサ 4等力も相変化部材 36までの熱伝達の効率を高くすることが可能とな り、相変化材料の熱吸収が効率的に行われる。
[0048] [第 4の実施の形態]
本発明の第 4の実施形態に係る超音波プローブの構成について、図 5を参照しつ つ説明する。図 5は本発明の第 4の実施形態に係る超音波プローブの内部の概略構 造を示す断面図である。
[0049] 図 5に示すように、相変化部材 39は断面 C字形を有している。相変化部材 39は、ト ランスデューサユニット 28の特にバッキング材 7を取り囲むように設置される。相変化 材料が融解したときに流れてしまうのを防ぐために、相変化材料を容器 15に封入し、 その容器 15によってトランスデューサ 4等を囲んでいる。この容器 15は、榭脂、金属 、グラフアイト、又はそれらの複合材料力もなる。このように、相変化剤 13が収納され た容器 15がトランスデューサ 4等に接触又は近接しているため、発熱源であるトラン スデューサ 4等力ゝらの熱は容器 15を介して直接、相変化剤 13に伝導される。そのこ とにより、音響レンズ 6の表面温度の上昇を効率的に抑制することが可能となる。また 、相変ィ匕剤 13をトランスデューサ 4等に近づけることにより、プローブ本体 2の重心を 音響レンズ 6に近づけることが可能となるため、プローブ本体 2の操作性が向上する。
[0050] [第 5の実施の形態]
本発明の第 5の実施形態に係る超音波プローブの構成について、図 6を参照しつ つ説明する。図 6は本発明の第 5の実施形態に係る超音波プローブの内部の概略構 造を示す断面図である。図 6に示すように、相変化部材 41は、断面 C字形を有してい る。相変化部材 41は、トランスデューサユニット 28の特にバッキング材 7を取り囲むよ うに設置される。カプセル 17には相変ィ匕剤 13が封入される。複数のカプセル 17は、 容器 42に収容される。容器 42内は熱伝導性の高いモールド材 18で封止される。モ 一ルド材 18〖こは、エポキシ榭脂ゃシリコン榭脂等が用いられる。例えば、エポキシ榭 脂に伝導フィラーを混入させることで、熱伝導率を 0. 300[WZ (mK) ]とすることが できる。上述したように、封止榭脂材 14の熱伝導率が 0. 038 [WZ (mK) ]であるた め、封止榭脂材 14を用いるよりも、このモールド材 18を用いた方が熱伝導率を高く することが可能となる。なお、このモールド材 18の比熱は 0. 3[WhZkg'K]で、比重 は 1. 850[g/cm3]となっている。熱源であるトランスデューサ 4等力も発生した熱は 、カプセル 17の周りに充填されているモールド材 18に伝導し、更にモールド材 18で 封止されているカプセル 17内の相変ィ匕剤 13に伝導される。このように、発熱源であ るトランスデューサ 4等の周りに相変化剤 13を配置することで、トランスデューサ 4等 力もの熱はモールド材 18を介して直接、相変化剤 13に伝導される。そのことにより、 音響レンズ 6の表面温度の上昇を効率的に抑制することが可能となる。
[0051] さらに、相変ィ匕剤 13を複数のカプセル 17に小分けすることで、相変化部材 41を、 プローブ本体 2の内空房形状に応じた形状に容易に形成することが可能となる。
[0052] 例えば、第 4の実施形態で説明したプローブ本体 2に用いられて ヽる容器 42は、断 面 C字形を有し、その凹みにバッキング材 7を嵌め込んでいる。し力しながら、プロ一 ブハウジング 3の形状やトランスデューサ 4やバッキング材 7等の形状に併せてその 容器 42を作製する必要がある。つまり、トランスデューサ 4等を囲んで接触するような 形状の容器 15を作製する必要があるため、トランスデューサ 4やプローブノヽウジング 3等の形状が異なると、同じ容器を使用することができない。例えば、あるトランスデュ ーサ 4やバッキング材 7等の大きさに合わせ、そのトランスデューサ 4やバッキング材 7 等に接触して囲む凹部を有する容器 42を作製した場合、そのバッキング材 7よりも大 きいバッキング材にその容器 42を用いようとしても、大きいバッキング材に凹部を嵌 め込むことができない。また、より小さいバッキング材にその容器 42を用いようとしても 、凹部の側面とバッキング材との間に隙間が生じてしまうため、トランスデューサ 4等 力 容器 42に効率良く熱を伝導することができない。このように、形状が異なるプロ一 ブ本体 2ごとに容器 42を用意する必要があるため、容器 42のコストが上がってしまう ため、プローブ本体 2の製造コストが上がってしまう。
[0053] そこで、本実施形態のように、相変ィ匕剤 13をカプセル 17に小分けし、その周りをモ 一ルド材 18で封止することで、プローブハウジング 3やトランスデューサ 4ゃバッキン グ材 7等の形状にかかわらず、相変化剤 13を容易に配置することが可能となる。その ことにより、形状が異なるプローブ本体 2ごとに容器を用意する必要がないため、コス トを低減することが可能となる。 [0054] さらに、図 7に示すように、複数種の相変化材料を用いても良い。第 1の相変化剤 1 3aを封入したカプセル 17と、第 1の相変ィ匕剤 13aと相変化点の相違する第 2の相変 ィ匕剤 13bを封入したカプセル 17とが、容器 42に収容される。
[0055] 相変化剤 13aの相変化点(融点)は 40°C付近に設定され、相変化剤 13bの相変化 点は相変化剤 13aのそれよりも高い 48°C付近に設定されている。相変化点が 40°C 付近の相変化剤 13aは、プローブ本体 2を駆動して被検体の体表に相変化点させて いる場合に、音響レンズ 6の表面温度の上昇を抑制するために設けられている。相変 化点が 48°C付近の相変化剤 13bは、プローブ本体 2が被検体の体表に接触されて V、な 、場合に、発生した超音波の殆どが熱に変わってしまった状況下にお 、て音響 レンズ 6の表面温度の上昇を抑制するために設けられて 、る。
[0056] このように、相変化点が異なる 2種類以上の相変化剤を用いることにより、生体に接 触した状態での温度上昇や、生体から離れた状態での温度上昇等、状況により温度 の上昇率や安全な表面温度が異なる場合であっても、各状況における温度上昇を 抑制することが可能となる。また、 3種類以上の相変化材料を用いて、種々の状況に 応じた温度上昇の抑制が可能となる。
[0057] [第 6の実施の形態]
本発明の第 6の実施形態に係る超音波プローブの構成について、図 8を参照しつ つ説明する。図 8は本発明の第 6の実施形態に係る超音波プローブの内部の概略構 造を示す断面図である。
