WO2006033269A1 - 信号増幅回路及びこれを備えた加速度センサ - Google Patents

信号増幅回路及びこれを備えた加速度センサ Download PDF

Info

Publication number
WO2006033269A1
WO2006033269A1 PCT/JP2005/016940 JP2005016940W WO2006033269A1 WO 2006033269 A1 WO2006033269 A1 WO 2006033269A1 JP 2005016940 W JP2005016940 W JP 2005016940W WO 2006033269 A1 WO2006033269 A1 WO 2006033269A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
circuit
voltage
input terminal
operational amplifier
Prior art date
Application number
PCT/JP2005/016940
Other languages
English (en)
French (fr)
Inventor
Yasuo Sugimori
Original Assignee
Hosiden Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hosiden Corporation filed Critical Hosiden Corporation
Priority to EP05783231A priority Critical patent/EP1802164A1/en
Priority to JP2006536351A priority patent/JPWO2006033269A1/ja
Priority to US11/663,565 priority patent/US20080190203A1/en
Publication of WO2006033269A1 publication Critical patent/WO2006033269A1/ja

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • H03F1/0211Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers with control of the supply voltage or current
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/125Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by capacitive pick-up
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • H03F3/45071Differential amplifiers with semiconductor devices only
    • H03F3/45076Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier
    • H03F3/45475Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier using IC blocks as the active amplifying circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/507A switch being used for switching on or off a supply or supplying circuit in an IC-block amplifier circuit
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/02Casings; Cabinets ; Supports therefor; Mountings therein
    • H04R1/04Structural association of microphone with electric circuitry therefor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R19/00Electrostatic transducers
    • H04R19/04Microphones