[0058] 図 8A、図 8Bに示すように、本実施形態においてはプローブハウジング 3の側面に は、相変化部材 45を収納するための凹部 19が形成される。相変化剤 13を容器 15 に封入してなる相変化部材 45は、凹部 19に収納されることができる形状を有してい る。凹部 19は蓋 20で閉められる。
[0059] このような構成にすることで、図 8Bに示すように、相変化部材 45をプローブハウジ ング 3の凹部 19から取り外すことが可能となり、相変化部材 45を交換することが可能 となる。そのことにより、プローブ本体 2を長時間使用し、相変化剤 13の効果が薄れ てしまった場合でも、相変化剤 13が固体相にある別の相変化部材 45と交換すること が可能となるため、相変化剤 13が固体相になるのを待たなくても弓 Iき続きプローブ本 体 2を使用することができ、引き続き温度上昇を抑制することが可能となる。
[0060] [第 7の実施の形態]
本発明の第 7の実施形態に係る超音波プローブの構成について、図 9を参照しつ つ説明する。図 9は本発明の第 7の実施形態に係る超音波プローブの内部の概略構 造を示す断面図である。
[0061] 図 9に示すように、プローブハウジング 3の内部には、温度上昇を抑えるのではなく 、温度を強制的に低下させるための冷却部 21が設けられている。冷却部 21には典 型的にはペルチェ素子が採用される。一端力バッキング材 7に接触してケーブル 9の 方向に伸び、他端が 2つに分かれて電磁シールド部材 12に接触して 、る熱伝導部 材 16が設けられている。ペルチェ素子 21の吸熱側 21aは熱伝導部材 16の他端に 接触又は近接している。なお、ペルチェ素子 21が本発明の「第 1の冷却部」に相当 する。
[0062] プローブ本体 2の表面温度が上昇した場合、熱は熱伝導部材 16を伝わって熱伝 導部材 16の他端に達する。コネクタ 1は熱電対等の温度検知装置により、プローブ 本体 2の温度を検知し、コネクタ 1からペルチ 素子 21を動作させて熱伝導部材 16 を冷却し、プローブ本体 2の温度を下げる。このとき、ペルチェ素子 21は一時的に熱 伝導部材 16の温度を下げても、ペルチェ素子 21自体の消費電力により温度が上昇 するため、ある程度の時間が経過すると、プローブ本体 2の表面温度(音響レンズ 6の 表面温度)を冷却する能力がなくなってしまう。
[0063] そこで、本実施形態のように、ペルチヱ素子 21の放熱側 21bに相変化材料の相変 ィ匕剤 13を設け、ペルチェ素子 21を冷却する。この冷却によってペルチェ素子 21によ る冷却能力が発揮する時間を長くすることが可能となる。その効果により、プローブ本 体 2の表面温度 (音響レンズ 6の表面温度)が下がり、ペルチヱ素子 21の動作が止ま れば、相変化材料はゆっくり放熱を行って、再び保冷能力を回復することが可能とな る。例えば、一時的にプローブ本体 2の表面温度 (音響レンズ 6の表面温度)が上昇 するような場合に、効果的にペルチェ素子 21からなる冷却機構を動作させることが可 能となる。
[0064] また、ペルチェ素子の代わりに、例えば、水やアルコール類等を冷媒とする冷媒循 環型の冷却機構を設けても良い。
[0065] [第 8の実施の形態]
本発明の第 8の実施形態に係る超音波診断装置の構成について、図 10A、図 10 B、図 IOCを参照しつつ説明する。図 10Aに示すように、コネクタ 1の側面にプローブ 本体 2を保持するプローブホルダ 22が設けられている。このプローブホルダ 22は、プ ローブ本体 2を収納するために設けられており、一部分に切り込みが形成されて上下 方向に貫通したホールド部 23を有し、そのホールド部 23にプローブ本体 2を挿入す るにより、ホールド部 23にてプローブ本体 2の周囲を抑えて保持する。このプローブ ホルダ 22が本発明の「収納部材」に相当する。
[0066] 図 10Bにプローブホルダ 22に形成されたホールド部 23の詳細な構造を示す。同 図に示すように、ホールド部 23は上下方向に貫通し、一部分に切り込みが形成され ている。さらに、ホールド部 23の内側の側面 (切り込みの反対側)に空冷ファン 24が 設置されている。プローブ本体 2のプローブハウジング 3がホールド部 23に差し込ま れて、内側の側面によってプローブハウジング 3が押さえられることでプローブ本体 2 が保持される。プローブノヽウジング 3がホールド部 23に挿入されるとともに、空冷ファ ン 24によってプローブ本体 2が冷却される。なお、空冷ファン 24が「第 2の冷却部」に 相当する。
[0067] プローブ本体 2を長時間使用してプローブ本体 2全体の温度が上昇した場合、使 用を停止してもプローブ本体 2の温度は低下し難い状態になる。本実施形態のように 、プローブ本体 2を使用しな!、ときにプローブ本体 2を保持するプローブホルダ 22に 、プローブ冷却機構としての空冷ファン 24を設けることで、プローブ本体 2の温度を 下げることが可能となるとともに、プローブノヽウジング 3の内部に設置されている相変 化材料力もなる相変化剤 13の温度を下げて固体相に戻すことが可能となる。
[0068] また、プローブホルダ 22にプローブ本体 2が挿入されると、 自動的に空冷ファン 24 が駆動するようにしても良い。例えば、ホールド部 23の内側の側面に、突出したボタ ン(図示しない)を設置する。プローブ本体 2がホールド部 23に挿入されると、プロ一 ブハウジング 3によってそのボタンが押下される。ボタンが押下されると、図 10Cに示 す回路図のように、その押下によって超音波診断装置本体 2の内部に設けられてい るスィッチ 25が矢印 Aの方向に押され、空冷ファン 24と空冷ファン 24に電力を供給 する駆動電源 26とが接続される。この接続によって駆動電源 26から空冷ファン 24に 電力が供給され、空冷ファン 24が動作する。また、プローブ本体 2をプローブホルダ 22から抜き取ると、スィッチ 25が矢印 Bの方向に移動して元の位置に戻り、これによ り空冷ファン 24への電力供給が遮断されて動作が停止する。
[0069] このように、プローブ本体 2をプローブホルダ 22に挿入して!/、るとき(例えば、プロ一 ブ本体 2を使用しないとき)に空冷ファン 24を動作させることで、効率的にプローブ本 体 24の温度を下げることができ、相変化材料が溶解している場合には、比較的短い 時間で固体相に戻すことが可能となる。
産業上の利用可能性
[0070] 本発明に依ると、超音波プローブにおいて特定温度を超える温度上昇を効果的に 抑帘 Uすることができる。