Definitions

  • the present invention includes an AC-coupled amplifier, a voltage generation circuit that generates a DC bias voltage serving as a reference for the AC coupling, and a transmission unit that transmits the bias voltage to the amplifier.
  • the present invention relates to a signal amplifying circuit that amplifies a minute voltage signal output from a capacitance detection element by superimposing it on the bias voltage as an AC component.
  • the present invention also relates to an acceleration sensor in which the capacitive element is configured by an electret condenser and includes the signal amplification circuit.
  • the output of an electret capacitor used in a capacitive element, such as a microphone, is often extracted by biasing the gate of an FET (field effect transistor) to OV (zero volt).
  • FET field effect transistor
  • the saturation current (drain current) at the gate-source voltage of 0 V continues to flow on the FET drain on average.
  • This saturation current is usually about 100 to 50 A (micro ampere). For this reason, power consumption becomes a serious problem when a microphone-headphone using an electret capacitor, a vibration sensor, an acceleration sensor, or the like is applied to a portable battery-powered device such as a mobile phone or a pedometer.
  • Patent Document 1 discloses an electret condenser microphone having current control means for turning on / off a drain current in accordance with a timing pulse and a pulse generator for generating the timing pulse.
  • a drive circuit has been proposed. This drive circuit switches the power supply line to the FET between an electrically connected state and a disconnected state according to the timing pulse. Then, the drain output voltage generated when a voltage is applied to the drain is detected, and when the voltage application to the drain is cut off, the drain voltage is held by the level hold circuit.
  • band limitation is applied to the amplifier circuit as necessary, and the stepped waveform is shaped into a continuous waveform.
  • a current flows through the FET only when a voltage is applied. Thus, for example, if the voltage application period is 1Z100 during the non-application period, the average current is also 1Z As a result, the current consumption is greatly reduced.
  • Patent Document 1 Japanese Patent Laid-Open No. 2002-232997 (paragraphs 0014 to 0026, first to rope)
  • An object of the present invention is to provide a signal amplifier circuit with low power consumption in a small circuit configuration that does not impair detection accuracy by a capacitance detection element in view of such problems.
  • the signal amplifier circuit according to the present invention is characterized in that an AC coupled amplifier, a voltage generating circuit for generating a DC bias voltage serving as a reference for the AC coupling, A signal amplifying circuit that has a transmission means for transmitting a bias voltage to the amplifier and amplifies the minute voltage signal output from the capacitance detection element by superimposing the bias voltage on the bias voltage as an AC component, as follows: The point is that it is composed.
  • the input impedance of the transmission means viewed from the capacitance detection element is configured to be higher than the output impedance of the capacitance detection element.
  • the output of the capacitance detection element force is extracted and amplified without using a FET (field effect transistor), and therefore, the drain current is usually about 100 to 500 / ⁇ . There is no flow. Therefore, a signal amplifier circuit with low power consumption can be configured.
  • the input impedance force of the transmission means viewed from the capacitance detection element force that outputs a minute voltage signal is configured to be higher than the output impedance of the capacitance detection element. Therefore, the attenuation of the minute voltage signal having high capacitance and high output impedance is suppressed. As a result, a low power consumption signal amplification circuit is realized with a small circuit configuration without impairing the detection accuracy.
  • the signal amplifier circuit according to the present invention can be configured as follows.
  • the amplifier has an output terminal, a feedback input terminal to which a feedback signal of this output terminal force is input, and a signal input terminal to which the bias voltage superimposed with the minute voltage signal is input. It consists of an operational amplifier that amplifies the input signal by feedback control so that no potential difference occurs between the input terminals.
  • the transmission means has one end connected to the feedback input terminal via the voltage generation circuit and an AC coupling capacitor, and the other end connected to the signal input terminal and the output terminal of the capacitance detection element. Consists of.
  • the resistor is subjected to impedance conversion so as to have a high impedance regardless of the resistance value by being controlled in conjunction with the feedback control so that a potential difference does not occur between both ends.
  • An operational amplifier is an element with a very high input impedance and consumes very little current. Therefore, in a circuit using FETs, the current consumption that normally occurs in the order of 100 to 500 / ⁇ A can be reduced to several to several tens A.
  • the operational amplifier follows the change of the minute vibration signal (AC component) output from the capacitance detection element based on the nature of virtual ground, and there is no potential difference between the two input terminals. Control feedback.
  • the resistor (transmission circuit) that transmits the bias voltage is connected between the two input terminals of the operational amplifier via an AC coupling capacitor in AC operation. However, as described above, there is no potential difference between these input terminals.
  • the impedance of the resistor as the transmission circuit is converted into a circuit having a very high impedance regardless of the resistance value of the resistor.
  • the input impedance of the transmission means which also saw the capacitance detection element force, is the output impedance of the capacitance detection element. Because it is configured to be higher than the threshold, attenuation of a minute voltage signal can be suppressed.
  • the signal amplifier circuit according to the present invention can be configured as follows.
  • the amplifier has an output terminal, a feedback input terminal to which a feedback signal of this output terminal force is input, and a signal input terminal to which the bias voltage superimposed with the minute voltage signal is input. It consists of an operational amplifier that amplifies the input signal by feedback control so that no potential difference occurs between the input terminals.
  • the transmission means includes a high resistance circuit having one end connected to the voltage generation circuit and the other end connected to the other input terminal and the output terminal of the capacitance detection element.
  • the transmission means is configured with a high resistance circuit
  • the transmission means is configured with a high resistance circuit having an impedance higher than the output impedance of the capacitance detection element
  • the minute voltage signal output from the capacitance detection element is attenuated. Can be suppressed.
  • the input impedance of the transmission means which also looks at the capacitance detection element force, is configured to be higher than the output impedance of the capacitance detection element, attenuation of minute voltage signals can be suppressed.
  • the high resistance circuit can be configured by connecting two rectifying elements in parallel with each other in a reverse direction as a forward direction.
  • the diode has a forward voltage of about 0.6 to 0.7 V between its terminals even in the forward direction as well as the reverse direction. Therefore, even in the forward direction, no current flows unless a potential difference equal to or greater than the forward voltage appears between the terminals. Since the minute voltage signal output from the capacitance detection element is several mV to several tens of mV, no current flows through the diode. Therefore, a high resistance circuit having a very high impedance is formed by using a diode.
  • the high resistance circuit can be configured by a high resistance resistor.
  • guard ring pattern is provided, and the guard ring pattern is connected as follows.
  • the guard ring pattern and the feedback input terminal of the operational amplifier are connected, or the guard ring pattern and the one end of the transmission means are connected.
  • the circuit in which the other input terminal of the operational amplifier, the output terminal of the capacitance detection element, and the other end of the transmission means are connected is a high-impedance circuit. . Therefore, even a slight leak current of about several p (pico) A may cause a large voltage drop or signal attenuation.
  • the signal amplifier circuit of the present invention is embodied by a printed-circuit board or the like. Therefore, when components are mounted on the board, dust and dust are attached to the surface of the board, and when they absorb moisture, a leak current flows on the board surface. Leakage current flows between a low impedance circuit such as ground, power supply voltage, and operational amplifier output signal, and a high impedance circuit.
  • the guard ring pattern provided so as to surround the high impedance circuit guards the leak current that flows between the low impedance circuit and the high impedance circuit.
  • the guard ring pattern is connected to the wiring pattern of the feedback input terminal that is input by the output signal force S feed knock of the operational amplifier.
  • An operational amplifier has the property of being able to apply deep feedback. Therefore, even if a leak current flows through the guard ring pattern connected to the feedback input terminal, feedback control is performed so that the two input terminals satisfy the virtual ground relationship without being affected by this.
  • the feedback input terminal, guard ring pattern, and signal input terminal Kept in place. Therefore, the high impedance circuit and the guard ring pattern have the same potential, and no leakage current flows during this period. As a result, the high impedance circuit is hardly affected by the leakage current.
  • the guard ring pattern is connected to a wiring pattern at one end of the transmission means to which the bias voltage is input. Since the destination to which the bias voltage is transmitted is a high impedance circuit, almost no current flows through the transmission means. Therefore, since the potential difference is small before and after the minute voltage signal is superimposed, that is, before and after the transmission means, the high impedance circuit and the guard ring pattern may be considered to have almost the same potential. Therefore, similarly, the generation of a leakage current between the high impedance circuit and the guard ring pattern is suppressed.
  • the electrostatic capacitance detection element is configured by an electret capacitor, and the signal amplifying circuit according to the present invention having the above-described configuration is provided to configure an acceleration sensor.
  • ECM type electret capacitor type
  • a small-sized and low power consumption acceleration sensor is often provided in a battery-powered device.
  • the acceleration sensor is configured by including the signal amplification circuit of each configuration according to the present invention, a capacitance detection element ( An acceleration sensor with low power consumption can be obtained with a small circuit configuration that does not impair the detection accuracy of ECM.
  • the signal amplification circuit according to the present invention can be applied to a system, an apparatus, a circuit, or the like provided with a capacitance detection element that outputs a minute voltage signal, such as a microphone, a vibration sensor, an acceleration sensor, or the like.
  • a capacitance detection element that outputs a minute voltage signal
  • an electret condenser microphone type (ECM type) sensor is used as a capacitance detection element that outputs a minute voltage signal.
  • this sensor is configured by having two terminals in a cylindrical housing.
  • diaphragm 10 that functions as a movable electrode or vibration A film or the like, and an electrode substrate 11 or the like that functions as the fixed electrode 14 are included.
  • the electret layer 12 is provided on at least one of the diaphragm 10 and the fixed electrode 14.
  • the change in capacitance between the electrodes having a predetermined interval by the spacer 13 is output as a minute voltage signal.
  • the fixed electrode 14 is formed so as to be embedded in the electrode substrate 11 without projecting or sinking into the electrode substrate 11 in order to form the electret layer 12 uniformly.
  • a vibration sensor or acceleration sensor for detecting vibration can be obtained. Further, if the casing has a sound hole and the vibration membrane is vibrated by the vibration of air, an acoustic sensor (microphone) for detecting an acoustic signal can be obtained.
  • the fixed electrode 14 provided on the electrode substrate 11 is dividedly formed as shown in FIG. 7 with the same configuration as the vibration sensor, the direction of displacement of the diaphragm 10 can also be detected. In this way, it is configured as a three-axis acceleration sensor.
  • the electrodes 14a and 14b are fixed electrodes for detecting acceleration in the so-called XY axis direction.
  • the central electrode 14c is a fixed electrode that detects the acceleration in the slow Z-axis direction that is orthogonal to the XY direction.
  • the present invention can be applied to a signal amplification circuit that amplifies the output of such various sensor forces.
  • the signal amplifier circuit of the present invention when applied to a three-axis acceleration sensor, the amplifier circuit required for each of the three axes can be configured with a small circuit configuration and low power consumption without impairing detection accuracy.
  • FIG. 1 is a circuit diagram showing a first embodiment of a signal amplifier circuit according to the present invention.
  • This signal amplification circuit amplifies an output signal from an ECM type sensor unit 1 as an electrostatic capacitance detection element by an operational amplifier 2.
  • an operational amplifier 2 that is AC-coupled by a capacitor C2
  • a voltage generation circuit 3 that generates a DC bias voltage VI that serves as a reference for AC coupling
  • a transmission that transmits the bias voltage VI to the operational amplifier 2
  • a resistor R4 is provided as a means.
  • the minute voltage signal is superimposed on the bias voltage VI as an AC component and amplified.
  • the operational amplifier 2 is a low current consumption type CM OS operational amplifier.
  • the sensor unit 1 is a capacitive element, and its output is a minute voltage output. In other words, it cannot output a large current and is a high impedance output having a large internal resistance of about several G ohms. If this output is connected to a low-impedance circuit, the output voltage of the sensor unit 1 is attenuated by the resistance voltage division between the high impedance and the low impedance. In order to suppress this, impedance conversion is performed so that the input impedance of the resistor R4 (transmission means) viewed from the sensor unit 1 is higher than the output impedance of the sensor unit 1 (electrostatic capacitance detection element). It is composed. Specific circuit operations will be described below separately for DC operation and AC operation.
  • the inverting input terminal (one terminal) of the operational amplifier 2 corresponds to the feedback input terminal of the present invention, and the non-inverting input terminal (+ terminal) corresponds to the signal input terminal of the present invention.
  • the voltage generation circuit 3 by the resistance voltage division between the resistors R1 and R2 generates the 1Z2 bias voltage VI between the power supply VDD and ground. Since this bias voltage VI is a DC component signal, the direct input to the inverting input terminal (one terminal) of the operational amplifier 2 is blocked by the capacitor C2. On the other hand, a noise voltage VI is applied to the non-inverting input terminal (+ terminal) via resistors R3 and R4. Since the input impedance of the operational amplifier 2 is very high, almost no current flows through the resistors R3 and R4, and the resistance-divided bias voltage VI is applied to the non-inverting input terminal.
  • an oscillating signal that is, an output signal from the sensor unit 1 as an AC component signal is input to one end of the resistor R4 and the non-inverting input terminal of the operational amplifier 2.
  • the operational amplifier 2 has an input impedance of several hundred G to several T (Tera) ohms. Have a very high input impedance. Since this is sufficiently larger than the output impedance (several G ohms) of the sensor unit 1 described above, the output voltage of the sensor unit 1 is input without being attenuated due to the influence of the input terminal of the operational amplifier 2.
  • the output voltage of the operational amplifier 2 is guided to the inverting input terminal by the resistor Rf and the capacitor Cf of the feedback circuit.
  • the voltage at the inverting input terminal and the non-inverting input terminal is controlled to the same potential due to the virtual ground property of the operational amplifier 2.
  • the circuit constants are selected so that the impedance between the capacitor C2 and the variable resistor VR1 is lower than the frequency of the output signal of the sensor unit 1 as an AC component signal. Therefore, the potential of the inverting input terminal is equal to the potential of the other end of the resistor R4 (a terminal opposite to one end connected to the sensor unit 1). That is, since it becomes equal to the potential of the output signal of the sensor unit 1, no current flows through the resistor R4.
  • the resistor R4 having a resistance value of usually about 10 M ohms is very large with an impedance force of several tens of G ohms or more as viewed from the sensor unit 1 regardless of the circuit constants. That is, impedance conversion is performed, and the input impedance of the resistor 4 as a transmission means viewed from the sensor unit 1 is configured to be higher than the output impedance of the sensor unit 1 that is a capacitance detection element. As a result, attenuation of the voltage signal output from the sensor unit 1 is suppressed.
  • a voltage obtained by superimposing the amplified signal voltage of the sensor unit 1 on the bias voltage VI is output from the output terminal of the operational amplifier 2.
  • the combination of capacitor Cf and resistor Rf forms a low-pass filter. Unnecessary high frequency, which is a noise component, is removed by this filter.
  • the impedance of the resistor R4 viewed from the sensor unit 1 indicated by (R3 XR4) ZVR1 can be changed. The output amplitude can be changed.
  • FIG. 2 is a circuit diagram showing a second embodiment of the signal amplifier circuit according to the present invention.
  • This signal amplification circuit also amplifies the output signal from the ECM type sensor unit 1 by the operational amplifier 2.
  • the operational amplifier 2 As shown in the figure, it has an operational amplifier 2 that is AC-coupled by a capacitor C2, and a voltage generation circuit 3 that generates a DC bias voltage VI that serves as a reference for AC coupling.
  • diodes (rectifier elements) Dl and D2 connected in parallel with the opposite directions as forward directions are provided.
  • the minute voltage signal output from the sensor unit 1 serving as a capacitance detection element is superimposed on the bias voltage VI and amplified as an AC component.
  • the operational amplifier 2 is a low current consumption type CMOS operational amplifier.
  • the inverting input terminal ( ⁇ terminal) of the operational amplifier 2 corresponds to the feedback input terminal of the present invention, and the non-inverting input terminal (+ terminal) corresponds to the signal input terminal of the present invention.
  • the diodes Dl and D2 connected in parallel with the opposite directions as the forward directions correspond to the high resistance circuit of the present invention.
  • the voltage generation circuit 3 by the resistor voltage division by the resistors R 1 and R 2 generates a voltage of 1Z2 between the power supply VDD and the ground. This voltage is connected to the non-inverting input terminal (+ terminal) of the operational amplifier 2 through one diode, the diode 1, and becomes a noise voltage V1.
  • the other diode, diode D2 is connected in the opposite direction to diode D1 to prevent overvoltage at the non-inverting input terminal of operational amplifier 2.
  • the diode generally has a forward voltage of about 0.6 to 0.7 V in the forward direction.
  • bias Voltage VI the voltage of VDDZ2 generated by the voltage generation circuit 3 (bias Voltage VI) is applied to the non-inverting input terminal of the operational amplifier 2 as it is. Since the feedback of the output of the operational amplifier 2 is cut off by the capacitor C2, it is only for the inverting input terminal. Therefore, in the DC operation, the operational amplifier 2 acts as a voltage follower, and the bias voltage VI is output. Note that the voltage value of the bias voltage VI is not limited to this example and can be appropriately changed.
  • the output signal from the sensor unit 1 as an oscillating signal is a force sword terminal of the diode D1, an anode terminal of the diode D2, and a non-inverting input of the operational amplifier 2.
  • the operational amplifier 2 has a very high input impedance.
  • the operational amplifier 2 has 1 T ohm.
  • the output voltage from sensor unit 1 is very small, from several mV to several tens of mV, diode Dl, Not only the reverse breakdown voltage of D2 but also the forward voltage of diodes Dl and D2 never exceed.
  • both diodes D1 and D2 are non-conductive and have high impedance.
  • the output voltage of the sensor unit 1 is input to the operational amplifier 2 without being attenuated due to the influence of the input terminal of the operational amplifier 2. It is preferable to select diodes Dl and D2 that have a low inter-terminal capacitance so that the output of sensor unit 1 is not affected.
  • the output voltage of the operational amplifier 2 is led to the inverting input terminal by the resistor Rf and the capacitor Cf of the feedback circuit, and the AC component is led to the ground via the resistor R3.
  • the operational amplifier 2 outputs a voltage that functions as a non-inverting amplifier and superimposes the amplified voltage signal of the sensor unit 1 on the bias voltage VI.
  • the combination of the capacitor Cf and the resistor Rf forms a low-pass filter. Unnecessary high frequency, which is a noise component, is removed by this filter.
  • the capacitor C2 and the resistor R3 are combined with the operational amplifier 2 to form a high-pass filter. Therefore, a circuit constant is selected so that the signal of the sensor unit 1 is not attenuated. Further, if a part of the resistor R 3 is changed to a variable resistor, the resistance value can be changed by operating the variable resistor, and the amplification factor represented by l + RfZR3 can be changed approximately.
  • FIG. 3 is a circuit diagram showing a third embodiment of the signal amplifier circuit according to the present invention.
  • an operational amplifier 2 that is AC-coupled by a capacitor C2 and a voltage generation circuit 3 that generates a DC bias voltage VI that serves as a reference for AC coupling are provided.
  • a high resistance circuit using a high resistance resistor R5 (hereinafter referred to as a resistor R5 as appropriate) is provided as a transmission means for transmitting the bias voltage VI to the operational amplifier 2.
  • the resistor R5 has one end connected to the voltage generation circuit 3 and the other end connected to the sensor 1 and the operational amplifier 2 to constitute a transmission means.
  • Resistor R5 has a resistance value of several OG ohms.
  • the signal amplification circuit amplifies the minute voltage signal output from the sensor unit 1 as the capacitance detection element by superimposing it on the bias voltage VI as an AC component.
  • the operational amplifier 2 is a low current consumption type CMOS operational amplifier.
  • the inverting input terminal ( ⁇ terminal) of the operational amplifier 2 corresponds to the feedback input terminal of the present invention, and the non-inverting input terminal (+ terminal) corresponds to the signal input terminal of the present invention.
  • the voltage generation circuit 3 based on resistance voltage division generates a voltage that is half of the voltage between the power supply VDD and the ground. This voltage is connected to the non-inverting input terminal (+ terminal) of the operational amplifier 2 via the resistor R5 and becomes the bias voltage VI. Since the output feedback of the operational amplifier 2 is cut off by the capacitor C2, it is only for the inverting input terminal. Therefore, in the DC operation, the operational amplifier 2 acts as a voltage follower, and the bias voltage VI is output.
  • the voltage value of the bias voltage VI is not limited to this example and can be modified as appropriate.
  • the output signal from the sensor unit 1 as an AC component signal is input to the other end of the resistor R5 and the non-inverting input terminal of the operational amplifier 2 as shown in FIG.
  • the operational amplifier 2 has a very high input impedance of about 1 T ohm, for example.
  • Resistor R5 has a high resistance value of about several tens of ohms. Accordingly, the input impedance of the transmission means viewed from the sensor unit 1 is also very high.
  • the output voltage of the sensor unit 1 is input to the operational amplifier 2 that is not attenuated by the influence of the input terminal of the operational amplifier 2.
  • the circuit to which the other input terminal of the operational amplifier 2 (non-inverting input terminal in FIG. 3), the output terminal of the sensor unit 1 and the resistor R5 are connected is a high impedance circuit. Circuit. Therefore, even a small leakage current of about several pA can cause a large voltage drop or signal attenuation.
  • the signal amplification circuit is embodied by a printed wiring board or the like. Therefore, when the components are mounted on the board, dust and dirt are attached to the board surface, and they absorb moisture, thereby A leak current may be generated on the surface. Leakage current flows between a low-impedance circuit such as the ground, power supply voltage, and output signal of the operational amplifier, and a high-impedance circuit.
  • a guard ring pattern is provided.
  • the guard ring pattern guards the high-impedance circuit from leakage current that tends to flow between the low-impedance circuit and the high-impedance circuit.
  • This guard ring pattern is connected to the inverting input terminal of the operational amplifier 2.
  • this guard ring pattern is connected to the terminal on the opposite side of the resistor R5 (the terminal on the output side of the voltage generating circuit 3).
  • the guard ring pattern When the guard ring pattern is connected to the wiring pattern of the inverting input terminal (feedback input terminal) of the operational amplifier 2, the operational amplifier 2 is not affected even if the guard ring pattern absorbs the leakage current. In addition, feedback control is performed so that the two input terminals satisfy the virtual ground relationship.
  • the feedback input terminal, the guard ring pattern, and the signal input terminal are kept at the same potential. Therefore, the high impedance circuit and the guard ring pattern are at the same potential, and no leakage current flows between them. As a result, the high impedance circuit is hardly affected by the leakage current.
  • the guard ring pattern is connected to the output wiring pattern of the voltage generation circuit 3. Since the bias voltage VI is transmitted to the high-impedance circuit, almost no current flows through the transmission means (resistor R5). For this reason, there is almost no potential difference before and after the micro voltage signal is superimposed, that is, before and after the resistor R5. The high impedance circuit and the guard ring pattern have almost the same potential. Therefore, in the same way as above, the high impedance circuit is guarded by the influence of leak current by the guard ring pattern. If the voltage generating circuit 3 is a constant voltage circuit, the high impedance circuit and the guard ring pattern can be more stably maintained at the same potential. This is because even if the guard ring pattern absorbs the leakage current, the constant voltage circuit is not affected by this and the bias voltage VI is kept constant. An example in which a guard ring pattern is provided will be described.
  • Figure 4 shows operational amplifier 2, feedback circuit resistor Rf, capacitor Cf, high-resistance resistor R5 as a means for transmitting noise voltage VI to operational amplifier 2, and signal input from sensor unit 1. It is explanatory drawing which shows an electrode pattern and a wiring pattern.
  • the operational amplifier 2 is an 8-pin or 5-pin IC (integrated circuit).
  • an 8-pin surface-mount type IC is illustrated.
  • the electrode patterns al to a8 correspond to the 1st to 8th pins of the operational amplifier 2, respectively.
  • pin 2 is the inverting input terminal
  • pin 3 is the non-inverting input terminal
  • pin 6 is the output terminal.
  • the other terminals are power supply voltage, ground power supply terminal, and unused terminal.
  • the two pairs of electrode patterns cl and c2 and electrode patterns dl and d2 are the feedback circuit capacitor Cf and resistor Rf from the output terminal (pin 6) of the operational amplifier 2 to the inverting input terminal (pin 2). Is an electrode pattern to be mounted.
  • a surface mount component (chip component) is illustrated.
  • the electrode patterns bl and b2 are electrode patterns on which a resistor R5 as a transmission means for transmitting the bias voltage VI to the operational amplifier 2 is mounted.
  • a resistor R5 as a transmission means for transmitting the bias voltage VI to the operational amplifier 2 is mounted.
  • the case of surface mount components (chip components) is illustrated!
  • the electrode patterns el and e2 having through holes are electrode patterns connected to the terminals of the sensor unit 1.
  • the lead terminal of the sensor unit 1 having an outer shape as shown in FIG. 5 is inserted into the through hole and mounted.
  • the electrode pattern el is an electrode pattern that transmits a signal input from the sensor unit 1.
  • the wiring pattern h extends to the electrode patterns c2 and d2.
  • the output signal of the operational amplifier 2 is transmitted from the electrode patterns c2 and d2 to the electrode patterns cl and dl via the capacitor Cf and the resistor Rf, respectively.
  • the electrode patterns cl and dl are transmitted to the inverting input terminal (2-pin) electrode pattern a2 through the wiring pattern i.
  • the feedback circuit is configured as described above.
  • the electrode pattern el and one electrode pattern bl of the resistor R5 are connected to the electrode pattern a3 of the non-inverting input terminal (3-pin) through the wiring pattern f.
  • Wiring pattern f is not Because it is always sensitive signal wiring, it is routed as short as possible as shown in the figure.
  • a guard ring pattern g is provided in the wiring pattern f.
  • a guard ring pattern g surrounding the operational amplifier 2 side terminal of the resistor R5, the signal output unit of the sensor unit 1, and the non-inverting input terminal (3 pin) of the operational amplifier 2 is provided.
  • This guard ring pattern g is connected at the connection point P to the wiring pattern of the inverting input terminal (pin 2). Due to the virtual ground nature of the operational amplifier 2, the inverting input terminal and the non-inverting input terminal are controlled to the same potential. Therefore, the guard ring pattern g and the high impedance circuit connected to the wiring pattern f have the same potential. For this reason, leak current does not flow between both patterns. As a result, the operational amplifier 2 can perform a stable operation without being affected by the leakage current.
  • the wiring pattern of other terminals of the operational amplifier 2, the wiring pattern of other circuits, etc. are omitted.
  • the operational amplifier 2 each resistor, a capacitor, and the like have been described as surface-mounted components, but this does not limit the invention.
  • the wiring pattern is not limited to the illustrated example. Circuit configurations using discrete components and other wiring patterns can be modified as appropriate.
  • An acceleration sensor, a vibration sensor, an acoustic sensor, a microphone, and the like can be configured by including a sensor unit in which an electrostatic capacitance element is configured by an electret capacitor and including the signal amplification circuit of the present invention.
  • FIG. 1 is a circuit diagram showing a first embodiment of a signal amplifier circuit according to the present invention.
  • FIG. 2 is a circuit diagram showing a second embodiment of a signal amplifier circuit according to the present invention.
  • FIG. 3 is a circuit diagram showing a third embodiment of a signal amplifier circuit according to the present invention.
  • FIG. 4 is a wiring pattern diagram showing an example in which a guard ring pattern is provided in the circuit shown in FIG.
  • FIG. 5 is an external view showing an example of a sensor provided with a signal amplifier circuit according to the present invention.
  • ⁇ 6 Cross-sectional view showing a configuration example of a sensor provided with the signal amplification circuit according to the present invention
  • ⁇ 7 Cross-sectional view showing a configuration example of an electrode substrate of a three-axis acceleration sensor provided with the signal amplification circuit according to the present invention