Claims

請求の範囲
[1] プローブ本体と、コネクタと、前記プローブ本体と前記コネクタとを電気的に接続す るためのケーブルとを有する超音波プローブにおいて、
前記プローブ本体は、
超音波と電気とを相互に変換するトランスデューサと、
前記トランスデューサの動作期間中に達する特定温度で固体力 液体への相変化 を起こし、前記特定温度未満で液体から固体への相変化を起こす性質を有する相変 化部材とを有する超音波プローブ。
[2] 前記特定温度は、 30°C〜50°Cの範囲から選択的に設定される請求項 1に記載の 超音波プローブ。
[3] 前記相変化部材は、前記トランスデューサが連続波ドプラモードのもとで動作する 期間中に前記特定温度に達する請求項 1記載の超音波プローブ。
[4] 前記プローブ本体は、前記トランスデューサとともに前記相変化部材を収容するプ ローブノ、ウジングをさらに有する請求項 1に記載の超音波プローブ。
[5] 前記プローブ本体は、前記トランスデューサを収容するプローブハウジングをさらに 有し、
前記相変化部材は、前記プローブハウジングに対する着脱性を有する請求項 1に 記載の超音波プローブ。
[6] 前記トランスデューサは、 2次元状に配列された複数のトランスデューサ素子を有す る請求項 1に記載の超音波プローブ。
[7] 前記相変化部材は、相変化点が相違する複数の相変化剤を有する請求項 1記載 の超音波プローブ。
[8] 前記相変化部材は、相変化剤と、前記相変化剤を収容する膜又は容器とを有し、 前記相変化剤には、前記相変化に伴う体積変化を許容するために複数の気泡が 混入されて!ヽる請求項 1記載の超音波プローブ。
[9] 前記相変化部材は、相変化剤と、前記相変化剤を収容する膜又は容器とを有し、 前記膜又は容器は、榭脂、金属、グラフアイト、又はそれらの複合材料カゝらなる請求 項 1記載の超音波プローブ。
[10] 前記相変化部材は、前記トランスデューサの背面に配置されている請求項 1記載の 超音波プローブ。
[11] 前記相変化部材は、前記トランスデューサの背面と側面を取り囲むように配置され て 、る請求項 1記載の超音波プローブ。
[12] 前記プローブ本体は、前記トランスデューサを収容するプローブハウジングをさらに 有し、
前記相変化部材は、前記プローブハウジングの側面に形成された凹部に収納され る請求項 1記載の超音波プローブ。
[13] 前記相変化部材は、前記トランスデューサに対してヒートパイプを介して接続される 請求項 1記載の超音波プローブ。
[14] 前記プローブ本体は、前記トランスデューサを収容するプローブハウジングと、前記 プローブノ、ウジングの内側面に形成された電磁シールド部材とをさらに有し、 前記相変化部材は、前記電磁シールド部材を介して前記トランスデューサに接続さ れる請求項 1記載の超音波プローブ。
[15] 前記プローブ本体は、前記トランスデューサを収容するプローブハウジングと、前記 プローブハウジングの内部に充填される充填部材とをさらに有し、
前記相変化部材は、前記充填部材を介して前記トランスデューサに接続される請 求項 1記載の超音波プローブ。
[16] 前記プローブ本体は、前記トランスデューサを収容するプローブハウジングと、前記 プローブハウジングの内部に設置された冷却部とをさらに有し、
前記相変化部材は、前記冷却部の放熱面に接触される請求項 1記載の超音波プ ローブ 0
[17] 前記冷却部はペルチェ素子を有する請求項 16記載の超音波プローブ。
[18] 前記冷却部は、冷媒循環型の冷却機構の熱交換部である請求項 16記載の超音 波プローブ。
[19] プローブ本体と、コネクタと、前記プローブ本体と前記コネクタとを電気的に接続す るためのケーブルとを有する超音波プローブにおいて、
前記プローブ本体は、 超音波と電気とを相互に変換するトランスデューサと、
前記トランスデューサの特定温度を超える温度上昇を緩衝する熱緩衝剤と、 前記トランスデューサと前記熱緩衝剤とを収容するプローブハウジングと、 前記プローブハウジングの内部を充填する充填剤とを有する超音波プローブ。
[20] 前記特定温度は、前記トランスデューサの動作期間中に達する温度に設定されて いる請求項 19記載の超音波プローブ。
[21] プローブ本体と、コネクタと、前記プローブ本体と前記コネクタとを電気的に接続す るためのケーブルとを有する超音波プローブにおいて、
前記プローブ本体は、
超音波と電気とを相互に変換するトランスデューサと、
前記トランスデューサの特定温度に達した状態力 前記特定温度を超える状態へ の移行を遅延させる熱遅延剤と、
前記トランスデューサと前記熱遅延剤とを収容するプローブハウジングと、 前記プローブハウジングの内部を充填する充填剤とを有する超音波プローブ。
[22] 前記特定温度は、前記トランスデューサの動作期間中に達する温度に設定されて いる請求項 21記載の超音波プローブ。
PCT/JP2005/017051 2004-09-24 2005-09-15 超音波プローブ WO2006033281A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2006515488A JPWO2006033281A1 (ja) 2004-09-24 2005-09-15 超音波プローブ
EP05783511A EP1707122B1 (en) 2004-09-24 2005-09-15 Ultrasonic probe
DE602005020738T DE602005020738D1 (de) 2004-09-24 2005-09-15 Ultraschallsonde
US11/415,156 US7308828B2 (en) 2004-09-24 2006-05-02 Ultrasonic probe

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004276612 2004-09-24
JP2004-276612 2004-09-24

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/415,156 Continuation US7308828B2 (en) 2004-09-24 2006-05-02 Ultrasonic probe

Publications (1)

Publication Number Publication Date
WO2006033281A1 true WO2006033281A1 (ja) 2006-03-30

Family

ID=36090041

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/017051 WO2006033281A1 (ja) 2004-09-24 2005-09-15 超音波プローブ

Country Status (6)