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Amplifiers (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

 静電容量検出素子による検出精度を損なうことなく、小規模な回路構成で低消費電力の信号増幅回路を提供する。  交流結合された増幅器2と、交流結合の基準となる直流のバイアス電圧V1を発生する電圧発生回路3と、バイアス電圧V1を増幅器2へ伝達する伝達手段R4とを有する。静電容量検出素子1が出力する微小電圧信号を交流成分としてバイアス電圧V1に重畳して増幅する。上記構成の信号増幅回路であって、以下の特徴を有する。  静電容量検出素子1から見た伝達手段R4の入力インピーダンスが、静電容量検出素子1の出力インピーダンスよりも高くなるように構成される。

Description

明 細 書
信号増幅回路及びこれを備えた加速度センサ
技術分野
[0001] 本発明は、交流結合された増幅器と、前記交流結合の基準となる直流のバイアス 電圧を発生する電圧発生回路と、前記バイアス電圧を前記増幅器へ伝達する伝達 手段とを備え、静電容量検出素子が出力する微小電圧信号を交流成分として前記 バイアス電圧に重畳して増幅する信号増幅回路に関する。また、前記静電容量素子 をエレクトレットコンデンサ (ElectretCondenser)で構成し、前記信号増幅回路を備え た加速度センサに関する。
背景技術
[0002] 静電容量素子、例えばマイクロホン等に用いられるエレクトレットコンデンサの出力 は、 FET (電界効果トランジスタ)のゲートを OV (zero volt)にバイアスして取り出され ることが多い。このような回路では、 FETのドレインには、平均してゲート一ソース間 電圧 0V時の飽和電流(ドレイン電流)が流れ続ける。この飽和電流は通常 100〜50 A (micro ampere)程度である。このため、エレクトレットコンデンサを用いたマイク 口ホンや、振動センサ、加速度センサ等を、携帯電話や歩数計等、携帯型の電池駆 動の機器に適用した場合、消費電力が大きな問題となる。
[0003] このような課題に対して、例えば特許文献 1には、ドレイン電流をタイミングパルスに 応じて入切する電流制御手段と、このタイミングパルスを発生するパルス発生器とを 有したエレクトレットコンデンサマイクロホンの駆動回路が提案されている。この駆動 回路は、 FETへの電力の供給ラインをタイミングパルスに従って電気的な接続状態と 非接続状態とに切り替える。そして、ドレインに電圧が印加された時に発生するドレイ ン出力電圧を検出し、ドレインへの電圧の印加が絶たれた時にはこのドレイン電圧を レベルホールド回路で保持する。このようにしてタイミングパルスによって量子化され た電圧波形を得ると、必要に応じて増幅回路に帯域制限を加えて、階段状の波形を 連続的な波形へと整形する。 FETには、電圧が印加された時にのみ電流が流れる。 従って、例えば電圧の印加期間が非印加期間の 1Z100であれば、平均電流も 1Z 100となり、消費電流が大幅に削減される。
特許文献 1 :特開 2002— 232997号公報(0014〜0026段落、第 1〜綱
発明の開示
発明が解決しょうとする課題
[0004] しかし、特許文献 1に記載されたように、タイミングパルスによって電源供給を制御し ようとすると、このタイミングパルスを発生するための論理回路やマイクロコンピュータ 等の制御手段を要する。また、電源供給をオン Zオフするためのスイッチング手段も 必要である。また、帯域制限を加えて、量子化されて離散的となった階段状の波形を 連続的な波形に整形することはできるものの、静電容量検出素子によって検出される 静電容量の変化の情報は、電源供給が絶たれている間は捨てられている。その結果 、静電容量検出素子の有する検出精度を駆動回路側で喪失することとなる。例えば 、マイクロホンに適用した場合には、音声信号の音質の低下となり、振動センサやカロ 速度センサの場合には、検出精度を低下させることにもつながる。
[0005] 本願発明の目的は、このような課題に鑑みて、静電容量検出素子による検出精度 を損なうことなぐ小規模な回路構成で低消費電力の信号増幅回路を提供することに ある。
課題を解決するための手段
[0006] 上記目的を達成するための本発明に係る信号増幅回路の特徴構成は、交流結合 された増幅器と、前記交流結合の基準となる直流のバイアス電圧を発生する電圧発 生回路と、前記バイアス電圧を前記増幅器へ伝達する伝達手段とを有し、静電容量 検出素子が出力する微小電圧信号を交流成分として前記バイアス電圧に重畳して 増幅する信号増幅回路であって、以下のように構成される点にある。
即ち、前記静電容量検出素子から見た前記伝達手段の入力インピーダンスが、前 記静電容量検出素子の出力インピーダンスよりも高くなるように構成される点を特徴 とする。
[0007] この特徴構成によれば、静電容量検出素子力ゝらの出力を FET (電界効果トランジス タ)を用いずに取り出して増幅するので、通常 100〜500 /ζ Α程度であるドレイン電 流が流れることがない。従って、低消費電力な信号増幅回路を構成することができる 。また、微小電圧信号を出力する静電容量検出素子力 見た伝達手段の入力インピ 一ダンス力 静電容量検出素子の出力インピーダンスよりも高くなるように構成される 。従って、容量性で出力インピーダンスの高い微小電圧信号の減衰が抑制される。 その結果、検出精度を損なうことなぐ小規模な回路構成で低消費電力の信号増幅 回路が実現される。
[0008] ここで、本発明に係る信号増幅回路は、下記のように構成されることができる。
前記増幅器は、出力端子と、この出力端子力ものフィードバック信号が入力される フィードバック入力端子と、前記微小電圧信号を重畳した前記バイアス電圧が入力さ れる信号入力端子と、を有し、これら 2つの入力端子の間に電位差が生じないように フィードバック制御することによって入力信号を増幅する演算増幅器で構成される。 前記伝達手段は、一端が前記電圧発生回路及び交流結合コンデンサを介して前 記フィードバック入力端子に接続され、他端が前記信号入力端子及び前記静電容 量検出素子の出力端子に接続される抵抗器で構成される。
そして、前記抵抗器は、その両端に電位差が生じないように前記フィードバック制 御に連動して制御されることによって、抵抗値に拘わらず高インピーダンスとなるよう にインピーダンス変換される。
[0009] 演算増幅器は、入力インピーダンスが非常に高い素子であり、消費電流も非常に 少ない。従って、 FETを用いた回路では通常 100〜500 /ζ A程度発生する消費電 流を数 〜数十 Aと非常に少なくすることができる。演算増幅器は、仮想接地 (virt ual short)の性質に基づいて、静電容量検出素子が出力する微小振動信号 (交流成 分)の変化に追従し、 2つの入力端子間に電位差が生じな 、ようにフィードバック制 御する。バイアス電圧を伝達する抵抗器 (伝達回路)は、交流動作において、交流結 合コンデンサを介して演算増幅器の 2つの入力端子間が接続されることになる。しか し、上述したようにこれら入力端子間には電位差は生じない。従って、バイアス電圧を 伝達する抵抗器の両端にも電位差は生じず、この抵抗器には電流が流れない。つま り、伝達回路としての抵抗器は、自身の有する抵抗値に拘わらず、非常に高いインピ 一ダンスを有する回路へとインピーダンス変換される。その結果、静電容量検出素子 力も見た伝達手段の入力インピーダンスが、静電容量検出素子の出力インピーダン スよりも高くなるように構成されるので、微小電圧信号の減衰を抑制することができる
[0010] また、本発明に係る信号増幅回路は下記のように構成されることができる。
前記増幅器は、出力端子と、この出力端子力ものフィードバック信号が入力される フィードバック入力端子と、前記微小電圧信号を重畳した前記バイアス電圧が入力さ れる信号入力端子と、を有し、これら 2つの入力端子の間に電位差が生じないように フィードバック制御することによって入力信号を増幅する演算増幅器で構成される。 前記伝達手段は、一端が前記電圧発生回路に接続され、他端が前記他方の入力 端子及び前記静電容量検出素子の出力端子に接続される高抵抗回路で構成される
[0011] 伝達手段を高抵抗回路で構成すると、特に静電容量検出素子の出力インピーダン スよりも高いインピーダンスを有する高抵抗回路で構成すると、静電容量検出素子が 出力する微小電圧信号の減衰を抑制することができる。つまり、静電容量検出素子 力も見た伝達手段の入力インピーダンスが、静電容量検出素子の出力インピーダン スよりも高くなるように構成されるので、微小電圧信号の減衰を抑制することができる
[0012] ここで、前記高抵抗回路は、 2つの整流素子を互いに逆方向を順方向として並列 接続すること〖こより構成されることができる。
[0013] ダイオードは、逆方向は勿論のこと順方向であっても、端子間に 0. 6〜0. 7V程度 の順方向電圧を有する。従って、例え順方向であっても、この順方向電圧以上の電 位差が端子間に現れない限り、電流が流れない。静電容量検出素子が出力する微 小電圧信号は数 mV〜数十 mVであるので、ダイオードには電流が流れない。従って 、ダイオードを利用して非常に高いインピーダンスを有する高抵抗回路が構成される
[0014] また、前記高抵抗回路は、高抵抗値抵抗器 (High Resistance Resistor)により構成 されることがでさる。
[0015] 従来、数 10Mオーム (Mega ohm)程度までの抵抗器で無ければ小信号回路への 適用は、コスト的、実装スペース的に現実的ではな力つた。しかし、近年、数 G (Giga) 〜数 10Gオームの高抵抗値抵抗器が実用化されてきて ヽる。この高抵抗値抵抗器 を利用すれば、例えば上述したダイオードの並列回路に比べて、小規模な回路を構 成することができる。また、これにより、省スペース化、低コストィ匕が図られる。
[0016] さらに、上記特徴構成に加え、前記演算増幅器の前記フィードバック入力端子と、 前記静電容量検出素子の前記出力端子と、前記伝達手段の前記他端とを接続する 基板上の配線を囲んでガードリングパターンが備えられ、このガードリングパターンが 下記のように接続されることを特徴とすることができる。
即ち、このガードリングパターンと、前記演算増幅器の前記フィードバック入力端子 とが接続される、または、このガードリングパターンと、前記伝達手段の前記一端とが 接続される。
[0017] 本発明に係る信号増幅器回路において、演算増幅器の他方の入力端子と、静電 容量検出素子の出力端子と、伝達手段の他端とが接続される回路は、高インピーダ ンス回路である。従って、数 p (pico) A程度の僅かなリーク電流によっても、大きな電 圧降下を生じたり、信号の減衰を生じたりする場合がある。
本発明の信号増幅回路は、プリント配線基板 (printed-circuit board)などで具現ィ匕 される。従って、基板に部品を実装した状態で、基板表面にちりやほこりが付き、それ らが吸湿することにより、基板表面にリーク電流が流れる。リーク電流は、グラウンドや 電源電圧、演算増幅器の出力信号などの低インピーダンス回路と、高インピーダンス 回路との間に流れる。
上記特徴構成によれば、高インピーダンス回路を囲うように設けられたガードリング パターンが、低インピーダンス回路と高インピーダンス回路との間に流れようとするリ ーク電流をガードする。ガードリングパターンは、演算増幅器の出力信号力 Sフィード ノ ックして入力されるフィードバック入力端子の配線パターンと接続されて 、る。演算 増幅器は、深いフィードバックを掛けることが可能な性質を有している。従って、フィ ードバック入力端子に接続されたガードリングパターンにリーク電流が流れても、この 影響を受けずに 2つの入力端子が仮想接地の関係を満足するようにフィードバック制 御を行う。