Country Link
US (1) US7308828B2 (ja)
EP (1) EP1707122B1 (ja)
JP (1) JPWO2006033281A1 (ja)
CN (1) CN100477966C (ja)
DE (1) DE602005020738D1 (ja)
WO (1) WO2006033281A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008295749A (ja) * 2007-05-31 2008-12-11 Fujifilm Corp 超音波内視鏡及び超音波内視鏡装置
JP2008301893A (ja) * 2007-06-05 2008-12-18 Fujifilm Corp 超音波内視鏡及び超音波内視鏡装置
JP2011004874A (ja) * 2009-06-24 2011-01-13 Toshiba Corp 超音波プローブ
JP2013027667A (ja) * 2011-07-29 2013-02-07 Hitachi Medical Corp 超音波探触子及び超音波診断装置
JP2013052023A (ja) * 2011-09-01 2013-03-21 Toshiba Corp 超音波プローブ及び超音波診断装置
WO2014076973A1 (ja) * 2012-11-19 2014-05-22 コニカミノルタ株式会社 超音波探触子
WO2016035362A1 (ja) * 2014-09-02 2016-03-10 オリンパス株式会社 超音波内視鏡
KR20170099833A (ko) * 2014-09-02 2017-09-01 에사오테 에스.피.에이. 최적 열-조절식 초음파 프로브
KR101876572B1 (ko) * 2010-12-08 2018-07-09 로베르트 보쉬 게엠베하 감쇠 장치를 구비한 초음파 센서
JP2019180786A (ja) * 2018-04-09 2019-10-24 コニカミノルタ株式会社 超音波探触子および超音波診断装置

Families Citing this family (83)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100969543B1 (ko) 2006-01-06 2010-07-12 주식회사 메디슨 3차원 프로브
US7655004B2 (en) 2007-02-15 2010-02-02 Ethicon Endo-Surgery, Inc. Electroporation ablation apparatus, system, and method
US8090131B2 (en) * 2007-07-11 2012-01-03 Elster NV/SA Steerable acoustic waveguide
JP5053744B2 (ja) * 2007-07-24 2012-10-17 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー 超音波診断装置
US8579897B2 (en) 2007-11-21 2013-11-12 Ethicon Endo-Surgery, Inc. Bipolar forceps
US8262655B2 (en) 2007-11-21 2012-09-11 Ethicon Endo-Surgery, Inc. Bipolar forceps
US8568410B2 (en) 2007-08-31 2013-10-29 Ethicon Endo-Surgery, Inc. Electrical ablation surgical instruments
US20090112059A1 (en) 2007-10-31 2009-04-30 Nobis Rudolph H Apparatus and methods for closing a gastrotomy
US8480657B2 (en) 2007-10-31 2013-07-09 Ethicon Endo-Surgery, Inc. Detachable distal overtube section and methods for forming a sealable opening in the wall of an organ
WO2009066805A1 (en) * 2007-11-21 2009-05-28 Korea Research Institute Of Standards And Science Apparatus and method for measuring ultrasound power by using latent heat
US7921575B2 (en) * 2007-12-27 2011-04-12 General Electric Company Method and system for integrating ultrasound inspection (UT) with a coordinate measuring machine (CMM)
US8262680B2 (en) 2008-03-10 2012-09-11 Ethicon Endo-Surgery, Inc. Anastomotic device
US8506490B2 (en) * 2008-05-30 2013-08-13 W.L. Gore & Associates, Inc. Real time ultrasound probe
US8679003B2 (en) 2008-05-30 2014-03-25 Ethicon Endo-Surgery, Inc. Surgical device and endoscope including same
US8771260B2 (en) 2008-05-30 2014-07-08 Ethicon Endo-Surgery, Inc. Actuating and articulating surgical device
US8403926B2 (en) 2008-06-05 2013-03-26 Ethicon Endo-Surgery, Inc. Manually articulating devices
US8361112B2 (en) 2008-06-27 2013-01-29 Ethicon Endo-Surgery, Inc. Surgical suture arrangement
US8888792B2 (en) 2008-07-14 2014-11-18 Ethicon Endo-Surgery, Inc. Tissue apposition clip application devices and methods
US8262563B2 (en) 2008-07-14 2012-09-11 Ethicon Endo-Surgery, Inc. Endoscopic translumenal articulatable steerable overtube
US8211125B2 (en) 2008-08-15 2012-07-03 Ethicon Endo-Surgery, Inc. Sterile appliance delivery device for endoscopic procedures
US8529563B2 (en) 2008-08-25 2013-09-10 Ethicon Endo-Surgery, Inc. Electrical ablation devices
US8241204B2 (en) 2008-08-29 2012-08-14 Ethicon Endo-Surgery, Inc. Articulating end cap
US8480689B2 (en) 2008-09-02 2013-07-09 Ethicon Endo-Surgery, Inc. Suturing device
US8409200B2 (en) 2008-09-03 2013-04-02 Ethicon Endo-Surgery, Inc. Surgical grasping device
US8337394B2 (en) 2008-10-01 2012-12-25 Ethicon Endo-Surgery, Inc. Overtube with expandable tip
US8157834B2 (en) 2008-11-25 2012-04-17 Ethicon Endo-Surgery, Inc. Rotational coupling device for surgical instrument with flexible actuators
US8361066B2 (en) 2009-01-12 2013-01-29 Ethicon Endo-Surgery, Inc. Electrical ablation devices
US8252057B2 (en) 2009-01-30 2012-08-28 Ethicon Endo-Surgery, Inc. Surgical access device
US9226772B2 (en) * 2009-01-30 2016-01-05 Ethicon Endo-Surgery, Inc. Surgical device
JP5491778B2 (ja) * 2009-06-24 2014-05-14 株式会社東芝 超音波診断装置
US7946986B2 (en) * 2009-09-29 2011-05-24 Medicis Technologies Corporation Cartridge for use with an ultrasound therapy head
US20110098704A1 (en) 2009-10-28 2011-04-28 Ethicon Endo-Surgery, Inc. Electrical ablation devices
US8608652B2 (en) 2009-11-05 2013-12-17 Ethicon Endo-Surgery, Inc. Vaginal entry surgical devices, kit, system, and method
US8353487B2 (en) 2009-12-17 2013-01-15 Ethicon Endo-Surgery, Inc. User interface support devices for endoscopic surgical instruments
US8496574B2 (en) 2009-12-17 2013-07-30 Ethicon Endo-Surgery, Inc. Selectively positionable camera for surgical guide tube assembly
US9028483B2 (en) 2009-12-18 2015-05-12 Ethicon Endo-Surgery, Inc. Surgical instrument comprising an electrode
US8506564B2 (en) 2009-12-18 2013-08-13 Ethicon Endo-Surgery, Inc. Surgical instrument comprising an electrode
US9005198B2 (en) 2010-01-29 2015-04-14 Ethicon Endo-Surgery, Inc. Surgical instrument comprising an electrode
EP2397188A1 (en) * 2010-06-15 2011-12-21 Theraclion SAS Ultrasound probe head comprising an imaging transducer with a shielding element
US8550703B2 (en) * 2010-09-27 2013-10-08 Sartorius Stedim North America Inc. Systems and methods for use in freezing or thawing biopharmaceutical materials
US8740801B2 (en) * 2010-11-01 2014-06-03 Siemens Aktiengesellschaft RF shield for an ultrasound transducer for use in a magnetic resonance system