これにより、フィードバック入力端子とガードリングパターンと信号入力端子とは同電 位に保たれる。従って、高インピーダンス回路とガードリングパターンとは同電位とな り、この間においてもリーク電流は流れない。その結果、高インピーダンス回路は、リ ーク電流の影響をほとんど受けることがなくなる。
また、ガードリングパターンが、バイアス電圧が入力される伝達手段の一端の配線 ノターンと接続される場合も同様に考えることができる。バイアス電圧が伝達される先 は高インピーダンス回路であるから、伝達手段に電流はほとんど流れない。従って、 微小電圧信号が重畳される前後において、つまり伝達手段の前後において、電位差 は微小であるため、高インピーダンス回路とガードリングパターンとは、ほぼ同電位と 考えてよい。従って、同様に高インピーダンス回路とガードリングパターンとの間にお けるリーク電流の発生が抑制される。
[0018] また、前記静電容量検出素子はエレクトレットコンデンサで構成され、上記各構成 の本発明に係る信号増幅回路が備えられて、加速度センサを構成することができる。
[0019] 小型で低消費電力の加速度センサを得ようとする場合、エレクトレットコンデンサ型( ECM型)の構成を採ると好ましい。即ち、静電容量の検出に際して、大きなバイアス 電圧を印加することなぐエレクトレットコンデンサを用いて良好に静電容量の変化を 検出することができる。また、小型で低消費電力の加速度センサは、電池駆動の機 器に備えられることが多ぐ本発明に係る各構成の信号増幅回路を備えて加速度セ ンサを構成すると、静電容量検出素子 (ECM)による検出精度を損なうことなぐ小規 模な回路構成で低消費電力の加速度センサを得ることができる。
発明を実施するための最良の形態
[0020] 以下、本発明の実施形態を図面に基づいて説明する。
本発明に係る信号増幅回路は、マイクロホン、振動センサ、加速度センサ等、微小 電圧信号を出力する静電容量検出素子を備えたシステム、装置、回路等に適用可 能である。以下に説明する実施形態では、微小電圧信号を出力する静電容量検出 素子として、エレクトレットコンデンサマイクロホン型(ECM型)のセンサを用いて 、る
[0021] このセンサは、例えば、図 5に示すように、円筒形の筐体に 2本の端子を有して構成 される。図 6に示すように、筐体の中に、可動電極として機能する振動板 10又は振動 膜等と、固定電極 14として機能する電極基板 11等とを有する。そして、振動板 10と 固定電極 14との少なくとも何れか一方にエレクトレット層 12を有する。スぺーサ 13に よって所定の間隔を有した両電極間の静電容量の変化は、微小電圧信号として出力 される。尚、図 6に示した例では、固定電極 14はエレクトレット層 12を均一に形成す るために、電極基板 11に対して突出及び陥没することなぐ電極基板 11に埋め込む 形で形成されている。
振動板 10に重り 15を有するなどして、センサ外部からの衝撃や振動を加振できる ようにすれば、振動を検出する振動センサや加速度センサとすることができる。また、 筐体に音孔を有して空気の振動によって振動膜を振動させるようにすれば、音響信 号を検出する音響センサ (マイクロホン)とすることができる。
[0022] また、振動センサと同様の構成にて、図 7に示すように、電極基板 11に設ける固定 電極 14を分割形成すると、振動板 10の変位の方向も検出できる。このようにすると、 3軸の加速度センサとして構成される。図 7中において、電極 14aと 14bとは、夫々い わゆる XY軸方向の加速度を検出する固定電極である。中心部の電極 14cは、この X Y方向に直行する、 ヽゎゆる Z軸方向の加速度を検出する固定電極である。
[0023] 本発明は、このような様々なセンサ力もの出力を増幅する信号増幅回路に適用す ることのできるものである。特に、 3軸加速度センサに本発明の信号増幅回路を適用 した場合、 3軸それぞれに対して必要となる増幅回路を、検出精度を損なうことなぐ 小規模な回路構成且つ低消費電力で構成できる。
[0024] 〔第一実施形態〕
図 1は、本発明に係る信号増幅回路の第一実施形態を示す回路図である。この信 号増幅回路は、静電容量検出素子としての ECM型のセンサ部 1からの出力信号を 演算増幅器 2で増幅するものである。図に示すように、コンデンサ C2によって交流結 合された演算増幅器 2と、交流結合の基準となる直流のバイアス電圧 VIを発生する 電圧発生回路 3と、バイアス電圧 VIを演算増幅器 2へ伝達する伝達手段としての抵 抗器 R4とが備えられている。微小電圧信号は、交流成分としてバイアス電圧 VIに重 畳され、増幅される。尚、本実施形態において演算増幅器 2は低消費電流型の CM OSオペアンプである。 [0025] ここで、センサ部 1は静電容量性の素子であり、その出力は微小電圧出力である。 即ち、大きな電流を出力することはできず、数 Gオーム程度の大きな内部抵抗を有す る高インピーダンスの出力である。この出力を低インピーダンスの回路と接続すると、 高インピーダンスと、低インピーダンスとの抵抗分圧によって、センサ部 1の出力電圧 が減衰してしまうことになる。これを抑制するため、インピーダンス変換を行って、セン サ部 1から見た抵抗器 R4 (伝達手段)の入力インピーダンスが、センサ部 1 (静電容 量検出素子)の出力インピーダンスよりも高くなるように構成されて 、る。具体的な回 路の動作については、直流動作と交流動作とに分けて以下に説明する。尚、演算増 幅器 2の反転入力端子(一端子)は、本発明のフィードバック入力端子に相当し、非 反転入力端子(+端子)は、本発明の信号入力端子に相当する。
[0026] 〔直流動作〕
初めに、本実施形態に係る信号増幅回路の直流動作について説明する。抵抗器 R 1と R2との抵抗分圧による電圧発生回路 3によって、電源 VDD—グラウンド間の電 圧の 1Z2のバイアス電圧 VIが生成されている。このバイアス電圧 VIは直流成分の 信号であるので、演算増幅器 2の反転入力端子(一端子)への直接の入力は、コンデ ンサ C2によって遮断されている。一方、非反転入力端子(+端子)へは、抵抗器 R3 及び R4を経由してノィァス電圧 VIが印加されている。演算増幅器 2の入力インピー ダンスは非常に高いので、抵抗器 R3及び R4にはほとんど電流は流れず、抵抗分圧 されたバイアス電圧 VIが非反転入力端子に印加される。直流動作において、演算 増幅器 2の出力のフィードバックは、上記と同様にコンデンサ C2によって遮断される ので、出力端子力もフィードバックされる電圧は、反転入力端子のみへの入力となる 。従って、直流動作としては、演算増幅器 2はボルテージフォロワ(voltage follower)と して作用し、バイアス電圧 V1 =VDDZ2が、出力端子から出力される。尚、バイアス 電圧 VIの電圧値は本例に限定されるものでななぐ適宜改変可能である。
[0027] 〔交流動作〕
振動する信号、即ち交流成分の信号としてのセンサ部 1からの出力信号は、図 1に 示すように抵抗器 R4の一端と、演算増幅器 2の非反転入力端子とに入力される。演 算増幅器 2は、例えば、入力インピーダンスが数百 G〜数 T(Tera)オームとされるよう に非常に高い入力インピーダンスを有している。これは、上述したセンサ部 1の出力 インピーダンス (数 Gオーム)よりも充分大きいため、センサ部 1の出力電圧は演算増 幅器 2の入力端子の影響で減衰することなく入力される。
[0028] 演算増幅器 2の出力電圧は、フィードバック回路の抵抗器 Rf及びコンデンサ Cfによ つて反転入力端子へ導かれる。演算増幅器 2の有する仮想接地の性質によって、反 転入力端子と非反転入力端子との電圧は同電位に制御される。交流成分の信号とし てのセンサ部 1の出力信号の周波数にぉ 、て、コンデンサ C2と可変抵抗器 VR1との インピーダンスは、低くなるように回路定数が選択されている。従って、反転入力端子 の電位と、抵抗器 R4の他端 (センサ部 1と接続される一端とは反対の端子)の電位と は等しくなる。即ち、センサ部 1の出力信号の電位と等しくなるので、抵抗器 R4には 電流が流れない。
[0029] その結果、例えば、通常 10Mオーム程度の抵抗値である抵抗器 R4は、その回路 定数に拘わらず、センサ部 1から見たインピーダンス力 数十 Gオーム以上の非常に 大きなものとなる。即ち、インピーダンス変換が行われ、センサ部 1から見た伝達手段 としての抵抗器 4の入力インピーダンスは、静電容量検出素子であるセンサ部 1の出 力インピーダンスよりも高くなるように構成される。その結果、センサ部 1から出力され る電圧信号の減衰が抑制される。
[0030] 尚、演算増幅器 2の出力端子からは、バイアス電圧 VIに、増幅したセンサ部 1の信 号電圧を重畳した電圧が出力される。また、コンデンサ Cfと抵抗器 Rfとは、その組み 合わせでローパスフィルタを構成している。ノイズ成分である不要な高周波は、このフ ィルタで除去される。また、可変抵抗器 VR1を操作して抵抗値を変更することにより、 おおよそ、(R3 XR4) ZVR1で示されるセンサ部 1から見た抵抗器 R4のインピーダ ンスを変えることができ、演算増幅器 2の出力振幅を変更することができる。
[0031] 〔第二実施形態〕
図 2は、本発明に係る信号増幅回路の第二実施形態を示す回路図である。この信 号増幅回路も ECM型のセンサ部 1からの出力信号を演算増幅器 2で増幅するもの である。図に示すように、コンデンサ C2によって交流結合された演算増幅器 2と、交 流結合の基準となる直流のバイアス電圧 VIを発生する電圧発生回路 3とを有する。 さらに、バイアス電圧 VIを演算増幅器 2へ伝達する伝達手段として、互いに逆方向 を順方向として並列接続されたダイオード (整流素子) Dl、 D2とを有する。静電容量 検出素子としてのセンサ部 1が出力する微小電圧信号は、交流成分としてバイアス電 圧 VIに重畳され増幅される。尚、本実施形態においても演算増幅器 2は低消費電 流型の CMOSオペアンプである。演算増幅器 2の反転入力端子(—端子)は、本発 明のフィードバック入力端子に相当し、非反転入力端子(+端子)は、本発明の信号 入力端子に相当する。また、互いに逆方向を順方向として並列接続されたダイオード Dl、 D2は、本発明の高抵抗回路に相当する。
[0032] 〔直流動作〕
初めに、本実施形態に係る信号増幅回路の直流動作について説明する。抵抗器 R 1と R2とによる抵抗分圧による電圧発生回路 3によって、電源 VDD -グラウンド間の 電圧の 1Z2の電圧が生成されている。この電圧は、一方のダイオード、ダイオード 1を介して、演算増幅器 2の非反転入力端子(+端子)に接続されて、ノィァス電圧 V 1となる。尚、他方のダイオード、ダイオード D2は演算増幅器 2の非反転入力端子の 過電圧防止のため、ダイオード D1とは逆方向に接続されている。また、ダイオードは 一般に順方向へ約 0. 6〜0. 7Vの順方向電圧を有する力 ダイオード D1にはほと んど電流が流れないため、電圧発生回路 3によって生成した VDDZ2の電圧 (バイ ァス電圧 VI)は、そのまま演算増幅器 2の非反転入力端子に印加される。演算増幅 器 2の出力のフィードバックは、コンデンサ C2によって遮断されるので、反転入力端 子のみへのものとなる。従って、直流動作としては、演算増幅器 2はボルテージフォロ ヮとして作用し、バイアス電圧 VIが、出力される。尚、バイアス電圧 VIの電圧値は、 本例に限定されず適宜改変可能である。
[0033] 〔交流動作〕
振動する信号、即ち交流成分の信号としてのセンサ部 1からの出力信号は、図 2に 示すようにダイオード D1の力ソード端子と、ダイオード D2のアノード端子と、演算増 幅器 2の非反転入力端子とに入力される。既に述べたように演算増幅器 2は、非常に 高 、入力インピーダンスを有しており、例えば本実施形態のものは 1Tオームである。 また、センサ部 1からの出力電圧は数 mV〜数十 mVと微小なため、ダイオード Dl、 D2の逆降伏電圧はおろか、ダイオード Dl、 D2の順方向電圧さえも超えることはな い。従って、ダイオード D1及び D2は共に非導通であり、高インピーダンスとなる。こう して、センサ部 1の出力電圧は演算増幅器 2の入力端子の影響で減衰することなぐ 演算増幅器 2へ入力される。尚、ダイオード Dl、 D2は、センサ部 1の出力に影響を 与えな 、ように、共に端子間静電容量が小さ 、ものを選定することが好ま 、。