US10092291B2 (en) 2011-01-25 2018-10-09 Ethicon Endo-Surgery, Inc. Surgical instrument with selectively rigidizable features
US9233241B2 (en) 2011-02-28 2016-01-12 Ethicon Endo-Surgery, Inc. Electrical ablation devices and methods
US9314620B2 (en) 2011-02-28 2016-04-19 Ethicon Endo-Surgery, Inc. Electrical ablation devices and methods
US9254169B2 (en) 2011-02-28 2016-02-09 Ethicon Endo-Surgery, Inc. Electrical ablation devices and methods
WO2012125785A1 (en) 2011-03-17 2012-09-20 Ethicon Endo-Surgery, Inc. Hand held surgical device for manipulating an internal magnet assembly within a patient
JP2012228425A (ja) * 2011-04-27 2012-11-22 Fujifilm Corp 超音波診断装置
RU2604705C2 (ru) * 2011-05-17 2016-12-10 Конинклейке Филипс Н.В. Матричный ультразвуковой зонд с пассивным рассеянием тепла
US8887619B2 (en) 2011-10-28 2014-11-18 Medtronic, Inc. Removable heat management for recharge coils
US10322288B2 (en) * 2011-10-28 2019-06-18 Medtronic, Inc. Heat management for recharge coils for implantable medical devices
US8986199B2 (en) 2012-02-17 2015-03-24 Ethicon Endo-Surgery, Inc. Apparatus and methods for cleaning the lens of an endoscope
CN102608217B (zh) * 2012-03-08 2014-01-08 中国铁道科学研究院基础设施检测研究所 具备温控功能的轮式探头
US9427255B2 (en) 2012-05-14 2016-08-30 Ethicon Endo-Surgery, Inc. Apparatus for introducing a steerable camera assembly into a patient
US9078662B2 (en) 2012-07-03 2015-07-14 Ethicon Endo-Surgery, Inc. Endoscopic cap electrode and method for using the same
WO2014018971A1 (en) 2012-07-27 2014-01-30 Thoratec Corporation Resonant power transfer systems with protective algorithm
US9545290B2 (en) 2012-07-30 2017-01-17 Ethicon Endo-Surgery, Inc. Needle probe guide
US9572623B2 (en) 2012-08-02 2017-02-21 Ethicon Endo-Surgery, Inc. Reusable electrode and disposable sheath
US10314649B2 (en) 2012-08-02 2019-06-11 Ethicon Endo-Surgery, Inc. Flexible expandable electrode and method of intraluminal delivery of pulsed power
US9277957B2 (en) 2012-08-15 2016-03-08 Ethicon Endo-Surgery, Inc. Electrosurgical devices and methods
US10098527B2 (en) 2013-02-27 2018-10-16 Ethidcon Endo-Surgery, Inc. System for performing a minimally invasive surgical procedure
KR20150118496A (ko) * 2014-04-14 2015-10-22 삼성전자주식회사 초음파 프로브
CN104013430A (zh) * 2014-06-12 2014-09-03 苏州森斯凌传感技术有限公司 带循环冷却管及主机控制的超声波探头冷却装置
US9766328B2 (en) * 2014-07-15 2017-09-19 Garmin Switzerland Gmbh Sonar transducer array assembly and methods of manufacture thereof
KR102400997B1 (ko) * 2014-09-15 2022-05-23 삼성전자주식회사 초음파 프로브 및 그 작동 방법과 거치대
EP3280544A1 (en) * 2015-04-10 2018-02-14 Koninklijke Philips N.V. Systems, methods, and apparatuses for active thermal management of ultrasound transducers
TW201704008A (zh) * 2015-05-29 2017-02-01 漢高智慧財產控股公司 用於熱管理之系統及其使用方法
TW201711722A (zh) * 2015-08-13 2017-04-01 通路實業集團國際公司 用於手持超音波裝置的發聲模組及控制系統
US9891180B2 (en) * 2015-09-02 2018-02-13 Industrial Technology Research Institute Thermal needle probe
US10206658B2 (en) 2015-12-18 2019-02-19 General Electric Company Docking station for electrically charging and managing a thermal condition of an ultrasound probe
WO2017151812A1 (en) * 2016-03-01 2017-09-08 EchoNous, Inc. Ultrasound system with docking station and dockable ultrasound probe
CN109219394B (zh) * 2016-03-21 2023-02-03 伊索诺健康公司 可穿戴式超声系统及方法
US20200022714A1 (en) * 2016-10-18 2020-01-23 SonoMotions Inc. Ultrasound devices incorporating phase change materials and systems and methods using the devices
KR20180068474A (ko) * 2016-12-14 2018-06-22 삼성메디슨 주식회사 초음파 프로브
WO2018158897A1 (ja) * 2017-03-01 2018-09-07 オリンパス株式会社 ケーブル実装構造体および内視鏡
US11083439B2 (en) * 2017-06-05 2021-08-10 Clarius Mobile Health Corp. Cooling unit for an ultrasound imaging apparatus, and related ultrasound systems
CN109725063A (zh) * 2017-10-27 2019-05-07 深圳开立生物医疗科技股份有限公司 超声波探头
EP3524160B1 (en) * 2018-02-07 2022-12-21 Esaote S.p.A. Ultrasound probe and ultrasound system provided with the said ultrasound probe
CN109556705B (zh) * 2018-10-29 2021-08-03 苏州佳世达电通有限公司 超音波探头及其制作方法
FR3088765B1 (fr) * 2018-11-16 2022-10-14 Supersonic Imagine Sonde avec chambre de refroidissement et procede de fabrication d’une telle sonde
US20200178941A1 (en) * 2018-12-07 2020-06-11 General Electric Company Ultrasound probe and method of making the same
EP3811872B1 (en) 2019-10-23 2023-07-26 Esaote S.p.A. Ultrasound probe with improved thermal management
DE102022200168A1 (de) 2022-01-10 2023-03-09 Magna powertrain gmbh & co kg Power Modul Vorrichtung
US11986347B2 (en) 2022-01-16 2024-05-21 Clarius Mobile Health Corp. Dual function cooling and charging unit for an ultrasound imaging apparatus, and related ultrasound systems

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5928951A (ja) * 1982-08-07 1984-02-15 富士通株式会社 超音波プロ−ブ
JP3061292U (ja) * 1998-02-10 1999-09-17 ヒューレット・パッカード・カンパニー 超音波トランスデュ―サ構造
JPH11299775A (ja) * 1998-04-16 1999-11-02 Hitachi Medical Corp 超音波診断装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5046365A (en) * 1990-07-16 1991-09-10 General Dynamics Corporation/Space Systems Div Transducer thermal protection system
DE4240719C1 (de) * 1992-12-03 1994-01-27 Siemens Ag Ultraschall-Wandler mit Dämpfungskörper für hohe Arbeitstemperaturen
US5560362A (en) * 1994-06-13 1996-10-01 Acuson Corporation Active thermal control of ultrasound transducers
JPH09140706A (ja) 1995-11-28 1997-06-03 Toshiba Corp 超音波診断装置のプローブ
JPH1085219A (ja) 1996-09-12 1998-04-07 Toshiba Corp 超音波プローブ
JPH1094540A (ja) 1996-09-24 1998-04-14 Toshiba Corp 超音波プローブ
US6624539B1 (en) * 1997-05-13 2003-09-23 Edge Technologies, Inc. High power ultrasonic transducers
SE518764C2 (sv) * 2000-07-17 2002-11-19 Ultrazonix Dnt Ab Anordning för mini-invasiv ultraljudsbehandling av disksjukdom
US20040002655A1 (en) * 2002-06-27 2004-01-01 Acuson, A Siemens Company System and method for improved transducer thermal design using thermo-electric cooling
US20050215892A1 (en) * 2004-03-22 2005-09-29 Siemens Medical Solutions Usa, Inc. System and method for transducer array cooling through forced convection