[0034] 演算増幅器 2の出力電圧は、フィードバック回路の抵抗器 Rf及びコンデンサ Cfによ つて反転入力端子へ導かれ、交流成分は抵抗器 R3を介して、グラウンドへと導かれ る。そして、非反転増幅器として機能し、バイアス電圧 VIに増幅したセンサ部 1の電 圧信号を重畳した電圧が演算増幅器 2から出力される。
[0035] また、コンデンサ Cfと抵抗器 Rfとは、その組み合わせでローノ スフィルタを構成す る。ノイズ成分である不要な高周波は、このフィルタで除去される。一方、コンデンサ C2と抵抗器 R3とは演算増幅器 2との組み合わせで、ハイパスフィルタの構成となる。 従って、センサ部 1の信号が減衰しないような回路定数が選定される。また、抵抗器 R 3の一部を可変抵抗器に変更すると、この可変抵抗器の操作により抵抗値を変更す ることができ、おおよそ、 l +RfZR3で示される増幅率を変えることができる。
[0036] 〔第三実施形態〕
図 3は、本発明に係る信号増幅回路の第三実施形態を示す回路図である。第二実 施形態と同様に、コンデンサ C2によって交流結合された演算増幅器 2と、交流結合 の基準となる直流のバイアス電圧 VIを発生する電圧発生回路 3と、が備えられて ヽ る。本第三実施形態では、バイアス電圧 VIを演算増幅器 2へ伝達する伝達手段とし て、高抵抗値抵抗器 R5 (以下、適宜抵抗器 R5と称す。)を用いた高抵抗回路が備え られている。抵抗器 R5は、一端が電圧発生回路 3に接続され、他端がセンサ 1と演 算増幅器 2とに接続されることによって、伝達手段を構成している。抵抗器 R5は、数 1 OGオームの抵抗値を有する。信号増幅回路は、静電容量検出素子としてのセンサ 部 1が出力する微小電圧信号を交流成分としてバイアス電圧 VIに重畳して増幅する 。尚、本実施形態においても演算増幅器 2は低消費電流型の CMOSオペアンプで ある。演算増幅器 2の反転入力端子(—端子)は、本発明のフィードバック入力端子 に相当し、非反転入力端子(+端子)は、本発明の信号入力端子に相当する。 [0037] 〔直流動作〕
第二実施形態と同様に、抵抗分圧による電圧発生回路 3によって、電源 VDD—グ ラウンド間の電圧の 1/2の電圧が生成されている。この電圧は、抵抗器 R5を介して 、演算増幅器 2の非反転入力端子(+端子)に接続されて、バイアス電圧 VIとなる。 演算増幅器 2の出力のフィードバックは、コンデンサ C2によって遮断されるので、反 転入力端子のみへのものとなる。従って、直流動作としては、演算増幅器 2はボルテ 一ジフォロワとして作用し、バイアス電圧 VIが、出力される。バイアス電圧 VIの電圧 値は、本例に限定されず適宜改変可能である。
[0038] 〔交流動作〕
交流成分の信号としてのセンサ部 1からの出力信号は、図 3に示すように抵抗器 R5 の他端と、演算増幅器 2の非反転入力端子とに入力される。既に述べたように演算増 幅器 2は、例えば 1Tオーム程度の非常に高い入力インピーダンスを有している。また 、抵抗器 R5は、数 10Gオーム程度の高抵抗値を有している。従って、同様にセンサ 部 1から見た伝達手段の入力インピーダンスも同様に非常に高い。こうして、センサ 部 1の出力電圧は演算増幅器 2の入力端子の影響で減衰することなぐ演算増幅器 2へ入力される。
従来、数 10Mオーム程度までの抵抗器で無ければ小信号回路への適用は、コスト 的、実装スペース的に現実的ではな力つた。しかし、近年、数 G〜数 10Gオームの高 抵抗値抵抗器が実用化されてきている。この高抵抗値抵抗器を利用すれば、例えば 上述したダイオードの並列回路に比べて、小規模な回路を構成することができる。ま た、これにより、省スペース化、低コストィ匕が図られる。
[0039] 〔リーク電流対策〕
図 3に示した信号増幅器回路において、演算増幅器 2の他方の入力端子(図 3の 非反転入力端子)と、センサ部 1の出力端子と、抵抗器 R5とが接続される回路は、高 インピーダンス回路である。従って、数 pA程度の僅かなリーク電流によっても、大きな 電圧降下を生じたり、信号の減衰を生じたりする場合がある。
信号増幅回路は、プリント配線基板などで具現化される。従って、基板に部品を実 装した状態で、基板表面にちりやほこりが付き、それらが吸湿することにより、基板表 面にリーク電流を発生する場合がある。リーク電流は、グラウンドや電源電圧、演算増 幅器の出力信号などの低インピーダンス回路と、高インピーダンス回路との間に流れ る。
[0040] そこで、リーク電流対策として、図 3に示した回路における演算増幅器 2の非反転入 力端子と、センサ部 1子の出力端子と、抵抗器 R5とが接続される基板上の配線を囲 んでガードリングパターンが備えられる。ガードリングパターンは、低インピーダンス回 路と高インピーダンス回路との間に流れようとするリーク電流から高インピーダンス回 路をガードする。そして、このガードリングパターンは、演算増幅器 2の反転入力端子 と接続される。または、このガードリングパターンは、抵抗器 R5の上記と反対側の端 子 (電圧発生回路 3の出力側の端子)と接続される。
[0041] ガードリングパターンが、演算増幅器 2の反転入力端子 (フィードバック入力端子) の配線パターンと接続される場合、ガードリングパターンがリーク電流を吸収しても、 演算増幅器 2はこの影響を受けずに 2つの入力端子が仮想接地の関係を満足するよ うにフィードバック制御を行う。
これにより、フィードバック入力端子とガードリングパターンと信号入力端子とは同電 位に保たれる。従って、高インピーダンス回路とガードリングパターンとは同電位とな り、この間においてリーク電流は流れない。その結果、高インピーダンス回路は、リー ク電流の影響をほとんど受けることがなくなる。
[0042] また、ガードリングパターンが、電圧発生回路 3の出力の配線パターンと接続される 場合も同様に考えることができる。バイアス電圧 VIが伝達される先は高インピーダン ス回路であるから、伝達手段 (抵抗器 R5)に電流はほとんど流れない。このため、微 小電圧信号が重畳される前後において、つまり抵抗器 R5の前後において、ほとんど 電位差は生じない。高インピーダンス回路とガードリングパターンとは、ほぼ同電位と なる。従って、上記と同様に高インピーダンス回路は、ガードリングパターンによってリ ーク電流の影響力 ガードされる。電圧発生回路 3が、定電圧回路であれば、さらに 安定して高インピーダンス回路とガードリングパターンとを同電位に保つことができる 。ガードリングパターンがリーク電流を吸収しても、定電圧回路がこの影響を受けずに バイアス電圧 VIを一定に保つからである。 [0043] ガードリングパターンを設ける例を説明する。
図 4は、演算増幅器 2と、フィードバック回路の抵抗器 Rf、コンデンサ Cfと、ノ ィァス 電圧 VIを演算増幅器 2へ伝達する伝達手段としての高抵抗値抵抗器 R5と、センサ 部 1からの信号入力との電極パターン、配線パターンを示す説明図である。
[0044] ここで、演算増幅器 2は、 8ピン又は 5ピンの IC (integrated circuit)であり、本例では 8ピンの表面実装タイプの ICの場合を図示している。電極パターン al〜a8は、演算 増幅器 2の 1ピン〜 8ピンにそれぞれ対応する。演算増幅器 2の 2ピンは反転入力端 子、 3ピンは非反転入力端子、 6ピンは出力端子である。他の端子は、電源電圧及び グラウンドの電源端子、未使用端子である。
[0045] 電極パターン cl及び c2、電極パターン dl及び d2の 2組は、演算増幅器 2の出力 端子 (6ピン)から、反転入力端子(2ピン)へのフィードバック回路のコンデンサ Cf、抵 抗器 Rfが実装される電極パターンである。本例では、表面実装部品(チップ部品)の 場合を図示している。
電極パターン bl及び b2は、バイアス電圧 VIを演算増幅器 2へ伝達する伝達手段 としての抵抗器 R5が実装される電極パターンである。本例では、表面実装部品(チッ プ部品)の場合を図示して!/、る。
[0046] スルーホールを有する電極パターン el及び e2は、センサ部 1の端子に接続される 電極パターンである。図 5に示すような外形形状を有するセンサ部 1のリード端子が、 スルーホールに挿入されて実装される。電極パターン elは、センサ部 1からの信号入 力を伝達する電極パターンである。
[0047] 演算増幅器 2の出力端子に対応する電極パターン a6からは、配線パターン hが電 極パターン c2及び d2へと延出されている。そして、演算増幅器 2の出力信号は、電 極パターン c2、 d2からコンデンサ Cf、抵抗器 Rfをそれぞれ介して、電極パターン cl 、 dlへ伝達される。電極パターン cl、 dlからは、配線パターン iを介して、反転入力 端子(2ピン)の電極パターン a2へと伝達される。以上により、フィードバック回路が構 成される。
[0048] 電極パターン elと、抵抗器 R5の一方の電極パターン blとは、配線パターン fを介し て、非反転入力端子(3ピン)の電極パターン a3と接続される。配線パターン fは、非 常にセンシティブ (sensitive)な信号配線であるので、図に示すように可能な限り、短 い距離で配線される。
[0049] さらに、配線パターン fには、図に示すように、ガードリングパターン gが設けられる。
つまり、抵抗器 R5の演算増幅器 2側の端子、センサ部 1の信号出力部、演算増幅器 2の非反転入力端子(3ピン)を囲うガードリングパターン gが設けられる。
[0050] このガードリングパターン gは、接続点 Pにおいて、反転入力端子(2ピン)の配線パ ターンに接続される。演算増幅器 2の仮想接地の性質により、反転入力端子と非反 転入力端子とは同電位に制御される。従って、ガードリングパターン gと、配線パター ン fに接続される高インピーダンス回路とは同電位となる。このため、両パターン間にリ ーク電流が流れることはない。その結果、演算増幅器 2はリーク電流に影響されること なぐ安定した動作を行うことができる。
[0051] 尚、図示、及び説明を容易にするため、演算増幅器 2の他の端子の配線パターン、 他の回路の配線パターンなどは省略している。また、本例では、演算増幅器 2、各抵 抗器、コンデンサ等を表面実装部品として、説明したが、これは発明を限定するもの ではない。勿論、配線パターンも図示した例に限定されるものではない。ディスクリー ト部品を用いた回路構成や、他の配線パターンなど、適宜改変可能である。
[0052] 以上、説明したように本発明によって、静電容量検出素子による検出精度を損なう ことなぐ小規模な回路構成で低消費電力の信号増幅回路を提供することができる。 産業上の利用可能性
[0053] 静電容量素子をエレクトレットコンデンサで構成したセンサ部を有し、本発明の信号 増幅回路を備えて、加速度センサ、振動センサ、音響センサ、マイクロホン等を構成 することができる。
図面の簡単な説明
[0054] [図 1]本発明に係る信号増幅回路の第一実施形態を示す回路図
[図 2]本発明に係る信号増幅回路の第二実施形態を示す回路図
[図 3]本発明に係る信号増幅回路の第三実施形態を示す回路図
[図 4]図 3に示す回路にガードリングパターンを備える例を示す配線パターン図
[図 5]本発明に係る信号増幅回路が備えられるセンサの一例を示す外形図 圆 6]本発明に係る信号増幅回路が備えられるセンサの構成例を示す断面図 圆 7]本発明に係る信号増幅回路が備えられる 3軸加速度センサの電極基板の構成 例を示す断面図
符号の説明
1 センサ部 (静電容量検出素子)
2 演算増幅器 (増幅器)
3 電圧発生回路
R4 抵抗器 (伝達手段)
VI バイアス電圧

Claims

請求の範囲
[1] 交流結合された増幅器と、前記交流結合の基準となる直流のバイアス電圧を発生 する電圧発生回路と、前記バイアス電圧を前記増幅器へ伝達する伝達手段とを有し 静電容量検出素子が出力する微小電圧信号を交流成分として前記バイアス電圧 に重畳して増幅する信号増幅回路であって、
前記静電容量検出素子から見た前記伝達手段の入力インピーダンスが、前記静電 容量検出素子の出力インピーダンスよりも高くなるように構成される信号増幅回路。
[2] 前記増幅器は、出力端子と、この出力端子力ものフィードバック信号が入力される フィードバック入力端子と、前記微小電圧信号を重畳した前記バイアス電圧が入力さ れる信号入力端子と、を有し、これら 2つの入力端子の間に電位差が生じないように フィードバック制御することによって入力信号を増幅する演算増幅器であり、 前記伝達手段は、一端が前記電圧発生回路に接続されると共に交流結合コンデン サを介して前記一方の入力端子に接続され、他端が前記信号入力端子及び前記静 電容量検出素子の出力端子に接続される抵抗器で構成され、
前記抵抗器は、その両端に電位差が生じな 、ように前記フィードバック制御に連動 して制御されることによって、抵抗値に拘わらず高インピーダンスとなるようにインピー ダンス変換される請求項 1に記載の信号増幅回路。
[3] 前記増幅器は、出力端子と、この出力端子力ものフィードバック信号が入力される フィードバック入力端子と、前記微小電圧信号を重畳した前記バイアス電圧が入力さ れる信号入力端子と、を有し、これら 2つの入力端子の間に電位差が生じないように フィードバック制御することによって入力信号を増幅する演算増幅器であり、 前記伝達手段は、一端が前記電圧発生回路に接続され、他端が前記フィードバッ ク入力端子及び前記静電容量検出素子の出力端子に接続される高抵抗回路である 請求項 1記載の信号増幅回路。
[4] 前記高抵抗回路は、 2つの整流素子を互いに逆方向を順方向として並列接続する ことにより構成される請求項 3に記載の信号増幅回路。
[5] 前記高抵抗回路は、高抵抗値抵抗器により構成される請求項 3に記載の信号増幅 回路。
[6] 前記演算増幅器の前記信号入力端子と、前記静電容量検出素子の前記出力端子 と、前記伝達手段の前記他端とを接続する基板上の配線を囲んでガードリングバタ ーンが備えられ、このガードリングパターンと前記演算増幅器の前記フィードバック入 力端子とが接続される請求項 2〜5の何れか一項に記載の信号増幅回路。
[7] 前記演算増幅器の前記信号入力端子と、前記静電容量検出素子の前記出力端子 と、前記伝達手段の前記他端とを接続する基板上の配線を囲んでガードリングバタ ーンが備えられ、このガードリングパターンと前記伝達手段の前記一端とが接続され る請求項 2〜5の何れか一項に記載の信号増幅回路。
[8] 前記静電容量検出素子はエレクトレットコンデンサで構成され、請求項 1〜5の何れ か一項に記載の信号増幅回路が備えられる加速度センサ。
PCT/JP2005/016940 2004-09-24 2005-09-14 信号増幅回路及びこれを備えた加速度センサ WO2006033269A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP05783231A EP1802164A1 (en) 2004-09-24 2005-09-14 Signal amplifying circuit and acceleration sensor having the same
JP2006536351A JPWO2006033269A1 (ja) 2004-09-24 2005-09-14 信号増幅回路及びこれを備えた加速度センサ
US11/663,565 US20080190203A1 (en) 2004-09-24 2005-09-14 Signal Amplifying Circuit and Acceleration Sensor Having the Same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-277901 2004-09-24
JP2004277901 2004-09-24

Publications (1)

Publication Number Publication Date
WO2006033269A1 true WO2006033269A1 (ja) 2006-03-30

Family

ID=36090032

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/016940 WO2006033269A1 (ja) 2004-09-24 2005-09-14 信号増幅回路及びこれを備えた加速度センサ

Country Status (6)

Country Link
US (1) US20080190203A1 (ja)
EP (1) EP1802164A1 (ja)
JP (1) JPWO2006033269A1 (ja)
KR (1) KR20070055516A (ja)
TW (1) TW200614846A (ja)
WO (1) WO2006033269A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008053857A1 (fr) * 2006-10-31 2008-05-08 Panasonic Corporation Dispositif d'amplification
JP2008153981A (ja) * 2006-12-18 2008-07-03 Sanyo Electric Co Ltd 静電容量変化検出回路及びコンデンサマイクロホン装置
WO2008080683A2 (de) * 2006-12-27 2008-07-10 Robert Bosch Gmbh Mehrachsiger mikromechanischer beschleunigungssensor
JP2010226692A (ja) * 2009-02-26 2010-10-07 Oki Semiconductor Co Ltd 出力回路及び表示装置の駆動回路
WO2012039074A1 (ja) * 2010-09-22 2012-03-29 パナソニック株式会社 センサ
US8401208B2 (en) 2007-11-14 2013-03-19 Infineon Technologies Ag Anti-shock methods for processing capacitive sensor signals

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1988366A1 (en) * 2007-04-30 2008-11-05 STMicroelectronics S.r.l. Readout-interface circuit for a capacitive microelectromechanical sensor, and corresponding sensor
AU2008267762B2 (en) * 2007-06-22 2014-01-16 Wenco International Mining Systems Limited Scalp potential measuring method and apparatus
IT1396063B1 (it) * 2009-03-31 2012-11-09 St Microelectronics Rousset Circuito di polarizzazione per un trasduttore acustico microelettromeccanico e relativo metodo di polarizzazione
US9057754B2 (en) * 2010-03-04 2015-06-16 SeeScan, Inc. Economical magnetic locator apparatus and method
KR100985479B1 (ko) * 2010-03-09 2010-10-05 (주)제이와이테크놀로지 가속도 센서를 이용한 각도 측정 장치 및 방법
JP2013122380A (ja) * 2011-12-09 2013-06-20 Seiko Instruments Inc 加速度信号処理装置
US9800214B2 (en) * 2015-03-30 2017-10-24 Qualcomm Incorporated Power supply rejection rate through noise cancellation in an audio amplifier loop
CN111800717A (zh) * 2019-06-12 2020-10-20 深圳市豪恩声学股份有限公司 一种抗射频干扰电路及驻极体麦克风
CN111380605B (zh) * 2020-05-19 2024-07-23 中国工程物理研究院总体工程研究所 一种基于iepe适调器测量振动速度的传感器信号调理电路

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05291877A (ja) * 1992-04-07 1993-11-05 Audio Technica Corp 変位比例型変換器の前置減衰器
JP2001102875A (ja) * 1999-10-01 2001-04-13 Hosiden Corp 半導体増幅回路及び半導体エレクトレットコンデンサマイクロホン
JP2002232997A (ja) * 2001-01-31 2002-08-16 Rhythm Watch Co Ltd エレクトレットコンデンサマイクの駆動回路
JP2003185688A (ja) * 2001-09-06 2003-07-03 Sumitomo Metal Ind Ltd 静電容量検出回路、静電容量検出装置及びマイクロホン装置
JP2004007481A (ja) * 2002-03-29 2004-01-08 Sumitomo Metal Ind Ltd 静電容量の検出回路及び検出方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3705842B2 (ja) * 1994-08-04 2005-10-12 株式会社ルネサステクノロジ 半導体装置
US6204715B1 (en) * 1999-02-26 2001-03-20 General Motors Corporation Signal amplifying circuit
TWI221195B (en) * 2001-09-06 2004-09-21 Tokyo Electron Ltd Electrostatic capacitance measuring circuit, electrostatic capacitance measuring instrument, and microphone device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05291877A (ja) * 1992-04-07 1993-11-05 Audio Technica Corp 変位比例型変換器の前置減衰器
JP2001102875A (ja) * 1999-10-01 2001-04-13 Hosiden Corp 半導体増幅回路及び半導体エレクトレットコンデンサマイクロホン
JP2002232997A (ja) * 2001-01-31 2002-08-16 Rhythm Watch Co Ltd エレクトレットコンデンサマイクの駆動回路
JP2003185688A (ja) * 2001-09-06 2003-07-03 Sumitomo Metal Ind Ltd 静電容量検出回路、静電容量検出装置及びマイクロホン装置
JP2004007481A (ja) * 2002-03-29 2004-01-08 Sumitomo Metal Ind Ltd 静電容量の検出回路及び検出方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008053857A1 (fr) * 2006-10-31 2008-05-08 Panasonic Corporation Dispositif d'amplification
US7924090B2 (en) 2006-10-31 2011-04-12 Panasonic Corporation Amplifying device
JP2008153981A (ja) * 2006-12-18 2008-07-03 Sanyo Electric Co Ltd 静電容量変化検出回路及びコンデンサマイクロホン装置
WO2008080683A2 (de) * 2006-12-27 2008-07-10 Robert Bosch Gmbh Mehrachsiger mikromechanischer beschleunigungssensor
WO2008080683A3 (de) * 2006-12-27 2008-08-21 Bosch Gmbh Robert Mehrachsiger mikromechanischer beschleunigungssensor
US8429971B2 (en) 2006-12-27 2013-04-30 Robert Bosch Gmbh Multiaxial micromechanical acceleration sensor
US8401208B2 (en) 2007-11-14 2013-03-19 Infineon Technologies Ag Anti-shock methods for processing capacitive sensor signals
CN103200475B (zh) * 2007-11-14 2016-04-27 英飞凌科技股份有限公司 电子电路和电子器件
JP2010226692A (ja) * 2009-02-26 2010-10-07 Oki Semiconductor Co Ltd 出力回路及び表示装置の駆動回路
WO2012039074A1 (ja) * 2010-09-22 2012-03-29 パナソニック株式会社 センサ

Also Published As

Publication number Publication date
JPWO2006033269A1 (ja) 2008-07-31
KR20070055516A (ko) 2007-05-30
EP1802164A1 (en) 2007-06-27
US20080190203A1 (en) 2008-08-14
TW200614846A (en) 2006-05-01

Similar Documents

Publication Publication Date Title
WO2006033269A1 (ja) 信号増幅回路及びこれを備えた加速度センサ
KR101524900B1 (ko) 집적된 자체 테스트 회로를 구비하는 마이크 어셈블리
JP5302867B2 (ja) マイクロホン
JP2009537817A (ja) 静電容量memsセンサデバイス
JP2010245729A (ja) コンデンサマイクの増幅回路
TWI262033B (en) SMD type condenser microphone
JP4959370B2 (ja) 静電容量変化検出回路及び半導体装置
US10582309B2 (en) MEMS transducer amplifiers
CN104581587B (zh) 用于换能器偏置和震动保护的系统和方法
KR101601449B1 (ko) 마이크로폰 증폭기용 시스템 및 방법
US20100177913A1 (en) Microphone preamplifier circuit and voice sensing devices
JP5254251B2 (ja) トランシーバ等の通信機のスピーカ付ハンドマイクにおける音声入出力自動切替回路
US8750537B2 (en) Differential microphone circuit
US20120140956A1 (en) Differential microphone circuit
US9794665B2 (en) System and method for a transducer interface
JP6604439B2 (ja) Mems容量センサ
KR20240059955A (ko) 로봇에 적용된 센서의 미소 신호 측정 시스템
US11897762B2 (en) Digital microphone with over-voltage protection
JP2005323288A (ja) デジタルマイクロホン
EP2461604B1 (en) Differential microphone circuit
JP2000236383A (ja) コンデンサマイクロホンの電源供給方式及びその増幅回路並びにそれを用いた電話端末装置
EP2461605A1 (en) Differential microphone circuit

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 1020077004759

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 200580031681.7

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2006536351

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2005783231

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2005783231

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11663565

Country of ref document: US

WWW Wipo information: withdrawn in national office

Ref document number: 2005783231

Country of ref document: EP