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5928951A (ja) * 1982-08-07 1984-02-15 富士通株式会社 超音波プロ−ブ
JP3061292U (ja) * 1998-02-10 1999-09-17 ヒューレット・パッカード・カンパニー 超音波トランスデュ―サ構造
JPH11299775A (ja) * 1998-04-16 1999-11-02 Hitachi Medical Corp 超音波診断装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1707122A4 *

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8376950B2 (en) 2007-05-31 2013-02-19 Fujifilm Corporation Ultrasonic endoscope and ultrasonic endoscopic apparatus
JP2008295749A (ja) * 2007-05-31 2008-12-11 Fujifilm Corp 超音波内視鏡及び超音波内視鏡装置
JP2008301893A (ja) * 2007-06-05 2008-12-18 Fujifilm Corp 超音波内視鏡及び超音波内視鏡装置
JP2011004874A (ja) * 2009-06-24 2011-01-13 Toshiba Corp 超音波プローブ
US8409101B2 (en) 2009-06-24 2013-04-02 Kabushiki Kaisha Toshiba Ultrasonic probe and ultrasonic diagnostic apparatus
KR101876572B1 (ko) * 2010-12-08 2018-07-09 로베르트 보쉬 게엠베하 감쇠 장치를 구비한 초음파 센서
JP2013027667A (ja) * 2011-07-29 2013-02-07 Hitachi Medical Corp 超音波探触子及び超音波診断装置
JP2013052023A (ja) * 2011-09-01 2013-03-21 Toshiba Corp 超音波プローブ及び超音波診断装置
US10130336B2 (en) 2011-09-01 2018-11-20 Toshiba Medical Systems Corporation Ultrasound probe that exhausts heat via infrared-radiative heat transfer
WO2014076973A1 (ja) * 2012-11-19 2014-05-22 コニカミノルタ株式会社 超音波探触子
JPWO2014076973A1 (ja) * 2012-11-19 2017-01-05 コニカミノルタ株式会社 超音波探触子
US9719968B2 (en) 2012-11-19 2017-08-01 Konica Minolta, Inc. Ultrasound probe
WO2016035362A1 (ja) * 2014-09-02 2016-03-10 オリンパス株式会社 超音波内視鏡
JP2017527375A (ja) * 2014-09-02 2017-09-21 エサオテ ソシエタ ペル アチオニ 熱管理が最適化された超音波プローブ
KR20170099833A (ko) * 2014-09-02 2017-09-01 에사오테 에스.피.에이. 최적 열-조절식 초음파 프로브
JP5905169B1 (ja) * 2014-09-02 2016-04-20 オリンパス株式会社 超音波内視鏡
KR102303916B1 (ko) * 2014-09-02 2021-09-23 에사오테 에스.피.에이. 최적 열-조절식 초음파 프로브
JP2019180786A (ja) * 2018-04-09 2019-10-24 コニカミノルタ株式会社 超音波探触子および超音波診断装置
JP7067218B2 (ja) 2018-04-09 2022-05-16 コニカミノルタ株式会社 超音波探触子および超音波診断装置

Also Published As

Publication number Publication date
EP1707122A4 (en) 2008-01-23
EP1707122B1 (en) 2010-04-21
EP1707122A1 (en) 2006-10-04
CN100477966C (zh) 2009-04-15
DE602005020738D1 (de) 2010-06-02
CN1897877A (zh) 2007-01-17
US20060191344A1 (en) 2006-08-31
JPWO2006033281A1 (ja) 2008-05-15
US7308828B2 (en) 2007-12-18

Similar Documents

Publication Publication Date Title
WO2006033281A1 (ja) 超音波プローブ
EP1806097B1 (en) Ultrasonic probe and ultrasonic apparatus
AU2020245521B2 (en) Handheld ultrasound imager
US20160174939A1 (en) Ultrasonic probe
CN104755032A (zh) 超声波探针
JP5258493B2 (ja) 超音波プローブ
JP6548234B2 (ja) 超音波プローブ及び超音波画像表示装置
US11779304B2 (en) Acoustic damping for ultrasound imaging devices
JP2007209699A (ja) 超音波プローブ
JP4594710B2 (ja) 超音波プローブ及び超音波診断装置
CN104780846B (zh) 超声波探针
CN104768472A (zh) 超声波探针
KR100992446B1 (ko) 프로브
JP2013027667A (ja) 超音波探触子及び超音波診断装置
JP2006158483A (ja) 超音波探触子
JP2004329495A (ja) 超音波探触子
JP2007330507A (ja) 多心ケーブルコネクタ
CN210673355U (zh) 超声探头及超声诊断仪
JPH04250145A (ja) 超音波プローブ
JP5529313B1 (ja) 超音波探触子
JP2008206821A (ja) 超音波プローブ
JPH11299775A (ja) 超音波診断装置
US20180196130A1 (en) Ultrasound probe unit and ultrasound diagnostic apparatus
RU2021130018A (ru) Ручной ультразвуковой прибор для визуализации
JP2008307086A (ja) 超音波診断装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200580001403.7

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 2006515488

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2005783511

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11415156

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 11415156

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2005783511

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE